Generating Questions for Knowledge Bases via Incorporating Diversified Contexts and Answer-Aware Loss

Cao Liu, Kang Liu, Shizhu He, Zaiqing Nie, Jun Zhao

[How to correct problems with metadata yourself]


Abstract
We tackle the task of question generation over knowledge bases. Conventional methods for this task neglect two crucial research issues: 1) the given predicate needs to be expressed; 2) the answer to the generated question needs to be definitive. In this paper, we strive toward the above two issues via incorporating diversified contexts and answer-aware loss. Specifically, we propose a neural encoder-decoder model with multi-level copy mechanisms to generate such questions. Furthermore, the answer aware loss is introduced to make generated questions corresponding to more definitive answers. Experiments demonstrate that our model achieves state-of-the-art performance. Meanwhile, such generated question is able to express the given predicate and correspond to a definitive answer.
Anthology ID:
D19-1247
Volume:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Month:
November
Year:
2019
Address:
Hong Kong, China
Editors:
Kentaro Inui, Jing Jiang, Vincent Ng, Xiaojun Wan
Venues:
EMNLP | IJCNLP
SIG:
SIGDAT
Publisher:
Association for Computational Linguistics
Note:
Pages:
2431–2441
Language:
URL:
https://aclanthology.org/D19-1247
DOI:
10.18653/v1/D19-1247
Bibkey:
Cite (ACL):
Cao Liu, Kang Liu, Shizhu He, Zaiqing Nie, and Jun Zhao. 2019. Generating Questions for Knowledge Bases via Incorporating Diversified Contexts and Answer-Aware Loss. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2431–2441, Hong Kong, China. Association for Computational Linguistics.
Cite (Informal):
Generating Questions for Knowledge Bases via Incorporating Diversified Contexts and Answer-Aware Loss (Liu et al., EMNLP-IJCNLP 2019)
Copy Citation:
PDF:
https://preview.aclanthology.org/teach-a-man-to-fish/D19-1247.pdf