Yongping Du

Also published as: 永萍


2024

pdf bib
基于动态聚类与标签空间映射的上下文学习模板构建方法(In-Context Learning Demonstration Construction Method based on Dynamic Clustering and Label Space Mapping)
Qi Zhang (张琦) | Xingnan Jin (金醒男) | Yu Pei (裴誉) | Yongping Du (杜永萍)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“面向大语言模型提供自然语言指令,可生成预期输出,体现了其上下文学习能力。上下文学习的性能与上下文模板质量密切相关,现有的工作通常使用单一的选择算法进行模板构建,无法充分激发上下文学习能力。本文提出基于动态聚类与标签空间映射的上下文学习模板构建方法,动态选择相关示例,进一步提出聚类筛选方法,实现不同语义簇中示例多样化的选择。设计基于损失函数的排序选择方法,评估模板学习正确标签空间映射分布的能力,排序形成最终模板。在自然语言推理等任务中的实验结果表明,本文提出的方法使两个不同的大语言模型准确率最高分别提升3.2%和8.9%。”

2020

pdf bib
面向汉语作为第二语言学习的个性化语法纠错(Personalizing Grammatical Error Correction for Chinese as a Second Language)
Shengsheng Zhang (张生盛) | Guina Pang (庞桂娜) | Liner Yang (杨麟儿) | Chencheng Wang (王辰成) | Yongping Du (杜永萍) | Erhong Yang (杨尔弘) | Yaping Huang (黄雅平)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

语法纠错任务旨在通过自然语言处理技术自动检测并纠正文本中的语序、拼写等语法错误。当前许多针对汉语的语法纠错方法已取得较好的效果,但往往忽略了学习者的个性化特征,如二语等级、母语背景等。因此,本文面向汉语作为第二语言的学习者,提出个性化语法纠错,对不同特征的学习者所犯的错误分别进行纠正,并构建了不同领域汉语学习者的数据集进行实验。实验结果表明,将语法纠错模型适应到学习者的各个领域后,性能得到明显提升。

2005

pdf bib
The Use of Metadata, Web-derived Answer Patterns and Passage Context to Improve Reading Comprehension Performance
Yongping Du | Helen Meng | Xuanjing Huang | Lide Wu
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing