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Abstract
The paper directly compares two versions of a medical speech translation system, one
with a grammar based language model (GLM) recognizer and the other with a statistical
language model (SLM) recognizer. We construct the GLM using a corpus-based method,
so that both the GLM and the SLM can be derived from the same corpus; evaluation is
carried out with respect to performance on the speech translation task. Despite using a
very small training set for both the GLM and the SLM, the SLM delivers much better
word error rates on unseen test material. Nonetheless, evaluating both systems on
translation performance rather than word error rates, the GLM-based version of the
system outperforms the SLM on the actual translation task.

1. Introduction
    At present, the field of speech understanding finds itself in a curious position. As far as
academic research is concerned, the dominant paradigm is the statistical one. Speech recognizers
are built using some kind of corpus-based process to induce a statistical language model (SLM).
These recognizers are typically combined with some kind of robust parser to form a language
understanding system. There is less agreement about how the parser should be constructed, and it
is still reasonably popular to structure it as a rule-based system. However, the general feeling
seems to be that it is in some sense “better” to try to make the language processing component
trainable and corpus-based as well: the justification for this claim is typically motivated in terms
of robustness, lower authoring costs, and (sometimes) better performance. A good summary of
current trends is presented in (Young 2002).
    In contrast, commercial speech understanding systems are mainly rule-based. For example,
Nuance (2004) until fairly recently only supported grammar-based language models and it is still
the case that the vast majority of Nuance applications use grammar-based methods. Rule-based
systems are the norm in industry for several reasons, but the most critical one is certainly lack of
training data. At the start of a project, there will typically be little or no data available to train a
language model. Creating corpus data using Wizard of Oz techniques is both expensive and time-
consuming; if the goal is to produce a spoken language interface for a new application in a timely
fashion, rule-based methods are often the only practicable alternative.



    Over the last few years, however, the above picture has become more blurred. Commercial
platform vendors have begun to introduce statistical modeling tools, like Nuance's
SayAnythingTM module, with some success. In the other direction, academics have become more
interested in grammar-based methods. The literature now contains descriptions of several
research systems built using rule-based methods, which successfully use mixed-initiative
strategies and complex grammars (Stent et al. 1999, Rayner et. al. 2000, Lemon et al. 2001,
Rayner et. al. 2001a). Much of this work has involved the idea of compiling grammar-based
language models out of descriptions written in higher-level formalisms, in particular unification
grammars (Moore 1998, Kiefer & Krieger 2000, Dowding et al. 2001, Rayner et al. 2001b, Bos
2002).
     Given that a great deal of practical and theoretical work is going on using both statistical and
rule-based methods, it is remarkable that there is almost no reported work attempting a
systematic comparison of the two approaches. The only example known to us is (Knight et al.
2001), in which one of the present authors participated. In this study, two speech understanding
systems were constructed for the same domain, a medium-vocabulary command and control task.
Both systems ran on the Nuance 7 platform. The first had a hand-coded grammar-based language
model (GLM), compiled using the standard Nuance Toolkit into a recognition package. The
second system instead used a statistical language model (SLM), trained using the SRILM package
(Stolcke et al. 2002) on a corpus of about 4000 domain utterances.  A robust parser post-
processed the word-strings produced by the SLM-based recognizer; it built semantic
representations in the format used by the grammar-based system, so that an exact comparison
was possible. The results were interesting, but inconclusive. The SLM-based system had a
slightly lower WER, but a considerably higher semantic error rate when evaluated on data
provided by experienced users who knew the system's coverage. When evaluated on naive users
who were encouraged to experiment freely with different constructions, the SLM comfortably
outperformed the GLM.
    (Knight et al. 2001) highlights the problems involved in carrying out a methodologically sound
comparison between the statistical and rule-based approaches. An immediate problem is the role
of the corpus. It is straightforward to determine exactly what corpus material has been used to
train an SLM, but the identity of the data used to construct a GLM is usually much less clear.
    In the current paper, we will present a comparative study, using a version of the MedSLT
spoken language translation system (Rayner et. al. 2003). We construct the GLM using a corpus-
based method, so that both the GLM and the SLM can be derived from the same corpus;
evaluation is carried out with respect to performance on the speech translation task, to avoid the
problem of defining semantic error rate.
    The results were surprising. We had expected that one of the advantages of a GLM would be
that it would yield better recognition performance when there was little training data available. In
fact, despite using a very small training set for both the GLM and the SLM, the SLM delivers
much better word error rates on unseen test material. None the less, the GLM-based version of
the system performs much better on the actual translation task than the SLM-based version.
    The rest of the paper is structured as follows. Section 2 describes the MedSLT spoken language
translation system. Section 3 describes the corpus-based framework used to construct the GLM,
and Section 4 describes how we built an SLM-based version of MedSLT. The meat of the paper
is in Sections 5 and 6, which respectively describe the experiments and the results. Section 7
concludes.



2. The MedSLT System
   The top-level goal of the MedSLT (2004) project is to develop an Open Source framework for
rapid construction of practically useful limited-domain spoken language translation systems for
the doctor-patient examination domain. The basic scenario envisaged is one-way communication.
The doctor asks questions, which are translated by the system, and the patient responds
nonverbally, for example by nodding or shaking their head, or pointing.
    The key requirement of the project is a high level of accuracy: doctors are only interested in
using systems they can trust. Since speech recognition can never be wholly reliable, the user
interface is structured so that the initial recognition hypothesis is echoed back to the user, who has
the option to abort further processing if necessary. Reliability thus means reliability on the
utterances which the user considers to be correctly recognized.
    The current prototype system (Rayner et al. 2003) translates questions in a headache domain
from English into Japanese or French, using a vocabulary of about 200 words; a production
version would need to cover at least another 25 to 50 similar subdomains. The recognition
component for the SLM and GLM version was built with a training corpus of 450 utterances. The
initial set of training utterances were supplied to us by a physician, who then interacted with us to
expand it by adding enough synonyms and alternative phrasings to make the coverage reasonably
habitable. Later versions may use larger development sets, but it is unreasonable to assume large
corpora for such specialized domains during development.
    The semantic representations used by MedSLT are simple lists of argument/value pairs: thus
for example the representation of “where is the pain” is
[[utterance_type,whq], [loc,where], [tense,present], [verb,be],
[spec,the_sing],[symptom,pain]]
    The pros and cons of this approach are discussed in (Rayner & Bouillon 2002). For the
purposes of the present paper, the most important point is that it is easy for a shallow parser to
produce this kind of flat representation, facilitating a fair comparison between the grammar-based
methods used in the standard version of MedSLT and the SLM-based methods described in the
next section.
    Translation is carried out by first using a set of transfer rules to map the source-language
semantic representations into similar ones in the target language, and then generating a target-
language string using another REGULUS grammar compiled in a form suitable for generation.
Output target speech is produced using the Nuance VocalizerTM TTS engine for French, and
concatenated pre-recorded audio files for Japanese.

3. Grammar-based Recognition Using REGULUS

    The grammar based system was built using REGULUS (Rayner et. al. 2003), an Open Source
environment that supports efficient compilation of typed unification grammars into speech
recognizers. The basic intent is to provide a set of tools to support rapid prototyping of spoken
dialogue applications in situations where little or no corpus data exists.
    The core functionality provided by the REGULUS environment is compilation of typed
unification grammars into annotated context-free grammar language models expressed in Nuance
Grammar Specification Language (GSL) notation (Nuance 2004). GSL language models can be



converted into runnable speech recognizers by invoking the Nuance Toolkit compiler utility, so
the net result is the ability to compile a unification grammar into a speech recognizer.
    Experience with grammar-based spoken dialogue systems shows that there is usually a
substantial overlap between the structures of grammars for different domains. This is hardly
surprising, since they all ultimately have to model general facts about the linguistic structure of
English and other natural languages. It is consequently natural to consider strategies which
attempt to exploit the overlap between domains by building a single, general grammar valid for a
wide variety of applications. A grammar of this kind will probably offer more coverage (and
hence lower accuracy) than is desirable for any given specific application. It is however feasible
to address the problem using corpus-based techniques which extract a specialized version of the
original general grammar.
    REGULUS implements a version of the grammar specialization scheme which extends the
Explanation Based Learning (EBL) method described in (Rayner et al. 2002). A specialized
Nuance grammar is derived from the general grammar in the following processing stages:

● The training corpus is converted into a “treebank” of parsed representations. This is done
using a left-corner parser representation of the grammar.

● The treebank is used to produce a specialized grammar in REGULUS format, using the
EBL algorithm (van Harmelen & Bundy 1988, Rayner 1988).

● The final specialized grammar is compiled into a Nuance GSL grammar.
    It follows automatically from the EBL algorithm that the semantic representations produced by
the specialized grammar are identical to those produced by the general one.
    In the context of this paper, the critical point about the REGULUS grammar development
framework is that it makes explicit the role of the corpus. Since the final specialized grammar can
only include words and constructions licensed by the training corpus, it is meaningful to make
comparisons between a grammar-based recognizer built using REGULUS, and an SLM-based
recognizer built from the same corpus using standard methods.

4. An SLM-based Version of MedSLT
    We constructed a robust version of the prototype MedSLT system from the same 450
utterances of data used to train the original grammar-based version. We first built a class N-gram
language model, using the Nuance SayAnythingTM tool. The model used 17 class definitions;
these were determined by hand examination of the REGULUS lexicon, and mostly consisted of
groups of semantically similar words and phrases. For example, the words “radiate”, “spread”
and “extend” form a class.
    Syntactic and semantic processing is carried out by a simple surface parser, which applies a set
of about 300 hand-coded patterns to identify semantic attribute/value tags. For example, the
pattern used to identify the tag [prep, in_time] (temporal use of “in”) is
     pattern([in,'…',morning|afternoon|evening],[prep,in_time]).
    The initial set of patterns was automatically extracted from the REGULUS lexicon. The raw set
of tags found by pattern-matching is post-processed by a small set of extra rules which look for
global information, and in particular add a tag classifying the utterance as a Y-N question, a WH-
question, or an elliptical phrase. The output of the robust parser matches that of the REGULUS
parser on 98% of the 450 utterance training corpus.



    The robust version of the system uses the same transfer and generation components as the
grammar-based one, so translation fails if transfer is unable to create a well-formed semantic
representation on the target side.

5. Experiments
    Data collection was divided into three parts. In the first part, subjects were handed an
introductory text and were informed about the domain of the application. The second part
consisted of the subject reading a sample of 55 system sentences that were chosen to illustrate the
range of system coverage.
    The last part of the data collection was designed to collect live application data. The subject
was instructed to perform the task of diagnosing the patient's headache type using the translation
system. To accomplish the task, the subject was given a set of eight headaches along with typical
symptoms divided into categories like ‘where’, ‘pain type’ and ‘frequency/duration’. Many
headaches had similar symptoms, which made it necessary to ask questions from different
categories in order to differentiate amongst headaches. Data collection moderators acted the
patient role, giving answers that would suggest a specific predetermined headache type.
    We collected data from 11 subjects with no prior experience in spoken language systems,
where the first subject was used for testing and refining the experimental setup and the data
collection procedure. Collected speech data was transcribed, fed through both the GLM and SLM
versions of the MedSLT system, and given to three judges fluent in both English and French.
    System performance was evaluated in two phases. In the first phase, the judge was shown only
the transcription of each utterance together with the recognition output, and asked to mark it as
either “acceptable” or “unacceptable”. The intention was to simulate operation of the “abort”
button in the live system (cf. Section 2).
    In the second phase, sentences marked as “acceptable” in the first phase were further classified
into ‘good’, ‘ok’ and ‘bad’. Judges were instructed to label sentences as ‘good’ to correctly
translated sentences, with colloquial language and good grammaticality. Judges were advised to
label ‘ok’ translations with minor problems in grammar or word choice, but which preserved the
meaning of the source sentence. Finally the label ‘bad’ was given to sentences with translations
which did not preserve the original meaning.

6. Results
    Table 1 through Table 4 present the main results. Looking at Table 1, we see that the SLM
version has much better word error rate (WER) than the GLM version (24.10% versus 36.67%)
and approximately equal SER (59.16% versus 60.69%). The first line of Table 2 also shows that
users mark far fewer SLM sentences as unacceptable (207 versus 283). Despite this, it is striking
to note that the GLM delivers much better overall performance. Going further down Table 2 we
see that the SLM-based system fails to translate 94 of the “acceptable” utterances, while the
GLM misses only 2; this means that the GLM actually ends up producing more translations than
the SLM.
    Comparing Tables 3 and 4, we can see that although the SLM and GLM produce roughly
comparable proportions of “good” and “ok” utterances, the proportion of “bad” judgments by
each judge is roughly twice as high for the SLM system. In fact, comparison between judges
shows that the imbalance is even greater. For the GLM system, there were only 4 utterances



judged bad by two judges, and none judged bad by all three. For the SLM system, in contrast,
there were 15 sentences judged bad by two judges, and 5 judged bad by all three. One could thus
reasonably argue that the SLM version is mistranslating four or five times as many sentences as
the GLM version.
    It is at first sight surprising that the GLM system can achieve better task performance than the
SLM one, despite its greatly inferior WER. The roughly equal SER scores for the two systems,
however, give a first hint at an explanation. The GLM enforces global constraints on the
recognized utterance, so it is harder for an utterance to be only partially correct. In contrast, the
local constraints in the SER make it easier for part of an out-of-coverage utterance to be correctly
recognized, while the rest is more or less badly scrambled. The character of the task, though, is
“all-or-nothing”: partial solutions are rarely useful, even though they improve the SLM version’s
WER score.
   Further analysis suggested that the reason why the performance of the SLM seems so much less
reliable than that of the GLM appears to lie not so much in the systems themselves as in their
interaction with the user. When the user marks an utterance as “acceptable”, they are making an
intuitive judgment based on a very incomplete understanding of how the system operates. For
example, with the system architecture and domain used in this evaluation, it is usually the case
that a missing determiner or article makes no difference to the translation: thus if the user says “is
the pain in the front of the head”, it will be fine to accept a recognition hypothesis like “is a pain
in front of head”. During the experiments, users rapidly learned that small recognition errors like
these were often harmless.
    Unfortunately, other apparently minor recognition errors turned out to be fatal. In a typical
example, the user utterance was “is the frequency of the headaches increasing”, recognized as
“does the frequency of the headaches increasing”. The user plausibly accepted this as a correct
recognition, but the system was not able to translate at all. In a similar example, “does change in
temperature make it worse” was recognized as “does changes in temperature make worse” and
accepted; once again, the system was unable to translate.

                                                                                                                                    SLM    GLM
                    SLM        GLM                                         Unacceptable Recognition    207      283
     WER    24.10%    36.67%                                                     No result                    94          2
     SER      59.16%    60.69%                                                     Translated                223      239

Table 1 SER and WER in SLM and GLM                                           Total                    524      524
                             versions                                                   Table 2 Breakdown of examples translated by
                                                                                                                      SLM and GLM.

                     Good     OK    Bad                                                           Good     OK       Bad
    Judge 1      106       127        6                                        Judge 1          91      113         19
    Judge 2      169        55       15                                        Judge 2        158        34         31
    Judge 3      174        57        8                                         Judge 3        151        57         15

  Average      150        80       10                                       Average        133        68         22

Table 3 Quality of translation with GLM                       Table 4 Quality of Translation with SLM
                             version                                                                                  version



    The worst problem with the SLM version, as shown by the second line of Table 2, is that the
differences between harmless and dangerous recognition errors are often incomprehensible to the
user. Correspondingly, the key advantage of the GLM version in this respect is that all
recognized utterances are guaranteed to be within the system’s grammar coverage,  which  makes
it easy for the user to differentiate between acceptable and unacceptable recognition results. The
subjective experience with the GLM version is that the user is in control. When the system
produces something that looks like a plausible hypothesis, she can be confident that pressing the
“accept” button will almost always result in the production of a translation, which will almost
always be correct or at least acceptable. With the SLM version, the subjective experience is
rather that the system is in control. Plausible looking recognition results frequently result in no
translation, and the quality of the translations is much less reliable. It was immediately apparent
during the tests that most of the GLM subjects found the experience enjoyable, while the SLM
subjects experienced it as frustrating.
    Since the problems in the SLM version are largely caused by the fact that we are interfacing a
statistical/surface oriented speech understanding module to a rule-based translation module, one
obvious solution would be to add a robust backup translation component that took over if the
current rule-based translation component failed. This would certainly make the SLM system feel
more user-friendly, but would also have the effect of rendering translation quality even less
reliable, as surface translation methods typically trade precision for recall. For example, the
experiments in (Carter et al. 2000) on a multi-strategy speech translation system showed that the
proportion of clearly incorrectly translated utterances increased from 5% using rule-based
translation, through 11% for phrasal translation, to 22% for completely surface-based translation.
Given that the proportion of bad translations in the SLM-based system is already two to five
times higher than in the GLM-based version, this seemed like a dangerous step.
    Another possible argument is that the rule-based translation in the SLM-based system could be
improved simply by doing more work; poor performance is maybe just due to lack of
implementation effort. In order to estimate the potential for straightforward improvement to the
system, we began by manually going through the 94 utterances tagged “acceptable” where the
SLM failed to produce a result, investigating in each case why processing had failed. We
classified the example as “bug” if the problem appeared to be a simple mistake or lack of a rule;
“missing heuristic”, if a plausible heuristic could have been added which would at least be correct
in most cases; and “confusion” if the problem was most likely that the user was confused about
the system’s capabilities, and no obvious fix would resolve it.
    The examples divided fairly evenly across the three categories, with 30 “bugs”, 29 “heuristics”,
and 35 “confuseds”. Subsequent system development broadly justified our intuitive
classification. We were able to fix a large proportion of the problems in the first and second
groups, but it was essentially impossible to make any progress on the “confused” utterances;
when we re-ran the same data on a later version of the system, about half of the 94 problem
utterances gave acceptable results, but the SLM version was still failing to produce a translation
more than 10 times as often as the GLM one. It seems reasonable to us to conclude that safety-
critical nature of the task implies that the cautious, high precision GLM architecture offers real
advantages compared to the adventurous, high-recall SLM alternative, especially when this
agrees well with the intuitive user experience.



7. Conclusions
   We have presented a series of experiments directly comparing two versions of a medical speech
translation system, designed to investigate the tradeoffs between grammar-based and statistical
speech understanding strategies. Evaluated on the medical speech translation task, the GLM
system produced better results than the SLM system, despite the SLM's lower WER and
comparable SER. Analysis of the results suggests that the success of the GLM version is largely
due to its ability to present a more predictable interface to the user, which in practice appears to
outweigh the loss of recall inherent in a rule-based strategy. We hypothesize that this tradeoff
may well apply to other safety-critical speech processing tasks.
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