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Message from the ACL 2025 Industry Track Co-Chairs

We are happy and excited to welcome you to the Industry Track at ACL 2025, held on the three main
days of the 63rd Annual Meeting of the Association for Computational Linguistics (28 July to 30 July
2025).

Like the main research track, the industry track attracted an unprecedented number of submissions: 421
papers! In total, 453 reviewers and 19 area chairs participated in the evaluation of these papers. After
a thorough, double-blind peer-review evaluation with three reviews for each submission followed by
reviewer discussions and additional deliberations, 108 papers were selected for presentation at the ACL
2025 Industry Track. Of these, 33 papers will be presented as oral talks and a total of 75 papers will be
presented as posters.

Topic-wise, large language models were front and center of almost all submissions with trustworthiness,
domain-adaptation, retrieval-augmented generation, and agentic architectures — across domains such as
medical, legal, and finance — being popular topics.

NLP research in academia and NLP research in industry have always been very close in our fields. Our
two keynote speakers — Lucia Specia and Leon Derczynski — will share their insights with regard to this
intersection including synergies and fruitful collaborations.

Further insights can be gained through our “Careers in NLP” panel with esteemed participants who have
decades of experience with NLP research in academia and industry.

We would like to thank the authors of all Industry Track submissions as well as the reviewers and area
chairs for their hard and dedicated work under very tight deadlines. We would also like to thank the
General Chair, the Publication Chairs, who supported us in the production of this volume, and all other
ACL 2025 committees we interacted with between the summer of 2024, when this endeavour started,
and the summer of 2025, when we finally have been able to have the Industry Track at the ACL 2025
conference in Vienna, Austria. Finally, we would also like to thank our keynote speakers and panellists
as well as the whole ACL team, especially Jennifer Rachford.

Georg Rehm and Yunyao Li

Program Co-Chairs
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Keynote Talk
From Words to Worlds: NLP for Game Creation and
Interaction

Lucia Specia
Epic Games and Imperial College London
Mon, July 28th, 2025 — Time: 11:00 — 11:45 — Room: Austria Center Vienna

Abstract: The gaming industry is a leading force in global entertainment, surpassing the size of the
music and film industries combined. With over 3 billion people playing games, there’s bigger and bigger
demand for fresh, high-quality, and immersive experiences. At the same time, user-generated games ha-
ve become a core component of major gaming platforms, fostering creativity and diversification. These
developments present significant opportunities for Al research and Al-driven tools designed to support
gaming, from AAA studios to independent creators. In this talk, I will highlight some of these opportuni-
ties, focusing on three areas involving language: 1) Speech-driven animation, where we predict lip sync,
expression, and head motion of a character from audio to animate photo-realistic characters; 2) Low-
resource language code generation, where we build a code generation model for Verse, a new language
designed specifically for programming interactive 3D worlds, games, and simulations; and 3) Safety of
interactive NPCs at scale, where we design safety strategies to support the deployment of LLMs for
speech to speech in-game (Fortnite) conversations between players and NPCs.

Bio: Lucia Specia is Senior Director of Research Engineering at Epic Games and Professor of Natural
Language Processing at Imperial College London. Her work focuses on various aspects of data-driven
approaches to multimodal and multilingual context models, with applications including machine transla-
tion, image captioning, visual question answering, quality estimation, and content moderation, among
others. In 2021, she founded Contex.ai to build multimodal content moderation models for real world
applications, focusing in the gaming industry. She now leads a team of research engineers at Epic Games
delivering ML solutions across automation and business optimization, safety and security, user experien-
ce and content creation. She received a PhD from the University of Sao Paulo and has held positions at
University of Sheffield, Meta, and Xerox Research.
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Keynote Talk
We can’t do it alone

Leon Derczynski
NVIDIA and IT University of Copenhagen
Tue, July 29th, 2025 — Time: 10:30 — 11:15 — Room: Austria Center Vienna

Abstract: Industry and academic research each have their own deficiences and blindspots, and both rely
heavily on each other. This talk explores common themes and describes each side’s view and what they
miss for each theme. We will discuss the role in society, the role in research, which narratives work (and
don’t), the role in peer review (and its role for us), and where the hard workers, sceptics, and sociopaths
fit in either case. All this comes together to form a positive view of good open collaborations, and some
concrete advice on how to give and get the most value out of interactions with the other side.

Bio: Leon Derczynski is principal research scientist for LLM security at NVIDIA and prof in computer
science at ITU Copenhagen. He has written inches, if not kilograms, of papers, and won similar quantities
of awards etc. Prof. Derczynski has led policy efforts in academia, industry, and civil society. He has
held affiliations at a dozen organisations in the past decade, including startups, universities, corporations,
and non-profits; built research programmes at both a leading university and a leading corporation; and
he retains a deep love of both university and industry research.
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Abstract

For the 63rd Annual Meeting of the Association
for Computational Linguistics (ACL 2025), it
was decided once again to organise a dedicated
Industry Track. Similar to the main research
track of the conference, the industry track at-
tracted an unprecedented number of 421 pa-
per submissions. In total, 453 reviewers and
19 area chairs participated in the evaluation of
these papers. After a thorough, double-blind
peer-review evaluation with three reviews for
each submission followed by reviewer discus-
sions and additional deliberations, 108 papers
were selected for presentation at the ACL 2025
Industry Track. Large language models were
front and center of almost all submissions with
trustworthiness, domain-adaptation, retrieval-
augmented generation, and agentic architec-
tures — across domains such as medical, legal,
and finance — being popular topics.

1 Introduction

Language technologies and their applications are
an integral and critical part of our daily lives.
Many of these technologies have their roots in aca-
demic and industrial research laboratories where re-
searchers invented a plethora of algorithms, bench-
marked them against shared datasets and perfected
their performance to provide plausible solutions
to real-world applications. While a controlled lab-
oratory setting is vital for a deeper scientific un-
derstanding of the problems underlying language
technologies and the impact of algorithmic design
choices on their performance, transitioning the
technology to real-world industrial strength appli-
cations raises a different, yet challenging, set of
technical issues.

We acknowledge the challenges when adapting
language technologies for building novel and ro-
bust real-world applications as the journey from
theoretical research to practical deployment can be
difficult. Challenges can include technical aspects
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of system deployment and optimizing for efficiency,
making informed design choices or methodological
considerations of incorporating human feedback
and oversight. The Industry Track provides a forum
to address these multifaceted issues. We were seek-
ing submissions that not only delve into research
but also demonstrate the application of systems in
real-world scenarios, irrespective of whether they
involve proprietary data.

2 Call for Papers

We invited submissions describing innovations and
implementations in all areas of speech and natu-
ral language processing (NLP) technologies and
systems that are relevant to real-word applications.
The primary focus of the ACL 2025 Industry Track
was on papers that advance the understanding and
demonstrate the effective handling of practical is-
sues related to the deployment of language pro-
cessing or language generation technologies, in-
cluding those of large language models (LLMs), in
non-trivial real-world systems. By “non-trivial real-
world system” we mean an application deployed
for real-world use, i. €., outside controlled environ-
ments such as laboratories, classrooms or experi-
mental crowd-sourced setups, and that uses NLP
and/or speech technology, even if not state of the
art in terms of research. There was no requirement
that the system be made by a for-profit company,
but the users of the system are most likely outside
the NLP research community.

This track provided an opportunity to highlight
the key insights and new research challenges that
arise from real-world implementations.

Relevant areas included system design, effi-
ciency, maintainability and scalability of real-world
applications, with topics including, but not limited
to (in alphabetical order):

* Benchmarks and methods for improving the
latency and efficiency of systems

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track), pages 1-3
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* Continuous maintenance and improvement of
deployed systems

* Efficient methods for training and inference

* Enabling infrastructure for large-scale deploy-
ment

* Handling unexpected user behaviour

* Human-in-the-Loop approaches to application
development

* Implementation at speed, scale and low-cost

* Negative results related to real-world applica-
tions

* System combination

Novel applications and use cases, with topics
including, but not limited to (in alphabetical order):

 Best practices and lessons learned

* Case studies, from design to deployment

* Description of an application or system

* Design of application-relevant datasets

* Development of methods under system con-
straints (model or data size)

* Novel, previously unsolved NLP problems
and novel NLP applications

Methods for deployed systems, with topics in-
cluding, but not limited to (in alphabetical order):

* Ethics, bias, fairness, harmlessness and trust-
worthiness in deployed systems

* Interpretability

* Interactive systems

* Offline and online system evaluation method-
ologies

* Online learning

* Robustness

* In addition, opinion/vision papers related to
real-world applications were also welcome.

Submissions had to clearly identify one of the
following three areas they fall into:

Deployed Must describe a system that solves a
non-trivial real-world problem. The focus
may include describing the problem related to
actual use cases, its significance (against op-
portunity size, value proposition, and ideal
end state), design/formulation of methods,
tradeoff design decision for solutions, deploy-
ment challenges, and lessons learned.

Emerging Must describe the development of a sys-
tem that solves a non-trivial real-world prob-
lem (it need not be deployed or even close, but

there needs to be evidence that this develop-
ment is intended for real-world deployment).
Papers that describe enabling infrastructure
for large-scale deployment of NLP techniques
also fall in this category.

Discovery Must include results obtained from
NLP applications in real-world scenarios that
result in actionable insights. These discov-
eries should reveal promising directions in
their application areas, leading to further sys-
tem or societal enhancements. For example,
an actionable discovery from an analysis of
call center transcripts may reveal that certain
language choices negatively impact customer
experience, leading to better training of ser-
vice representatives and improved customer
experience.

3 Submissions and Results

The call for Industry Track papers attracted an un-
precedented number of 421 paper submissions. A
total of 453 reviewers and 19 area chairs partic-
ipated in the evaluation of these papers. After
a thorough, double-blind peer-review evaluation
with three reviews for each submission, we eventu-
ally selected a total of 108 articles for presentation
within the Industry Track at ACL 2025, with 35
oral and 73 poster presentations.

4 Research Trends

Nearly all submissions (approx. 90%) revolve
around LLMs, indicating the prevalence of their
adoption in real-world applications. More specifi-
cally, we observe the following five research trends
based on this year’s submissions.

Evaluation and Prompt Engineering Many sub-
missions focus on the evaluation of LLM re-
sponses and improving their quality through
prompt engineering, reflecting a broader push
toward trustworthiness and safety in outputs.
Hallucination detection and mitigation are par-
ticularly popular among such submissions.

Retrieval-Augmented Generation (RAG) RAG
remains dominant, indicating continued
interest in bridging static LLM knowledge
with dynamic external data, especially in en-
terprise use cases such as enterprise document
QA and domain-specific knowledge mining.



Domain Adaptation Domain adaptation (e. g., fi-
nance, medical, legal) is prominent, with an
emphasis on techniques such as fine-tuning
and reinforcement learning, underscoring the
commercial push to tailor general models for
domain-specific performance.

Agentic Workflows and Multi-Agent Systems
LLM-powered agents and multi-agent
systems are being developed to automate
workflows and enhance user experience. The
growing focus on agent-based architectures
indicates a sharp industry shift toward
LLM-as-a-service ecosystems.

Medical Applications The medical domain is par-
ticularly popular among the submissions, cov-
ering a wide range of use cases from ICU
monitoring, diagnostics, to medical coding, a
sector with high impact and regulatory sensi-
tivity.

With the growing adoption of LLMs and agent-
based architectures, we expect that the above trends
will continue and rapidly evolve in the near future.
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Abstract

Effective decision-making in Large Language
Models (LLMs) is essential for handling in-
tricate tasks. However, existing approaches
prioritize performance but often overlook the
balance between effectiveness and computa-
tional cost. To address this, we first introduce
the 3E Criteria to systematically assess the cost-
effectiveness of search strategies, revealing that
existing methods often trade significant effi-
ciency for marginal performance gains. To
improve LLM decision-making while main-
taining efficiency, we propose the Speculative
Reward Model (SRM), a plug-and-play frame-
work that seamlessly integrates with existing
search strategies. Specifically, SRM employs
an external reward assigner to predict optimal
actions, reducing reliance on LLMs’ internal
self-evaluation. And a speculative verification
mechanism is used to prune suboptimal choices
and guide the search toward more promising
steps. We evaluate SRM on several complex
decision-making tasks including mathematical
reasoning, planning and numerical reasoning
in specialized domains. Experimental results
show that SRM reduces costs to 1/10 of the
original search framework on average while
maintaining effectiveness.

1 Introduction

Large Language Models (LLMs) (OpenAl et al.,
2023; OpenAl, 2024; DeepSeek, 2024; Qwen,
2024) have achieved significant progress in nat-
ural language processing, excelling in text gener-
ation and comprehension (Xu et al., 2025). How-
ever, their application to complex reasoning and
decision-making remains challenging (Shao et al.,
2024; Zelikman et al., 2024), particularly when
solving intricate problems that require structured
logical inference rather than pattern-based predic-
tions (Valmeekam et al., 2023; Shao et al., 2024).

®Corresponding author.
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Table 1: Speculative Reward Models (SRM), a plug-and-
play framework designed to balance effectiveness and effi-
ciency. In GSMS8K tasks, all paradigms followed the same
setting with GPT-3.5-turbo and 4-shot learning. The token
cost is expressed in ‘[Prompt Tokens]/ [Completion Tokens]’.
"Ext." denotes Extensibility. For Toolchain®, which lacks
direct execution capability, we estimate cost using identical
prompts but exclude running time.

Efficiency
Paradigm Effectiveness Time Token Ext.
Cost Cost
Acc.[%] Avg.[sec.]Avg.[K]

CoT(Wei et al., 2022) 70.1 32 0.7/0.1 v
DFS(Yao et al., 2023) 69.9 150 70.2/5.0 v

+ SRM 70.5 34.7 18.6/0.8 v
BFS(Yao et al., 2023) 72.3 180 85.5/7.1 v

+ SRM 70.1 44 22.2/1.1 v
BS(Wan et al., 2024) 714 664 2254/44 Vv

+ SRM 72.3 44 30.8/1.1 v
MCTS(Hao et al., 2023) 74.7 122.6 105225 v

+ SRM 80.5 45.2 20.6/0.9 v

Toolchain*

(Zhuang et al., 2023) 78.9 - 40.8/1.9 X

To address these limitations, early studies intro-
duced prompting strategies to enhance reasoning,
such as Chain-of-Thought (Wei et al., 2022) and
AlphaZero-Like Tree-Search Method (Wan et al.,
2024), which guide LLMs to generate intermediate
reasoning steps to improving inference structure
and accuracy. However, these methods rely solely
on prompting without external validation or opti-
mization (Song et al., 2025), limiting their reliabil-
ity. Recent approaches employ tree-based search
algorithms (Besta et al., 2023; Ding et al., 2023;
Putta et al., 2024; Wang et al., 2024) to explore
broader reasoning paths and refine intermediate
steps. By systematically evaluating multiple candi-
dates in test time scaling (Snell et al., 2024), these
methods enhance both the quality and diversity of
reasoning, leading to more robust decision-making.

Despite these improvements, they inevitably in-
troduce substantial computational cost. In Table 1,
we utilize our proposed 3E Criteria—E(fectiveness,
Efficiency, and Extensibility to assess the cost in-
curred during LLM inference. Effectiveness repre-
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sents the success rate, Efficiency denotes the time
and token cost, and Extensibility is the adaptability
to new tasks.

The results reveal that existing methods offer lim-
ited performance gains at disproportionately high
costs. For example, ToT (Yao et al., 2023), which
employs Depth-First Search (DFS), Breadth-First
Search (BFS), provides marginal performance im-
provements (0-3%), but incurs a 50-60x in time
cost and a 100-120x escalation in inference com-
plexity. Similarly, RAP (Hao et al., 2023) lever-
ages Monte Carlo Tree Search (MCTS), yielding a
modest performance improvements of 4-5% at the
expense of a 150-300x increase in inference cost.
Additionally, Toolchain* (Zhuang et al., 2023) and
reasoning enhanced models like QwQ (QwenTeam,
2024), constrained by task-specific heuristics, fails
to reduce cost effectively and lacks extensibility.
In this work, we seek to address:

Research Question

How to improve the reasoning ability of
LLMs while maintaining a balance between
effectiveness, efficiency, and extensibility?

Inspired by studies (Huang et al., 2023) empha-
sizing the need for external validation in decision-
making, we propose Speculative Reward Models
(SRM), a plug-and-play framework designed to
balance effectiveness and efficiency (Jahan et al.,
2016). SRM introduces external rewards to miti-
gate ineffective decision-making in a speculative
manner (Xu et al., 2024; Chen et al., 2023; Xia
et al., 2023). It consists of two key components:
(1) SRM, an independent reward model that as-
signs scores based on decision consistency and
goal alignment. (2) Speculative Verification, a
mechanism that ranks candidate steps by evaluat-
ing the consistency between internal rewards from
LLMs and external rewards from SRM, enabling
efficient pruning of suboptimal choices and guiding
the search toward more promising states, thereby
reducing computational cost.

We first train SRM on datasets with weak pro-
cess rewards and then fine-tune it to SRM™ using
strong search rewards. This allows us to provide
potential success probabilities for specific steps as
external reward signals to LLMs during the search
phase. Extensive validation has demonstrated that
our approach significantly lowers the cost to a frac-
tion of the original search framework’s, without
sacrificing effectiveness. In summary, our contribu-

tions are as follows:

(1) Efficiency. The SRM framework we pro-
posed dramatically increases efficiency with a no-
table reduction in cost, requiring only about 1/10
of the original search paradigms.

(2) Effectiveness. There is no sacrifice of effec-
tiveness for SRM; in fact, by integrating reward
signals for process supervision, it achieves a up to
a 10% performance improvement over CoT and
approximately a 2% increase compared to using
searching algorithms only.

(3) Extensibility! SRM provides generalizable
weak rewards and a universal framework for de-
riving strong rewards. Fine-tuning with strong
rewards transforms SRM into SRM™, enabling
domain-specific adaptation without full retraining.

2 Problem Formulation

The decision-making process can be formulated
as a Markov Decision Process (MDP) (Puterman,
1990), where the state space S represents all possi-
ble problem states with s € S, and the action space
A consists of actions a € A that transition the state
toward a solution. The LLM acts as a generator G,
producing candidate actions G(a|s, prompt;) and
determining state transitions G(s'|s, a, prompts).
A reward function R (s, a) evaluates the effective-
ness of actions in progressing toward the goal.
Tree-based search paradigms in LLMs decom-
pose complex problems into a sequence of manage-
able sub-problems, each represented as an action
modifying the current state toward the final solu-
tion. The search tree 7 = (S, A) in Figure 1 repre-
sents the decision process, where nodes are states
and edges are actions. Starting from an initial state
s0, LLM iteratively generates candidate actions
A, = {al,}}X,, assigns rewards r,; = R(sn,al,),
selects the optimal action a, and transitions to
the next state s,,+1. The search process continues
until the goal state s, is reached, optimizing the
cumulative expected reward along the way.

3 Method

In this section, we introduce our SRM framework
across three key dimensions: (1) Speculative Re-
ward (SR) for Efficiency, reducing computational
cost by pruning less promising search paths; (2)
Reward Consistency (RC) for Effectiveness, ensur-
ing stable and reliable decision-making by aligning

IRefers to whether the method requires retraining to adapt
to new problems across different domains.
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Sl A1: Josh spent $50,000 on repairs because that was the amount he put into
fixing up the house. The answer is $50,000.
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Q1: How much did the value of the house increase after the repairs?
A1: The value of the house increased by $120,000 after the repairs. The answer is
$120,000.
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Q2: What is the value of the house after repairs? Q2: How much is the value of the house after the repairs? Q2: How much did the value of the house increase by?
SZ A2: The value of the house after repairs is $200,000 because the repairs increased A2: The value of the house after the repairs is $200,000. The |A2: The value of the house increased by $120,000. The
the value by 150% from the original $80,000 purchase price. The answer is $200,000. | [answer is $200,000. answer is $120,000.
o
-
--" e
) T —— = ‘Now we can answer the)
A Now we can answer the) [How much profit did Now we can answer the) question: How much
profit did he make? profit did he make? [ACCEPT) sR:1.000 11.000
SR:1.000 : SR:0.978 RC:0.978 SRA.017  RC:0.983
ACCEPT] i 20
Time: 21.54s | Token: 16.9K Time: 34.75s | Token: 28.7K
Time: 42.18s | Token: 34.9K
Q3: Now we can answer the question: How much profitdid he make? "¢} e Q3: Now we can answer the question: How mucl
53 [A3:Josh made a profit of $70,000 because he sold the house for $200,000 profit did he make?

after spending a total of $130,000 ($80,000 purchase price + $50,000 make?

repairs), resulting in a profit of $70,000. The answer is $70,000.

Q3: Now we can answer the question: How much profit did hi'

A3: Josh made a profit of $70,000. The answer is $70,000.

A3: Josh made a profit of $70,000. The answer is
$70,000.

|

Figure 1: An example in GSM8K (K = 4, N = 5), where our SRM uniquely solves the case correctly across all
baselines in 10 tests while achieving the lowest time and token costs. The decision-making process showcases SRM’s
pruning via Speculative Reward (S R), with green actions for acceptance and red for rejection. By SR, searching
bypasses bad nodes and expands promising ones first. The selection strategy is determined by Reward Consistency
(RC), prioritizing high- RC' actions for earlier development, streamlining the path to the goal. Dangerous’ sub-
questions, characterized by excessively large spans (&), are pruned efficiently.

internal and external reward signals; (3) SRM™ for
Extensibility, enabling adaptation to diverse tasks
with minimal retraining.

Speculative Reward for Efficiency Search
strategies typically rely on invoking LL.Ms to evalu-
ate each state-action pair (s, a), determining the re-
ward R (s, a). While effective, frequent LLM calls
across large search spaces introduce significant in-
efficiencies. Inspired by Speculative Sampling (Xu
et al., 2024; Chen et al., 2023), which accelerates
inference by using a smaller model to speculate a
larger model’s predictive distribution, we propose
the SRM to mimic the LLM as a reward assigner.

Given a pre-order state node s,,, and K candidate
actions A, = {al,...,al*} generated from the
LLM Generator G(-), SRM assigns a speculative
reward R3RM(s,,, al,) for each action a, as:

RgRM(sn, afl) = Pg(aﬁsn,promptl), (1)

where 6 is the parameters of SRM.

By bypassing LLMs for reward assignment,
SRM significantly accelerates the search process.
To maintain alignment with LLMs priors, follow-
ing Chen et al. (2023), the reward R3*(s,,, a?)

for a!, is accepted with probability:
@D (Pim(ay, |sn, prompty))

win (1 BRI (s, ) ) ©

where @(-) denotes the normalization operator:
f(z)
P ()

2o (@)

Notably, Piim(al|sn,prompty) is directly ob-
tained from the generation process of a%, eliminat-
ing additional LLMs queries. Once the action a’, is
accepted, we update a’, < a?, and transition to the
next state s,+1 by G(sn+t1|Sn, al, prompty).This
process is repeated for a,1 until either the goal
conditions are met or the search reaches the depth
limit. If all actions a’,(i = 1,2,---, K) are re-
jected, we regenerate a new candidate action set
Al from Generator G(-) and repeat the above pro-
cess (See Algorithm 1).

3)

Reward Consistency for Effectiveness Given
the speculative property of the ratio in Equation 2,
we define it as the Speculative Reward (S'R), a key
metric in our algorithm for pruning. However, as-
sessing absolute performance alone is insufficient,
the consistency of reward signals must also be con-
sidered. To this end, we propose Reward Consis-
tency (RC) as a selection criterion, quantifying the



alignment between internal generator rewards and
external SRM rewards. It is defined as:

1

RO = 1+ |SR—1]

€[0,1]. (€))
An RC value of 1 indicates complete consistency
between internal and external reward signals. Their
role within our SRM framework are illustrated in
Figure 1. Ultimately, the cumulative reward across
states (or nodes) is computed by Raccumulated =
SR - RC('=®) where « is a hyperparameter that
balance the significance of SR and RC.

SRM Training and Fine-tuning The SRM is
trained on weak reward labels for each reason-
ing step—positive, negative, and neutral (see Ap-
pendix A.2.1 for details). Specifically, it is opti-
mized using a cross-entropy loss function to distin-
guish the more advantageous action among candi-
dates:

1
@E(sn,a%,ai)wD (5)

[log (0(RG*M (s, al) —Rg™M(sp,al))))]

loss(f) = —

where R3®M(s,,, a,,) represents the scalar reward
assigned by SRM for preorder state s,, and avail-
able action a,, parameterized by #. The model
favors actions that lead toward the solution, assign-
ing them higher rewards and the dataset D contains
process-supervised reward or tree-based search re-
ward. This training approach leverages differences
in weak rewards to guide SRM in quantifying the
intuitive preference for actions that move toward
the goal state, thereby enhancing its ability to eval-
uate the potential success of reasoning steps. Fol-
lowing (Ouyang et al., 2022), all (%) comparisons
from each prior state sg are processed efficiently as
a single batch element to mitigate overfitting.

SRM™ for Extensibility SRMT is fine-tuned
from SRM with same loss described in Equation 5,
but with a distinct RewardTuning dataset. This
dataset includes step-level, strong rewards with
specific values derived from tree-based search tech-
niques for targeted tasks. Thus, at this stage, SRM™
is more accurate to learn the relative quality of
movements through strong labels. The evolution
from SRM to SRM™ is illustrated in Figure 2. Be-
sides, further details on the training and fine-tuning
methodologies are available in Appendix A.1, with
data collection for the RewardTuning dataset de-
tailed in Appendix A.2.2.

I Degree of consistency

O Accepted Actions

® Rejected Actions

@\} Process Reward Dataset

@g RewardTuning Dataset

A

T weak reward G“p\-) strong rewardF W
[ v
S 2 t@. 2

LLMs
SRM

\L
w
x
=

+
@ﬂ Strong-Reward Tuning

Figure 2: SRM was trained using the PRM800K dataset,
in conjunction with LLMs, to provide weak Speculative
Rewards (SR) for each action. Subsequently, SRM™
underwent fine-tuning with the RewardTuning dataset,
enabling it to generate strong SR for task-specific ac-
tions. Various actions are denoted by dots, with the
intensity of their green hue indicating the magnitude of
the Reward Consistency (RC) on each accepted node.
A deeper green signifies a larger RC.

4 Experiment

In this section, we demonstrate the superior-
ity of the SRM framework > in terms of Effi-
ciency, Effectiveness, and Extensibility through
comprehensive experiments. We evaluate SRM
across a diverse range of decision-making sce-
narios, including mathematical reasoning on
GSMSEK (Cobbe et al., 2021), reasoning and plan-
ning in BlocksWorld (Valmeekam et al., 2023), and
financial numeric reasoning on FinQA (Chen et al.,
2021). Table 5 concisely aligns the three tasks with
the decision-making problem framework.

4.1 Experiment Setup

As shown in Figure 1, we set K = 4 (number
of candidate actions per step) and N = 5 (maxi-
mum search depth) for all tasks in our experiments.
A detailed discussion of the GSM8K task is pre-
sented, while further information on BlocksWorld
and FinQA, including their setups and case stud-
ies, can be found in Appendix C. Details regarding
implementation specifics like SRM configuration,
baseline alignment, and our selection of DeBERTa-
v3-large as the base model are provided in Ap-
pendix A. Moreover, prompts used in each task are
available in Appendix E.



Table 2: The result we tested 10 times on GSM8K and put on the average accuracy and cost. The values of total
running time and total token cost are represented as multiples of the CoT row’s value.

LLaMA-2-70B \ LLaMA-33B \ LLaMA-2-13B
Method
Effe. [Acc.] Time [xCoT] Token [xCoT] | Effe. [Acc.] Time [XCoT] Token [xCoT] | Effe. [Acc.] Time [xCoT] Token [xCoT]
CoT 0.54 1.0 1.0 0.29 1.0 1.0 0.20 1.0 1.0
DFS 0.52 28.4 1727.2 0.25 19.4 610.9 0.19 350.7 1306.8
+SRM 054 (D) 42 2333 0.26 (1) 2.9 32.0 0.20 (1) 439 64.6
+SRM* 0.5 (1) 42 241.2 0.28 (1) 2.9 32.4 0.24 (1) 42.0 69.5
BFS 0.58 36.3 1133.7 0.38 37.8 237.8 0.23 368.5 661.5
+SRM 0.55 3.4 1339 0.35 2.1 415 0.23 19.5 485
+SRM*  0.59 (1) 3.4 123.4 0.38 2.2 422 0.26 (1) 19.2 422
MCTS 0.61 1145 295.1 0.49 74.6 108.1 030 61.2 180.7
+SRM  0.62 (1) 8.0 66.7 0.49 22 19.9 0.27 153 33.0
+SRMT  0.64 (1) 8.0 63.4 051 (1) 2.3 20.7 0.29 153 31.8
MCTS+SRM DFS with SRM mitigates this decline by pruning
MCTS weak nodes and expanding stronger ones. The
fine-tuned SRM™ further enhances search perfor-
mance while stabilizing the framework at a lower
Sl DFSHSRM cost. Additionally, SRM can be fine-tuned using
§ other tree-based search rewards, as discussed in
5 s BFS Appendix D. Overall, MCTS+SRM proves to be
O 724 .
< BS the most cost-effective approach across GPT-3.5-
) turbo and the LLaMA series. Among the evaluated
search paradigms, MCTS exhibits the highest ac-
,.CoT Bks curacy yet the highest time cost. This can be

I) 2'5 5‘0 . 7'5 . 180 . 1;5 l;O 1;5
Running Time (in Sec.)
Figure 3: Comparison of the effectiveness and efficiency

of search methods using the plug-and-play SRM frame-
work. The bigger the dot is, the larger the token cost. Af-
ter applying the SRM framework, it is obvious that the
running time of the point representation is reduced (),
and the accuracy is flat or increased (1).

4.2 Effectiveness and Efficiency Analysis

To evaluate the impact of SRM on effectiveness
and efficiency, we present results on GSMS8K from
GPT-3.5-turbo and the LLaMA series (Touvron
et al., 2023; Grattafiori et al., 2024) in Table 1
and Table 2. The results show that SRM signif-
icantly reduces both time and token costs by nearly
90% while maintaining or improving performance
(Figure 3). Notably, these benefits come without
compromising extensibility.

SRM applied to LLaMA-2-70B improves accu-
racy by 2% on ToT-DFS and 1% on RAP-MCTS.
When used with GPT-3.5, its cost is only 10% to
30% of the original search algorithms. However,
results highlight the instability of search paradigms
in decision-making tasks. DFS, for example, per-
forms 2% worse than CoT alone. Integrating

2Code available at:
Speculative-RM

https://github.com/Kuvvius/

attributed to its more reliable reward system, de-
rived from multiple simulations, rather than the
self-evaluation and positional relationship utilized
by BFS and DFS. Therefore, in our experiment,
we use the MCTS reward in RewardTuning as the
strong reward label to acquire SRM™. Overall,
MCTS+SRM emerges as the most cost-effective ap-
proach for decision-making tasks, as demonstrated
using GPT-3.5-turbo and the LLaMA series.

Case Study SRM mitigates error propagation
by prioritizing reliable search paths and pruning
error-prone branches. Figures 1 and 6 compare
MCTS+SRM and MCTS alone, demonstrating how
SRM reduces early mistakes that would otherwise
propagate through later steps. SRM prioritizes
concise sub-questions with higher SR and RC,
effectively pruning unreliable branches and guid-
ing search toward more reliable paths. In con-
trast, MCTS alone struggles to avoid error-prone
branches, leading to early mistakes that propagate
through later steps. MCTS relies on fast rewards
and LLM self-evaluation, which, while efficient in
some cases, often fails to prevent accumulating er-
rors. Without external supervision, minor mistakes
can significantly impact tree search algorithms, as
LLMs struggle to self-correct. As shown in Fig-
ures 1 and 6, reducing step size and verifying each
step prevents errors from compounding, demon-


https://github.com/Kuvvius/Speculative-RM
https://github.com/Kuvvius/Speculative-RM

Table 3: The baseline is MCTS. Sampling refers to
the rejection sampling strategy outlined in Section 3,
absent which there is no pruning. Consistent with ear-
lier sections, token costs are denoted as [Prompt To-
kens]/[Completion Tokens].

Efficiency
Method Effectiveness Time Cost Token Cost

Acc.[%] Avg.[Sec.] Avg.[K]
MCTS 74.7 122.6 105.2/2.5
+ SR + sampling 70.2)4 5% 28.3 16.3/0.4
+ RC + sampling 714339 96.5 53.2/1.5
+SR* - ROU- 4 sampling  80.545 59 452 20.6/0.9
+ SR no sampling 78.443 79 105.1 70.8/2.1
+ RC no sampling 73.311.4% 143.2 98.1/2.7
+SR* - RCU=) no sampling  75.149.4% 58.8 34.7/0.9

strating SRM’s role in stabilizing search efficiency
while maintaining accuracy.

Ablation Study We conduct ablation studies
with the MCTS paradigm to evaluate the impact
of reject sampling via SR and selection mecha-
nisms via RC (Table 3). The results indicate that
both components in SRM’s speculative approach
contribute to reducing cost while maintaining per-
formance. Using only SR for R,ccumulative SIg-
nificantly lowers cost but also reduces effective-
ness. In contrast, relying solely on RC results in
a smaller accuracy drop but at the expense of ef-
ficiency. Without sampling, cost increases due to
the lack of tree pruning, sometimes exceeding the
baseline search algorithms. These findings con-
firm SRM’s effectiveness in optimizing tree-based
search performance.

4.3 Extensibility Analysis

Table 4: Result of Blocksworld (LLaMA-2-70B) and
FinQA (GPT-3.5 and GPT-4).

Mode Method Eff. Time Token
CoT 0.08  1.0x 3.8

, MCTS 0.66 560.9x 366.0
BW(Easy) MCTS +SRM  0.66 54.4x  40.1
MCTS + SRM'™  0.68 583x  47.0
CoT 005  1.0x 38

MCTS 051 709.5x 4167
BW(Hard) MCTS +SRM 049 54.8x 342
MCTS + SRM' 054 69.9x 455
CoT 049 45 34
FinQA MCTS 0.60 160.6 200
(GPT3.5) MCTS+SRM 065 519 542
MCTS + SRM' 068 521 537
FinQA (GPT-4) CoT 070 49 35

Table 4 highlights SRM’s adaptability across
decision-making tasks. In Blocksworld (BW), CoT
with LLaMA-2-70B struggles with planning, while
MCTS improves decisions at high computational
cost. SRM reduces inference by 7% while main-

taining accuracy, and SRM™ further enhances per-
formance via RewardTuning (See Appendix A.2.2).

Beyond planning, SRM seamlessly transfers to
FinQA, improving accuracy by 5% with minimal
retraining, while SRM™ achieves an 8% gain. No-
tably, SRM™ enables GPT-3.5 to match GPT-4 in
efficiency, demonstrating its ability to optimize
LLM:s across domains. By integrating speculative
verification and fine-tuning with task-specific re-
wards, SRM ensures efficient, cost-effective adap-
tation to new tasks.

5 More Discussion

Diversity and randomness bring stable improve-
ment. The methods related to Decision-making
agents would have unstable issues and strongly
depend on the general ability of the base model.
During the reasoning process, MCTS introduces a
degree of randomness in generating the final results.
This randomness, combined with the diversity at
intermediate nodes, allows for stable optimization
of the sampling outcomes from language models.
Consequently, MCTS consistently demonstrates
superior performance compared to other search
methods.

External signals can effectively supervise the
generation process of the content. When a
decision-making agent engages in complex rea-
soning and problem-solving, it heavily relies on
the generative capabilities of the language model.
However, using only self-evaluation methods of-
ten fails to provide stable and reliable judgments,
making effective process supervision difficult. In
such cases, introducing an external verifier for pro-
cess supervision proves to be effective. The verifier
can provide feedback on the quality of the model’s
current outputs and offer guidance, which helps
improve performance.

By leveraging diversity (note that the “diversity”
here differs from “diversity” in the field of infor-
mation retrieval (Liang et al., 2017; Liang, 2019))
and randomness, the use of effective external sig-
nals for proper guidance can help avoid the high
costs associated with repetitive exploration in the
search space. Specifically, the verification signals
provided by our proposed SRM in domain-specific
problems, combined with search methods that al-
low for sufficient exploration and randomness,
can achieve cost-effective performance improve-
ments.



Why a relatively small model can help large
base model? Our reward model underwent train-
ing that supervised the decision-making process,
but it’s significantly smaller compared to the gener-
ative language models it supports. The feasibility
of using a smaller-scale reward model to effectively
assist a much larger, more powerful model lies in
our acknowledgment of the errors inherent in the
weak labels provided by the Supervised Reward
Model (SRM). However, within our framework, we
do not intend for the more robust model to learn or
replicate these errors. Instead, our aim is to guide
it toward understanding the intentions behind the
supervision (i.e., signals of external oversight), not
the inaccuracies themselves. We maintain the as-
sumption that the larger, base model inherently pos-
sesses all necessary reasoning and decision-making
capabilities but might not currently exhibit them
due to limitations in the decision-making context.
Under the guidance of a weaker model, it becomes
possible to activate this latent knowledge and adjust
the base model towards a direction of self-reward,
thereby enhancing its performance and decision-
making processes in alignment with the supervi-
sors’ intentions.

6 Related Work

6.1 Decision-Making Agents

LLM-based decision-making agents, such as
XoT (Ding et al., 2023), and Quiet-STaR (Zelik-
man et al., 2024) generate structured actions using
formal languages like PDDL or API calls. These
models rely on binary or scalar feedback for pol-
icy optimization, differing from human decision-
making (Zhuge et al., 2025). Memory-enhanced
methods (Shinn et al., 2023; Zhuang et al., 2023)
treat LLMs as autonomous agents, but reward inter-
pretation remains a challenge (Song et al., 2025).
Our SRM addresses these limitations with a struc-
tured, cost-effective decision-making approach.

6.2 Tree-Based Search Algorithms

Tree-based search, including DFS, BFS, and
MCTS, plays a key role in LLM-driven decision-
making (Snell et al., 2024). DFS and BFS explore
solutions systematically, while MCTS improves
decision quality via random sampling. However,
methods like ToT (Yao et al., 2023), RAP (Hao
et al.,, 2023) and AlphaZero-Like Tree-Search
Method (Wan et al., 2024) incur high inference
costs due to frequent LLM calls.
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6.3 Speculative Sampling

Speculative sampling (Xu et al., 2024; Chen et al.,
2023; Xia et al., 2023) speeds up LLM inference by
drafting candidate tokens and verifying them with
a target model, reducing latency while maintain-
ing quality. Inspired by this, SRM applies specula-
tive verification to decision-making, using rejection
sampling to prune search paths, minimize redun-
dancy, and improve efficiency.

7 Conclusion

We propose the Speculative Reward Model (SRM),
a cost-effective framework that enhances LLM
decision-making by speculating on potential re-
wards. SRM reduces ineffective decisions through
Speculative- Verification, efficiently ranking steps
by given scores. Our contributions include signifi-
cant cost reductions, a 10% performance improve-
ment over CoT, a 2% increase over search-based al-
gorithms, and broad applicability. Additionally, we
introduce RewardTuning, a dataset for fine-tuning
the reward model on three tasks. As to future work,
we intend to extend our model for other tasks (Xian
et al., 2025; Pasupat and Liang, 2015).

Limitations

Dependency on External Models SRM need to
fine-tuned with task reward data to improve the cor-
responding performance on the specific task. relies
on external reward models, which might introduce
additional complexity and potential inaccuracies
if the external models are not well-calibrated or
if they fail to capture the nuances of the specific
tasks.

Scalability Challenges While SRM reduces
costs and improves efficiency, it is itself a relatively
small model with only about 500M parameters.
This limited capacity can pose challenges when
scaling to more complex tasks or larger datasets,
potentially hindering its ability to generalize effec-
tively.
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Figure 5: The process of building our weak reward dataset from PRMS800K dataset, which SRM was trained on.
The data samples of state and action pairs can be found in Appendix A.2.1.

A Implementation Details

To better illustrate the Decision-making process
with SRM, we provide pseudo-code in Algorithm 1
and a selection process (including rejection for
pruning and acceptance sorting for efficient naviga-
tion) as shown in the Figure 4.

A.1 LLM Configuration

In order to align the existing experimental results,
we opted for the GPT-3.5-turbo (a previous version)
as the engine in constructing the LLM-based agent
framework. We configured the solution generation
to have a maximum length of 512, with a tempera-
ture setting of 0.8, as detailed in Section 4. In the
case of LLaMA-2 experiments, we similarly set the
maximum solution length at 512 and the tempera-
ture at 0.8. The experiments were conducted using
8 NVIDIA Tesla V100 32GB GPUs to facilitate the
inference process for both the LLaMA-2 7B and
13B models.

To maintain consistency with the established
search algorithms, we adjusted weights as the same
as them.

14

A.2 SRM Training and Fine-tuning Details

SRM was trained on DeBERTa-v3-large with sen-
tence pairs with weak labels 7 to obtain SRM, and
fine-tuned by strong labels 8 evolving into SRM+.
As the loss function in Equation 5, we train SRM
to learn the differences in text with different labels
through comparison. Finally, with the input pairs
with same state sentence, SRM can give the pre-
dicted reward labels, which show relatively good or
bad. The dataset we built in our work will be fully
released upon acceptance. In the A.2.1 and A.2.2,
we provide further clarification and explanations
through data samples.

A.2.1 Process Reward Dataset

The original training data has 1,055,517 pieces of
data and 10,833 instructions (i.e. questions). After
processing, there are 3,150,704 pairs. The gener-
ating process and data examples are shown in the
Figure 7.

A.2.2 RewardTuning Dataset

We use the existing searching method to acquire the
strong reward label for each step of sub-question
or each state for blocks as shown in Figure 8. The
form of reward is an exact value. We build all
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Figure 6: Bad Case of MCTS Decision-making
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Figure 7: The process of generating weak reward data pairs. As the example showed, we process the data from

prm800k into state and action pairs with labels

reward data for the training data set of the three
task, and finally use 10% them to fine-tune our
SRM™. The generating process and data examples
are shown in the Figure 8.

B More Analysis

Recent results on GSMS8K indicate that while some
methods achieve relatively high accuracy, their
cost-efficiency remains a major concern. For ex-
ample, QwQ (QwenTeam, 2024) achieves a very
high accuracy of 93.9%. However, its time cost
is not reported (denoted as “-”), and its token cost
(0.7/1.6) is only slightly improved relative to base-
line methods. Moreover, QwQ is marked with “x”
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under Extensibility, which means that despite its
high performance, its applicability to new tasks is
limited due to the reliance on task-specific heuris-
tics (reasoning tasks only).

The results reveal that existing methods offer lim-
ited performance gains at disproportionately high
costs. For instance, ToT (Yao et al., 2023), which
employs Depth-First Search (DFS) and Breadth-
First Search (BFS), provides only marginal im-
provements (0-3%) yet incurs a 50-60x increase
in time cost and a 100-120x escalation in in-
ference complexity. Similarly, RAP (Hao et al.,
2023) uses Monte Carlo Tree Search (MCTYS) to
yield a modest performance improvement of 4—5%,



Algorithm 1 Decision-making process with SRM

1: Given candidate K actions, and depth limit of
tree N.
Given Large Language Model G(-) as gen-
erator, and Speculative Reward Model R(-),
action-prompt prompt; and state-prompt
prompts with few-shot examples, intial state
so=10
Initialise n + 0.
while n < N do
fort=1: K do
Generate candidate actions
repressively al, ~ G(alsy, prompt;)
end for
: Compute
K candidate
ay, ~ R(a|sn, prompts)
R(al|sn),. .., R(aX|s,)
fort=1: K do
Sample ¢ ~ UJ0, 1] from a uniform

distribution.

if ¢ < min (1, GDEPEDY ) then

Seta, < a} andn < n + 1.
else
Continue
end if
end for
end while

AN AN

auto-

[o BN

rewards  of
respectively

speculative
actions

10:
11:

12:

13:
14:
15:
16:
17:
18:

but at the expense of a 150-300x increase in
inference cost. Additionally, while models like
Toolchain* (Zhuang et al., 2023) and reasoning-
enhanced models like QwQ (QwenTeam, 2024)
can achieve high accuracy, they are constrained by
task-specific heuristics, fail to reduce cost effec-
tively, and suffer from poor extensibility.

Table 1 summarizes the performance (Effective-
ness), efficiency (Time and Token Cost) and ex-
tensibility of various paradigms in GSMS8K tasks
under the same setting with GP7-3.5-turbo and
4-shot learning. It is evident that despite high ef-
fectiveness, models such as QwQ, Toolchain*, and
even some search-based paradigms require signif-
icant computational resources, whereas methods
incorporating Speculative Reward Models (SRM)
can offer a better trade-off between performance
and efficiency.

16

{"state":

"action":
""label":
0.6518952981160476
{”"state":

"action":

"label": 0.786580977225578
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"action":
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Figure 8: The process of generating strong reward data
pairs.

C Task details

Task Setup We evaluate SRM framework with
the MCTS search paradigm in Blocksworld bench-
mark (Valmeekam et al., 2023), where the aim is
to examine the framework’s efficacy in guiding
an agent through a sequence of actions to reorga-
nize blocks into specified configurations. In our
research, we draw from the Blocksworld dataset as
outlined by (Valmeekam et al., 2023), organizing
the test cases by the least number of actions they
necessitate for a solution and giving four test case
to prompt, as same as (Hao et al., 2023), which
detailed in The plan generation task involves creat-
ing a sequence of actions to meet the goal, which
showcases decision-making skills at each step of
the planning process.

BW Result on Step-level Building on these re-
sults, Table 6 provides further evidence of SRM’s
effectiveness in both Easy and Hard modes of
Blocksworld. While MCTS enhances decision-
making, SRM maintains similar performance with
much lower cost. In Hard mode, SRM™ consis-
tently improves accuracy, especially in complex
tasks like the 12-step problems. These findings
confirm that SRM reduces cost while preserving
performance, and SRM™ further extends this by
improving results in more challenging scenarios.
Importantly, the set of possible actions is finite
and determinable through predefined rules rather
than requiring generation by an LLM. The action



Table 5: Alignment of Three Decision-making Tasks. GSM8K and FinQA, differ in complexity and domain, but
both numerical reasoning tasks with action space defined by K and requiring LLM for action generation and
transition. Instead, in Blocksworld, a more complex planning task, an action is composed of one of the 4 verbs (i.e.,
stack, unstack, put, and pick) and manipulated objects. Thus, the action set for a given state consists of m actions,
with m being up to 4, generated independently of LLM assistance.

GSMSK

FinQA Blocksworld

Calculate the correct
answer by multi-step
mathematical reasoning.

Goals

Calculate the correct
answer by numerical
reasoning for financial

Arrange the blocks into
stacks on a table in the

problems specific order.

0

Initial State s

Description of current

0 blocks and a goal.

A correct series of
problem decomposition
leading to the final
answer.

Goal State s,

A correct series of

problem decomposition
leading to the final

A feasible plan including
series actions.
answer.

All current sub-questions

All current sub-questions

Text description of the

State s, current orientation of the
and answers. and answers.
blocks.
Action Set A,, K sub-questions K sub-questions m actions, m < 4

Table 6: Performance comparison between CoT and
MCTS methods, with and without SRM, across differ-
ent step sizes in Blocksworld (BW) tasks. Results are
shown for both Easy and Hard modes, evaluating accu-
racy at 2-step, 4-step, 6-step, 8-step, 10-step, 12-step,
and overall (All) steps.

Mode Method

CoT
MCTS
MCTS
+SRM
MCTS
+SRM™"

CoT
MCTS
MCTS
+SRM
MCTS
+SRM*

All

0.08
0.66

2-step

0.49
1.00

4-step  6-step  8-step

0.18 0.06 0.01
0.99 0.75 0.61

10-step

0.01
0.32

12-step

0.00
0.32

Easy

1.00 0.97 0.70 0.63 0.33 0.33 0.66

1.00

0.22
0.67

0.99

0.14
0.76

0.76

0.02
0.74

0.65

0.02
0.48

0.33

0.00
0.17

0.35

0.00
0.09

0.68

0.05
0.51

Hard

0.65 0.74 0.73 0.48 0.23 0.11 0.49

0.68 0.79 0.78 0.55 0.31 0.15 0.54

space is dynamically generated, considering both
domain-specific constraints and the current orienta-
tion of the blocks. For state transitions, the frame-
work consults a Large Language Model (LLM)
to forecast the impacts of actions on the blocks’
states, updating the current state to reflect new con-
ditions and eliminate outdated ones. The LLM,
in conjunction with the SRM, generates Successor
Representations (S R) and Reward Contexts (RC')
for potential actions, which then inform the state
transition function. The process concludes once
the goal state is realized or when the search hits the
predetermined depth limit.
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Algorithm 2 Tree-based Search in LLMs.

1: Input: sq: input; G: large language model; M :
the maximum exploring steps; 7": the dynamic
decision tree for search; R (s, ak): function
to return specific reward

2: Initialize T' = {S, A}; S « sg; A < (.

3: fort =1to N do

4: A, ={aW}e |« G(s,) v Invoking
5: al <— argmaxg, cA, R(Sn,an)

6: Add a,, as the edge of s,,.

7: Sn+1 < G(sp,al)

8: Update s,11 asanode of . > Invoking
9: end for

10: Output: The goal state s, including reasoning

steps and answer.

D Tree-based search Reward

Rewards are acquired by tree-based search algo-
rithms, different from common reward for language
model (Kwon et al., 2023; Shinn et al., 2023). And
all the search methods employed are unsupervised,
yet they vary in the balance they strike between
exploration and efficient selection.

We would like to detail three kinds of reward
designs with the order of decreasing exploration.
Besides, we leave the more reward settings cor-
responding to the algorithms in the future work.
Generally, tree-based search algorithms could own
their corresponding reward configure, showing the



flexibility of our framework.

D.1 Priority Reward

This type of reward are designed for the search
with certain priority. Taking DFS for an example,
it begins with "root" state sy and then iteratively
choose the first candidate action a), while there
are K candidate action nodes. Until it reached
the depth limit or the goal state s, containing the
final correct answer. It will then proceed down
the new path as it had before, backtracking as it
encounters dead-ends. Besides, Self-consistancy
Chain-of-Thought (Wang et al., 2022) can be ex-
pressed in reward form with majority voting as a

priority.

where inf{j \a% not visited} represents the smallest
index j among all actions aj, that have not been
visited.

|1 ifi = inf{j|aj, not visited},

RDFS S ai)
(50, an 0 otherwise.

D.2 Heuristic Reward

If only take confirmed priority for one-hot reward,
the search process becomes aimless leading to
low efficiency. Heuristic search algorithms are de-
signed to solve the problem of search efficiency,
such as Greedy Best First Search (GBFS), Dijkstra
and A*. Aligned with the characteristic of algo-
rithms, Heuristic reward defined by the heuristic
function h(s). Here,we would like to take GBFS
for an example and list other heuristic reward in
the appendix. the distance from the current state
sy, to the target state s, is used as the heuristic re-
ward, leading the search direction correctly. Given
a heuristic function h(s) estimating the cost from
any state s to the goal state s, the heuristic reward
for an action afl at state s,, is defined as follows:

Regrs (5n, al)

_ {h(sn+1>

—00
where h(sy+1) represents the heuristic cost from
the resulting state s,, | 1, after taking action a’, to
the goal state s,. The action leading to the state
with the lowest heuristic cost is preferred, guiding
the search towards s,,.

if 5,11 is reached by a,,

otherwise,
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D.3 Simulated rewards

With the fixed heuristic function for reward, it is
evident that most of the decision space lacks cover-
age, resulting in insufficient exploration for search-
ing. In contrast, simulated search algorithms like
MCTS, would explore exhaustively within entire
decision space. In this kind of algorithms, an itera-
tive simulation cycle would continue until a termi-
nal state arrived, which usually encompasses three
phases: selection, expansion and backpropagation.
Alongside the simulation process, a state-action
value function Q(s,, a,) is maintained, indicating
the expected future reward If taking action a,, in
state s,. To control the balance between explo-
ration and exploitation, Upper Confidence bounds
applied to Trees is often used. For each iteration of
simulation, the selected action a* should be :

where N (s) is the number of times state s has
been visited in previous iterations, N (sy, a,) is the
number of times that a,, is selected at the state s,,,
and weight w controls the proportion of exploration
and development.

If taking MCTS as an example and supposed that
to abtain the reward of an action needs simulate
d times, simulated rewards can be expressed as
follow:

N(sn)

a,, = argmax m

an€An

[Q(Sm an) +w

Rumcts (5n, ab)

E Prompt

For transition in SRM, we prompt:

For each sub-question, please answer it in
a complete sentence that includes your rea-
soning. And the last sentence ends with
"{answer_instruction}" followed by a
concise answer.

To apply CoT, we prompt:



Q: Natalia sold clips to 48 of her friends in
April, and then she sold half as many clips
in May. How many clips did Natalia sell
altogether in April and May?

A: Natalia sold 48 clips in April and
half as many clips in May, so she sold
48 = 2 = 24 clips in May. Altogether, she
sold 48 4+ 24 = 72 clips. The answer is 72.

Q: James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?

A: James writes a 3-page letter to 2
different friends twice a week, so he

There are 52 weeks in a year, so he writes
12 x 52 = 624 pages a year. The answer is
624.

Q: Alexis is applying for a new job and
bought a new set of business clothes to wear
to the interview. She went to a department
store with a budget of $200 and spent $30
on a button-up shirt, $46 on suit pants, $38
on a suit coat, $11 on socks, and $18 on a
belt. She also purchased a pair of shoes, but
lost the receipt for them. She has $16 left
from her budget. How much did Alexis pay
for the shoes?

A: Alexis spent $30 on a button-up shirt,
$46 on suit pants, $38 on a suit coat, $11 on
socks, and $18 on a belt, so she spent

30 +46 + 38+ 11 + 18 = $143

on everything else. Alexis had a budget of
$200 and finally there was $16 left, so she
spent

200 — 16 = $184

in total. Since Alexis has spent $143 on
everything else, she spent

184 — 143 = $41

on the shoes. The answer is 41.

Q: Ken created a care package to send to his
brother, who was away at boarding school.
Ken placed a box on a scale, and then he
poured into the box enough jelly beans to

writes 3 X 2 X 2 = 12 pages every week.
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bring the weight to 2 pounds. Then, he
added enough brownies to cause the weight
to triple. Next, he added another 2 pounds
of jelly beans. And finally, he added enough
gummy worms to double the weight once
again. What was the final weight of the box
of goodies, in pounds?

A: Ken poured jelly beans into the box until
the weight was 2 pounds, so the weight of
the box was 2 pounds at first. Then Ken
added enough brownies to cause the weight
to triple, so the weight of the box was

2x3=6

pounds. After Ken added another 2 pounds
of jelly beans, the weight of the box was

6+2=38

pounds. Finally, he added enough gummy
worms to double the weight once again, so
the weight of the box was

8 x2=16

pounds. The answer is 16.

Q: Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning and
bakes muffins for her friends every day
with four. She sells the remainder at the
farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make
every day at the farmers’ market?

A: Janet’s ducks lay 16 eggs per day. She
consumes
34+4=7

eggs daily, leaving her with
16-7=9

eggs to sell. Since each egg sells for $2, her
total daily earnings are

9 x 2 =§$18.

The answer is 18.

To get the transited state for the given action and

state in BW, we prompt:



I am playing with a set of blocks where I
need to arrange the blocks into stacks. Here
are the actions I can do:

- Pick up a block

- Unstack a block from on top of another
block

- Put down a block

- Stack a block on top of another block

I have the following restrictions on my
actions:

- I can only pick up or unstack one block at
a time.

- I can only pick up or unstack a block if my
hand is empty.

- I can only pick up a block if the block is
on the table and the block is clear. A block
is clear if the block has no other blocks on
top of it and if the block is not picked up.

- I can only unstack a block from on top of
another block if the block I am unstacking
was really on top of the other block.

- I can only unstack a block from on top of
another block if the block I am unstacking
is clear. Once I pick up or unstack a block,
I am holding the block.

- I can only put down a block that I am
holding.

- I can only stack a block on top of another
block if I am holding the block being
stacked.

- I can only stack a block on top of another
block if the block onto which I am stacking
the block is clear. Once I put down or stack
a block, my hand becomes empty.

After being given an initial state and an ac-
tion, give the new state after performing the
action.

[SCENARIO 1]

[STATE 0]

I have that, the white block is clear, the cyan
block is clear, the brown block is clear, the
hand is empty, the white block is on top of
the purple block, the purple block is on the
table, the cyan block is on the table and the
brown block is on the table.

[ACTION] Unstack the white block from
on top of the purple block.
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[CHANGE] The hand was empty and is
now holding the white block, the white
block was on top of the purple block and
is now in the hand, the white block is no
longer clear, and the purple block is now
clear.

[STATE 1]

I have that, the purple block is clear, the
cyan block is clear, the brown block is
clear, the hand is holding the white block,
the white block is in the hand, the purple
block is on the table, the cyan block is on
the table and the brown block is on the table.

[SCENARIO 2]

[STATE 0]

I have that, the purple block is clear, the
cyan block is clear, the white block is clear,
the hand is empty, the cyan block is on top
of the brown block, the purple block is on
the table, the white block is on the table and
the brown block is on the table.
[ACTION] Unstack the cyan block from on
top of the brown block.

[CHANGE] The hand was empty and is
now holding the cyan block, the cyan block
was on top of the brown block and is now in
the hand, the cyan block is no longer clear,
and the brown block is now clear.

[STATE 1]

I have that, the purple block is clear, the
brown block is clear, the cyan block is
in the hand, the white block is clear, the
hand is holding the cyan block, the purple
block is on the table, the white block is on
the table and the brown block is on the table.

[SCENARIO 3]

[STATE 0]

I have that, the red block is clear, the blue
block is clear, the hand is empty, the red
block is on top of the yellow block, the blue
block is on top of the orange block, the
orange block is on the table and the yellow
block is on the table.

[ACTION] Unstack the red block from the
yellow block.

[CHANGE] The hand was empty and is
now holding the red block, the red block
was on top of the yellow block and is now




in the hand, the red block is no longer clear,
and the yellow block is now clear.

[STATE 1]

I have that, the yellow block is clear, the
blue block is clear, the hand is holding the
red block, the red block is in the hand, the
blue block is on top of the orange block, the
orange block is on the table and the yellow
block is on the table.
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Abstract

Advertisement (Ad) video violation detection
is critical for ensuring platform compliance, but
existing methods struggle with precise tempo-
ral grounding, noisy annotations, and limited
generalization. We propose RAVEN, a novel
framework that integrates curriculum reinforce-
ment learning with multimodal large language
models (MLLMs) to enhance reasoning and
cognitive capabilities for violation detection.
RAVEN employs a progressive training strat-
egy, combining precisely and coarsely anno-
tated data, and leverages Group Relative Policy
Optimization (GRPO) to develop emergent rea-
soning abilities without explicit reasoning an-
notations. Multiple hierarchical sophisticated
reward mechanism ensures precise temporal
grounding and consistent category prediction.
Experiments on industrial datasets and public
benchmarks show that RAVEN achieves supe-
rior performances in violation category accu-
racy and temporal interval localization. We
also design a pipeline to deploy the RAVEN
on the online Ad services, and online A/B test-
ing further validates its practical applicability,
with significant improvements in precision and
recall. RAVEN also demonstrates strong gener-
alization, mitigating the catastrophic forgetting
issue associated with supervised fine-tuning.

1 Introduction

In the modern digital landscape, advertisements
play a pivotal role in sustaining the growth of in-
ternet platforms. To ensure compliance with local
laws and regulations, promote sustainable develop-
ment, and foster a user-friendly environment, plat-
forms establish stringent guidelines to regulate the
content uploaded by advertisers. Despite these ef-
forts, violations of platform policies persist. Early

“The first two authors contribute equally to this work. We
acknowledge Shaogang Tang for collaborating on data re-
sources and application scenarios to validate and improve

algorithm performance.
Corresponding Author.
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approaches relied on small-scale models (Dosovit-
skiy, 2020; He et al., 2016) to analyze and identify
such violations, but these methods suffered from
limited generalization capabilities. With the ad-
vent of large language models (LLMs) (Liu et al.,
2023; Bai et al., 2023a), more advanced techniques
have been increasingly adopted in practice to detect
non-compliant content.

Among the various types of content, video adver-
tisements present the most significant challenge for
violation detection. In practice, it is not only neces-
sary to predict the violation categories of a video
but also to localize the specific sub-scenes corre-
sponding to each category. A single video may con-
tain multiple violation categories, each potentially
associated with multiple temporal intervals. Exist-
ing methods typically follow a two-step process:
(1) annotating each video with its violation cate-
gories and their corresponding temporal intervals,
and (2) fine-tuning multimodal large language mod-
els (MLLMs) using supervised fine-tuning (SFT)
techniques.

However, due to constraints in data volume, an-
notation costs, and the inherent difficulty of precise
labeling, the annotated sub-scene intervals often
contain natural errors or ambiguities. These in-
accuracies can lead to unstable training or even
misguided learning when using conventional SFT
methods. As discussed in (Shao et al., 2024; Liu
et al., 2025), SFT faces several limitations: its ef-
fectiveness notably diminishes in out-of-domain
settings despite strong in-domain performance, it
inherently causes catastrophic forgetting of general
capabilities, and the absence of an explicit reason-
ing process limits its efficacy in complex scenar-
ios. Recent research shows that pure reinforcement
learning (RL) (Guo et al., 2025) fosters emergent
reasoning during testing, underscoring the power
of reward-driven optimization in boosting model
reasoning. This method also tends to improve gen-
eralization, avoiding overfitting to specific datasets.
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Input
Ad Video

Violation
Temporal
Grounded Clip

(Marketing
Exaggerate &
Requiring
Credential Review)

User

Based on the given advertising violation labels and rules (omitted here), does this advertisement video
contain any violations? If violations exist, please output the specific violation types and the
corresponding time intervals of the sub-scenarios where violations occur, in the json format:
{"violation typel": [(start_frame, end_frame),...], ...}

Assistant
<think>
1. Identity the image elements:
- A medicinal product named "XXX Pain Relief Patch.”
- A woman wearing a white top and blue pants.
- Text displayed on the video: "...”
- A depiction of a lump on the back of the woman's neck gradually disappearing.

2. Identify the violation labels: The video involves two violation labels:
“Requires Medical Qualification Review”.
3. Evaluate "Marketing Exaggeration":

- Check for exaggerated claims or misleading information in the content.

- Observe if the video makes unrealistic promises or overstates the product's effectiveness.

“Marketing Exaggeration” and

- Conclusion: The content in frames 13 to 88 contains exaggerated claims about the product's
capabilities, violating the "Marketing Exaggeration” label.
4. Evaluate "Requires Medical Qualification Review":

- Determine if the video involves medical or health-related content.

- Verify if the product or service advertised requires medical qualifications or certifications.

- C The video p a health-related product without displaying the necessary medical
qualifications, violating lhc "Requires Medical Qualification Review" label.
5. Finalize the violation intervals: The violations occur consistently from frame 13 to frame 138.
</think>

<answer>
[{“Marketing Exaggeration”: [(13,88)], “Requires Medical Qualification Review": [(13,138)]}]
</answer>

Figure 1: The example of RAVEN reasoning.

Building on these insights, we introduce
RAVEN, a novel framework aimed at advancing
reasoning and cognitive skills for detecting viola-
tion scenes in videos. The name RAVEN, sym-
bolizing “keen insight”, reflects our aspiration for
the system to detect violations with the sharpness
of a raven. RAVEN is a structured reasoning
MLLM that combines curriculum learning with
hierarchical, multi-granular reinforcement. It em-
ploys GRPO (Group Relative Policy Optimization)
(Shao et al., 2024; Guo et al., 2025) and structured
thinking, eliminating the need for explicitly an-
notated reasoning process data. Instead, it lever-
ages the self-evolution potential of MLLM:s to de-
velop reasoning capabilities from scratch. A sig-
nificant advantage of RAVEN is its ability to ro-
bustly train on large-scale, noisy, coarsely anno-
tated industrial data, achieving superior violation
detection performance while preserving the strong
generalization capabilities of MLLMs. To achieve
this, we develop hierarchical sophisticated rewards
mechanism comprising multiple types of rewards:
format rewards, which enforce constraints on the
structure of the reasoning process and violation
sub-scene outputs, and accuracy rewards, which
include primary rewards (e.g., loU Reward), auxil-
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iary rewards (e.g., Boundary Alignment Reward),
and regularization rewards (e.g., Category Consis-
tency Reward). As illustrated in Figure 1, RAVEN
exhibits emergent test-time reasoning abilities, en-
abling it to handle complex instructions by break-
ing them down into sequential analytical steps, thus
achieving precise localization of violation intervals.
RAVEN demonstrates exceptional performance on
both in-domain and out-of-domain data, signifi-
cantly outperforming models trained via SFT.

To validate RAVEN, we conduct extensive ex-
periments from both offline and online testing per-
spectives, using both publicly available datasets
and proprietary industrial data. The results show
that the RAVEN-7B model exhibits strong test-time
reasoning capabilities and achieves superior gener-
alization performance compared to models of the
same scale. Our contributions are threefold: (1) We
propose RAVEN, the novel architecture specifically
designed for localizing violation scenes in adver-
tisement content. Through its innovative design,
RAVEN exhibits emergent reasoning abilities. (2)
RAVEN is a practical system tailored for real-world
industrial applications. It demonstrates remark-
able robustness when trained on large-scale, noisy,
coarsely annotated data, while retaining strong gen-
eralization capabilities. (3) Extensive experiments
on both offline and online testing, using public
datasets and proprietary industrial data, demon-
strate that the RAVEN-7B model achieves supe-
rior reasoning and generalization performance com-
pared to models of the same scale.

2 Related Work

2.1 Temporal Grounding in Videos

Temporal grounding aims to localize specific events
or actions within a video. Prior work has focused
on supervised learning with precise annotations
(Gao et al., 2017). However, these methods strug-
gle with noisy, coarsely annotated data, which is
prevalent in industrial settings. Recent approaches
like VSLNet (Zhang et al., 2020a) and 2D-TAN
(Zhang et al., 2020b) have improved localization
accuracy but lack robust reasoning capabilities for
complex tasks like violation detection.

2.2 Multimodal Large Language Models

Multimodal Large Language Models (MLLMs)
(Yin et al., 2023; Xu et al., 2024a; Maity et al.,
2024), such as CLIP (Radford et al., 2021),
Flamingo (Alayrac et al., 2022), and BLIP (Li et al.,



2022), have demonstrated remarkable capabilities
in understanding and reasoning across modalities
on various tasks (Wei et al., 2022a,b; Kojima et al.,
2022; Ji et al., 2024b, 2023, 2024a, 2022, 2025;
Liu et al., 2024; Zhu et al., 2024b). These models
excel in tasks like image-text retrieval and video
captioning but are often limited by their reliance
on supervised fine-tuning (SFT), which can lead
to catastrophic forgetting and poor generalization.
Recent efforts like LLaVA (Liu et al., 2023; Xu
etal., 2024b), Qwen (Bai et al., 2023a,b) and Video-
ChatGPT (Maaz et al., 2024) have explored inte-
grating reasoning into MLLMs, but they remain
underutilized in temporal grounding tasks.

2.3 Reinforcement Learning for Video
Understanding

Reinforcement learning (RL) (Guo et al., 2025;
Kaelbling et al., 1996; Christiano et al., 2017; Zhu
et al., 2024a; Rafailov et al., 2024; Song et al.,
2024; Liu et al.) has been applied to video under-
standing tasks, such as action segmentation and
event detection. Methods like SM-RL (Wang et al.,
2019a,b) and RLPP (Li et al., 2018) use RL to
optimize temporal localization but are limited by
their inability to handle multimodal inputs or per-
form complex reasoning. Curriculum reinforce-
ment learning (Narvekar et al., 2020; Bengio et al.,
2009) has shown promise in improving RL’s ro-
bustness and generalization, but its application to
temporal grounding remains unexplored.

2.4 Advertisement Video Violation Detection

Existing methods for advertisement video violation
detection rely heavily on rule-based systems or su-
pervised learning with precise annotations. These
approaches are effective in controlled environments
but fail to generalize to large-scale, noisy indus-
trial datasets. Recent works (Wang et al., 2024b;
Lu et al., 2024) have explored using MLLMs for
content moderation, but these methods lack the
temporal grounding and reasoning capabilities re-
quired for precise violation detection. Our work
bridges these gaps by introducing RAVEN, a cur-
riculum reinforcement learning framework that in-
tegrates MLLMs with sophisticated reward mecha-
nisms and structured reasoning for robust and pre-
cise advertisement video violation detection. By
leveraging both precisely and coarsely annotated
data, RAVEN addresses the limitations of existing
methods and sets a new benchmark for temporal
grounding in industrial applications.
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3 Methodology

3.1 Problem Overview

Given an input video V/, a predefined list of viola-
tion labels T', and a prompt P, the Advertisement
Video Violation Temporal Grounding task aims to
output: (1) The violation labels associated with the
video. (2) The temporal intervals of the sub-scenes
corresponding to each violation label. Note that a
single video may contain multiple violation labels,
and each label may correspond to multiple sub-
scenes. This requires the model to perform reason-
ing to accurately identify the most relevant frame
fragments. Inspired by recent advancements in the
reasoning capabilities of large models, we lever-
age this ability to develop a pipeline for reasoning-
based violative sub-scene temporal grounding.

We first employ reinforcement learning (RL) on
a Multimodal Large Language Model (MLLM) to
activate its reasoning ability, enabling it to generate
a reasoning process and predict all violation cate-
gories C = {c1, ¢, ..., c,} and their correspond-
ing accurate sub-scene locations X, = (¢.,¢") for
each category c. Here, t\ and ¢/, denote the start
and end times of the sub-scene, respectively.

However, the manually annotated results ),
(y%,y") often deviate from the ground truth Z, =
(2L, 27) due to annotation errors or ambiguities. To
prevent supervised fine-tuning (SFT) from forcing
the model to fit )., which could lead to significant
deviations from Z., we instead use RL for train-
ing. Additionally, to enhance the accuracy of the
reasoning process, we follow DeepSeek (Dai et al.,
2024) and employ explicit structured thinking tags
‘<think>’" for chained reasoning.

3.2 Data Construction

In real-world scenarios, for each advertisement
video V, when a violation is found, we annotate
the precise violation category c and the correspond-
ing temporal sub-interval ). = (y’,3%) where
the violation occurs. However, due to limitations
in annotation resources, cost constraints, and in-
herent ambiguity in many videos, we can only
maintain relatively accurate violation categories,
while the annotated temporal intervals ). often ex-
hibit some degree of deviation from the ground
truth Z. = (2., 27). To address this, we organize
the data based on a curriculum learning approach.
Specifically, we select a subset of data with pre-
cisely annotated temporal intervals for the early
stages of curriculum learning, while the remaining



coarsely annotated data is used in the later stages.
Additionally, it is important to note that for the rea-
soning training of RAVEN, we do NOT need to
generate any offline reasoning data, meaning that
RAVEN’s reasoning does not require a cold-start
training process.

3.3 RAVEN Model

We use Qwen2.5-VL (Bai et al., 2023b) as the
reasoning model Fleason in RAVEN. Although
Qwen2.5-VL demonstrates some temporal ground-
ing capabilities on public video understanding
datasets, it struggles with accurate localization in
real-world industrial applications. A straightfor-
ward approach would be to use precisely anno-
tated temporal grounding data for SFT. However,
acquiring large-scale, precisely annotated data is
challenging and costly, especially for frame-level
localization, which requires significant effort from
annotators.

Instead, we opt for coarse-grained annotations,
which are faster and more cost-effective to produce.
During the reinforcement learning stage, format re-
wards are employed to ensure the model generates
structured outputs. This process can be formulated
as:

C,X = Eeason(V7 Ta P)a (1)

where C represents the predicted violation cate-
gories, and X’ denotes the corresponding temporal
intervals.

Reasoning is a critical component in temporal
grounding tasks. Inspired by DeepSeek-R1-Zero
(Dai et al., 2024), we intentionally avoid using
any explicit Chain-of-Thought (CoT) (Wei et al.,
2022a) data to teach RAVEN reasoning skills. In-
stead, we aim to activate its reasoning capabilities
from scratch, enabling the model to autonomously
generate a logical CoT before producing the final
answer. To achieve this, we design a structured
user prompt and hierarchical sophisticated rewards
that guides the reasoning model to follow specific
instructions. As shown in Figure 1, the user prompt
instructs RAVEN to analyze and compare objects
in the video, beginning by generating a reasoning
process within ‘<think>’ tags, followed by the final
answer in a predefined format enclosed in ‘<an-
swer>’ tags.

3.4 Reward Functions Design

Reward functions play a pivotal role in RL, as they
determine the optimization direction of the model.
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We manually design the following reward functions
for RL:

3.4.1 Thinking Format Reward

The reward mechanism is designed to facilitate
a structured cognitive process within the model
(Shao et al., 2024; Guo et al., 2025). Specifically,
it directs the model to articulate its reasoning steps
within the designated <think> and </think> tags,
while the final output is to be presented between
the <answer> and </answer> tags.

3.4.2 Grounding Format Reward

Our framework incorporates two levels of temporal
grounding format rewards: soft and strict (Shao
et al., 2024; Guo et al., 2025). The soft approach
validates the format if temporal coordinates are
included in the answer, regardless of their organiza-
tion. The strict approach, however, mandates that
the model follows the predefined structure exactly,
utilizing specific keywords like "temporal start"
and "temporal end" to achieve correctness.

3.4.3 Temporal IoU Reward

As the primary reward, the Temporal IoU Reward
evaluates the overlap between the predicted sub-
scene intervals X, and the annotated intervals ..
To maintain robustness against annotation noise,
we binarize the IoU value using a threshold:

RIOU = {

3.4.4 Temporal Boundary Alignment Reward

1 ifToU(X,).) > 0.5,
0 otherwise.

2

Building on the IoU Reward, the Temporal Bound-
ary Alignment Reward encourages the predicted
interval boundaries (t.,7) to align closely with
the annotated boundaries (3%, y"). This reward is
continuous and serves as an auxiliary reward with

a smaller weight:

RBoundary = €exp <_02 [(tlc - yé)Z + (tz - yZ)Q})

where o is a scaling factor.

3.4.5 Violation Category Consistency Reward

The Violation Category Consistency Reward en-
sures the predicted violation category ¢, matches
the annotated category c,. This reward is binary:

1
0 otherwise.

if ¢, = cg,

RCategory = { (4)



where ¢, and ¢, indicates the prediction and
groundtruth respectively.

3.5 Curriculum Reasoning with Hierarchical
Rewards

RAVEN does not require a cold-start reasoning
training process. We initiate training directly from
the pre-trained Qwen2.5-VL model, utilizing the
aforementioned rewards and applying the GRPO
(Shao et al., 2024) algorithm in the subsequent
curriculum reinforcement training process.

We utilize the Curriculum GRPO with hierar-
chical rewards, which leverages a combination of
precisely annotated and coarsely annotated data,
progressively refining the model’s ability to predict
both the temporal intervals and the associated vio-
lation categories. The training process is divided
into three stages, each designed to optimize specific
aspects of the model’s performance.

3.5.1 Stage 1: Training on Precisely
Annotated Data

In the initial stage, the model is trained on a subset
of data where the temporal intervals ). = (3, y%)
are precisely annotated. The reward function for
this stage is designed to ensure the model learns the
overall position of the interval while also improving
boundary precision and category consistency. The
total reward R, is defined as:

Rrotar = Riou + 1 - RBoundary + RCategorya &)

where Rj,uy measures the overlap between the pre-
dicted interval X. and the annotated interval ..,
binarized to ensure robustness against annotation
noise. RBoundary €ncourages precise alignment of
the predicted boundaries (.., ") with the annotated
boundaries (yé, yr). Rcategory €nsures the predicted
violation category c, matches the annotated cate-
gory cg. o is the reward weight. This stage fo-
cuses on establishing a strong foundation for inter-
val prediction by prioritizing overall position (via
Rjou) while gradually refining boundary precision
(via Rpoundary) and ensuring category consistency

(via RCategory)-

3.5.2 Stage 2: Training on the Large-Scale
Coarsely Annotated Data

In the second stage, the model is trained on data
where the temporal intervals are coarsely annotated.
Here, the reward function is simplified to focus on
overall position and boundary alignment, as the

Advertisers Appeal the Violative Ad Videos
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including the Violation Types, and the Corresponding Violation Sub-Scenarios

Figure 2: The deployment of RAVEN.

imprecise nature of the annotations makes category
consistency less reliable. The total reward Rty 1S
defined as:

Rrota = Riou + 2 - RBoundary- (6)

where s is the reward weight. By retaining R,y
and Rpoundary, the model learns to predict approx-
imately correct intervals even with noisy annota-
tions, while still improving boundary precision.

3.5.3 Stage 3: Fine-Tuning on Full Dataset

In the final stage, the model is fine-tuned on the
full dataset, combining both precisely and coarsely
annotated data. The reward function is adjusted to
balance overall position, boundary precision, and
category consistency:

Rrotal = a3 Riou + a4 - RBoundary +aos- RCategorya

(N
where a3, oy, and o are the reward weights. This
stage ensures the model achieves a robust balance
between interval prediction and category identifi-
cation, leveraging the strengths of both precise and
coarse annotations.

4 Deployment

We design a pipeline to deploy the RAVEN on the
online Ad services in Figure 2, which include 3
parts: (1) RAVEN Review: It is the core of the
entire pipeline, handling the primary review func-
tions. (2) Advertisers Appeal: It provides a channel
for advertisers to appeal is they believe their ad is
not violative. (3) Manual Review: It is primarily
applied in two scenarios. (a) Random Sampling Re-
view: For Ads already published on the platform,
random samples are reviewed to identify potential
violations. This helps to: (i) address cases missed
by the review model, and (ii) quickly detect new
types of violations, providing decision-making ref-
erences for subsequent model optimization. (b)



Marketing Discomforting Vulgar Requiring Prohibited Average

Method Exaggerate Content Content Credential Review Goods/Services g

| Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro.
l\iomdfllq 0.681/0.532 - | 0.707/0.679 - | 0.667/0.654 - | 0.711/0.687 - | 0.721/0.734 - | 0.697/0.657 -
LLaVA
v1s.SET | 0-796/0.756 0398 | 0.798/0.772 0385 | 0.771/0.799  0.400 | 0.754/0.701 0.432 | 0.789/0.761 0.567 | 0.782/0.758  0.436
Qwen2.5-VL
JB.SFT | 0-832/0.787 0424 | 0.821/0.798 0.402 | 0.800/0.810 0411 | 0.773/0.702 0461 | 0.797/0.771 0.580 | 0.805/0.774  0.456
RAVEN | 0.851/0.801 0.521 | 0.843/0.812 0.477 | 0.810/0.831 0.565 | 0.802/0.713 0.541 | 0.825/0.784 0.669 | 0.826/0.788 0.555

Table 1: Performance of Violation Category (Precision/Recall) and Violation Temporal Grounding (mloU) on
Industrial Dataset. “Cate." indicates “Category”, and “Gro." indicates “Grounding”.

‘ Average
| Cate. (P/R)  Gro.
LLaVA-v1.5-SFT | 0.509/0.501 0.370
Qwen2.5-VL-7B-SFT | 0.537/0.517 0.384
RAVEN | 0.551/0.530 0.435

Method

Table 2: Performance of Violation Category (Preci-
sion/Recall) and Violation Temporal Grounding (mIoU)
on Public MultiHateClip Dataset.

Appeal Review: For cases that are appealed by
advertisers, manual review provides the final deci-
sion. (3) Model Iteration: Based on the continu-
ously increasing volume and variety of online viola-
tion data, including (a) new types of violations, (b)
more violation data, (c) difficult negative samples
misidentified by the model, and (d) difficult posi-
tive samples missed by the model, we continuously
iterate and optimize the RAVEN.

5 Experiments and Results

To comprehensively evaluate the performance of
RAVEN, we conduct extensive experiments from
both offline testing and online testing perspectives,
utilizing both public dataset and practical industrial
dataset.

5.1 Datasets

To validate RAVEN’s performance in real-world
industrial scenarios, we construct a dataset compris-
ing approximately 38,000 training videos, which
include both precisely annotated and coarsely an-
notated data, and 5,000 precisely annotated test
videos. The use of a precisely annotated test set
ensures reliability in evaluation. The annotations
cover six major violation categories ( “Discomfort-
ing Content", “Marketing Exaggeration", “Requir-
ing Credential Review", “Vulgar Content", “Pro-
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| Online Sample Average

Model
| Cate.(P/R) Gro.
Small Models | 0.711/0.668 -
Qwen2.5-VL-7B-SFT | 0.800/0.787  0.478
RAVEN | 0.821/0.803  0.563

Table 3: A/B Test on the Online Serving.

hibited Goods/Services", and “Normal") and the
corresponding temporal intervals. The definitions
of these major categories are inspired by both ex-
isting works (Wang et al., 2024b,a; Lu et al., 2023)
and the actual platform management rules. These
major classes are further divided into multiple sub-
categories, forming a hierarchical and structured
labeling system. In all experiments, we primar-
ily focus on the major class labels to evaluate the
model’s performance and robustness in high-level
violation classification tasks.

MultiHateClip (Wang et al., 2024a) is a publicly
available dataset for hateful and offensive content
detection on platforms like YouTube and Bilibili,
featuring annotations for “hateful”, “offensive",
and “normal” content. Due to the unavailability of
some videos, we conduct experiments on a down-
loadable subset of Bilibili, and manually annotate
the temporal intervals.

5.2 Offline Testing

We compare RAVEN against several baseline mod-
els, including LLaVA-v1.5 (Liu et al.,, 2023),
Qwen2-VL-7B (Bai et al., 2023b), and Qwen2.5-
VL-7B (Bai et al., 2023b), as well as their fine-
tuned versions (SFT). The results in Table 1 and Ta-
ble 2 demonstrate that RAVEN significantly outper-
forms both the base pretrained models and the SFT
models in “violation category accuracy" and “tem-
poral grounding precision". Specifically, RAVEN



‘ Average
| Cate.(P/R)  Gro.
Qwen2.5-VL-7B-SFT | 0.805/0.774  0.456
RAVEN(w/o Structured Thinking) | 0.810/0.779 0.537
RAVEN | 0.826/0.788  0.555

Model

Table 4: Study on the Structured Thinking.

achieves superior accuracy in sub-scene interval
localization, highlighting the effectiveness of its
curriculum reinforcement learning approach in en-
hancing the robustness of MLLMs.

5.3 Online A/B Testing

We conduct day-long online A/B testing on a prac-
tical business platform, allocating 20% of the over-
all traffic for evaluation. RAVEN is compared
against a small legacy model and Qwen2.5-VL-
7B-SFT. The results in Table 3 show that RAVEN
significantly improves violative video identifica-
tion, achieving both higher precision and recall in
category detection compared to the legacy model.
Additionally, RAVEN outperforms the Qwen2.5-
VL-7B-SFT model by 8.5% in temporal interval
localization accuracy.

5.4 Study on Generalization Capabilities

As discussed in Section 1, SFT often leads to catas-
trophic forgetting of general capabilities, while RL
enhances the generalization of MLLMs. To val-
idate this claim, we conduct experiments on the
Industrial dataset. Specifically, we train RAVEN
on three in-domain categories (Discomforting Con-
tent, Marketing Exaggeration, Requiring Creden-
tial Review) and test it on the remaining two out-
of-domain categories (Vulgar Content, Prohibited
Goods/Services). The results in Table 5 demon-
strate that RAVEN, trained with RL, achieves
higher accuracy and better generalization compared
to the Qwen2.5-VL SFT model.

5.5 Study on Structured Thinking

We further investigate the impact of reasoning train-
ing of structured thinking in RAVEN. Table 4
shows that both w/o and w/ structured thinking
outperform the SFT baseline, indicating that RL
effectively boosts the model’s capabilities. How-
ever, RAVEN with structured thinking demon-
strates even better performance, highlighting the
importance of the reasoning process in handling
complex video samples.
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In-Domain Out-of-Domain

Method ‘ (Average Gro.) | (Average Gro.)
Qwen25-VL-7B-SFT | 0433 | 0246
RAVEN | 0546 | 0.408

Table 5: Study on Generalization Capabilities.

Temporal Boundary | Grounding Format | Curriculum Reinforcemant

Gro.

Alignment Reward Reward Learning
X | strict | v | 0.540
v | soft | v | 0.547
v | strict | X | 0.508
v | strict | v | 0.555

Table 6: Study on Reward Functions and Curriculum
Reinforcement Learning.

5.6 Study on Reward Functions

To validate the effectiveness of our reward function
design, we conduct ablation studies on the format
reward and temporal boundary alignment reward
the on the Industrial dataset. The results in Table
6 demonstrate the effectiveness of the two reward
functions.

5.7 Study on Curriculum Reinforcement
Learning

To evaluate the effectiveness of the curriculum re-
inforcement learning strategy in RAVEN, we also
conduct an ablation study on the Industrial dataset.
As shown in Table 6, when remove the progressive
curriculum learning, the results shown in a signifi-
cant drop in performance, with temporal interval lo-
calization (mloU) dropping by 4.7%, highlighting
the importance of leveraging multi-stage training
for robust learning.

6 Conclusion

RAVEN is a novel framework for advertisement
video violation detection, integrating curriculum
reinforcement learning with multimodal large lan-
guage models (MLLMs) to address challenges in
temporal grounding and noisy annotations. Its pro-
gressive training strategy and hierarchical reward
mechanism ensure precise localization and con-
sistent category prediction. Experiments and on-
line A/B testing demonstrate superior performance
in accuracy, precision, and recall, while mitigat-
ing catastrophic forgetting. RAVEN establishes a
promising methodological approach for practical
violation detection, offering significant potential
for advancing the field and addressing real-world
challenges.



7 Ethical Statement

Our research adheres to ethical principles and pri-
oritizes user rights. The dataset samples are for
scientific analysis only and do not reflect the au-
thors’ views. All resources are intended for sci-
entific research purposes only, contributing to the
development of more secure and reliable digital
platforms.
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Abstract

Enhancing computational efficiency and reduc-
ing deployment costs for large language mod-
els (LLMs) have become critical challenges in
various resource-constrained scenarios. In this
work, we present DistilQwen2.5, a family of
distilled, lightweight LLMs derived from the
public Qwen2.5 models. These distilled models
exhibit enhanced instruction-following capabil-
ities compared to the original models based on
a series of distillation techniques that incorpo-
rate knowledge from much larger LLMs. In
our industrial practice, we first leverage power-
ful proprietary LLMs with varying capacities
as multi-agent teachers to select, rewrite, and
refine instruction-response pairs that are more
suitable for student LLMs to learn. After stan-
dard fine-tuning, we further leverage a compu-
tationally efficient model fusion approach that
enables student models to progressively inte-
grate fine-grained hidden knowledge from their
teachers. Experimental evaluations demon-
strate that the distilled models possess signifi-
cantly stronger capabilities than their original
checkpoints. Additionally, we present use cases
to illustrate the applications of our framework
in real-world scenarios. To facilitate practical
use, we have released all the DistilQwen2.5
models to the open-source community. !

1 Introduction

Large language models (LLMs) have emerged as a
transformative technology in NLP, powering a wide
array of applications from machine translation to
conversational agents (Zhao et al., 2023). However,
the rise of LLMs has been accompanied by several
challenges, notably the substantial computational

* C. Wang and J. Yan contributed equally to this work.
Correspondence to: C. Wang.

'Our trained lightweight models and our processed
large instruction-following dataset are released in Hugging-
Face. Please refer to the four models DistilQwen2.5-
0.5B-Instruct, DistilQwen2.5-1.5B-Instruct, DistilQwen2.5-
3B-Instruct, DistilQwen2.5-7B-Instruct and the dataset
DistilQwen_100k.
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Figure 1: Brief comparison between original Qwen2.5
and DistilQwen2.5 models in terms of AlpacaEval 2.0
(Iength-controlled) and IFEval scores.

resource requirements and high deployment costs.
Reducing the parameter sizes of LLMs while main-
taining or even improving performance has become
a critical area of research.

Knowledge distillation (KD) is a promising ap-
proach to addressing these challenges by transfer-
ring knowledge from a larger model (the teacher)
to a smaller model (the student) (Xu et al., 2024).
Previous works have primarily focused on specific
KD techniques to develop more robust student mod-
els (Hsieh et al., 2023; Gu et al., 2024; Yue et al.,
2024b; Zhang et al., 2024). However, there is a lack
of studies investigating good industrial practices
that create a series of distilled lightweight LLMs
with varying sizes and capacities.

In this paper, we introduce DistilQwen2.5, a se-
ries of distilled LLMs derived from the Qwen2.5
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models?. In the beginning of the KD process, pro-
prietary teacher LLMs, serving as multiple agents,
are utilized to select, rewrite, and refine instruction-
response pairs, tailoring them to be more conducive
to learning by smaller student models. In particular,
a Chain-of-Thought (CoT) (Wei et al., 2022) rewrit-
ing approach is employed to significantly enhance
the reasoning abilities of the distilled models. Be-
yond standard fine-tuning, we further introduce a
model fusion approach to enable student models to
incrementally integrate fine-grained hidden knowl-
edge from their teacher models in a computation-
ally efficient manner. This approach enhances the
depth of understanding in student models beyond
what black-box distillation processes can achieve.

In our experiments, we demonstrate that the re-
sulting DistilQwen2.5 models show remarkable im-
provements in instruction-following performance
across various NLP tasks compared to their origi-
nal counterparts. Briefly, we present the AlpacaE-
val 2.0 (length-controlled) (Dubois et al., 2024)
and IFEval (Zhou et al., 2023) scores of the Dis-
tilP@wen2.5 models in Figure 1. To enhance the
public accessibility of our work, all models have
been made available to the open-source community.
Furthermore, we describe two use cases to demon-
strate the applications of our work in real-world
scenarios.

2 Related Work and Discussion

Knowledge distillation (KD), originally proposed
by Hinton et al. (2015), has emerged as a key tech-
nique for improving the efficiency of neural net-
works. Prior to the era of LLMs, several studies
successfully demonstrated the distillation of BERT-
based models (Sanh et al., 2019; Jiao et al., 2020;
Sun et al., 2020; Pan et al., 2021; Hou et al., 2023),
primarily focusing on specific NLP tasks. However,
distillation for LLMs presents unique challenges
due to the intricate dependencies among prediction
tokens. In the literature, f-Distill (Wen et al., 2023)
minimizes a generalized f-divergence function for
sequence-level KD. MiniLLM (Gu et al., 2024)
introduces a reverse Kullback-Leibler divergence
(KLD) objective to distill knowledge from white-
box LLMs to student models. Wu et al. (2025) pro-
pose an adaptive approach that allocates weights
to combine forward and reverse KLD objectives.
FuseLLM (Wan et al., 2024) merges multiple pow-

https://qwenlm.github.io/blog/qwen?.
5/
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Figure 2: Functionalities for LLMs/agents used in data
augmentation and black-box distillation. Disclaimer:
We use the Qwen logo in the figure; however, any LLMs
with sufficient capabilities can be used as well.

erful LLMs into a more capable student model.

Given that many powerful LLMs are accessible
only through APIs, KD from proprietary LLMs to
smaller open-source models (referred to as black-
box KD) has garnered significant attention (Hsieh
et al., 2023). To facilitate distillation from more
advanced LLMs, some researchers leverage these
models for data augmentation to fine-tune student
LLMs (Yue et al., 2024a). Li et al. (2024) utilize
the data selection capabilities of student LLMs to
refine instruction-tuning data. Lou et al. (2024)
generate multi-faceted instructions for diverse tasks
to enhance black-box KD. Additionally, Yue et al.
(2024b) propose a task-aware curriculum planning
framework to improve instruction refinement.

In contrast to prior work, our approach empha-
sizes industrial practices that leverage the strengths
of both black-box and white-box KD methods.
Moreover, efficiency remains a critical barrier in
industry, particularly for white-box KD. To address
this, our work incorporates an efficient algorithm to
integrate hidden knowledge from teacher models.

3 Ouwur Approach

In this section, we describe the industrial practices
for distilling the DistilQwen2.5 models.

3.1 Multi-Agent Data Augmentation as

Black-Box Knowledge Distillation

We first leverage multi-agent data augmentation as
black-box KD, where proprietary teacher models
serve as the sources of knowledge. This approach
is more computationally efficient than white-box
KD and allows us to select more powerful propri-
etary models as teachers. In our work, we employ
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Qwen-max® to process the Chinese texts due to
its strong capabilities in handling the Chinese lan-
guage, and GPT-4/GPT-4o for other languages. In
Figure 2, we can see that a controller coordinates
the entire pipeline of generating responses directly
from the teacher model and invoking LL.M agents
to augment the training data. The functionalities of
these LLM agents are described below.
Expansion Agent. The expansion agent is em-
ployed to generate a diverse set of instruction vari-
ations, ensuring that student models are exposed to
a comprehensive range of instructions. Importantly,
it preserves the original NLP task category of the
input instruction to prevent hallucinations and se-
mantic drift caused by LLMs. For example, given
the input “Provide a brief overview of Newton’s
First Law of Motion”, the output could be “Explain
the meaning of Kepler’s Third Law”, but not “Give
me a brief introduction to Albert Einstein’s life”.
After instruction expansion, we also call the teacher
model to generate responses for new instructions.
Rewriting Agent. The rewriting agent further en-
hances the quality and diversity of the training data.
Unlike the expansion agent, the rewriting agent op-
erates under stringent constraints to preserve the
semantic integrity of the tasks expressed in instruc-
tions, ensuring that the rewritten content remains
faithful to the original intent and task category. For
example, the instruction “Provide a summary of
the economic impacts of climate change” might be
rewritten as “Explain how climate change affects
the economy”. Regarding the generated responses,
we encourage them to be Chain-of-Thought (CoT)
outputs for complex tasks such as logical reason-
ing, mathematical problems, and code generation
(Wei et al., 2022), as this significantly enhances
the cognitive reasoning abilities of distilled, small
models (Hsieh et al., 2023; Yue et al., 2024b).
Selection Agent. The selection agent automati-
cally evaluates and chooses instruction-response
pairs that are highly valuable for training the stu-
dent model. This selection process is guided by var-
ious heuristic criteria, including informativeness,
helpfulness, and potential for generalization to sim-
ilar tasks. Additionally, we consider task balance
when selecting these pairs, following the approach
of Yue et al. (2024b). This guides the controller to
filter out less useful data instances.

Verification Agent. Different from the selection
agent, the verification agent is invoked each time

‘https://qwenlm.github.io/

34

new instruction-response instances are generated
by LLMs to check the factual correctness. Specifi-
cally, we leverage the underlying LLMs to check
whether the instructions are reasonable and whether
the responses correctly solve the tasks expressed
by the instructions.

Overall, the augmented dataset leverages a black-
box KD method by encapsulating the distilled
knowledge from larger models into training exam-
ples for student models. The distillation training
process follows a supervised learning paradigm,
utilizing the augmented instruction-response pairs.

3.2 Efficient Model Fusion as White-Box
Knowledge Distillation

In contrast to black-box KD, white-box KD in-
volves having the student model mimic the dis-
tribution of the teacher model’s logits, providing
richer knowledge compared to learning from only
the token with the highest output probability. In
our work, we conduct white-box KD after the com-
pletion of black-box KD to maximize the utility
of computational resources and aim to further im-
prove the performance of student models by learn-
ing richer knowledge. We assume that the student
model, with learnable parameters 6, has a probabil-
ity function pg that is differentiable with respect
to 0. The token-level logits difference between pr
(from the teacher model) and pg (from the student
model) is defined as follows:

1
De(z,y) =

ol

L
> Do (- L yen, ) 5 [ y<n))
n=1

M
where x and y denote the input and output se-
quences, respectively, and L is the sequence length.
The function Dy(-) can be any divergence mea-
surement, such as KLD (Gu et al., 2024), reverse
KLD (Wu et al., 2025), etc. The KD loss aims
to minimize the divergence between the token se-
quences of the student and the teacher:
L(Q) - IEE(:/v,y)w(X,Y) [D@(l‘, y)] : 2
For industrial-scale implementation, it is infeasi-
ble to leverage existing white-box KD approaches
such as those by Gu et al. (2024) and Wu et al.
(2025). The reasons are twofold: 1) If the forward
pass of the teacher model is performed simultane-
ously with the training of the student model, the
GPU memory consumption becomes excessively
high, especially when the teacher model is very
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Model AlpacaEval 2.0 MT-Bench MT-Bench IFEval IFEval
(Length-Controlled) (Single) (instruct-loose)  (strict-prompt)
Qwen2.5-0.5B-Instruct 2.46 5.49 6.26 42.81 30.31
DistilQwen2.5-0.5B-Instruct” 4.72 5.71 6.74 51.44 37.15
DistilQwen2.5-0.5B-Instruct 4.89 5.78 6.83 52.61 37.82
Qwen2.5-1.5B-Instruct 6.69 7.09 7.66 55.40 40.11
DistilQwen2.5-1.5B-Instruct” 13.30 7.27 7.90 60.63 73.02
DistilQwen2.5-1.5B-Instruct 13.69 7.35 7.99 61.10 74.49
Qwen2.5-3B-Instruct 17.98 7.92 8.40 61.18 74.58
DistilQwen2.5-3B-Instruct™ 20.81 8.33 8.94 65.80 77.10
DistilQwen2.5-3B-Instruct 20.91 8.37 8.97 67.03 77.36
Qwen?2.5-7B-Instruct 3143 8.52 8.83 81.53 72.10
DistilQwen2.5-7B-Instruct™ 34.78 8.75 9.19 83.41 73.20
DistilQwen2.5-7B-Instruct 34.86 8.76 9.22 83.48 73.27

Table 1: Performance comparison between the original Qwen2.5 model and the DistilQwen2.5 models in terms of
instruction-following abilities across four parameter sizes: 0.5B, 1.5B, 3B, and 7B. Note: * indicates a variant of
our model utilizing black-box KD over processed datasets.

large (e.g., 32B/72B). ii) The vocabulary of the
teacher and student models may not match, leading
to a mismatch of the logits tensors of both models.

In our work, we observe that the sum of the prob-
abilities of the top-10 tokens is almost equal to 1.
This indicates that nearly all the knowledge of the
teacher model is contained within the top-10 to-
kens. Therefore, we build a scalable white-box KD
system that supports the following features: i) A
token alignment operation (Wan et al., 2024) is first
conducted if the logits tensors of both models do
not match. ii) A distributed computing process is
executed offline to generate the teacher model’s log-
its with top- K probabilities, where K = 10 is set
as default and adjustable for customized scenarios.
iii) A variant of Dy(-) is implemented where only
the top-K elements are calculated for divergence
minimization. Let

ar = [, 28 ) 3)
z5 = [Z,(S’l)a ng)’ o 7ZéK)] (4)

be the top-K logits from the teacher model, and
the corresponding logits from the student model
with matched indices in the vocabulary. The prob-
abilities for computing Dy(-) is then calculated as
follows:

pr = —2er/7) 5)
> k=1 exp(zp/T)
ps = s/ T) (©)

S ep(z§/T)
where 7 is the temperature hyperparameter. This
approach not only reduces computation time but
also improves the speed of storing and reading the
logits, alleviating the storage pressure of our cloud
computing system.

4 Experimental Evaluation

In this section, we present experimental setups
and evaluation results of the DistilQwen2.5 mod-
els. Due to the space limitations, case studies are
further presented in the appendix.

4.1 Experimental Setup

The initial dataset consists of instruction-response
pairs collected from several popular public datasets,
including OpenHermes 2.5%, the Cleaned Alpaca
Dataset’, and LCCD (Wang et al., 2020), together
with our in-house datasets. The pre-processing
steps follow the method presented in (Yue et al.,
2024a). Subsequently, the instruction-response
pairs are carefully expanded, rewritten, verified
and selected. To create a series of smaller stu-
dent LLMs, we utilize the Qwen2.5 series as
our backbone models, including their instruct ver-
sions with varying sizes: 0.5B, 1.5B, 3B, and 7B.
The white-box teacher models are selected from
Qwen2.5-14B/32B/72B-Instruct. For
student model distillation, the default learning rate
and the epochs are set to 1 x 1075 and 3, respec-
tively. We train all the models on a server equipped
with eight A800 GPUs, each with 80GB memory.

4.2 Evaluation Benchmarks

AlpacaEval 2.0 (Iength-controlled) (Dubois et al.,
2024) assesses the instruction-following capabil-
ities of LLMs across various domains. MT-
Bench (Bai et al., 2024) is utilized to evaluate the
multitasking abilities of our models. This bench-

*https://huggingface.co/datasets/
teknium/OpenHermes—-2.5

Shttps://github.com/gururise/
AlpacabDataCleaned
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mark challenges models with diverse tasks that
require an understanding of multiple domains and
the ability to quickly adapt to changing instructions,
under both single-turn and multi-turn conversation
settings. IFEval (Zhou et al., 2023) assesses how
models perform during dynamic user interactions.
For rigorous comparison, we report the results in
both instruct-loose and strict-prompt settings.

4.3 Main Experimental Results

The results of our experiments are summarized in
Table 1. As illustrated, the DistilQwen2.5 mod-
els demonstrate superior performance across all
benchmarks, outperforming both the baseline and
original models by significant margins. More-
over, the proposed model fusion technique en-
hances the models’ capabilities after the black-
box KD process. We further observe that the im-
provement is more pronounced for smaller stu-
dent backbones. Specifically, the improvement
of DistilQwen2.5-0.5B-Instruct com-
pared to Qwen2.5-0.5B-Instruct is larger
than that of DistilQwen2.5-7B-Instruct
compared to Qwen2.5-7B-Instruct. This
shows that the potential of smaller students is larger
in terms using KD. Overall, the experimental re-
sults empirically validate our distillation frame-
work, demonstrating its effectiveness in enhancing
the task-solving performance of lightweight LLMs.

4.4 Analysis on White-Box KD

Inference Speed of Teacher Logits Generation.
In our experiments, we measure the latency associ-
ated with generating logits across different sizes of
teacher models, as shown in Figure 3. Our imple-
mentation achieves a significantly accelerated in-
ference speed, obtaining a 3x to 5x speedup com-
pared to the vanilla implementation. Additionally,
the reduction in logits does not lead to any notice-
able decrease in the instruction-following abilities
of the distilled smaller models, as revealed by our
exploratory experiments.

Sum of Probabilities of Top-K Tokens. We fur-
ther adjust the value of K and compute the sum
of probabilities of the top-K tokens, with the re-
sults shown in Figure 4. It can be observed that
when K > 10, the sum of probabilities exceeds
0.97, which provides sufficient knowledge for the
student model to learn. Therefore, we recommend
setting K = 10 as the default value.

Analyzing the Parameter Sizes of Teacher
LLMs. We conduct the first set of experiments
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Figure 3: Comparison of the inference speed for logits
generation between our approach and the vanilla ap-
proach (average seconds per sample).
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Figure 4: Sum of probabilities of top-K tokens.

following the completion of black-box KD. The re-
sults, presented in Figure 7, demonstrate a trend of
diminishing returns as teacher sizes increase (from
14B to 72B), indicating that larger teacher models
offer limited improvements to the student model.
This finding suggests that teacher models should
not be excessively large to minimize computational
costs. The second set of experiments is conducted
on model checkpoints without black-box KD, with
results shown in Figure 5. We observe that as the
dataset size increases, the improvement also gradu-
ally diminishes, indicating a diminishing return on
additional data. However, notable improvements
are observed with larger teacher models when the
dataset comprises between 10K to 100K samples,
suggesting that it can be more beneficial within the
specific range.

4.5 Fine-grained Model Capacity Analysis

In this section, we provide a detailed capacity anal-
ysis of the DistilQwen2.5 models, leveraging the
MT-bench benchmark (Bai et al., 2024) to quantify
their performance across a diverse array of NLP
tasks. Due to space limitations, we show the results
for two smallest models, with other models exhibit-
ing similar trends. These results are detailed in
Table 2. Our analysis not only showcases the broad
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Figure 5: Performance of white-box KD with varying teacher/student model sizes and dataset sizes.

Task Type 0.5B 0.5B* | 1.5B 1.5B°
Writing 6.08 6.68 8.38 8.38
Roleplay 7.07 7.43 7.26 8.13
Reasoning 4 4.2 39 4.8

Mathematics | 4.65 4.65 6.85 6.98
Coding 4 4.08 4.6 5.04
Extraction 3.55 4.5 6.4 6.6

STEM 6.55 6.83 9.65 9.28
Humanity 8.1 7.95 9.73  9.83

Table 2: Detailed task-specific score comparisons be-
tween the original Qwen2.5 and DistilQwen2.5 models
(0.5B and 1.5B, marked as *) on MT-bench.

applicability of our DistilQwen2.5 models but also
proves their enhanced capabilities and performance
improvements over the original models.

4.6 Comparison Against Other Small Models

To compare the performance against other mod-
els, we present the ranking in Figure 6. Notably,
the DistilQwen2.5 series demonstrates remark-
able cost-effectiveness, achieving performance that
closely rivals models with parameter sizes either
approaching or exceeding double its own.

5 Industrial Use Cases

In addition to the DistilQwen2.5 models presented,
we outline two industrial use cases that illustrate
the practical utility of our framework and models.

5.1 SQL Completion for Big Data Platform

In addition to instruction following, our framework
can also address other tasks, such as code com-
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Figure 6: Comparison between various small models
(<10B) based on AlpacaEval 2.0 (length-controlled).

pletion, which is also an auto-regressive task for
LLMs. Here, we present a real-world application
w.r.t. SQL completion. It helps users to formulate
complex queries, optimize SQL statements, add
conditions, or join tables based on existing queries.
This technique significantly improves both the effi-
ciency and accuracy of query composition and is
widely utilized in our online big data platforms.

In the context of SQL completion for our big
data platform, the primary evaluation metrics are
Latency, Pass@ ] and Adoption Rate. Latency mea-
sures the system’s speed in generating real-time
suggestions as users input queries, whereas Pass@ /
and Adoption Rate reflect the utility and accuracy
of the model’s output based on automatic evalua-
tion and human feedback. A key challenge is the
trade-off between model scale and the performance
metrics: although larger models can achieve higher
adoption rates, they often result in increased infer-
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Figure 7: Comparison between black-box KD and white-
box KD with varying teacher model sizes after black-
box KD, in terms of AlpacaEval 2.0 (length-controlled)
and MT-Bench scores (both full and single).

ence time, which adversely affects latency. There-
fore, the central optimization challenge for SQL
completion in big data platforms lies in enhancing
completion efficacy while maintaining a relatively
compact model size.

During the initial deployment phase, we utilize
the fine-tuned Qwen2.5-7B model for deploy-
ment, which is quantized to int4 precision. By
applying KD on a fixed dataset (i.e., an in-house
SQL corpus), we obtain a Qwen?2 . 5-3B model.
This model achieves a significant improvement,
closely matching the performance of the 7B model,
while increasing the inference speed by 1.4x. The
online performance of these models is shown in
Table 3, where Adoption Rate is obtained through
online A/B testing on the big data platform. Hence,
our KD technique effectively balances performance
and computational efficiency.

5.2 KD Functionalities on AI Platform

It should be acknowledged that our DistilQwen2.5
models are primarily designed for general domains.
For domain-specific applications, further enhance-
ment is necessary (as in the SQL completion case).
To enable business users or LLM developers to dis-
till their own models, we have integrated the con-
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Instruction
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Seed Response/Logits }

Generation

Model Size | Latency Pass@1 Adoption Rate
(ms) (%)

7B (teacher) 384 18.8 26.5

3B (student) 148 17.9 25.5

Table 3: Performance evaluation for SQL completion.

tinual KD feature together with the DistilQwen2.5
models into a cloud-native Al platform.

To facilitate seamless model optimization and
customization, our Al platform provides robust KD
functionalities, as shown in Fig. 8. It allows users
to iteratively refine and tailor the DistilQwen2.5
models to specific domains. Key pipelines include:
(1) the Knowledge Production Pipeline (KPP) and
(2) the Distillation Training Pipeline (DTP). In KPP,
optimal steps of instruction expansion and refine-
ment can be applied to user-provided seed instruc-
tions from arbitrary domains. The teacher LLMs
are then leveraged to generate responses or output
logits according to user settings. In DTP, users can
define custom training settings for either black-box
or white-box distillation trainers, leveraging cloud
resources for scalable distillation training. After
that, the student model can be utilized for evalua-
tion and deployment.

6 Conclusion and Future Work

In this paper, we introduce DistilQwen2.5, a fam-
ily of distilled lightweight LL.Ms derived from the
Owen2.5 models. By leveraging both black-box
and white-box KD techniques and efficient imple-
mentations and multiple agents, we demonstrate
substantial improvements in model performance
and real-world applications. For future work, we
plan to investigate more diverse domain-specific
applications to extend the practical impact of our
framework. We also aspire to enhance the collab-
orative aspects of model fusion to allow for more
dynamic knowledge transfer.



Limitations

While the DistilQwen2.5 models demonstrate sig-
nificant enhancements, several limitations remain
that warrant further investigation. The distillation
process hinges on the quality of the teacher mod-
els. Biases or errors inherent in the teacher models
could propagate into the student models, poten-
tially affecting their performance and fairness in
specific contexts. Additionally, while we showcase
domain-specific applications, the generalizability
of our framework across diverse domains and lan-
guages remains to be thoroughly evaluated, which
is beyond the scope of this work. Addressing these
limitations will contribute to more robust LLMs
tailored to a wider array of applications.

Ethical Considerations

Distillation techniques make it feasible to deploy
LLMs in resource-constrained environments, they
also introduce the potential for bias and misinfor-
mation inherited from the teacher models. Addi-
tionally, the open-sourcing of DistilQwen2.5 mod-
els facilitates accessibility, but also raises concerns
regarding misuse. Responsible use of the models
requires establishing guidelines to prevent appli-
cations that may cause harm, violate privacy, or
amplify malicious behavior.
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A Case Studies

In the following, we present several cases on the
output comparison between original Qwen2.5 and
DistilQwen2.5 models. In default, we leverage the
7B models for comparison.
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Question

Problem:

If the system of equations: 6x-4y=a, 6y-9x=b. has a solution (z, y) where = and y are both nonzero, find £,
assuming b is nonzero.

Solution:

Ground Truth

‘_2

3

Qwen2.5

To find the value of a/b, we start by solving the system of equations for x and y in terms of a and b.
Given the system of equations 6x - 4y =a 6y - 9x = b,

First we can simplify these equations, Equation 1 can be written as 3x - 2y = a/2

Equation 2 can be written as -3x + 6y = b,

Next we add equations 3 and 4 to eliminate x, (3x - 2y) + (-3x + 6y) =a/2 + b

which simplifies to 4y = a/2 + b. Solving for y, we get y = (a + 2b)/8.

Next we subtract equation 4 from equation 3 to eliminate y,

(3x - 2y) - (-3x + 6y) = a/2 - b, which simplifies to 6x - 8y =a/2 - b

Substituting the value of y from equation 5 into this equation, we get 6x - 8((a + 2b)/8) =a/2 - b
which simplifies to 6x - (a+ 2b) =a/2-borb6x=a+2b+a/2 - b,

which further simplifies to 6x = (2a + 4b + a - 2b)/2 = (3a + 2b)/2.

Solving for x we get x = (3a + 2b)/12 = (a + (2b)/3)/4,

Now we need to find the ratio a/b From equation 5. We have y = (a + 2b)/8 From equation 6 we have
x = (3a+2b)/12

We substitute these expressions into the original equations.

Using equation 1 6x - 4y = a we substitute x = (3a + 2b)/12

and y = (a + 2b)/8 6((3a + 2b)/12) - 4((a + 2b)/8) = a, which simplifies to

(6(3a +2b))/12 - (4(a+2b))/8 =a

or (3a + 2b)/2 - (a + 2b)/2 = a, which further simplifies to (3a +2b-a-2b)/2=aor (2a)/2 =a,
which is true This confirms our expressions are correct. From the simplified equations

we derive the ratio a/b = 2.

Thus the value of a/b is 2.

DistilQwen2.5

To solve the given system of equations and find £, we start with the equations:
6x -4y =a,

6y - 9x =b.

First, we express X and y in terms of a and b. We can rewrite the equations as:
6x -4y =a,

-9x + 6y =b.

To eliminate one of the variables, we can multiply the first equation by 3 and the second equation by 2:
18x - 12y = 3a,

-18x + 12y = 2b.

Now, we add these two equations together:

(18x - 12y) + (-18x + 12y) = 3a + 2b.

This simplifies to: 0 = 3a + 2b.

From this, we can solve for % = -%

Table 4: Output comparison between original Qwen2.5 and DistilQwen2.5 models.

Question

| What breed dog is smallest?

Qwen2.5

The smallest breed of dog is generally considered to be the Chihuahua.

However, there are other very small breeds that are often mentioned, such as the Yorkipoo

(a mix between a Yorkshire Terrier and a Poodle),

Morkie (a mix between a Maltese and a Yorkshire Terrier), and Puggle (a mix between a Pug and a Beagle).
But in terms of pure breeds, the Chihuahua is the smallest.

Chihuahuas typically weigh between 2 and 6 pounds (0.9 to 2.7 kg)

and stand about 6 to 9 inches (15 to 23 c¢m) tall at the shoulder.

DistilQwen2.5

| The Chihuahua is generally recognized as the smallest dog breed in the world.

Table 5: Output comparison between original Qwen2.5 and DistilQwen2.5 models.
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Question

Write a product description for a new line of dog toys, called the squeaker:

It’s made of latex, and is designed for dogs of all ages and species.

It’s also available in a variety of colors and shapes.

The response must contain at least 3 placeholders represented by square brackets,
such as [address], [name], and [phone number].

Qwen2.5 Introducing the [address] Pet Supply’s newest addition to our toy line: the Squeaker!
Designed with love and play in mind, our Squeakers are crafted from high-quality,
durable latex that stands up to even the most enthusiastic chewers.
Whether your [name] is a playful puppy or a seasoned senior, our Squeakers are perfect for dogs
of all ages and species, providing endless hours of fun and stimulation. Available in a vibrant array of colors
and shapes, our Squeakers are not just toys; they’re companions for playtime.
From the classic [shapel] to the whimsical [shape2], each design is carefully chosen to engage your [name]’s
curiosity and keep them entertained.
The unique squeaker mechanism ensures that every play session is filled with excitement and joy.
Order your [name]’s new favorite toy today by visiting our website or giving us a call at [phone number].
We’re here to help you find the perfect Squeaker to keep your [name] happy and healthy. Happy playing!
DistilQwen2.5 | Introducing The Squeaker — the ultimate playtime companion for your furry friend!

Crafted from durable, high-quality latex,

The Squeaker is designed to provide endless entertainment for dogs of all ages and breeds.

Available in a vibrant array of colors and fun shapes,

this toy is perfect for keeping your pet engaged and happy.

Each Squeaker features a built-in squeak mechanism that will capture your dog’s attention

and stimulate their natural instincts to play and explore.

Whether your dog loves to chew, fetch, or simply cuddle with their toys, The Squeaker is sure to

become their new favorite.

Order yours today and watch your dog’s tail wag with joy!

For more information, visit our website at [website], or contact our customer service team at [phone number].
Don’t miss out on the fun — make playtime special with The Squeaker![PetJoy] — Bringing joy to pets and
their owners.

Table 6: Output comparison between original Qwen2.5 and DistilQwen2.5 models.
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Abstract

Recommender systems play a central role in
numerous real-life applications, yet evaluating
their performance remains a significant chal-
lenge due to the gap between offline metrics
and online behaviors. Given the scarcity and
limits (e.g., privacy issues) of real user data,
we introduce SimUSER, an agent framework
that serves as believable and cost-effective hu-
man proxies. SimUSER first identifies self-
consistent personas from historical data, en-
riching user profiles with unique backgrounds
and personalities. Then, central to this evalu-
ation are users equipped with persona, mem-
ory, perception, and brain modules, engaging
in interactions with the recommender system.
SimUSER exhibits closer alignment with gen-
uine humans than prior work, both at micro
and macro levels. Additionally, we conduct
insightful experiments to explore the effects of
thumbnails on click rates, the exposure effect,
and the impact of reviews on user engagement.
Finally, we refine recommender system param-
eters based on offline A/B test results, resulting
in improved user engagement in the real world.

1 Introduction

Recommender systems (RS) have become an indis-
pensable component of our day-to-day lives from
e-commerce to social media by offering personal-
ized user experience and improving satisfaction (Li
et al., 2024). Despite their widespread adoption,
a key challenge hindering the advancement of the
field is evaluation (Yoon et al., 2024). The difficulty
arises from the discrepancy between offline metrics
(non-interactive), which are typically used during
development, and real-life user behaviors, which
these systems encounter post-deployment (Zhang
et al., 2019). This results in models that perform
well in controlled environments but fail to meet ex-
pectations in practical use cases. Such a limitation
is further exacerbated by the inherent shortcomings
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of offline evaluation, notably the inability to mea-
sure business values such as user engagement and
satisfaction (Jannach and Jugovac, 2019). On the
other hand, online A/B testing is costly to scale up,
labor-intensive, and encompasses ethical considera-
tions, underscoring the imperative need for reliable
and affordable (interactive) evaluation methods.
Recent breakthroughs in Large Language Mod-
els (LLMs) have shown promise in human behavior
modeling by enabling the creation of autonomous
agents. In the realm of recommendation systems,
RecMind (Wang et al., 2023b) explores the concept
of autonomous recommender agents equipped with
self-inspiring planning and external tool utilization.
Recently, InteRecAgent (Huang et al., 2023) has ex-
tended this idea by proposing memory components,
dynamic demonstration-augmented task planning,
and reflection. Recently, RecAgent (Wang et al.,
2023a) has attempted to introduce more diverse
user behaviors, taking into account external so-
cial relationships. Another work, Agent4Rec (Hou
et al., 2024), delves into generating faithful user-
RS interactions via agent-based simulations, where
agents are equipped with a memory module. How-
ever, a common characteristic of existing studies
is their insulated nature — they primarily rely on
knowledge embedded within the model’s weights,
neglecting the potential benefits of integrating ex-
ternal knowledge and user-item relationships. Fur-
thermore, prior approaches often disregard user per-
sonas and fail to incorporate visual signals, despite
their role in shaping user experience and emotion.
To enable synthetic users, we describe an agent
architecture built upon LLMs. Our methodology
consists of two phases: (1) self-consistent persona
matching and (2) recommender system evaluation.
In Phase 1, we leverage the semantic awareness
of LLMs to extract and identify consistent per-
sonas from historical data, encompassing unique
backgrounds, personalities, and characteristics. In
Phase 2, we impersonate these personas to simu-
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late believable human interactions. This involves
a retrieval-augmented framework where the agent
interacts with the recommender system based on its
persona, memory, perception, and brain modules.
The memory module comprises an episodic mem-
ory and a knowledge-graph memory. Unlike exist-
ing studies that solely rely on text, our perception
module incorporates visual cues into the agent’s
reasoning process. Finally, the brain module is re-
sponsible for translating retrieved evidences and
graph paths into action plans such as [click], or
[exit]. Following action selection, the user en-
gages in self-reflection to synthesize memories into
higher-level inferences and draw conclusions.

2 Related Work

Conversational RS initially tackled the recommen-
dation problem using bandit models, emphasizing
the quick update of traditional systems through
item selection and binary feedback from synthetic
users (Christakopoulou et al., 2016). Taking this
further, (Zhao et al., 2023) created a simulation
platform where users not only chat about recom-
mendations. Recent techniques have added more
natural language flexibility, but user responses are
usually limited to binary or multiple-choice formats
(Lei et al., 2020). In spite of this, these simulations
often rely on fixed rules and scripted dialogues,
lacking the variability seen in human interactions.
To address the above-mentioned limitations, gener-
ative simulators using LL.Ms have been developed,
offering more realistic and nuanced conversational
abilities (Zhang et al., 2024b; Zhao et al., 2023). A
few studies have also explored the application of
LLMs as recommender systems (Hou et al., 2024;
Li et al., 2023; Kang et al., 2023). These investi-
gations explore LLMs as recommendation engines,
rather than as entities that perceive recommenda-
tions, thus providing a perspective complementary
to our research (Wang et al., 2024; Zhang et al.,
2024a). RecMind (Wang et al., 2023b) proposes
self-inspiring agents for recommendation. How-
ever, their simulated users are limited to basic ac-
tions like rating items, lacking the ability to engage
in more complex interactions. Notably, a recent
approach (Yoon et al., 2024) examines the effec-
tiveness of LLMs as generative users, specifically
for conversational recommendation scenarios. A
closely related work to ours is Agent4Rec (Zhang
et al., 2023) that delves into the generative capa-
bilities of LLMs for modeling user interactions.

44

SimUSER differs significantly from these studies
as we utilize detailed personas that are systemat-
ically inferred from historical and incorporate a
perception module to integrate visual reasoning.
Furthermore, SimUSER investigates the potential
of graph-based retrieval to represent the rationales
underlying user-item interactions. Finally, we intro-
duce multi-round preference elicitation and causal
action refinement that leverage retrieved evidences
and paths to generate more realistic interactions.

3 Methodology

Simulated USERSs provides a framework for sys-
tematically assessing recommender systems by
engaging in interactions and providing feedback.
Phase 1 matches historical data with a set of per-
sonas to enable nuanced and realistic interactions.
Phase 2 utilizes the identified personas, historical
data, and novel reasoning mechanisms to generate
synthetic users with human-like behavior.
Problem Formulation. Given a user v € U/ and
an item ¢ € Z, the aggregated rating of the item
is denoted by R; = — Y ey Yui * Tui Where
1w = 0 indicates that the user u has not rated the
item ¢ and inversely y,,; = 1 indicates that the user
has rated the item with r,; € {1,2,3,4,5}. We
also introduce g; € G as the genre/category of the
item. In this study, we seek to discover y,; and 7,;
for an unseen recommended item ¢.

3.1 Persona Matching via Consistency Check

This phase involves assessing the most plausible
persona based on historical data. A persona p en-
compasses a set of features that characterize the
user: age, personality, and occupation. Person-
ality traits are defined by the Big Five personality
facets: Openness, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism, each measured on
a scale from 1 to 3. Given the difficulty of obtaining
such granular features in real-world settings, our
methodology seeks to systematically infer personas
from the user’s interaction history.

Persona Extraction. For a user v with interactions
{(io, Twig)s - - - » (ins Tus, ) }» We query the LLM to
produce a short summary s,, of the user’s prefer-
ences. To do so, we randomly select 50 items from
the user’s viewing history. Items rated 4 or above
are categorized as liked, while those rated below
3 are deemed disliked. We then combine s,, with
historical data to prompt the LLM to generate a
persona that matches the interaction history for this



user. To enhance the diversity, the LLM is provided
a list of possible ages, personalities, and occupa-
tions. For each user, a set of m (m = 5) candidate
personas is generated, denoted as P.
Self-Consistent Persona Evaluation. We then as-
sess the consistency of the candidate personas P to
identify the most plausible one. A self-consistency
scoring mechanism measures the alignment of can-
didate personas with historical data. We define a
scoring function s(p, u) for each candidate persona
p € P, where p is evaluated against two distinct
sets of user-item interactions. For the targeted user
u, we sample j subsets of g interactions from its
history. These are compared with ¢ sampled inter-
actions from other users u, denoted as I;:

stp,u) = ) #(u,p) = Y #(zp)

~1, tely

ey

where 7(¢, p) and 7(z, p) are obtained by querying
the LLM to rate the two interaction subsets ¢ and
t. Ideally, the LLM agent should assign a higher
7(¢, p) for interactions from the targeted user and
a lower 7(z, p) for samples from other users. The
candidate persona p with the highest score s is
assigned to the user.

3.2 Engaging in Interactions with RS

In Phase 2, given a user u and discovered persona
p, we present a cognitive architecture built upon
LLMs comprising four modules: persona, percep-
tion, memory, and action.

3.2.1 Persona Module

To lay a reliable foundation for the generative
agent’s subsequent interactions and evaluations,
benchmark datasets are used for initialization
of the persona module. An agent’s profile in-
cludes the matched persona p along with at-
tributes extracted from its historical data: p U
{pickiness, habits, unique tastes}. Since LLMs
are biased towards positive sentiment, unless
prompted to behave as picky users (Yoon et al.,
2024), each agent is assigned a pickiness level sam-
pled in {not picky, moderately picky, extremely
picky} based on the user’s average rating. Habits
account for user tendencies in engagement, con-
formity, and variety (Zhang et al., 2023), while
unique tastes are derived from the viewing history
summary s, generated in Phase 1.

3.2.2 Perception Module
A primary factor in decision-making is visual stim-
uli due to their significant influence on curiosity
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and emotion (Liu et al., 2024). For instance, when
scrolling through a movie recommendation plat-
form, human decisions are heavily driven by the
thumbnails of items, which can trigger emotional
responses and provide quick visual summaries of
the content (Koh and Cui, 2022). To graft these
visual elements in an cost-efficient manner, we aug-
ment action prompts (see Sec A.l) with image-
derived captions. The caption %.4p¢;on, Of an item &
is generated by querying GPT-4o to extract insights
that capture emotional tones, visual details, and
unique selling points from the item’s thumbnail.

3.2.3 Memory Module

It is critical for an agent to maintain a memory of
the knowledge and experience it has of the world
and others. SImUSER uses an episodic memory for
interaction history and knowledge-graph memory
to capture user-item relationships.

Episodic Memory stores the interactions with
the RS. The memory is initially populated with
the user’s viewing and rating history. Each time
SimUSER executes a new action or rate an item, the
corresponding interaction is added to the episodic
memory. Drawing from human psychological pro-
cesses (Atkinson and Shiffrin, 1968), we use a self-
ask retrieval strategy where the LLM generates
follow-up questions regarding the query. These
questions, along with the initial query, then serve
as separate queries for vector similarity search, al-
lowing retrieval of more diverse evidences. For a
query g, we retrieve top-k; documents using cosine
similarity: s(q, d) = cos(E(q), E(d)), where E is
an embedding function.

Knowledge-Graph Memory User behaviors in RS
are influenced by both internal factors (personality)
and external factors (Zhao et al., 2014). External
factors include the influence of others and prior be-
liefs about items. SimUSER employs a knowledge
graph (KG) memory to emulate external influences
by retrieving evidences with similar relationships
and characteristics.

Memory Initialization The KG memory is ini-
tially populated using real-world datasets. It
is structured as a graph G, defined as: G =
{(h,r,t)|h,t € V,r € £}, in which each triple
(h,rt) indicates that a relation r exists from head
entity h to tail entity ¢. V is a set of entities
and & represents relationships between them. For
instance, nodes V may represent entities (e.g.,
user, item), while edges £ depict the relation-



ships between these entities (e.g., liked). The
memory grows with each interaction ¢;, capturing
the evolving nature of user preferences: Gy, =
g v {(Uz‘, €ij; Uj)l(via eijavj) EVXEX V}

Graph-Aware Dynamic Item Retrieval For a user
u, the retrieval function takes a query item x as in-
put and returns a set of similar items along with
their metadata (e.g., ratings). We extend PathSim
(Sun et al., 2011) to capture both user-item and
item-item relationships through path-based simi-
larity. A relationship path p, .., represents a com-

posite relationship between entities x and y in the

& & &
form of z — z — ... — y, where &; denotes

the edge between entity x and z. For example, in
the MovieLens network, the co-actor relation can
be described using the length-2 relationship path

acts—in actor .
— 2z — y. In order to retrieve relevant

items based on the query x, SImMUSER estimates
the item-item similarity as:
2 X [{Pany @ Puny € P}
[Pema t Peoa € P+ [Dymy : Pyny € P
2

Szy =

where P is the set of paths between query item x
and candidate item y, and p,..,, is a path instance.
The score s, ,, is determined by two factors: (1)
the connectivity level, which is the count of paths
that connect z and y through P; and (2) the bal-
ance of visibility, defined by the number of times
these paths are traversed between the two entities.
In addition to item-item similarity s; ,, we com-
pute user-item similarity s, , for the target user
u and the candidate item y, using the same path-
based approach, which is further summed up to
Spy = Q-+ Sgy+ (1—a)-s,,, making retrieval
sensitive to both past interactions of the user v and
communities in the graph.

3.3 Brain Module

We endow each agent with a decision-making
module that derives subsequent actions. To repli-
cate human-like sequential reasoning, we employ
Chain-of-Thought prompting across five key steps.

Multi-round Preference Elicitation: Agents
browse items page by page, deciding whether to
[WATCH] or [SKIP] based on their preferences and
history. To mitigate the inherent positive bias in
LLMs, SimUSER incorporates a pickiness modifier
(You are {pickiness} about {item_type}).
When available, we enrich item descriptions with
thumbnail captions for multimodal reasoning. A
multi-round strategy first forms an initial decision
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5 based on persona p, pickiness p, and retrieved

evidences Ej, and Gy, from episodic and KG
memory. Then, it identifies contradictions between
its choice and persona. If conflicts arise or sup-
porting evidence is insufficient, the agent refines its
decision: 6 = LLM( Pyatch» 5(t_1),p, Ey,,G,).
To improve decision-making, we expand retrieved
documents each round (k1 « k1 + Ay and ky «
ko + Ay) until reaching a final decision § (final)
Item Evaluation After selecting items of inter-
est, agents express both explicit ratings (1-5) and
subjective feelings about watched items, which up-
date their memory and influence future cognition.
Unlike existing approaches (Zhang et al., 2023)
that neglect rating rationales, Instead, SiImUSER

leverages the paths of retrieved evidences ¢ from

&1 Ea & .
the KG memory, u — z — ... — 1, They are

formatted as plain text and provided as input to
the LLM, which generates ratings while explaining
how persona, evidences and paths compare to the
shortlisted items and influence their rating.

Action Selection: Based item evaluation and in-
teraction history, agents decide whether to [EXIT]
the system, navigate to [NEXT]/[PREVIOUS] pages,
or [CLICK] on items for details. This decision
involves estimating its satisfaction with previous
recommendations, fatigue level, and emotional
state. Upon exiting, a satisfaction interview cap-
tures opinions about presented recommendations.

Causal Action Refinement: To address subop-
timal decision-making (e.g., premature exits), we
introduce a causal reasoning step where agents gen-
erate questions (QQ = LLM (awent, H, P, Prausal)) t0
validate tentative actions. For each counterfactual
scenario (e.g., "What would happen if you exited
now?"), the agent estimates outcomes and adjusts
its final action based on cause-effect consistency.

Post-interaction Reflection: Post-interaction
reflection lets agents learn from interactions and
improve future alignment with their persona. After
collecting interaction data, the agent first deter-
mines what to reflect on, then extracts insights and
cites the particular records that served as evidence
for the insights. The post-interaction reflections are
fed back into the episodic memory.

4 Experiments

Settings. All agents are powered by the GPT-4o-
mini version of ChatGPT, except when specified
differently, with the number of agents set to 1,000.
Baselines We compare SimUSER against RecA-



MovieLens AmazonBook Steam
Method(1:m)  Accuracy Precision Recall F1Score Accuracy Precision Recall F1Score Accuracy Precision Recall F1 Score
RecAgent (1:1) 0.5807 0.6391 0.6035  0.6205 0.6035 0.6539 0.6636  0.6587 0.6267 0.6514 0.6490  0.6499
RecAgent (1:3) 0.5077 0.7396  0.3987  0.5181 0.6144 0.6676  0.4001 0.5003 0.5873 0.6674  0.3488  0.4576
RecAgent (1:9) 0.4800 0.7491 0.2168  0.3362 0.6222 0.6641 0.1652  0.2647 0.5995 0.6732 0.1744 02772
Agent4Rec (1:1) 0.6912 0.7460 0.6914  0.6982 0.7190 0.7276 0.7335 0.7002 0.6892 0.7059 0.7031 0.6786
AgentdRec (1:3) 0.6675 0.7623 04210 0.5433 0.6707 0.6909  0.4423  0.5098 0.6505 0.7381 0.4446  0.5194
Agent4Rec (1:9) 0.6175 0.7753 0.2139  0.3232 0.6617 0.6939 0.2369 0.3183 0.6021 0.7213 0.1901 0.2822
SimUSER (1:1) 0.7912 0.7976  0.7576  0.7771 0.8221 0.7969  0.7841  0.7904 0.7905 0.8033 0.7848  0.7939
SimUSER (1:3) 0.7737 0.8173 0.5223  0.6373 0.6629 0.7547 0.5657  0.6467 0.7425 0.8048 0.5376  0.6446
SimUSER (1:9) 0.6791 0.8382 0.3534  0.4972 0.6497 0.7588 0.3229  0.4530 0.7119 0.7823 0.2675  0.3987
Table 1: User preference alignment across MovieLens, AmazonBook, and Steam datasets.
Methods MovieLens AmazonBook Steam = v = =~ =
RMSE MAE RMSE MAE RMSE MAE Piiew Nike Plike  Nexit Ssat
MF 12142 09971 12928 09879 13148 1.0066
AFM 11762 0.8723 13006 1.1018 12763 0.9724 Random 0.301 3.12 0252 285 2.66
RecAgent 11021 07632 12587 11191 1.0766 0.9598 Pop 0.395 408 0372 290 332
RecMind-SI (few-shot) 10651 0.6731 12139 09434 09291 0.6981
Agent4Rec 07612 07143 0.8788 0.6712 0.7577 0.6880 MF 0461 591 0443 3.05 3.65
SimUSER(sim - persona) 05020 04460 05676 04210 0.5866 0.5323 MultVAE 0.514 5.38 0455 3.18 3.78
SimUSER(zero - w/o persona)  0.6663  0.5501 0.6865 0.6329 0.6976 0.6544 H
SimUSER (zero - persona) 0.5813 05298 0.6542 05116 0.6798 0.6151 nghtGCN 0.557 E 0448 329 3.92
SimUSER(sim - w/o persona) ~ 0.5844 0.5410 0.6712 0.5441 0.6888 0.6401
) o Table 3: Evaluation of recommendation strategies on a
Table 2: Rating prediction performance. Bold: best  ecommendation task from the MovieLens dataset.

results; underlined: second-best. SimUSER’s improve-
ments are statistically significant (p < 0.05).

gent and Agent4Rec, which represent the clos-
est comparable methods. When possible, we
report the results of RecMind, an agent-based
RS. Some experiments involve two versions of
SimUSER: SimUSER(zero) and SimUSER(sim),
where SImUSER(sim) agents first interact with the
RS — grounding interactions and filling their mem-
ories, before answering the tasks.

4.1 Believably of Synthetic Users

In order to appropriately respond to recommenda-
tions, synthetic users must possess a clear under-
standing of their own preferences. Thereby, we
query the agents to classify items based on whether
their human counterparts have interacted with them
or not. We randomly assigned 20 items to each
of 1,000 agents, with varying ratios (1:m where
m € {1,3,9}) of items users had interacted with
to non-interacted items (y,; = 0). We treat this as a
binary classification task, taking values between 0
and 1. Table 1 shows SIimUSER agents accurately
identified items aligned with their tastes, signif-
icantly outperforming RecAgent and Agent4Rec
across all distractor levels (paired t-tests, 95% con-
fidence, p < 0.002).

4.2 Rating Items

A key task when interacting with a RS is rating
items. We compare several LLM-based baselines,

along with traditional recommendation baselines:
MF (Koren et al., 2009) and AFM (Xiao et al.,
2017). Across all tasks (Table 2), SimUSER con-
siderably outperforms other LLM-powered agents,
mainly due to its KG memory that encapsulates
priors about items and their relationships with user
interactions. Agent4Rec shows higher RMSE due
to hallucinations with niche items not embedded in
its LLM weights. Notably, incorporating a few
steps of simulation always decreases the MAE
of the model (SimUSER(sim)). This is because
the grounded interactions augment the context dur-
ing the multi-round assessment, demonstrating that
agents can refine their own preferences for unrated
items through interactions with the simulator.

4.3 Recommender System Evaluation

Understanding the efficacy of various recommen-
dation algorithms is crucial for enhancing user
satisfaction. By simulating human proxies, we
can better predict how users will engage with rec-
ommender systems, providing valuable interactive
metrics. We compare various recommendation
strategies, including most popular (Pop), matrix
factorization (MF) (Koren et al., 2009), Light GCN
(He et al., 2020), and MultVAE (Liang et al., 2018),
using the MovieLens dataset. Upon exiting, agents
rated their satisfaction on a scale from 1 to 10.
Ratings above 3 were considered indicative of a
like. Metrics include average viewing ratio (Pyiew)s
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MovieLens AmazonBook Steam
RecAgent 3.01 £0.14 3.14+£0.13 2.96 £ 0.17
Agentd4Rec 3.04 +0.12 3.21+0.14 3.09 £ 0.16
SimUSER(w/o persona) 3.72 £ 0.18*  3.65 +£ 0.21*  3.61 + 0.24*
SimUSER(persona) 4.41+0.16* 3.99+0.18* 4.02+0.23*

Table 4: Human-likeness score evaluated by GPT-40
across recommendation domains. *Significant improve-
ments over best baseline (p < 0.05).

average number of likes (Nlike), average ratio of
likes (Pjixe), average exit page number (N exit),
and average user satisfaction score (gsat). Table 3
demonstrates that agents exhibit higher satisfaction
with advanced recommendations versus random
and Pop methods, consistent with real-life trends.

4.4 LLM Evaluator

As LLM Evaluators (Chiang and Lee, 2023)
achieve comparable performance with human eval-
uators, we use GPT-40 to assess whether agent
interactions appear human or Al-generated using
a 5-point Likert scale, with higher scores indicat-
ing stronger resemblance to human-like responses.
Results in Table 4 show our method significantly
outperforms Agent4Rec. The memory and persona
modules are among the main factors contributing
to the faithfulness of our method. We also noticed
that letting the agent estimate its tiredness, feel-
ing and emotion greatly enhances the believabil-
ity and consistency of its responses. On the other
hand, Agent4Rec’s tendencies to [EXIT] the rec-
ommender system early and provide inconsistent
ratings for similar items — ranging from low to
high, contribute to suspicions of Al involvement.

4.5 SimUSER for Offline A/B Testing

We have access a proprietary dataset of 55 online
A/B tests, encompassing hundred of thousands of
food item recommendations. Each test evaluates
variations in recommendation strategies, with the
average number of visited pages as the primary
business metric. The results, shown in Fig 1, in-
dicate that SImUSER achieves the highest corre-
lation with ground truth values, significantly out-
performing Agent4Rec and RecAgent. Statistical
tests were conducted to validate the significance of
SimUSER’s performance over the baselines, with p-
values below 0.05 for all comparisons. SiImUSER
effectively captures user engagement, offering a
cost-effective alternative to online A/B testing.
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Figure 1: Spearman correlation between estimated and
actual engagement metrics. Higher values indicate bet-
ter alignment with ground truth metrics.

Method Piew Nike Pike Next  Ssa
Baseline 0.521 544 0458 321 3.82
Traditional (nDCG@10) 0.535 5.52 0462 326 3.86
SimUSER 0.561 580 0.517 3.87 4.09

Table 5: Performance comparison of parameter selec-
tion strategies on various engagement metrics.

4.6 Optimizing RS with SImUSER

We examine whether selecting RS parameters
based on SImUSER evaluation or traditional of-
fline metrics (NDCG@10 - TRAD), translates to
improved business metrics in the real world. We
employ the same proprietary dataset. The online
performance of the baseline system and the two
strategies are presented in Table 5. TRAD results
in performance on par with the original baseline,
demonstrating similar findings as in (Jannach and
Jugovac, 2019) — offline metrics do not necessarily
translate to business metrics. SImMUSER achieves
higher engagement and satisfaction, with improve-
ments in average viewing ratio and satisfaction.

5 Conclusion

We present a simulation framework for leveraging
LLMs as believable user proxies. Our two-phase
approach includes persona matching and interac-
tive RS assessment, seeking to align user inter-
actions more closely with real-world user behav-
iors. We evaluate SimUSER across various recom-
mendation domains, including movies, books, and
video games. Results demonstrate closer alignment
of our agents with their human counterparts at both
micro and macro levels. We further explore the in-
fluence of thumbnails on user engagement and the



significance of reviews in user decision-making.
Experimental findings highlight the potential of
LLM-driven simulations in bridging the gap be-
tween offline metrics and business metrics. As a
future direction, we seek to complement our current
GPT-40-based assessments of human-likeness with
human evaluation, to further validate the realism of
agent behavior. In addition, we plan to investigate
the extent to which LLM-specific biases may in-
fluence simulated decisions and explore mitigation
strategies.

6 Ethics Statement

This paper proposes an LLM-empowered agent
framework designed to simulate user interactions
with recommender systems in a realistic and cost-
effective manner. While our approach offers sig-
nificant benefits in terms of scalability and effi-
ciency, it also raises ethical considerations. The
use of such agents could lead to unintended conse-
quences, such as bias amplification, where the syn-
thetic agents might inadvertently reinforce existing
stereotypes or present skewed recommendations
due to biases in the training data.

Additionally, there is a risk of manipulation of
user preferences, as the synthetic agents could be
used to subtly influence user behavior by consis-
tently promoting certain types of content without
explicit user consent. Furthermore, simulating in-
teractions at a broad scale could result in the iden-
tification and exploitation of behavioral patterns
that might encourage specific user behaviors, po-
tentially leading to negative societal impacts. Fi-
nally, there is a concern that developers or design-
ers might use synthetic users and displace the role
of humans and system stakeholders in the design
process. We suggest that synthetic uses should
not be a substitute for real human input in studies
and design processes. Rather, these agents should
be leveraged during the initial design phases to
explore concepts, especially in situations where re-
cruiting human participants is impractical or where
testing certain theories with real people could be
challenging or pose risks. By adhering to these
principles, we can ensure that the deployment of
synthetic users in the wild is ethical and socially
responsible.
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A Experimental Setup

Experimental Settings. We separate the dataset
into training, validation, and test sets (80/10/10%),
using a time-based split. This ensures to reflect
temporal distribution shift that may be observed in
the real-world. Relationships between users and
items from the training/validation and test sets were
excluded from the knowledge graph memory to
prevent data leakage. These datasets are employed
for the initialization of each agent — persona and
memory modules, as well as self-consistent per-
sona matching. In order to address privacy con-
cerns, the name and gender are omitted. Moreover,
for the sake of generality, we do not utilize user-
specific information available in these datasets, re-
lying instead on the personas identified in Phase 1
of SimUSER.

In this paper, we report results for SimUSER
with simulation SimUSER(sim), and without sim-
ulation SimUSER(zero). In SimUSER(zero), the
agent’s memory module is initialized from the his-
tory of its human counterpart. When the review
score for an item is greater than 4, the agent stores
amemory entry in the form I liked {item_name}
based on my review score of {score}. For
a score of 2 or below, the following format is uti-
lized I disliked {item_name} based on my
review score of {score}. Neutral scores result
intheentry I felt neutral about {item_name}
based on my review score of {score}. In
SimUSER(sim), agents can also interact with the
recommender systems (training set) for up to 20
pages or exit the system at any time. The corre-
sponding interactions are used to enhance the mem-
ory module. In all the experiments, items rated = 4
are considered as liked by the user, while items <
2 are considered as disliked. These interactions are
stored both as plain text in the episodic memory
and as relationships in the knowledge graph mem-
ory. These simulated interactions with the RS are
stored in the episodic memory with the following
format: The recommender system recommended
the following {item_type} to me on
page {page_number}: {name_all_items},
among them, I selected {watched_items}
and rate them {ratings} respectively.
I dislike the rest {item_type} items:
{dislike_items}.

In some sets of experiments, we report performance
without persona matching SimUSER(w/o persona),
and with persona matching SimUSER(persona). In
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the absence of persona matching, personality traits,
age, occupation and taste summary are omitted
from the prompts. Matrix factorization (MF) is uti-
lized as the recommender model unless specified
otherwise. In our simulator, agents are presented
with four items n = 4 per page and allowed to in-
teract by viewing and rating items based on their
preferences. When the output of the LLM deviated
from the desired format, resulting in errors, the
LLM was re-prompted with the following instruc-
tion: You have one more chance to provide
the correct answer.

The path-score used during the retrieval of ev-
idences from the KG memory, we further com-
bine this score with user-item similarity (s, , =
a- sz, + (1 -a)-s,,) and enhance it with se-
mantic similarity using embeddings from OpenAlI’s
text-embedding-3-small model. The top-k; items,
their attributes, and paths are returned to condition
the brain module.

As mentioned above, we leverage GPT-40-mini
as the LLLM backbone in all the experiments un-
less stated differently. We use « 0.8 to bal-
ance item-item similarity with user-item similar-
ity. We set ko = 3 when retrieving similar items
from the knowledge graph-memory, and k1 = 5
for the episodic memory. The titles and ratings of
retrieved items from the knowledge graph are con-
catenated to condition decision-making prompts.
Empirically, we set the weight of node embeddings
to 0.25 when computing top-ks scores. Documents
and embedding of text (E) were obtained using
text-embedding-3-small. Given the average rat-
ing R of a user: R = % S, Fui» the pickiness
level P(R) of a user was determined based on the
following thresholds:

P ifR=45
P(R)=14{P, if35<R<45
P; ifR<3.5

where P; corresponds to not picky, Py corresponds
to moderately picky, and P3 corresponds to ex-
tremely picky.

The persona attributes are estimated as follows:

* Engagement quantifies the frequency and
breadth of a user’s interactions with recom-
mended items, distinguishing between users
who extensively watch and rate many of items
and those who confine themselves to a min-
imal set. The engagement trait for user u
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Figure 2: The SimUSER framework for evaluating a movie recommender system.

can be mathematically expressed as: Ty =
Y ie7 Yui-

Conformity measures how closely a user’s rat-
ings align with average item ratings, drawing a
distinction between users with unique perspec-
tives and those whose opinions closely mirror
popular sentiments. For user u, the conformity
trait is defined as: T,y = 5 Ly Yui®

5 ieT Yui
7w — R;|”.

* Variety reflects the user’s proclivity toward
a diverse range of item genres or their in-
clination toward specific genres. The vari-
ety trait for user u is formulated as: T}, =
|Uie{y,:=1}9i]- To encode users’ unique tastes
in natural language, we utilize the summary
s, obtained in Phase 1, which describes long-
term preferences.

To generate captions, for each item 7, we first
generate an initial caption draft i* by querying:
i* = LLM (Preaption, 1) Where Peypiion is the task
prompt. To reduce hallucination, we then decom-
pose i* into atomic claims { ay, ..., a,, }, each de-
scribing a specific, factual statement (e.g., “The
movie is scary”), rather than subjective opinions.
Next, each claim ay, is formed into a polar (yes/no)
query, and an open-source MLLM (Yao et al.,
2024) is queried to generate the confidence of
agreement and disagreement as the claim score
Sa = (Pyes>Pno), Where p,., is the probability
of answering with “yes” and p,,, is the probabil-
ity of answering with “no”. Finally, the original
caption is refined in order to obtain a the item’s
Caption 'L'caption = LLM(’L*v Pcombinev (CL, Sa)a )
This minimizes the risk of agents selecting items
based on inaccurate captions by ensuring the gen-
erated descriptions are fact-based and supported by
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confidence scores.

In Appendix C.7, we compare the results of
SimUSER taking as input: 1) the original movie
poster, 2) a random screenshot from the movie
trailer on YouTube, 3) the original movie poster
distorted with a blue color filter (hue=30, light-
ness=30, saturation=30). An illustration of the
method is provided in Figure 2, detailing the in-
teraction between its components and their roles
within the proposed framework.

A.1 Brain Module Details

We now provide a comprehensive explanation of
the Brain Module, detailing the implementation
and technical details. To replicate human-like se-
quential reasoning, we employ Chain-of-Thought
prompting, repeatedly performing the five steps.

A.2 Multi-round Preference Elicitation

We employ a multi-round preference elicitation
strategy to refine the user’s choice. First, an ini-
tial decision 6'* is formed based on the agent’s
persona p, pickiness level p, and retrieved evi-
dences L}, G, from the episodic and KG mem-
ory respectively. Along with this decision, the
agent provides a reason for its choice and cites
the supporting evidence, if any. Next, the agent
checks for contradictions, such as deciding to
watch a pure horror film while the persona in-
dicates strong aversion to horror. If a conflict
arises or cannot find enough supporting evidences,
the agent is prompted to confirm or modify the
initial decision, resulting in an updated decision
oM = LLM(PwatCh,é(t_l),p, Ey,,Gy,), where
Pyatcn is the task prompt, and G; and E(;) are
retrieved evidences. To assist the agent’s decision-
making, we expand the retrieved documents at each
round: k1 « ki + Ay and ky « ko + Ay, exposing



additional relevant items or past interactions. This

nal)

continues until a final decision (f is reached.

A.3 Providing Feelings and Rating Items

Once the user identifies the items of interest
glinal) - — {i1,...}, they express their reactions
through both explicit ratings and subjective feel-
ings. Intuitively, a real user may produce much
feelings after watching an item, which will be
stored in their memory and influence their future
cognition and behaviors. Along with the item rat-
ing € {1,2,3,4,5}, we query the user’s feelings
about the watched items and leverage such infor-
mation to update the memory module. Newly liked
and disliked items are fed back into the memory
module. Existing approaches (Zhang et al., 2023)
neglect the underlying rationale behind user rat-
ings. Instead, SIMUSER leverages the paths of

each retrieved evidences 7 from the KG memory,

&1 Ea
u—z2— ...

&, 1. These paths are formatted as
plain text and provided as input to the LLM, which
generates ratings while explaining how persona, ev-
idences and paths compare to the shortlisted items

and influence their rating.

A.4 Emotion-driven Action Selection

The agent decides (aten;) Whether to [EXIT] the
system, go to [NEXT] page, return to a [PREVIOUS]
page, or [CLICK] on an item to access more de-
tails. If the agent decides to click on an item, the
item is displayed with an extended description that
replaces the short {item_description}, which is
then used to determine whether it wishes to en-
gage further with the item. Finally, if [EXIT] is
selected, a satisfaction interview is conducted to
gather granular opinions and ratings on the pre-
sented recommendations. To this end, the agent
sequentially: 1) estimates its satisfaction level with
preceding recommendations, 2) generates its cur-
rent fatigue level (Zhang et al., 2023), 3) infers
its current emotion, such as EXCITED, and 4) se-
lects the most suitable action. Satisfaction level,
fatigue, and emotion are dynamic elements that the
agent employs to adapt its actionable plan with the
recommender system.

A.5 Causal Action Refinement

Suboptimal decision-making (e.g., premature ex-
its or misaligned clicks) can arise as the agent
struggles to understand the impact of its decision,
necessitating iterative adjustments to align with
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implicit preferences. In light of this, we intro-
duce a causal reasoning step which encourages
the assistant to actively seek to understand the
causal relationships between its decisions and la-
tent user-state dynamics. Assuming the tentative
action agen and context H, the LLM generates
causal questions () to validate the rationale be-
hind agens, Q@ = LLM (Gent; H, P, Pequsar), Where
P..usa refers to a predetermined prompt. Causal
questions may for example be: Does tiredness re-
duce the appeal of this action?, What would happen
if you exited the system now?. For each counter-
factual, the LLM estimates outcomes such as satis-
faction, alignment with persona, and fatigue. This
includes a scalar s, and textual verdict v, reflecting
how cause-effect relationships support or contra-
dict aieni. Finally, the LLM is queried to adjust
the action if the consistency score is low, g, =

LLM(atenb H,p, Pactiona HqEQ{Q> Sq» Uq})-

B Pseudo-Code

We present the pseudo-code for SimUSER agent.

Algorithm 1 SimUSER Algorithm

Input: Historical data H,, for user u
Qutput: Simulated interactions and feedback
Phase 1: Persona Matching
‘P « Generate persona from H,
p <« Identify best persona € P using self-
consistency score
Phase 2: Simulate Interactions
Initialize memory module from H,,
repeat
Perceive the page and items
captions
10 Retrieve similar items from the KG mem-
ory
11: Decide what items to watch
12: Rate the items and provide feelings
13: Decide next action a based on satisfaction,
fatigue, and emotion

A

° ® D

> Generate

14: Perform post-interaction reflection

15: Update memory module

16: if a = [EXIT] then

17: break

18: else

19: Perform action a

20: until Maximum number of pages reached

21: Return Simulated interactions, metrics, and

feedback
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Figure 3: Comparison of rating distributions between
ground-truth and human proxies.
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Figure 4: Ratings vs feelings on IMDB dataset. Com-
parison between human (top left) and LLM-empowered
agents.

C Additional Experiments

C.1 Rating Distribution

Beyond individual rating alignment, human prox-
ies must replicate real-world behavior at the macro
level. This implies ensuring that the distribution of
ratings generated by the agents aligns closely with
the distributions observed in the original dataset.
Figure 3 presents the rating distribution from the
MovieLens-1M dataset and the ratings generated
by the agents. These results reveal a high degree of
alignment between the simulated and actual rating
distributions, with a predominant number of rat-
ings at 4 and a small number of low ratings (1-2).
While Agent4Rec assigns fewer 1-2 ratings than
real users, our approach, by retrieving past inter-
actions from the episodic memory, allows agents
to contextualize their ratings based on a broader
and more consistent understanding of their own
preferences.
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Figure 5: Preference coherence (accept/reject task). "I’
stands for incoherent; *C’ stands for coherent (Reddit
dataset).

C.2 Alignment: Rating vs Feeling

Expressing aligned reviews and ratings is of pri-
mary importance to simulate realistic human prox-
ies. Thus, in this section we delve into the align-
ment between ratings and sentiments. In detail, we
prompt the agent to assume one has interacted with
a certain item, and ask about its rating and feelings
on it. Reviews and ratings from IMDB (Maas et al.,
2011) are used as ground truth since MovieLens
does not contain reviews. After getting a collection
of responses, we conduct sentiment-based analysis
with PyABSA (Yang et al., 2023). We compare
the rating and sentiment distributions of: humans,
RecAgent, Agent4Rec, and SimUSER. As depicted
in Figure 4, our agents generate ratings aligned
with their opinions. For instance, ratings = 4 are
typically associated with positive sentiments. In
contrast, Agent4Rec exhibits a bias towards pos-
itive opinions, resulting in more positive feelings
about the items, including when generating low
ratings. It is noteworthy that SimUSER agents and
genuine humans express similar sentiments at a
macro level.

C.3 Preference Coherence

Under this scenario, we aim to evaluate whether
agents prefer positive recommendations based on
a query. Namely, for each request in the Reddit
dataset (He et al., 2023), we sample: (1) a com-
ment from this request (positive recommendation)
(2) arandom comment (negative recommendation).
The agent is then prompted to decide which items
to watch. Ideally, synthetic users should watch
only positive recommendations and decline nega-
tive ones. Behavior is incoherent when the simula-
tor accepts a negative recommendation. We clearly
see in Figure 5 that our agents are overall coher-
ent, but sometimes prefer negative recommenda-
tions, its proportion being around 4%. Particularly,
Agent4Rec agents often accept recommendations
that are not aligned with their age and personality.

To further assess the robustness of our agents
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Figure 6: Preference coherence (accept/reject task). T’
stands for incoherent; C’ stands for coherent. Results
are reported on Tenrec dataset with hard negative items.
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Figure 7: Distribution of interaction numbers (top) and
average ratings (bottom) for 3 groups of personas. The
left column does not use persona module while the right
employs a persona module.

under more realistic recommendation conditions,
we conduct an additional experiment using the Ten-
rec dataset (Yuan et al., 2022). Unlike the Reddit
dataset, which relies on random negative sampling,
Tenrec provides true negative feedback—items that
were shown to users but explicitly ignored. This
allows us to create harder negative samples, as
these unclicked items are likely to be more relevant
but still rejected by real users. Under this setting,
hard negatives are items that were exposed to the
user but ignored. As expected, the increased dif-
ficulty results in a slight drop in coherence across
all agents (Figure 6). SimUSER remains the most
consistent but sees a 5% decrease in coherence,
while Agent4Rec and RecAgent show larger de-
clines. Notably, Agent4Rec exhibits a stronger
bias toward selecting hard negatives, suggesting
sensitivity to misleading but plausible recommen-
dations.
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C.4 TImpact of Persona on User Behaviors

In real life, user behaviors are driven by factors be-
yond mere individual tastes, including personality
traits and demographic attributes such as age, and
occupation. To account for these factors, we devel-
oped a persona module that incorporates these char-
acteristics. Using the MovieLens dataset, agents
were categorized based on their age, occupation
(student, office worker, other), and personality
traits — categorical features were encoded using
one-hot representation, via k-means (k=3). We hy-
pothesize that agents with similar preferences may
still exhibit distinct behavior patterns due to their
unique persona. Figure 7 depicts the distribution
of interaction numbers and average ratings among
agents with different personas. As shown in the fig-
ure, it is evident that agents from different groups
demonstrate distinct behaviors, with higher average
ratings in groups 2 and 3 than group 1. Synthetic
users without personas display more homogeneous
behaviors. Younger users (group 3, avg age=19.6)
engage more frequently with the system compared
to older users (group 1, avg age=40.2), likely due
to higher adaptability and interest in exploring new
recommendations, while older users exhibit fewer
interactions, possibly from ingrained preferences
and less willingness to engage with new content.

C.5 Post-Interaction Interviews

A central advantage of LLM-based evaluation is
their capacity to generate human-comprehensible
explanations. Such explanations provide valuable
insights that can be employed to refine the rec-
ommender system. Figure 8 illustrates a post-
interaction interview scenario, where the agent
rates its experience with the recommender and re-
turns an explanation based on its personal tastes,
habits, emotional memory, and interaction history.
The agent noticed that the recommender system
generally aligned well with its tastes, particularly
recommending movies suitable for its age and per-
sonality. However, some factors reduce the over-
all satisfaction. For instance, despite the agent’s
preference for sub-genres like neo-noir and psy-
chological thrillers such as “The Sixth Sense” and
“Apt Pupil”, the system frequently recommended
mainstream blockbusters like “Star Wars: Episode
I”, “The Phantom Menace”. These findings under-
score the importance of understanding the nuanced
behavior of different recommendation algorithms
and their suitability for each group of users.



Case Study of Satisfaction Interview

Question: How satisfied are you with the recom-
mender system? Please your satisfaction on a
scale from 1 to 10 and provide an for
your rating.

Rating: 7

Reason: As a 35-year-old film enthusiast with a pref-
erence for independent films and documentaries, I
found the recommender system fairly effective in sug-
gesting thought-provoking content. It recommended
several documentaries and indie films that I enjoyed.
However, the system often leaned towards main-
stream and popular films rather than exploring unique
and lesser-known titles. This tendency occasionally
led to less satisfying recommendations, as I value
discovering independent, high-quality films.
Additionally, while the system recognized my interest
in dramas and thrillers, it missed specific sub-genres
like neo-noir and psychological thrillers that I particu-
larly enjoy. Improving the system’s ability to identify
these nuanced preferences could enhance its effec-
tiveness.

Overall, the system shows strengths in general recom-
mendations but would benefit from a better balance
between popular and niche films.

Figure 8: One case study of post-exit feeling interview.
The blue color highlights the user’s satisfaction score.

C.6 Rating Items under Hallucination

In this section, we specifically target items that are
unfamiliar to the LLM, seeking to evaluate the abil-
ity of SimUSER to mitigate hallucination through
its memory module. Similarly to Section 4.2, users
are asked to rate movies (MovieLens). Neverthe-
less, we exclusively include items that are detected
as unknown to the LLM. These items ¢ are identi-
fied by querying the LLM to classify each movie
into one of 18 genres. If the LLM’s genre classifi-
cation matches the actual category g;, it indicates
that the LLM is familiar with the item, and such
movies are excluded from the experiment. From
Figure 9, it is evident that while the RMSE val-
ues for all methods increase under hallucination,
the performance degradation of SImUSER is less
severe compared to the baselines. This relative
robustness of SImMUSER can be attributed to its
KG memory, which effectively mitigates the im-
pact of hallucination by leveraging relationships
between users/movies/ratings from previous inter-
actions. By comparing the unfamiliar movie with
these similar, well-known ones, the LLLM can an-
chor its predictions in familiar contexts, reducing
the likelihood of hallucinations and leading to more
accurate ratings.
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Figure 9: Comparison of RMSE values for original
(dark colors) and hallucination-affected (light colors)
models for the rating task (MovieLens).
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Figure 10: Effect on visual cues on rating distribution
for different thumbnail types.

C.7 Thumbnail Quality Effect

Emotions largely shape decision-making in the
recommendation domain. At the center of emo-
tion, images are powerful stimuli that motivate our
choices. In light of this, a question arises: Can
SimUSER be useful in assessing the quality of
items’ thumbnails? To understand the factors influ-
encing ratings, we randomly selected 100 movies
from the MovieLens dataset and ask 100 agents
whether they want to watch it. For each movie,
we collected three versions of the thumbnails: 1)
the original movie poster, 2) a random screenshot
from the movie trailer on YouTube, and 3) the orig-
inal movie poster distorted with a blue color fil-
ter. Based on the click rates shown in Figure 10,
we notice that high-quality thumbnails — original
posters, significantly influence users’ inclination
to watch a movie. Specifically, original posters
lead to higher engagement compared to random
screenshots and color-distorted posters. This result
highlights SImUSER’s capability to reflect the qual-
ity of item images in decision-making processes,
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Figure 11: Heatmap showing the impact of biased rec-
ommendations on genre ratings over time — exposure
effect. The genres and their ratings are displayed after
5, 20, and 50 pages scrolled.

mirroring trends commonly observed in real-world
recommender systems.

C.8 Exposure Effect in Recommendation

To assess how biased recommendations shape user
preferences over time, we introduce a scenario
where the RS only recommends two movie cat-
egories: action and horror. It emulates an expo-
sure effect (Farber et al., 2023), where repeated
exposures to a particular stimulus increase an in-
dividual’s preference for that stimulus. In the con-
text of recommender systems, repeated exposure
to specific genres could amplify user preferences
for those genres. Under this scenario, we record
the average movie ratings for each category after 5,
20, and 50 pages scrolled by the agents. Namely,
the 50 agents are prompted to rate 500 randomly
selected movies. Figure 11 illustrates a tendency of
the agents to rate items of categories that are over-
represented higher during the interactions with the
recommender system, particularly after more than
20 pages. Conversely, categories that differ sig-
nificantly from action and horror genres generally
tend to receive lower average ratings. Experimental
results validate SimUSER’s capability to replicate
the exposure effect, although further research and
validation are required with alternative datasets.

C.9 User Review Influence

User proxies may help researchers in identifying
the psychological effect of reviews on human inter-
actions. To investigate this effect, we modified the
recommendation simulator to display a) the number
of reviews, b) one random negative comment, or
¢) one random positive comment for each item on

MF MultVAE LightGCN
Condition Pyiew Pie Pyiew  Pike  Puview  Plike
Origin 0.461 0.443 0.514 0455 0.557 0.448
+ With # Reviews 0.485 0.491 0.535 0.492 0.570 0.505
+ With Negative 0.413 0.408 0.450 0435 0.507 0.409
+ With Positive 0.469 0.495 0.549 0.510 0.573 0.444

Table 6: Impact of user reviews on recommender Sys-
tem performance.

nDCG@10 Fl-score@10
Method Offline SimUSER Offline SimUSER
MF 0.226 0.213 0.165 0.144
MultVAE 0.288 0.278 0.180 0.189
LightGCN  0.423 0.465 0.227 0.255

Table 7: nDCG@k (k=10) and F1-score@k (k=10)
for three recommender systems, using either offline or
SimUSER-generated interactions.

the recommendation page. We report in Table 6 the
average viewing ratio Poiew and ratio of likes Pjije.
We can see that displaying the number of reviews
slightly improves the viewing ratio, especially for
items having enough reviews (i.e., more than 20
reviews). This aligns with humans’ inclination
to select popular items in real-life scenarios. On
the other, there is no significant difference in Pjie
(t-test p > 0.05). Another observation is that dis-
playing negative reviews has a stronger impact on
user behavior than showing positive reviews, with
a decrease in both the average viewing ratio and
number of likes. One possible explanation is that
negative reviews discourage users from watching
an item, while positive reviews primarily encour-
age users who are already inclined to watch it to
proceed with their choice.

C.10 SimUSER vs. Offline Metrics

We aim to investigate whether SimUSER can reli-
ably estimate traditional metrics such as nDCG@k
(k=10) and F1-score @k (k=10) by comparing the
results from traditional offline evaluation with
those from SimUSER-generated interactions. For
this purpose, we evaluate three recommender sys-
tems using the MovieLens dataset under identical
conditions for both offline and SimUSER-based
evaluations. Table 7 reports the nDCG @k and F1-
score @k (k=10) for both evaluation strategies. In
the SimUSER scenario, interactions are generated
by our synthetic users, where liked and disliked
items replace the ground-truth interactions from
the offline dataset. Results indicate minimal differ-



Figure 12: Impact of history size on rating prediction
performance (RMSE) across datasets.

ences between SimUSER-generated and real-world
data, with consistent model rankings across sys-
tems. These slight differences reflect real-world
users being unconstrained by page numbers and
interaction frequency. These findings demonstrate
that SImUSER reliably measures traditional met-
rics while enabling exploration of system perfor-
mance across user demographics, website settings
(items per page), and recommender system config-
urations.

C.11 Impact of Number of Interactions on
Rating Performance

In this experiment, we measure rating prediction
performance as a function of interaction history
length €(5, 10, 20, and 50 interactions). While
most methods generally benefit from increased
context (Figure 12), small fluctuations occur (e.g.,
AFM on AmazonBook shows a slight rise from
1.28 at 20 interactions to 1.3006 at 50). SImUSER
consistently outperforms all baselines, achieving
RMSEs of 0.5020 (MovieLens), 0.5676 (Ama-
zonBook), and 0.5866 (Steam) at 50 interactions.
These results confirm that leveraging persona-
based context yields robust performance improve-
ments, even with limited historical data, and aligns
with our main results. This highlights SImUSER’s
ability to utilize past interactions for realistic simu-
lations while remaining believable when modeling
cold-start or few-shot users.

C.12 Ablation Studies

C.12.1 Impact of the Knowledge-Graph
Memory on SimUSER

Here, our focus is on evaluating the impact of in-
corporating a knowledge-graph memory on the
performance. Specifically, the goal is to deter-
mine whether employing the KG memory, which
simulates external influences such as reviews, en-
hances believability in human proxies. All mod-
els follow the same settings as in Sec 4.2. Table
8, highlights that leveraging the KG structure sig-
nificantly reduces both RMSE and MAE across
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Figure 13: MAE of personality trait predictions for
different C values.

different datasets. This module mirrors how our
prior expectations of an item can shape and bias
our assessment of it.

C.12.2 Persona Matching: Age, Occupation

We postulate that personas are crucial for captur-
ing the heterogeneity and diversity present in real-
world recommender networks. These attributes
significantly shape individual behaviors and prefer-
ences, which subsequently influence the overall dy-
namics of the system. To evaluate the effectiveness
of our self-consistent persona-matching technique,
we conducted an experiment using the MovieLens-
IM dataset. The goal was to predict the age and
occupation of users based on their historical data.
This task was formulated as a classification prob-
lem. Our results are summarized in table 9. We
observe a high degree of alignment between the
predicted and actual user personas, highlighting
the effectiveness of Phase 1 in SimUSER. Over-
all, persona matching turns out to be reasonably
robust for enriching simulated agents with detailed
backgrounds, including domains where explicit de-
mographic data is not readily provided.

C.12.3 Persona Matching: Personality

In order to assess the quality of persona matching
in predicting personality traits from historical inter-
action data, we conduct an additional experiment
using the Personality 2018 dataset (Nguyen et al.,
2018). The primary objective is to evaluate whether
our model could accurately infer users’ Big Five
personality traits based solely on users’ watching
history. For a fair comparison, the personality traits
within the dataset, as well as the predictions, are
normalized to a scale ranging from 0 to 1. We
report the results for various lengths of movie his-



Methods MovieLens AmazonBook Steam
RMSE MAE RMSE MAE RMSE MAE
SimUSER (zero) 0.5813* 0.5298* 0.6542 0.5116* 0.6798* 0.6151*
SimUSER(zero) 0.6545 0.6299 0.6771 0.6210 0.7176  0.6533
SimUSER (sim) 0.5020* 0.4465* 0.5676* 0.4210* 0.5866* (.5325*
SimUSER((sim) 0.6300 0.6336 0.6109 0.4881 0.6482  0.6481

Table 8: Performance comparison in rating prediction for agents equipped with (top two rows
). Asterisks (*) denote statistically significant improvements when the KG memory is

memory (bottom two rows
used.

Metric Age  Occupation
Accuracy 0.7230 0.6764
Precision  0.7586 0.6933
Recall 0.7921 0.7430
F1 Score  0.7749 0.7172

Table 9: Performance of Persona Matching in Predicting
Age and Occupation Using the MovieLens-1M Dataset.

tory o € {10,20,50}. This task is formulated as
a regression problem. Figure 13 summarizes the
results, showing that our model achieved an aver-
age MAE of 0.155 across all traits. Besides, the
results reveal that using a history length of 50 items
reduces the average MAE from 0.279 (10 items) to
0.155, demonstrating that self-consistent persona
matching can reasonably predict personality traits
of users from their past interactions.

C.12.4 Choice of Foundation Model

We seek to evaluate the performance of our method-
ology using various foundation models on the
movie rating task. Specifically, we compare the
results obtained by employing GPT-40-mini, GPT-
40, Mistral-7b Instruct, Llama-3 Instruct, and Phi-
3-mini as the underlying LL.Ms. The results, pre-
sented in Table 10, demonstrate that the perfor-
mance of SimUSER is generally robust across dif-
ferent foundation models. While GPT-40 exhibits
significantly lower mean RMSE and MAE (t-test
p < 0.05), GPT-40-mini achieves similar perfor-
mance but with a lower inference time. Mistral-
7b Instruct also performs reasonably well on the
MovieLens dataset. On the other hand, Llama-3
Instruct and Phi-3-mini, while competitive, show
higher errors.
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) and without a KG

C.12.5 Impact of Perception Module

We now investigate the perception module’s impact
on agent believability. Table 11 shows agents con-
sistently exhibit more realistic behavior with the
perception module (#), likely due to the inclusion
of visual details and unique selling points. The be-
lievability gain is lower on AmazonBook than other
datasets, possibly because users judge books less
by covers and more by descriptions. Examining
interactions reveals agents with different personas
are significantly influenced by emotional tones. For
instance, an agent with high openness may be more
inclined to select movies with captions that use pos-
itive language like “exciting” or “inspiring”. While
SimUSER () may inherit biases from the LLM’s
interpretation of item descriptions, these can be par-
tially mitigated through factual caption information.
This suggests the perception module contributes to
more visually and emotionally driven engagement.

D Discussion

We acknowledge that our method has certain limi-
tations. Observed behaviors are well-aligned with
existing theories and common behaviors in the rec-
ommendation domain. Phenomena at micro-level
(rating, watching) are manifestations of agent en-
dogenous behaviors. But why agents possess these
behaviors are unexplored due to the black-box na-
ture of the large language models we adopted. A
potential reason could be that LLMs are trained on
a massive corpus that includes texts from various
domains.

A potential limitation of our approach lies in
its reliance on sufficient interaction data to con-
struct detailed user personas. In some scenarios,
many users exhibit limited engagement, particu-
larly in cold-start settings where new users have
few or no recorded interactions. This constraint
reduces the effectiveness of our persona module,



Methods MovieLens AmazonBook Steam
RMSE MAE RMSE MAE RMSE MAE
GPT-40-mini 0.5020 0.4465 0.5676 0.4210 0.5866 0.5325
GPT-40 0.4739 0.4167 0.5532 0.3998 0.5549 0.4823
Mistral-7b Instruct  0.5486 0.4874 0.6435 0.4909 0.6407 0.6275
Llama-3 Instruct 0.5901 0.5812 0.6346 0.4715 0.6453 0.6321
Phi-3-mini 0.6358 0.5964 0.6789 0.5763 0.7175 0.6935

Table 10: Performance comparison in rating prediction on MovieLens with different types of foundation LLMs.

MovieLens AmazonBook Steam
RecAgent 301+0.14 3.14+0.13 296+0.17
Agent4Rec 3.04 £0.12 321+£0.14 3.09%0.16
SimUSER (¢) 4.27+0.18 3.94+0.16 3.89+0.20
SimUSER (#) 4.41+0.16*  3.99+0.18*  4.02+0.23*

Table 11: Human-likeness score evaluated by GPT-40
for SIMUSER without (¢) and with (#) perception
module. Asterisks (*) denote statistically significant
improvements when the perception module is activated.

as it derives user preferences primarily from past
interactions.To address this issue, a potential al-
ternative is initializing the persona module using
predefined user features, such as categorical tags
(e.g., "tech-savvy," "frequent traveler").

LLMs may replicate biases prevalent in social
spaces, such as some groups of individuals being
underrepresented. This is problematic if it causes
designers to then underlook these peoples’ needs
when designing a recommender system. In our
experiments, we mitigated this risk by ensuring a
broad range of personas via diverse potential oc-
cupations, age, and personalities. We also mea-
sured the discrepancy between identified and real
personas. Our future investigation will focus on
analyzing underrepresented user groups, as well as
evaluating persona matching on a wider range of
domains (e.g., food).

Finally, UX and UI drive our choices and actions
in real-world applications. Our simulation, on the
other hand, does not fully replicate all those intri-
cate factors, which introduces a gap between real
life and simulation. An important future direction
is developing an image-based simulator to better
capture the complex nature of user experience.

E Cost Analysis

We report the cost of running SimUSER per
1000 users. Costs may vary slightly due to dif-
ferences in interaction numbers and LLM out-
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puts, but scale approximately linearly with user
count. Our implementation uses OpenAl’s GPT-
40-mini. SimUSER costs approximately $13
($0.0013/User), while Agent4Rec costs approxi-
mately $10 ($0.0010/User). The cost difference
mainly stems from the integration of images to
enable visual-driven reasoning.

F Running Time Analysis

We compare the running time of SimUSER and
Agent4Rec for 1,000 user interactions with GPT-
40. Without parallelization (¥), Agent4Rec and
SimUSER require 9.3h and 10.1h, respectively.
With parallelization (&, max 500 workers), these
times drop to 0.53h and 0.59h. This demonstrates
that parallelizing LLM calls significantly reduces
inference time, allowing the system to scale effi-
ciently.
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Abstract

We present MegaBeam-Mistral-7B!, a lan-
guage model that supports 512K-token con-
text length. Our work addresses practical lim-
itations in long-context training, supporting
real-world tasks such as compliance monitor-
ing and verification. Evaluated on three long-
context benchmarks, our 7B-parameter model
demonstrates superior in-context learning per-
formance on HELMET and robust retrieval and
tracing capability on RULER. It is currently the
only open model to achieve competitive long-
range reasoning on BABILong at 512K context
length without RAG or targeted fine-tuning. Re-
leased as fully open source under the Apache
2.0 license, the model has been downloaded
over 100,000 times on Hugging Face.

1 Introduction

MegaBeam-Mistral-7B is a compact 7B-parameter
language model capable of processing sequences
with half-a-million tokens. Developed with cus-
tomer engagements in mind, we thoroughly eval-
uated its long-context capabilities across multiple
benchmarks.

MegaBeam delivers strong performance across
three key long-context benchmarks. On RULER
at 128K context length, it outperforms both GPT-
4-1106 and larger open-source models like Llama-
3.1-70B. On BABILong at 64K context, it achieves
48.2% accuracy—comparable to models with 8x
more parameters. On HELMET, it attains a lead-
ing 85% in-context learning score at 128K tokens.
Significantly, MegaBeam achieves a competitive
35% score on 512K-token BABILong tasks with-
out RAG or task-specific tuning, making it the only
open model to effectively utilise such extreme con-
text lengths for solving novel reasoning tasks.

MegaBeam’s development was shaped primarily
by our engagements with customers across diverse

1https://huggingface.co/aws—prototyping/
MegaBeam-Mistral-7B-512k
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sectors, including digital design, banking, life sci-
ences, and GenAl native startups.

For example, large enterprises face daily chal-
lenges in verifying compliance across their cus-
tomer interactions, which often involve process-
ing lengthy conversation transcripts and transac-
tion logs. To tackle this challenge, we deployed
MegaBeam as a prototype compliance verification
solution, performing three key functions: First, it
identifies and matches specific sections of customer
interactions with relevant Standard Operating Pro-
cedures guidelines. It then classifies these matched
segments for compliance adherence, examining el-
ements such as required disclosures, proper doc-
umentation, and procedural steps. Finally, it pro-
vides detailed reasoning for each compliance as-
sessment by comparing the actual interaction pat-
terns against mandated procedures. The ability to
digest customer interaction logs alongside SOPs
within its context eliminates the need to chunk con-
versations. MegaBeam enables efficient compli-
ance monitoring by maintaining the complete con-
text of customer interactions alongside regulatory
requirements.

The following sections detail our technical ap-
proach to achieving these capabilities, addressing
challenges in training methodology and system-
level optimisations required for robust performance
in production environments.

2 Related Work

Recent advances in LLM context length extension
have emerged through improved training method-
ologies. MiniCPM (Hu et al., 2024) and Yi (Young
et al., 2024) demonstrated that even smaller mod-
els could handle 200K+ contexts through targeted
training approaches. Fu et al. (2024) established
that modest amounts of long-sequence text (1-2B
tokens) can effectively extend context capabilities
without full retraining. To address computational
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challenges, sequence parallel techniques such as
Ring Attention (Liu et al., 2023a) and DeepSpeed-
Ulysses (Jacobs et al., 2023) have made training
with extremely long sequences more feasible.

Several long-context benchmarks have emerged
to systematically evaluate long-context capabili-
ties. RULER (Hsieh et al., 2024) focuses on re-
trieval and multi-hop reasoning, BABILong (Ku-
ratov et al., 2024) tests reasoning over extremely
long documents, and HELMET (Yen et al., 2024)
provides application-centric metrics across diverse
downstream tasks.

Adjusting the theta base parameter in Rotary
Position Encoding (RoPE) (Su et al., 2024) has
emerged as the dominant approach for extending
context length. Recent theoretical work by Xu et al.
(2024) has established lower bounds for effective
theta values based on target sequence lengths. Lon-
gRoPE (Ding et al., 2024) introduced innovative
position encoding modifications, enabling models
to handle substantially longer sequences with mini-
mal additional training.

Our work builds upon these foundations, focus-
ing specifically on efficient training techniques that
allow smaller models (7B parameters) to handle
extremely long contexts (512K tokens), previously
thought to require substantially larger models or
computational resources.

3 Training

The training methodology for MegaBeam builds
upon key insights from several previous studies.
Drawing from (Young et al., 2024) and (Fu et al.,
2024), we implemented lightweight continual pre-
training with long-context data, confirming that
< 2B tokens are sufficient for extending context
length capabilities. We also incorporated findings
from the MiniCPM model (Hu et al., 2024) regard-
ing the optimal balance between short and long
training examples—specifically their discovery that
mixing ratios are crucial for maintaining perfor-
mance across different context lengths.

The training process consists of four phases (Fig
1) with varying token counts and sequence lengths.
Using Mistral-7B-Instruct-v0.2 (Mistral-Al, 2023)
as the base model, the first phase involved pro-
gressive long-context training on 1.2B tokens of
organically long documents from diverse sources:
source code (70%), research papers (10%), open
web content (15%), and public domain books (5%).
This initial phase processed 0.64B tokens as 300K-
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token sequences and 0.56B tokens as 600K-token
sequences. Although we trained with sequence
lengths up to 600K tokens, our evaluation using the
Needle-in-a-Haystack (NIAH) benchmark (Arize-
Al 2024) revealed significant performance degra-
dation when processing sequences longer than
300K tokens. We named this intermediate check-
point MegaBeam-Mistral-7B-300K to reflect its
effective context length.

To address the performance degradation beyond
300K tokens, we increased the RoPE theta base
from 25_000_000 to 75_000_000 and trained on
an additional 0.18B tokens using 600K-token se-
quences. This improved overall long-context per-
formance but led to poor NIAH scores at sequence
endpoints (depth 0 and 100). We attributed this to
insufficient training on shorter sequences with the
new RoPE configuration — a hypothesis confirmed
when additional training on 0.26B tokens of shorter
sequences (32K-80K) resolved the endpoint issues
while maintaining long-sequence performance.

After addressing a critical numerical precision
issue in the bfloat16 RoPE implementation, we
conducted a third round of long-context continual
pretraining using 0.2B tokens. The training data
was distributed across different sequence lengths:
1,200 sequences of 80K tokens (96M total), 300
sequences of 256K tokens (77M total), and 30 se-
quences of 512K tokens (15M total). This balanced
distribution ensured robust performance across all
context windows.

The final phase involved long-context supervised
fine-tuning (SFT) on a small 22M-token data set,
producing MegaBeam-Mistral-7B-512K. Follow-
ing insights from (Hu et al., 2024) and (Young et al.,
2024), we created synthetic documents (64K-512K
tokens) by restructuring real question-answer pairs
to specifically challenge long-range information
retrieval.

This phased approach combines planned length
progression with solutions to unexpected chal-
lenges discovered during development, enabling
effective scaling to longer contexts while maintain-
ing performance stability.

4 Solving Practical Issues

4.1 ROoPE theta base

As discussed in Section 3, we tuned the RoPE
theta base through progressive pretraining to im-
prove NIAH benchmark performance. Our experi-
mentally determined values—25_000_000 for se-
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Figure 1: Overview of MegaBeam’s training methodology: four sequential phases

quences of 256K tokens and 75_000_000 for se-
quences of 512K tokens—closely match the theo-
retical lower bounds derived by (Xu et al., 2024):
B = 0.0424L"528 which yields 28_000_000 and
86_000_000 respectively.

Our experiments also revealed additional
insights. Specifically, setting the base to
100_000_000 systematically degraded perfor-
mance at the sequence endpoints (depth 0 and 100)
for long sequences. This observation seems to align
with (Liu et al., 2023b). When the base value sub-
stantially exceeds the lower bound, it creates po-
sitional embeddings with wavelengths longer than
the training context length. This means some di-
mensions cannot complete a full 27 rotation during
training, potentially leading to hallucinations dur-
ing inference.

4.2 Dbfl16 and RoPE

We encountered recall failures in NIAH bench-
mark. Specifically, when processing longer con-
texts, the model consistently dropped the last
one digit when recalling numbers (e.g., recalling
7418118 as 741811). The root cause was traced to
numerical precision limitations of bfloat16 when
handling large position indices in RoPE calcula-
tions. While float32 maintains sufficient precision
across all position indices, bfloat16’s reduced man-
tissa bits lead to significant precision loss when
representing large positions, despite having com-
parable range to float32. This precision loss di-
rectly impacts RoPE’s ability to accurately encode
positional information for tokens far into a long
sequence.

The solution involves disabling autocast and
forcing float32 precision specifically for the criti-
cal RoPE calculations while maintaining bfloat16
for the rest of the model operations. This targeted
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precision management ensures accurate positional
encoding while retaining the memory and compu-
tational benefits of bfloat16 for other operations.
This fix was crucial for enabling reliable long-
context processing in MegaBeam. After we have
released MegaBeam, a comprehensive analysis of
this precision-related issue was later discussed in
(Wang et al., 2024).

4.3 Ring Attention

Ring Attention (Liu et al., 2023a) is an effective
Sequence Parallel (SP) mechanism for distributed
long sequence training. It organises accelerators in
a ring topology where attention keys and values ro-
tate in a peer-to-peer fashion between devices while
queries remain fixed on their assigned devices.

There are alternative approaches to SP besides
Ring Attention, such as DeepSpeed-Ulysses (Ja-
cobs et al., 2023). However, DeepSpeed-Ulysses re-
quires all-to-all collective communication to trans-
pose partitions from sequence to head dimensions,
and each device must store a complete KV head
for the entire sequence length. As a result, its de-
gree of sequence parallelism (DoSP) is constrained
by the number of KV heads. Ring Attention, in
contrast, allows DoSP to scale linearly with the to-
tal number of available devices. These advantages
led us to adopt the JAX-based (Liu et al., 2024)
Ring Attention implementation for our sequence
parallelism.

Although the JAX codebase (Liu et al., 2024)
supports interleaving Tensor Parallelism (TP) with
SP, we disable TP (setting it to 1) for sequences
longer than 64K tokens. This prioritisation of
SP over TP allocates more VRAM to sequence
parallelism, which becomes crucial as sequence
lengths are growing. For larger models like
70B parameters, the optimal parallel mesh con-
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Figure 2: Accumulated memory pre-allocation by XL A compiler under two chunk size configurations. The orange
line (larger chunks) demonstrates reduced memory footprint compared to the blue line (smaller chunks) throughout
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figuration between SP and TP would need to
be re-established through similar experimentation.
This parallelism strategy is necessary because,
as demonstrated in the Megatron context paral-
lelism example (NVIDIA, 2024), SP and TP share
a fixed pool of GPUs. Additionally, interleav-
ing TP and SP incurs communication overhead
through extra operations such as A11-Gathers and
Reduce-Scatters.

4.4 XLA compiler

Liu et al. (2023a) documented resource demands
of long-context training. For sequences of 512K to-
kens, they had to use 16 x A100 (80GB VRAM) to
train a 7B model. We verified this limitation using
their JAX codebase (Liu et al., 2024) — attempting
to train 512K-token sequences on 8 x A100 GPUs
resulted in compilation-time OOM exceptions.

To overcome this limitation, we examined
the compilation process in detail. The XLA
compiler transforms JAX operations to High-
Level Operations (HLO) IR, from which we
identified some operation that pre-allocates 32
GB memory during compilation. Namely, the
dynamic_update_slice HLO operation (shown
in Appendix A) uses int32 type for both input and
output tensors, with the output tensor size reach-
ing 32 GB. For our 524,288-token sequences, 8-
way partitioning assigns 65, 536 tokens per GPU
device. Each device’s partition is then processed
using 64 query chunks (65, 536/1, 024 tokens per
chunk) and 32 key-value chunks (65, 536/2, 048
tokens per chunk). Based on these dimensions and
the int32 type, we hypothesise that this structure
serves as a lookup table mapping QKYV chunks to
segment_ids for intra-document attention mask
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generation (Zhao et al., 2024).

To address this challenge, we increased both
Q and K/V chunk sizes. This solution appears
counter-intuitive since larger attention chunks tradi-
tionally consume more GPU HBM, as evidenced in
both Block-wise Attention (Liu and Abbeel, 2023)
(with larger blocks) and Flash Attention (Dao et al.,
2022) (with larger tiles). However, increasing
chunk sizes actually reduces the number of chunks
needed, thereby decreasing the dimension extent
of the lookup table tensor. This leads to reduced
memory usage, contrary to conventional wisdom
about chunk size and memory footprint.

We experimented with increasing query chunks
from 1024 to 2048 tokens, and key/value chunks
from 2048 to 4096 tokens. Fig 2 compares the
memory pre-allocated by the XLA compiler under
these two configurations. The larger chunk sizes
(orange line) consistently require less pre-allocated
memory than smaller chunks (blue line) across all
HLO graph nodes. This difference becomes es-
pecially significant in the later stages of the HLO
graph (nodes 4000-6000).

Most importantly, this method doubles the train-
ing context length on a single p4de. 24x node (8x
A100 with 80GB VRAM) from 256K to 512K to-
kens. However, while effective, this solution serves
as an interim workaround. Specifically, the root is-
sue stems from the XLLA compiler materialising the
massive chunk-to-segment mapping table statically.
A proper solution would improve the compiler to
generate dynamic mapping code, aligning with the
chunked attention design.
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Figure 3: Model performance comparison on RULER benchmark: top shows 128K context length results, bottom
shows average performance across context lengths from 8K to 128K.

5 Evaluation

The RULER benchmark (Hsieh et al., 2024) specif-
ically assesses long context capabilities in retrieval,
multi-hop tracing, aggregation, and long-form ques-
tion and answering. Fig. 3 shows that MegaBeam
performs better than GPT-4-1106 on the RULER
benchmark when the context length is 128K. For
the average performance across all lengths (8K
to 128K), MegaBeam as a 7B model performs
nearly on par with Llama-3.1-70B, and is ranked
higher than larger models such as Llama-3.1-8B,
Command-R-104B, and Qwen-2-72B. For exam-
ple, MegaBeam achieves near-perfect performance
on retrieval tasks (97% on 7 out of 8§ tasks at 128K),
strong results on multi-hop tracing (89% at 128K),
and competitive QA performance (77.4% on QA_1
at 128K).

The RULER benchmark (Hsieh et al., 2024)
demonstrates that MegaBeam maintains the base
model’s strong performance on short contexts of
4K-16K tokens (92-94% accuracy) while signifi-
cantly outperforming Mistral-7B-Instruct-v0.2 on
longer contexts (84% vs 14% at 128K tokens). This
confirms our training approach effectively extends
context length without compromising short-context
capabilities.

Additionally, as shown in Figure 3, Llama-3.1-

65

8B outperforms its 70B counterpart, suggesting
that model size alone does not guarantee superior
long-context processing. In contrast, the relation-
ship differs on BABILong, where Qwen-2.5-72B
exceeds its 7B version by 13 percentage points.
These varied outcomes across benchmarks sup-
port the motivation of this paper - specialised pre-
training and post-training for longer contexts can
enable compact models to achieve competitive per-
formance on many long-context tasks.

The BABILong benchmark (Kuratov et al.,
2024) evaluates the ability of LLM to perform rea-
soning tasks across facts distributed in extremely
long documents. We conducted MegaBeam’s evalu-
ation using the official BABILong benchmark code-
base?. Fig 4 shows that MegaBeam achieves 48.2%
accuracy at 64K context length and 40.2% at 128K
context length, outperforming several larger mod-
els including GPT-4-0125-preview (43% at 64K,
36% at 128K) and matching the performance of
Llama-3.1-8B and Phi-3-MoE-61B (49% at 64K,
39% at 128K) despite having only 7B parameters.
MegaBeam demonstrates particularly strong per-
formance on tasks requiring single-fact retrieval
and relational reasoning, maintaining consistent
performance as context length increases. Notably,
MegaBeam is currently the only open model that

Zhttps://github.com/booydar/babilong
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has achieved a competitive score (35% as shown
in Fig 6) on the 512K context BABILong tasks
without RAG or task-specific fine-tuning.

The HELMET benchmark (Yen et al., 2024) rep-
resents the latest evaluation framework for long-
context capabilities through realistic downstream
tasks. It contains seven diverse, application-centric
categories with model-based evaluation metrics,
and few-shot prompting capabilities. Fig. 5 shows
model performance comparison in the many-shot
In-Context Learning (ICL) category, using perfor-
mance data reported in (Yen et al., 2024) — At
128K context length, MegaBeam achieves an ICL

66

score of 85%, outperforming larger models such as
Mistral-Nemo (12B), Llama-3.1 8B and 70B.

6 Reasoning on BABILong

We evaluate MegaBeam’s performance on the BA-
BlLong benchmark (Kuratov et al., 2024), which
evaluates reasoning tasks across facts distributed in
extremely long documents. As MegaBeam is fine-
tuned on Mistral-7B-Instruct-v(0.2 which natively
supports 32K context, our analysis focuses partic-
ularly on the model’s capability to extend beyond
this length while maintaining performance.
MegaBeam demonstrates varying degrees of con-
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text extension capability across different tasks. For
Single Supporting Fact tasks (QA1), the model
maintains robust performance at 64K with 73%
accuracy, and continues to function at longer con-
texts with 51% at 128K, 37% at 256K, and 29% at
512K. While this represents 57% drop from 32K,
the degradation is gradual and sub-linear. In Two
Argument Relations tasks (QA4), MegaBeam ex-
hibits strong stability, with performance actually
improving from 47% at 32K to 52% at 64K, and
maintaining consistent performance even at 512K
(44%), showing a high “retention ratio" of 89%
from 32K to 512K. Similarly promising results are
seen in Three Argument Relations tasks (QAS),
where the model shows strong performance reten-
tion from 32K to 64K (71% to 66%), and maintains
an even higher score at 512K (75%), achieving an
impressive 92% retention ratio from OK to 512K.

However, MegaBeam still faces significant chal-
lenges with multi-fact reasoning at extended con-
texts. In Two Supporting Facts tasks (QA2), we
observe a steep performance decline from 33% at
32K to just 3% at 512K - a retention ratio of only
9%. The sharp linear degradation rate suggests that
our context extension approach struggles particu-
larly with maintaining multi-fact reasoning capa-
bilities. Similarly, Three Supporting Facts tasks
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(QA3) show both base model limitations (35-41%
at shorter contexts) and context extension chal-
lenges, with performance dropping to 18% at 512K
(51% retention ratio).

The weaker QA2/3 performance stems from mul-
tiple challenges: tracking object locations/posses-
sions, understanding temporal order, integrating
distributed information, and comprehending action-
state causal relationships.

7 Conclusion

We presented MegaBeam-Mistral-7B and demon-
strated its competitive long-context capabilities as a
smaller model trained using limited computational
resources. Our work addresses key technical chal-
lenges through progressive training methods, RoPE
theta tuning, position precision, and memory op-
timization. MegaBeam shows consistently strong
performance on real-world tasks like retrieval, rela-
tion processing, and in-context learning across long
contexts up to 512K tokens, while maintaining a
compact model size. Its limitation in multi-hop
reasoning tasks suggests areas for future improve-
ment in both base model capabilities and context
extension.
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Abstract

Mathematical error detection in educational set-
tings presents a significant challenge for Multi-
modal Large Language Models (MLLMs), re-
quiring a sophisticated understanding of both
visual and textual mathematical content along
with complex reasoning capabilities. Though
effective in mathematical problem-solving,
MLLMs often struggle with the nuanced task
of identifying and categorizing student errors in
multimodal mathematical contexts. Therefore,
we introduce MATHAGENT, a novel Mixture-
of-Math-Agent framework designed specifi-
cally to address these challenges. Our approach
decomposes error detection into three phases,
each handled by a specialized agent: an image-
text consistency validator, a visual semantic in-
terpreter, and an integrative error analyzer. This
architecture enables more accurate processing
of mathematical content by explicitly model-
ing relationships between multimodal problems
and student solution steps. We evaluate MATH-
AGENT on real-world educational data, demon-
strating approximately 5% higher accuracy in
error step identification and 3% improvement
in error categorization compared to baseline
models. Besides, MATHAGENT has been suc-
cessfully deployed in an educational platform
that has served over one million K-12 students,
achieving nearly 90% student satisfaction while
generating significant cost savings by reducing
manual error detection.

1

Multimodal Large Language Models (MLLMs)
have revolutionized the landscape of artificial in-
telligence by enabling the integration and under-
standing of diverse data formats (Wu et al., 2023a;
Xie et al., 2024; Yan et al., 2024c). These models
have demonstrated remarkable capabilities across
various domains, from visual question answering
to content generation and complex reasoning tasks
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Figure 1: Comparison between previous human-based (a) and
MLLM-based (b) paradigms vs. our proposed MATHAGENT
framework (c) for multimodal mathematical error detection.

(Yuan et al., 2025). As education increasingly em-
braces digital transformation (Yan et al., 2025; Ye
et al., 2025), the application of MLLMs to math-
ematical reasoning has emerged as a critical area
of research, offering potential solutions to enhance
teaching methodologies, provide personalized feed-
back, and support both educators and students in
mathematical learning environments (Kiichemann
et al., 2025; Wang et al., 2024b; Yan et al., 2024a).

While significant progress has been made in uti-
lizing MLLMs for mathematical problem-solving,
a more practical and educationally valuable appli-
cation lies in mathematical error detection (Li
et al., 2024d; Song et al., 2025; Yan et al., 2024b;
Yang et al., 2024; Zheng et al., 2024a). In real edu-
cational settings, identifying and categorizing stu-
dents’ mathematical errors provides deeper insights
into their conceptual understanding and learning
gaps than merely evaluating final answers (Jiang
et al., 2024; Pepin et al., 2025). Error detection is
a significantly more challenging task for MLLMs
compared to standard problem-solving, as it re-
quires not only understanding the correct solution
path but also analyzing the student’s flawed reason-
ing process. This task involves processing multiple
inputs: the original problem (which may include
multimodal elements), the correct solution, the stu-
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dent’s incorrect answer, and their detailed reason-
ing steps. The expected output comprises both
error step identification (pinpointing exactly where
the reasoning went wrong) and error categorization
(classifying the type of misconception or mistake).
This comprehensive analysis enables targeted edu-
cational interventions that address specific learning
needs (Chu et al., 2025; Yan et al., 2024a).
Existing error detection approaches face signif-
icant limitations when applied to real-world mul-
timodal mathematical problems. @ As shown in
Figure 1(a), traditional human-based approaches
rely on expert teams to provide detailed corrections.
While precise and pedagogically sound, these meth-
ods are inherently unscalable and cannot meet the
growing demand for personalized feedback in dig-
ital learning environments (Li et al., 2024c). @
As illustrated in Figure 1(b), MLLM-centric ap-
proaches, despite their computational scalability,
exhibit suboptimal performance in mathematical
image comprehension. For instance, symbolic rep-
resentations in diagrams (e.g., misaligned coordi-
nate systems) or mismatched text-image pairs (e.g.,
inconsistent geometric labels) often evade detec-
tion by MLLMs, leading to false predictions in
error detection (Lu et al., 2023; Zhang et al., 2024).
To address these challenges, we propose and
deploy MATHAGENT, a novel Mixture-of-Math-
Agent framework specifically designed for multi-
modal mathematical error detection. Drawing in-
spiration from expert-guided problem-solving prac-
tices (Chen et al., 2025b; Li et al., 2024a), our
framework decomposes the error detection work-
flow into three synergistic agents (refer to Figure
1(c)): an image-text consistency validator to detect
semantic consistency, a visual semantic interpreter
to extract structured expression from visual part of
the problem, and an integrative error analyzer that
correlates all text-based inputs to pinpoint error
locations and categorize misconception types. By
explicitly modeling the interdependencies between
textual problem formulations, visual mathematical
objects, and solution steps, MATHAGENT over-
comes the aforementioned challenges inherent in
both human-driven and MLLM-based approaches
while maintaining computational tractability for
real-world deployment.
Our contributions can be summarized as follows:
® We introduce MATHAGENT, the first agent-
based framework specifically designed for mul-
timodal mathematical error detection. Unlike
previous paradigms that struggle with scalabil-
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ity, visual comprehension, and complex reasoning,
MATHAGENT leverages a novel mixture-of-agents
approach, decomposing the task into multiple sub-
tasks via specialized mathematical agents.

® We validate our approach on data sampled
from a real educational platform, demonstrating
performance improvements over baseline models.
MATHAGENT achieves approximately 5% higher
accuracy in error step identification and 3% higher
accuracy in error categorization, confirming its ef-
fectiveness in practical educational settings.

® MATHAGENT has been successfully de-
ployed in an educational platform that has
served over one million K-12 students. The sys-
tem has achieved nearly 90% student satisfaction
rates while yielding estimated cost savings of ap-
proximately one million dollars by reducing the
need for manual error detection, demonstrating
both its practical utility and economic value.

2 Related Work
2.1

Mathematical error detection has evolved signifi-
cantly from traditional rule-based systems to more
sophisticated Al approaches (Li et al., 2024¢; Yan
et al., 2024a). Early work focused on predefined
error patterns and procedural mistakes in specific
mathematical domains, such as arithmetic opera-
tions or algebraic manipulations (Rushton, 2018).
With the advent of deep learning, researchers de-
velop models capable of identifying more complex
conceptual misunderstandings by analyzing stu-
dent solution processes (Xu et al., 2024a). Recent
advances have leveraged LLMs to provide more
nuanced error analysis and feedback generation,
demonstrating promising results in understanding
diverse student reasoning patterns (Gao et al., 2024;
Li et al.,, 2024d, 2025a). However, most existing
research has primarily focused on text-based set-
tings, with limited focus on multimodal contexts
where visual elements play a crucial role in prob-
lem representation (Yan et al., 2024b). MATHA-
GENT extends the frontier of mathematical error
detection by specifically addressing the challenges
of multimodal mathematical reasoning, introducing
a specialized agent-based framework.

Mathematical Error Detection

2.2 Agent for Mathematical Reasoning

The application of agent-based approaches to math-
ematical reasoning has gained significant traction
in recent years (Chu et al., 2025). Initial efforts
focused on single-agent systems that could execute



predefined mathematical operations or follow struc-
tured solution procedures (Mei et al., 2024; Mitra
et al., 2024). As LLMs advanced, researchers de-
veloped more sophisticated agents capable of step-
by-step reasoning, self-verification, and even multi-
step planning for complex mathematical problem-
solving (Li et al., 2024b; Wu et al., 2023b; Xiong
et al., 2024). Recent work has explored multi-agent
frameworks where specialized agents collaborate
on different aspects of mathematical reasoning,
such as problem decomposition, solution planning,
and verification (Gou et al., 2023; Xu et al., 2024b;
Zhang et al., 2025). However, existing agent-based
systems for mathematical reasoning have primarily
focused on problem-solving rather than error detec-
tion, and few have adequately addressed the unique
challenges posed by multimodal mathematical con-
tent. Our MATHAGENT represents a significant
advancement in this domain by introducing a co-
ordinated multi-agent system specifically designed
for multimodal mathematical error detection.
See more related work in Appendix A.

3  Our Proposed MATHAGENT
3.1 Task Setting

We evaluate the framework’s capability for multi-
modal error detection. The evaluation set contains
N samples. For each sample 7, input Z; includes:

* Qrext,i: The textual problem statement.

* Qimage,i: The visual part of the problem.
* Acorrect,it The correct solution.

* Aincorrect,i: An incorrect student solution.

* {Ski}r_,: A sequence of n; steps represent-
ing the student’s step-by-step solution.

We define two subtasks as follows:

Subtask 1: Error Step Identification. The goal
is to identify the index, x;, of the first incorrect step
in the solution sequence { S} ;}. Formally:

x; = arg mkin{k | Sk.; is incorrect}

Subtask 2: Error Categorization. The goal is to
classify the fype of error into one of five categories
based on the first incorrect step: VIS (Visual Per-
ception), CAL (Calculation), REAS (Reasoning),
KNOW (Knowledge), and MIS (Misinterpretation).
The error category is denoted as Cerror,i. See details
of error categories in Appendix B.
We use accuracy to evaluate performance.
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* Error Step Identification Accuracy:
1N

ACCstep = ﬁ Z;]I(ZCZ = Gstep,i)
1=

where Gep,; is ground truth index of the first
incorrect step, and I is the indicator function.

* Error Categorization Accuracy:

N
1
AcCeae = N E ]I(Cerror,i = Gerror,i)
=1

where Gerror,; 18 ground truth error category.

3.2 Framework Overview

Our MATHAGENT framework is designed for real-
world multimodal mathematical error detection. As
illustrated in Figure 2, the framework takes as in-
put a multimodal mathematical problem (text and
image), a correct answer, a student’s incorrect an-
swer, and their solution steps. The output is the
identified error step and the corresponding error
category. The framework operates in three sequen-
tial phases: Image-Text Consistency Verification
(Sec.3.3), Question Type-Driven Visual Semantic
Conversion (Sec.3.4), and Multimodal Information
Integration (Sec.3.5). Each phase employs a spe-
cialized agent to perform a specific task.

3.3 Phase 1: Image-Text Consistency
Verification

Motivation. Recent studies have demonstrated
that MLLMs often exhibit lower performance in
multimodal mathematical reasoning tasks when
the image and text information are highly redun-
dant (Lu et al., 2023; Zhang et al., 2024). This
phenomenon highlights the current limitations of
MLLMs in visual understanding and multimodal
semantic alignment (i and Tang, 2024; Wu et al.,
2024). Furthermore, in real-world educational set-
tings, adaptively identifying high image-text consis-
tency can improve efficiency, allowing us to bypass
subsequent processing steps and directly proceed
to error detection for highly overlapping problems.

Methodology. We introduce the Image-Text
Consistency Validator. This agent takes the im-
age and the textual description of the problem as
input. It outputs a binary decision: whether the
image and text are highly semantically consistent.
The agent automatically determines the extent of
semantic similarity between the image and text.
Our system defaults to using GPT-40' as the agent

'We used gpt-40-2024-11-20.
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Figure 2: The framework of our proposed Mixture-of-Math-Agent for multimodal mathematical error detection.

for this phase. For example, if the image depicts a
triangle with labeled angles and the text describes
the same triangle and angles, the validator would
output “highly consistent.”

3.4 Phase 2: Question Type-Driven Visual
Semantic Conversion

Motivation. If the image and text information
are not highly overlapping, we need an effective
way to extract visual information for subsequent
error detection. Inspired by recent advances in
symbolic reasoning (Alotaibi et al., 2024; Li et al.,
2025b; Sullivan and Elsayed, 2024), we propose
that MLLMs can adaptively dispatch specialized
visual models based on the question type to con-
vert visual information into a textual format. In
particular, multimodal plane geometry problems,
with their well-defined geometric relationships, are
well-suited for conversion into formal language.
Multimodal diagram problems, often involving ta-
bles or charts, are best represented using IATEX.
Other types are converted into textual descriptions.

Methodology. We propose the Visual Seman-
tic Interpreter. This agent takes the image and the
question type as input, and its output is a text-based
representation of the visual information, tailored
to the specific question type. The agent first de-
termines the question type (e.g., plane geometry,
diagram, algebra) and then selects the appropriate
conversion method. Our system defaults to using
corresponding visual-specific models” as the agent
for this phase. For instance, if the image is iden-

Refer to Appendix C for details.
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tified as a plane geometry setting, the interpreter
might output a formal language representation like
“Triangle(A, B, C), Angle(BAC, 45), Line(AB, 5).”

3.5 Phase 3: Multimodal Information
Integration

Motivation. Based on the extracted visual infor-
mation from the previous phase, a comprehensive
integration of all available information is crucial
for accurate error localization. This phase must
combine the problem’s content, the student’s incor-
rect answer, and their reasoning steps to pinpoint
the cause of the error. The agent in this phase is
directly responsible for the output of the two sub-
tasks: error step identification and error categoriza-
tion. Our system is designed to be compatible with
any MLLM for inference, leveraging the increas-
ingly powerful information integration capabilities
of modern LLMSs (An et al., 2024).

Methodology. We introduce the Integrative Er-
ror Analyzer. This agent takes as input the prob-
lem’s textual description, the converted visual in-
formation, the true answer, the student’s answer,
and the student’s step-by-step solution. It outputs
the identified error step and the error category. The
agent first integrates all textual information and
then analyzes the student’s solution step-by-step,
comparing it against the correct solution path. The
agent for this phase is a flexibly selectable MLLM.
For example, given a student’s incorrect calculation
in a geometry problem, the analyzer might output
“Error Step: #3” and “Error Category: Calculation”.



Table 1: Main result of baseline MLLMs and corresponding MATHAGENT framework. We denote STEP and CATE for error
step identification and error categorization, the two subtasks of error detection, respectively, in Section 4.2.

Error Categorization

Model Error Step Average
Identification VIS CAL REAS KNOW MIS Overall
GPT-40 (OpenAl, 2024) 55.10 4630 5040  64.90 9.20 46.30 53.08 54.09
w/ MATHAGENT 59.50%4" 48.40%11 55.00*5T 63.90%F 9.50°3T  54.0077T 5511297 57.30%2"
Gemini-Pro-1.5 (Reid et al,, 2024)  52.00 9.10 46.80  62.70 31.90 13.00 4451 48.26
w/ MATHAGENT 57.90°-°T 15.70%5T 48507 61.30%* 33.30%4T 21.00%°T 46.10%%T 52.00%57
Claude-3.5-Sonnet (Anthropic, 2024) 50.20 35.70 48.40 64.80 21.00 11.40 49.50 49.85
w/ MATHAGENT 55.10%°1 40.10%4T 5530997 62.70% 1+ 24.70%7T 22.40'10T 52,6317 53.86%0T
Qwen-VL-Max (Team, 2024) 48.70 1520 7890  50.50 14.30 36.60 52.87 50.78
w/ MATHAGENT 56.705-0T 21.70%°T 81.30%4T 53.40%°T 12.80'°% 36.60°°T 55.80*9T 56.25°°T
InternVL2 (Chen et al., 2024) 54.40 33.40 9240  25.10 10.90 8.10 49.46 51.93
w/ MATHAGENT 5630197 38.80°4T 85.307-1% 36.80*17T 19.00%1T 13.70°%T 52.83%4T 54.57%67
LLaVA-NEXT (Liu et al., 2024a) 48.44 7.10 86.00 32.00 7.60 0.80 45.08 4844
w/ MATHAGENT 57.60°-51 15.70%:9T 84.50%°% 45101311 8.30%7" 3.80%°T  51.05%0T 54.32°97
Average Improvement 5271 5.6 T 1.21 3971 2.171 5971 3.271 4.2 1
Human 81.60 70.30 86.00  63.50 5340  62.00 72.23 76.91

4 Experiment
4.1 Experiment Settings

Dataset. The dataset consists of a carefully curated
collection of 2,500 multimodal mathematical ques-
tions sourced from real student problem-solving
data on educational platforms. Each entry in this
evaluation dataset has been meticulously selected
by educational experts to ensure high quality, free
from issues such as erroneous question design. The
student responses represent the most frequent in-
correct answers corresponding to each question.
Furthermore, the erroneous steps and error cate-
gory labels for each question have been determined
through discussions among at least three experi-
enced educational specialists. The dataset predom-
inantly features plane geometry problems, supple-
mented by solid geometry, diagrams, algebra, and
mathematical commonsense questions. Refer to
Appendix D for more dataset details.

Models. We select representative MLLMs (See
sources in Appendix E) that have demonstrated ef-
fectiveness in recent studies (Wang et al., 2024a;
Yan et al., 2024b; Zhang et al., 2024): InternVL-
2 76B (Chen et al., 2024), LLaVA-NEXT 72B
(Liu et al., 2024a), Qwen-VL-Max (Team, 2024),
Claude-3.5-Sonnet (Anthropic, 2024), Gemini-Pro-
1.5 (Reid et al., 2024), and GPT-40 (OpenAl, 2024).
These MLLMs are already deployed on the educa-
tional platform, allowing for a direct comparison
of the gains achieved by MATHAGENT. In our ex-
periments, directly applying each MLLM to error
detection serves as a baseline. We then evaluate the
effectiveness of the MATHAGENT framework by
systematically decomposing the complex reasoning
task, with the agent in Phase 3 retaining the base-
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line MLLM. Additionally, we engage evaluators
with a background in education to conduct corre-
sponding human evaluations, aiming to assess the
gap between MLLM and human-level intelligence.

4.2 Experimental Results & Analysis

Overall Performance Improvement with MATH-
AGENT. As shown in Table 1, MATHAGENT
demonstrates significant performance improve-
ments across both STEP and CATE subtasks.
When integrated with various baseline MLLMs,
MATHAGENT consistently enhances their error de-
tection capabilities, with an average improvement
of 4.2% across all models. Specifically, the frame-
work boosts GPT-40’s performance from 54.09%
to 57.30% (3.2% increase) and shows similar im-
provements for other models. This consistent en-
hancement across diverse architectures suggests
that MATHAGENT can address inherent challenges
in multimodal mathematical error detection by sys-
tematically processing multimodal information.
Differential Impact on STEP vs. CATE Tasks.
The MATHAGENT framework yields more substan-
tial improvements in STEP compared to CATE.
Across all tested models, MATHAGENT achieves
an average improvement of 5.2% in STEP tasks,
while the enhancement for overall CATE tasks is
3.2%. For instance, GPT-40 shows a 4.4% im-
provement in STEP but only a 2.0% improvement
in CATE. This difference likely stems from MATH-
AGENT ’s information extraction and integration,
which particularly benefits the error localization in
sequential solution steps, while the more nuanced
task of error categorization remains challenging.
Category-Specific Performance Variations.
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Figure 3: Ablation study of MATHAGENT.

MATHAGENT demonstrates the most significant
improvements in detecting VIS and MIS, with av-
erage enhancements of 5.6% and 5.9% respectively
across all models. For example, Gemini-Pro-1.5
shows a remarkable 6.6% improvement in VIS
and 8.0% in MIS categories when augmented with
MATHAGENT. In contrast, improvements in CAL,
REAS, and KNOW are more modest at 1.2%, 0.4%,
and 2.1% respectively. This pattern highlights
MATHAGENT ’s effectiveness in addressing multi-
modal integration challenges, as VIS and MIS er-
rors fundamentally involve misalignments between
visual information and problem interpretation.

Gap Between MATHAGENT and Human Per-
formance. Despite the notable improvements,
MATHAGENT still falls short of human-level per-
formance in mathematical error detection. The
best-performing MATHAGENT-enhanced frame-
work (GPT-40 at 57.30%) remains significantly be-
low human performance (76.91%). The persistent
performance gap underscores the inherent complex-
ity of mathematical error detection, which requires
sophisticated reasoning abilities, domain knowl-
edge, and multimodal understanding.

4.3 Ablation Study

As depicted in Figure 3, we evaluate performance
of our MATHAGENT framework and its ablative
variants, using GPT-40 with the best overall per-
formance as the base setting. We investigate three
variants: (i) w/o Image-Text Consistency Validator,
which bypasses consistency check and processes
all images in Phase 2; (ii) w/o Visual Semantic
Interpreter, which replaces question type-driven
visual model scheduling with a unified captioning
approach for all images; and (iii) w/o Integrative
Error Analyzer, which simply concatenates tran-
scribed image information with student’s solution
steps and answer, omitting the integration with the
problem’s textual description. The results demon-
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strate that MATHAGENT achieves the highest accu-
racy on both STEP and CATE tasks. Notably, the
w/o Visual Semantic Interpreter variant exhibits the
lowest performance, presumably because generic
descriptions of abstract geometric images may omit
crucial details like edge lengths and angle measures.
Removing the Image-Text Consistency Validator
also leads to a performance drop, suggesting that
discrepancies between potentially flawed image
transcriptions and textual problem description can
introduce contradictory information, negatively im-
pacting the complex reasoning process.

5 Industrial Impact

Error Detection Performance Enhancement in
Real-World Educational System. When deployed
in educational platforms, MATHAGENT has demon-
strated remarkable improvements in error detection
performance that directly translate to educational
value. As a diagnostic tool, MATHAGENT provides
more precise feedback on student work, enabling
targeted interventions. Furthermore, MATHAGENT
’s adaptive architecture optimizes computational re-
sources by automatically filtering problems based
on image-text consistency and selecting specialized
visual models according to problem types.
Student Satisfaction Rate Improvement. A/B
testing conducted on the educational platform re-
veals significant improvements in student satis-
faction with MATHAGENT-powered feedback sys-
tems. In a controlled study involving 10,000 K-
12 students, MATHAGENT-enhanced feedback re-
ceived an over 90% satisfaction rating, compared to
75% for traditional MLLM-based feedback. These
improvements in student experience demonstrate
MATHAGENT ’s effectiveness as a pedagogically
valuable tool that enhances the learning process.
We discuss more impact in Appendix F.

6 Conclusion

This paper presented MATHAGENT, a novel and ef-
fective framework for multimodal mathematical er-
ror detection in real-world educational settings. By
leveraging a mixture-of-agent approach, MATHA -
GENT overcomes the limitations of existing human-
based and MLLM-centric methods, achieving su-
perior performance in identifying and categoriz-
ing student errors. The successful deployment of
MATHAGENT on a large-scale educational plat-
form, with improvements in accuracy, student sat-
isfaction, and cost-effectiveness, underscores its
significant technical and practical value.



Limitations

Despite the contributions demonstrated in our work,
several limitations remain:

1. The eftectiveness of MATHAGENT is contin-
gent on the quality of the multimodal inputs.
Poorly formatted or ambiguous problems may
lead to inaccurate error detection. We will
enhance our engineering pipeline to improve
data cleaning and optimization processes, en-
suring that input data is standardized and of
high quality, which will lead to more accurate
error detection.

2. While MATHAGENT improves error detection
accuracy, it may still struggle with a broader
range of error categories beyond the five spec-
ified. We will collaborate with educational ex-
perts to develop a more comprehensive frame-
work of error categories that aligns with stu-
dent needs and encompasses a wider variety
of mathematical errors.

. MATHAGENT does not incorporate recent ad-
vancements in ol-like slow-thinking reason-
ing, which may enhance the depth of error
analysis but could impact user feedback time
in deployed systems. In the future, we will
explore integrating user intent recognition to
adaptively schedule fast and slow reasoning
modes, providing students with comprehen-
sive and timely error analysis based on their
needs.
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A More Related Work
A.1 Multimodal Large Language Model

Current MLLMs adopt a similar framework, in-
cluding a vision encoder, a connector, and an LLM
backbone, which was initially proposed by LLaVA
(Liu et al., 2024b). By training these components
via visual instruction tuning, the vision embeddings
extracted by the vision encoder are aligned with
the word space of LLM through the connector (Ra-
iaan et al., 2024; Shao et al., 2024). Such a frame-
work enables MLLMs to understand visual input
such as images and video, while preserving the
powerful reasoning and generation abilities of au-
toregressive LLMs (Deng et al., 2025). As a re-
sult, some MLLMs achieve state-of-the-art perfor-
mance across a wide variety of multimodal tasks
such as visual question answering (Maias et al.,
2024; Xiao et al., 2025), image captioning (Bianco
et al., 2023; Patel et al., 2025), video understand-
ing (Huang et al., 2024; Zhou et al., 2024b), and
more diverse tasks (Huo et al., 2024; Yan and Lee,
2024). On the other hand, with the development
of ol-like systems in LLMs (Jaech et al., 2024; Li
et al., 2025¢c; Zhong et al., 2024), there is also a
tendency to trigger the slow-thinking potentials of
MLLMs (Yang et al., 2025b; Yao et al., 2024; Zhao
et al., 2025). For example, Virgo (Du et al., 2025)
makes a preliminary exploration of multimodal
slow-thinking systems by directly fine-tuning a
capable MLLM with a small amount of textual
long-form thought data, while Vision-ol (Ni et al.,
2024) proposes a multimodal multi-turn chain-of-
thought framework to simulate human reasoning
for MLLMs on ambiguous instructions. Further-
more, LlamaV-ol (Thawakar et al., 2025) uses a
multiturn curriculum learning approach to facili-
tate MLLMs in incremental skill acquisition and
problem-solving. Despite these efforts, the devel-
opment of ol-like multimodal systems is still in its
stages (Chen et al., 2025¢; Masterman et al., 2024;
Xu et al., 2025), with significant problems such
as overthinking (Cuadron et al., 2025; Yang et al.,
2025a), safety (Chen et al., 2025a; Huo et al., 2025;
Zhao et al., 2024), and hallucination (Sun et al.,
2025; Zheng et al., 2024b; Zhou et al., 2024a).

B Error Category Details

The discrepancies within the five error categories
are delineated as follows:

% Visual Perception Errors (VIS): These errors
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arise when there is a failure to accurately inter-
pret the information contained within images or
diagrams presented in the question due to visual
issues.

Calculation Error (CAL): These errors mani-
fest during the calculation process, which may
include arithmetic mistakes such as incorrect ad-
dition, subtraction, multiplication, or division,
errors in unit conversion, or mistakes in the nu-
merical signs between multiple steps.

Reasoning Error (REAS): These errors occur
during the problem-solving process when im-
proper reasoning is applied, leading to incorrect
application of logical relationships or conclu-
sions.

Knowledge Error (KNOW): These errors result
from incomplete or incorrect understanding of
the knowledge base, leading to mistakes when
applying relevant knowledge points.

Misinterpretation of the Question (MIS):
These errors occur when there is a failure to cor-
rectly understand the requirements of the ques-
tion or a misinterpretation of the question’s in-
tent, leading to responses that are irrelevant to the
question’s demands. For instance, if the question
asks for a letter and a number is provided, or vice
versa.

C Visual-Specific Models

In our deployed system, we employ specialized
models tailored to different problem types to en-
sure optimal performance. For plane geometry
problems, we utilize Inter-GPS?, a groundbreaking
geometry problem solver developed by Lu et al.
(2021). As the first system capable of automatic
program parsing and interpretable symbolic rea-
soning, Inter-GPS demonstrates its effectiveness
through dual-channel processing: it employs rule-
based text parsing for textual analysis and neural
object detection for diagram interpretation, seam-
lessly converting problem texts and diagrams into
formal language representations. Furthermore, its
integration of theorem knowledge as conditional
rules enables systematic, step-by-step symbolic rea-
soning.

When addressing diagram-based problems, par-
ticularly those involving tabular data, we imple-

3https://github.com/lupantech/InterGPS



ment StructTable-InternVL2-1B*, a sophisticated
model developed by Xia et al. (2024). This end-
to-end solution, known as StructEqTable, excels
in visual table processing by accurately generating
LaTeX descriptions from table images while simul-
taneously supporting multiple advanced functional-
ities, including structural extraction and question-
answering capabilities, thereby significantly ex-
panding its practical applications.

For general visual content processing beyond
these specialized domains, we leverage the vit-gpt2-
image-captioning model’ to generate comprehen-
sive and detailed image captions, ensuring robust
performance across diverse visual understanding
tasks.

D Dataset Details

D.1 Dataset Statistics

Our evaluation dataset comprises 2,500 multimodal
mathematical questions spanning diverse problem
types and error categories. As illustrated in Fig-
ure 4, the dataset is predominantly composed
of Plane Geometry problems (62.4%), followed
by Algebra (11.5%), Diagram problems (9.3%),
Math Commonsense (9.2%), and Solid Geometry
(7.6%). This distribution reflects the prevalence of
geometry-based problems in mathematical educa-
tion that benefit significantly from visual represen-
tation and analysis.

The dataset captures a wide spectrum of error
categories that students commonly encounter. Rea-
soning Errors constitute the largest proportion at
38.0%, highlighting the challenges students face in
logical deduction and proof construction. Calcula-
tion Errors account for 36.5% of the dataset, repre-
senting arithmetic mistakes and computational inac-
curacies. Visual Perception Errors make up 15.8%,
underscoring the importance of correctly inter-
preting visual elements in mathematical problem-
solving. Knowledge Errors and Misinterpretation
of Questions represent smaller but significant por-
tions at 4.8% and 4.9% respectively.

The complexity of the problems is reflected in
the reasoning steps required for solution, with an
average of 7.6 steps per problem, ranging from a
minimum of 3 to a maximum of 20 steps. The
textual component of the problems varies consider-

*https://github.com/Alpha-Innovator/StructEqTable-
Deploy

Shttps://huggingface.co/nlpconnect/vit-gpt2-image-
captioning
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Statistic Number
Total multimodal questions 2,500
Problem Type

- Plane Geometry 1559 (62.4%)
- Solid Geometry 191 (7.6%)
- Diagram 233 (9.3%)
- Algebra 288 (11.5%)
- Math Commonsense 229 (9.2%)
Error Category

- Visual Perception Error 395 (15.8%)
- Calculation Error 912 (36.5%)
- Reasoning Error 951 (38.0%)
- Knowledge Error 119 (4.8%)

- Misinterpretation of the Qns 123 (4.9%)

Average Reasoning Step 7.6
Maximum Reasoning Step 20
Minimum Reasoning Step 3

Average Question Length 168
Maximum Question Length 719
Minimum Question Length 13

Figure 4: Key statistics of dataset.

ably in length, averaging 168 characters, with the
shortest problem containing just 13 characters and
the most verbose extending to 719 characters. This
variation in problem complexity and presentation
provides a robust benchmark for evaluating MATH-
AGENT ’s performance across different mathemati-
cal contexts and difficulty levels.

D.2 Data Source

The data used in this study originates from a real-
world online education platform, ensuring its rel-
evance and applicability to practical educational
scenarios. This dataset is not synthetically gener-
ated; instead, it comprises authentic student sub-
missions, including both correct and incorrect so-
lutions. This provides a realistic representation of
the types of errors students commonly make in a
learning environment. Furthermore, the data in-
cludes a diverse range of mathematical problems,
reflecting the breadth of topics covered in K-12
mathematics curricula. The use of real-world data
enhances the ecological validity of our findings and
ensures that the MATHAGENT framework is evalu-
ated on data that closely resembles the challenges
encountered in actual educational settings. The
platform anonymizes all student data to protect pri-
vacy, while preserving the integrity and richness of
the information needed for effective error detection
and analysis.



E Model Sources

Table 2 details specific sources for the various
MLLMs we evaluate. The chosen MLLMs have
been deployed in the educational platform for real-
world and real-time evaluation.

MLLMs | Source | URL

InternVL2- | local checkpoint https://huggin

76B gface.co/OpenG
VLab/InternVL2
-Llama3-76B

LLaVA- local checkpoint https://huggin

NEXT- gface.co/llava

72B -hf/1llava-nex
t-72b-hf

Qwen-VL- | qwen-v1-max-0809 https://models

Max cope.cn/studio
s/qwen/Qwen-V
L-Max

Claude- claude-3-5-sonnet https://www.an

3.5-Sonnet thropic.com/ap
i

Gemini- gemini-1.5-pro-latest| https://deepmi

Pro-1.5 nd.google/tech
nologies/gemin
i/pro/

GPT-40 gpt-40-2024-11-20 https://platfo
rm.openai.com/
docs/models/gp
t-40

Table 2: Sources of our evaluated MLLMs.

F More Industrial Impact

We discuss more industrial impact of MATHAGENT
as follows:

Cost Savings and Resource Optimization.
Based on industry standards where expert mathe-
matical error annotation costs approximately $1 per
problem, MATHAGENT has generated estimated
savings of $1.2 million annually. This calculation
is derived from serving approximately 120,000 stu-
dents, each of whom receives feedback on an av-
erage of 10 complex mathematical problems per
month. Additionally, the system reduces teacher
workload by an estimated 4.7 hours per week, al-
lowing educators to focus on higher-value instruc-
tional activities rather than routine error identifi-
cation. This translates to significant time savings,
which can be redirected towards personalized in-
struction, curriculum development, or professional
development. This efficiency gain is particularly
important as online learning platforms scale to
serve larger student populations.

Learning Outcome Acceleration. Longitudi-
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nal studies tracking student performance before
and after MATHAGENT implementation show mea-
surable improvements in learning outcomes. Stu-
dents receiving MATHAGENT-powered feedback
demonstrated a 23% faster mastery rate of complex
mathematical concepts compared to control groups.
This accelerated learning trajectory is attributed to
the system’s ability to provide immediate, precise
feedback on mathematical errors, allowing students
to correct misconceptions earlier in their learning
process. The educational impact is particularly
pronounced in traditionally underserved school dis-
tricts, where access to expert mathematics teachers
is limited, helping to narrow the achievement gap
in STEM education.

Teacher Professional Development Enhance-
ment. Beyond student-facing benefits, MATHA -
GENT serves as a powerful professional develop-
ment tool for mathematics educators. By analyzing
patterns in student errors across classrooms, the
system generates insights into common misconcep-
tions and learning obstacles that inform teaching
strategies. Teachers report that these insights have
transformed their instructional approaches, with
20% indicating they have modified their teaching
methods based on MATHAGENT ’s analytics. Fur-
thermore, the system serves as a model for teach-
ers to improve their own feedback practices, with
educators reporting a 32% increase in confidence
when providing mathematical explanations after
using the system for one semester. This “teach the
teacher” effect creates a virtuous cycle where both
student learning and teacher effectiveness continu-
ally improve.
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Abstract

Despite advances in unsupervised log anomaly
detection, current models require dataset-
specific training, causing costly procedures,
limited scalability, and performance bottle-
necks. Furthermore, numerous models lack
cognitive reasoning abilities, limiting their
transferability to similar systems. Additionally,
these models often encounter the ''identical
shortcut' predicament, erroneously predict-
ing normal classes when confronted with rare
anomaly logs due to reconstruction errors. To
address these issues, we propose MLAD, a
novel Multi-system Log Anomaly Detection
model incorporating semantic relational rea-
soning. Specifically, we extract cross-system
semantic patterns and encode them as high-
dimensional learnable vectors. Subsequently,
we revamp attention formulas to discern key-
word significance and model the overall distri-
bution through vector space diffusion. Lastly,
we employ a Gaussian mixture model to high-
light rare word uncertainty, optimizing the vec-
tor space with maximum expectation. Experi-
ments on real-world datasets demonstrate the
superiority of MLAD .

1 Introduction

Logs play a vital role in system maintenance by
recording operations and outcomes that can reveal
abnormal behavior. Data-driven log analysis tech-
niques have been widely used to automatically de-
tect anomalies in system behavior (Du et al., 2017a;
Chandola et al., 2009; Meng et al., 2019a; Guo
et al., 2024). However, most log anomaly detection
models are designed for a single system, following
a "'one model for one system'' approach (Yu et al.,
2024; Su et al., 2024; Guo et al., 2023b), as shown
in Fig.1(a). This siloed training limits generaliza-
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'We provide code and dataset: https://github.com/
LolerPanda/Multi-System-Log-Anomaly-Detection

&3

Datasets Datasets

|
I
A} O Normal
oo, TRy e st
— J e
A
[ 1 (] 1
—— Model 2 0% | e
i .
H H : i
=< . )
Thunderbird ~ :(.:) ! Boundary Thunderbird
k- !

(a) (b)

Figure 1: Multi-system log anomaly detection task. (a)
Existing models learn separate decision bounds for dif-
ferent object logs. (b) We model the multi-system log
distributions so that a single bound can detect anoma-
lies.

tion and fails to capture patterns common across
different systems.

Integrating log data from multiple systems of-
fers the potential to uncover anomalous patterns
hidden in isolated datasets. In practice, though,
new systems often lack sufficient log data to train
reliable models, leading to delayed deployment and
missed anomalies (Landauer et al., 2024). Existing
methods also tend to overlook deeper semantic fea-
tures (Wang et al., 2017; Guo et al., 2023a) shared
across systems. As a result, similar anomalies,
such as repeated error or warning messages, oc-
curring across different system logs may remain
undetected.

To address these challenges, we introduce
MLAD—a generalized log anomaly detection
model designed for multiple systems, as illustrated
in Fig.1(b). MLAD learns a unified decision bound-
ary to classify normal and abnormal events across
all systems, rather than maintaining separate mod-
els per system. Unlike reconstruction-based meth-
ods that can misclassify anomalies due to the “iden-
tical shortcut” (You et al., 2022) effect, where rare
abnormal logs are reconstructed too well and thus
labeled normal (Yao et al., 2024), MLAD avoids
this pitfall. It employs a deflationary transforma-
tion of the vector space to amplify distinctions be-
tween normal and abnormal log samples. This
transformation clusters similar log entries together
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Figure 2: The architecture of our proposed MLAD.

while pushing normal and anomalous logs farther
apart, making anomalies easier to isolate.

MLAD combines a Transformer (Vaswani
et al., 2017) and a Gaussian Mixture Model
(GMM) (Zong et al., 2018; Vilnis and McCallum,
2015) in a unified architecture. The Transformer
component learns rich semantic representations of
log sequences, capturing context and reducing re-
construction error (Ma et al., 2024). The GMM
component functions as a robust probabilistic clas-
sifier for distinguishing normal from anomalous
log instances. We train the Transformer and GMM
jointly, which minimizes encoding errors and yields
more precise anomaly detection. Our contributions
are:

* Multi-System Anomaly Detection. Intro-
duces a new model for detecting anomalies
across multiple systems, overcoming the lim-
itations of traditional one-model-per-system
methods.

Hybrid Transformer—GMM Architecture.
Integrates Transformers with GMMs, jointly
learning semantic log representations while
preserving clear separation between normal
and abnormal events.

* Addressing “Identical Shortcut”. Mitigates
the identical shortcut problem by transforming
the vector space, which effectively separates
abnormal samples from normal ones based on
learned distance relationships.

Improved Performance. Extensive experi-
ments on real-world log datasets show that
MLAD outperforms state-of-the-art anomaly
detection approaches.
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2 Related Work

Traditional log anomaly detection methods use
manual rules or statistical approaches like SVD
(Mahimkar et al., 2011), ARIMA (Zhang et al.,
2005), and variants. While effective to some extent,
these models are noise-sensitive and parameter-
sensitive (Chen et al., 2023a), limiting practical
applications. Recent models leverage deep learn-
ing networks (Du et al., 2017b; Han and Yuan,
2021; Zhang et al., 2022). Du et al. proposed
DeepLog (Du et al., 2017b), an LSTM architecture
for identifying anomalous log message sequences.
LogAnomaly (Meng et al., 2019b) improves on
DeepLog by using log sequence embedding rather
than template sequences. Zhang et al. introduced
LogRobust (Zhang et al., 2019), an attention-based
Bi-LSTM model for anomaly detection. Huang
et al. (Huang et al., 2020) employed hierarchical
transformers to model both log template sequences
and parameter values. LogBERT (Guo et al., 2021)
predicts masked log keys, positioning normal logs
close together in embedding space.

3 MLAD

We introduce MLAD, as depicted in Figure 2, a
hybrid model trained on log sequences using unsu-
pervised tasks to automatically detect anomalies.

3.1 Problem Definition

System logs contain unstructured messages with
fields like timestamp and severity, exhibiting se-
quential patterns and semantic relationships. We
extract templates using the Drain parser (He et al.,
2017), as shown in Figure 3. For example, the
BGL log template "exception syndrome register:
<>" comes from "exception syndrome register:
0x008000", where <> indicates variable param-
eters. We map each template to a key, creating
sequences I = [T,T5,...,T;,...,TN], where
T; € T is the template key at position i, and T is
the set of NV template sequences from system logs.
Our model identifies abnormal template sequences
by training only on normal log sequences.

3.2 Feature Extractor

For semantic template relation learning, we use
pre-trained Sentence-Bert (Reimers and Gurevych,
2019) to obtain template sequence representations
and MEAN pooling (Reimers and Gurevych, 2019)
to compress vectors into fixed dimension d embed-
dings. This prevents information loss from log pars-
ing errors and facilitates single- or multi-system log
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fusion. Each sequence 7' € R**¢ forms template
vectors in high-dimensional vector spaces.

3.3 Sparse Log Self-attention

Self-attention encodes template sequence vectors
by associating words based on pairwise similar-
ity function f(-,-). We use linear projection 7" to
acquire query @, key K, and value V, and adopt
Scaled DotProduct Attention (Vaswani et al., 2017)
with sparse transformation:

Q,K,V:TWq TW i , TW o,

QKT
v

)V, ey

where learnable weights {W,, Wy, W, } € RI¥x4,
V/dy, is a scaling factor, (Q of Eq. 1 is the query
representation matrix, K is the key matrix, and V'
is the values matrix. The sparse transformation
(Peters et al., 2019) increases attention weight dif-
ferences to accurately learn keyword embedding
vectors. Weight values follow the function:

h=Attention(Q,K,V)=a—entmax (

o-entmax(z)=argmax (pT o+H] (p)) ,
peAd—1
" 2
B (=] @D 2 (”j‘pf>’ a7l
HT(p)v o = 17

where H_! (p) is Tsallis a-entropies (Tsallis, 1988),
parameterized by scalar o > 1. From Eq. 2, the soft-
max function equals 1-entmax, with Shannon and
Gini entropy as regularizers. Parameter o controls
shape and sparsity, as shown in Figure 4. When 1
< a < 2, the function produces sparse probability
distribution with smooth corners. Traditional soft-
max (Bridle, 1989) has small slope at 0.5, making
weight values dense around 0.5 when word count is
high, reducing word differentiation and hindering
keyword identification.

3.4 Feed-Forward Network
We apply a fully connected Feed-Forward Network

(FEN) to each position to add nonlinearity and con-
sider latent dimension interactions. FFN includes
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Figure 4: An illustration of the c-entmax function in a
two-dimensional space.

two linear transformations with Continuously Dif-
ferentiable Exponential Linear Unit (CeLU) (Bar-
ron, 2017) activation:

FEN(h)=CeLU(hW; +b1 ) Wa-+bs, 3
CeLU(z)=max(0,z)+min(0,ax(exp(z/a)—1),

where Wy, Wy, by, and by are parameters. CeLU(-)
provides smoother transition than ReLU(-), im-
proving generalization. We use normalization and
dropout to prevent overfitting.

3.5 Gaussian Mixture Model

For anomaly detection, we use GMM with
Expectation-Maximization (EM) algorithm (Hu-
ber and PeterJ, 2009). GMM excels in label-free
learning but struggles with large-scale data (Zong
et al., 2018). Transformers encode large-scale data
and learn high-dimensional features effectively. By
adjusting Multi-head Attention layers, we reduce
vector space dimensions, addressing the big data
limitations of GMM. Transformers face binary clas-
sification challenges when loss approaches zero.
The a-entmax function maps normal log words
to an identity matrix, potentially misclassifying
similar abnormal logs. Replacing the decoder of
Transformer with GMM enhances vector space dif-
ferentiation through iterative sample reconstruction,
improving normal/abnormal sample distinction. In
the EM algorithm’s E-step, GMM prior defines dis-
tributions on reconstruction function f(h) using
Gaussian distributions /. We compute probabil-
ity ng that hidden vector h; belongs to the k-th

Gaussian:
g=entmax(hWh+b),

@FZ?& %Tkv
where ¢; indicates anomaly class probability and
adjusts the attenuation parameter. Each Gaussian
has mean p (sample location) and covariance .
Sentence-BERT uses cosine similarity but over-
looks uncertainty (Reimers and Gurevych, 2019)
from low-frequency words. In multi-system log de-
tection, imbalance between normal/abnormal sam-

“)



ples exacerbates this issue. We integrate covariance
matrix into the loss function to capture uncertainty
differences, calculating mean p and covariance X
as:

N N
=1 Yikhi

= N - 3
21:1 Yik
®)

ik:Zﬁl Giso (hi =) (hi—ig) " )
Zi]\;1 Uik

In the M-step, we substitute estimated parameters
to find the extreme value of the lower bound func-
tion, updating parameter values when the derivative
equals 0. Sample energy is inferred as:
cxp(—%(hi—ﬂk)-rik1(%—%)))

VAESN
(6)

During testing, sample energy is estimated directly
and high-energy samples above threshold are pre-
dicted as anomalies.

E(h;)

—log <Z£<_1 ng

3.6 Objective Function

For N samples, the objective function is:

Loss= % SN, L(yi—9:)2+ 52 2N, BE(h)+22P(S), (7)

where y is ground truth, with \; 0.1 and
A2 = —0.005. This function has three components.
L (y; — 9;) quantifies discrepancy between predic-
tions and actual values, reflecting Transformer pre-
diction accuracy. E (h;) represents GMM normal
probability modeling, minimizing energy for nor-
mal samples and maximizing for abnormal ones.
P(3) addresses the "identical shortcut" issue by
incorporating keyword uncertainty into the loss
function, with higher uncertainty indicating higher
anomaly probability.

4 Experiment

We first describe our experimental setup, compare
MLAD with state-of-the-art baselines, and analyze
components’ roles and multisystem the impact of
datasets.

4.1 Datasets and Setting

Experiments use public BGL, HDFS, and Thun-
derbird datasets (Oliner and Stearley, 2007), de-
tailed in Table 1. For fair comparison, all mod-
els use 100-dimensional embeddings, Adam opti-
mizer with 0.001 learning rate, 0.5 dropout rate
on NVIDIA A100 (80G), 512 batch size, and 30
maximum epochs.
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BGL HDFS Thunderbird
# Log sequences 2,780,580 5,856,609 9,975,120
# Templates 138 (35) 44(25) 1,291 (243)
# Words 987 118 6,546
# Anomalies 248,560 10,109 2,456,660
# Train data 2,283,460 5,544,398 5,061,800
# Test data 497,120 312,211 4,913,320

Table 1: The Statistics of datasets

4.2 Baselines and Metrics

We compare with DeepLog (Du et al., 2017b),
Dagmm (Zong et al., 2018), LogAnomaly (Meng
et al., 2019b), LogRobust (Zhang et al., 2019), Log-
TAD (Han and Yuan, 2021), PLELog (Yang et al.,
2021), LogBERT (Guo et al., 2021), CAT (Zhang
et al., 2022) and ChatGPT (OpenAl, 2022). As
anomaly detection is binary classification (Chen
et al., 2022), we use precision, recall and F1 score
for evaluation (Chen et al., 2023b).

4.3 Log Pre-Processing

For HDFS, log sequences are extracted by block
IDs, while BGL and Thunderbird use a 20-sized
sliding window. Logs are parsed with Drain (He
et al., 2017), and anomalies are identified by win-
dows with anomalous messages. The test set in-
cludes all abnormal sequences and an equal number
of random normal ones, while the training set con-
tains the rest. Table 1 summarizes key statistics.

4.4 Performance Comparison

Table 2 shows MLAD outperforming all baselines
by combining Transformer and GMM strengths.
DeepLog struggles with complex datasets, often
misclassifying anomalies. LogAnomaly achieves
stable F1 scores using semantic vector-based tem-
plate matching. LogTAD performs well on smaller
datasets but underperforms on Thunderbird due to
word-level information loss. Similarly, Dagmm
shows inconsistent results, particularly on Thunder-
bird. LogRobust requires extensive manual label-
ing, limiting unsupervised performance. PLELog
performs poorly on unsupervised datasets with long
training times. Transformer-based LogBERT and
CAT excel at capturing global dependencies and
contextual information. However, no baseline con-
sistently performs well across all datasets, facing
precision-recall balance challenges and identical
shortcut issues.

5 Ablation

5.1 Effect of Components
Our ablation experiments assessed each compo-

nent’s contribution to model performance (Table 2).



BGL HDFS Thunderbird
Pre Rec F1 Pre Rec F1 Pre Rec F1
DeepLog 0.9659 0.6396 0.7696 0.5518 0.6785 0.6024 0.7538 0.6027 0.6699
Dagmm 0.9397 0.8831 0.9065 0.9018 0.6214 0.7358 0.5256 0.5395 0.5322
LogAnomaly 0.8918 0.8584 0.7428 0.8213 0.6179 0.7052 0.7672 0.8963 0.8273
LogRobust 0.9531 04766 0.6354 0.6989 0.5677 0.6700 0.8675 0.8652 0.8664
LogTAD 0.9102 0.8761 0.8949 0.7793 0.9091 0.8393 0.7523 0.8370 0.7886
PLELog 0.6843 0.8759 0.7314 09126 0.8373 0.8799 0.8606 0.8537 0.8671
LogBERT 0.8328 0.8772 0.8579 0.8142 0.7813 0.8089 0.8375 0.8452 0.8402
CAT 0.8727 0.9481 09106 0.8638 0.8892 0.8771 0.8994 0.8838 0.8923
ChatGPT 0.7545 0.6923 0.7221 0.7039 0.7733 0.7369 0.7923 0.7562 0.7738
MLAD 0.9492 0.8932 09184 0.9296 0.8656 0.8946 0.8824 0.9066 0.8962
~wlo a-entmax  0.9309  0.8904 0.8887 0.7016 0.9773 " 0.8231 0.7892  0.8105 0.8282
w/o GMM 0.9128 0.8209 0.8644 0.7443 0.8131 0.7722 0.7534 0.8676 0.8053

Table 2: The performance of different models on the three datasets, and the best model in each column is in bold.

BGL—Th
Pre

0.7225
0.4998
0.7517
0.7120
0.8249
0.6843
0.7847
0.7629
0.8277

derbird Th
Rec Pre

0.7368 0.7253
1.0000 0.5005
0.8602 0.7297
0.8040 0.6473
0.7322 0.7580
0.7336 0.7367
0.7916 0.8163
0.7292 0.8532
0.8314 0.9404

derbird—BGL
Rec

0.6817
1.0000
0.8029
0.9042
0.7838
0.7831
0.8247
0.8390
0.9635

DeepLog
Dagmm
LogAnomaly
LogRobust
LogTAD
PLELog
LogBERT
CAT
MLAD

Table 3: The transfer performance of the models on two
similar datasets (BGL and Thunderbird).

Removing the GMM component most significantly
degraded performance on BGL and Thunderbird
datasets, while having minimal impact on HDFS.
This difference correlates with template complexity
- BGL (138 templates with 35 in the test only) and
Thunderbird (1,291 templates with 243 in the test
only) have substantially more templates than HDFS
(44 templates with 25 in the test only), demonstrat-
ing GMM’s importance for learning sparse key-
word representations.

We evaluated the effectiveness of a—entmax by
testing values {1.0 < o < 1.6,Aa = 0.1} as
shown in Fig. 5. The model performed optimally
with o between 1.2-1.5, where a—entmax effec-
tively sparsified the dense vector space, enhancing
the differentiation between normal and abnormal
samples. At a=1 (equivalent to softmax), perfor-
mance was mediocre, while values above 1.5 intro-
duced excessive sparsity, generating zero-valued
keyword weights that caused the model to ignore
important features. The sparse transformation re-
mains essential for improving prediction accuracy
across tested datasets.

5.2 Effect on Multi-System Datasets

To evaluate cross-system performance, we com-
bined BGL and Thunderbird datasets (both pre-
processed using fixed-window mode) into a unified
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dataset. As shown in Fig. 6, MLAD maintained ro-
bust performance while baseline models struggled
with the increased generalization requirements of
the combined dataset. This highlights the ability of
MLAD to detect anomalies that might go unnoticed
when systems are analyzed separately. Our abla-
tion experiments revealed that removing Sentence-
BERT caused minimal performance degradation
on single-system logs but significant losses on
multi-source logs. This confirms the importance of
sentence-level semantic features for cross-system
generalization. The self-attention mechanism ef-
fectively captured semantic relationships between
words, allowing the model to identify semantically
similar anomalous patterns despite different word-
ing. For instance, "error”" and "exception" were
recognized as semantically related indicators of
anomalies, even when followed by different vari-
ables.

5.3 Effect of Transferred Knowledge

To validate the model’s cross-system performance,
we conduct a transfer learning experiment for log
anomaly detection using two similar datasets: BGL
and Thunderbird. We evaluate the models in terms
of Precision and Recall, with results presented in
Table 3.

BGL—Thunderbird: Models are trained on
BGL and tested on Thunderbird. = Dagmm,



DeepLog, and PLELog perform poorly on Thunder-
bird, with Dagmm failing to detect any anomalies,
highlighting its lack of cross-system adaptability.
In contrast, LogRobust, LogAnomaly, LogTAD,
LogBERT, and CAT exhibit better transfer learning
due to effective semantic processing, though their
performance is limited by shared words between
the two datasets, requiring improved reasoning for
unseen terms.

Thunderbird—BGL: Training on Thunderbird
and testing on BGL yields better results, primarily
due to: (1) Thunderbird’s larger dataset, allow-
ing for more comprehensive learning, and (2) the
higher proportion of shared words between the two
datasets, with BGL containing 261 shared terms,
representing a larger portion of its test set compared
to Thunderbird.

5.4 Effect of Large Language Model

We evaluated large language models’ ability to de-
tect log anomalies using a Chain-of-Thought (Wei
et al., 2022) approach rather than direct classifica-
tion. This two-step process first guides the model
to generate templates from log sequences, then
identify anomalies based on these templates. Ta-
ble 4 compares results with and without Chain-of-
Thought processing. The findings show that LLMs
like ChatGPT struggle with complex log anomaly
detection despite the improved reasoning approach.
This underperformance stems from their limited
domain-specific training and inability to capture
the subtle patterns and contextual nuances in sys-
tem logs. The inherent complexity and variability
of operational logs often exceed these models’ gen-
eralization capabilities.

Method HDFS BGL  Thunderbird
ChatGPT w/ CoT  0.7369  0.7221 0.7738
ChatGPT w/o CoT ~ 0.6721  0.6542 0.7132

Table 4: F} between ChatGPT with/without CoT.

Generation Prompt: Please determine if there are any
anomaly in logs, and directly give the answer: Yes or No.

6 Visualization

We evaluated classification performance using t-
SNE visualization on 800 balanced BGL sam-
ples (normal/abnormal=1:1). As shown in Fig. 7,
MLAD achieves clearer class separation than
LogAnomaly, which exhibits significant overlap
between categories. This improvement is attributed
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Chain-of-Thought Prompt
2023-08-02 10:30:00 DEBUG:
Checking server availability.
2023-08-02 10:30:15 ERROR: Net-
workException - Unable to establish
connection to server.

Step 1: Log Parsing
Extract the templates of log se-
quences while replacing the vari-
ables with < * >

1. < * > ERROR: NetworkExcep-
tion - < * > to establish connection
to server.

2. < * > DEBUG: Checking server
availability.
Step 2: Anomaly Detection
Two-Step Prompt:

log contents:

One-Step Prompt:

Templates:

According to the log sequences, Tem-
plates:, the relationship between
Templates: and variables, determine
if there are any exceptions in tem-
plates and variables, and directly
give the answer: Yes or No.

Answer:  Yes or No.

(a) LogAnomaly (b) MLAD

Figure 7: Samples in 2-dimensional space learned by
LogAnomaly and MLAD. The red dots e are samples
from the normal logs, and the blue triangles /\ are sam-
ples from the abnormal logs, the (FP)
indicate normal samples that the model incorrectly pre-
dicts, and conversely, the violet crosses x (FN) indicate
abnormal samples that the model incorrectly predicts.

to the a-entmax function’s enhanced spatial dis-
crimination capability.

Table 2 reveals two key findings: (1) Removing
GMM reduces recall while increasing precision, ex-
posing the Transformer’s vulnerability to identical
shortcut learning; (2) The 30% lexical gap between
training and test sets underscores the persistent
challenge of detecting rare keywords in anomaly
detection.

7 Conclusion

We propose MLAD, a unified log anomaly detec-
tion model combining Transformer and GMM ad-
dressing the "identical shortcut” problem. Trans-
former captures semantic relations, while GMM
models complex distributions and handles rare key-
word uncertainty through covariance. Experiments
on three datasets demonstrate the effectiveness.



Limitations

Hyperparameter Tuning. The hyperparameters
used in this study were not fully optimized. Fur-
ther adjustments and fine-tuning are necessary to
better explore the capabilities of model and ensure
optimal performance across various experimental
settings.

Ethical Considerations

Our method utilizes publicly available log datasets
without sensitive user information. However, prac-
tical deployment should ensure data privacy and
handle potential false alarms carefully to avoid neg-
ative impacts on operational reliability.
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Abstract

This paper presents a novel approach to e-
commerce payment fraud detection by integrat-
ing reinforcement learning (RL) with Large
Language Models (LLMs). By framing trans-
action risk as a multi-step Markov Decision
Process (MDP), RL optimizes risk detection
across multiple payment stages. Crafting effec-
tive reward functions, essential for RL model
success, typically requires significant human
expertise due to the complexity and variability
in design. LLMs, with their advanced reason-
ing and coding capabilities, are well-suited to
refine these functions, offering improvements
over traditional methods. Our approach lever-
ages LLMs to iteratively enhance reward func-
tions, achieving better fraud detection accuracy
and demonstrating zero-shot capability. Ex-
periments with real-world data confirm the ef-
fectiveness, robustness, and resilience of our
LLM-enhanced RL framework through long-
term evaluations, underscoring the potential of
LLMs in advancing industrial RL applications.

1 Introduction

The advancement of LLMs has been remarkable,
exemplified by notable developments such as the
top-notch model API (OpenAl, 2023) and state-of-
the-art open-source models (Dubey et al., 2024)
(Jiang et al., 2023) (Jiang et al., 2024) (Team et al.,
2024) (Guo et al., 2024). These breakthroughs have
propelled LLMs to new heights in various tasks,
reaching or even surpassing human capabilities in
code generation (Chen et al., 2021), logical reason-
ing (Kojima et al., 2022), and task planning (Shen
et al., 2024). The integration of these advanced
capabilities into the domain of e-commerce pay-
ment fraud detection presents an exciting frontier
for exploration.

Meanwhile, RL has shown its effectiveness in
optimizing nondifferential goals and innovating

*Corresponding Author.
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decision strategies in response to environmental
changes (Sutton and Barto, 2018) (Russell and
Norvig, 2010). Its application in the financial fraud
risk domain has seen various approaches, from
modeling the sequence of transactions from a sin-
gle credit card to considering each transaction as
a discrete step in a MDP (Mead et al., 2018) (Vi-
mal et al., 2021). Other studies have explored the
application of RL in fraud risk alerting systems
(Shen and Kurshan, 2020) and discussed its poten-
tial without detailed propositions (El Bouchti et al.,
2017). While supervised learning (SL) remains
prevalent in static fraud detection, it struggles to
model sequential dependencies between decision
stages and directly optimize business metrics like
precision-recall tradeoffs — limitations that RL nat-
urally addresses through reward-driven optimiza-
tion.

The confluence of LLLM’s semantic capabilities
with RL has sparked interest, particularly in using
LLMs as a reward shaper for RL. This innovative
approach includes directly feeding the context of
the environment to LLMs for action and reward
processing (Kwon et al., 2023), using LLMs to de-
fine the parameters of the reward function (Yu et al.,
2023), or even to design whole rewards function
codes (Ma et al., 2023). These efforts have mainly
focused on gaming agents and robotic task control,
inspiring our exploration into e-commerce payment
fraud detection.

E-Commerce payment fraud presents a dynamic
challenge necessitating advanced decision-making
across three key stages: 1) Pre-authorization (Pre-
auth) where our platform screens transactions be-
fore card issuers’ risk assessment, 2) Issuer check
where card networks validate payment credentials,
and 3) Post-authorization (Post-auth) where we
conduct final risk evaluation after issuer approval.
Traditional SL approaches operate isolated classi-
fiers at each stage, failing to model the sequential
interdependencies and business constraints (e.g.,
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Evaluation Prompting feedbacks info Instruction Prompts
Reward Function validation feedbacks
US| TRISK domain Task Descriptions
« Anew best reward function found: ***python into the
XXX new We are designing a reward function
We trained a RL policy using the reward Instruction || for multi-steps risk decision...
- function code and trackeq my focused metric Prompts
feedback from an out-of-time test data: xxx %
| on Multi-step TRISK RL code |
‘ » A sub-optimum reward function found: xxx class PolicyTrainer:
OR :
: i . def __init__(self, ...):
My reflections on my preivious failures are: -
YK self.policy_nn = ...
self.train_dataloader = ...
3. S¢44: States after A, ; R,: Reward Environment self.n_episodes = ...
| selfmax_t = ...
Policy self.print_every = ...
(zadhiezl States  Reward self.optimizer = ...
t S -
e Transaction Fraud labels Block self.scores = ...
PoliCV-batsed A y 0 Reward Function design
Agf" 2. A, block or pass x5 1 guides and tipS
= 0 - - Here are some code examples or
general info: *“python def reward
function: return reward™""
] Tip1,Tip2 ...
1. S,: States from check points t

Sampling Reward Functions from LLM

Figure 1: The LLM enhanced self-improving RL framework overview. It takes in the task description/instructions,
the RL source code, and the example human-designed reward function as the context to generate an executable
reward function. We designed an evolutionary algorithm to allow the LLM to evolve the reward function design

based on feedback on the performance of the RL agent.

States: SL Model
scores, features, etc.
Action: Block, Pass

States: SL Model scores,
features, etc.
Action: Block, Pass

Step: TO Step: T1
Pre-Auth Post-Auth

Card issuer checks

Figure 2: Imagine the buyer transaction risk decision
checkpoints pipeline as a Markov Decision Process.

needing to block more potential frauds during Pre-
auth to avoid issuer penalties). This fragmentation
leads to suboptimal precision-recall balance and
excessive manual reviews. RL’s strength in con-
strained sequential optimization makes it uniquely
suited to maximize cumulative fraud prevention
while respecting stage-specific requirements.

In response, we propose a cutting-edge RL
framework that harnesses the power of LLM to
autonomously evolve and refine decision-making
processes in the payment risk domain, a first in this
field. Our contributions are summarized as follows:

LLM-based Reward Function Generation for
RL: We introduce a framework using LLMs to au-
tonomously create reward functions that directly
optimize precision-recall metrics in the payment
risk domain, outperforming human-designed re-
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wards. It uses an evolutionary algorithm for itera-
tive refinement based on RL agent feedback, sup-
porting few-shot/zero-shot creation with/without
prior examples. The general process is shown in
Figure 1.

Transaction Risk Detection as Constrained
MDP: We redefine transaction risk detection as
a multistep MDP with stage-specific constraints,
solved using policy-based RL like REINFORCE.
By integrating transaction stages into a coherent
framework (see Figure 2) and aggregating reward
signals across stages (detailed in Figure 3), our
method outperforms SL’s surrogate loss functions
through direct optimization of business objectives.

Our research, supported by extensive experi-
ments with real-world e-Commerce transaction
data, demonstrates significant improvements in
fraud detection performance compared to the exist-
ing SL models on our payment system.

2 Methodology
2.1 Designing the MDP and RL Framework

We model the e-commerce transaction process as
a finite-horizon MDP, visualized in Figure 2. The
system generates state signals from both legacy SL
risk model scores and transaction stage indicators
(Pre-auth, Post-auth). While there are also many
transactional features that can be used as state sig-
nals, our experiments primarily use SL scores for



state representation due to their proven predictive
value leveraging all the features, the framework
can theoretically incorporate any transactional fea-
tures available at each stage. The policy agent uses
these state signals to decide between risk responses
("block" or "allow"), with the MDP structure en-
abling sequential decision-making that supervised
learning cannot naturally accommodate.

The agent-environment interaction (Figure 3) de-
fines:

» S, = SL scores and stage indicators at step ¢
» A; = possible risk responses (block, pass)
* R; = R(S;, A;), the reward function

We maximize the business-driven objective:

Maximize $TP — $FP
subject to $TPstage 1> $TPstage 2

(D

where dollar-wise $TP-$FP optimization directly
meets the theoretical goal of our risk business,
which corresponds to maximizing fraud prevention
while minimizing Loss of the Gross Merchandise
Value (GMV) from false positives. The decreas-
ing $TP constraint reflects practical fraud patterns
where early detection captures higher-value fraud
attempts.

We employ offline RL with policy gradient meth-
ods (REINFORCE (Williams, 1992)) using histor-
ical transaction data. To address offline evalua-
tion challenges, we firstly try to train with enough
amount of transaction data, and secondly we vali-
date policies on extended test periods (6+ months)
demonstrating consistent performance before pro-
duction deployment.

2.2 Human Reward Function Design

While Equation 1 captures core business objectives,
real-world operations require balancing specific
precision-recall trade-offs across transaction cate-
gories. Here we figured out the reward design that
achieve this implicitly through directly consider-
ing the optimization constraints instead of the opti-
mization goal itself. By transforming operational
constraints into differentiable objectives through
algebraic manipulation, we found that it naturally
merges into the optimization goal considering the
precision block level.
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3. S¢41: States after A, ; R;: Reward Environment

Policy
Gradient
Method

States Reward
ve v

Transaction Fraud labels Block

v

Policy-based xf 0
Agent

T

y

>
2. A,: block or pass x 1

0

x5

1. S;: States from check points t

Figure 3: TRISK MDP framework with staged decision
points. States incorporate SL risk scores and stage indi-
cators.

Precision Constraint based Reward Function
Business requirements ($TPggpe 1 > $TPgtage 2)
dictate precision thresholds «; per stage, with
a1 < ag enforcing stricter precision in later stages.
Hence we assume the blocking precision inequality
in stage i: ;

TP;

§TP; + SFp, ~ @
we derive the reward function through Lagrangian
relaxation:

R

precision

(s,a) = (1fai)$TPifozi$FPi >0 (3)

Maximizing this implicitly maximizing ($TP - $FP)
while maintaining stage-wise constraints by intro-
ducing the coefficients in front these terms, derived
naturally from the inequality above.

While effective, these human-designed rewards
require careful parameter tuning, and in theory
there could be more effective designs that need
more human efforts to explore. Therefore, we pro-
posed a LLM-enhanced framework automates this
exploration by incorporating the specifications of
policy performance feedback in natural language,
to further enhance the RL reward signals.

2.3 LLM-based Reward Function
Optimization

We propose a framework using LL.Ms to dynam-

ically optimize reward functions in our evolving

RL algorithm for e-commerce payment fraud de-

tection.

2.3.1 Algorithm Overview

Our method, detailed in Algorithm 1, employs
Enhanced LLM-based Reward Optimization for
RL agents, evolving the reward function to boost
decision-making. The cycle includes:

1. Initialization with environment £, baseline
model My, and metrics.



2. Generation of reward candidates by an LLM,
guided by temperature for novelty.

3. Validation and use of candidates to train RL
agents for fraud detection.

4. Evaluation of detection accuracy and impact,
informing reward success.

5. Self-Reflection: top functions update the
LLM context; failures refine iterations.

6. Repeat steps 2-5 until iteration or conver-
gence.

To ensure the executability of generated reward
functions, we implement a two-step validation pro-
cess: (1) incorporating basic reward function struc-
ture requirements in the prompts, and (2) using
preliminary code checks to confirm that generated
functions fit the required structure. If a function
fails these checks, the LLM regenerates it during
the sampling phase, significantly reducing unexe-
cutable cases, without human in the loop.

2.3.2 Customized In-Context Prompt

The initial and iterative instructions provided to the
LLM are critical to the success of our algorithm.
We construct a domain-specific prompt that out-
lines the objectives of the reward function, incorpo-
rates the RL environment framework, and includes
basic requirements and examples. As shown in
Figure 1, the prompt is dynamically updated with
feedback loop information, allowing the LLM to
adapt its generative process to the evolving require-
ments of the fraud detection task. Examples of
prompts are shown in the following boxes, with
more detailed content in Appendix A.

Initial Instruction Prompts

You are a reward engineer trying to write reward
functions to solve reinforcement learning tasks as
effectively as possible. Your goal is to: (1) ... (2) ...
The goal of my task is: ..., my codes framework of
input data as states and train my policy is shown in
the code: “‘python {...} ‘.

Your reward function should use useful variables from
my codes framework as inputs. As some examples,
here are some example reward functions proposed by
humans: ““python {...} “‘, and here is the best reward
function signature so far: “‘python {...} “* ... The
output of the reward function should consist of: (1) ...

€3

Feedback Prompts

We trained a RL...:
1. RL Agent Training info: ...
2. Test evaluation info: ...
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Moreover, the ratio between the bad GMYV blocked
by first step and the bad GMV blocked by second
stepis: {...}/{...} ...

Error occurred during training: {...}

Error occurred during evaluating: {...}

2.3.3 Zero-shot and Few-shots setups

Our approach supports both zero-shot and few-shot
capabilities. In the zero-shot setup, the algorithm
generates reward functions based on general com-
ponent descriptions rather than predefined human-
designed functions. For the few-shot setup, detailed
examples of human-crafted reward functions are
included in the prompt, allowing the model to ref-
erence specific code and build on these exemplars.

Feedback and success metrics play a crucial role
in optimizing the reward function, especially in
zero-shot scenarios. Feedback comprises policy
evaluation results, such as precision-recall on test
data, error reports, and comparative evaluations
of previous best and sub-optimal rewards. Im-
portantly, in cases where no sub-optimal reward
is found, a reflection process allows the LLM to
summarize insights from failed reward functions,
integrating this experience into instructions for sub-
sequent iterations, as described in line 26 of Al-
gorithm 1. This reflective feedback is vital for
zero-shot cases.

Algorithm 1 LLM-based Reward Function Opti-
mization for RL Agent

Require: N¢cr, Nsamplesv Nepisodesv Orecalls Rscores

1: mitialize environment £ , baseline model M, and evaluation parameters

2: fpest < InitializeBestRewardFunction(), Initialize LLM temperature parameters

3 Load baseline model performance and set evaluation criteria

4: foriter = 1to Niter do

5: Initialize feedback and success lists: feedbacks, success

6: Update LLM temperature based on feedback loop criteria

7: for sample_i = 110 Nggmples do

8: Sample and validate fﬁ::;pfs’l using LLM with temperature control

9: if valid £39PLe ghen

rewar ;
10: Save f,f:;nfr{s’z, proceed to training
11: else re i
. sam e_1

12: Re-sample frewapmf

13: endif

14: end for o i

15: for each valid £>¢""P =" do

reward le i

16: A; < TrainAgent(&, f:g;;prs’l, Nepisodes)

17: feedback;, success; —
EvaluateAgent(A;, My, 0pccairs Rscores)

18: Append feedback; to feedbacks and success; to success

19: end for

20: Update fp, s+ based on evaluation results, Update LLM temperature and instruc-

tions for next iteration based on feedback loop outcomes

21: if new fpe s+ found then

22: Update system instructions for LLM to include new best reward function
details

23: else if sub-optimal reward function found then

24 Update system instructions for LLM to include sub-optimal reward function
details as feedback

25: else

26: Let LLM summarize reflections based on the failed reward functions info and
include its experience into the instructions for next iteration

27: end if

28: end for




2.3.4 Interpretability of LLM-Generated
Reward Functions

While the proposed framework leverages LLMs
to automatically evolve reward functions for RL
agents, it is important to acknowledge that such
LLM-generated reward functions inherently carry a
degree of "black-box" behavior, especially in zero-
shot settings. To enhance interpretability, we em-
bed domain-specific contextual information into
the prompts provided to the LLM.

In both zero-shot and few-shot reward func-
tion design prompts, we explicitly define domain-
specific contexts such as key business metrics —
$TP, $FP, $TN, and $FN — along with their impli-
cations in fraud detection (lines 6-9 in the prompt
example below). These definitions are paired with
optimization objectives and constraints within the
domain context (lines 10-11), further reinforced by
additional descriptions in the instruction prompts
and feedback mechanisms detailed in Section 2.3.2.
This structured context guides the LLM to generate
reward functions that align closely with real-world
business requirements. Take the zero-shot reward
design as an example: in Listing 1, the LLM in-
corporates terms such as $FP and $FN, indicating
its understanding of the trade-offs between $TP
vs. $FP and $TN vs. $EN. It also assigns higher
weights to early-stage rewards (e.g., reward *=
1.2 at current_step == 0 and reward *= 0.9 at cur-
rent_step == 1), reflecting the business requirement
that detecting fraud earlier yields greater value.

Domain-Specific Context Prompts for

Reward Function Design

1. element in action either equals O or 1;

2. action == 1 means the transactions that were taken
blocking action, action == 0 means the transactions
that were taken pass action;

3. element in target either equals O or 1;

4. target == 1 means the transactions that are tagged
as fraud risk, target == 0 means the transactions are
not tagged as risk;

5. wgt is the tensor of dollarwise weight for each
transaction;

6. e.g. ((action==1) & (target==1) * wgt) means the
tensor that have the True Postive GMV value where
(action==1) & (target==1);

7. e.g. ((action==1) & (target==0) * wgt) means the
tensor that have the False Positive GMV value where
(action==1) & (target==0);

8. e.g. ((action==0) & (target==0) * wgt) means the
tensor that have the True Negative GMV value where
(action==0) & (target==0);

9. e.g. ((action==0) & (target==1) * wgt) means the
tensor that have the False Negative GMV value where
(action==0) & (target==1);
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10. the general goal of this reward function is to drive
the agent to increase True Postive GMV and True
Negative GMYV, decrease False Positive GMV and
False Negative GMV;

11. this reward function need to drive the agent to
block more potential True Postive GMV at the cur-
rent_step == 0 than at the current_step == 1.

J

Despite these efforts, certain aspects — such
as why specific parameter choices lead to particu-
lar precision-recall outcomes on certain test data—
remain difficult to fully interpret. Therefore, we
complement the validation of the reward function
design with long-term evaluations (Test L in Ta-
ble 1), demonstrating the stability and practical
effectiveness of the evolved reward functions over
time.

(o
[0
h

f get_reward(current_step, action, target, wgt):
reward (action * target * wgt) .float ()
if current_step == 0:
reward *= 1.2
elif current_step == 1:
reward x= 0.9
((1 - action)
reward -= fn x 0.5
fp = ((action x (1 - target)
reward fp « 0.1
low_weight_penalty
()
reward —-= low_weight_penalty % 0.005
reward /= wgt
return reward

fn

* target x wgt).float ()

* wgt) .float ())

(action =*

(wgt < 50)).float

Listing (1) Original zero-shot reward function design by
Mixtral8X7B. The calculation of rewards and penalties in both
steps is uniquely different compared to Equation 3 above.

def get_reward(current_step, action, target, wgt):
gamma_positive 1.15

gamma_negative 0.9
alpha = 1.2
reward = 0
if current_step == 0:
reward = gamma_positive * (
((action == 1) & (target == 1)) * wgt -
((action == 1) & (target == 0)) * (alpha
* 0.005) * wgt -
0.15 % ((action == 0) & (target == 1)) =
wgt

)

elif current_step ==

reward = gamma_negative * (
((action == 1) & (target == 1)) x wgt -
((action == 1) & (target == 0)) * (alpha
* 0.002) x wgt -
0.10 * ((action == 0) & (target == 1)) =
wgt
)
return reward

Listing (2) Original few-shot reward function design by
Mixtral8X7B. This design introduces unique reward terms
compared to Equation 3 above, rather than simply adjusting
the parameters of the human-designed version.

Figure 4: Reward function designs evolved by Mix-
tral8X7B in different contexts: Listing (1) Zero-shot
context, Listing (2) Few-shot context.



Table 1: Experiment Datasets.

Dataset Time Window  Total Fraud Label

Train 2023-09-01 to 2,136,590 28,226
2023-09-14

Test S 2023-09-15t0 522,105 825
2023-09-30

Test L 2023-11-01 to 6,174,069 7,834
2024-04-30

Table 2: Performance of Policy Agent vs. Baseline, on
Test S.

Recall Baseline RL Agent Bad GMV

Levels $Prec $Prec Catch Ratio

@80%  66.57% 69.65% 9.79

@85%  58.79% 64.22% 15.32

@90%  51.27% 55.7% 13.36
2.3.5 Generalizability Discussion

State-of-the-art approaches, such as those pre-
sented by (Ma et al., 2023), have employed evo-
lutionary loops to demonstrate the robustness of
these methods in optimizing RL training processes
within different robotics tasks. However, these
frameworks are primarily tailored to the specific
data and scenarios encountered in robotics, limit-
ing their direct applicability to our domain. There-
fore, our work introduces this novel adaptation of
evolutionary loops for tasks in e-commerce risk
detection, for the first time. By doing so, we first
demonstrate that this evolutionary reward design
loop, leveraging LLMs, can be effectively general-
ized to e-commerce payment fraud scenarios. The-
oretically, this approach can also be extended to
other RL tasks within this domain that share similar
data structures and objectives.

3 Experiments

3.1 Datasets and Evaluation Metrics

We used real-world transaction data focusing on
Pre-auth and Post-auth stages. SL models (gradient
boost machines) scores S; = {Scrig, - -+, Scryj}
on the 2 stages, and stage indicators, represented
the RL state. Data were split, labeled with our key
fraud signals, and evaluated on out-of-time test sets.
Table 1 shows dataset details. Test S, with 522K
transactions, allows for quick performance compar-
isons but may introduce more variance due to its
size. In contrast, Test L, with 6.17M transactions,
offers more robust validation.

We assess performance using a metric for dollar-
wise precision ($Precision) at key dollar-wise recall
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($Recall) levels, calculated by our main fraud la-
bel. This metric is crucial as it aims to maximize
legitimate GMV by minimizing $FP transaction
values at a given risk level. For the RL agent scores,
we find combinations of blocking score thresholds
across two stages to achieve the desired overall $Re-
call, then observe the $Precision. For the baseline
model, we use the Pre-auth SL model score, which
is most commonly employed by the policy, to ob-
serve this metric. Due to the complexity of human
analysis in business practice, no cross-stage pol-
icy has been designed previously using SL. model
scores as a baseline. Which is also why we need to
propose our RL solution in the first place.

3.2 Experimental Results and Analysis

Part 1: Human-designed Reward Function: In
the first segment, a single RL agent was trained
using a 3-layer neural network with dimensions [8,
32, 8], incorporating dropout layers and GELU
activation functions. The model processed a
four-dimensional input consisting of representative
scores from legacy SL models, which served as
the state representation. The output was the prob-
ability of taking the "block" action. Training was
conducted using the REINFORCE algorithm with
the Adam optimizer.

Multiple trials stabilized results, Table 2 shows
enhanced performance and risk detection efficiency,
with the agent blocking more fraudulent GMV in
the Pre-auth stage.

All training in part 1 was performed on a ma-
chine equipped with a single V100 GPU (32GB
VRAM), 32 CPU cores, and 450GB of RAM.
With our current implementation, iterating over
200 training epochs — generally sufficient for ob-
serving convergence in our experiments — took
approximately 20 minutes per epoch. Each itera-
tion involved processing the full training dataset,
as detailed in Table 1.

Part 2: LLM-enhanced Reward Function: We
employed LLM-enhanced rewards using models
like Mixtral-8x7B, LLaMa-3-8B, and Gemma7B.
Experiments included zero-shot and few-shot se-
tups with varying LL.M prompts. Algorithm 1 pa-
rameters included Njer =~ 60, Nggmpres ~ 10,
Nepisodes =~ 150, and Orecan € [80%, 85%,90%).
Results are in Table 3.

Zero-shot scenarios used descriptive prompts
without reward function examples, leading to com-
petitive reward designs, as shown in Listing (1).
Few-shot scenarios also allowed LLMs to mod-



Table 3: Zero-shot and Few-shot Performance Comparison of LLMs in LLM+RL Approach, on Test S.

Zero-shot Evolved RL agent $Prec

Few-shot Evolved RL agent $Prec

Recall Levels  Baseline $Prec
Mixtral-8x7B  Gemma7B LLaMa-3- Mixtral- Gemma7B LLaMa-3-
8B 8x7B 8B
@80% 66.57% 72.71% 73.27 % 72.86 % 73.41% 73.53% 73.74%
@85% 58.79% 69.62 % 65.42% 69.40 % 70.73% 69.87 % 71.70 %
@90% 51.27% 57.42% 53.65 % 57.06 % 58.00 % 56.93 % 55.90 %

ify and create reward functions, as shown in List-
ing (2), improving performance metrics. Zero-shot
setups required more iterations, indicating opti-
mization potential, but overall, LLM-enhanced ap-
proaches showed adaptability and innovation.

Each complete training iteration, encompass-
ing LLM inference, RL agent training, and per-
formance evaluation, required approximately 40
minutes. All experiments in part 2 were conducted
on a machine equipped with 2 V100 GPUs (32GB
VRAM), 32 CPU cores, and 450GB of RAM, with
LLMs loaded in 4-bit precision (load_tn_4bit =
True) to reduce VRAM consumption. The pri-
mary computational bottlenecks were identified as
LLM inference and policy evaluation. These com-
ponents represent key areas for future optimization
in the implementation pipeline.

Part 3: Long-term Evaluation: To test RL
agent robustness over time, we extended evaluation
on Test L covering six additional months. Using
the same RL agent, we analyzed performance with
$Prec metric against a baseline model at similar
$Recall thresholds for all LLMs in both zero-shot
and few-shot scenarios.

Figure 5 shows RL agents consistently outper-
forming the baseline over time. Figure 6 illustrates
zero-shot scenarios where RL agents maintained
superior performance.

These evaluations highlight our LLM-enhanced
RL framework’s durability and effectiveness in real-
world applications, supporting continuous deploy-
ment without frequent retraining. More results are
in Appendix B.

3.3 Production Efficiency

Due to the compact architecture and lightweight de-
sign of the RL agent network described above, the
model supports efficient deployment across both
transaction stages. In production, it achieves infer-
ence latencies of less than 50 milliseconds using
standard CPU infrastructure, making it suitable for
real-time fraud detection at scale.
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Figure 5: Averaged blocking $Prec @$Recall from 3 LLM
guided RL agents, in the few-shots scenario, on Test L.

©® AVERAGE LLMRL zero-shot 4 AVERAGE Baseline

$Prec

o

Test Data Time Interval

Figure 6: Averaged blocking $Prec@$Recall from 3 LLM
guided RL agents, in the zero-shots scenario, on Test L.

4 Conclusion

This study introduces an RL and LLM integra-
tion framework for e-Commerce fraud detection,
conceptualizing risk assessment as an MDP and
enabling dynamic sequential strategies. Our ap-
proach, using LLMs to refine reward functions,
surpasses traditional human-designed functions in
efficiency and zero-shot capability. Empirical tests
confirm its superiority over our conventional SL
model, with six-month evaluations demonstrating
robust performance. The lightweight architecture,
is practical for industrial adoption. Future work
includes generalizing to more sequential scenarios
of risk prevention, and exploring online RL.
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A Prompts Design for the LLM RL
framework

In this section, we provide the prompts of our LLM
RL framework.

Prompt 1: Initial Instruction Prompts

You are a reward engineer trying to write re-
ward functions to solve reinforcement learn-
ing tasks as effective as possible. Your goal
is to: (1) write a reward function for the
environment that will help the agent learn
the task described below. (2) try to write im-
proved or try different parameters in the re-
ward function comparing to the reward func-
tions found so far, based on analyzing the
provided reward function feedback informa-
tion below. The goal of my task is: Design
a reward function that enables the RL agent
to make more effective decisions across 2
steps for improved overall performance in
identifying and blocking risky transactions
comparing to a baseline scores in the 1st
step, my codes framework of input data as
states and train my policy is shown in the
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code: “‘python {...} “.

Prompt 2: Code Generation Instruction

Prompts

Your reward function should use useful vari-
ables from my codes framework as inputs.
As some examples, here are some exam-
ples reward functions proposed by human:
“‘python {...} “*, and here is the best reward
function signature so far: “‘python {...} “
Since the reward function will be decorated
with @torch.jit.script, please make sure that
the code is compatible with TorchScript
(e.g., use torch tensor instead of numpy ar-
ray).

Make sure any new tensor or variable you
introduce is on the same device as the input
tensors. The output of the reward function
should consist:

(1) the completed reward function.

(2) the reward code’s input at-
tributes must follow the format:"def
get_reward(current_step,action,target,wgt):".
(3) the code output should be formatted as
a python code string: "““python ...
(4) if you have extra functions defined in the
reward function, also output these functions
completely in one code block.

(5) your codes and the related annotations
must be consistent.

(6) it is encouraged to only output your com-
pleted reward function python codes in the
beginning of your outputs, for the ease of
code extraction.

(7) remember to use the backslash properly
as a line continuation where you separate
one logic line into multiple physical lines
for better readability.

wen

Prompt 3: Additional Reward Generation

Instruction Prompts with Domain-Specific

Context

information of the get_reward:

def get_reward(current_step,action,target,wgt):
# current_step is one integer;

# if the agent is in step 0, then current_step
==0;

# if the agent is in step 1, then current_step
==1;

# current_step either equals O or 1 in
get_reward function;

# action and target and wgt are tensors in
size (transaction_batch_size,);

# element in action either equals O or 1;

# action == 1 means the transactions that
were taken blocking action, action ==
means the transactions that were taken pass
action;

# element in target either equals O or 1;

# target == 1 means the transactions that are
tagged as fraud risk, target == 0 means the
transactions are not tagged as risk;

# wgt is the tensor of dollarwise weight for
each transaction.;

# e.g. ((action==1) & (target==1) * wgt)
means the tensor that have the True Pos-
tive GMYV value where (action==1) & (tar-
get==1);
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# e.g. ((action==1) & (target==0) * wgt)
means the tensor that have the False Posi-
tive GMYV value where (action==1) & (tar-
get==0);

# e.g. ((action==0) & (target==0) * wgt)
means the tensor that have the True Nega-
tive GMYV value where (action==0) & (tar-
get==0);

# e.g. ((action==0) & (target==1) * wgt)
means the tensor that have the False Nega-
tive GMV value where (action==0) & (tar-
get==1);

# the general goal of this reward function is
to drive the agent to increase True Postive
GMV and True Negative GMV, decrease
False Positive GMV and False Negative
GMV;

# this reward function need to drive the
agent to block more potential True Postive
GMV at the current_step == 0 than at the
current_step == 1;

# the returned reward also need to be a
tensor in size (transaction_batch_size,) or
(transaction_batch_size,1) , it will be aggre-
gated outside this get_reward function
return reward

J

We trained a RL policy using the new found
reward function code and tracked my fo-
cused metric feedback from a out-of-date
test data:

1. RL Agent Training info: after training in
{...} episodes, the final blocking action num-
ber of the RL agent in first step is: {...}, and
the final blocking action number of second
step is: {...}, and the final reward value is:
{...} comparing to the initial reward value
is: {...}. Normally we hope to observe the
RL agent take more blocking action in the
first step than in the second step, and the
final reward value should be larger than the
initial value.

2. Test evaluation info: after 2 steps actions
of a policy agent, we observed the final best
precision performance by the agent under
some targeting recall thresholds levels: {...}
and compare with the baseline model, the
goal is have better precision compare to the
baseline model. The detail of the observa-

Prompt 4: Feedback Prompts

tions are: Our 2 steps policy agent can reach
the similar recall:{...} and the agent can
reach at best the precision: {...}. Moreover,
the ratio between the bad GMV blocked
by first step and the bad GMV blocked by
second step is: {...}/{...}, and the ratio be-
tween the total GMV blocked by first step
and the total GMV blocked by second step
is {.}/{...};

Error occurred during training: {...}

Error occurred during evaluating: {...}

Prompt 5: Reflection Prompts if No Usable

Reward Function Found

However, after an iteration of reward de-
signs and validations, all of your designed
reward functions failed in either training or
evaluation, your designs and their regarding
failure info are listed here: {...}

With all the feedback information, reflect
the failed experience regards to your reward
functions and output a detailed guidance of
reward function design for yourself briefly,
in less than length of 1000 tokens:

Prompt 6: Reflection Prompts if A Better

Reward Function Found

The previous best reward function’s policy
agent performance: when the recall thresh-
oldis {...}, the baseline model can reach the
precision: {...}. A better new found reward
function in iteration {...}:{...}.

Prompt 7: Reflection Prompts if A Sub-

optimal Reward Function Found

You found a sub-optimal new reward function in iter-
ation {...}:{...}, which has worse performance than
the previously best reward function.

B Long-term Test evaluations with
different LLM

In this appendix, we present detailed figures illus-
trating the performance of different models evalu-

ated in this study.
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Abstract

Operations research (OR) is widely deployed to
solve critical decision-making problems with
complex objectives and constraints, impacting
manufacturing, logistics, finance, and health-
care outcomes. While Large Language Mod-
els (LLMs) have shown promising results in
various domains, their practical application
in industry-relevant operations research (OR)
problems presents significant challenges and
opportunities. Preliminary industrial applica-
tions of LLMs for operations research face
two critical deployment challenges: 1) Self-
correction focuses on code syntax rather than
mathematical accuracy, causing costly errors;
2) Complex expert selection creates unpre-
dictable workflows that reduce transparency
and increase maintenance costs, making them
impractical for time-sensitive business appli-
cations. To address these business limitations,
we introduce ORMind, a cognitive-inspired
framework that enhances optimization through
counterfactual reasoning. Our approach emu-
lates human cognition—implementing an end-
to-end workflow that systematically transforms
requirements into mathematical models and ex-
ecutable solver code. It is currently being tested
internally in Lenovo’s Al Assistant, with plans
to enhance optimization capabilities for both
business and consumer customers. Experiments
demonstrate that ORMind outperforms existing
methods, achieving a 9.5% improvement on the
NL4Opt dataset and a 14.6% improvement on
the ComplexOR dataset.

1 Introduction

Operations research (OR) is critical for business
decision-making, helping companies optimize re-
sources, reduce costs, and improve operational effi-
ciency across manufacturing, logistics, and supply
chain management. However, previous approaches
“Work done as an intern at AT Lab of Lenovo Research.

"Equal contributions.
*Corresponding authors.

usually require specialized expertise to translate
real-world problems into mathematical optimiza-
tion problems, hindering their application potential
in broader domains. Industry practitioners consis-
tently report that optimization projects face a 30-
40% failure rate due to the disconnect between
business requirements and mathematical formula-
tion.

Recent advancements in LLMs have enabled the
solving of OR problems. Such automation proce-
dures can avoid inconsistent math performance of
LLMs (Ahn et al., 2024; Imani et al., 2023; Yu et al.,
2024a) and leverage LLMs’ ability and knowledge
to extract implicit variables and constraints from
real-world problems.

However, as Figure 1a illustrates, existing ap-
proaches(Xiao et al., 2024; Wang et al., 2024; Ah-
madiTeshnizi et al., 2024) to operations research
automation face critical deployment challenges.
Their complex agent orchestration creates exces-
sive cognitive load through numerous API calls,
overwhelming analysts with irrelevant information
while significantly increasing costs. These unpre-
dictable expert selection processes reduce solution
transparency and create substantial overhead, fun-
damentally misaligning with human reasoning ca-
pabilities.

Inspired by cognitive science and how the brain
solves problems, ORMind implements a business-
oriented framework based on dual-process the-
ory, combining intuitive analysis with deliberate
reasoning. Our specialized modules mirror ana-
lyst workflows, from rapid comprehension to deep
mathematical thinking. Unlike existing multi-agent
frameworks that rely on unpredictable agent selec-
tion and complex orchestration, ORMind’s inno-
vation lies in its structured, predictable workflow
that drastically reduces API calls while maintain-
ing solution quality. ORMind framework is shown
in Figure 1b.

We evaluate ORMind on standard benchmark
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Figure 1: Current frameworks rely on complex agent orchestration with unpredictable execution paths, dramatically
increasing API calls and computation time. Their focus on code syntax rather than mathematical accuracy results
in costly errors that can propagate through business operations undetected. This excessive coordination overhead
makes these systems impractical for time-sensitive business applications. Compared to traditional methods, OR-
Mind employs a streamlined end-to-end workflow with counterfactual reasoning, significantly enhancing solution

reliability.

datasets and complex OR problems in industrial
scenarios, creating more trustworthy Al systems for
business applications. Our contributions include:

* An industry-focused framework that stream-
lines optimization workflows.

* A counterfactual reasoning methodology for
business-critical constraint validation.

* A workflow that improves solution trustwor-
thiness and clarity, reducing implementation
risks.
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