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Abstract

A difficult aspect of the translation of English temtd American Sign Language (ASL) animation
has been the production of ASL phenomena called “clasgifiedicates.” The complex way
these expressions use the 3D space around the sigriengkaltraditional MT approaches. This
paper presents new models for classifier predicatesdban a 3D spatial representation and an
animation planning formalism that facilitate a tratisla approach and are compatible with
current linguistic accounts of these phenomena. Thigrdean be incorporated into a multi-path
architecture to build English-to-ASL MT systems capalblproducing classifier predicates.

1. Introduction and Background

Although Deaf students in the U.S. and Canada are taughtmEnglish, their inability to hear

spoken English results in most Deaf U.S. high school gragudaB8+ years old) reading at a
fourth-grade (10 year old) level (Holt, 1991). Unfortunatelgny Deaf accessibility aids, like

television closed captioning or teletype telephones, asduenaser has strong English literacy
skills. Many Deaf people with English reading diffiguéire fluent in American Sign Language
(ASL), and so an English-to-ASL MT system can makermadion and services accessible
when English captioning text is at too high a reading levalliwe interpreter is unavailable.

ASL is a natural language used by the half million Deapfgeim the United States and Canada.
The structure of ASL is quite different than English, #sdvisual modality allows it to use
phenomena not seen in spoken language yet argued to be lIm{N&itile et al., 2000; Liddell,
2003). In addition to using hands, facial expression, eye paae, tilt, and body posture to
convey meaning, an ASL signer can use the surrounding space fmuoicative purposes. For
example, signers can assign discourse entities locatiospace and later refer to them by
pointing to these locations. The locations are not metitgpologically, i.e. positioning an
entity to the left of another in space doesn’'t meanti the left of the other in the real world.

1.1.Classifier Predicates: A Spatially Complex Phenomena

Other ASL expressions are more complex in their use of spadeposition invisible objects
around the signer to topologically indicate the layout of estiih a 3D scene being discussed.
Constructions called “classifier predicates” allow sigrtersise their hands to position, move,
trace, or re-orient an imaginary object in the spacé&ont of them to indicate the location,
movement, shape, contour, physical dimension, or some otheerfy@f a corresponding real
world entity. This paper will focus on classifier predésaof movement and location (CPMLSs)
of entities in a 3D scene. CPMLs consist of a semalhtimeaningful handshape and a 3D arm
movement path. A classifier handshape is chosen frorosactlset based on characteristics of



the entity described (whether it is a vehicle, human, alnietc.) and what aspect of the entity is
described (position, motion, etc). A CPML is often paEd by a noun phrase indicating the
entity whose locomotion will be depicted. (While not ithagsed in this paper, a CPML'’s 3D path
can be linguistically conventional rather than visually espntational (Liddell, 2003); such
predicates can also be handled by the linguistic modelMarabproach discussed in section 4.)

For example, the sentence “the car parked between tla@ddlbhe house” can be expressed using
a set of three CPMLs. After making the ASL s{gAT, a signer would move a hand in a “bent
V" handshape (see Figure 1) forward and slightly downwaual point in space in front of his or
her torso where an imaginary miniature cat could be emgsi. Next, after making the ASL
signHOUSE the signer would make a similar motion with a “downw@rdandshape to a place
where a house could be envisioned. Finally, after sigBiA& the signer would place their
dominant hand in a “sideways 3” handshape and trace anpsplce to indicate the route taken
by the vehicle. At the end of the motion (at a location betwthe ‘cat’ and the ‘house’), the
signer would position the open palm of their non-dominant hdree dominant hand would end
its motion by coming to rest atop the platform producedhleynon-dominant hand. Generally,
“bent V" handshapes are the classifier for stationamiynals, “downward C” for boxy objects,
and “sideways 3” for vehicles. As the example suggesisslation into an ASL classifier
predicate is complex because of the productive and space-dgpiature of these expressions.

1.2.Previous Direct and Transfer ASL MT Architectures

Since ASL has no written form, there are currentlyificient parallel English-ASL corpora for
stochastic MT approaches; so, implemented ASL MT eysteave used non-stochastic direct
and transfer MT architectures. Graphics softwatseéd to animate 3D virtual human characters
to perform the signing output; therefore, these systems doBwgtish text into an animation
control script directing the characters how to perform A%direct systems have used word-to-
sign dictionaries to produce Signed English (a non-ASL Englehform of signing), and
transfer systems have handled more divergences to preduical (but limited) ASL output
(Huenerfauth, 2003). An interlingual MT system has alsmIproposed (Veale et al., 1998).

Because these systems employed only traditional lexicegemmatical resources and because
they made no attempt to model the spatial arrangement of ®bjedhe 3D scene being
discussed, they were unable to produce classifier preditatesspatial English text. Omitting
these phenomena from the coverage of an English-to-ASL MT nsyistaunsatisfactory for
several reasons: (1) many English concepts lack a fluent th&8islation without classifier
predicates, (2) these phenomena are common in native signings{@®irs produce classifiers 1
to 17 times per minute, depending on genre) (Morford andHFsidane, 2003), and (3)
English/ASL translation pairs involving classifier predicates quite structurally divergent (and
would thus be particularly useful to translate for a Dessr with limited English literacy skills).
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Figure 1: ASL Classifier Predicate Handshapes: “BehtDMpownward C,” and “Sideways 3”



2. A Multi-Path MT Architecture

This project’'s goal is to design an English-to-ASL MT systeat can generate animations of
classifier predicates of movement and location (CPMLSs) fEnglish sentences describing 3D
scenes. There are two facets to this work: (1) a novelraBilesentation and processing scheme
that can generate CPMLs and (2) an overall MT softweskitecture design that allows this
CPML-generator to be part of a complete English-to-ASindfation system that handles a
variety of sentence types. The shape of this overeiitacture will be described in this section,
and the CPML generation component will be the focus of theineleraof this paper.

The discussion of classifier predicates above suggestedraldéional direct and transfer MT
approaches are insufficient for handling these phenomenaMTAapproach with richer spatial
and knowledge resources is needed to generate CPMLs, arghpgs will later propose an
interlingual translation design involving a 3D virtual realigpresentation of the entities under
discussion. However, section 1.2 indicated that most nosifdssEnglish-to-ASL sentence
pairs can be translated using a simpler transfer degign.this reason, an English-to-ASL MT
architecture has been proposed containing multiple priogepathways: interlingual, transfer,
and direct (Huenerfauth, 2004a). The pathway for English inpatkiping CPMLs includes the
virtual reality software, but the pathway for other inputesua transfer MT approach (broader
coverage and easier to implement). Finally, since risaaf signers are somewhat familiar with
non-ASL English-like forms of signing, this design alsoulgs a direct pathway: a word-for-
sign substitution process that produces a Signed English oulfhé.system will process an
input sentence using the most sophisticated pathway forhvguitficient linguistic resources
exist and “falls back” on simpler pathways as needed.s ahthitecture for blending deep-
knowledge and broad-coverage MT approaches in a single systelu alsoube useful for other
language pairs: especially for building hybrid stochastic/Istgusystems or for translating texts
in which certain sentences require special procegsingnerfauth, 2004a).

3. A Representation of 3D Locomotion for English-to-ASL MT

The design uses virtual reality software to calculatestoce a model of the 3D coordinates of
entities discussed in a spatially descriptive English texte dnimated ASL signing character
later uses this 3D coordinate data to calculate the armmante needed to produce a classifier
predicate to describe each entity’s 3D location or movem&he 3D model is analogous to the
miniature invisible objects one can imagine floating in spaceral ASL signers when they use
classifier predicates to describe a 3D scene. To ddwdecations and movement paths of the
objects in the model based on the English input text, thigylevill use the AnimNL system
(Bindiganavale et al., 2000). This software accepts Enggighcontaining instructions for a set
of 3D virtual reality objects to follow, and it moves thiejexts in the 3D scene to obey the
English input sentences. AnimNL has been implementednflitary training and equipment
repair domains, and it can be extended to new domains by auggetti library of
Parameterized Action Representations (PARS), to cowiti@thl English spatial verbs.

PARs are feature-value structures that record the siethd locomotion event necessary for the
AnimNL planning algorithm to generate a virtual reality aniowtthey have slots specifying:
what agent is moving, the path/manner and translationaitmughtnature of this motion, speed



and timing data, terminating conditions, and planning opesdtts like preconditions, effects,

etc. The system stores a database of PAR templadégdpresent prototypical actions that
entities can perform. These templates are missingcpkatidetails (some of their slots aren’t
filled in) about the position of the agent or other entiifeshe environment that would affect

how the animation action should really be performed in @dati situations. By parameterizing
PARs on the 3D coordinates of the objects participating inntbgement, the system can
produce animations specific to particular 3D scene configmsaand reuse animation code.

AnimNL operates by first analyzing an English input secge then it uses lexical and semantic
features from the analysis to select and partially&ilPAR template from the database, and
finally the PAR serves as an initial operator to a hiiaal animation planning process. A
single locomotion event may contain several sub-movements aveults, and for this reason,
PARs may be defined in a hierarchical manner. AnimNL's placakulates the preconditions
and effects of particular animation movements in ord@raduce a realistic virtual reality scene.
This virtual reality serves as an intermediary betweenigéingkentences about 3D locations and
movement and the ASL CPMLs they produce; in fact, it mamegarded as an interlingua for
texts in this 3D locomotion domain (Huenerfauth, 2004a).

4. Models for CPML Generation

After calculating the 3D layout of the entities discusseahirenglish text, an approach is needed
to generate animations of CPMLs describing this scenehdVe argued (Huenerfauth, 2004b)
that a recent linguistic model of classifier predicate geimn (Liddell 2003) can serve as a
starting point for developing such an approach. In Liddeitglel, signers have a mental image
of a scene to be discussed (much like a virtual realityirlwthey map (or “blend”) onto the
space around their body, and they use 3D information frons¢kise to select and fill templates
for a classifier predicate from a template lexicomfddtunately, Liddell (2003) does not provide
detail about the internal structure of these templatesheoexact selection/filling process. The
remainder of this paper describes new computational modetdafesifier predicate generation
within an English-to-ASL MT system that formalize angplement this linguistic account.

4.1. A Spatial Model of CPML Semantics: “Ghosts”

The way in which this system implements the blending ovitieal reality scene onto the space
around the ASL signing character is by instantiating minéfloating invisible versions of the
objects in the virtual reality scene in front of the ¢oof the signer. Thghostsin this invisible
world model topologically correspond to the placement of thigats in the virtual reality;
however, the ghosts don't need to be precise visual depictiotie antities discussed in the
original English text — they are always invisible. The ghosérely serve as rough placeholders
for the 3D locations and orientations over time of the ¢bjgry represent; they also record the
set of appropriate ASL classifier handshapes that dmilgsed to refer to those entities. Within
this model, we can regard the purpose of an ASL signer prmd@PMLs as an attempt to
convey information about what the invisible ghosts are doing icespahe 3D model of these
ghosts over time can thus serve as a loose semantic repteEseof a set of CPMLs; in this
light, the three CPMLs in section 1.1 can be thought @oaseying that a box-like object and a
stationary animal occupied two points in space and a eetliject came to rest in between them.



4.2. A Spatial Model of CPML Phonology: “Articulators”

To convey information about the invisible ghosts in space,itinersmanipulates various visible
articulatorsin that same region of space. These articulatorsdedhe dominant hand, the non-
dominant hand, the eye-gaze, the head-tilt, facial expressidrshoulder tilt. (These last two are
not discussed in this paper.) Because this CPML generastenswvill overlay a 3D coordinate
system in the space near the signer’s torso in order topahe ghosts, we can take advantage
of this coordinate system to efficiently model thecartitors of a CPML, as described below.

All phonological models of ASL record how the handshape, hegatibn, hand orientation,
movement, and non-manual elements of a signing performaaoge&lver time (Coulter, 1993);
however, current models are not well-suited to the repregentaf CPMLs. They typically
record hand location relative to other parts of a sigrerdy; so, signs like CPMLs that occur in
the “neutral space” in front of the torso require pre8Becoordinates of location in order to be
modeled successfully. Unfortunately, it's not clear frinese models how a generation process
would produce the stream of 3D coordinates over time needlegecify a CPML. Hand
orientation is often modeled as a set of cardinal or lvelditive directions (which is insufficient
for the variety of hand orientations seen in CPMLs)Y awen those models that do specify
orientation more precisely do not account for how a g@gioer process for CPMLs could
calculate this information. Finally, these models spebi@ndshape information at a finer
granularity than necessary for CPMLs, which typicailyolve only a small set of handshapes.

At the other end of the spectrum, a non-linguistic (ohges a phonetic) representation of an
animation of a 3D virtual human character performing RMC would need to record a
tremendous number of parameters over time: all of the foigtes for the face, eyes, neck,
shoulders, elbows, wrists, fingers, etc. If we had to @éeeclassifier predicates while
considering all of these values, the task would be giiffeult. The goal of this model is to
reduce the number of independent parameters needed to feeddmcthe generation process
while still allowing us to produce a complete animation, and/s model CPMLs as a complex,
coordinated movement (or dance) of a small set of 3Bctdbjn the space in front of the signer.

Specifically, eye-gaze and head-tilt can be represestedpair of 3D points in space at which

these articulators are aimed. Since these pointftéh track a ghost in the signing space (or
may aim at the audience), the model has a method of caigulbeir values. We can make this

simplification because what is semantically meaningftd CPML about eye-gaze and head-tilt
is the point at which they are aimed, not the exact dathiheck or eyeball angles. Fortunately,
the animation software to be used by this system canlatdchead/eye positions for a virtual

character given a 3D point in space; so, this model ficigunit for producing an animation.

In a CPML, the position of the hand (not the whole armgemantically meaningful; so, the
model can make another simplification. The location in sgdéthe dominant and non-dominant
hand are recorded as another pair of 3D coordinates. a{8@erecord for each hand the 3D
orientation and which of the classifier handshapes shoulgsbd.) Given hand location and
orientation values, there are algorithms for calcuiptigalistic elbow/shoulder angles for a 3D
virtual human character (Liu, 2003); so, the model is agafiincient for generating animation.



4.3. A Planning-Based Model of CPML Templates: “CP-PARS”

In the previous sections, we have specified semanticpndological models for CPMLSs; in
doing so, we have implicitly framed the CPML-generation mobas the task of creating a 3D
movement script for the articulators based on the statéeoinvisible ghost model and the
original English sentence. Continuing our implementatiohiddlell’s (2003) linguistic model,
the next computational representation needed is for his clagwiédicate “template lexicon.”
This lexicon will be implemented using a novel ASL représtm based on the PAR animation
planning formalism (Section 3). PARs were used previouglthb AnimNL software, and the
motivation for basing this new representation on them & the problem of planning the
movements of CPML articulators is analogous to AnimNL'sofam of planning the movements
of 3D virtual reality objects from an English input text.

Just as AnimNL stored a database of PAR templatestehii locomotion actions of 3D virtual
reality objects, this MT system will store a databa$ PAR-like planning operators specifying
potential CPML arm movements. The AnimNL system demonsiridiet PARs are a robust
mechanism for 3D animation planning; in fact, they repmesnformation (e.g. about timing,
manner, and purpose) that is more sophisticated theguged for planning CPMLs. Therefore,
a reduced form of PARs will be implemented calle@ssifier predicate PARs” @P-PARshat
include those PAR fields that are relevant for planf@®RML articulator movements. Just as
AnimNL used lexical, semantic, and argument strucinoi@ mation from the analyzed English
sentence to select and fill PAR templates, this systél link English motion verbs to particular
CP-PAR templates and use the analyzed English sentesekett and fill a CP-PAR template.

Just like PARs, these CP-PARs are parameterized on tbed@Dinates of entities in a 3D scene
— in this case, on 3D coordinates of the ghosts or otheulators. For example, a CP-PAR may
be associated with the English verb “park” and may spduifyatticulator movements required to
indicate a vehicle is parking (using the “sideways 3" handshad non-dominant hand platform
described in section 1.1). However, the CP-PAR woulgpdmameterized on two pieces of
information: the initial and final 3D locations of the ghostose parking is being conveyed. So,
the same CP-PAR template could be used to generatariga@MLs at many 3D coordinates.

Since AnimNL would have already calculated the 3D layduthe ghosts, the CP-PAR can
simply use these 3D ghost coordinates when selecting thecafiolas of the articulators.

Finally, the filled-in CP-PARs will be processed bhiararchical planning algorithm (much like
AnimNL) to produce a set of detailed animation specificatifmn the articulators. The planner
can consider: the locations of ghosts and articulator&alksemantic information from the
English sentence, and the CPML discourse model (see next ¥ecfiba goals, preconditions,
and effects of the CP-PAR planning operators will allbent to trigger or modify additional
classifier predicates that may be required to sais}, grammatical constraints. Because CP-
PARs (like PARS) are hierarchical planning operatorsingle CP-PAR could be decomposed
into sub-plans with temporal relationships between themis fitechanism can facilitate the
coordination of multiple articulators during the perforn@anta single classifier predicate, and it
enables this model to optionally pre-compile the syntax of cexripteractions between multiple
classifier predicates and store them as a sub-plan gfaplarge multi-predicate CP-PAR.



While it is easier to develop classifier predicate tenaglaising the concise CP-PAR formalism
than the more verbose/robust PAR formalism, it is godteid that the system will actually
convert the CP-PARs into standard PARs prior to run-timmghat the PAR-planning algorithm
already implemented within the AnimNL software couldreéeised as the processing engine for
CPML generation. Since CP-PARs would typically contaess information than PARs, this
conversion process should usually be rather simple. Howéeeg is one regard in which CP-
PARs will actually need to be a richer representatiom tRARs — CP-PARs must allow a
developer to specify the location and orientation of thedharticulators over time in a more
abstract manner. Generally, animation movement details AR are not recorded in a
symbolic fashion inside the attribute-value feature struatfitbe representation; instead, low-
level animation programming code is associated with the @&&iling how a 3D animation path
is calculated based on the parameters inside the featuctust.

To facilitate the creation of CP-PARs by developers Witiguistic (rather than graphics)
expertise, it is important that the hand locationsfgdtions be easier to specify. Since the hand
articulator typically tracks a ghost in the scene, achast of location/orientation calculation
functions will be defined (that base their calculationshen3D positions, paths, and orientations
of a particular ghost over time). When CP-PARs are cord/ént®ARs, the 3D animation code
for the PAR would be created based on the 3D coordiratése ghost over time and the
calculation function that was chosen by the linguisticettgper. For example, to specify a CP-
PAR for “parking a car,” the linguistic developer would justed to specify that the dominant
hand should follow the 3D location of the ghost-car it is dlesqgy, and the front of the
“sideways 3” handshape should be pointed in the directidheomotion path along which the
car is traveling. To accommodate classifier predicatils unusual movement patterns, the
system should also allow developers to program animatida directly if so desired.

4.4. A Model of CPML Discourse: “Identified(), Positioned(), Topicalized()”

During the analysis of the English input text, a referemsmlution algorithm will track the
entities mentioned in the text and maintain a list of Emglish text discourse referents (the
design of this processing stage is still under consideratioh)of £e entities that are assigned
locations in the virtual reality model by the AnimNL softe/awill also be added to a CPML
discourse model. In addition to maintaining a list of thggsasts involved in the 3D scene, this
CPML discourse model records whether certain discoursarésaare true for each entity. For
example, one entity at a time can have the fedatpiealized(entity) set to ‘true’. Two other
discourse features are more CPML-specifientified() andpositioned() When an entity has
been explicitly named using a noun phrase immediately pridghe performance of a CPML,
then the featur@entified(entity) will be set to ‘true’. Performing an entity’s nouhrpse will
also temporarily make the featuogpicalized(entity) ‘true’. When a previous classifier predicate
has explicitly indicated a 3D coordinate in space for aityetiten the featurpositionedentity)

is set ‘true’, and it remains ‘true’ until AnimNL movesat ghost in the virtual reality scene.

These discourse features are used during the CPML planninggrepecifically, a precondition
of most CPMLs is that the main ghost described satisfcdnelition: ( (identified(entity) and
positioned(entity) ) or topicalized(ntity) ). The effect of this precondition is that when the



signer performs a classifier predicate, it is clear tieictity is being discussed. Either the entity
is the current topic, or since a 3D location has explibieen assigned to the entity in space, it is
clear what entity is being referred to by a classifieedicate that begins at that 3D spatial
coordinate. Most CPMLs will also require any other glmablved in the predicate to satisfy the
following: (identified(entity) and positionedéntity)). For example, we’'ll see in the next section
that the classifier predicate for parking a car willuiegjthat any ghosts that the car is positioned
relative toin space have been clearly identified and positioned &yiqus classifier predicates.

5. An Example of the CPML Models Used for Machine Trantation

We will now illustrate how the system would process the Ehghput sentence from Section

1.1: “The car parked between the cat and the house.” ai&lgzer would parse the sentence,
assign a word sense to the verb (e.g. park-23), and bpiledécate argument structure with “the

car” listed as the agent argument and “between the datarhouse” listed as a location adjunct.
The system would identify the following list of discourséerents: (1) the car, (2) the cat, (3) the
house. Finally, the AnimNL software would process Hrglish sentence and build a 3D virtual

reality scene portraying the information. It would seRftlocations for the cat and the house,
calculate a location “between” them, select initial andlflocations for the car, and create a 3D
animation of the car’'s movement path. Since all thresodise entities were assigned locations
in the virtual reality, all of them are added to the CPdidcourse model. Initially, the discourse

predicatesdentified() andpositioned() would be ‘false’ for all three of the entities in theene.

The initial goal for our CPML planning process is to egpré¢he semantics of the English
sentence; so, the PARKING-VEHICLE CP-PAR (Figure 2)triggered via the express-
semantics predicate in its “Effects” field. This méjpe car” ghost to the variable g0 inside this
CP-PAR, and the CP-PAR checks the restriction that g&s&hicle. The noun phrases inside the
locative adjunct (“the cat” and “the house™) are mappedltagd g2, respectively. Before
performing PARKING-VEHICLE, the preconditions must be s&tsfso, they are placed on the
list of goals. Thespositioned(@l) andpositioned(@2) goals will trigger two additional CPMLs
to precede PARKING-VEHICLE, namely LOCATE-STATIONARANIMAL and LOCATE-
BOXY-OBJECT. Thedentified() andtopicalized() preconditions of all three of these CPMLs
will trigger an appropriate instance of MAKE-NOUN-SIGdlprecede each of them.

The CP-PARs in Figure 2 demonstrate how the location anctaiien of the articulators can be
calculated from the coordinates of ghosts using a set of BRidums (note the functions inside
the “Location” and “Orientation” fields of several of th&®®ARs). We can also see how the
handshape of hand articulators can be specified symbplicgsihg constants like “Sideways 3”
or “Bent V.” Finally, the example illustrates how paraens can be passed to CP-PARs (see the
calls to PLATFORM and EYETRACK inside of PARKING-VEELE) and how multiple CP-
PARs can be coordinated in sequence or concurrentlyhidrcase, the control of the dominant
hand, non-dominant hand, and eye-gaze articulators of therigazkr’ CPML is divided across
three different CP-PARs that are performed simultangaiwsing the animation output.

At the end of the planning process, a sequence of CPMLs ifw@rvening ASL noun phrases)
would be generated that is identical to the ASL output desttiat the end of Section 1.1.



PARKING-VEHICLE PLATFORM
Parameters: g@host car parking)gl..gN(other ghosts) | Parameters: loc@he location at which to position
Restrictions: g0 is a vehicle upturned palm of non-dominant hand)
Preconditions: topic(g0) or (ident(g0) and positioned(g0))| Articulator: ndom (the non-dominant hand)
for g=g1..gN: (ident(g) and tiosied(g)) Location: ndom.loc = locO
Articulator:  dom(the dominant hand) Orientation: ndom.ori = palm_upward()
Location: dom.loc = follow_location_of( g0 ) Handshape: ndom.hs = “B&n open palm)
Orientation: ~ dom.ori = direction_of_motion_path(g0) | This CP-PAR produces a horizontal platform
Handshape: ~dom.hs = “Sideways 3" _ with the non-dominant hand. In this example,
Effects: positioned(g0), topic(g0), express_s#iesE{ | it is performed concurrently with the PARKINGH
[park-23 agent=g0 locative_NRszgiN] ) VEHICLE CP-PAR to produce a complete
Concurrently: PLATFORM(gOIOCfInaI), EYETRACK(gO) ‘parking’ classifier predicate_
LOCATE-STATIONARY-ANIMAL EYETRACK
Parameters: g@the ghost to position in space) Parameters: g@ghost to follow with eye gaze)
Restrictions: g0 is an animal Articulator: eg (the eye gaze articulator)
Preconditions: topic(g0) and ident(g0) Location:  eg.loc = follow_location_of( g0 )
Articulator:  dom(the dominant hand)
g??:rtultggbn' ng.l(;)r(i: = movg_to_locatlon_of( go0) MAKE-NOUN-SIGN
X -ort = go.ori P ters: g@host whose noun sign to perform)

Handshape: dom.hs =*“Bent V" E?framg ers: g 0). id 0 9 P
Effects: topic(g0), positioned(g0) ects: topic(go), i e_nt(g ) )

There is also a LOCATE-BOXY-OBJECT CP-PAR just ikeﬁlgsttfer?elrgot‘;s Lé)p :r?dLif Igenr(fz)r:r?sr :2: glo l:1r(1sr)>hrclse

this one but using the “Downward C” handshape. g9 P anis).

Figure 2: Pseudo-code for the CP-PARs mentioned in thddtiansexample of Section 5.

6. Discussion

This paper has illustrated how studying MT issues for A8h push the boundaries of current
MT methodologies and inspire linguistic understanding of AHath the special difficulty in
translating CPMLs and the familiarity many ASL signbkes/e with Signed English motivated
this system’s exploration of a multi-pathway architecforeMT. The spatial nature of CPMLs
motivated the integration of virtual reality softwaie an intermediary MT representation. The
capabilities and requirements of the AnimNL software #red PAR planning formalism have
motivated new computational models of CPML discourse, setsarftihosts), templates
(capturing morpho-syntactic composition of these predicat®) phonology (articulators).
These MT models can serve as starting-points for fulitiguistic analyses of these phenomena.

This project is currently finishing specifying the CPMlodels, the CPML-generation approach
(Huenerfauth, 2004b), and the multi-pathway machine translataritecture in which it will be
situated (Huenerfauth, 2004a). Other research topicgigictiefining evaluation metrics for an
MT system that produces ASL animation containing clessiredicates, finding ways of
representing additional ASL phenomena using spatial or plannirgtdeesmeworks, planning
the software implementation of the MT design, and begintliegconstruction of an initial CP-
PAR lexicon of classifier predicate templates. Thisguoyill also consider ways of extending
the current CP-PAR specification to address more compdessiier predicate generation issues,
such as timing and duration of CPMLs, instantiation andept@nt of new objects in a scene,
selection of scene perspective and scale, handling of miadwerbials, and further specification
of facial expression, body posture, hand location, andtatien within the CP-PAR framework.
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