A Deep Learning-Based System for PharmaCoNER

Ying Xiong, Yedan Shen, Yuanhang Huang, Shuai Chen, Buzhou Tang, Xiaolong Wang, Qingcai Chen, Jun Yan, Yi Zhou

[How to correct problems with metadata yourself]


Abstract
The Biological Text Mining Unit at BSC and CNIO organized the first shared task on chemical & drug mention recognition from Spanish medical texts called PharmaCoNER (Pharmacological Substances, Compounds and proteins and Named Entity Recognition track) in 2019, which includes two tracks: one for NER offset and entity classification (track 1) and the other one for concept indexing (track 2). We developed a pipeline system based on deep learning methods for this shared task, specifically, a subsystem based on BERT (Bidirectional Encoder Representations from Transformers) for NER offset and entity classification and a subsystem based on Bpool (Bi-LSTM with max/mean pooling) for concept indexing. Evaluation conducted on the shared task data showed that our system achieves a micro-average F1-score of 0.9105 on track 1 and a micro-average F1-score of 0.8391 on track 2.
Anthology ID:
D19-5706
Volume:
Proceedings of the 5th Workshop on BioNLP Open Shared Tasks
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kim Jin-Dong, Nédellec Claire, Bossy Robert, Deléger Louise
Venue:
BioNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
33–37
Language:
URL:
https://aclanthology.org/D19-5706
DOI:
10.18653/v1/D19-5706
Bibkey:
Cite (ACL):
Ying Xiong, Yedan Shen, Yuanhang Huang, Shuai Chen, Buzhou Tang, Xiaolong Wang, Qingcai Chen, Jun Yan, and Yi Zhou. 2019. A Deep Learning-Based System for PharmaCoNER. In Proceedings of the 5th Workshop on BioNLP Open Shared Tasks, pages 33–37, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
A Deep Learning-Based System for PharmaCoNER (Xiong et al., BioNLP 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/D19-5706.pdf