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Abstract 
 

A difficult aspect of the translation of English text into American Sign Language (ASL) animation 
has been the production of ASL phenomena called “classifier predicates.”  The complex way 
these expressions use the 3D space around the signer challenges traditional MT approaches.  This 
paper presents new models for classifier predicates based on a 3D spatial representation and an 
animation planning formalism that facilitate a translation approach and are compatible with 
current linguistic accounts of these phenomena.  This design can be incorporated into a multi-path 
architecture to build English-to-ASL MT systems capable of producing classifier predicates.   

 

1. Introduction and Background 
Although Deaf students in the U.S. and Canada are taught written English, their inability to hear 
spoken English results in most Deaf U.S. high school graduates (18+ years old) reading at a 
fourth-grade  (10 year old) level (Holt, 1991).  Unfortunately, many Deaf accessibility aids, like 
television closed captioning or teletype telephones, assume the user has strong English literacy 
skills.  Many Deaf people with English reading difficulty are fluent in American Sign Language 
(ASL), and so an English-to-ASL MT system can make information and services accessible 
when English captioning text is at too high a reading level or a live interpreter is unavailable.   
 
ASL is a natural language used by the half million Deaf people in the United States and Canada.  
The structure of ASL is quite different than English, and its visual modality allows it to use 
phenomena not seen in spoken language yet argued to be linguistic (Neidle et al., 2000; Liddell, 
2003).  In addition to using hands, facial expression, eye gaze, head tilt, and body posture to 
convey meaning, an ASL signer can use the surrounding space for communicative purposes.  For 
example, signers can assign discourse entities locations in space and later refer to them by 
pointing to these locations.  The locations are not meaningful topologically, i.e. positioning an 
entity to the left of another in space doesn’t mean it is to the left of the other in the real world. 
 
1.1. Classifier Predicates: A Spatially Complex Phenomena 
Other ASL expressions are more complex in their use of space and position invisible objects 
around the signer to topologically indicate the layout of entities in a 3D scene being discussed.  
Constructions called “classifier predicates” allow signers to use their hands to position, move, 
trace, or re-orient an imaginary object in the space in front of them to indicate the location, 
movement, shape, contour, physical dimension, or some other property of a corresponding real 
world entity.  This paper will focus on classifier predicates of movement and location (CPMLs) 
of entities in a 3D scene.  CPMLs consist of a semantically meaningful handshape and a 3D arm 
movement path.  A classifier handshape is chosen from a closed set based on characteristics of 



 

  

the entity described (whether it is a vehicle, human, animal, etc.) and what aspect of the entity is 
described (position, motion, etc).  A CPML is often preceded by a noun phrase indicating the 
entity whose locomotion will be depicted.  (While not illustrated in this paper, a CPML’s 3D path 
can be linguistically conventional rather than visually representational (Liddell, 2003); such 
predicates can also be handled by the linguistic models and MT approach discussed in section 4.) 
 
For example, the sentence “the car parked between the cat and the house” can be expressed using 
a set of three CPMLs.  After making the ASL sign CAT, a signer would move a hand in a “bent 
V” handshape (see Figure 1) forward and slightly downward to a point in space in front of his or 
her torso where an imaginary miniature cat could be envisioned.  Next, after making the ASL 
sign HOUSE, the signer would make a similar motion with a “downward C” handshape to a place 
where a house could be envisioned.  Finally, after signing CAR, the signer would place their 
dominant hand in a “sideways 3” handshape and trace a path in space to indicate the route taken 
by the vehicle.  At the end of the motion (at a location between the ‘cat’ and the ‘house’), the 
signer would position the open palm of their non-dominant hand.  The dominant hand would end 
its motion by coming to rest atop the platform produced by the non-dominant hand.  Generally, 
“bent V” handshapes are the classifier for stationary animals, “downward C” for boxy objects, 
and “sideways 3” for vehicles.  As the example suggests, translation into an ASL classifier 
predicate is complex because of the productive and space-depicting nature of these expressions.  
 
1.2. Previous Direct and Transfer ASL MT Architectures  
Since ASL has no written form, there are currently insufficient parallel English-ASL corpora for 
stochastic MT approaches; so, implemented ASL MT systems have used non-stochastic direct 
and transfer MT architectures.  Graphics software is used to animate 3D virtual human characters 
to perform the signing output; therefore, these systems convert English text into an animation 
control script directing the characters how to perform ASL.  Direct systems have used word-to-
sign dictionaries to produce Signed English (a non-ASL English-like form of signing), and 
transfer systems have handled more divergences to produce actual (but limited) ASL output 
(Huenerfauth, 2003).  An interlingual MT system has also been proposed (Veale et al., 1998). 
 
Because these systems employed only traditional lexical and grammatical resources and because 
they made no attempt to model the spatial arrangement of objects in the 3D scene being 
discussed, they were unable to produce classifier predicates from spatial English text.  Omitting 
these phenomena from the coverage of an English-to-ASL MT system is unsatisfactory for 
several reasons: (1) many English concepts lack a fluent ASL translation without classifier 
predicates, (2) these phenomena are common in native signing (ASL signers produce classifiers 1 
to 17 times per minute, depending on genre) (Morford and MacFarlane, 2003), and (3) 
English/ASL translation pairs involving classifier predicates are quite structurally divergent (and 
would thus be particularly useful to translate for a Deaf user with limited English literacy skills). 

       

Figure 1: ASL Classifier Predicate Handshapes: “Bent V,” “Downward C,” and “Sideways 3” 
 



 

  

2. A Multi-Path MT Architecture  
This project’s goal is to design an English-to-ASL MT system that can generate animations of 
classifier predicates of movement and location (CPMLs) from English sentences describing 3D 
scenes.  There are two facets to this work: (1) a novel ASL representation and processing scheme 
that can generate CPMLs and (2) an overall MT software architecture design that allows this 
CPML-generator to be part of a complete English-to-ASL translation system that handles a 
variety of sentence types.  The shape of this overall architecture will be described in this section, 
and the CPML generation component will be the focus of the remainder of this paper. 
 
The discussion of classifier predicates above suggested that traditional direct and transfer MT 
approaches are insufficient for handling these phenomena.  An MT approach with richer spatial 
and knowledge resources is needed to generate CPMLs, and this paper will later propose an 
interlingual translation design involving a 3D virtual reality representation of the entities under 
discussion.  However, section 1.2 indicated that most non-classifier English-to-ASL sentence 
pairs can be translated using a simpler transfer design.  For this reason, an English-to-ASL MT 
architecture has been proposed containing multiple processing pathways: interlingual, transfer, 
and direct (Huenerfauth, 2004a).  The pathway for English inputs producing CPMLs includes the 
virtual reality software, but the pathway for other inputs uses a transfer MT approach (broader 
coverage and easier to implement).  Finally, since many Deaf signers are somewhat familiar with 
non-ASL English-like forms of signing, this design also includes a direct pathway: a word-for-
sign substitution process that produces a Signed English output.  The system will process an 
input sentence using the most sophisticated pathway for which sufficient linguistic resources 
exist and “falls back” on simpler pathways as needed.  This architecture for blending deep-
knowledge and broad-coverage MT approaches in a single system should also be useful for other 
language pairs: especially for building hybrid stochastic/linguistic systems or for translating texts 
in which certain sentences require special processing (Huenerfauth, 2004a). 
 

3. A Representation of 3D Locomotion for English-to-ASL MT 
The design uses virtual reality software to calculate and store a model of the 3D coordinates of 
entities discussed in a spatially descriptive English text.  The animated ASL signing character 
later uses this 3D coordinate data to calculate the arm movements needed to produce a classifier 
predicate to describe each entity’s 3D location or movement.  The 3D model is analogous to the 
miniature invisible objects one can imagine floating in space around ASL signers when they use 
classifier predicates to describe a 3D scene.  To decide the locations and movement paths of the 
objects in the model based on the English input text, this design will use the AnimNL system 
(Bindiganavale et al., 2000).  This software accepts English text containing instructions for a set 
of 3D virtual reality objects to follow, and it moves the objects in the 3D scene to obey the 
English input sentences.  AnimNL has been implemented for military training and equipment 
repair domains, and it can be extended to new domains by augmenting its library of 
Parameterized Action Representations (PARs), to cover additional English spatial verbs. 
 
PARs are feature-value structures that record the details of a locomotion event necessary for the 
AnimNL planning algorithm to generate a virtual reality animation; they have slots specifying: 
what agent is moving, the path/manner and translational/rotational nature of this motion, speed 



 

  

and timing data, terminating conditions, and planning operator slots like preconditions, effects, 
etc.  The system stores a database of PAR templates that represent prototypical actions that 
entities can perform. These templates are missing particular details (some of their slots aren’t 
filled in) about the position of the agent or other entities in the environment that would affect 
how the animation action should really be performed in particular situations.  By parameterizing 
PARs on the 3D coordinates of the objects participating in the movement, the system can 
produce animations specific to particular 3D scene configurations and reuse animation code.   
 
AnimNL operates by first analyzing an English input sentence, then it uses lexical and semantic 
features from the analysis to select and partially fill a PAR template from the database, and 
finally the PAR serves as an initial operator to a hierarchical animation planning process.  A 
single locomotion event may contain several sub-movements or sub-events, and for this reason, 
PARs may be defined in a hierarchical manner. AnimNL’s planner calculates the preconditions 
and effects of particular animation movements in order to produce a realistic virtual reality scene. 
This virtual reality serves as an intermediary between English sentences about 3D locations and 
movement and the ASL CPMLs they produce; in fact, it can be regarded as an interlingua for 
texts in this 3D locomotion domain (Huenerfauth, 2004a).   
 

4. Models for CPML Generation 
After calculating the 3D layout of the entities discussed in an English text, an approach is needed 
to generate animations of CPMLs describing this scene. We have argued (Huenerfauth, 2004b) 
that a recent linguistic model of classifier predicate generation (Liddell 2003) can serve as a 
starting point for developing such an approach.  In Liddell’s model, signers have a mental image 
of a scene to be discussed (much like a virtual reality) which they map (or “blend”) onto the 
space around their body, and they use 3D information from this scene to select and fill templates 
for a classifier predicate from a template lexicon.  Unfortunately, Liddell (2003) does not provide 
detail about the internal structure of these templates nor the exact selection/filling process.  The 
remainder of this paper describes new computational models for classifier predicate generation 
within an English-to-ASL MT system that formalize and implement this linguistic account. 
 
4.1. A Spatial Model of CPML Semantics: “Ghosts” 
The way in which this system implements the blending of the virtual reality scene onto the space 
around the ASL signing character is by instantiating miniature floating invisible versions of the 
objects in the virtual reality scene in front of the torso of the signer.  The ghosts in this invisible 
world model topologically correspond to the placement of the objects in the virtual reality; 
however, the ghosts don’t need to be precise visual depictions of the entities discussed in the 
original English text – they are always invisible.  The ghosts merely serve as rough placeholders 
for the 3D locations and orientations over time of the objects they represent; they also record the 
set of appropriate ASL classifier handshapes that could be used to refer to those entities.  Within 
this model, we can regard the purpose of an ASL signer producing CPMLs as an attempt to 
convey information about what the invisible ghosts are doing in space.  The 3D model of these 
ghosts over time can thus serve as a loose semantic representation of a set of CPMLs; in this 
light, the three CPMLs in section 1.1 can be thought of as conveying that a box-like object and a 
stationary animal occupied two points in space and a vehicle object came to rest in between them. 



 

  

 
4.2. A Spatial Model of CPML Phonology: “Articulators” 
To convey information about the invisible ghosts in space, the signer manipulates various visible 
articulators in that same region of space.  These articulators include the dominant hand, the non-
dominant hand, the eye-gaze, the head-tilt, facial expression, and shoulder tilt. (These last two are 
not discussed in this paper.)  Because this CPML generation system will overlay a 3D coordinate 
system in the space near the signer’s torso in order to position the ghosts, we can take advantage 
of this coordinate system to efficiently model the articulators of a CPML, as described below.   
 
All phonological models of ASL record how the handshape, hand location, hand orientation, 
movement, and non-manual elements of a signing performance change over time (Coulter, 1993); 
however, current models are not well-suited to the representation of CPMLs.  They typically 
record hand location relative to other parts of a signer’s body; so, signs like CPMLs that occur in 
the “neutral space” in front of the torso require precise 3D coordinates of location in order to be 
modeled successfully.  Unfortunately, it’s not clear from these models how a generation process 
would produce the stream of 3D coordinates over time needed to specify a CPML.  Hand 
orientation is often modeled as a set of cardinal or body-relative directions (which is insufficient 
for the variety of hand orientations seen in CPMLs), and even those models that do specify 
orientation more precisely do not account for how a generation process for CPMLs could 
calculate this information.  Finally, these models specify handshape information at a finer 
granularity than necessary for CPMLs, which typically involve only a small set of handshapes.   
 
At the other end of the spectrum, a non-linguistic (or perhaps a phonetic) representation of an 
animation of a 3D virtual human character performing a CPML would need to record a 
tremendous number of parameters over time: all of the joint angles for the face, eyes, neck, 
shoulders, elbows, wrists, fingers, etc.  If we had to generate classifier predicates while 
considering all of these values, the task would be quite difficult.  The goal of this model is to 
reduce the number of independent parameters needed to be specified by the generation process 
while still allowing us to produce a complete animation, and so we model CPMLs as a complex, 
coordinated movement (or dance) of a small set of 3D objects in the space in front of the signer.   
 
Specifically, eye-gaze and head-tilt can be represented as a pair of 3D points in space at which 
these articulators are aimed.  Since these points will often track a ghost in the signing space (or 
may aim at the audience), the model has a method of calculating their values.  We can make this 
simplification because what is semantically meaningful in a CPML about eye-gaze and head-tilt 
is the point at which they are aimed, not the exact details of neck or eyeball angles.  Fortunately, 
the animation software to be used by this system can calculate head/eye positions for a virtual 
character given a 3D point in space; so, this model is sufficient for producing an animation. 
 
In a CPML, the position of the hand (not the whole arm) is semantically meaningful; so, the 
model can make another simplification.  The location in space of the dominant and non-dominant 
hand are recorded as another pair of 3D coordinates.  (We also record for each hand the 3D 
orientation and which of the classifier handshapes should be used.)  Given hand location and 
orientation values, there are algorithms for calculating realistic elbow/shoulder angles for a 3D 
virtual human character (Liu, 2003); so, the model is again sufficient for generating animation.   



 

  

 
4.3. A Planning-Based Model of CPML Templates: “CP-PARs” 
In the previous sections, we have specified semantic and phonological models for CPMLs; in 
doing so, we have implicitly framed the CPML-generation problem as the task of creating a 3D 
movement script for the articulators based on the state of the invisible ghost model and the 
original English sentence.  Continuing our implementation of Liddell’s (2003) linguistic model, 
the next computational representation needed is for his classifier predicate “template lexicon.”  
This lexicon will be implemented using a novel ASL representation based on the PAR animation 
planning formalism (Section 3).  PARs were used previously by the AnimNL software, and the 
motivation for basing this new representation on them is that the problem of planning the 
movements of CPML articulators is analogous to AnimNL’s problem of planning the movements 
of 3D virtual reality objects from an English input text.   
 
Just as AnimNL stored a database of PAR templates of potential locomotion actions of 3D virtual 
reality objects, this MT system will store a database of PAR-like planning operators specifying 
potential CPML arm movements.  The AnimNL system demonstrated that PARs are a robust 
mechanism for 3D animation planning; in fact, they represent information (e.g. about timing, 
manner, and purpose) that is more sophisticated than is required for planning CPMLs.  Therefore, 
a reduced form of PARs will be implemented called “classifier predicate PARs” or CP-PARs that 
include those PAR fields that are relevant for planning CPML articulator movements.  Just as 
AnimNL used lexical, semantic, and argument structure information from the analyzed English 
sentence to select and fill PAR templates, this system will link English motion verbs to particular 
CP-PAR templates and use the analyzed English sentence to select and fill a CP-PAR template. 
 
Just like PARs, these CP-PARs are parameterized on the 3D coordinates of entities in a 3D scene 
– in this case, on 3D coordinates of the ghosts or other articulators.  For example, a CP-PAR may 
be associated with the English verb “park” and may specify the articulator movements required to 
indicate a vehicle is parking (using the “sideways 3” handshape and non-dominant hand platform 
described in section 1.1).  However, the CP-PAR would be parameterized on two pieces of 
information: the initial and final 3D locations of the ghost whose parking is being conveyed.  So, 
the same CP-PAR template could be used to generate “parking” CPMLs at many 3D coordinates. 
Since AnimNL would have already calculated the 3D layout of the ghosts, the CP-PAR can 
simply use these 3D ghost coordinates when selecting the 3D locations of the articulators. 
 
Finally, the filled-in CP-PARs will be processed by a hierarchical planning algorithm (much like 
AnimNL) to produce a set of detailed animation specifications for the articulators.  The planner 
can consider: the locations of ghosts and articulators, lexical/semantic information from the 
English sentence, and the CPML discourse model (see next section).  The goals, preconditions, 
and effects of the CP-PAR planning operators will allow them to trigger or modify additional 
classifier predicates that may be required to satisfy ASL grammatical constraints.  Because CP-
PARs (like PARs) are hierarchical planning operators, a single CP-PAR could be decomposed 
into sub-plans with temporal relationships between them.  This mechanism can facilitate the 
coordination of multiple articulators during the performance of a single classifier predicate, and it 
enables this model to optionally pre-compile the syntax of complex interactions between multiple 
classifier predicates and store them as a sub-plan graph of a large multi-predicate CP-PAR. 



 

  

 
While it is easier to develop classifier predicate templates using the concise CP-PAR formalism 
than the more verbose/robust PAR formalism, it is anticipated that the system will actually 
convert the CP-PARs into standard PARs prior to run-time so that the PAR-planning algorithm 
already implemented within the AnimNL software could be re-used as the processing engine for 
CPML generation.  Since CP-PARs would typically contain less information than PARs, this 
conversion process should usually be rather simple.  However, there is one regard in which CP-
PARs will actually need to be a richer representation than PARs – CP-PARs must allow a 
developer to specify the location and orientation of the hand articulators over time in a more 
abstract manner.  Generally, animation movement details in a PAR are not recorded in a 
symbolic fashion inside the attribute-value feature structure of the representation; instead, low-
level animation programming code is associated with the PAR detailing how a 3D animation path 
is calculated based on the parameters inside the feature structure.   
 
To facilitate the creation of CP-PARs by developers with linguistic (rather than graphics) 
expertise, it is important that the hand locations/orientations be easier to specify.  Since the hand 
articulator typically tracks a ghost in the scene, a basic set of location/orientation calculation 
functions will be defined (that base their calculations on the 3D positions, paths, and orientations 
of a particular ghost over time).  When CP-PARs are converted to PARs, the 3D animation code 
for the PAR would be created based on the 3D coordinates of the ghost over time and the 
calculation function that was chosen by the linguistic developer.  For example, to specify a CP-
PAR for “parking a car,” the linguistic developer would just need to specify that the dominant 
hand should follow the 3D location of the ghost-car it is describing, and the front of the 
“sideways 3” handshape should be pointed in the direction of the motion path along which the 
car is traveling.  To accommodate classifier predicates with unusual movement patterns, the 
system should also allow developers to program animation code directly if so desired.  
 
4.4. A Model of CPML Discourse: “Identified(), Positioned(), Topicalized()” 
During the analysis of the English input text, a reference resolution algorithm will track the 
entities mentioned in the text and maintain a list of the English text discourse referents (the 
design of this processing stage is still under consideration).  All of the entities that are assigned 
locations in the virtual reality model by the AnimNL software will also be added to a CPML 
discourse model.  In addition to maintaining a list of these ghosts involved in the 3D scene, this 
CPML discourse model records whether certain discourse features are true for each entity.  For 
example, one entity at a time can have the feature topicalized(entity) set to ‘true’.  Two other 
discourse features are more CPML-specific: identified() and positioned().  When an entity has 
been explicitly named using a noun phrase immediately prior to the performance of a CPML, 
then the feature identified(entity) will be set to ‘true’.  Performing an entity’s noun phrase will 
also temporarily make the feature topicalized(entity) ‘true’.  When a previous classifier predicate 
has explicitly indicated a 3D coordinate in space for an entity, then the feature positioned(entity) 
is set ‘true’, and it remains ‘true’ until AnimNL moves that ghost in the virtual reality scene.   
 
These discourse features are used during the CPML planning process; specifically, a precondition 
of most CPMLs is that the main ghost described satisfy the condition: ( (identified(entity) and 
positioned(entity)  ) or topicalized(entity) ).  The effect of this precondition is that when the 



 

  

signer performs a classifier predicate, it is clear which entity is being discussed.  Either the entity 
is the current topic, or since a 3D location has explicitly been assigned to the entity in space, it is 
clear what entity is being referred to by a classifier predicate that begins at that 3D spatial 
coordinate.  Most CPMLs will also require any other ghost involved in the predicate to satisfy the 
following: (identified(entity) and positioned(entity)).  For example, we’ll see in the next section 
that the classifier predicate for parking a car will require that any ghosts that the car is positioned 
relative to in space have been clearly identified and positioned by previous classifier predicates. 
 

5. An Example of the CPML Models Used for Machine Translation 
We will now illustrate how the system would process the English input sentence from Section 
1.1: “The car parked between the cat and the house.”  The analyzer would parse the sentence, 
assign a word sense to the verb (e.g. park-23), and build a predicate argument structure with “the 
car” listed as the agent argument and “between the cat and the house” listed as a location adjunct.  
The system would identify the following list of discourse referents: (1) the car, (2) the cat, (3) the 
house.  Finally, the AnimNL software would process this English sentence and build a 3D virtual 
reality scene portraying the information.  It would select 3D locations for the cat and the house, 
calculate a location “between” them, select initial and final locations for the car, and create a 3D 
animation of the car’s movement path.  Since all three discourse entities were assigned locations 
in the virtual reality, all of them are added to the CPML discourse model.  Initially, the discourse 
predicates identified() and positioned() would be ‘false’ for all three of the entities in the scene.   
 
The initial goal for our CPML planning process is to express the semantics of the English 
sentence; so, the PARKING-VEHICLE CP-PAR (Figure 2) is triggered via the express-
semantics predicate in its “Effects” field.  This maps “the car” ghost to the variable g0 inside this 
CP-PAR, and the CP-PAR checks the restriction that g0 is a vehicle.  The noun phrases inside the 
locative adjunct (“the cat” and “the house”) are mapped to g1 and g2, respectively.  Before 
performing PARKING-VEHICLE, the preconditions must be satisfied; so, they are placed on the 
list of goals.  These positioned(g1) and positioned(g2) goals will trigger two additional CPMLs 
to precede PARKING-VEHICLE, namely LOCATE-STATIONARY-ANIMAL and LOCATE-
BOXY-OBJECT.  The identified() and topicalized() preconditions of all three of these CPMLs 
will trigger an appropriate instance of MAKE-NOUN-SIGN to precede each of them. 
 
The CP-PARs in Figure 2 demonstrate how the location and orientation of the articulators can be 
calculated from the coordinates of ghosts using a set of 3D functions (note the functions inside 
the “Location” and “Orientation” fields of several of the CP-PARs).  We can also see how the 
handshape of hand articulators can be specified symbolically using constants like “Sideways 3” 
or “Bent V.”  Finally, the example illustrates how parameters can be passed to CP-PARs (see the 
calls to PLATFORM and EYETRACK inside of PARKING-VEHICLE) and how multiple CP-
PARs can be coordinated in sequence or concurrently.  In this case, the control of the dominant 
hand, non-dominant hand, and eye-gaze articulators of the ‘parking car’ CPML is divided across 
three different CP-PARs that are performed simultaneously during the animation output.   
 
At the end of the planning process, a sequence of CPMLs (with intervening ASL noun phrases) 
would be generated that is identical to the ASL output described at the end of Section 1.1. 



 

  

 

6. Discussion  
This paper has illustrated how studying MT issues for ASL can push the boundaries of current 
MT methodologies and inspire linguistic understanding of ASL.  Both the special difficulty in 
translating CPMLs and the familiarity many ASL signers have with Signed English motivated 
this system’s exploration of a multi-pathway architecture for MT.  The spatial nature of CPMLs 
motivated the integration of virtual reality software as an intermediary MT representation.  The 
capabilities and requirements of the AnimNL software and the PAR planning formalism have 
motivated new computational models of CPML discourse, semantics (ghosts), templates 
(capturing morpho-syntactic composition of these predicates), and phonology (articulators).  
These MT models can serve as starting-points for further linguistic analyses of these phenomena. 
 
This project is currently finishing specifying the CPML models, the CPML-generation approach 
(Huenerfauth, 2004b), and the multi-pathway machine translation architecture in which it will be 
situated (Huenerfauth, 2004a).  Other research topics include: defining evaluation metrics for an 
MT system that produces ASL animation containing classifier predicates, finding ways of 
representing additional ASL phenomena using spatial or planning-based frameworks, planning 
the software implementation of the MT design, and beginning the construction of an initial CP-
PAR lexicon of classifier predicate templates.  This project will also consider ways of extending 
the current CP-PAR specification to address more complex classifier predicate generation issues, 
such as timing and duration of CPMLs, instantiation and placement of new objects in a scene, 
selection of scene perspective and scale, handling of manner/adverbials, and further specification 
of facial expression, body posture, hand location, and orientation within the CP-PAR framework. 

 

PARKING-VEHICLE 
Parameters:   g0 (ghost car parking), g1..gN (other ghosts) 
Restrictions:  g0 is a vehicle 
Preconditions: topic(g0) or (ident(g0) and positioned(g0)) 
                       for g=g1..gN: (ident(g) and positioned(g)) 
Articulator:    dom (the dominant hand) 
Location:        dom.loc = follow_location_of( g0 ) 
Orientation:   dom.ori = direction_of_motion_path( g0 ) 
Handshape:    dom.hs = “Sideways 3” 
Effects:           positioned(g0), topic(g0), express_semantics( 
                         [park-23 agent=g0 locative_NPs=g1..gN] ) 
Concurrently:  PLATFORM(g0.loc.final), EYETRACK(g0) 
 

 

PLATFORM 
Parameters:  loc0 (the location at which to position  
                     upturned palm of non-dominant hand) 
Articulator:  ndom  (the non-dominant hand) 
Location:    ndom.loc = loc0 
Orientation: ndom.ori = palm_upward() 
Handshape:  ndom.hs = “B” (an open palm) 
This CP-PAR produces a horizontal platform 

  with the non-dominant hand.  In this example, 
it is performed concurrently with the PARKING- 

  VEHICLE CP-PAR to produce a complete 
 ‘parking’ classifier predicate. 
 

EYETRACK 
Parameters:  g0  (ghost to follow with eye gaze)  
Articulator:  eg  (the eye gaze articulator) 
Location:     eg.loc = follow_location_of( g0 ) 
 

 

LOCATE-STATIONARY-ANIMAL 
Parameters:  g0  (the ghost to position in space) 
Restrictions:   g0 is an animal 
Preconditions: topic(g0) and ident(g0) 
Articulator:     dom  (the dominant hand) 
Location:        dom.loc = move_to_location_of( g0 ) 
Orientation:    dom.ori = g0.ori 
Handshape:    dom.hs = “Bent V” 
Effects:          topic(g0), positioned(g0) 
   There is also a LOCATE-BOXY-OBJECT CP-PAR just like 
   this one but using the “Downward C” handshape. 

 

MAKE-NOUN-SIGN 
Parameters:  g0 (ghost whose noun sign to perform) 
Effects:       topic(g0), ident(g0) 
   System looks up ASL sign(s) for the noun phrase 
   that refers to g0, and it performs the sign(s). 
 

Figure 2: Pseudo-code for the CP-PARs mentioned in the translation example of Section 5. 
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