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Introduction

The International Conference on Spoken Language Translation IWSLT) is the premiere annual scientific
conference for the study, development and evaluation of spoken language translation technology. Laun-
ched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003), IW-
SLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-to-
speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual communica-
tion including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications in the
field. The conference organizes evaluations around challenge areas, and presents scientific papers and
system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Translation
(SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured spoken language translation shared tasks organized into seven distinct tracks:
(1) speech-to-speech translation, (ii) simultaneous speech translation, (iii) subtitling, (iv) offline speech
translation, (v) dubbing, (vi) low resource, and (vii) indic speech translation. Each track was coordinated
by one or more chairs. The resulting evaluation campaigns attracted a total of 18 teams, from academia,
research centers and industry. System submissions resulted in 26 system papers that will be presented at
the conference. Following our call for papers, this year we received 10 submissions of research papers,
7 of which were accepted for oral presentation through a double-blind review process. The proceedings
also include a survey paper summarizing recent research highlights, 2 test suite papers, which were peer-
reviewed consistently with scientific and system papers respectively. In addition, the conference program
is enriched by the presentation of 2 speech translation papers published in the Findings of the ACL over
the past year.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsor Apple. We thank the shared tasks chairs, organizers, and participants, the program committee
members, as well as all the authors that went the extra mile to submit system and research papers to
IWSLT, and make this year’s conference a big success. We also wish to express our sincere gratitude to
ACL for hosting our conference and for arranging the logistics and infrastructure that allow us to hold
IWSLT 2024 as a hybrid conference.

Welcome to IWSLT 2024, welcome to Bangkok!

Marine Carpuat, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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Abstract

This paper reports on the shared tasks orga-
nized by the 21st IWSLT Conference. The
shared tasks address 7 scientific challenges
in spoken language translation: simultaneous
and offline translation, automatic subtitling
and dubbing, speech-to-speech translation, di-
alect and low-resource speech translation, and
Indic languages. The shared tasks attracted 18
teams whose submissions are documented in
26 system papers. The growing interest to-
wards spoken language translation is also wit-
nessed by the constantly increasing number
of shared task organizers and contributors to
the overview paper, almost evenly distributed
across industry and academia.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spoken
language translation (SLT). IWSLT is organized
by the Special Interest Group on Spoken Lan-
guage Translation (SIGSLT), which is supported
by ACL, ISCA and ELRA.

Like in all the previous 20 editions, this year’s
conference was preceded by an evaluation cam-
paign featuring shared tasks addressing scientific
challenges in SLT. This paper reports on the 2024
IWSLT Evaluation Campaign, which offered the
following 7 shared tasks:

* Offline SLT, with focus on speech-to-text
translation of recorded conferences and inter-
views from English to German, Japanese and
Chinese.

e Simultaneous SLT, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to German,
Japanese and Chinese.

¢ Automatic Subtitling, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish and
on compression of pregenerated German and
Spanish subtitles.

* Speech-to-speech Translation, focusing on
natural-speech to synthetic-speech translation
of recorded utterances from English to Chinese.

* Automatic Dubbing, focusing on dubbing of
production quality videos from English to Chi-
nese.

* Low-resource SLT, focusing on the transla-
tion of recorded speech from Bhojpuri to Hindi,
Irish to English, Marathi to Hindi, Maltese
to English, North Levantine Arabic to En-
glish, Pashto to French, Tamasheq to French,
Quechua to Spanish, and Bemba to English.

e Indic Languages Track, with focus on
Speech-to-Text translation of TED talk au-
dios from English to Indic languages including
Hindi, Tamil, and Bengali.

The shared tasks attracted 18 teams (see Ta-
ble 1) representing both academic and industrial
organizations. The following sections report on

Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024), pages 1-59
August 15-16, 2024 (©2024 Association for Computational Linguistics



Team Organization
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Table 1: List of participants to the IWSLT 2024 shared tasks

each shared task in detail. Each section includes
a description of the proposed challenge, the data
and evaluation metrics used for training and test-
ing systems, the received submissions, and finally
a summary of the results. Detailed results for some
of the shared tasks are reported in a corresponding
appendix.

2 Offline SLT

Recent advances in deep learning are providing
the opportunity to address traditional NLP tasks
in new and completely different ways. One of
these tasks is spoken language translation (SLT),
an overarching problem that can be cast in vari-
ous manners, ranging from offline to simultane-
ous processing, to produce either textual or speech
outputs under both unconstrained and constrained
conditions. This section reports on the 2024 round
of the IWSLT Offline Speech Translation Track,
which consists of translating audio speech from
one language into text in a different target lan-
guage without any specific time or structural con-
straints, different from the simultaneous (see §3),
subtitling (§4), speech-to-speech (§5), and dub-
bing (§7) tasks. Under this general problem defi-
nition, the goal of the offline SLT track—the one
with the longest tradition at IWSLT—is to contin-
uously challenge this rapidly evolving technology

by gradually introducing novel aspects that raise
the difficulty bar.

2.1 Challenge

For years, SLT has been addressed by cascading an
automatic speech recognition (ASR) system with
a machine translation (MT) system. More recent
trends involve using a single neural network to di-
rectly translate the input audio signal in one lan-
guage into text in another language, bypassing in-
termediate symbolic representations such as tran-
scriptions. In light of this evolution, the challenges
addressed by the 2024 round of the offline track
stem from the following considerations. (1) Al-
though the results of the recent IWSLT campaigns
have confirmed that the performance of end-to-end
models is approaching that of cascade solutions, it
is currently not clear which of the two technolo-
gies is more effective. Moreover, (2) all recent
evaluations have been based on test sets extracted
from TED talks, which represent a relatively sim-
pler application scenario compared to the variety
of potential deployments of SLT technology. In
this controlled scenario, a single speaker deliv-
ers a prepared speech without background noise
or interaction with other speakers. Finally, (3)
last year’s edition showed that introducing com-
plexity to the scenario (e.g., including spontaneous
speech, terminology, and dialogues) resulted in a



clear performance degradation compared to using
the classic TED talk test set.

Therefore, in addition to addressing the ques-
tion of whether the cascade solution remains the
dominant technology, this year we focused on un-
derstanding whether current state-of-the-art solu-
tions can handle more complex scenarios (e.g.,
spontaneous speech, terminology, different ac-
cents, background noise, and dialogues). To shed
light on these aspects, participants were chal-
lenged with data representative of different do-
mains and conditions, namely:

« TED Talks' — the classic IWSLT evaluation
material, for which fresh test data were col-
lected also this year;

* TV series from ITV Studios® — data featur-
ing multiple individuals interacting in vari-
ous scenarios. The speech translation system
needs to deal with overlapping speakers, dif-
ferent accents, and background noise;

* Physical training videos offered by Peloton?
— data featuring individuals exercising in the
gym. The speech translation system needs to
deal with with background noise and an in-
formal speaking style;

* Accented English conversations — data fea-
turing conversations, each containing two
friends interacting on a daily topic, such as
hobbies and vacation. The speakers were se-
lected to cover a wide range of English speak-
ers around the globe. In addition to the vari-
ety of accents, another major challenge is the
presence of spontaneous speech.

In continuity with the last two years, three lan-
guage directions were proposed. Depending on
the evaluation scenario, the language conditions
covered are:

* English - German: TED talks, TV series,
physical training videos, and accented En-
glish conversations;

* English — Japanese: TED talks.

* English — Chinese: TED talks.

"https://www.ted.com/
https://www.itvstudios.com/
*https://www.onepeloton.com/

2.1.1 Test Suites

To further broaden the scope of evaluation condi-
tions and explore specific aspects relevant to SLT,
this year we provided participants with the option
to submit additional test suites alongside the stan-
dard evaluation setting described above. The pur-
pose of a test suite is to assess an SLT system
on particular aspects that are generally hidden or
overlooked by the classic evaluation frameworks.
While the official evaluation relies solely on the
designated official test sets, these supplementary
test suites offer a valuable means to enhance sys-
tem testing across a wider spectrum of phenom-
ena. They also provide an opportunity to pinpoint
specific and challenging issues that impact SLT
performance. The particular test suite composi-
tion and its evaluation were fully delegated to the
interested test suite provider.

2.2 Data and Metrics

Training and development data. Similar to the
2023 edition, participants were offered the possi-
bility to submit systems built under three training
data conditions:

1. Constrained: the allowed training data is
limited to a medium-sized framework in
order to keep the training time and re-
source requirements manageable. The com-
plete list* of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) does not include any pre-
trained language model.

2. Constrained with large language models
(constrained*“EM): in addition to all the con-
strained resources, a restricted selection® of
large language models is allowed to give par-
ticipants the possibility to leverage large lan-
guage models and medium-sized resources.
We reproduce the list of allowed LLMs in Ta-
ble 2.

3. Unconstrained: any resource, pre-trained
language models included, can be used with
the exception of evaluation sets. This setup is
proposed to allow the participation of teams
equipped with high computational power and
effective in-house solutions built on addi-
tional resources.

*See the IWSLT 2024 offline track web page: https://iw
slt.org/2024/0ffline


https://www.ted.com/
https://www.itvstudios.com/
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LLM Source

Wav2vec 2.0 https://github.com/pytorch/fairseq/blob/main/examples/wav2vec/README.md
Hubert https://github.com/pytorch/fairseq/tree/main/examples/hubert

WavLM https://github.com/microsoft/unilm/tree/master/wavim

SpeechLM https://github.com/microsoft/unilm/tree/master/speechlm

data2vec https://github.com/facebookresearch/fairseqg/tree/main/examples/data2vec
MBART https://github.com/pytorch/fairseq/blob/main/examples/mbart/README.md
MBARTS0 https://github.com/pytorch/fairseq/tree/main/examples/multilingual#mbart50-models
M2M100 https://github.com/pytorch/fairseqg/tree/main/examples/m2m_100

Delta LM https://github.com/microsoft/unilm/tree/master/deltalm

T5 https://github.com/google-research/text-to-text-transfer-transformer

BLOOM https://huggingface.co/bigscience/bloom-560m#model-details

(Note: only the small 560M parameter version)
Mistral 7B Instruction Fine-tuned
Mistral 7B Base Model
LLama2 7B Chat Model
Llama2 7B base model
NLLB 3.3B
NLLB 1.3B
NLLB 600M
Seamless Models

(SeamlessM4T/Streaming/Expressive)

https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingtace.co/facebook/nllb-200-distilled-1.3B
https://huggingface.co/facebook/nllb-200-3.3B
https://huggingtace.co/facebook/nllb-200-distilled-600M
https://github.com/facebookresearch/seamless_communication

Table 2: List of LLMs allowed in the constrained*“** training data condition.

The development data allowed under the con-
strained condition consists of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013-2015 and 2018-2020 IWSLT cam-
paigns. Besides this TED-derived material, addi-
tional development data were released to cover the
three new scenarios included in this round of eval-
uation.

Test data. As in previous rounds of the offline
track, the collection of new test data for the TED
talks scenario started by isolating a set of talks
(41 in total) that are not included in the cur-
rent public release of MuST-C (Cattoni et al.,
2021). Starting from this material, which was used
to build the initial English-German test set, the
talks for which Japanese and Chinese translations
are available were selected to build the English-
Japanese and English-Chinese test sets. Since fur-
ther checks revealed a partial overlap between the
selected talks and the TED2020 corpus’ (Reimers
and Gurevych, 2020) a final cleaning step had to
be applied to remove the overlapping talks (4 for
en-de, 4 for en-ja, none for en-zh). After this
removal, the final test sets comprise 37 talks for
English-German (corresponding to a total dura-
tion of 3h:07m:14s), 30 talks for English-Japanese
(2h:14m:11s), and 30 talks for English-Chinese
(3h:20m:19s).

For the TV series scenario, the 7 TV series for
a total duration of 06h:01m are offered by ITV

‘https://opus.nlpl.eu/TED2020/ens&de/vl/
TED2020

Studios.® Each series includes multiple speakers,
background noise, and different audio conditions.

For the Physical training scenario, the 9 physi-
cal training videos for a total duration of 03h:59m
are offered by Peloton.” Each video includes a sin-
gle speaker in a room practicing sports activities
with, often, background music and breathy voice.

For the Accent challenge scenario, the test set
has 1,448 utterances that are sampled from 76 con-
versations in the Edinburgh International Accents
of English Corpus (EdAcc, Sanabria et al., 2023).
In total, the test set contains about 3.5 hours of au-
dio data, 34k English words, 25.2k German words
and 33 accents. The German translations are cre-
ated from the English transcripts by our profes-
sional translators who are paid at a rate of 0.095
GBP per word. The translators, with access to
the aligned audio files, were required to trans-
late the transcripts in a fluent and faithful manner
while allowing punctuation and casing. For exam-
ple, hesitation tokens like “ACH” and “HMM” in
the transcripts are not included in the translation.
The complete translation guidelines are attached
in Appendix B.1.

Metrics. Systems were evaluated with respect
to their capability to produce translations similar
to the target-language references. The similarity
was measured in terms of multiple automatic met-

*https://www.itvstudios.com
"https://www.onepeloton.com
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rics: COMET? (Rei et al., 2020), BLEU® (Pap-
ineni et al., 2002a), chrF (Popovi¢, 2015). Among
them, this year COMET was chosen as the primary
evaluation metric based the findings of Machédcek
et al. (2023) and Sperber et al. (2024), which in-
dicate its highest correlation with human judge-
ments. The submitted runs were therefore ranked
based on the COMET calculated on the test set by
using automatic resegmentation of the hypothesis
based on the reference translation by mwerSeg-
menter,' using a detailed script accessible to par-
ticipants.!! Moreover, similar to last year’s round,
a human assessment was performed on the best-
performing submission of each participant in or-
der to enhance the soundness and completeness of
the evaluation.

2.3 Submissions

This year, 4 teams participated in the offline task,
submitting a total of 38 runs. Table 3 provides
a breakdown of the participation in each sub-
task showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained™ZEM unconstrained), the
number of submitted runs obtained with cascade
and direct systems. Notably, no direct system was
submitted this year.

e CMU (Yan et al., 2024) participated with
cascade en-de, en-ja, en-zh systems trained
under the unconstrained condition. Their
model consists of an ASR system based
on Whisper and an MT system based on
fine-tuned NLLB models. The ASR sys-
tem is enhanced by the application of a
specific fine-tuning to process unsegmented
recordings without the need for a separate
voice-activity detection stage. = The MT
systems generate a set of candidate trans-
lations via epsilon-sampling that are then
pooled and the 1-best translation is selected
using COMET-based Minimum Bayes-Risk
decoding.

8 Unbabel/wmt22-comet-da
“BLEU+case.mixed-+numrefs.1-+smooth.exp+tok.13a
+version.1.4.14
Yhttps://www—16.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz
"https://github.com/isl-mt/SLT.KIT/blob
/master/scripts/evaluate/Eval.sh

* HW-TSC (Wu et al., 2024) participated

with cascade en-de, en-ja, en-zh systems
trained under the constrained, constrained
with Large Language Models, and uncon-
strained conditions. The authors used dif-
ferent training strategies for each different
condition. Under the constrained condi-
tion, an ASR is trained from scratch test-
ing Conformer and U2. All audio inputs are
augmented with spectral augmentation), and
Connectionist Temporal Classification (CTC)
is added to make the model converge bet-
ter. The MT system takes advantage of the
Deep Transformer-Big model structure, R-
Drop and data selection to identify in-domain
data from a large pool of parallel data. Under
the constrained + LLM condition, the ASR
system is a combination of the wav2vec2
encoder and mBARTS50 decoder, where the
self-attention of the encoder and decoder are
frozen and all constrained are used for fine-
tuning. The MT system is based on Llama2-
7B fine-tuned with parallel data and source
language consistent instructions, and apply-
ing CPO. Under the unconstrained condition,
the ASR system is based Whisper fine-tuned
and MuST-C, while the MT model selects the
1-best translation from a pool of candidates
generated both with NMT and LLM using
COMET. Audio segmentation is performed
using SHAS.

KIT (Koneru et al., 2024) participated with a
cascade en-de system trained under the con-
strained with Large Language Models condi-
tion. This submission is based on a four-step
approach. The audio is first transcribed by
a fine-tuned ASR, the n-best list is then pro-
cessed by an LLM to generate the best hy-
pothesis. The final transcripts is translated to
generate the text in the target language. The
transcript and the translation are then paired
and document- level automatic post-editing
is applied to improve the coherence of the
translations. The ASR is based on the com-
bination of WavLM encoder and mBART50
decoder fine-tuned on the task data. Audio
segmentation is based on SHAS, but a long-
former technique is also tested to use context
better. The ASR refiner and the MT post-
editor are fine-tuned versions of Mistral 7B
Instruction-tuned LLM using QLoRA, while
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English-German
Participants | Runs Constrained Constrained"“"" | Unconstrained
Cascade | 2 Cascade 3 Cascade | 9
4 14 2 Direct | - 3 Direct - ? Direct | -
English-Chinese
Participants | Runs Constrained Constrained*““™ | Unconstrained
Cascade | 2 Cascade | 2 Cascade | 9
3 13 2 Direct | - 2 Direct - ? Direct | -
English-Japanese
Participants | Runs Constrained | Constrained*“"" | Unconstrained
3 1 ) Ca.scade 2 ’ Ca§cade 2 4 Ca§cade 4
Direct | - Direct - Direct | -

Table 3: Breakdown of the participation

in each

sub-task (English—-German, English—Chinese,

English—Japanese) of the IWSLT offline ST track. For each language direction, we report the number of par-

ticipants, the number of submitted runs and, for each training data condition (constrained, constraine

drLLM

constrained), the number of submitted runs obtained with cascade and direct systems.

NLLB 200 3.3B is used as the MT system.
The post-editing step showed to be less ef-
fective when the ASR quality is low. For this
reason, LLM refinement is not used for the
EPTV and ITV datasets.

* NYA (Zhang et al., 2024) participated with
cascade en-de, en-ja, en-zh systems trained
under the unconstrained condition. The ASR
is based on Whisper-v3-large, while the MT
system is a wider and deeper Transformer
model. The MT model is enhanced by lever-
aging several techniques such as R-Drop,
data augmentation with backward transla-
tions, domain adaptation via data filtering,
and ASR output adaptation where the human-
quality transcript in the SLT data is replaced
with the automatic transcript. The final MT
model is an ensemble of two/three models.
The audio is segmented using SHAS.

2.4 Results

We will analyse the different aspects of the results
by language pair.

24.1 English to German

Correlation between BLEU, COMET and DA
scores Table 25 shows the aggregated result of
the participated systems on the four test sets. In
terms of ranking based on the BLEU score, NYA
wins 3 out of 4 test sets, except on ITV which
CMU and HW-TSC(U) have a tie. However, the
ranking is substantially changed when COMET is
used. In this case, CMU is the winning system

in all conditions, indicating that this submission
achieves the best performance. But in contrast
to last year when the human evaluation validated
the automatic metric rankings, the correlation be-
tween the automatic rankings and the human rank-
ing is not as good as shown in Table 18. (More
details on our human evaluation using DA are pro-
vided in Appendix A.2.1.) For the human evalua-
tion, HW-TSC(C+) achieves the best performance
overall and has the best DA ranking on 3 out of
four test sets. Only on the accent test set, NYA has
better scores. However, it is worth noticing that
no system performs significantly better than HW-
TSC(C+) on any dataset.

The results show that it is essential to perform
a human evaluation since no automatic metric, at
the moment, can predict the performance of the
individual systems well. Furthermore, additional
research on performing reliable automatic metrics
for speech translation would be very valuable.

It is interesting to note that all the submissions
are based on the cascade architecture this year.
This is an important change compared to previous
editions where the end-to-end architectures com-
peted with the cascade ones.

Context Beyond Segment Level One of the
participating teams, KIT, used document-level
post-editing to improve the coherence of transla-
tion. We note that while document-level consis-
tency is a critical feature of text and speech trans-
lation, our evaluation this year does not reflect
it yet. All used automatic metrics are segment-
oriented. As detailed in Appendix A.2.1 also



the particular setup of DA this year did not allow
the annotators to consider longer context because
the segments were shuffled for DA. (Two neigh-
bouring segments were provided but only to ac-
count for segmentation errors, not for assessment
of context-level phenomena.) It is therefore con-
ceivable that the outputs of the KIT system were
somewhat penalized.

Domains Similar to last year’s edition, we eval-
uated each submitted system on different domains.
First of all, the results show that the systems per-
form very differently in the different domains.
When looking at the human ranking, the best qual-
ity is achieved in the TED domain. This is not
surprising, since research has focused on this for
many years and a significant amount of training re-
sources exist. The performance on ITV and Pelo-
ton is lower, and the Accent data set appears to
be the most challenging condition, indicating that
speech translation remains an unsolved problem.

The availability of human rankings of the same
systems across different domains allows us also
to analyse whether automatic scores can be used
to assess the quality of SLT system across do-
mains. When ranking the difficulty level of differ-
ent domains, we see that COMET ranks them sim-
ilar than the human ranking except that COMET
shows overall lower scores for Peloton, identifying
Peloton as more challenging than Accent. In con-
strast, string-based metrics like BLEU are not able
to do this. This also shows that additional metrics
might be needed to measure the quality across do-
mains.

Data conditions On top of the above, we can
also observe the improvement in both BLEU and
COMET scores caused by using an additional
large language model or additional data. HW-
TSC submitted three primary systems for each
data condition, and both the unconstrained (U) and
the constrained*““™ (C*) models have a notice-
able gain over the constrained model (C). The two
better models perform similarly in both BLEU and
COMET. Interestingly, additional training data
beyond the language model data does not sig-
nificantly improve. In terms of DA score, the
constrained*““M model is >0.6 points better than
the other models in different data conditions.

Progress compared to last year We also per-
formed an automatic evaluation of the system on
the test sets from last year from the domains TED,

EMPAC, and ACL. The results are summarized in
Table 26. Although the participants optimized for
different domains, for each domain and each met-
ric this year’s submissions achieved the best per-
formance. When comparing the best submission
from this year and last year, this year’s submission
is between 4.4 and 1.5 BLEU points better and 1.1
to 2.7 COMET percent points better than the best
system from last year.

Performance by accents For the accent test set,
we performed an additional details analysis for the
different accents.

Figure 1 shows the BLEU and COMET of each
system across the 33 accents. The numbers in
parenthesis are audio duration in the format of
“minutes:seconds”. We use the self-reported la-
bels from the original work as the prior choice for
accent labeling. Since accents could be loosely
defined (e.g., multi-class), subjective, and most
speakers in the annotation are not the related ex-
perts, we thus derive the labels from other at-
tributes, such as the first language of the speaker,
if necessary and refine the labels to country-level.
There is one speaker who declares his accent
as “Trans-Atlantic” and speaks multiple first lan-
guages. We assign this special case as “Mixed”.

The aggregated result on Table 25 shows that
CMU is the winning system on Accent when
COMET is used for ranking, whereas NYA would
be the winner if BLEU is used instead. Does this
winning situation occurs on a wide range of ac-
cents or on a small subset? The breakdown on Fig-
ure 1 shows that CMU (the blue-diamond points)
has better COMET scores, especially relative to
NYA, and is within Top-2 on a wide range of ac-
cents. Similar observations are found in the better
BLEU scores of NYA (the yellow-star points).

For the three primary systems submitted by
HW-TSC (the red points), their performances are
rather consistent across the 2 metrics and the ac-
cents. In most cases, both the constrained LM
(the circles) and the unconstrained models (the
squares) perform similarly, while the constrained
model (the triangles) falls slightly behind. In
the North Macedonian and the Pakistani accents,
the constrained model seems to be better in both
BLEU and COMET, but their data sizes are rather
small, i.e. <1 minute. In the constrained LLM set-
ting, the HW-TSC system in general performs bet-
ter than the KIT system in a wide range of accents,
but the KIT system has a slight edge in Indonesian,



Israeli and Japanese accents.

The macro-average across accents are 18.7
BLEU and 0.679 COMET. Despite their fairly
large test sizes, French, Irish, Jamaican, Kenyan
and Vietnamese are below average. In Brazil-
ian, German, Mexican and South African ac-
cents, all systems perform rather poorly, i.e., <10
BLEU. Potential causes are the train-test mis-
match in accents, their small test sizes and the re-
segmentation error in the short utterances. Addi-
tionally, these speeches contain a mix of disflu-
encies and named entities, e.g., food ingredients,
imposing further translation challenges.

2.4.2 English to Japanese

For the English to Japanese direction, we only
have one test condition, the TED domain. In this
case, the HW-TSC is the winner in all metrics,
BLEU, COMET, and human ranking. However,
the order of the submissions from HW-TSC varies
across different metrics. Furthermore, the other
two participants perform similarly on human rank-
ing, but CMU is clearly better on COMET and
NYA is clearly better on BLEU. This again sug-
gests that the automatic metrics do not perform
sufficiently well on speech translation tasks yet.
Similar to the En-De language direction, all the
submitted systems are based on the cascade archi-
tecture.

When comparing the submissions from this
year and last year on the two progress test sets
(TED and ACL), we again see a clear improve-
ment compared to last year’s best systems.

For the data conditions, we see again a bet-
ter performance of the unconstrained (U) and
the constrained*““M (C*) submissions from HW-
TSC compared to the system using only con-
strained data. However, this does not hold for the
BLEU metric and the human evaluation. In these
metrics, we see no clear benefit from using more
data.

2.4.3 English to Chinese

For the English to Chinese direction, we also
have only one test condition, the TED domain.
In this case, the HW-TSC is the best system in
human evaluation and COMET, while NYA per-
formed best in BLEU. While this could indicate
a good correlation between human evaluation and
COMET, NYA actually serves as a counterexam-
ple: it performed worst in COMET and second
best in human evaluation. This again suggests

that the automatic metrics do not work reliably on
speech translation tasks yet. Similar to the other
language directions, all the submitted systems are
based on the cascade architecture.

When comparing the submissions from this
year and last year on the two progress test sets
(TED and ACL), we again see a clear improve-
ment compared to the best systems of last year.

For the data conditions, we see again a bet-
ter performance of the unconstrained (U) and
the constrained*““M (C*) submissions from HW-
TSC compared to the system using only con-
strained data, when considering the COMET met-
ric and the human evaluation.

3 Simultaneous SLT

Simultaneous speech translation focuses on trans-
lating speech in real-time, in manner vaguely simi-
lar to simultaneous interpreting. The system is de-
signed to begin translating before the speaker has
finished their sentence. This technology is par-
ticularly useful in scenarios such as international
conferences, personal travel, or public emergency
events.

This year, the task included two tracks: speech-
to-text and speech-to-speech, covering four lan-
guage directions: English to German, English
to Chinese, English to Japanese, and Czech to
English—a new language direction added this
year.

3.1 Challenge

We have retained the settings from last year’s
shared task. A single latency constraint is intro-
duced for each of the tracks:

* An average lagging of 2 seconds for the
speech-to-text track.

e A starting offset of 2.5 seconds for the
speech-to-speech track.

Participants are allowed to submit no more than
one system per track and language direction, pro-
vided the system’s latency remains within the
specified constraints. The latency performance of
the systems is evaluated using the open MuST-
C tst-COMMON test set (Di Gangi et al., 2019).
Submissions were accepted only in the form of
Docker images, which were later executed by the
organizers on the blind-test set in a controlled
environment. An example implementation was



set domain |#utter. #words/ dura.tlon
utter. (min)
dev ParCzech 276 24 56
ELITR 314 13 28.6
test MockConf | 1113 14 129.5

Table 4: Statistics of the dev and test sets for the Czech-
English simultaneous task.

provided using the SimulEval toolkit (Ma et al.,
2020).

3.2 Data

To simplify the setting and allow participants to
focus on the new modeling aspects of simultane-
ous translation, we adhere to the constraints with
large language models as defined for the offline
SLT task, see Section 2.2 above. This is the sole
data condition for the task. The test data differ
across different language pairs:

English to German, Chinese, and Japanese
Common TED Talks, which are the same as those
used in the Offline task, as described in Sec-
tion 2.2.

Czech to English The devset was created from
two sources:

* A subset called “context” was taken from
ParCzech 3.0 (Kopp et al., 2021), consist-
ing of consecutive recordings of Parliament
of the Czech Republic.

* An entire recording of a debate about Al from
the ELITR test set (Ansari et al., 2021).'?

The reference translations of the devset were
done by students of translation studies from the
Faculty of Arts at Charles University.

The testset was gathered from mock confer-
ences that were part of the interpreting curriculum
of the Faculty of Arts at Charles University. A
speaker pretends to be a celebrity or an interesting
person and delivers a made-up speech on a pre-
determined topic. We included 13 such speeches.
The reference translations were provided by pro-
fessional translators. Due to confidentiality of
recordings, the testset is not released to the com-
munity. The statistics of the data are displayed in
Table 4.
Phttps://github.com/ELITR/elitr-testset

/tree/master/documents/2021-theaitre-r
elated/robothon-debate

3.3 Evaluation

We evaluate two aspects of the model: quality and
latency.

Quality We conducted both automatic and hu-
man evaluation. BLEU score (Papineni et al.,
2002b) is used for automatic quality evaluation.
For speech output, the BLEU score is computed
on the transcripts from Whisper (Radford et al.,
2023) ASR model. The ranking of the submission
is based on the BLEU score on the Common blind
test set. The human evaluation was conducted
in English-to-German/Chinese/Japanese, as de-
scribed in A.1.

Latency We only conducted automatic evalua-
tion. We report the following metrics for each
speech-to-text systems.

» Average Lagging (AL; Maet al., 2019)

* Length Adaptive Average Lagging (LAAL;
Polék et al., 2022; Papi et al., 2022a)

* Average Token Delay (ATD; Kano et al.,
2023)

* Differentiable Average Lagging (DAL; Ari-
vazhagan et al., 2019)

For speech-to-speech systems, we report start-
offset, end-offset and Average Token Delay. The
latency metrics will not be used for ranking.

3.4 Submissions

Four teams in total submitted systems this year,
with all teams participating in at least one lan-
guage direction in the speech-to-text track. All
teams entered the English-to-German track; three
teams entered the English-to-Chinese and English-
to-Japanese tracks; and two teams entered the
Czech-to-English track, to which we added a
Whisper-based benchmark. For the speech-to-
speech track, two teams submitted systems, with
one team submitting for all language directions
and the other only in the English-to-Japanese di-
rection.

CMU (Xu et al.,, 2024) participated in the
speech-to-text track for the English-to-German di-
rection. Their system integrates the WavLM-
based speech encoder (Chen et al., 2021), a
modality adapter, and the Llama2-7B-based de-
coder (Touvron et al., 2023). The training is con-
ducted in two stages: modality alignment and


https://github.com/ELITR/elitr-testset/tree/master/documents/2021-theaitre-related/robothon-debate
https://github.com/ELITR/elitr-testset/tree/master/documents/2021-theaitre-related/robothon-debate
https://github.com/ELITR/elitr-testset/tree/master/documents/2021-theaitre-related/robothon-debate

full fine-tuning, both performed on MuST-C v2
data (Cattoni et al., 2021). The two-stage train-
ing results in an offline speech translation model,
which is then adapted to a simultaneous speech
translation model with a simple fixed hold-n pol-

icy.

FBK (Papi et al., 2024) participated in all
language directions of the speech-to-text track.
Their system is a unified multilingual simultane-
ous speech translation system, combining Alig-
nAtt (Papi et al., 2023b) and SeamlessM4T-
medium (Seamless Communication et al., 2023).
The SeamlessM4T model is directly used in
its streaming mode without additional retraining.
The generated hypotheses are further processed
through AlignAtt for policy learning. Based on
diverse training sources, the model can translate
into approximately 200 target languages from 143
source languages.

HW-TSC (Li et al., 2024a) participated in all
language directions of both the speech-to-text and
speech-to-speech tracks. Except for the Czech-
to-English direction, all other models utilize cas-
caded simultaneous speech translation approaches
by combining offline speech recognition, machine
translation, and text-to-speech. For the Czech-to-
English direction, they utilize the offline Seam-
lessM4T (Seamless Communication et al., 2023)
as the backbone for speech-to-text translation,
combined with a text-to-speech system. They fol-
lowed their last year’s submissions as the base set-
ting (Guo et al., 2023). Additionally, they ap-
plied online voice-activity-detection-oriented seg-
mentation, chunk padding in the speech recogni-
tion system to achieve smaller delays, and added
an ensemble strategy for machine translation to
achieve better stability. For end-to-end speech-to-
text translation, they fine-tuned the SeamlessM4T
model using the suggested data in the simultane-
ous SLT shared task.

NAIST (Ko et al, 2024) participated in
three language directions of the speech-to-text
track. Their speech-to-text system combined Hu-
BERT (Hsu et al., 2021) and mBART (Liu et al.,
2020b) in an end-to-end fashion, with a local
agreement policy (Liu et al., 2020a; Poldk et al.,
2022). Their speech-to-speech system further ap-
plied an incremental text-to-speech module tuned
with AlignAtt policy (Papi et al., 2023b).
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ORGANIZER’S BENCHMARK by Charles
University was prepared for the Czech-to-English
direction. The system is based on Whisper (Rad-
ford et al., 2023) version large-v2. We ap-
plied an onlinization technique (Polak et al., 2022,
2023a,b) to utilize the offline Whisper model in
the simultaneous regime, and applied prompting to
leverage the translation history from previous seg-
ments. Due to organizational reasons, the bench-
mark was run on different hardware so the compar-
ison of computationally-aware latency with other
systems is not possible.

3.5 Results

We rank the system performance based on BLEU
scores. The detailed results can be found in the
respective tables in Appendix A.2.3.

Speech-to-Text The ranking of the speech-to-
text track is as follow

* English to German (Table 29):
HW-TSC, CMU, NAIST, FBK

* English to Chinese (Table 30):
HW-TSC, NAIST, FBK

* English to Japanese (Table 31):
HW-TSC, NAIST, FBK

* Czech to English (Table 32):
ORGANIZER’S BENCHMARK (with
context of 2 segments), FBK, HW-TSC

Speech-to-Speech As mentioned in Section 3.4,
two teams submitted speech-to-speech track this
year. HW-TSC submitted systems on all language
directions and NAIST submitted on English to
Japanese Direction. We only rank the English
to Japanese Direction. The rank is: HW-TSC,
NAIST. See Table 33 for more details.

3.6 Conclusions

Over the past four years, the IWSLT has consis-
tently featured simultaneous translation tasks, re-
flecting a growing interest and impressive progress
in this area. The shared task also brings the es-
tablishment of standardized evaluation protocols
for simultaneous translation research. The recent
integration of foundation models has further ex-
panded the potential of this task. All teams inte-
grated such models into their submissions using
different approaches. CMU and NAIST teams
combined two foundation models each specialized



in one modality (speech encoder and text decoder)
together using fine-tuning, while others chose ex-
isting ST models such as SeamlessM4T or Whis-
per and modified them for simultaneous use. Sur-
prisingly, even large models (e.g., the CMU’s
Llama2-7B-based decoder) achieved competitive
computationally-aware latencies.

The only cascaded system in the competition
(HW-TSC) was consistently rated first in three
language pairs. Nevertheless, according to all la-
tency measurements, this system also exhibited
the highest computationally-aware latencies.

One of the interesting points this year is the
newly-added Czech-to-English translation direc-
tion where we included our Whisper-based bench-
mark. When operating at the segment level, this
benchmark performed worse than participants’
systems, but given one or two of its previous trans-
lation outputs, it improved over them. This con-
firms that the role of context is very important in
speech translation task and the best uses of LLMs
for this task are still to be found.

Several promising directions for future im-
provements remain. Investigating downstream
tasks such as cross-lingual dialogues could pro-
vide deeper insights into practical applications of
simultaneous translation. Developing more inter-
active evaluation methods could enhance the un-
derstanding and effectiveness of these systems.
Lastly, optimizing the evaluation procedure to ex-
pedite the process remains crucial, as the current
system managed by the organizers can be time-
consuming.

4 Automatic Subtitling

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention due to the rapid
increase in the global distribution and streaming
of movies, series, and user-generated videos. Re-
flecting these trends, the automatic subtitling track
was introduced for the first time in 2023 as part
of the IWSLT Evaluation Campaigns. Given the
growing interest in this area, the task has been con-
tinued this year with the addition of a new sub-
track, subtitle compression, alongside the exist-
ing automatic subtitling sub-task from the previ-
ous edition.

In the automatic subtitling task, participants
were asked to generate subtitles in German and/or
Spanish from English speech in audiovisual docu-
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ments. In the new subtitle compression task, par-
ticipants were required to automatically rephrase
subtitles that did not comply with the reading
speed constraint (i.e., subtitles exceeding a certain
length/time ratio given in characters per second) to
ensure they met the required standards.

The decision to have works focusing on this
specific aspect of subtitling is highly motivated
by the existing requirements posed by subti-
tles providers (Papi et al., 2023a). In fact, the
constraint on the reading speed is a commonly
adopted standard to ensure that viewers can enjoy
audiovisual content without experiencing fatigue
or distraction due to excessive reading demands
(Kruger, 2001). Therefore, adhering to this limit is
crucial, making the development of ad-hoc meth-
ods to improve automatically generated subtitles
that exceed this threshold of particular interest.

4.1 Challenge

Automatic Subtitling. The task of automatic
subtitling is multifaceted: starting from speech,
not only must the translation be generated, but it
must also be segmented into subtitles that comply
with constraints ensuring a high-quality user ex-
perience. These constraints include proper read-
ing speed, synchrony with the voices, the maxi-
mum number of subtitle lines, and characters per
line. Most audio-visual companies define their
own subtitling guidelines, which can slightly dif-
fer from each other. In the case of IWSLT partici-
pants, we asked to generate subtitles according to
specific guidelines provided by TED, including:

* The maximum subtitle reading speed is 21
characters per second;

* lines cannot exceed 42 characters, including
white spaces;

¢ Subtitles cannot exceed 2 lines.

Participants were expected to use only the audio
track from the provided videos (dev and test sets),
the video track was of low quality and primarily
meant to verify time synchronicity and other as-
pects of displaying subtitles on screen. That being
said, the exploitation of the video was permitted.

The subtitling sub-track required participants to
automatically subtitle audio-visual documents in
German and/or Spanish, where the spoken lan-
guage is always English. These documents were
collected, similarly to last year, from the follow-
ing sources:



e TED talks;"?

* Physical training videos offered by Pelo-
ton;!#
o TV series from ITV Studios."

Subtitle Compression. The objective of the
subtitle compression sub-track was to engage
teams interested in the subtitling task but unable
to build a complete automatic subtitling system.
Participants were provided with automatic sub-
titles (in German and Spanish) generated by a
non-participating system, namely the system pre-
sented in (Papi et al., 2023a), and asked to rephrase
those that exceeded the reading speed constraint
(more than 21 characters per second) to make them
compliant. Time boundaries were to remain un-
changed: only the text within a given time span
had to be compressed when necessary. The orig-
inal audiovisual documents (from the ITV test24
set of the subtitling sub-track) were also provided.

Although the subtitle compression task may ap-
pear simpler than subtitling, and it certainly is
from the point of view of architectural complex-
ity, it still presents its own difficulties. These chal-
lenges include those inherent in text summariza-
tion, such as identifying the main content of the
original text, which must be preserved, and dis-
tinguishing accessory information, which can be
omitted if necessary. Additionally, a peculiar chal-
lenge is that the text that needs to be reformulated
is potentially error-prone and often does not con-
sist of well-formed sentences but rather spans of
text representing portions of sentences or words
spanning contiguous phrases. It is expected that
the most effective solutions are those capable of
looking at the context, in an attempt to recover as
much as possible the missing information in the
text being processed.

4.2 Data and Metrics

4.2.1 Automatic subtitling

Data. This sub-track proposed two training data
conditions:

* Constrained: the official training data con-
dition, in which the allowed training data is
limited to a medium-sized framework!'® to

://www.ted.com/

://www.onepeloton.com

Bhttps://www.itvstudios.com

Yhttps://iwslt.org/2024/subtitling#trai
ning-data-allowed-for-constrained-con
ditions

13https
14https
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. AV | hh: ref subtitles

domain  set
docs | :mm | de es

dev 17 | 04:11 | 4906 4964

TED test23 | 14 | 01:22 | 1375 1422

test24 | 16 | 01:50 | 1832 1826

dev 9 03:59 | 4508 4037

Peloton test23 8 02:43 | 2700 2661

test24 | 4 01:40 | 1418 1574

dev 7 06:01 | 4489 4762

ITV  test23 | 7 05:08 | 4806 4896

test24 | 7 05:54 | 4564 4528

Table 5: Statistics of the dev and evaluation sets for the
subtitling task.

keep the training time and resource require-
ments manageable;

* Unconstrained: a setup without data re-
strictions (any resource, pre-trained language
models included, can be used) to allow also
the participation of teams equipped with high
computational power and effective in-house
solutions built on additional resources.

For each language and domain, a development
set and two test sets were released, that of the 2023
evaluation (tst2023), used for measuring progress
over years, and a new one (tst2024). Table 5 pro-
vides some statistics on these sets.

Metrics. The evaluation was carried out from
three perspectives, subtitle quality, translation
quality, and subtitle compliance, through the fol-
lowing automatic measures:

* Subtitle quality vs. reference subtitles:

— SubER, primary metric, used also for
ranking (Wilken et al., 2022);'7

* Translation quality vs. reference translations:
— BLEU'® and CHRF"? via sacreBLEU;
— BLUERT (Sellam et al., 2020).

Automatic subtitles are realigned to the ref-
erence subtitles using mwerSegmenter (Ma-
tusov et al., 2005)*° before running sacre-
BLEU and BLEURT.

"https://github.com/apptek/SubER

"8sacreBLEU signature: nrefs:1l|case:mixed|eff:
noltok:13a|smooth:exp|version:2.0.0

]%ameBLEU'ﬁgnMum: nrefs:1l|case:mixed|eff:
yes|nc:6|nw:0|space:no|version:2.0.0

20https://www—i6.informatik.rwth—aachen.
de/web/Software/mwerSegmenter.tar.gz


https://www.ted.com/
https://www.onepeloton.com
https://www.itvstudios.com
https://iwslt.org/2024/subtitling#training-data-allowed-for-constrained-conditions
https://iwslt.org/2024/subtitling#training-data-allowed-for-constrained-conditions
https://iwslt.org/2024/subtitling#training-data-allowed-for-constrained-conditions
https://github.com/apptek/SubER
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz

* Subtitle compliance:>!

— rate of subtitles with more than 21 char-
acters per second (CPS);

— rate of lines longer than 42 characters,
white spaces included (CPL);

— rate of subtitles with more than 2 lines
(LPB).

4.2.2 Subtitle compression

Data. No specific training data was released for
this sub-track. Any solution was allowed, with-
out limitations on the training data, including the
use of LLM prompted for text compression (e.g.
chatGPT). The original audio, though potentially
helpful, could either be used or not by participants;
its transcription with external tools (e.g. Whisper)
was also permitted.

As a development set, a minimal example taken
from the EuroParl Interviews benchmark (Papi
et al., 202321)22 was released, where the non-
participating subtitling system introduced in (Papi
et al., 2023a)>3 was employed to generate auto-
matic, sometimes non-compliant subtitles, which
were associated with corresponding compliant ref-
erence subtitles.

The test set consists of German and Spanish
automatic subtitles for the audiovisual documents
defining the ITV test24 set of the subtitling sub-
track; the same non-participating subtitling system
was employed to generate the subtitles to be cor-
rected.

Metrics. Since the text in subtitles has to be
compressed to fulfill the CPS requirement, but at
the same time its meaning should be preserved as
best as possible, both CPS and BLEURT are con-
sidered primary metrics in the evaluation of com-
pression quality.

4.3 Submissions

4.3.1 Automatic subtitling

The subtitling sub-track saw the participation of
three teams: APPTEK, the MT unit of Fondazione
Bruno Kessler (FBK) with two different systems,
and Huawei Translation Service Center (HW-
TSC). The details about the participants’ systems
are provided below:

'Mttps://github.com/hlt-mt /FBK-fairseq/b

lob/master/examples/speech_to_text/scr
ipts/subtitle_compliance.py

Phttps://mt.fbk.eu/europarl-interviews/

Bhttps://github.com/hlt-mt/FBK-fairseq/b
lob/master/fbk_works/DIRECT_SUBTITLING
.md
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AppTek: the cascade-based subtitling system
developed by APPTEK?* leveraging their in-
production automatic captioning and translation
offerings. A pipeline of in-house hybrid ASR,
punctuation and inverse text normalization mod-
els is used to create English captions, which are
segmented into blocks and lines via a neural seg-
mentation model in combination with hard subti-
tling constraints, similar to Matusov et al. (2019).
Time stamps follow from the HMM alignment of
the first and last word in a block. In a second step,
the generated source template is translated with
customized transformer-based NMT models, for
which full sentences are extracted and translations
are reinserted into the template using a variant of
the source-side segmentation method that enforces
splitting into the existing blocks. The NMT mod-
els make use of preceding sentence context, and
prefix tokens are used to provide genre and formal-
ity information (e.g. “talks” + “formal” for TED)
and to control the length of the translation (Ma-
tusov et al., 2020). For the primary submission,
the MT component is fine-tuned on high quality
media and entertainment customer data. In addi-
tion, the following newly developed features are
employed: automatic MT length token selection
to condense translation only where necessary due
to space constraints; extension of subtitle timings
for lower reading speed; improved Spanish MT
model. The contrastive submissions do not use
these upcoming features. The second contrastive
submission is created using APPTEK’s general do-
main MT models, which are trained on publicly
available data.

FBK-AI4Cpig (Gaido et al.,, 2024a): the
FBK’s direct subtitling system is based on the
transcription-free novel architecture, SBAAM or
Speech Block Attention Area Maximization, in-
troduced in (Gaido et al., 2024b). SBAAM lever-
ages cross-attention scores to retrieve the times-
tamp information and is the first fully direct solu-
tion capable of producing automatic subtitles by
eliminating any dependence on intermediate tran-
scripts. It is the only system trained under con-
strained conditions, utilizing only the limited data
provided by the IWSLT 2024 organizers. This in-
cludes non-subtitle material, which was automat-
ically segmented into subtitles using the multi-
modal segmenter by Papi et al. (2022b). SBAAM
is also employed as a reference system in the

Pnttps://www.apptek.com/


https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://github.com/hlt-mt/FBK-fairseq/blob/master/examples/speech_to_text/scripts/subtitle_compliance.py
https://mt.fbk.eu/europarl-interviews/
https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/DIRECT_SUBTITLING.md
https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/DIRECT_SUBTITLING.md
https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/DIRECT_SUBTITLING.md
https://www.apptek.com/

Al4Culture EU project” and is available at: ht
tps://github.com/hlt-mt/FBK-fairseqg/blo
b/master/fbk_works/SBAAM.md

FBK-AI4Ccgc (Gaido et al., 2024a): the FBK’s
cascade subtitling system, developed by FBK
within the AI4Culture project, exploiting pre-
trained language models and, therefore, partici-
pating under the unconstrained conditions. The
system is a cascade solution with Whisper (Rad-
ford et al., 2023) as the ASR model, and Helsinki
Opus-MT (Tiedemann and Thottingal, 2020) as
the MT model, together with additional compo-
nents developed in-house. The cascade solution is
publicly available at: https://github.com/hlt
-mt /FBK-subtitler

HW-TSC (Xie et al., 2024): the unconstrained
cascade solution developed by HW-TSC, which
relies on Whisper (Radford et al., 2023) to es-
timate both transcripts and word-level times-
tamps, on Bert-restore-punctuation®® for retriev-
ing punctuation and sentence segmentation, and
on wav2vec2-large-960h-1v60?’ for the CTC-
based force alignment between transcripts and
translations, obtained by in-house MT models.
The MT models (English to German and En-
glish to Spanish) were directly employed on the
sentence-level ASR transcripts while the times-
tamps were left unchanged between transcripts
and translations. Moreover, they are the only mod-
els among all participants that were specifically
adapted to the domains of the audiovisual docu-
ments through ad-hoc domain adaptation.

4.3.2 Subtitle compression

Three teams participated in the sub-track: the
FBK MT unit, the Huawei Translation Service
Center (HW-TSC), and the Research Institute for
Artificial Intelligence Mihai Drdgdnescu, Roma-
nian Academy (RACAI). The solutions they pro-
posed differ from each other, although they share
the use of Large Language Models as a common
trait. Specifically:

FBK (Gaido et al., 2024a): the primary submis-
sion exploited GPT-4 (Achiam et al., 2023), which
was prompted in zero-shot mode with an instruc-
tion asking the model to shorten the input text us-

Bhttps://pro.europeana.eu/project/aidcu
lture-an-ai-platform-for-the-cultura
l-heritage-data-space

26Bert—restore—punctuationl

YMttps://huggingface.co/felflare/bert-r
estore-punctuation
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ing the maximum number of characters compati-
ble with the subtitle duration (value computed of-
fline and passed as a parameter) while preserving
the original words as much as possible. In the
two contrastive runs, non-compliant subtitles were
compressed by deleting function words from lists
of different lengths.

HW-TSC (Xie et al., 2024): the subtitle com-
pression method for the primary run is based on
MT models, which are first employed for back-
translating the non-compliant subtitles into En-
glish, and then to re-translate English into the orig-
inal language (either German or Spanish) by set-
ting a large beam size and a high length penalty, so
that short translations are generated and rewarded.
The still non-compliant subtitles are rewritten us-
ing the LLM Llama2 (Touvron et al., 2023), in-
structed with few-shot prompts to condense the in-
put text. The two contrastive runs are variants of
the primary one: in the first, the LLM is not ap-
plied and the compression is carried out only by
the translation models; in the second, the subti-
tles of the primary run rewritten by either the MT
model or the LLM which are still non-compliant
are replaced by the original text.

RACAI (Gasan and Pais, 2024): the submission
involves generating multiple alternatives for the
original non-compliant subtitle and selecting the
one that maximizes both reading speed compli-
ance (measured by CPS), and content similarity
with the original subtitle (measured by ROUGE
(Lin, 2004)). The alternatives are generated by
i) rephrasing the subtitles using LLMs, specifi-
cally TS (Raffel et al., 2020) and BART (Lewis
et al., 2020), which were fine-tuned for the text
summarization task, and ii) generating new sub-
titles through the automatic transcription of the
original English audio using Whisper, translating
them with NLLB (Costa-jussa et al., 2022), and
then applying the LLMs as in the first method.

4.4 Results

The performance of runs for the two sub-tracks is
presented and discussed separately in the follow-
ing two subsections.

4.4.1 Automatic subtitling

Scores on tst2024 of all runs calculated using au-
tomatic metrics are shown in Tables 34 and 35,
while Tables 37 and 38 refer to tst2023, where cu-
mulative scores of runs submitted to the 2023 edi-


https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/SBAAM.md
https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/SBAAM.md
https://github.com/hlt-mt/FBK-fairseq/blob/master/fbk_works/SBAAM.md
https://github.com/hlt-mt/FBK-subtitler
https://github.com/hlt-mt/FBK-subtitler
https://pro.europeana.eu/project/ai4culture-an-ai-platform-for-the-cultural-heritage-data-space
https://pro.europeana.eu/project/ai4culture-an-ai-platform-for-the-cultural-heritage-data-space
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Bert-restore-punctuation1
https://huggingface.co/felflare/bert-restore-punctuation
https://huggingface.co/felflare/bert-restore-punctuation

tion are also reported to allow the quantification of
progresses.”®

This year, unlike in the last edition, only one
team (FBK-AI4Cpr) participated with a system
trained under constrained data conditions. Conse-
quently, comparing its results with those of other
participants is inherently unfair, and must be ac-
knowledged if any comparisons are made. No-
tably, FBK-AI4Cpp is also the only direct sys-
tem in the competition, highlighting that, despite
advancements in direct approaches to spoken lan-
guage processing, constructing cascade subtitling
systems remains prevalent.

tst2024: Looking at performance in both Ger-
man and Spanish, APPTEK achieved the best com-
promise between translation quality and subtitle
compliance, as attested by the SubER values. It
is interesting to note that their primary and con-
trastivel systems provide better subtitle quality
than contrastive2, especially on Spanish; since the
first two systems featured fine-tuning on propri-
etary data, it can be hypothesized that such data
is somehow “close” to the domains proposed in
this evaluation campaign and therefore that the
adaptation has rewarded these models. Over-
all, the new APPTEK systems (primary and con-
trastivel) surpass the one currently in produc-
tion (contrastive2), although surprisingly the latter
shows the best global SUbER on German.

Focusing on the quality of the translation, in
particular in terms of BLEURT, which better cor-
relates with humans compared to BLEU and ChrF,
the performance of HW-TSC’s system is superior,
likely because it is the only system explicitly fine-
tuned on in-domain data. However, this system
has not been optimized in terms of compliance, re-
sulting in the lowest CPL score and, consequently,
in high SubER scores.

The FBK cascade system, based mainly on pre-
trained general-purpose models, shows high trans-
lation quality, especially in Spanish, and an ac-
ceptable conformity of subtitles. This proves the
feasibility of building effective subtitling systems
by appropriately assembling off-the-shelf models.

The FBK direct system, the only one based on a
direct architecture and trained in constrained con-
ditions, generated German subtitles with a surpris-
ingly competitive overall SubER, despite the qual-

In 2023, the evaluation was done on the three domains still
proposed here plus one additional domain, EPTV; for the
sake of comparability, in the computation of the cumulative
scores of the 2023 runs, EPTV has been excluded.
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ity of the translation of the ITV and Peloton doc-
uments being lower compared to other systems.
The good SubER probably derives from the abil-
ity of this system to satisfy subtitle compliance,
which demonstrates the potential of the innova-
tive approach it is based on. On the other hand,
the gap in terms of translation quality on the two
more challenging domains is in line with what al-
ready happened last year and with expectations,
since unconstrained training allows building mod-
els on data more representative of real-life content.

tst2023: On German, the best systems are those
by APPTEK which however did not improve the
SubER score of the last year; in fact, there is
an improvement in the quality of the translation
which is counterbalanced by a worst CPS. More-
over, we note that the CPS of 4 out of 5 submis-
sions from last year is better than any 2024 pri-
mary submission.

On Spanish, the improvements in the quality of
the translations and of the SubER scores are gen-
eralized, while the CPS values worsen.

The progress made by the FBK team over the
past year with their direct approach is notable in
various aspects and for both languages, demon-
strating the potential of end-to-end solutions for
automatic subtitling.

4.4.2 Human evaluation

This year’s edition of the automatic subtitling sub-
track introduces the human evaluation of the pri-
mary submissions for tst2024 en—de. Table 24
shows the direct assessment scores obtained on a
sample of 1000 subtitles randomly selected from
the whole test set. The ranking differs from the
automatic one based on SubER, particularly for
the HW-TSC system which achieves the best DA
value but the worst SubER score. This can be ex-
plained by the design of the human evaluation,
which was focused on assessing the translation
quality while segmentation and subtitle compli-
ance were not directly considered. In fact, the hu-
man ranking closely agrees with the pure trans-
lation quality metrics, in particular BLEURT (see
Table 24 vs. column Bleurt of Table 34). While
this reassures the validity of using automatic MT
metrics also for the domain of subtitle translation,
in future evaluations we see the need to provide
the evaluators with subtitles instead of plain text
sentences so that subtitle compliance, segmenta-
tion and timing errors can be accounted for.



4.4.3 Subtitle compression

Table 36 shows the results of the submissions
to the subtitle compression sub-track in terms of
BLEURT, computed against the reference subti-
tles and in charge of quantifying the translation
quality, and CPS, as a measure of reading speed
compliance. For the sake of discussion, the table
also includes the results of a simple Baseline
(id=[1]) and those of the provided subtitles to
compress (id=[0]). In the baseline method, the
original subtitles with a non-compliant reading
speed were cut at the maximum number of char-
acters compatible with the subtitle duration and
without regard to maintaining the integrity of the
words, which therefore may be incomplete.

The results indicate that the participants de-
signed methods aimed to find a trade-off between
translation quality and CPS compliance, standing
the working point of their systems in the area be-
tween the two extremes represented by subtitles
[0] and [1], which is highlighted in Figure 2.

CPS vs. BLEURT
®de @ es

10 @ 100
1] 1] HW-TSC

CPsS

N-TS ® 7574
HW-TSC [3]"

70 - ® 5907
7.94 [o0]

[RE:] 019 0.20 0.1 0.22

BLEURT

Figure 2: Scatter plot of compression results from Ta-
ble 36.

Between [0] and [1], the subtitles generated by
the contrastive FBK ([3,4]) and by the RACAI
([8]) systems are placed according to a nearly
linear relationship. HW-TSC’s and, at a lesser
extent, primary FBK ([2]) submissions differ
markedly from this trend, thus demonstrating that
it is possible to obtain a better compromise be-
tween the two contrasting features. In particular,
the family of HW-TSC solutions is the most effec-
tive, approaching (in Spanish) or even overcoming
(in German) the translation quality of the origi-
nal subtitles, while achieving compliance for even
more than 90% of the original subtitles. How-
ever, the noteworthy result of the FBK primary
run shows the potential of prompting a genera-
tive LLM (GPT-4) to shorten subtitles; consider-
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ing that it was done in zero-shot modality, there
should be room for further improvements.

4.5 Conclusions

Overall, the second edition of the subtitling track
continues to highlight the challenges and partic-
ularities of the automatic subtitling task. As in
the previous edition, a clear gap in subtitle qual-
ity can be observed between the well-recorded,
single-speaker, mostly formal style TED talk con-
tent that has traditionally been used for SLT eval-
uation at IWSLT, as opposed to the variety of au-
dio conditions, dialog settings, language styles and
speaking rates encountered in other types of con-
tent such as TV shows and sport videos. While no
clear advancement in terms of best achieved trans-
lation quality or subtitle compliance compared to
last year can be reported, remarkable improve-
ments were achieved in the direct approach, which
due to access to audio information during transla-
tion such as prosody, speaker changes and even
speaker age/gender seems especially promising
for subtitling of dialogs. The aspect of high speak-
ing rates and the resulting necessity to condense
subtitles down to a comfortable reading speed has
been addressed and analyzed in isolation by the in-
troduction of the subtitle compression task. Here,
using LLMs for rephrasing has emerged as one of
the promising approaches which was used by all
participants.

5 Speech-to-Speech Translation

Speech-to-speech translation (S2ST) is a highly
complex process involving the conversion of au-
dio signals from one language to another. In of-
fline translation, the system assumes that the en-
tire audio is available before the translation pro-
cess begins. This approach allows the translation
system to process the audio input as a whole, en-
abling more effective speech recognition, seman-
tic comprehension, and translation.

The main objective of this task is to encour-
age the development of automated methods for
speech-to-speech translation that can perform effi-
ciently and accurately in offline settings. Achiev-
ing this goal will not only advance the field but
also contribute to improving access to information
and communication across different languages and
cultures.



5.1 Challenge

Participants built speech-to-speech translation sys-
tems from English into Chinese using any possible
method, for example with a cascade system (ASR
+ MT + TTS or end-to-end speech-to-text trans-
lation + TTS) or an end-to-end or direct speech-
to-speech system. Participants can use any tech-
niques to boost the system performance.

5.2 Data and Metrics

Data. This task allowed the same training data
from the Offline task on English-Chinese speech-
to-text translation. More details are available in
Sec. 2.2. In addition to the Offline task data,
the following training data was allowed to help
build English-Chinese speech-to-speech models
and Chinese text-to-speech systems:

* GigaS2S, target synthetic speech for the Chi-
nese target text of GigaST (Ye et al., 2023)
that was generated with an in-house single-
speaker TTS system;

* aishell 3 (Shi et al., 2020), a multi-speaker
Chinese TTS dataset.

Metrics. Since there was only one participant
this year, we only conducted automatic evaluation
in order to save resources.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with a Chinese ASR sys-
tem?® (Yao et al., 2021), and then BLEU*® (Pa-
pineni et al., 2002b), chrF?! (Popovié, 2015), and
COMET?? (Rei et al., 2022) were computed be-
tween the generated transcript and the human-
produced text reference. BLEU and chrF were
computed using SacreBLEU (Post, 2018).

5.3 Submissions

We only received submissions from one partici-
pant this year.

e HW-TSC (Wu et al., 2024) submitted three
cascaded systems corresponding to three sce-
narios: constrained, constrained with large

Phttps://github.com/wenet-e2e/wenet/blo
b/main/docs/pretrained_models.en.md

OsacreBLEU  signature: nrefs:1|case:mixed|
eff:noltok:zh|smooth:exp|version:2.3.1

sacreBLEU signature: nrefs:1|case:mixed]|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

2https://huggingface.co/Unbabel/wmt22-c
omet—-da
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language models, unconstrained. All three
scenarios employ a cascaded system that con-
sists of an Automatic Speech Recognition
(ASR) model, a translation model, and a
Text-to-Speech (TTS) model. In the con-
strained scenario, the ASR model is trained
on WeNet using constrained data. The trans-
lation model is a Transformer model trained
using constrained data, with data enhance-
ment, data denoising, and domain adaptation
strategies applied, followed by model ensem-
ble. The TTS model uses the VITS architec-
ture. In the LLM constrained scenario, the
ASR model is the same as in the constrained
scenario. The translation model uses multiple
LLMs for model ensemble, which are fine-
tuned on llama2-13b using different strate-
gies. The TTS model is the same as above. In
the unconstrained scenario, the ASR model
uses Whisper. The translation model em-
ploys multiple NMT models and LLMs for
model ensemble. The TTS model remains the
same as in the previous scenarios.

5.4 Results

Results by automatic metrics are shown in Table
39 in the Appendix.

6 Low-resource SLT

The 4™ edition of the Low-resource Spoken Lan-
guage Translation track focused on the translation
of speech from a variety of data-scarce languages.
The target language is typically a higher-resource
one, generally of similar geographical or historical
linkages. The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages. While significant research progress has
been demonstrated recently, many of the world’s
languages and dialects lack the parallel data at
scale needed for standard supervised learning.

6.1 Challenge

This year’s task significantly expanded the ty-
pological and geogrpahical diversity of the lan-
guages, language families, and scripts represented.
The eight subtasks were:

* Bhojpuri — Hindi
e Marathi — Hindi

e Irish — English


https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md
https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.en.md
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da

* Maltese — English

* Bemba — English

* North Levantine Arabic — English
* Tamasheq — French

* Quechua — Spanish

Teams were allowed to submit to as few as one
language pair, up to all eight. Both constrained
and unconstrained submissions were allowed, to
be separately ranked. For the constrained scenario,
teams were only allowed to submit systems using
the data provided by the shared task. For the un-
constrained systems, teams were allowed to use
any data as well as any pre-trained models.

6.2 Data and Metrics

Table 6 provides a summary of the training data
that were part of the shared task. We describe in
more detail the data for each language pair below.

North Levantine Arabic-English (apc-eng)
Levantine Arabic, a well-established unit within
the Arabic dialectal continuum, can be divided
into at least three regional variants (Al-Wer and
de Jong, 2017). North Levantine Arabic (also
known as Syrian or Shami, ISO code: apc) is
based on the urban speech of mainly Beirut and
Damascus and is perceived as a separate linguistic
unit (Ghobain, 2017).

Participants were provided with the UFAL
Parallel Corpus of North Levantine 1.0 (Sellat
et al., 2023), which includes about 120k lines of
multi-parallel North Levantine-Modern Standard
Arabic-English textual data, that can be down-
loaded from the LINDAT/CLARIAH-CZ Reposi-
tory.>> For additional speech data in North Lev-
antine Arabic, participants were pointed to two
LDC resources: the BBN/AUB DARPA Baby-
lon Levantine corpus (Makhoul et al., 2005) and
the Levantine Arabic QT Training Data Set 5 cor-
pus (Maamouri et al., 2006).

Participants were also encouraged to use the
Tunisian Arabic training data used in the last two
years’ shared task (LDC2022EQ1). This three-way
parallel data corresponds to 160 hours and 200k
lines of aligned audio in Tunisian speech, Tunisian
transcripts, and English translations. Addition-
ally, a number of OpenSLR resources in Modern

¥http://hdl.handle.net/11234/1-5033
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Standard Arabic were highlighted: Tunisian Mod-
ern Standard Arabic speech and transcriptions®*,
the MADCAT Arabic LDC corpus (Lee et al.,
2012), the Arabic portion of theMediaSpeech cor-
pus (Kolobov et al., 2021), and the Arabic speech
to text Quran data.>

Overall, the provided resources were supposed
to help participants, but only the unconstrained
scenario was considered within this year’s initial
run of the apc-eng language pair.

The development®® and test’” data consist of
recordings of native speakers of the dialect and is a
mix of spontaneous monologues and dialogues on
the topics of everyday life (health, education, fam-
ily life, sports, culture), living abroad, and every-
day life in Syria. The transcription and translation
team consisted of students of Arabic at Charles
University, with an additional quality check pro-
vided by the native speakers of the dialect.

Bemba-English  (bem-eng) Bemba (also
known as IciBemba) is a Bantu language (ISO
code: bem), spoken predominantly in Zambia and
other parts of Africa by over 10 million people. It
is the most populous indigenous language spoken
by over 30% of the population in Zambia where
English is the lingua franca and official high-
resourced language of communication. Bemba
is native to the people of Northen, Luapula and
Muchinga provinces of Zambia but also spoken in
other parts of the country including urban areas
such as Copperbelt, Central and Lusaka provinces
by over 50% of the population (ZamStats, 2012).

The provided Bemba-English corpus (Sikasote
et al., 2023a) consists of over 180 hours of Bemba
audio data, along with transcriptions and trans-
lations in English. The dataset is comprised of
recorded multi-turn dialogues between native Be-
mba speakers grounded on images.

In addition, we provided transcribed (28 hours)
and untranscribed (60 hours) monolingual Be-
mba speech from Zambezi Voice (Sikasote et al.,
2023b) and BembaSpeech (Sikasote and Anasta-
sopoulos, 2022) datasets.

Bhojpuri-Hindi  (bho-hin) Bhojpuri (ISO
code: bho) belongs to the Indo-Aryan language
group. It is dominantly spoken in India’s western
part of Bihar, the north-western part of Jharkhand,

¥nttps://www.openslr.org/46/
Bhttps://www.openslr.org/132/
¥nttp://hdl.handle.net/11234/1-5518
http://hdl.handle.net/11234/1-5519
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and the Purvanchal region of Uttar Pradesh. As
per the 2011 Census of India, it has around 50.58
million speakers (Ojha and Zeman, 2020). Bho-
jpuri is spoken not just in India but also in other
countries such as Nepal, Trinidad, Mauritius,
Guyana, Suriname, and Fiji. Since Bhojpuri was
considered a dialect of Hindi for a long time, it
did not attract much attention from linguists and
hence remains among the many lesser-known and
less-resourced languages of India.

The provided Bhojpuri—Hindi corpus consists
of 22.77 hours of Bhojpuri speech data (see Ta-
ble 6) from the news domain, extracted from News
On Air*® and translated into Hindi texts.® Ad-
ditionally, the participants were directed that they
may use monolingual Bhojpuri audio data (with
transcription) from ULCA-asr-dataset-corpus*” as
well as Bhojpuri Language Technological Re-
sources (BHLTR) (Ojha et al., 2020; Ojha, 2019)*!
and Bhojpuri-wav2vec2 based model.*?

Irish-English (gle-eng) Irish (also known as
Gaeilge; ISO code: gle) has around 170,000 L1
speakers and 1.85 million people (37% of the pop-
ulation) across the island (of Ireland) claim to be
at least somewhat proficient with the language. In
the Republic of Ireland, it is the national and first
official language. It is also one of the official lan-
guages of the European Union (EU) and a recog-
nized minority language in Northern Ireland with
the ISO ga code.

The provided Irish audio data were compiled
from the news domain, Common Voice (Ardila
et al., 2020),*> and Living-Audio-Dataset.** The
Irish-English corpus consists of 12 hours of Irish
speech data (see Table 6), translated into English
texts.

Maltese—English (mlt-eng) Maltese (ISO code:
mlt) is a Semitic language, with a heavy influ-
ence from Italian and English. It is spoken mostly
in Malta, but also in migrant communities abroad,

Bnttps://newsonair.gov.in
Phttps://github.com/panlingua/iwslt2024
_bho-hi
“nttps://github.com/Open-Speech-EkStep/
ULCA-asr—dataset—-corpus
“Mttps://github.com/shashwatup9k/bho-res
ources
“https://www.openslr.orqg/64/
Ynttps://commonvoice.mozilla.org/en/dat
asets
“https://github.com/Idlak/Living-Audio-D
ataset
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most notably in Australia and parts of America
and Canada.

The data release for this shared task consists
of over 14 hours (split into dev and train) of au-
dio data, together with their transcription in Mal-
tese and translation into English. Participants were
also allowed to use additional Maltese data includ-
ing the text corpus used to train BERTu (Micallef
et al., 2022), a Maltese BERT model, the MASRI
Data speech recognition data (Hernandez Mena
et al., 2020), and any data available at the Maltese
Language Resource Server.¥

Marathi-Hindi (mar-hin) Marathi (ISO code:
mar) is an Indo-Aryan language and is domi-
nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.*® Marathi is the third most
spoken language in India.

The provided Marathi—Hindi corpus consists of
24.58 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air*” and translated into Hindi texts.*® The dataset
was manually segmented and translated by Panlin-
gua.* Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020),°° as well as the corpus provided
by He et al. (2020)°' and the Indian Language Cor-
pora (Abraham et al., 2020).%2

Quechua—-Spanish (que-spa) Quechua (macro-
laguage ISO code: que) is an indigenous lan-
guage spoken by more than 8 million people in
South America. It is mainly spoken in Peru,
Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages

®nttps://mlrs.research.um.edu.mt/

®https://censusindia.gov.in/nada/index.
php/catalog/42561

“Mttps://newsonair.gov.in

®nttps://github.com/panlingua/iws1t2023
_mr—hi

®http://panlingua.co.in/

Mttps://commonvoice.mozilla.org/en/dat
asets

S'Mttps://www.openslr.org/64/

“nttps://www.cse.iitb.ac.in/~pjyothi/ind
iccorpora/
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Language Pairs Train Set Dev Set Test Set Additional Data

Bhojpuri—Hindi bho-hi 19.88 2.07 0.82 Monolingual audio with transcription
(ASR) and monolingual text

Irish-English ga—eng 9.46 1.03 0.69 IWSLT 2023 test set (with references )
and MT data (monolingual and parallel
corpora)

Marathi-Hindi mr—hi  15.88 3.66 0.61 Monolingual audio with transcriptions
(ASR), IWSLT 2023 test set (with ref-
erences ) and monolingual text

Maltese—English mlt-eng 10 2 2 Monolingual audio with transcriptions
(ASR), monolingual text

North Levantine-English apc—eng - 2.5 1.85 -

Tamasheq—French tmh—fra 17 - - Untranscribed audio, data in other re-
gional languages

Quechua—Spanish que-spa 1.60 1.03 1.03 48 hours of monolingual audio with
transcriptions (ASR) and MT data (not
transcribed)

Bemba—-English bem-eng 167.17 5.89 5.83 28.12 hours of monolingual audio with

transcriptions (ASR) and 60 hours of un-
transcribed audio data.

Table 6: Training, development and test data details (in hours) for the language pairs of the low-resource shared

task.

like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of
Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
IT and, thus, considered a “southern” languages.
We label the data set with que - the ISO norm for
Quechua II mixtures.

The constrained setting allowed a Quechua-
Spanish speech translation dataset along with the
additional parallel (text-only) data for machine
translation compiled from previous work (Ortega
et al., 2020). The audio files for training, valida-
tion, and test purposes consisted of excerpts of the
Siminchik corpus (Cardenas et al., 2018) that were
translated by native Quechua speakers. For the un-
constrained setting, participants were directed to
another larger data set from the Siminchik corpus
which consisted of 48 hours of fully transcribed
Quechua audio (monolingual).
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Tamasheq-French Tamasheq is a variety of Tu-
areg, a Berber macro-language spoken by nomadic
tribes across North Africa in Algeria, Mali, Niger
and Burkina Faso. It accounts for approximately
500,000 native speakers, being mostly spoken in
Mali and Niger. This task is about translating spo-
ken Tamasheq into written French. Almost 20
hours of spoken Tamasheq with French transla-
tion are freely provided by the organizers. A ma-
jor challenge is that no Tamasheq transcription is
provided, as Tamasheq is a traditionally oral lan-
guage.

The provided corpus is a collection of radio
recordings from Studio Kalangou®? translated to
French. It comprises 17 hours of clean speech
in Tamasheq, translated into the French language.
The organizers also provided a 19-hour version of
this corpus, including 2 additional hours of data
that was labeled by annotators as potentially noisy.
Both versions of this dataset share the same vali-
dation and test sets. Boito et al. (2022) provides a
thorough description of this dataset.

In addition to the 17 hours of Tamasheq audio
data aligned to French translations, and in light of
recent work in self-supervised models for speech
processing, we also provide participants with un-
labeled raw audio data in the Tamasheq language,

Bhttps://www.studiokalangou.org/
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as well as in other 4 languages spoken from Niger:
French (116 hours), Fulfulde (114 hours), Hausa
(105 hours), Tamasheq (234 hours) and Zarma
(100 hours). All this data comes from the ra-
dio broadcastings of Studio Kalangou and Studio
Tamani.>*

Note that this language pair is a continuation of
last year’s shared task, using the same test set as
last year.

6.2.1

We use standard lowercase BLEU with no punctu-
ation to automatically score all submissions. Ad-
ditional analyses for some language pairs are pro-
vided below. Were applicable, we also report
chrF++ (Popovié, 2015).

Metrics

6.3 Submissions

The Shared Task received a record 69 submissions
(for speech translation) from 12 teams for all 8
language pairs. The Shared Task also received
15 submissions for the speech recognition task of
transcribing the input audio. They are described in
detail below.

ALADAN (Kheder et al., 2024) provided a sub-
mission for the apc-eng direction, building upon
a cascade of ASR and MT systems. The authors
propose a character-level and word-level normal-
ization process to handle the orthographic incon-
sistency between Arabic Dialects, merging words
based on a combination of weighted Levenshtein
distance and similarity of embeddings, as com-
puted with a task-specific Word2vec model. Both
ASR and MT systems are trained on a combina-
tion of public (e.g., IWSLT22 data, GALE speech
corpus® for ASR, and, e.g., the UFAL parallel
dataset provided by the organizers, Global Voices,
LDC2012T09 for MT) and internal data (a com-
bination of crowd-sourced and web-scrapped re-
sources). For ASR, TDNN-F (Povey et al., 2018)
and Zipformer (Yao et al., 2023) models are con-
sidered, that are firstly trained on a generic Ara-
bic data, and then fine-tuned on a dialect-specific
speech. For MT, both encoder-decoder models
and instruction-following LLMs are explored. The
primary solution uses both ASR systems com-
bined with the ROVER (Fiscus, 1997) algorithm,
with the MT step performed by the fine-tuned

¥nttps://www.studiotamani.org/
Shttps://arabicspeech.org/resources
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Command-R® LLM, enhanced by MBR decoding
and checkpoint averaging. Contrastive submis-
sions differ in the MT step, with the first one using
the final checkpoint of the fine-tuned LLM, and
the second one using a Transformer-based NLLB
model.

BITSP (Anand et al., 2024) submitted systems
for the Bhojpuri to Hindi and Marathi to Hindi
tasks. Their approach relied on cascading tran-
scriptions which were piped into translation sys-
tems. They used a fine-tuned Whisper model for
Marathi-Hindi and an vakyansh-wav2vec model
for Bhojpuri-Hindi (Chadha et al., 2022; Gupta
et al.,, 2021). Translation was done using fine-
tuned NLLB for both tasks (NLLB Team et al.,
2022). They also looked at using sentence-
embeddings generated using the MuRIL (Mul-
tilingual Representations for Indian Languages)
(Khanuja et al., 2021) model for the Marathi-Hindi
task.

HW-TSC (Jiawei et al., 2024) participated in
the apc-eng direction with a cascade solution
based on the off-the-shelf Whisper (Radford
et al., 2022) model for ASR combined with
a Transformer-based MT model trained from
scratch for Arabic-to-English translation. The MT
system (35 encoder layers, 3 decoder layers, with
dhidden = 912 and dppy = 2048) was trained on
the mix of publicly available (e.g., OpenSubtities,
GlobalVoices, TED) and in-house corpora, both
filtered based on sentence embeddings extracted
with LaBSE (Feng et al., 2022). No dialect-
specific datasets were used for training directly.
Instead, an in-domain model was fine-tuned on
the validation set to score the training samples us-
ing domain features (Wang et al., 2020c), with the
highest-scoring subset explored for the final fine-
tuning.

JHU (Robinson et al., 2024) provided systems
for all eight language pairs. The main effort of
their work revolved around fine-tuning large and
publicly available models in three proposed sys-
tems, one cascaded and two end-to-end. For the
cascaded system, they proposed fine-tuning Whis-
per transcription (not translation) and then piping
that output to a fine-tuned NLLB model. For the
end-to-end systems, they fine-tuned for transla-
tion directly on SEAMLESS4MT v2 and Whisper
translation (not transcription). In addition, they

Snttps://cohere.com/command
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Language Pairs
Team Name | apc-eng bem-eng bho-hin gle-eng mlt-eng mar-hin que-spa tmh-fra
SETU-DCU (Zafar et al., 2024) v v
UM (Nabhani et al., 2024) v v
UoM (Abela et al., 2024) v
QUESPA (Ortega et al., 2024) v
JHU (Robinson et al., 2024) v v v v v v v v
HW-TSC (Jiawei et al., 2024) v
ALADAN (Kheder et al., 2024) v
KIT (Li et al., 2024c) v v Ve v
BITSP (Anand et al., 2024) v v
YMOSLEM (Moslem, 2024) v
UoM-DFKI (Rishu et al., 2024) Ve
Total Teams per Lang Pair: | 5 2 4 3 5 2 2 1

Table 7: Breakdown of the teams and the language pairs subtasks that they participated in for the Low-Resource

Shared Task.

looked at a variety of different training paradigms
such as intra-distillation (Xu et al., 2022), joint
training, multi-task learning, curriculum learning,
and pseudo-translation. The best-performing ap-
proach, similar to the broader results of this shared
task differed for different language pairs. How-
ever, fine-tuned SEAMLESSMA4T v2 tends to per-
form best for source languages on which it was
pre-trained. Additionally, while multi-task train-
ing helps Whisper fine-tuning, in general cascaded
systems with Whisper and NLLB tend to outper-
form Whisper alone. Finally, intra-distillation was
shown to help NLLB fine-tuning.

KIT (Li et al., 2024c) participated in the
Maltese-to-English, Bemba-to-English, North
Levantine Arabic-to-English tasks in the uncon-
strained condition. They leveraged pretrained
multilingual models by fine-tuning them for the
target language pairs, looking at SeamlessM4T,
NLLB (NLLB Team et al.,, 2022), and MMS
(Pratap et al., 2024). Due to the large size of
the models, they experimented with adapter
fine-tuning to reduce the number of trainable
parameters using LORA (Hu et al., 2021) and
package PEFT (Mangrulkar et al., 2022). They
were also able to show that Minimum Bayes
Risk is effective in improving speech translation
performance by combining systems in all of their
language pairs.

SETU-DCU (Zafar et al., 2024) presented sys-
tems for two language pairs, Irish-English and
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Maltese—-English. Both of their submissions, de-
spite lower performance on the Irish (GA) task,
were on the unconstrained condition configura-
tion. There were two submissions to the Maltese
(MLT) task ranging from 44.7 to 52.6 BLEU and
one submission to the GA task at 0.6 BLEU.

The MLT results of 52.6 BLEU were favorable
due to SETU-DCU’s primary submission based
on a cascaded (ASR to MT) setup of a Whisper
(Radford et al., 2022) ASR system used in con-
junction with an MT system based on the NLLB
(NLLB Team et al., 2022) where both systems
were fine-tuned on the Maltese—English data pro-
vided. Additionally, their cascaded Contrastive 1
system which used mBart-50 for decoding, scored
44.7 BLEU showing that the use of the NLLB sys-
tem augmented performance by nearly § BLEU
points. Further results can be attributed to data
preparation such as removing unnecessary data
chunks from the dataset, eliminating special char-
acters, and converting the sentences to lowercase
along with the following hyper-parameter config-
uration: batch size of 16, learning rate of 1e-5, 500
warmup steps, 30,000 max steps, per-device eval
batch size of 8, generation max length of 225, and
intervals of 1,000 steps for saving and evaluating,
and 25 steps for logging.

SETU-DCU’s submission for the uncon-
strained GA task performed poorly compared to
other systems submitted. It consisted of a direct
speech translation system using the Whisper small
model by first resampling data at 16 khz and us-



ing the following hyper-parameter configuration:
batch size of 16, learning rate of 1e-5, 500 warmup
steps, 1 gradient accumulation steps, generation
max length of 225, and intervals of 500 steps for
saving and evaluating. The model was fine-tuned
over three epochs. Their only submission used
Whisper for fine-tuning; however, their claim is
that since the data Whisper was trained on did not
contain GA at the time of fine-tuning, generation
was inconsistent.

UoM-DFKI (Rishu et al., 2024) participated in
the Maltese to English shared task using two pop-
ular end-to-end pretrained models, Whisper and
wav2vec 2.0. They hypothesised that Maltese
shares lots of vocabulary with Arabic and Italian
and would therefore have good cross-lingual trans-
fer ability due to pretraining data in those mod-
els. In addition, they investigated other popular
neural models, BERT (Devlin et al., 2019) which
they decided against making a formal submission,
and mBART (Liu et al., 2020b) which was used as
their contrastive submission. Overall, the end-to-
end system performed much better than the con-
trastive submission.

UoOM (Abela et al., 2024) participated in the
constrained task of the Maltese to English trans-
lation language pair. Their approach relied on a
cascaded system consisting of a pipeline contain-
ing: a DeepSpeech 1 ASR system (Hannun et al.,
2014), a KenLM model to optimise the transcrip-
tions (Heafield, 2011), and finally an LSTM ma-
chine translation model. For their ASR system,
they trained using the MASRI dataset and Com-
monVoice and used a much smaller layer size (64)
than normal due to the lack of large amounts of
data. These outputs were then used to decode us-
ing a 3-gram statistical language model trained on
Malti v4.0. The translation system was imple-
mented using fairseq (Ott et al., 2019) comparing
both transformer and LSTM architectures, with
their best performing system using LSTMs. The
authors hypothesize that this was due to the very
small amount of data available as a bitext.

UM (Nabhani et al., 2024) competed in the un-
constrained task for Maltese-English and North
Levantine Arabic-English spoken language trans-
lation using a pipeline approach. For the ASR
component of their systems, they relied on fine-
tuning XLS-R using 50 hours of Maltese speech
data. To correct outputs, they relied on the sta-
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tistical toolkit KenLM (Heafield, 2011). Machine
translation was then done using a fine-tuned ver-
sion of the 1.3B parameter NLLB model (NLLB
Team et al., 2022). They experimented with a
variety of data sources such as CommonVoice,
MASRI, and OPUS-100.

YMOSLEM (Moslem, 2024) The Yasmin
Moslem team (independent researcher) presented
an end-to-end approach for speech translation
from spoken Irish to written English. Their mod-
els are based on Whisper, utilizing small, medium,
and large versions. The primary system employs
Whisper-large, which has been fine-tuned using
the official training data, supplemented with
synthetic audio data and the data augmentation
technique involving white noise and voice activity
detection.

The synthetic audio data was generated us-
ing Azure’s text-to-speech service, applied to the
Wikimedia dataset comprising 7,545 text seg-
ments. The resulting synthetic audio dataset con-
sists of two parts: one featuring a female voice
(OrlaNeural) and the other a male voice (Colm-
Neural). This resulted in a total of 15,090 utter-
ances, with each text segment used to generate
a synthetic speech segment for each voice. The
same approach has been applied to 3,966 text seg-
ments coming from the SpokenWords dataset.

In addition to the official IWSLT-2023 train-
ing dataset and the aforementioned synthetic au-
dio dataset, the Irish portion of the FLEURS
dataset, the Bitesize dataset, and the SpokenWords
dataset were utilized to fine-tune the Whisper-
Large model. Note that the Irish portion of the
Spoken Words dataset has been translated into En-
glish using the Google Translation API.

QUESPA (Ortega et al., 2024) submitted six to-
tal systems consisting of three constrained and
three unconstrained systems. Team QUESPA
were able to improve the previous year’s results
despite the data remaining the same as last year’s
ranging from 1.4 to 2.0 BLEU for the constrained
task and 11.1 to 19.7 BLEU for the unconstrained
one. This year QUESPA provided developmental
results on several models that used mel-filter bank
(MFB) features extracted using Fairseq (Wang
et al., 2020a) were included that show the effect of
the s2t transformers model type size ranging from
extra-small to large.

QUESPA’s Constrained systems did not vary



Language Pair | Winning Team System Constrained? BLEU
apc-eng ALADAN primary no 28.71
bem-eng JHU primary no 32.60
bho-hin JHU primary no 24.40
gle-eng JHU contrastivel no 16.00
mlt-eng KIT primary no 58.90
mar-hin IIT™™ primary no 47.20
que-spa QUESPA contrastivel no 19.70
tmh-fra baseline primary no 8.83

Table 8: Winning submissions for each language pair of the Low-Resource Shared Task.

much from last year’s systems as far as system
architecture is concerned. However, they were
able to identify a caveat in the training data set
which contains audio wav files of lengths from
1 to 30 seconds while the developmental and test
sets were all of 30 seconds in length. Their opin-
ion is that the varied length warranted a severe
hyper-parameter empirical search resulting in a
Primary system that scored 2.0 BLEU with the
following configuration of a Fairseq (Wang et al.,
2020a) speech translation model based on mel-
Filter Bank features: extra-small transformer, 6
encoder layers, 3 decoder layers, Adam optimiza-
tion, 500 epochs and a learning rate of .0002 while
using an average of the last 10 checkpoints which
outperformed the same model with other hyper-
parameters from last year. Their Contrastive 1
system, similar to the primary system, introduced
a new concept of data augmentation in combina-
tion with a medium transfomer (s2t_transformer),
12 encoder layers, 6 decoder layers, and 8 atten-
tion heads and 200 epochs. More importantly, in
Contrastive 1 they introduced audio augmentation
via LibRosa>’ where the translation was the same
but four audio techniques were introduced: Noise
(0.009 aggregation), Roll (sr/10), Time(0.4), and
Pitch (-5) to create 4-fold sets of the original. Ad-
ditionally, QUESPA’s Contrastive 1 system re-
moved SpecAugment as an audio augmentation
technique. Finally, the Contrastive 2 system from
Team QUESPA were identical to the primary sys-
tem with the change of epochs to 400 and model
type to a medium-size (s2t_transformer).
QUESPA’s Unconstrained systems were a
novel introduction for the QUE-SPA task and out-
performed last year’s best systems. Their primary
system introduced the SpeechT5 (Ao et al., 2022)

https://librosa.org/
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ASR PLM which consists of 12 Transformer en-
coder blocks and 6 Transformer decoder blocks,
with a model dimension of 768, an internal di-
mension (FFN) of 3,072, and 12 attention heads.
It used normalized training text from the Lib-
riSpeech language model as unlabeled data, which
consisted of 400 million sentences and fine-tuned
on the competition data while optimizing with
Adam and a learning rate maximum of 0.0002.
Fine-tuning was performed using the SpeechT5
fine-tuning recipe®® for Speech-Translation with
the same hyperparameter settings. Additionally,
their primary system used a data augmentation
technique (noise, distortion, duplication)®® (Ma,
2019) for total of 120h: 60h original + 60h syn-
thetic data scoring 16.0 BLEU, higher than previ-
ous year’s results. For Contrastive 1, QUESPA
introduced a combination of more data by manu-
ally translating Quechua to Spanish 55 hours of
the total set along with an additional 19 min-
utes of Guarani and 29 minutes of Bribiri from
the AmericasNLP%’ shared task. On top of that,
they applied two data augmentation techniques:
(1) nlpaug (Ma, 2019) and (2) DA-TTS (Zeval-
los et al., 2022), which involves generating syn-
thetic text and audio using a de-lexicalization al-
gorithm and a TTS system for the source language
(Quechua). These two data augmentation tech-
niques generated 62 hours and 50 hours respec-
tively. Altogether, they used a total of 167h and 48
min: 55h (new dataset) + 48 min (ANLP dataset)
+ 62h nlpaug + 50h DA-TTS. The Contrastive 1
system was QUESPA’s best system scoring 19.7
BLEU. The Contrastive 2 system was also newly

Bnttps://github.com/microsoft/SpeechT5/
tree/main/SpeechT5

Phttps://github.com/makcedward/nlpaug

®nttps://turing.iimas.unam.mx/americasn
1p/2022_st.html
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introduced with the use of Whisper medium-size,
multi-lingual model for ASR in a cascade ap-
proach basically replacing last year’s “fleurs” ASR
system. The MT system was identical to the one
they used last year called FloresMT (Ortega et al.,
2023). QUESPA’s Contrastive 2 system resulted
in a score of 11.1 BLEU.

6.4 Results

Table 8 summarizes the winning submissions
for each language pair. Detailed results for all
teams’ systems and settings are available in Ap-
pendix B.5.

Of the 8 language pairs, 5 different teams had
the top performing system on at least one language
pair. This shows how competitive the shared task
was, and that a multitude of approaches are help-
ful for low-resource speech translation. Addition-
ally, no team was able to beat the baseline on the
Tamasheq-French direction (which corresponds to
last year’s best system). This suggests that there
continues to be lots of room for improvement and
that this remains an active area of research.

Compared to previous iterations of the shared
task, many of the language pairs had marked im-
provements with large gains in the official au-
tomatic metrics. For example, BLEU scores
for Maltese-English and Marathi-Hindi are in the
40s and 50s. Furthermore, for North Levantine
Arabic-English, Bemba-English, and Bhojpuri-
Hindi are above 20 BLEU points. Even for
Quechua-Spanish, the least resourced language
pair, the best submission’s BLEU score is almost
20 points.

This marks stark improvements from last year’s
shared task systems for some language pairs. In
Marathi-Hindi, the best system in 2023 achieved a
BLEU score of 39.7, with this year’s best system
improving by more than 7 BLEU points. Simi-
larly, the improvements in the quality and quantity
of the Maltese data lead to a more than 50 BLEU
points improvement compared to last year. For
Irish and Tamasheq, the performance increases are
more modest, about 1 to 2 BLEU points in each,
compared to the 2023 Shared Task.

For the language pairs included for the first time
in the shared task, we find that Bemba-English and
Bhojpuri-Hindi end up with decent systems, a re-
sult of high-quality data availability: for instance,
Bemba-English has an order of magnitude more
training data —167h— than any other language pair
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in our shared task); and Bhojpuri is the second
most “high-resourced” language in our set, with
almost 22 hours of speech translation data.

Within the systems submitted to the initial
run of the North Levantine Arabic-English lan-
guage pair, all of the primary submissions are
based on a pipeline approach exploring ASR
and MT, with a single submission combining
E2E and cascaded systems. Since the popular
NLLB model explored by several submissions
supports an input/output combination of dialecti-
cal Arabic/English and a large-scale, parallel tex-
tual dataset of Levantine Arabic was provided,
the participating teams mainly struggled with the
ASR component. The winning submission by AL-
ADAN, which outperformed a second-place team
by over 8 BLEU points, uses an internal dataset of
Levantine speech to boost the performance of their
ASR component. While the data used for fine-
tuning the MT system is comparable between the
submissions, ALADAN explored a much larger,
prompt-driven LLM compared to the 600M/1.3B
NLLB variants explored by other teams.

We note that almost all submissions followed
the unconstrained setting — a clear indication that
pre-trained multilingual systems seem to be the
best option for building ST for low-resource lan-
guages, at least under the current data, architec-
tural, and compute constraints.

7 Automatic Dubbing
7.1 Challenge and Test Sets

Dubbing is a form of speech translation where
the user can not only hear the translated speech,
but also can often see the original speaker. This
adds numerous challenges and constraints, includ-
ing isochrony (does the new translation respect
the timing of the original speech), phonetic syn-
chrony or lip sync (is the new speech compat-
ible with the mouth movements of the original
speaker, if visible), kinesic synchrony (is the new
speech consistent with visible body movements
of the original speakers), and others (Mayoral
et al., 1988; Chiaro, 2009; Chaume, 2020; Bran-
non et al., 2023).

For English—Chinese, we use the ITV test set
from subtitle task. We manually selected 10min
sections from each of clip 15, 16, 18, 19, and 21.
The 10min sections were manually selected with
several goals:

1. Speech is fairly clear



2. A mix of on-/off-screen dialogues
3. A diverse set of genders and accents
4. Avoid excessive profanity

5. Avoid opening/closing credits

German—English followed the same setup as
the submissions from last year (Chronopoulou
et al., 2023; Pal et al., 2023; Rao et al., 2023)

7.2 Submissions

This task received a total of four English—Chinese
submissions (see Table 9): one end-to-end dub-
bing submission and three participants in the of-
fline speech translation task (speech to text) scored
our challenge set (set5). For the offline submis-
sions, we utilized the provided translations to gen-
erate dubs.

We also received one submission (Li et al.,
2024b) for German—English. We chose to fo-
cus on English—Chinese for evaluation due to the
availability of the offline speech systems to com-
pare against, which should represent strong speech
translation models (but not dubbing specific mod-
els).

The process of generating dubs from text trans-
lations involved several steps. First, due to the
absence of source language subtitles, we down-
loaded subtitles from an open-source website and
manually time align the five clips. Each time
aligned sentence was then split at commas and full
stops to create manageable segments for process-
ing, while keeping a track of original sentences
and time-stamps.

Similarly, the translations from the three sub-
missions were also split at commas and full stops.
We used Vecalign (Thompson and Koehn, 2019,
2020) a tool for sequence alignment, in conjunc-
tion with LASER-2 embeddings (Heffernan et al.,
2022), to align the source language with the tar-
get language. This ensured that the meaning and
context of the translated text matched the original
as closely as possible. Timestamps were then pro-
jected from the source to the target language, pro-
viding a temporal map for the dubbing process.

For each sentence, we employed Amazon Polly,
a text-to-speech service, to generate the corre-
sponding speech. We also used the duration of
the source speech segment as a constraint to gen-
erate target speech with Polly. Polly allowed this
by adding a flag with max_durations, where the
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generated speech cannot go beyond maximum du-
ration. We used Zhiyu standard voice as that al-
lowed use of this flag via SSML wrapper. Adding
duration constraint essentially ensured that the tar-
get speech did not exceed the length of the source
speech. Typically, the target speech was shorter
than the source speech, so we filled the remaining
portion with silences to maintain synchronization.

We synchronized the start time of the target
speech with the source speech using the previously
obtained timestamps to ensure that the dialogue
matched the visual cues accurately. Finally, we
concatenated the target speech segments to form
the complete clip.

7.3 Metrics and Results

We report speech overlap (between the original au-
dio and the dubbed audio) in Table 10. For refer-
ence, in a large corpus of professionally dubbed
media, human speech overlap between original
and dubbed speech is about 0.658 (mean) and
0.731 (median) (Brannon et al., 2023). The dub-
bing submission HWTSC-Dubbing is similar to
the human statistics, while the cascaded systems
generated in part by the task organizers perform
substantially worse.

We report PEAVS (Perceptual Evaluation of
Audio-Visual Synchrony) score (Goncalves et al.,
2024), an automatic metric with a 5-point scale
that evaluates the quality of audio-visual synchro-
nization, in Table 12. PEAVS is the only AV sync
evaluation metric that is grounded in human judge-
ments as it is trained on a large Audio-Visual syn-
chrony benchmark for “in-the-wild” videos. In our
case, we use PEAVS for evaluating the quality of
synchrony in the generated dubs. As expected for
a system optimized with speech timing in mind,
HWTSC-Dubbing performs best here.

Table 12 also reports BLASER 2.0-QE scores.
BLASER 2.0-QE is a reference-free modality-
agnostic automatic metric for speech translation
quality (Seamless Communication et al., 2023). It
only supports short-form speech, so we segment
the full speech into sentences as mentioned in Sec-
tion 7.2 and report average scores. Surprisingly,
the dubbing submission performs the best at this
metric, even though it is optimized for both trans-
lation quality and timing. It is worth noting that
the segments being evaluated are quite short, of-
ten much shorter than typical sentences in written
text, and lack of domain context has been shown



Submission

Submission Type

HWTSC-Dubbing (Li et al., 2024b)
HWTSC-Offline (Wu et al., 2024)
NYA-Offline (Zhang et al., 2024)
CMU-Offline (Yan et al., 2024)

Dubbing

Offline Speech Translation Challenge Set
Offline Speech Translation Challenge Set
Offline Speech Translation Challenge Set

Table 9: Submissions to the Dubbing Track

to be problematic in machine translation metrics
even for normal length sentences (Laubli et al.,
2018; Toral et al., 2018; Vernikos et al., 2022).
BLASER 2.0-QE is not trained on dubbing data,
so there is likely degradation due to domain mis-
match (Zouhar et al., 2024).

We report two measures of lip sync, both from
Prajwal et al. (2020): LSE-D (lip-sync error dis-
tance) and LSE-C (Lip Sync Error - Confidence)
(see Table 13). LSE-D measures the accuracy
of audio-visual synchronization by identifying the
offset with the smallest distance between audio
and video features. LSE-C measures the confi-
dence in this synchronization by comparing the
best match’s distance to those of adjacent off-
sets, with higher values indicating greater confi-
dence. In essence, LSE-D tells us how well the
audio and video are synchronized, while LSE-C
tells us how sure the model is about that synchro-
nization. HWTSC-Dubbing performs the best at
LSE-D on average, although one strange result is
that the metric prefers HWTSC-Dubbing to the
original audio in two of the test sets, which does
not make sense. Another surprise is that CMU-
Offline slightly outperforms HWTSC-Dubbing on
the LSE-C metric.

We also conduct human judgements to evalu-
ate translation quality and naturalness. We eval-
uate the first 20 sentences of each clip based on
the rubric (Table 11), and report the average score
for each submission in Table 12. In general, the
dubbing system produces more natural speech but
sometimes less accurate translation than the offline
systems. The offline systems oftentimes have to
speed up the speech synthesis to match the orig-
inal duration of a sentence, leading to hard-to-
recognize speeches.

8 Indic Languages Track

In the realm of spoken language processing,
speech-to-text translation (ST) holds a crucial role
at the intersection of natural language processing.
The primary aim of ST is to convert spoken lan-
guage from one linguistic context into written text
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in another language. This typically involves us-
ing Automatic Speech Recognition (ASR) to con-
vert speech in the source language into text, fol-
lowed by Machine Translation (MT) to translate
the source language text into the target language.
ST is a multimodal task that takes speech input
and produces output in text format. Furthermore,
it is inherently multilingual, taking speech input
in one language and generating text output in an-
other. Traditionally, human language translators
proficient in both the source and target languages
have handled this task. However, the scarcity of
translators fluent in multiple languages has cre-
ated a pressing need for a dedicated model tailored
to excel in the unique realm of ST tasks across
diverse languages. Recent advancements in ST
have predominantly focused on high-resource lan-
guages, leaving a significant gap for low-resource
languages that face a substantial catch-up jour-
ney. The attention imbalance is primarily due to
the scarcity of data for low-resource languages, as
most deep-learning models depend on data abun-
dance. Acquiring such data for low-resource lan-
guages poses a formidable challenge.

While a considerable body of research is ded-
icated to ST across diverse language families, a
noticeable gap exists in investigating this domain
concerning low-resource Indian languages. Cur-
rently, there are no datasets specifically designed
for the ST task in Indian languages, covering both
the Indo-Aryan and the Dravidian language fami-
lies. This research aims to create either an End-to-
End (E2E) or a Cascaded ST model

This Indic track aims to establish an ST trans-
lation model that spans a diverse array of dialects
and low-resource languages originating from the
Indo-Aryan and Dravidian language families in In-
dia. Given that a significant portion of the data is
sourced from very low-resource languages, these
languages remain largely unexplored in the realm
of speech translation. Compounding this chal-
lenge is the fact that many of the target languages
are distantly related to English. Consequently,
we anticipate that relying solely on pre-trained



Test Set 15 16 18 19 21 Average

HWTSC-Dubbing  0.721 0.585 0.718 0.749 0.715 0.698
HWTSC-Offline 0.281 0.228 0.277 0.374 0.238 0.280
NYA-Offline 0316 0.194 0274 0.385 0.225 0.279
CMU-Offline 0.365 0.206 0323 0.372 0.253 0.304

Table 10: Speech Overlap (1), computed on speech segments as detected by silero-vad (Silero Team, 2021).

Score  Description

1 Speech is not natural at all and/or the translation has nothing to do with the source.
2 Speech is not natural but you can understand why some of the words in the translation are there.
3 Speech is partially matching speakers lips and/or is a bit natural as well as the meaning of the source sentence

are adequately transferred into the target language.

Speech naturalness is of acceptable quality and the meaning of the source sentence is mostly preserved.
Speech is mostly natural and the translation is almost perfect or is a good paraphrase of reference.
Speech looks completely natural and the translation is perfect in every sense of the word.

AN N A~

Table 11: Dubbing human evaluation rubric.

Model PEAVS (1) BLASER-QE (1) Human Evaluation (1)
Original 3.82 £0.41 - -
HWTSC-Dubbing  3.05 +0.45 3.25 3.9
HWTSC-Offline 1.33 £0.37 3.07 3.5
NYA-Offline 1.28 +0.31 3.03 3.3
CMU-Offline 1.28 +0.31 3.07 32

Table 12: PEAVS (Perceptual Evaluation of Audio-Visual Synchrony) score (Goncalves et al., 2024), BLASER
2.0-Q, a reference-free modality-agnostic automatic metric for speech translation quality (Seamless Communica-
tion et al., 2023), and human evaluation results.

Test Set 15 16 18 19 21 Average

Original 8.220 7.258 11.553 9.311 10.197 9.308
HWTSC-Dubbing  11.969 5.398 11341 11.887 11.200 10.359
HWTSC-Offline 13.596 12.219 12.024 12.748 8.437 11.805
NYA-Offline 14.094 11.539 10.488 12.833 8.409 11.473
CMU-Offline 14793 12.834 12.499 12.817 7.933 12.175

Table 13: Lip sync error distance (LSE-D, |) (Prajwal et al., 2020) at clip level.

Test Set 15 16 18 19 21 Average

Original 3714  0.656 1.190 3340 1.443 2.069
HWTSC-Dubbing 0.638 1.011 1463 1.185 0.893 1.038
HWTSC-Offline 0477 0.834 1.095 1.355 0.849 0.922
NYA-Offline 0.674 0.567 1.153 0944 0.697 0.807
CMU-Offline 0.706 0971 2.143 1.019 0.718 1.112

Table 14: Lip-sync error confidence (LSE-C, 1) (Prajwal et al., 2020) at clip level.
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models may encounter numerous obstacles. The
dataset provided will serve as the inaugural bench-
mark and gold standard dataset, encompassing all
Indian languages. We aspire for participants to de-
velop systems capable of real-world deployment
in the future.

8.1 Challenge

The Indic shared task consists of ST for three lan-
guage pairs from English (en) to Hindi (hi), Tamil
(ta), and Bengali (bn). The ST data for all these
three language pairs is derived from the Indic-
TEDST dataset (Sethiya et al., 2024). The sub-
missions are allowed for both the constrained and
the unconstrained cases. The constrained case in-
volves only the data provided in the task. The
unconstrained case can utilize either the data pro-
vided in the challenge or any external data, along
with any pre-trained models. The submissions are
also allowed for the cascade and end-to-end mod-
els for all the language pairs. Thus, the task ac-
cepts the following cases for all three language
pairs (en-hi, en-ta, and en-bn):

* End-to-end + Constrained

* End-to-end + Unconstrained
* Cascade + Constrained

* Cascade + Unconstrained

8.2 Data and Metrics

The ST task data for the Indic track encompasses
three Indian languages representing diverse lan-
guage families. The languages included in this
shared task are Hindi (hi), Bengali (bn), and Tamil
(ta), originating from the Indo-Aryan and Dravid-
ian language families. The dataset includes speech
and text (transcriptions) in English (source lan-
guage) and text (translations) in Hindi, Bengali,
and Tamil (target languages).

The data for this Indic track comprises a ST cor-
pus that includes 3 low-resource Indian languages.
The data is curated from the TED talks with Indic
translations, usually a talk spans from 3 minutes
to 15 minutes. A segmentation of the audio files in
the form of YAML is provided with the data. Table
15 illustrates the consistency maintained across all
corpora, with an equal number of lines in their .en,
Jang, and .yaml files. However, due to inherent
linguistic differences, the number of tokens in the
.en and .lang files varies. The count of audio files
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Lang | Split | #Lines | #Tokens | #Tokens | #Audio | #Speech
en— (en) (lang) files (hrs)
bn test 1.1 19.3 17.3 15 2.09
train 5.1 89.4 80.4 106 9.20
valid 1.3 22.1 20.4 30 2.30
hi test 72 118.6 138.0 75 13.52
train 45.8 752.6 890.5 528 76.46
valid 7.6 130.3 158.5 150 13.52
ta test 22 38.9 28.0 20 4.04
train 8.0 135.1 101.5 145 14.41
valid 2.1 354 27.3 42 3.56

Table 15: Statistics of Indic track dataset. #Lines and
#Tokens (.en & .lang) are in terms of thousands(K).
All the data in the above table is approximated.

corresponds to the number of distinct talks, each
delivered by an individual speaker. Additionally,
the speech hours indicate the cumulative speech
duration in a given language. Each parameter is
meticulously categorized into test, train, and valid
subsets, establishing a comprehensive and struc-
tured dataset.

English-Hindi: Hindi is the third most spoken
language in the world, with 615 million speak-
ers. It belongs to the Indo-Aryan language family,
mainly spoken in India. It is also the official lan-
guage of India, written in devanagiri script. The
data contains English speech, English text (tran-
scripts), and Hindi text (translations). The speech
in English language is 103.5 hours and the text in
Hindi language is 37K lines.

English-Bengali: Bengali is the 7th most spo-
ken language in the world, with 228 million speak-
ers. It belongs to the Indo-Aryan language family,
spoken in the Bengal region of South Asia. It is
also the official language of Bangladesh, written
in Bengali-Assamese script. The data contains En-
glish speech, English texts (transcripts), and Ben-
gali texts (translations). The speech in English lan-
guage is 13.59 hours and the text in Bengali lan-
guage is 6.9K lines.

English-Tamil: Tamil is one of the classical
languages of India, spoken by 90.8 million speak-
ers. It belongs to dravidian language family, spo-
ken by the tamil people of South Asia. It is the of-
ficial language of Tamil Nadu state of India, writ-
ten in Brahmi script. The data contains English
speech, English texts (transcripts), and Tamil texts
(translations). The speech in English language is
22.01 hours and the text in Tamil language is 8K
lines.

Metrics: Case-sensitive detokenized BLEU us-
ing sacreBLEU (Post, 2018) is used to report the
performance of all the submissions.



8.3 Submissions

There were four teams participating in this inau-
gural task: Research team from National Institute
of Information and Communications Technology
of Japan (NICT) , the Voice Intelligence Team
of Samsung (SRI-B), the Huawei Translation
Service Center (HW-TSC), and a team from Na-
tional Institute of Technology Kurukshetra, India
(NITKKR). The participants submitted their result
under various constraints, including end-to-end
constrained, unconstrained, cascaded end-to-end,
and unconstrained approaches. Below, we provide
an overview of each team’s approach and their
results.

NICT: Their submission included cascaded
and end-to-end approach in unconstrained setting
for all the language pairs. The cascaded system
involves fine-tuning the Whisper model for ASR
and fine-tuning the IndicTrans2 model for MT.
This dual fine-tuning aimed to address the format
mismatch between spoken and written language.
For the end-to-end syatem, the IndicTrans2 model
is used to generate pseudo translation data, which
replaced the gold transcription data for fine-tuning
the Whisper model. This strategy aimed to distill
knowledge from a stronger translation model
and ensure consistent formatting. In stage 1,
Whisper is fine-tuned using English transcription
and Indic language translation. Stage 2 involves
generation of pseudo translations for all English
transcriptions, and fine-tuning Whisper using
English audio and the pseudo translations. During
inference, the fine-tuned Whisper model per-
formed direct end-to-end speech translation.

HW-TSC: The submission included implemen-
tation of cascaded approach in the unconstrained
setting. It involves Whisper-large-v3 model
for Automatic Speech Recognition (ASR) and
a Transformer model for Machine Translation
(MT). For MT, strategies like LaBSE for parallel
corpus filtering, data diversification using multiple
model predictions, forward and back translation
for data augmentation, domain fine-tuning with
scored data selection, and regularized dropout
for enhanced training efficiency are used. The
base architecture is from FAIRSEQ toolkit (Wang
et al.,, 2020b) with hyperparameters of 2048 as
batch size, learning rate of 5e-4, label-smoothing-
cross-entropy loss with label smoothing of 0.1,
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4000 warmup steps, and Adam optimizer settings
(B1 =0.9, B2 = 0.98). During inference, a beam
size of 4 and length penalties of 1.0 is applied to
optimize translation outputs.

SRI-B: The submission included end-to-end
approach in both constrained and unconstrained
setting. In the constrained setting the base ar-
chitecture used is from FAIRSEQ toolkit (Wang
et al., 2020b). Pre-processing involves the ex-
traction of 80 channel log mel-filter bank features
with a window size of 25ms and SpecAugment
for data augmentation. The s2t_conformer among
fairseq’s built-in architectures for speech-to-text
translation is used. It consist of 16 encoder
layers and 6 decoder layers with label-smoothed
cross-entropy loss and the Adam optimizer with a
learning rate of 2e-3 to train the models. Under
the unconstrained setting, the method involves
using the pre-trained SeamlessM4T v2 from Meta,
a multi-lingual end-to-end model designed for
various languages. The pre-trained multi-lingual
model is used to directly generate text in Indic
languages directly from English for evaluation.

NITKKR: The submission adopts cascaded
approach in unconstrained setting to solve the
task. It begins with audio preprocessing and
transcription, utilizing ResembleAl for noise
reduction, distortion restoration, and speech band-
width enhancement. The processed audio is then
fed into OpenAI’s Whisper model for real-time
ASR. Subsequently, MT models are applied:
Helsinki-NLP’s OPUS-MT for translating English
to Hindi, and Facebook’s Multilingual BART
(MBART) for both English to Tamil and English
to Bengali translations.

8.4 Results

Scores on the test set of all submissions are cal-
culated using automatic metrics and the respective
settings are presented in Table 16. In the following
section, we discuss results from each direction of
languages.

8.4.1 En-Hi

Unconstrained Setting: In the E2E approach,
NICT achieved a BLEU score of 33.02, sig-
nificantly outperforming SRI-B, which scored
21.63. This superior performance by NICT can be
attributed to their robust use of pseudo translation
data aimed to distill knowledge from a stronger



Language Setting Approach | Team ID | BLEU
NICT 33.02

E2E SRI-B 21.63

En-Hi Unconstrained NICT 60.54
Cascaded HW-TSC 47.14

NITKKR 19.77

Constrained E2E SRI-B 29.76

NICT 10.79

E2E SRI-B | 18.13

En-Bn Unconstrained NICT 52.63
Cascaded | HW-TSC 35.04

NITKKR 4.46

Constrained E2E SRI-B 2

NICT 13.46

E2E SRI-B | 11.93

En-Ta Unconstrained NICT 39.84
Cascaded | HW-TSC 30.79

NITKKR | 11.76

Constrained E2E SRI-B 0.81

Table 16: Results on all language pairs and setting from all the submissions.

translation model to ensure consistent formatting.
In the cascaded approach, NICT again led with
a remarkable 60.54 BLEU score, significantly
higher than HW-TSC at 47.14 and NITKKR at
19.77. The cascaded approach by NICT utilized
the strengths of pretraining the ASR and MT
model to address the format mismatch problem
which leads to maximizing the performance.

Constrained: In the E2E approach, there
was one submission by SRI-B, which achieved a
BLEU score of 29.76.

8.4.2 En-Bn

Unconstrained: SRI-B with a BLEU score of
18.13 beats NICT which scored 10.79 when
implementing the E2E approach. In the cas-
caded approach, NICT scored the highest with
52.63 BLEU, compared to HW-TSC at 35.04
and NITKKR at 4.46. The same strategy from
En-Hi allowed NICT to excel in this category,
demonstrating the effectiveness of their cascaded
approach.

Constrained: For the E2E approach, SRI-B
scored a BLEU of 2 demonstrating the challenges
of the constrained setting in this language pair.

8.4.3 En-Ta

Unconstrained: NICT led with a BLEU score of
13.46, while SRI-B scored 11.93 for the models
using E2E approach. NICT’s consistent use of
Whisper for ASR and their robust translation
models contributed to their leading position.
For teams using the cascaded approach, NICT
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again achieved the highest BLEU score of 39.84,
followed by HW-TSC at 30.79 and NITKKR
at 11.76. The result could be explained due to
the method of addressing the format mismatch
problem by NICT already mentioned above.

Constrained: In this setting there is one
submission using the E2E approach, by SRI-B.
They achieve a score of 0.81, which shows the
limitations on this setting and language pair. The
low score could be explained due to limited data
and the morphologically complex structure of the
Tamil language.

8.5 Conclusion

This is the first time that a speech-to-translation
task is presented for the Indic track as one of the
IWSLT tasks. The results presented in the work
establish an important benchmark for the end-to-
end as well as cascade models for both the con-
strained and unconstrained conditions. This work
highlights a major performance gap between the
end-to-end and the cascade models. Also, a note-
worthy gap is seen in the performance with the un-
constrained data and pretrained models are used.
We plan to include more data and more Indic lan-
guages in the next edition.
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Performance in BLEU (up) and COMET (down) across a wide range of accents. The audio duration for

Figure 1

seconds)” format. The macro-average across accents are 18.7 BLEU and

each accent is denoted in a “(minutes

0.679 COMET.
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Appendix A. Human Evaluation

A Human Evaluation

Human evaluation included MQM for the English-to-Japanese simultaneous speech translation task
(A.1), as well as direct assessment for offline, simultaneous, and subtitling tasks (A.2).

A.1 MQM-based Human Evaluation for the English-to-Japanese Simultaneous Task

For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,
2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator. The evaluator checked translation
hypotheses along with their source speech transcripts and chose the corresponding error category and
severity for each translation hypothesis on a spreadsheet. Here, we asked the evaluator to focus only on
Accuracy and Fluency errors, because other types of errors in Terminology, Style, and Locale convention
would not be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumula-
tive error score for each system based on the error weighting presented by Freitag et al. (2021a), where
Critical and Major errors have the same level of error scores. The results are shown in Table 17.

A.2 Direct Assessment

For the offline translation track (Section 2), simultaneous translation track (Section 3), and subtitling
track (Section 4), we conducted a human evaluation of primary submissions based on a random selection
of 1000 segments from each test set. Human graders were asked for direct assessment (DA) (Graham
et al., 2013; Cettolo et al., 2017; Akhbardeh et al., 2021), expressed through scores between 0 and 100.

A.2.1 Automatic Segmentation

In the case of offline and subtitling tracks, we collected segment-level annotations based on the re-
segmentated test data (see Section 2). Because we did not want issues from the segmentation to influence
scores negatively, we followed Sperber et al. (2024) and provided translators not only with the source
sentence and system translation, but also with the system translation of the previous and following seg-
ments. Annotators were then instructed as follows: “Sentence boundary errors are expected and should
not be factored in when judging translation quality. This is when the translation appears to be missing
or adding extra words but the source was segmented at a different place. To this end, we have included
the translations for the previous and next sentences also. If the source and translation are only different
because of sentence boundary issues, do not let this affect your scoring judgement. Example for a clear
case for a good translation suffering only from sentence boundary issues that should not result in a poor
score:

Source: *you’ll see that there’s actually* a sign near the road.

Translation: ein Schild neben der Strafie gibt.

# Errors
Team BLEU (on three talks) | Error score Critical ‘ Major ‘ Minor
NAIST 17.2 27.4 0 3 16
HW-TSC 20.6 50.2 0 8 12
FBK 114 130.5 1 21 25

Table 17: Human evaluation results on two talks (107 lines) in the English-to-Japanese Simultaneous speech-to-
text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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Previous sentence: Ich bin mir sicher, dass Sie nicht wissen, dass, wenn Sie weiter weitergehen, *Sie
sehen — (Geldichter) — dass es tatsdchlich™

Next sentence: ....”

No video or audio context was provided. Segments were shuffled and randomly assigned to annotators to
avoid bias related to the presentation order. Annotation was conducted by professional translators fluent
in the source language and native in the target language.

A.2.2 Subtitling Constraints

The subtitling task (Section 4) includes cases where systems compress translations in order to match
subtitling constraints, e.g. filtering out non-relevant information present in the source. This is desired in
subtitling and should therefore not be penalized in human evaluation. To this end, we provided annotators
with the following instructions: “When judging the translations, please consider that these are subtitles
which are compressed translations of the original speech, not the translations of the subtitles in the
source language. Thus, there may be significant differences in how the source and the target sentences
are formulated. Subtitles are created independently for each language with the goal of good readability
during the short time period when they are displayed on screen. Readability in terms of number of
characters per second may differ between the source (English) and target (German). Please take this
into account. The translation should convey the same meaning as the source sentence but may omit
information that is not very important for getting the main message of the sentence across. It is OK if the
sentence is shortened this way in order to fulfil the readability constraints.”

A.2.3 Computing rankings

System rankings are produced from the average DA scores computed from the average human assessment
scores according to each individual annotator’s mean and standard deviation, similarly to Akhbardeh
et al. (2021). Ranks are established according to Wilcoxon rank-sum statistical significance test with
p < 0.05. The below tables show the DA scores and rankings. Note that the guidelines are different
for offline, simultaneous, and subtitling tasks. This makes results not directly comparable across tasks,
and we consequently only present within-task rankings here. Within each of the tasks (only the offline
and subtitling English-to-German have more domains), all the outputs were assessed in one annotation
run, distributing the scoring items randomly to annotators across domains, with all annotators most
likely seeing all the domains. This allows us to treat the DA scores across domains in a given task as
comparable, so we present them in the same table.

Table 18: Offline task, English to German

All TED ITV Accent Peloton
System Rank DA Rank DA Rank DA Rank DA Rank DA
HWTSC-LLM 1 84.8 1-2 949 1-2 84.7 14 76.1 14 82.6
HWTSC 2-3 842 3-5 928 1-3 84.0 14 76.8 1-4 81.6
CMU 2-4 833 3-5 925 23 83.1 14 754 14 81.2
NYA 3-4 81.0 1-2 947 4 739 14 779 14 80.2
KIT 5 76.7 3-5 91.8 5 69.3 5 72.8 5 74.6
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Table 19: Offline task, English to Japanese

TED
System Rank DA
HWTSC 1-3 75.4
HWTSC-LLM 1-2 74.7
NYA 2-4 72.8
CMU 3-4 72.9

Table 20: Offline task, English to Chinese

TED
System Rank DA
HWTSC-LLM 1 78.9
NYA 2-3 77.2
HWTSC 2-4 76.5
CMU 3-4 75.8

Table 21: Simultaneous task, English to German

TED
System  Rank DA
CMU 1 87.3
HWTSC 2 86.0

FBK 3-4 84.2
NAIST 34 83.4

Table 22: Simultaneous task, English to Japanese

TED
System  Rank DA
NAIST 1 774
HWTSC 2 754
FBK 3 717

Table 23: Simultaneous task, English to Chinese

TED
System  Rank DA

HWTSC 1-2 80.0
NAIST 1-2 79.2
FBK 3 76.1
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Table 24: Subtitling task, English to German. All combines the ITV and Peloton DA scores

All ITV Peloton
System Rank DA | Rank DA Rank DA
HWTSC 1 722 |1 73.0 1-2 71.3
AppTek 2-3 68.2 | 2 693 3 67.3
FBK-cascade | 2-3 66.3 | 3 622 1-2 71.5
FBK-direct 4 528 | 4 46.5 4 61.2
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Appendix B. Automatic Evaluation Results and Details

B.1 Offline SLT

* Systems are ordered according to the COMET score (denoted by COMET, the third column).

* The “Joint” column is computed by averaging the scores of the 4 test sets, aka macro-averaging.

Constrained (C), Constrained*““M (C*), Unconstrained (U).

* All systems are based on cascade architecture.

The “D” column indicates the data condition in which each submitted run was trained, namely:

System D Joint TED 2024 1TV Peloton Accent
COMET | BLEU | COMET | BLEU | COMET | BLEU | COMET | BLEU | COMET | BLEU

CMU U 0.743 18.3 0.862 25.7 0.735 17.3 0.670 11.5 0.705 18.5
HW-TSC | C* 0.731 19.3 0.851 27.4 0.728 17.2 0.652 11.9 0.691 20.7
HW-TSC | U 0.727 19.1 0.849 27.1 0.723 17.3 0.646 11.0 0.690 20.8
HW-TSC | C 0.717 18.5 0.841 26.6 0.712 16.7 0.637 10.4 0.678 20.2
NYA U 0.695 19.5 0.837 28.1 0.648 15.8 0.616 12.2 0.677 21.7
KIT (o 0.677 17.5 0.832 27.5 0.618 13.2 0.600 10.2 0.656 19.1

Table 25: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.

System D TED 2023 EMPAC ACL
COMET | BLEU | COMET | BLEU | COMET | BLEU

CMU U 0.858 27.2 0.820 16.2 0.837 31.5
HW-TSC | U 0.849 32.6 0.799 17.4 0.823 38.3
HW-TSC | C* 0.844 29.0 0.802 18.4 0.825 38.2
HW-TSC | C 0.843 32.8 0.792 17.1 0.808 37.0
NYA 8] 0.837 29.8 0.756 17.2 0.826 45.5
KIT c* 0.831 28.7 0.723 15.2 0.781 35.1
Best 2023 0.821 30.2 0.382 16.9 0.801 41.1

Table 26: Official results of the automatic evaluation for the Offline Speech Translation Task on progress test sets,
English to German.

Table 27: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set

System D TED 2024 TED 2023 ACL
COMET | BLEU | COMET | BLEU | COMET | BLEU
HW-TSC | U 0.853 23.6 0.856 23.1 0.868 31.8
HW-TSC | C* 0.851 23.1 0.856 222 0.839 325
CMU U 0.841 18.3 0.850 17.9 0.849 19.1
HW-TSC | C 0.839 23.9 0.831 243 0.839 28.0
NYA U 0.812 20.1 0.822 21.0 0.861 39.9

and progress test sets, English to Japanese.
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System D TED 2024 TED 2023 ACL
COMET | BLEU | COMET | BLEU | COMET | BLEU
HW-TSC | U 0.845 37.0 0.834 36.3 0.857 50.8
HW-TSC | C* 0.842 36.2 0.831 35.8 0.855 49.8
CMU U 0.834 31.5 0.827 30.6 0.853 43.1
HW-TSC | C 0.824 38.3 0.810 37.3 0.833 52.4
NYA U 0.823 40.4 0.814 39.1 0.855 59.1

Table 28: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set
and progress test sets, English to Chinese.
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Translation Guidelines

In this task, we aim to obtain high quality German translations of the English transcripts. The
transcripts (inside the “transcripts.txt” file) contain conversations between friends talking about a
daily topic, e.g. hobbies and vacation. There are 76 conversations (recordings) in total. In each
conversation, there are only two speakers, but the same pair of speakers may appear in another set(s)
of conversations, see the list below. The content of each recording is independent of each other, so
they could be translated independently. For each source sentence (line) to be translated, we
provide metadata, such as the recording id, speaker id, the audio file and the utterance number. The
utterance number indicates its order in the conversation. It begins from 0 (which is not included in the
transcripts required for translation) and stands for the beginning of the conversation. In general, most
recordings start from an utterance number of 15.

The general translation guidelines are:

o All translations should be “from scratch”, without post-editing from Machine Translation.
We can detect post editing so will reject translations that are post-edited.

o Translators should preserve the line structure of the source file. By this we mean that they
should not add or remove line-breaks , and each line is English should correspond to a line of
German. Note that each line of the source file corresponds to one audio file.

o We need the translations to be returned in the same format. If you prefer to receive the text
in a different format, then please let us know as we may be able to accommodate it.

o Translators should avoeid inserting parenthetical explanations into the translated text and
obviously aveid losing any pieces of information from the source text. We will check a
sample of the translations for quality, and we will check the entire set for evidence of
post-editing.

Since it is a conversation between friends, please pay attention to the below:

o You might need to use the context before and/or after the utterance to translate.

e [Important] There are disfluencies in the transcripts, including but not limited to, hesitation,
repetitions, and correction. We expect to have fluent and faithful translations. These
disfluencies in the transcripts might be helpful for your translation, but they are not
required as long as the meaning is clear. Please avoid word-by-word translation of
them.

a. In general, please focus on the core meaning in the translation. You might rephrase or
remove the redundant parts in the transcripts if necessary, e.g., repetitions.

b. For Hesitation, some examples are below, please do NOT include them in the
translation. We keep them on the transcripts as it might help signal a “pause” in the
utterance.

Examples of disfluencies:
e Hesitation:
a. List of possible tokens: {"ACH", "AH", "EEE", "EH", "ER", "EW", "HA",
"HEE","HM", "HUH", "MM", "OOF", "UH", "UM", "HMM"}
b. Example: "YEAH I KNOW B WAIT WHAT WAS I GONNA SAY B¢ SO
DO YOU WANNA ASK THE QUESTION NOW"?
e Repetitions:
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a. “WELL ACTUALLY ARE THEY LIKE ALL THESE AH—FHESE-ALE
FHESE DUMPLINGS OF EASTERN EUROPEAN ORIGIN”

A note on the recording_id

There are 76 conversations / recordings in total, but the same pair of speakers may show up in
another conversation(s) (122 speakers in total). In spite of the same pair of speakers, the contents
in each of these conversations are also independent of each other. These conversations have their
id extended by “ PX” where “X” is a number. Below is the list of recodings that have “ PX” in

their names:

EDACC-C23 P1, EDACC-C23 P2
EDACC-C32_P1, EDACC-C32 P2
EDACC-C33 Pl

EDACC-C40_P1, EDACC-C40_P2, EDACC-C40_P3

EDACC-C43 Pl

EDACC-C46_P1, EDACC-CA46_P2
EDACC-C05_P0, EDACC-C05_P1
EDACC-C29_P1, EDACC-C29 P2
EDACC-C31_P1, EDACC-C31_P2
EDACC-C38_P1, EDACC-C38_P2

EDACC-C35_P1, EDACC-C35_P2, EDACC-C35_P3

EDACC-C36_P1, EDACC-C36 P2
EDACC-C37 P1, EDACC-C37 P2
EDACC-C47 P1, EDACC-C47 P2
EDACC-C57 P1, EDACC-C57 P2
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B.2 Simultaneous SLT

Team  |BLEU| LAAL | AL | AP | DAL | ATD

HW-TSC | 26.39 | 2.17 (4.19) | 1.92(4.07) | 0.919 (1.66) | 3.10(7.37) | 2.18 (5.31)
CMU 24.65 | 2.21(3.57) | 2.01(3.45) | 0.87(1.24) | 3.04 (4.73) | 2.22 (3.22)
NAIST | 23.37 | 230(3.33) | 2.05(3.17) | 0.91(1.22) | 3.03(4.53) | 223 (3.12)
FBK 21.18 | 2.00(3.03) | 1.71(2.84) | 0.92(1.24) | 2.52(3.77) | 2.02 (2.49)

Table 29: Simultaneous Speech-to-Text Translation, English to German. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team  |BLEU| LAAL | AL | AP | DAL | AID

HW-TSC | 34.23 | 2.10(3.93) | 2.00 (3.89) | 0.78 (1.42) | 3.05 (7.45) | 0.94 (4.24)
NAIST 29.33 | 2.36(3.19) | 2.24 (3.11) | 0.79 (1.06) | 3.01 (4.51) | 1.04 (1.81)
FBK 25.20 | 2.73(4.43) | 2.61 (4.16) | 0.84 (1.17) | 3.61 (5.44) | 1.09 (2.42)

Table 30: Simultaneous Speech-to-Text Translation, English to Chinese. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU| LAAL | AL | AP | DAL | ATD

HW-TSC | 19.394 | 2.44 (4.10) | 2.39 (4.01) | 0.77 (1.28) | 3.35 (7.03) | 0.74 (3.44)
NAIST | 17.954 | 2.39 (3.41) | 2.31(3.37) | 0.79 (1.14) | 3.08 (5.21) | 0.56 (1.68)
FBK 12.136 | 2.15 (3.74) | 2.07 (3.70) | 0.72 (1.18) | 2.85(5.53) | 0.59 (2.25)

Table 31: Simultaneous Speech-to-Text Translation, English to Japanese. Except for AP, the latency is measured
in seconds. Numbers in brackets are computation aware latency.
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Team | BLEU | LAAL | AL AP DAL ATD
BENCH-2 | 29.93 228 1.95 0.78 3.03 275
BENCH-1 | 29.43 235 2.02 0.82 3.13 278
FBK 29.20 | 2.55(3.92) | 2.14(3.65) | 0.93 (1.24) | 3.20 (4.67) | 2.75(3.29)
HW-TSC | 27.11 | 2.00(5.11) | 1.53 (4.86) | 0.89 (2.28) | 3.27 (11.03) | 2.63 (8.38)
BENCH-0 | 26.85 3.34 3.09 0.75 3.9 3.39

Table 32: Simultaneous Speech-to-Text Translation, Czech to English. Except for AP, the latency is measured
in seconds. Numbers in brackets are computationally-aware latency. BENCH-N represents ORGANIZER’S
BENCHMARK, with N indicating the number of previously translated segments used as a Whisper prompt to

provide the model with the context.

Target Language ‘ Team ‘ ASR BLEU ‘ Start Offset ‘ End Offset ‘ ATD ‘
English to German | HW-TSC | 2333 | 200 | 430 |3.22|
English to Japanese | 1V TSC 17.37 2.36 341 331
NAIST 14.35 239 420 | 418
English to Chinese | HW-TSC | 2897 | 204 | 299 | 3.11 |
Czech to English | HW-TSC | 2593 | 158 | 352 | 3.67 |

Table 33: Simultaneous Speech-to-Speech from English Speech. The latency is measured in seconds. The BLEU
scores are computed based on transcript from the default Whisper (Radford et al., 2023) ASR model (large) for

each language direction.
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B.3 Automatic Subtitling

Con- Subtitle Translation Subtitle
Team di- System Domain | quality quality compliance
tion SubER | Bleu ChrF Bleurt | CPS CPL LPB
APPTEK U  cntrstv2 ALL 70.34 | 17.45 41.77 4746 | 73.25 100.00 98.78

ted | 60.55 | 24.70 53.00 .5823 | 86.89 100.00 97.27
itv | 72,19 | 16.47 39.12 4575 | 6546 100.00 99.18

HW-TSC U  cntrstvl ALL 77.11 | 16.52 43.00 .5148 | 28.67 62.64 100.00

Table 34: Subtitling Task: automatic evaluation scores on tst2024 en—de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.
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Con- Subtitle Translation Subtitle

Team di- System Domain | quality quality compliance
tion SubER | Bleu ChrF Bleurt | CPS CPL LPB
APPTEK U prmry  ALL 62.02 | 25.59 49.75 5268 | 82.42 100.00 99.94

ted | 45.73 | 39.29 63.86 .6995 | 88.05 100.00 99.76
itv | 66.80 | 21.37 4435 4761 | 79.18 100.00 99.98

FBK-AI4Cpir C prmry  ALL 67.13 | 22.03 44.69 4277 | 76.00 90.35 100.00
ted | 39.86 | 45.63 69.63 .7441 | 82.43 86.59 100.00

itv | 77.00 | 11.91 3195 .2986 | 70.61 92.60 100.00

pltn | 79.70 | 11.88 40.05 4329 | 82.26 89.58 100.00

Table 35: Subtitling Task: automatic evaluation scores on tst2024 en—es. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.

id | Team System de e
Bleurt CPS | Bleurt CPS
subtitles to compress 1946 60.25 | 2136  69.97
1 baseline | .1720 100.00 | .1892 100.00 |
|FBK ] primary | .1895 84.81 | 2063  90.66 |
FBK contrastive 1 | .1890 67.94 | 2113 75.74

contrastive 2 | .1811 83.36 | .2033 87.48

HW-TSC  primary | .1956 84.35 | 2101 91.42 |
HW-TSC contrastive 1 | .1967 79.97 | 2126 87.56
HW-TSC contrastive 2 | .2002 84.38 | .2102 91.44

RACAI primary not submitted | .1946  94.29

ook W =lo
s/
o
N

Table 36: Compression Task: automatic evaluation scores on German and Spanish subtitles.
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Con- Subtitle Translation Subtitle

Team di- System Domain | quality quality compliance
tion SubER | Bleu ChrF Bleurt | CPS  CPL LPB
APPTEK U  cntrstv2 ALL 70.05 | 16.51 40.51 .4730 | 70.46 100.00 98.87

ted | 60.38 | 23.58 50.67 .5808 | 82.29 100.00 97.50
itv | 69.09 | 1697 39.90 4718 | 65.00 100.00 99.03

pltn | 81.77 | 10.85 36.12 4751 | 4144 6199 100.00
Submissions 2023 (here ALL={ted,itv,pltn}, while last year eptv was considered as well):

APPTEK U prmry  ALL 70.23 | 15.10 37.39 4291 | 87.87 100.00 100.00
MATESUB U prmry  ALL 74.00 | 14.92 38.92 4579 | 84.47 99.26 100.00
APPTEK C prmry  ALL 77.14 | 12.40 33.17 3300 | 93.01 100.00 100.00
FBK C prmry  ALL 79.70 | 10.77 31.99 3016 | 69.23 83.72  99.99
APPTEK C cntrstv ~ ALL 83.75 9.33 29.28 .2790 | 88.90 100.00 100.00

Table 37: Subtitling Task: automatic evaluation scores on tst2023 en—de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking
based on SubER scores on ALL domains.
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Con- Subtitle Translation Subtitle
Team di- System Domain | quality quality compliance
tion SubER | Bleu ChrF Bleurt | CPS CPL LPB
APPTEK U prmry  ALL 63.97 | 23.25 4746 5121 | 80.98 100.00 99.98
ted | 46.75 | 3633 61.47 .6889 | 88.92 100.00 99.84
itv | 66.39 | 22.17 4542 4881 | 77.61 100.00 100.00
pltn | 71.61 1547 40.75 .4646 | 83.82 100.00 100.00
| HW-TSC U cntrstv2 ALL | 64.72 | 25.00 49.02 5480 | 90.78 62.45 100.00 |
ted | 4498 | 43.71 66.71 7240 | 94.76 33.30 100.00
itv | 67.35 | 22.17 45.13 .5213 | 89.53 71.44 100.00
pltn | 73.73 | 17.20 43.05 .5059 | 91.66 56.41 100.00
| ApPTEK U  ecntrstvl ALL | 6537 | 2227 46.61 .5007 | 7441 100.00 9891 |
ted | 48.98 | 3449 60.17 .6758 | 85.26 100.00 97.19
itv | 67.29 | 21.55 4482 4784 | 69.77 100.00 99.17
pltn | 7336 | 1437 39.76 .4510 | 78.35 100.00 99.26
| HW-TSC U  prmry ALL | 6541 [2529 5038 .5579 | 72.10 59.42 100.00 |
ted | 44.50 | 44.83 68.02 .7326 | 82.83 31.93 100.00
itv | 68.20 | 22.60 46.72 .5319 | 68.95 67.58 100.00
pltn | 7495 | 17.21 44.07 .5152 | 73.94 54.50 100.00
| HW-TSC U  cntrstvl ALL | 6597 | 2521 5049 5612 | 33.25 66.05 100.00 |
ted | 4445 | 44.63 68.08 .7353 | 48.76 38.26 100.00
itv | 69.27 | 22.56 46.84 5338 | 25.02 7291 100.00
pltn | 7495 | 17.19 4422 5213 | 44.16 64.58 100.00
| FBK-AI4Ccgc U prmry  ALL | 66.02 | 23.87 46.53 4811 | 67.56 94.25 100.00 |
ted | 40.81 | 43.11 68.20 .7408 | 81.79 92.20 100.00
itv | 71.62 | 19.18 39.70 4019 | 62.11 94.22 100.00
pltn | 73.16 | 16.19 4278 4921 | 69.30 95.60 100.00
| ApPTEK U  cntrstv2 ALL | 68.69 | 19.83 4546 4817 | 71.43 100.00 99.00 |
ted | 48.14 | 3578 62.51 .6681 | 82.76 100.00 97.74
itv | 71.58 | 17.85 4221 4572 | 66.60 100.00 99.25
pltn | 77.76 | 12.62 38.75 .4301 | 75.54 100.00 99.14
| FBK-Al4Cpjg  C prmry ALL | 70.09 | 19.16 4158 3972 | 73.08 91.64 99.97 |
ted | 4045 | 42.09 67.76 .7224 | 82.59 89.77  99.93
itv | 78.20 | 12.09 31.50 .2827 | 70.11 92.89 100.00
pltn | 75.52 | 13.20 40.33 4389 | 72.01 90.84  99.96
Submissions 2023 (here ALL={ted,itv,pltn}, while last year eptv was considered as well):
| MatesuB U prmry ALL | 6729 [ 2254 4640 4993 [ 85.51 99.53 100.00 |
APPTEK C prmry  ALL 7233 | 17.72 38.49 3467 | 95.30 100.00 100.00
FBK C prmry  ALL 7393 | 16.70 37.68 3217 | 76.57 91.84  99.99

Table 38: Subtitling Task: automatic evaluation scores on tst2023 en—es. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems. Ranking

based on SubER scores on ALL domains.
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B.4 Speech-to-Speech Translation

System D Test
Ref BLEU | chrF | COMET
Cascade Systems
U 33.6 29.4 74.79
HW-TSC | C* 31.8 28.1 74.41
C 314 28.5 73.65

Table 39: Official results of the automatic evaluation for the English to Chinese Speech-to-Speech Translation
Task. The “D” column indicates the data condition in which each submitted run was trained, namely: Constrained
(C), Constrained* M (C*), Unconstrained (U).
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North Levantine Arabic—English (Unconstrained Condition)

B.5 Low-Resource SLT

Team System BLEU| | chrF2 | COMET
ALADAN primary 28.71 52.25 0.7763
ALADAN | contrastivel 28.50 52.12 0.7706
ALADAN | contrastive2 | 22.12 46.38 0.7296

KIT primary 20.86 | 44.54 0.7013
KIT contrastivel 19.73 45.43 0.7098

JHU primary 15.95 38.89 0.6951

JHU contrastivel 14.74 37.27 0.6775
HW-TSC primary 13.64 33.31 0.5877

KIT contrastive2 | 11.87 34.76 0.6064
UM contrastivel 5.09 24.50 0.5378
UM primary 474 | 24.10 | 0.5369
UM contrastive2 3.53 21.56 0.5196

Table 40: Automatic evaluation results for the North Levantine Arabic to English task, unconstrained Condition.
A lowercase, no punctuation variant of chrF2 is reported. The Unbabel/wmt22-comet-da model was used
for COMET computation, with the source side (Arabic transcript) unmodified and the target side lowercased and
with removed punctuation.

Bemba—English (Unconstrained Condition)

Team System BLEU
JHU primary 32.6
KIT primary 28.8
KIT contrastive2 | 28.1
JHU contrastivel 27.0
KIT contrastivel | 27.0
JHU contrastive2 | 26.7

Team System WER

KIT ASR primary 33.2
JHU ASR primary 35.7

Table 41: Automatic evaluation results for the Bemba to English task, unconstrained Condition.

Bhojpuri—~Hindi (Unconstrained Condition)

Team System BLEU | chrF2
JHU primary 24 .4 49.5
JHU contrastivel 23.9 48.7
JHU contrastive2 | 12.2 39.1
BITSP primary 12.9 41.1
DFKI_MLT primary 0.1 6.1
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Table 42: Automatic evaluation results for the Bhojpuri to Hindi task, unconstrained Condition.



Irish—English (Unconstrained Condition)

Team System BLEU | chrF2
JHU contrastivel 16.0 39.0
JHU primary 15.3 38.3
Ymoslem primary 7.6 27.6
Ymoslem | contrastivel 7.4 26.5
Ymoslem | contrastive2 5.1 24.7
SETU-DCU primary 0.6 15.4

Table 43: Automatic evaluation results for the Irish to English task, unconstrained Condition.

Maltese—English (Unconstrained Condition)

Team System BLEU | chrF2
KIT primary 58.9 76.5
SETU-DCU primary 56.7 81.9
KIT contrastive2 56.2 75.0
KIT contrastivel 55.2 74.4
SETU-DCU contrastivel 52.6 72.1
UoM primary 52.4 72.3
UoM contrastivel 52.4 72.3
UoM contrastive2 52.3 72.1
SETU-DCU contrastive2 447 65.5
JHU primary 41.4 68.6
JHU contrastivel 36.5 64.2
UoM-DFKI primary (e2e) 35.1 59.0
JHU contrastive2 24.8 55.8
UOM-DFKI | contrastivel (e2e) 18.5 42.0

Table 44: Automatic evaluation results for the Maltese to English task, Unconstrained Condition. e2e denotes
end-to-end system.

Maltese—English (Constrained Condition)

Team

System

BLEU

chrF2

UoM

primary

0.5

15.6

Table 45: Automatic evaluation results for the Maltese to English task, Constrained Condition.

Marathi—Hindi (Unconstrained Condition)

Team System BLEU | chrF2
II™ primary 47.2 70.1
JHU primary 37.7 62.7
JHU contrastivel 37.3 62.4
JHU contrastive2 | 28.5 55.0
BITSP contrastivel 25.0 50.1
BITSP primary 21.3 48.1
BITSP contrastive2 19.0 44.8
Team System WER | CER
IITm ASR primary 22.8 7.3
JHU ASR primary 26.7 8.9
BITSP ASR | contrastivel | 62.9 17.5
BITSP ASR primary 69.3 21.2
BITSP ASR | contrastive2 | 69.3 21.2
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Table 46: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.




Quechua—Spanish (Constrained Condition)
Team System BLEU | chrF2
QUESPA | contrastive2 1.3 30.9
QUESPA | contrastivel 1.4 30.3
QUESPA primary 2.0 30.0

Table 47: Automatic evaluation results for the Quechua to Spanish task, Constrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.

Quechua—Spanish (Unconstrained Condition)
Team System BLEU | chrF2
QUESPA | contrastivel 19.7 43.1
QUESPA primary 16.0 52.2
JHU primary 12.5 49.7
QUESPA | contrastive2 11.1 44.6
JHU contrastivel 6.4 39.5
JHU contrastive2 0.9 13.0

Table 48: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition.

Tamasheq—French (Unconstrained Condition)

Team System | BLEU
Organizer Baseline | primary 8.83

JHU primary 6.07

JHU contrastive | 0.50

Table 49: Automatic evaluation results for the Tamasheq to French task, Unconstrained Condition.
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Pause-Aware Automatic Dubbing using LLLM and Voice Cloning

Yuang Li, Jiaxin Guo, Min Zhang, Miaomiao Ma, Zhigiang Rao
Weidong Zhang, Xianghui He, Daimeng Wei, Hao Yang
Huawei Translation Services Center, China
{liyuang3, guojiaxinl, zhangmin186, mamiaomiao, raozhigiang,
zhangweidong17, hexianghui, weidaimeng, yanghao30} @huawei.com

Abstract

Automatic dubbing aims to translate the speech
of a video into another language, ensuring the
new speech naturally fits the original video.
This paper details Huawei Translation Services
Center’s (HW-TSC) submission for IWSLT
2024’s automatic dubbing task, under an uncon-
strained setting. Our system’s machine trans-
lation (MT) component utilizes a Transformer-
based MT model and an LLM-based post-editor
to produce translations of varying lengths. The
text-to-speech (TTS) component employs a
VITS-based TTS model and a voice cloning
module to emulate the original speaker’s vo-
cal timbre. For enhanced dubbing synchrony,
we introduce a parsing-informed pause selector.
Finally, we rerank multiple results based on
lip-sync error distance (LSE-D) and character
error rate (CER). Our system achieves LSE-D
of 10.75 and 12.19 on subset] and subset2 of
DE-EN test sets respectively, superior to last
year’s best system.

1 Introduction

The task of automatic dubbing is to translate spoken
language in a video into another language such that
the translated speech can be seamlessly blended
with the original video. A unique aspect of dubbing
is isochrony, which refers to the property that the
speech translation is time-aligned with the original
speaker’s visual cues. The spoken words should
match the speaker’s lip movements, ensuring the
audio is heard when the lips move and is silent
when they don’t.

To address this challenge, a unified model that
simultaneously processes translations and speech
timing is optimal, allowing for adjustments in trans-
lation to fit timing constraints. Chronopoulou et al.
(2023) accomplish this by simply binning target
phoneme durations and interleaving them with tar-
get phonemes during training and inference. Pal
et al. (2023) enhance this approach by predicting

the durations of phonemes as target factors. How-
ever, these methods fail to utilize pre-trained ma-
chine translation (MT) models and large language
models (LLM) that are trained on massive text cor-
pora. Moreover, constructing large-scale datasets
with phoneme duration labels is challenging, thus
limiting the translation quality. Therefore, a disen-
tangled approach that considers MT and dubbing
synchrony separately can achieve better results.
Our system (Rao et al., 2023) from last year first
generated a set of translation candidates and later
reranked them based on speech overlaps, achieving
better mean opinion scores (MOS) than the base-
line systems. Therefore, this year we extend last
year’s system by using more advanced pre-trained
models and a more sophisticated pause-aware dub-
bing pipeline.

Specifically, our method comprises the following
key components:

¢ A Transformer-based MT (Machine Transla-
tion) model, which is a fine-tuned version of
NLLB-1.3B on the CoVoST?2 dataset (Chang-
han Wang, 2020).

* An LLM-based post-editor that modifies the
lengths of translations.

* A VITS-based (Kong et al., 2023) TTS model
that is non-autoregressive and supports speed
control.

* A voice cloning (VC) module based on Open-
Voice (Qin et al., 2023), ensuring that the input
speech and output speech share the same tone
color.

* A pause-aware dubbing pipeline that identifies
potential split points using sentence parsing.

* A reranking method based on LSE-D and
CER.

In this paper, we provide detailed analyses of
the components mentioned above. Our system
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Figure 1: Diagram illustrating the process of automated
dubbing: (a) without accounting for pauses; (b) with
consideration of pauses. (Note that the ASR results are
provided by the organizer in this track.)

achieves an LSE-D of 10.75 on subsetl and 12.19
on subset2 of the DE-EN test sets, respectively, out-
performing last year’s best system. Additionally,
we take into account the vocal timbre of the speech,
which can enhance the perceptual quality.

2 Methods

2.1 System Design

Figure 1 (a) shows the naive automatic dubbing
system which assumes that the speech of the video
does not have obvious pauses. First, an automatic
speech recognition (ASR) model transcribes the
source speech. The result of this step is provided
by the organizer. Then, an MT model translates the
source German (DE) text into the target English
(EN) text, followed by an LLM that is prompted
to change the length of the translation. Utilizing
MeloTTS !, the target speech is synthesized and its
duration is compared with the original speech to
determine the speed factor. Finally, we regenerate
the target speech, convert the tone color, and fill the
audio into the original video based on timestamps
from the voice activity detection (VAD) 2 system.

Figure 1 (b) illustrates the pause-aware dubbing
system. Unlike the naive system, it integrates a
pause selector. This selector generates an index
of potential word positions that best align with the
pauses in the original speech. To avoid unnatu-
ral sentence breaks, sentence parsing is employed
to determine groups of words that should remain
together. Finally, the TTS model is utilized to pro-
duce audio clips for each text segment, with the
speed factor calculated for each independently.

"https://github.com/myshell-ai/MeloTTS
2https://github.com/snakers4/silero-vad
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Algorithm 1 Pause Selector

Require: .., textyr = {wy, ...
Split = {t17 cee tn—l}; Tsrca Ttts

1: PP,VP,NP = Parsing(textyr)
2: index = Split Point(PUNC, PP,V P, NP)

»wn}

split,
Tits

tpause _

Ts’rc

3: i = argmin(abs( )) @ € index

4: return ¢

2.2 Pause Selector

Algorithm 1 provides the details of the pause selec-
tor. Given the time of the pause (fpquse) predicted
by VAD, the translation (texty,r), the word-level
timestamps (split) of synthetic speech predicted by
a CTC-based aligner from WhisperX (Bain et al.,
2023), and the duration of source and generated
speech (Tsy.) and (T35), we first use sentence pars-
ing 3 to obtain the prepositional phrases (PP), verb
phrases (VP), and noun phrases (NP). The possi-
ble split index can be only after these phrases and
punctuations. Then, we select the best index that
minimizes the distance between the normalized
word time by duration and the normalized time of
the pause.

2.3 LLM-based Post-Editor

You are a professional German-English trans-
lator and skilled proofreader. Now you are
given the original German text and its English
translation. Please improve the translation and
make it more complex/simple without explain-
ing.

Source (German): "{DE}"

Initial Translation (English): "{EN}"

Revised Translation (English):

Table 1: Prompt for LLM-based post-editor.

LLM (Touvron et al., 2023; Zeng et al., 2023) is
known for its exceptional zero-shot and few-shot
capabilities, meaning it can perform downstream
tasks using a prompt that describes the task or a
few examples. In the context of automatic dubbing,
we use LLM to generate translations with different
lengths so that we can select the one that results in
the best lip-sync accuracy. The input prompt for
the LLM is shown in Table 1. We first describe

3https://github.com/Halvani/
Constituent-Treelib
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the task and the role of the LLM as a translator
and a proofreader. Then, we instruct it to make
the translation more complex or simple. Finally,
we provide the source and translated text. We use
"complex" and "simple" as indicators of output
length as they contribute to better stability than
"longer" and "shorter".

24 TTS and VC

We use MeloTTS, which is based on the archi-
tecture of VITS (Kim et al., 2021; Kong et al.,
2023). VITS leverages variational autoencoder,
adversarial learning, normalizing flow, and stochas-
tic duration predictor to generate realistic speech
in an end-to-end manner without relying on exter-
nal word alignment and a vocoder. To convert the
voice into the desired tone color, we adopt Open-
Voice (Qin et al., 2023), which disentangles the
tone color information in the encoder. The target
speaker embedding is integrated into the decoder.

2.5 Rerank

We use LSE-D and CER to select the final syn-
thetic speech from multiple candidates. The CER
is computed between the original ASR transcrip-
tion and the transcription of the generated speech.
For subsetl, there are no obvious pauses, so we
only use system (a) as shown in Figure 1. For
subset2, which contains notable pauses, we use
both systems (a) and (b) in Figure 1. For the same
translation, we only use system (b) if we do not
observe a decline in CER and note an improvement
in LSE-D compared to system (a). To rank multiple
translations of different lengths, we use the average
rank determined by LSE-D and CER and select
the translation with the lowest rank. Note that we
use CER rather than word error rate to mitigate
the influence of the ASR model’s limited ability to
recognize out-of-vocabulary words. During rerank,
we considered four translations: the original trans-
lation, the translation using LL.M-based post editor
without indicating the output length, the "complex"
translation, and the "simple" translation.

3 Experimental Setups

We fine-tuned the NLLB-1.3B # model for 20
epochs on the CoVoST2 (Changhan Wang, 2020)
DE-EN subset, using a learning rate of 3x 107> and
a batch size of 512. For the LLM-based post-editor,

4https://huggingface.co/facebook/
nllb-200-distilled-1.3B
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when employing the “complex” indicator, we sam-
pled three answers and selected the one with the
highest Comet score (Rei et al., 2020) compared
to the original translation. For the “short” indica-
tor, we sampled only once. When adjusting the
speech speed, we set the lower bound to 0.75x%
and the upper bound to 2.5x. We adopted several
evaluation metrics: the BLEU score and the Comet
score to evaluate MT quality, and the lip-sync error
distance (LSE-D) (Chung and Zisserman, 2017) >
and ASR character error rate (CER) to measure
dubbing performance. We used the Wav2Vec2-
base model ©, fine-tuned on LibriSpeech, as the
ASR model, which utilizes a character-level vocab-
ulary. We opted not to use a more advanced ASR
model since the less robust model is more sensi-
tive to speech quality. During rerank, we consid-
ered four translations: the original translation, the
translation using LLM-based post editor without
indicating the output length, the "complex" trans-
lation, and the "simple" translation. Additionally,
we attempted to enhance the speech by applying
denoising and audio super-resolution techniques ’,
which remove noise and upscale the audio from
16kHz to 44.1kHz.

4 Experimental Results

4.1 Performance of MT and LLM-based
Post-Editor

As shown in Table 2, the NLLB-1.3B model,
fine-tuned on the target-domain CoVoST?2 dataset,
achieves high translation quality with BLEU scores
of 46.37 and 44.03 on subsetl and subset2, respec-
tively, and Comet scores of 89.29 and 88.01, re-
spectively. When using an LLM to post-process
the translations, we observe a decrease in BLEU
scores, especially for longer translations. However,
we find that the Comet scores are similar to those
of the unmodified translations, indicating that the
LLM effectively performs paraphrasing without
changing the meaning of the translations.

4.2 Results for Pause-Aware Automatic
Dubbing

For subset2, we observe that the pause-aware auto-
matic dubbing pipeline (Dubbing (b)) contributes

SWhen computing LSE-D, we used the video with subti-
tles.

6https://huggingface.co/facebook/
wav2vec2-base-960h

7https://github.com/resemble—ai/
resemble-enhance
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Subset1 Subset2

MT Dubbing (a) MT Dubbing (a) Dubbing (b) Dubbing (a + b)

Method BLEUt Comett | LSE-D| CER| | BLEUt Cometf | LSE-D| CER| | LSE-D| CER| | LSE-D| CER]
NLLB (fine-tune) | 46.37  89.29 | 1092 568 | 4403  88.01 | 13.88 393 | 1227 447 | 1239 359
LLM-PE 4303 89.42 11.03 578 | 4075  88.00 1290 397 | 1225 421 1246 3.51
LLM-PE (simple) 4450  88.01 1097 635 | 4388  87.98 12.89 447 | 1222 461 1238 3.93
LLM-PE (complex) 19.67  84.08 11.12 475 | 1888  83.74 1305 3.60 | 1235 446 | 1273 328
Rerank (LSE-D) 41.18  88.15 1062 570 | 39.13  87.79 / / / / 11.96  3.76
Rerank (CER) 2042 8588 1105 376 | 2932  85.03 / / / / 1262 236
Rerank (LSE-D&CER) | 38.13  87.91 1075 462 | 3860  87.13 / / / / 1219 3.02
+ Enhance / / 11.18 539 / / / / / / 1252 4.07
-vc 3510 8791 10.86  4.08 | 39.09  87.28 / / / / 12.14 273

Table 2: Performance of MT and dubbing measured by BLEU score, Comet score, LSE-D, and ASR-CER (%).
Rerank is applied to the results that correspond to the first four rows.

to a significantly lower LSE-D than the naive
pipeline (Dubbing (a)). For instance, with pause-
aware dubbing, the LSE-D decreases from 13.88 to
12.27 for the original translation. However, there
is an increase in CER. The possible reason could
be that the pauses in the translation may be unnatu-
ral, or the TTS model’s ability to generate speech
for incomplete sentences is limited. Therefore, we
combine the two systems. For the same translation,
we only use system (b) if we do not observe a de-
cline in CER and note an improvement in LSE-D
compared to system (a). This combination method
(Dubbing (a + b)) results in the lowest CERs, and
the LSE-D is also notably better than the naive
system (a).

4.3 Results for Rerank

LSE-D measures the synchronization of speech
with video, while CER assesses speech intelligibil-
ity. Employing either metric for reranking could
enhance the results according to their respective
evaluations. Using their average rank can achieve
a balance between them. For subset]l and subset2,
the final dubbed videos achieve LSE-D scores of
10.75 and 12.19, respectively, and CERs of 4.62%
and 3.02%, respectively. It is worth noting that
the CER for longer speeches tends to be lower due
to more contextual information, while the LSE-D
tends to be higher as it is more difficult to align the
pauses.

4.4 Alternative Systems

We carried out ablation studies and provided al-
ternative systems in our submission. When VC
is not used, the LSE-D is similar to the complete
system. The CER is notably lower because the sole
TTS model provides better speech quality, whereas
the VC model can introduce some noise. How-

ever, without VC, using a female’s voice for a male
speaker is unreasonable. Our TTS model operates
at a sample rate of 16kHz. To improve the sub-
jective listening experience, we adopted an audio
super-resolution model to enhance it to 44.1kHz.
Perceptually, higher frequencies contribute to bet-
ter quality. However, we found that audio super-
resolution negatively impacts the LSE-D and CER,
although we do not observe noticeable distortion
in the audio samples.

5 Discussion

Compared to last year’s system, which utilized a
length-aware MT system that employed a length
tag to indicate the desired output length, this year’s
approach aims to enhance translation quality by
fine-tuning a pre-trained MT model rather than
training one from scratch. Although we attempted
to incorporate length tags in the fine-tuning process,
we found that they failed to produce translations
with varying lengths due to the limited number of
epochs and fine-tuning data. Consequently, we
used an LLM which has robust rewriting capabili-
ties.

We submitted a single entry for the English-
Chinese subtask, which presents significantly
greater challenges than the German-English sub-
task due to factors such as long-form video,
speaker changes, and background music. To ad-
dress these challenges, we enhanced our automatic
dubbing system with an open-source diarization
model (Desplanques et al., 2020), a source sepa-
ration tool (Takahashi and Mitsufuji, 2017), and
a TTS API 8. However, given the complexity of
the task and the lack of labeled test set, we have
not provided a detailed analysis. In movie dub-

8https://github.com/rany2/edge-tts


https://github.com/rany2/edge-tts

bing, it is crucial that the emotion of the dubbed
speech matches that of the original speech, there-
fore, expressive TTS models are preferred. We
evaluated the Seamless Expressive model (Barrault
et al., 2023), however, we observed that the speech
quality was inconsistent, and for non-English lan-
guages, the speech did not sound native.

6 Conclusion

In this paper, we propose a novel pause-aware
automatic dubbing system that ensures translated
speech signals are not only accurate but also main-
tain the timbre of the original speech. The key com-
ponents involve a novel pause selector, informed
by parsing, to align dubbing with the video’s pace,
a VC model to convert the tone color, and an LLM
to provide translation candidates. For future work,
we plan to carry out more systematic experiments
on long-form, movie-like videos and provide more
expressive dubbed videos.
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Abstract

This paper presents the NICT’s submission
for the IWSLT 2024 Indic track, focusing
on three speech-to-text (ST) translation direc-
tions: English to Hindi, Bengali, and Tamil.
We aim to enhance translation quality in this
low-resource scenario by integrating state-of-
the-art pre-trained automated speech recogni-
tion (ASR) and text-to-text machine translation
(MT) models. Our cascade system incorpo-
rates a Whisper model fine-tuned for ASR and
an IndicTrans2 model fine-tuned for MT. Ad-
ditionally, we propose an end-to-end system
that combines a Whisper model for speech-to-
text conversion with knowledge distilled from
an IndicTrans2 MT model. We first fine-tune
the IndicTrans2 model to generate pseudo data
in Indic languages. This pseudo data, along
with the original English speech data, is then
used to fine-tune the Whisper model. Experi-
mental results show that the cascaded system
achieved a BLEU score of 51.0, outperform-
ing the end-to-end model, which scored 19.1
BLEU. Moreover, the analysis indicates that
applying knowledge distillation from the In-
dicTrans2 model to the end-to-end ST model
improves the translation quality by about 0.7
BLEU.

1 Introduction and Related Work

Speech-to-text translation is crucial for breaking
the language barriers during international activi-
ties, such as translating diverse languages in online
meetings. Although high-resource language pairs
often achieve excellent results, the performance
for low-resource language pairs remains unsatisfac-
tory (Radford et al., 2023; Joshi et al., 2020), such
as English to Indic languages. This paper presents
NICT’s submission to the Indic Track of IWSLT
2024, which includes translation directions from
English to Hindi, Bengali, and Tamil. An overview
of the cascade and end-to-end systems is illustrated
in Figure 1.
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Data scarcity is a significant challenge for the
English to Indic languages ST task due to its low-
resource scenario and we are using data-driven
neural models. Data augmentation on speech
and text data is an efficient way to address this
challenge (Shanbhogue et al., 2023; Mi et al.,
2022). Assisting information such as phonetic in-
formation (Cheng et al., 2021) and spectral fea-
tures (Berrebbi et al., 2022), or knowledge trans-
ferred from related languages (Anastasopoulos
et al., 2022; Gow-Smith et al., 2023; Song et al.,
2020) can also enhance the performance. To this
end, we use data combined data from three direc-
tions rather than using them separately.

Cascade and end-to-end (E2E) systems are two
popular paradigms in ST with their advantages. In
general, cascaded systems show higher translation
quality (Agarwal et al., 2023) and end-to-end sys-
tems usually show lower latency and less modeling
burden (Xu et al., 2023). To maximize the transla-
tion quality, we adopt the cascaded way and attempt
to make full use of the recent advancements in ASR
and MT fields (Sperber and Paulik, 2020). Follow-
ing preliminary experiments, we decided to partici-
pate in the unconstrained setting, where we lever-
age pre-trained models such as Whisper and Indic-
Trans?2 to develop our cascaded and E2E systems.
Although additional datasets like IndicVoices are
available for Indic languages (Javed et al., 2024),
we refrain from using them due to concerns about
test set overlap.

We use Whisper (Radford et al., 2023) as our
ASR system. Unlike previous work (Wang et al.,
2023a) who prompt Whisper without fine-tuning,
we fine-tune Whisper-medium on the training data.
Our results demonstrate significant improvements
through fine-tuning. Although other ASR sys-
tems such as HuBERT (Hsu et al., 2021), wav2vec
2.0 (Baevski et al., 2020) and others (Communica-
tion et al., 2023; Wang et al., 2023b) exist, we adopt
Whisper for its ease of use and its ability to deliver
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Figure 1: Comparison of Cascaded and End-To-End systems.

high-quality transcriptions of English speech. We
then cascade Whisper with IndicTrans2 (Gala et al.,
2023) as our MT system. It supports high-quality
translations across 22 popular Indic languages and
outperforms the mBARTS0 model (Liu et al., 2020)
and the M2M-100 model (Fan et al., 2020) in direc-
tions involving Indic language. Additionally, we
explore the potential of the E2E system by employ-
ing knowledge distillation from the IndicTrans2
model into the Whisper model. Experimental re-
sults show that our cascaded systems are about
32 BLEU better than the E2E systems. Further-
more, E2E systems trained with distilled transla-
tions, which are obtained by translating English
transcripts to Indic languages via IndicTrans2, tend
to be about 0.7 BLEU points better than those using
the originally provided gold standard translations.

The remainder of this paper is structured as fol-
lows: Section 2 describes the datasets and data
preprocessing. Section 3 introduces our cascade
and end-to-end models. Section 4 presents the ex-
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perimental settings, results, and analysis. Lastly,
Section 5 concludes the paper.

2 Data

We show the statistics of the original corpora and
how we pre-process the raw data in this section.

2.1 Dataset

. . . Total
Direction Train Dev Test ‘ Speech Hours
en — hi 44,538 7,612 7,044 95.70
en — bn 5,138 1,344 1,170 16.44
en — ta 7,950 2,139 2,194 22.15

Table 1: Statistics of the datasets showing the number
of sentences in the training, development, and test sets
alongside total speech hours.

We use only the corpus provided on the official
site, with statistics shown in Table 1. We do not
leverage any extra data, although our systems are



built under the unconstrained condition. In the
table, en, hi, bn, and fa represent English, Hindi,
Bengali, and Tamil, respectively. We obtain the au-
dio segments of textual sentences from the original
files according to the offset and duration informa-
tion. After segmentation, each data sample con-
tains an audio segment in English, its transcription,
and a translation in one of the three Indic languages.
We observed that the data belongs to the spoken
language domain, where the sentences are shorter
compared to sentences in written texts. Moreover,
there is almost no punctuation in English transcrip-
tions and Indic language translations.

2.2 Pre-processing

To fine-tune a more robust Whisper model, we
combine data from three English datasets as they
belong to the same distribution.

3 Method

We describe the training and inference processes of
the cascaded and E2E systems.

3.1 Cascaded System

The training and inference phases of the cascaded
system are shown in Figure 1a. During training,
we fine-tune the Whisper model using English au-
dio paired with its English transcription. We then
fine-tune the IndicTrans2 model using the English
transcriptions and their corresponding translations
in the Indic language. Although the Whisper model
without fine-tuning can achieve reasonable perfor-
mance, we found the format mismatch problem
as presented in Figure 2. It is a type of domain
mismatch between spoken language and written
language, where there is less punctuation in the
spoken language. However, this is prevalent in the
training and development datasets, so we do not
bother processing this further.

Transcription And its only 30 years old

Whisper output

w/o fine-tuning and it's only 30 years old.

Whisper output .
w/ fine-tuning And its only 30 years old

Figure 2: We fine-tune Whisper to address the format
mismatch problem.

During inference, the English transcription gen-
erated by the fine-tuned Whisper model is input
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into the fine-tuned IndicTrans2 model, which then
produces the final output in the Indic language.

3.2 End-to-end System

The training and inference phases of the E2E Whis-
per model are shown in Figure 1b. During train-
ing, we first generate pseudo translation data using
the IndicTrans2 model. We then use this pseudo
data, instead of the gold transcription, to fine-tune
the Whisper model. The motivation is to distill
knowledge from a stronger translation model. The
outputs of IndicTrans2, which are in a more con-
sistent format, are easier for the Whisper model
to learn than the human-annotated transcriptions.
As shown in stage 1, we fine-tune the IndicTrans2
using English transcriptions and their translations
in the Indic language. In stage 2, we generate
pseudo translations for all English transcriptions
in the dataset. Finally, we fine-tune the Whisper
model using English audio data and these pseudo
translations. During inference, we solely rely on
the fine-tuned Whisper model to perform E2E ST.

4 Experiments

4.1 Settings

All our models are multilingual, achieved by com-
bining all data into a single collection and using
language indicator tokens to indicate the target lan-
guage, as is the common practice. For the ASR
module, we used the medium architecture of Whis-
per (Radford et al., 2023), which showed higher
performance compared to the tiny, base, and small
architectures. During fine-tuning, we set the learn-
ing rate to 1e—>5, batch size to 16, and epoch size to
50. We allocated 10% of the total training steps for
warmup and implemented early stopping if there
was no improvement in loss after 1, 000 steps, with
evaluations every 100 steps on the development set.
For the MT part of our experiments, we used the In-
dicTrans2 (Gala et al., 2023) model. We fine-tuned
using the scripts provided in the IndicTrans2 li-
brary! including data preparation® and fine-tuning>.
Using our fine-tuned IndicTrans2 model, we per-
formed standard beam search decoding with a beam
of size 5.

1https: //github.com/AI4Bharat/IndicTrans2

Zhttps://github.com/Al4Bharat/IndicTrans2/
blob/main/prepare_data_joint_finetuning.sh

3https: //github.com/AI4Bharat/IndicTrans2/
blob/main/finetune.sh
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4.2 Main Results: Submitted Systems

Table 2 presents the results of our cascaded and
E2E systems on the test set.

Direction Cascaded E2E A
English— Bengali 52.6 10.8 41.8
English— Hindi 60.5 33.0 275
English— Tamil 399 135 264
Average 51.0 19.1 319

Table 2: BLEU scores on the test set.

Direction Cascaded E2E
English— Bengali 50.0 7.9
English— Hindi 64.1 32.1
English— Tamil 41.7 12.1

Table 3: BLEU scores on the first 500 sentences from
the dev set.

The scores are provided by the organizers, who
do not provide a comparison with other participants
at the time of writing this paper. Nevertheless, it
is evident that cascaded systems outperform E2E
systems by a wide margin. This indicates that data
scarcity is a major problem limiting E2E system
development for English to Indic language speech
translation. We also provide scores for the same
languages on 500 development set samples in Ta-
ble 3, where we can see that there are similar trends
as observed for the test set.

4.3 TImpact of Distillation on E2E Systems

In Table 4, we present the differences between an
E2E system trained on original translations and
those trained on distilled translations. It is clear
that distillation, performed by translating English
transcriptions into Indic language sentences used as
references for E2E systems, leads to a reasonable
improvement of 0.7 BLEU.

5 Conclusion

This paper presented NICT’s submission to the
IWSLT 2024 English to Indic speech-to-text trans-
lation task. We took advantage of the advancements
in ASR and MT where we combined the Whisper
model and IndicTrans2 model in our cascaded sys-
tem. In our end-to-end system, we further utilize
the pseudo translation data technique, also known
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Direction E2E-Dist E2E-Orig A
English— Bengali 7.9 7.6 0.3
English— Hindi 32.1 312 09
English— Tamil 12.1 11.2 09
Average 17.4 16.7 0.7

Table 4: BLEU scores comparison of E2E systems on
the first 500 sentences from the dev set. E2E-Dist rep-
resents an E2E system trained on translated (distilled)
Indic languages references, whereas E2E-Orig refers to
when original references are used.

as knowledge distillation, to empower the Whis-
per model. Future work will focus on combining
Whisper with IndicTrans2 jointly to train an even
stronger speech translation system.
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Abstract

Large language models (LLMs) are trained on
text-only data that go far beyond the languages
with paired speech and text data. At the same
time, Dual Encoder (DE) based retrieval sys-
tems project queries and documents into the
same embedding space and have demonstrated
their success in retrieval and bi-text mining.
To match speech and text in many languages,
we propose using LLMs to initialize multi-
modal DE retrieval systems. Unlike traditional
methods, our system doesn’t require speech
data during LLM pre-training and can exploit
LLM’s multilingual text understanding capa-
bilities to match speech and text in languages
unseen during retrieval training. Our multi-
modal LLM-based retrieval system is capable
of matching speech and text in 102 languages
despite only training on 21 languages. Our sys-
tem outperforms previous systems trained ex-
plicitly on all 102 languages. We achieve a
10% absolute improvement in Recall@1 aver-
aged across these languages. Additionally, our
model demonstrates cross-lingual speech and
text matching, which is further enhanced by
readily available machine translation data.

1 Introduction

LLMs have demonstrated their effectiveness in
modelling textual sequences to tackle various
downstream tasks (Brown et al., 2020; Hoffmann
et al., 2022; Chowdhery et al., 2023). This effec-
tiveness has led to the development of powerful
LLMs capable of modelling text in a wide range
of languages. The abundance of textual data in dif-
ferent languages across the internet has fueled the
progress of multi-lingual models (Johnson et al.,
2017; Xue et al., 2020; Siddhant et al., 2022). On
the other hand, speech technologies are prevalent
in smartphones and personal assistants, but their
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Figure 1: Our dual encoder architecture and train-
ing pipeline. We expand the embedding layer of our
backbone LLM to support the additional discretized
speech tokens, that are extracted from a pre-trained
speech encoder. At the same time, we tokenize the
corresponding transcripts with the LLM tokenizer. We
encode the speech tokens and transcripts separately and
train the model with a contrastive loss over the dot prod-
uct between speech and transcript embeddings.

language availability is relatively limited compared
to the languages that LLMs support (Baevski et al.,
2020; Radford et al., 2023).

Various efforts have explored solutions to the
speech-text data scarcity problem (Duquenne et al.,
2021; Ardila et al., 2019; Wang et al., 2020). Works
such as SpeechMatrix (Duquenne et al., 2022) use
separate speech and text encoders to mine seman-
tically similar utterances that are neighbors in an
embedding space. However, these approaches are
limiting because they require speech and text en-
coders that have aligned representation spaces.

We posit that we can retrieve speech and text
utterances by aligning both modalities within the
embedding space built from a single pre-trained
LLM. We take inspiration from previous works
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that use pre-trained LLMs to perform automatic
speech recognition (ASR) and automatic speech
translation (AST) (Rubenstein et al., 2023; Wang
et al., 2023; Hassid et al., 2023; Gong et al., 2023;
Peng et al., 2023). Our intuition is that we can per-
form the speech and text alignment leveraging the
capabilities of text-only LL.Ms without requiring
two separate models.

In this paper, we propose converting LLMs into
speech and text DE retrieval systems without requir-
ing speech pre-training and outperform previous
methods with significantly less data. By discretiz-
ing speech into acoustic units (Hsu et al., 2021),
we extend our LLMs embedding layer and treat
the acoustic units as ordinary text tokens. Con-
sequently, we transform our LLM into a retrieval
system via a contrastive loss allowing us to match
speech and text utterances in various languages.
Our contributions are the following:

1. We build a speech-to-text symmetric DE from
a pre-trained LLM. We show that our retrieval
system is effective matching speech and text
in 102 languages of FLEURS (Conneau et al.,
2023) despite only training on 21 languages.

2. We show that our model exhibits cross-lingual
speech and text matching without training on
this type of data. At the same time, we find
that cross-lingual speech and text matching is
further improved by training on readily avail-
able machine translation data.

2 Method

We train a transformer-based DE model that en-
codes speech and text given a dataset D
{(zi,v:)}, where z; is a speech utterance and y;
is its transcription. We denote the speech and text
embeddings as x; = E(x;) and y; = E(y;), re-
spectively, where FE is a transformer-based DE that
encodes speech and text.

2.1 Generating Audio Tokens

We convert raw speech into discrete tokens using
the process in Lakhotia et al. (2021); Borsos et al.
(2023). The process converts a speech query x; into
an embedding using a pre-trained speech encoder.
The output embedding is then discretized into a set
of tokens using k-means clustering. We refer to
the resulting tokens as audio tokens. We use the
2B variant of the Universal Speech Model (USM)
encoder (Zhang et al., 2023) as the speech encoder
and take the middle layer as the embedding for x;.
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Additionally, we generate audio tokens at 25Hz
using k-means clustering . We will refer to this as
our audio token vocabulary.

2.2 Supporting Text and Audio Tokens

To support text and audio tokens in our LLM, we
follow the formulation of Rubenstein et al. (2023).
We extend the embedding layer of a transformer
decoder by a tokens, where a represents the size
of our audio token vocabulary. This modification
leads to an embedding layer with size (t + a) x m,
where ¢ is the number of tokens in the text vocab-
ulary and m is the dimensions of the embedding
vectors. In our implementation, the first ¢ tokens
represent text and the remaining a tokens are re-
served for audio. We initialize the embeddings
layer from scratch when training our model.

3 Data and Tasks

Appendix A.3 details our training and evaluation
datasets along with the number of languages in
each dataset, the split we used, and the size of each
dataset. We focus on the following retrieval tasks:

Speech-to-Text Retrieval (S2T) involves re-
trieving the corresponding transcription from a
database given a speech sample. In S2T, we train
on CoVoST-2 (Wang et al., 2021) speech utterances
and their transcriptions. CoVoST-2 is a large multi-
lingual speech corpus derived from Wikipedia ex-
panding over 21 languages and provides translation
to and from English. We use FLEURS (Conneau
et al., 2023) to evaluate S2T performance on 102
languages. FLEURS is an n-way parallel dataset
containing speech utterances from FLoRES-101
(Goyal et al., 2021) human translations. To eval-
uate S2T, we report recall at 1 (RQ1) rates for
retrieving the correct transcription for every speech
sample and word error rate (WER).

Speech-to-Text Translation Retrieval (S2TT)
attempts to retrieve the corresponding text transla-
tion of a speech sample. We use S2TT to measure
the cross-lingual capabilities of our multi-modal
DE retrieval system. We evaluate this capability
zero-shot on X — En S2TT data of FLUERS and
explore if we can further improve this capability by
training on readily-available machine translation
data from WikiMatrix (Schwenk et al., 2019). We
pick French, German, Dutch, and Polish to English

"We use the USM-v2 audio tokenizer from Rubenstein
et al. (2023)



R@I1 WER]
mSLAM DE (Conneau et al., 2023) 76.9 14.6
PalLM 2 DE (Proposed Model) 86.7 13.4

Table 1: PaLM 2 DE results for R@/ and WER com-
pared against the mSLAM DE on 102 languages from
FLEURS for speech-to-text retrieval (S2T).

that are common across WikiMatrix and FLEURS
and further discuss the amount of machine trans-
lation data used in Appendix A.3. For S2TT, we
report 4-gram corpusBLEU (Post, 2018).

4 Model

Figure 1 shows an illustration of our model. We
initialize our dual encoder from PaLM 2 XXS
(Google et al., 2023) and append a linear projection
layer after pooling the outputs along the sequence
length dimension. The embedding and linear pro-
jection layers are initialized randomly. After initial-
izing our model from PaLLM 2, we use a contrastive
loss (Hadsell et al., 2006). Appendix A.1 includes
more details on our training setup. We will refer to
our proposed model as PalLM 2 DE.

5 Experiments

We train our DE model to perform S2T, where the
task is to retrieve the corresponding transcription
given a speech sample. We train on the 21 lan-
guages from CoVoST-2 and evaluate our model us-
ing the S2T portion of FLEURS in 102 languages.

5.1 Speech-to-Text Retrieval

Table 1 shows the average R@ ] and WER for S2T
for 102 languages from FLEURS. We compare
against the mSLAM DE model from Conneau et al.
(2023), a model trained on 426k hours of S2T data
in 51 languages and fine-tuned on FLEURS train-
ing data. Our model significantly outperforms the
mSLAM DE baseline in R@ ] and W E R metrics
despite being trained with only 1/10 of the data
and having been initialized from a text-only LLM.
More importantly, our model was only trained on
the 21 languages in CoVoST-2 and never fine-tuned
on the FLEURS training data.

5.1.1 Seen-Unseen Breakdown

In Figure 2 we break down the R@ [ scores based
on seen and unseen languages during training. We
find that our model performs best on the 20 lan-
guages that are within the training and evaluation
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Figure 2: R@] transcription retrieval for seen and un-
seen languages in the training set.

R@I 7T
Language Group (#) mSLAM DE PalLM 2 DE £ Wins
(Conneau et al., 2023)  (Proposed Model)
Afro-Asiatic (7) 73.67 84.22 5
Atlantic-Congo (14) 86.77 70.41 1
Austro-Asiatic (2) 47.90 34.42 0
Austronesian (6) 75.50 90.73 6
Dravidian (4) 65.70 92.06 4
Indo-European (51) 84.62 95.32 49
Japonic (1) 5.80 91.54 1
Kartvelian (1) 70.50 82.92 1
Koreanic (1) 5.20 52.36 1
Kra-Dai (2) 3.20 22.09 1
Mongolic (1) 70.70 99.89 1
Nilo-Saharan (1) 91.00 92.52 1
Sino-Tibetan (3) 3.40 90.66 3
Turkic (5) 81.28 92.86 4
Uralic (3) 91.40 99.04 3
All (102) 76.90 86.72 ‘ 81

Table 2: FLEURS S2T (R@]) performance by lan-
guage groups. Bold represents better performance.
Numbers in parenthesis are the number of languages
within the language group. # Wins is the number of
languages where PalLM 2 DE outperforms mSLAM in
the language group.

data, but still perform well on the remaining 82 un-
seen languages. We hypothesize this is due to the
vast textual multilingual data our backbone LLM
has seen during pre-training.

5.1.2 Language Group Breakdown

Table 2 shows the R@ ] language group breakdown
for S2T on FLEURS. We find that although we only
trained on 21 languages, our model significantly
outperforms mSLAM DE in 13 of the 15 language
groups. These results are consistent with the exper-
iments in Hassid et al. (2023) which explore the
effect of initializing speech language models from
pre-trained LLMs.

5.2 Evaluating on Cross-Modal and
Cross-Lingual Tasks

We evaluate on S2TT to gauge the cross-modal and
cross-lingual capabilities of our model. We show
we can improve S2TT by simply combining S2T
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Figure 3: BLEU scores for FLEURS zero-shot S2TT
when training on Transcripts or Transcripts +
Translations for PaLM 2 DE. Combining transcripts
and translation data improves zero-shot S2TT retrieval.

and translation data without S2TT training data.

5.2.1 Zero-Shot S2TT

Given the multi-lingual capabilities of our back-
bone language model, we explore if these capabil-
ities are transferred after training our model con-
trastively on the S2T task. We hypothesize that our
model should showcase cross-lingual and cross-
modal capabilities due to the cross-modal training
task and the cross-lingual capabilities of the back-
bone LLM. We evaluate S2TT in a zero-shot setting
to assess our model’s performance retrieving En-
glish translations given a speech sample in another
language. Using the FLEURS S2TT portion, we
evaluate S2TT X — En in 4 languages: German,
Polish, French, and Dutch.

Figure 3 shows BLEU S2TT performance us-
ing S2T CoVoST-2 in 21 languages. We call this
setup Transcripts in Figure 3. Our results demon-
strate that even when only training our model on
speech and transcriptions, we can achieve some
zero-shot S2TT performance and We find that
S2TT BLEU scores are considerably higher for
languages present S2T training data. For exam-
ple, Polish was not in the S2T training therefore its
BLEU scores are the lowest.

5.2.2 TImproving S2TT with MT Data

To further improve our model’s cross-lingual per-
formance, we add readily available translation data
from Schwenk et al. (2019) to improve S2TT. For
each batch, we combine 25% translation and 75%
S2T data. Figure 3 shows comparison of only
training on S2T (Transcripts) and combining
S2T and translation data ( Transcriptions +
Translations). We find that combining S2T and
translation data significantly improves the S2TT
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BLEU scores in all 4 languages without training
on S2TT data. This finding demonstrates that
we can improve our models cross-lingual perfor-
mance with highly accessible translation data with-
out needing scarce and often expensive speech-to-
text translation training data.

6 Related Work

The success of pre-trained LLMs have motivated
the application of these models in different modal-
ities. Lakhotia et al. (2021) transformed speech
into pseudo-text units to introduce the task of gen-
erative spoken language modeling. Borsos et al.
(2023) introduced a framework to generate audio
with long-term consistency. Consequently, Hassid
et al. (2023) showed that SpeechL.Ms benefit from
being initialized from pre-train LLMs while Ruben-
stein et al. (2023) demonstrated that pre-trained
LLMs can be adapted to various tasks that required
text and speech understanding.

On the other hand, several works aim to build
joint speech and text representations (Khurana
et al., 2022; Gow-Smith et al., 2023). Chung
et al. (2021) introduced w2v-bert which com-
bines masked language modeling and contrastive
learning to create speech representations. Bapna
et al. (2022) jointly pre-trains on speech and text
from unsupervised speech and text data. Recently,
Duquenne et al. (2023) employed separate speech
and text encoders to generate embeddings in over
200 languages. Nevertheless, there is still a lack of
understanding of whether joint speech and text rep-
resentations can be built from a single encoder. We
fill this gap by using pre-trained LLMs to jointly
train on speech samples and their transcriptions to
show that our approach is capable of speech-text
matching in 102 languages.

7 Conclusion

We present an effective approach to developing
a speech-to-text DE from a text-only LLM. Our
findings suggest that by using a text-only LLM
as a backbone model, we can drastically outper-
form previous approaches using considerably less
speech-to-text training data. Additionally, we find
that we can improve zero-shot speech translation
by simply combining readily available translation
and S2T data. We showcase our findings in 102
languages for S2T and 4 languages in S2TT; open-
ing up the possibility of using speech-to-text DE’s
in different cross-model and cross-lingual settings.
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A.1 Training Setup

Ni et al. (2022) showed that applying a contrastive
loss to sentence encoders leads to improved re-
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Input Type ‘ Before Tokenization ‘ Input Ids
Speech [English Speech] 50,210,245, ... | 240, 503, 32050, 32210, 32245, ...
Transcription [English Text] Hello World . 59, 294, 691, ...

Table 3: Example of the speech and transcript inputs given to our model. The speech input is composed of a prefix
containing the language and the input modality. Text will be tokenized using the LLMs tokenizer and an offset
will be applied to the audio token to match the tokens that were reserved within the audio token vocabulary. Bold
numbers represent the audio tokens before tokenization and after the offset is applied to the audio tokens.

initializing our model from the PaLM 2, we use a
contrastive loss (Hadsell et al., 2006).

N

D

=1

eSim(i,yi)

Zé\le eSim(®,y;)

1

L= N ()

Using equation 1, our multi-modal DE will learn
from paired speech and text embeddings (x;, y;),
where y; is considered as a positive example to x;
while all other examples where ¢ # j are negative
ones. The model should learn to bring the positive
transcriptions closer to the corresponding speech
sample, while pushing away all the other negative
transcriptions. In our training, the positive and neg-
ative distinction is done within the training batch.
Hence, we apply an in-batch softmax as part of
our loss computation. Lastly, sim() is a similarity
function formulated as the dot product between the
speech sample and the transcription embeddings.

To train our model, we use the sum of a con-
trastive loss with a spreadout loss (Zhang et al.,
2017) of both the speech and text embeddings. We
calculate the contrastive loss (Yang et al., 2019)
in a bidirectional way, by adding the loss in the
speech-to-text and the text-to-speech direction.

We use the Adam (Kingma and Ba, 2014) opti-
mizer with a learning rate of 1.0 x 10~ with linear
ramp cosine decay scheduler with 2.5k warm up
steps. We use a dropout probability of 0.1 and train
for 100k steps with a batch size of 1024.

A.2 Expressing Tasks

For training and inference, we found that using
a prefix improves speech-to-text retrieval perfor-
mance. Therefore, we pre-pend a prefix containing
the language and modality shown in in Table 3. In
the case of a speech utterance, the prefix will be tok-
enized with the LLMs tokenizer and the remaining
will be converted to audio tokens.

A.3 Data

Table 4 shows the training and evaluation datasets
we used through out our experiments. We used
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Dataset Type Task  Langs. Split Size
CoVoST-2  Speech S2T 21 Train 900 h.
FLEURS Speech  S2T 102 Test 283 h.
FLEURS Speech S2TT 102 Test 283 h.
Wikimatrix — Text MT 4 Train 9M sents.

Table 4: Training and evaluation datasets. CoVoST-2
is used for speech-to-text retrieval (S2T), Wikimatrix
is for machine translation retrieval (MT), and FLEURS
is for evaluating X — En speech-to-text translation re-
trieval (S2TT) and also speech-to-text retrieval (S2T).

# Sents. X — En

German (de) 6.2M
Polish (pl) 2.1M
French (fr) 705k
Dutch (nl) 570k

Table 5: Number of parallel sentences used in the ma-
chine translation mixture from Wikimatrix corpus.

21 languages CoVoST-2 to train our model on
speech-to-text retrieval which amounts to approxi-
mately 900 hours of speech. To evaluate our mod-
els speech-to-text retrieval capabilities, we evalu-
ate on FLEURS speech-to-text test split on 102
languages. We use FLEURS speech-to-text trans-
lation test split to evaluate our models abilities on
tasks that require cross-lingual and cross-modal
knowledge. We evaluate of 4 different languages:
German, Polish, French, and Dutch.

We find that combining speech-to-text retrieval
data and readily available translation data improves
our models cross-lingual and cross-modal abilities.
Table 5 shows the number of parallel sentences we
used during training from X — En.

A.4 Performance Breakdown By Language

Table 6 includes the PaLM 2 DE R@] for each
language found in FLEURS. We also include the
language group from Table 2 and the number of
examples found within each S2T test set.



Idx ‘ Language Name Code Family # Examples ‘ R@]

| | mSLAM  PaLM 2 DE
1 Afrikaans af Indo-European 414 90.1 99.3
2 Amharic am Afro-Asiatic 516 34.1 69.6
3 Arabic ar Afro-Asiatic 427 82.7 98.8
4 Armenian hy Indo-European 929 50.3 89.7
5 Assamese as Indo-European 980 81.5 87.4
6 Asturian ast Indo-European 946 90.1 100.0
7 Azerbaijani az Turkic 918 83.0 98.4
8 Belarusian be Indo-European 955 90.2 97.2
9 Bengali bn Indo-European 911 83.5 84.6
10 | Bosnian bs Indo-European 923 95.5 99.8
11 | Bulgarian bg Indo-European 657 95.1 100.0
12 | Burmese my Sino-Tibetan 870 24 19.3
13 | Cantonese yue Sino-Tibetan 819 24 83.6
14 | Catalan ca Indo-European 938 93.2 100.0
15 | Cebuano ceb Austronesian 532 79.8 94.9
16 | Croatian hr Indo-European 914 98.0 99.8
17 | Czech cs Indo-European 720 98.1 99.6
18 | Danish da Indo-European 929 94.1 99.9
19 | Dutch nl Indo-European 364 95.3 100.0
20 | English en Indo-European 647 96.0 99.1
21 | Estonian et Uralic 892 95.6 99.9
22 | Filipino fil Austronesian 928 73.1 89.1
23 | Finnish fi Uralic 916 93.0 98.9
24 | French fr Indo-European 675 90.7 100.0
25 | Fula ff Atlantic-Congo 649 81.4 81.7
26 | Galician gl Indo-European 927 90.9 100.0
27 | Ganda lg Atlantic-Congo 705 90.7 75.7
28 | Georgian ka Kartvelian 978 70.5 82.9
29 | German de Indo-European 841 91.2 100.0
30 | Greek el Indo-European 649 81.2 73.2
31 | Gujarati gu Indo-European 1000 77.0 95.9
32 | Hausa ha Afro-Asiatic 557 84.5 83.1
33 | Hebrew he Afro-Asiatic 792 64.0 76.0
34 | Hindi hi Indo-European 417 78.0 83.7
35 | Hungarian hu Uralic 902 85.3 98.3
36 | Icelandic is Indo-European 46 71.7 97.8
37 | Igbo ig Atlantic-Congo 869 85.8 64.9
38 | Indonesian id Austronesian 684 79.6 99.4
39 | Irish ga Indo-European 829 55.1 69.5
40 | Italian it Indo-European 857 93.5 100.0
41 | Japanese ja Japonic 650 5.8 91.5
42 | Javanese Jv Austronesian 722 78.0 97.0
43 | Kabuverdianu kea Indo-European 859 95.4 99.9
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Idx ‘ Language Name Code Family # Examples ‘ R@]

| | mSLAM  PaLM 2 DE
44 | Kamba kam  Atlantic-Congo 798 89.7 81.5
45 | Kannada kn Dravidian 831 69.0 88.8
46 | Kazakh kk Turkic 841 88.7 83.1
47 | Khmer km Austro-Asiatic 765 42.1 20.3
48 | Korean ko Koreanic 382 5.2 524
49 | Kyrgyz ky Turkic 974 84.3 88.6
50 | Lao lo Kra-Dai 399 37.0 233
51 | Latvian lv Indo-European 848 97.4 100.0
52 | Lingala In Atlantic-Congo 440 91.2 76.4
53 | Lithuanian It Indo-European 985 96.8 98.2
54 | Luo luo Nilo-Saharan 254 91.0 92.5
55 | Luxembourgish Ib Indo-European 929 80.5 74.6
56 | Macedonian mk Indo-European 967 96.1 98.8
57 | Malay ms Austronesian 749 77.7 98.7
58 | Malayalam ml Dravidian 944 62.3 88.3
59 | Maltese mt Afro-Asiatic 918 92.7 76.0
60 | Mandarin cmn  Sino-Tibetan 944 54 100.0
61 | Maori mi Austronesian 890 64.7 65.3
62 | Marathi mr Indo-European 1005 69.8 82.4
63 | Mongolian mn Mongolic 949 70.7 99.9
64 | Nepali ne Indo-European 724 66.1 89.6
65 | Northern-Sotho  nso Atlantic-Congo 738 80.8 70.3
66 | Norwegian nb Indo-European 357 91.9 100.0
67 | Nyanja ny Atlantic-Congo 745 85.5 63.6
68 | Occitan oc Indo-European 968 77.4 99.4
69 | Oriya or Indo-European 875 15.7 95.1
70 | Oromo om Afro-Asiatic 41 92.7 100.0
71 | Pashto ps Indo-European 510 84.8 91.0
72 | Persian fa Indo-European 858 85.4 100.0
73 | Polish pl Indo-European 758 95.8 99.3
74 | Portuguese pt Indo-European 914 91.9 99.9
75 | Punjabi pa Indo-European 574 70.6 96.7
76 | Romanian ro Indo-European 882 92.0 100.0
77 | Russian ru Indo-European 774 93.2 100.0
78 | Serbian sr Indo-European 700 97.7 99.1
79 | Shona sn Atlantic-Congo 920 84.1 53.9
80 | Sindhi sd Indo-European 977 71.8 85.4
81 | Slovak sk Indo-European 791 97.6 99.5
82 | Slovenian sl Indo-European 834 97.4 100.0
83 | Somali SO Afro-Asiatic 1007 68.7 86.0
84 | Sorani-Kurdish  ckb Indo-European 918 80.8 96.7
85 | Spanish es Indo-European 907 69.6 100.0
86 | Swahili SW Atlantic-Congo 487 91.2 86.2
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Idx ‘ Language Name Code Family # Examples ‘ R@]
| | mSLAM  PaLM 2 DE

87 | Swedish sV Indo-European 758 94.2 100.0
88 | Tajik tg Indo-European 590 76.3 92.7
89 | Tamil ta Dravidian 582 58.0 98.1
90 | Telugu te Dravidian 471 73.5 93.0
91 | Thai th Kra-Dai 1011 3.2 20.9
92 | Turkish tr Turkic 742 84.5 100.0
93 | Ukrainian uk Indo-European 750 93.5 99.3
94 | Umbundu umb  Atlantic-Congo 264 77.3 62.1
95 | Urdu ur Indo-European 299 70.6 91.3
96 | Uzbek uz Turkic 861 67.6 94.2
97 | Vietnamese vi Austro-Asiatic 850 64.5 48.6
98 | Welsh cy Indo-European 1002 82.3 96.1
99 | Wolof WO Atlantic-Congo 351 90.6 87.5
100 | Xhosa xh Atlantic-Congo 1034 90.9 30.2
101 | Yoruba yo Atlantic-Congo 816 92.4 84.6
102 | Zulu zu Atlantic-Congo 822 85.5 67.2

| All (102) 76.9 86.7

Table 6: Language name, code, family, and number of examples for each test set found in FLEURS. We report
R@ [ for mSLAM and PalLM 2 DE.
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Abstract

Large Language Models (LLMs) have shown
remarkable performance in Natural Language
Processing tasks, including Machine Transla-
tion (MT). In this work, we propose a novel MT
pipeline that integrates emotion information ex-
tracted from a Speech Emotion Recognition
(SER) model into LLMs to enhance translation
quality. We first fine-tune five existing LLMs
on the Libri-trans dataset and select the most
performant model. Subsequently, we augment
LLM prompts with different dimensional emo-
tions and train the selected LLM under these
different configurations. Our experiments re-
veal that integrating emotion information, es-
pecially arousal, into LLM prompts leads to
notable improvements in translation quality.

1 Introduction

Large Language Models (LLMs) are transformer-
based (Vaswani et al., 2017) deep learning models
designed to understand and generate natural lan-
guage text by predicting the probability of the next
token in a sequence. LLMs excel across various
Natural Language Processing (NLP) tasks, such as
information retrieval (Zhu et al., 2023b), instruc-
tion following (Ouyang et al., 2022), or engaging
in chatbot discussions (OpenAl, 2022).

Among NLP tasks, LLMs have shown great ca-
pacities in Machine Translation (MT) (Zhu et al.,
2023a), the task of translating a text from one lan-
guage to another. Previous research has enhanced
LLM performance in MT through various strate-
gies, including optimized prompting techniques
(Zhang et al., 2023), in-context learning features
(Brown et al., 2020) to improve translation quality
over time (Moslem et al., 2023a,b), and a two-stage
fine-tuning method composed of a first fine-tuning
on monolingual data to learn general linguistic
knowledge followed by a second fine-tuning on
parallel data (Xu et al., 2023) that establishes the
current state-of-the-art method in MT.
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Apart from LLMs, previous works in MT have
demonstrated the possibility of controlling the
translation by adding extra information to the
model that is not explicitly specified in the source
sentence to be translated, and that can influence
the translation. Existing works in that direction fo-
cused on the control of politeness (Sennrich et al.,
2019), gender (Vanmassenhove et al., 2018; Gaido
et al., 2023), or emotion (Brazier and Rouas, 2024)
of the translation and showed that this extra infor-
mation helps improve translation quality.

In this work, we propose to improve translation
performances of an LLM-based model by adding
emotion as extra information in the prompt of the
model to condition the translation. This work relies
on the fact that words can be classified into emo-
tion categories, leading to affective word lists (Pen-
nebaker et al., 2001). Thus, conditioning the trans-
lation with a specific emotion would use a suitable
vocabulary in the translation. In Brazier and Rouas
(2024), authors showed that adding arousal infor-
mation, reflecting the level of stimulation (ranging
from calm to excited), extracted from the voice and
added at the start of each input text sentence, helps
improve translation performances. In the follow-
ing, we study the behavior of several LLMs for the
task of MT when emotion dimensions are added to
input prompts.

To address this problem, we first fine-tune sev-
eral existing LLMs for the task of English-to-
French text-to-text translation. Then, after se-
lecting the best model as baseline for our experi-
ments, we compute for each input sentence its emo-
tional dimensions with the help of a state-of-the-art
Speech Emotion Recognition (SER) model applied
to audio recordings. Finally, we compare trans-
lation performance with and without the addition
of each emotional dimension as extra information
added to each input prompt. We show that emo-
tion improves translation (BLEU and COMET),
especially in the case of arousal.
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2 Related works

In this work, we aim at combining an LLM-based
MT model with emotion information to improve
translation performances. In the following, we first
describe a close work that performs this combi-
nation without the use of an LLM. Then, we list
several existing LLMs that can be used as a base-
line for our MT task.

2.1 Machine Translation with Emotion

To our knowledge, the only work that combines an
MT model with emotion information is described
in Brazier and Rouas (2024). In this study, the
authors utilize a state-of-the-art Speech Emotion
Recognition (SER) model (Wagner et al., 2023) to
automatically estimate dimensional emotion val-
ues, including arousal, dominance, and valence, for
each audio recording associated with text sentence.
These values are then transformed into unique emo-
tion tokens, either positive or negative, which are
added at the beginning of tokenized input text sen-
tences. The authors report an increase in translation
BLEU score, especially when adding arousal to-
kens at the start of input sentences.

The MT model used for their experiments is
a transformer-based encoder-decoder architecture,
comprising 6 layers for the encoder, 6 layers for
the decoder, and 4 attention heads in each self-
attention layer. The model is trained on the Libri-
trans dataset (Kocabiyikoglu et al., 2018), which in-
cludes triplets of English recordings, English texts,
and French texts, totaling 235 hours of data (230h
for train, 2h for dev, and 3.5h for test). The model
performs English-to-French translation.

In this work, we propose to use the same trans-
lation pipeline, but instead of using a specific MT
model, we replace it with a fine-tuned LLM. Since
LLMs have more trainable parameters, we antici-
pate improved translation performances. However,
our objective is to observe how LLMs behave when
augmented with emotion information in the input
prompt.

2.2 LLM selection for MT

Recent advances in Large Language Modeling have
significantly expanded the capabilities of LLMs
across various tasks, such as reasoning, coding, or
mathematics. Among the numerous existing LLMs
(Chiang et al., 2024), the best-performing models
are GPT-4 (OpenAl, 2023), LLaMA 3 (Al@Meta,
2024), Gemini 1.5 (Team, 2024), or Claude 3 (An-

thropic, 2024).

For the task of MT, we restrict our LLM se-
lection to models that are open-source, promising
(high rank in the LLM arena!, or already fine-tuned
to the MT task), and that only contain 7 billion (7B)
of parameters. We select 5 different models that
are described in the following.

The first selected LLM is Mistral-7B-v0.1%, an
open-source model (Jiang et al., 2023) which ranks
among the best 7B-parameter models.

As the second model, we select Mistral-7B-
Instruct-v0.23. The model is similar to the previous
model but has been fine-tuned to follow instruc-
tions.

Our third selected model is TowerBase-7B-v0.1*.
This model (Alves et al., 2024) is based on LLaMA
2 (Al@Meta, 2023) and its training has been con-
tinued on multilingual data (including English and
French monolingual data, as well as bilingual data).

Similarly to Mistral, we select TowerInstruct-
7B-v0.2> as our fourth model. This model is a
variant of the previous one that has been fine-tuned
to follow instructions including translations.

Finally, as our fifth model, we select the SOTA
MT model ALMA-7B-R®, which is based on
LLaMA 2 (Al@Meta, 2023), and fine-tuned on
monolingual and parallel data. However, the data
used for fine-tuning does not include French.

3 Experiments and results

In this section, we describe our experiments for the
task of English-to-French text-to-text translation.
We conduct two successive experiments. Firstly,
we fine-tune five existing LLMs on the Libri-trans
dataset (Kocabiyikoglu et al., 2018) and consider
the best model as a foundation for our second ex-
periment. Secondly, we fine-tune the selected LLM
on the same task but under different configurations.
Henceforth, prompts used for translation include
each emotion dimension that is automatically esti-
mated from the SER model.

3.1 Fine-tuning LLMs on Libri-trans

To perform MT with LLMs, the task needs to be
converted into a language modeling problem with

"http://chat.1lmsys.org/?leaderboard
2http://huggingface.co/mistralai/Mistral-7B-vo. 1
3http://huggingface.co/mistralai/
Mistral-7B-Instruct-vo.2
*http://huggingface.co/Unbabel/TowerBase-7B-v@. 1
5http://huggingface.co/Unbabel/
TowerInstruct-7B-v0.2
Shttp://huggingface.co/haoranxu/ALMA-7B-R
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Model BLEU COMET
dev test dev test
Mistral 164 167 732 725
Mistrallnstruct  16.0 179 72.1 71.9
TowerBase 24.0 206 738 729
Towerlnstruct 64 6.1 355 355
ALMA 7.1 75 521 528

Table 1: BLEU and COMET scores of our five selected
LLMs on dev and test sets of Libri-trans.

the use of prompts. In this work, we perform zero-
shot prompting and follow two different templates.
The first template will be applied to Mistral-7B-
v0.1 and TowerBase-7B-v0.1:

English: <src txt> \n French: <tgt txt> (1)
where <src txt>and <tgt txt> refer to the En-
glish source sentence and the French target sen-
tence respectively.

The second template will be applied to mod-
els that follow instructions, namely Mistral-7B-
Instruct-v0.2, TowerlInstruct-7B-v0.2, and ALMA-
7B-R:

[INST] Translate from English to French: <src txt> [/INST] \n <tgt txt>
2

To fine-tune LLMs, we employ QLoRA (Hu
et al., 2022; Dettmers et al., 2023), a Parameter
Efficient Fine-Tuning method (Mangrulkar et al.,
2022) that allows training with significantly fewer
parameters. Additionally, we apply a 4-bit quanti-
zation to reduce memory usage while maintaining
16-bit precision during computation.

We provide two distinct metrics to evaluate our
MT models. The first metric is the BLEU score
computed using sacrebleu (Post, 2018). It reflects
the degree of lexical matches (number of common
n-grams) between the proposed translation and its
corresponding reference. The second metric is the
COMET score ’ (Rei et al., 2022). It is computed
from a trained model and reflects translation quality
between translation, reference, and also the source
sentence. According to the metric ranking pre-
sented in Freitag et al. (2022), we rely more on the
COMET score than on the BLEU score.

Table 1 showcases the results of our first experi-
ment. In this table, we report BLEU and COMET
scores of the five selected LLMs on both the dev
and test sets of the Libri-trans dataset.

"https://huggingface.co/Unbabel/wmt22-comet-da
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The table highlights three models, Mistral-7B-
v0.1, Mistral-7B-Instruct-v0.2, and TowerBase-7B-
v0.1, that attain high BLEU and COMET scores.
They obtain COMET scores ranging from 72.1 to
73.8 on the dev set and from 71.9 to 72.9 on the
test set. Additionally, their BLEU scores ranged
from 16.0 to 24.0 on the dev set and from 16.7 to
20.6 on the test set. While COMET scores are not
meant to be interpretable (but enable the compar-
ison between models), BLEU scores indicate, on
average, a translation that is more or less clear with
numerous grammatical errors. These low BLEU
scores are comparable to performances of previous
works on this dataset (Zhao et al., 2021; Brazier and
Rouas, 2024) and are mainly caused by the nature
of the data (audiobooks with literary vocabulary).

Also, it is worth noting that two models,
Towerlnstruct-7B-v0.2 and ALMA-7B-R, exhibit
poor performances in MT when fine-tuned on Libri-
trans. In the case of ALMA-7B-R, this can be ex-
plained by the fact that French is not among the
languages included in the data used to pre-train the
model. Thus, the model fails at predicting French
text.

As additional training information, all LLMs
have obtained their optimal state in a maximum of
5 epochs. This represents a training time of 3 hours
on a GPU NVIDIA A100 for each model. This
fast fine-tuning time is due to QLoRA and 4-bit
quantization strategies.

To summarize, the best machine translation per-
formances were achieved with the TowerBase-7B-
v0.1. This LLM serves as a baseline and foundation
model for the following experiment.

3.2 Fine-tuning LLMs with Emotion

The second experiment aims at observing the
behavior of our LLM-based TowerBase-7B-v0.1
model on the task of English-to-French Machine
Translation when emotion information is added to
the prompt before translation.

As a first step, we estimate the emotion of each
English recording present in the Libri-trans dataset.
Following the same methodology as Brazier and
Rouas (2024), we compute dimensional emotion
values for arousal, dominance, and valence with
the help of a trained SER model (Wagner et al.,
2023). Emotion values range between 0 and 1 and
are correctly balanced (medians between 0.4 and
0.6, see Brazier and Rouas (2024)).

As a second step, we create specific prompts that
include the emotion information in the text. For
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this purpose, we propose 3 different templates. The
first template adds emotion information before the
source sentence:

English <status> <emotion>: <src txt> \n French: <tgt txt>
3)

where status is replaced by either with or without
if the emotion value is higher or lower than 0.5
respectively, emotion is replaced by either arousal,
dominance, or valence, src txt represents the
English source sentence, and tgt txt represents
the French target translation.

The second template adds emotion information
before the target sentence:

English: <src txt> \n French <status> <emotion>: <tgt txt>
4)
The third template is inspired from Brazier and
Rouas (2024), where emotion information is added
as a discrete token at the start of the source sen-
tence:

English: [<emotion> <polarity>] <src txt> \n French: <tgt txt>

(&)
where polarity is replaced by either positive or
negative if the emotion value is higher or lower
than 0.5 respectively.

In this experiment, the TowerBase-7B-v0.l1
model is retrained from its initial state and not
from the training checkpoint obtained after the pre-
vious experiment. In the following, all models ob-
tain their best performances in less than 5 training
epochs.

Table 2 showcases the results of our second ex-
periment. It reports BLEU and COMET scores of
the selected TowerBase-7B-v0.1 model on the dev
and test sets of the Libri-trans dataset under differ-
ent configurations. The first line mentions the score
of the LLM obtained in the previous experiment
and serves as a baseline for the second experiment.
The other lines correspond to the model trained
with different emotions (arousal, dominance, or va-
lence), and with different prompts (the numbers 3,
4, and 5 refer to their equation number).

We first remark that, except in the case of dom-
inance5, all COMET scores improved, compared
to their baseline. This reflects a better translation
quality when adding emotion information to the
prompts. The best COMET scores are obtained
when arousal information is added to the prompt
using Equation 3. In this configuration, COMET
scores are increased by +1.1 and +1.4 for the dev
and test sets of Libri-trans respectively.

84

Model BLEU COMET
dev test dev test
TowerBase 240 206 738 729
+arousal3 22.1 21.8 749 743
+arousal4 256 24.1 748 739
+arousal5 193 19.2 742 734
+dominance3 19.9 194 744 735
+dominance4 189 209 749 740
+dominance5 16.5 20.1 734 73.0
+valence3 21.5 189 741 735
+valence4 18.3 21.2 74.6 739
+valence5 172 16.0 745 73.6

Table 2: BLEU and COMET scores of the TowerBase
model on dev and test sets of Libri-trans. First line:
baseline score. Other lines: score when trained with
emotion in the prompt.

Secondly, we observe that BLEU scores show
improvements only for specific models. The best
BLEU scores are obtained when arousal informa-
tion is added to the prompt using Equation 4. In
this configuration, BLEU scores increase by +1.6
and +3.5 for the dev and test sets of Libri-trans
respectively. However, due to the low ranking of
BLEU (Freitag et al., 2022), we do not conduct
further analysis based on this metric.

In summary, incorporating emotion information
into the translation process appears to enhance
translation quality. The highest scores are achieved
when utilizing the arousal dimension with Equa-
tion 3 or 4. This finding aligns with the results
reported in Brazier and Rouas (2024).

4 Conclusion

We proposed a new MT pipeline that combines
an LLM-based model and emotion information
extracted from a SER model to improve trans-
lation performances. We obtain the best perfor-
mances when the arousal value is added to the LLM
prompt.

As future work, we will apply our method
to other multilingual datasets including Must-C
(Di Gangi et al., 2019). Unlike the Libri-trans
dataset, which consists of literary text read by
speakers, Must-C encompasses various speech
types, such as TED talks, which can offer more
emotional variability and therefore further enhance
translation performance. We also plan to extend
our method to the speech-to-text task, also known
as Speech translation.
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Abstract

This paper reports the NYA’s submissions to
IWSLT 2024 Offline Speech Translation (ST)
task on the sub-tasks including English to Chi-
nese, Japanese, and German. In detail, we par-
ticipate in the unconstrained training track us-
ing the cascaded ST structure. For the auto-
matic speech recognition (ASR) model, we use
the Whisper large-v3 model. For the neural ma-
chine translation (NMT) model, the wider and
deeper Transformer is adapted as the backbone
model. Furthermore, we use data augmenta-
tion technologies to augment training data and
data filtering strategies to improve the quality
of training data. In addition, we explore many
MT technologies such as Back Translation, For-
ward Translation, R-Drop, and Domain Adapta-
tion. Moreover, our model is a one-to-many ST
system that utilizes flags for different tasks. Ex-
perimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, re-
spectively.

1

The Offline Speech Translation (ST) Task trans-
lates the source audio into target text. Currently,
there are two leading solutions for ST. The first
is the traditional cascade system (Matusov et al.,
2005a), which decouples the ST task into an auto-
matic speech recognition (ASR) and a neural ma-
chine translation (NMT) task. In the traditional cas-
cade system, when translating, the source speech
is recognized into source text, and then the NMT
model is used to translate the source text into target
text. However, it often leads to higher architectural
complexity and error propagation (Duong et al.,
2016), affecting subsequent NMT tasks. In order
to alleviate this problem, the end-to-end (E2E) ST
architecture (Bérard et al., 2016) is proposed. The
E2E ST combines ASR and NMT modeling to es-
tablish the map between the source audio and the
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target text.

For the E2E ST architecture, one disadvantage
is the lack of parallel training data. For the tradi-
tional cascade ST system, sufficient training can
obtain high-accuracy ASR and MT systems due
to the large ASR and MT datasets. Therefore, the
traditional cascade ST system generally achieves
better performance than the E2E ST. At the same
time, in the recent offline track of IWSLT evalua-
tion (Anastasopoulos et al., 2021, 2022; Agarwal
et al., 2023), we can see that the cascade ST system
is better than the E2E ST system. Thus, in this
work, we use the traditional cascaded ST scheme.

Specifically, in the ASR task, we directly adopt
the Whisper (Radford et al., 2023) large-v3 model,
which can achieve a strong comprehensive ASR
performance. We also explore sharding strategies,
such as Supervised Hybrid Audio Segmentation
(SHAS) (Tsiamas et al., 2022), to segment the
source audio for better ST results. In the MT task,
we use the Transformer architecture (Vaswani et al.,
2017) as the backbone model. To ensure the MT
model is fully trained, we meticulously collect a
large amount of parallel data and monolingual data
from various data sources. Furthermore, we delve
into many MT technologies such as Back Transla-
tion (Sennrich et al., 2016), Forward Translation,
R-Drop (Wu et al., 2021), Domain Adaptation, and
Ensemble (Ganaie et al., 2022). Moreover, we com-
pare the two solutions: one-to-one and one-to-many
ST, and we find that one-to-many is better.

Through the above explorations, our model fi-
nally achieves good ST performance. In detail,
experimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, respec-
tively.

The rest of this paper is organized as follows.
Section 2 describes the datasets and data pre-
processing. Section 3 describes our speech transla-
tion system, which includes ASR and MT models.
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Corpus En2Zh En2Ja En2De
CoVoST (Wang et al., 2020) 171K 191K 220K
MuST-C v3 (Cattoni et al., 2021) 296K 251K 238K
NewsCommentary (Tiedemann, 2012) 400K - 345K
OpenSubtitles (Lison and Tiedemann, 2016)  4.9M 832K 12M
Tatoeba (Tiedemann, 2012) - 193K 302K
GigaST (Ye et al., 2023) 6.2M - 6.3M
JParaCrawl (Morishita et al., 2020) - 6.4M -
Total 12M 82M  19.5M

Table 1: Data statistics on MT datasets.

Section 4 reports the experimental results. Finally,
we conclude in Section 5.

2 Dataset
2.1 Text Data

The dataset used for machine translation is shown
in Table 1, which contains both speech-to-text-
parallel and text-parallel data types of all language
pairs allowed by IWSLT 2024. Additionally, we
employ the GigaST dataset to expand our text train-
ing data. sBERT (Reimers and Gurevych, 2019,
2020) is used for calculating sentence representa-
tions. We compute sentence embeddings for all
parallel text data and remove sentences pairs that
lower than 0.7 cosine similarity. The data statistics
in table represent the number of sentences remain-
ing in each dataset after sSBERT filtering.

2.2 Data pre-processing

We perform the following preprocessing steps to
filter all text-parallel data:

* Remove empty sentences and duplicate sen-
tences.

Remove sentences containing invalid charac-
ters and HTML tags.

Remove sentences longer than 200 tokens or
shorter than 3 tokens.

Remove sentences with unbalanced source-
target token ratio.

Remove sentences with too much punctuation.

Remove sentences where the source or target
language constitutes a low percentage.

Remove sentences with mismatched punctua-
tion marks, such as quotation marks.
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Then we apply mosesdecoder toolkits! (Koehn
et al., 2007) for punctuation, space and case nor-
malization. The sentences are then tokenized us-
ing joint SentencePiece model (SPM) (Kudo and
Richardson, 2018). The vocabulary size of joint
SPM is about 130,000, with 40k in English, 40k in
Chinese, 30k in German, and 20k in Japanese, both
source and target side share the same dictionary.

3 Speech translation system

3.1 ASR model

Whisper? (Radford et al., 2023) is an excellent mul-
tilingual ASR system trained on 680,000 hours of
multilingual and multitask supervision data. It still
shows strong robustness in various audio scenes,
such as accent speech and background noise, and
achieves good recognition results. It adopts the
Encoder-Decoder architecture (Dong et al., 2018),
and the training data has an extraordinarily struc-
tured design. In addition, it uses a method similar
to prompt during the training process. The open-
source Whisper models have five sizes of models:
tiny, base, small, medium, and large. It is worth not-
ing that the OpenAl has recently updated the Whis-
per large model to form a more effective large-v3
version model. In this work, we adopt the Whisper
large-v3 version as the ASR part of our ST system.

3.2 MT model

3.2.1

We adopt Transformer model (Vaswani et al., 2017)
to build our machine translation system and imple-
mente them on Fairseq toolkits (Ott et al., 2019).
More specifically, we adopt a wider and deeper
Transformer model which contains 18-layer en-
coder, 6-layer decoder, 16 self-attention heads and

Model structure

1ht’cps: //github.com/moses-smt/mosesdecoder
Zhttps://github.com/openai/whisper
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Language Raw data Filter data

Chinese 22M M
Japanese 30M 15M
English &M 4.1M

Table 2: Data statistics on monolingual corpus.

FFN with 4096 dimensions. We utilize all pro-
vided parallel data from three language directions
(En2Zh, En2De, En2Ja) for model training, and
derived a one-to-many MT model.

3.2.2 R-Drop

The Dropout method (Srivastava et al., 2014; Gao
et al., 2022) is an influential strategy for the regular-
ization of deep neural networks. While it enhances
the efficacy of the training process, the stochastic
nature of dropouts might result in discrepancies be-
tween the training and inference phases. R-Drop, as
introduced by Wu et al. (2021), ensures consistency
among the output distributions of the sub-models
generated by dropout. To enhance the consistency
within our model, we implement the R-Drop algo-
rithm and set weight factor o to 5. Consequently,
the R-Drop training strategy significantly improves
the performance of our baseline model.
Furthermore, when using the R-drop mecha-
nism to train models, the model computation in-
creases exponentially, which will consume more
training time and GPU resources. Given the limi-
tation of time and resources, we adopt it solely for
our foundational model, and integrate the R-Drop-
augmented model into ST system by using model
ensemble approach during the evaluation stage.

3.2.3 Data Augmentation

Previous works (Edunov et al., 2018) has demon-
strated that the incorporation of synthetic data can
significantly enhance the efficacy of machine trans-
lation systems. We implement following data aug-
mentation methodologies to further refine our trans-
lation models.

Forward translation (FT) is a process of trans-
forming source language into target language using
MT model. On the contrary, backward translation
(BT) (Sennrich et al., 2016) is the translation of
target language back into source language, forcing
the model to learn a more robust representation of
the source language. Both methods use additional
monolingual resources to create bilingual data.

As shown in Table 2, we select 22M sentences
of Chinese, 8M sentences of English and 30M sen-
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MODEL

Figure 1: The iterative updating process for FT and BT
model.

tences of Japanese of monolingual data from public
datasets, such as Common Crawl and News Crawl
corpus. Moreover, to make our MT model have
better results in ACL scenarios, we adopt the sci-
entific English monolingual corpus from Rohatgi
et al. (2023). After data pre-processing pipeline
mentioned above, approximately 40%-50% of the
sentences from the original data are retained for
each language. BT model is trained separately for
each language pair, and then the monolingual data
is used for backward translation. We employ an
iterative forward-backward translation approach
to progressively enhance the translation quality of
both the FT model and BT model. As shown in
figure 1, the FT model and BT model generated
pseudo-labels farget’ and source’ respectively. We
mix them with labelled text pairs (source, target) to
update our BT model and FT model. As the BLEU
scores of BT model increased, the positive impact
of the back-translated data on the FT model also
becomes more pronounced.

When using data generated by BT model, we re-
fer to the tagged BT method (Caswell et al., 2019),
adding a special token <BT> at the beginning of
source sentence.

We also convert numerical expressions in En-
glish sentences into forms that more closely match
the ASR transcription results, e.g., converting *21’
to ’twenty-one’, 2018’ to ’two thousand and eigh-
teen’. Additionally, we randomly discard punctua-
tion marks within sentences to enable the model to
generalize well across varying punctuation styles.
These transformed sentences are merged with the
original sentences to obtain an augmented dataset.

3.2.4 Domain adaptation

Considering the quality of machine translation
models is easily influenced by specific domain, we
also select in-domain data and fine-tune the model



System

En2Zh En2Ja En2De

1 Baseline model 35.04 18.75 23.14
2  + R-drop 35.67 19.36  23.71
3  +GigaST 35.42 19.21 23.70
4 + Backward translation  35.71 19.77 23.94
5 + Domain adaptation 3544 1990 2397

Ensemble(2,4) 36.33 2090 24.26

Ensemble(2,4,5) 36.37 2092 24.28

Table 3: Main results with BLEU scores on IWSLT tst2022 datasets

System En2Zh En2Ja
one-to-one 32.77 18.38
one-to-many 35.04  18.75

Table 4: BLEU scores on IWSLT tst2022 datasets (one-
to-one vs. one-to-many ST)

System En2Zh En2Ja En2De
Baseline 3542 19.21 23.70
+ BT-Ja 35.37 19.71  24.00
+BT-Zh 3571 19.77 23.94

Table 5: BLEU scores on IWSLT tst2022 datasets with
different BT data

to enhance in-domain performance. We use MUST-
C data (Cattoni et al., 2021) as domain-specific
dataset to train monolingual language models sep-
arately, and then use them to score all language
pairs. We set specific thresholds to filter parallel
data closer to the domain, with higher scores im-
plying better quality, and train incrementally to get
domain-specific model. The filtered in-domain data
is about 5-10% of the total data.

3.2.5 ASR output adaptation

For ST dataset, we use ASR models to transcribe
the audio data and replace their source side label
with ASR recognition results, and finally obtain an
augmented dataset containing ASR noise. ASR
model may produce incorrect transcriptions for
words with similar pronunciations, which, despite
reducing the quality of MT training dataset, also
bolster the robustness of the ST system. For this
part of data, we also add a special tag <ASR> at the
beginning of source sentence.

4 Experiments and results

All models are implemented on Fairseq toolkits
(Ott et al., 2019) and trained on four NVIDIA A100
GPUs. The IWSLT test sets of tst2022 are used
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to evaluate the translation performance at sentence
level. The mwerSegmenter toolkit® (Matusov et al.,
2005b) is used to resegment and align translation
results and then SacreBLEU* (Post, 2018) is used
to compute BLEU scores. For the Japanese text,
tokenization is performed using the Mecab, while
for the Chinese text, tokenization is executed at
character level. We apply SHAS? (Tsiamas et al.,
2022) for audio segmentation and try a variety of
combinations for min and max segment length, the
optimal parameters is 5-30 secs for TED domain.

The table 4 presents a comparative analysis be-
tween the one-to-one and the one-to-many systems,
specifically their performance on En2Zh and En2Ja.
In the one-to-one system, each source language cor-
responds to only one target language, with BLEUs
of 32.77 in En2Zh and 18.38 in En2Ja. In the
one-to-many system, a source language text can
correspond to multiple target language texts. The
system trains data from English to three target
languages (En2Zh , En2Ja , En2De) simultane-
ously and distinguishes the target language type by
adding <zh>/<ja>/<de> tags. The performance
of the one-to-many system improves to 35.04 in
En2Zh and 18.75 in En2Ja. These scores indicate
that one-to-many system outperforms the one-to-
one system.

For the one-to-many system in Table 3, we first
train a baseline model with all constrained data. We
find that introducing R-drop mechanism positively
affects model performance. Then, we add GigaST
dataset for incremental training, which enriches the
data diversity but also leads to a dramatic increase
in the training data. We observe that as the amount
of training data increases, R-drop no longer ben-
efits model performance while consuming more
training time, so we remove the R-drop mechanism

Shttps://www-1i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz

4ht’cps: //github.com/mjpost/sacrebleu

Shttps://github.com/mt-upc/SHAS
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in subsequent stages.

In the forth stage, we collect monolingual data
in Chinese and Japanese and perform back transla-
tion. As shown in table 5, the model performance
is incrementally enhanced by incorporating back
translation data into training dataset. Specifically,
after adding BT-Ja data, the BLEU score for En2Ja
improves significantly from 19.21 to 19.71, while
En2Zh slightly decreases to 35.37. The addition of
BT-Zh data enhances En2Zh to 35.71 and En2Ja
to 19.77. Notably, although no BT data is added
for En2De, its BLEU score still improves by 0.24,
demonstrating a positive impact of back translation
data on the overall model performance. Finally,
domain adaptation brings some improvements in
En2Ja and En2De.

Finally, we integrate the baseline model, which
is enhanced by the R-drop mechanism, with fine-
tuned models that leverage additional data, back-
ward translation, and adaptation techniques. The
ensemble of model (2, 4) achieves notable improve-
ments, with BLEU scores of 36.33 for En2Zh,
20.90 for En2Ja, and 24.26 for En2De. Further-
more, the ensemble of model (2, 4, 5) slightly
surpasses the ensemble of model (2, 4), reaching
scores of 36.37 for En2Zh, 20.92 for En2Ja, and
24.28 for En2De. This indicates the effectiveness
of model ensemble in boosting translation quality.

5 Conclusion

This paper describes our submission to the
IWSLT24 offline speech translation task. We col-
lect a large amount of parallel and monolingual
data from the public data sources and adopt the
traditional cascade ST architecture for the uncon-
strained training track. For the ASR model, we
use the excellent Whisper large-v3 model, which is
trained on 680,000 hours of multilingual and multi-
task supervision data. It shows strong robustness
in various audio scenes. For the MT model, we ex-
plore a wider and deeper Transformer model using
Fairseq tookit. To make the model fully trained, we
carefully experiment many MT technologies, such
as Back Translation, Forward Translation, Domain
Adaptation, and R-Drop. Experimental results on
the tst2022 test set show that our model achieves
36.37, 20.92, and 24.28 BLEU in En2Zh, En2]Ja,
and En2De, respectively.
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Abstract

This paper presents HW-TSC’s submission to
the IWSLT 2024 Offline Speech Translation
Task and Speech-to-Speech Translation Task.
The former includes three translation directions:
English to German, English to Chinese, and En-
glish to Japanese, while the latter only includes
the translation direction of English to Chinese.
We attend all three tracks (Constraint train-
ing, Constrained with Large Language Mod-
els training, and Unconstrained training) of of-
fline speech translation task, using the cascade
model architecture. Under the constrained train-
ing track, we train an ASR model from scratch,
and then employ R-Drop and domain data selec-
tion to train the NMT model. In the constrained
with Large Language Models training track,
we use Wav2vec 2.0 and mBARTS50 for ASR
model training initialization, and then train
the LLama2-7B-based MT model using con-
tinuous training with sentence-aligned parallel
data, supervised fine-tuning, and contrastive
preference optimization. In the unconstrained
training track, we fine-tune the whisper model
for speech recognition, and then ensemble the
translation results of NMT models and LLMs
to produce superior translation output. For the
speech-to-speech translation Task, we initially
employ the offline speech translation system
described above to generate the translated text.
Then, we utilize the VITS model to generate
the corresponding speech and employ the Open-
Voice model for timbre cloning.

1 Introduction

Recent advances in deep learning allow us to ad-
dress traditional NLP tasks in a new and signifi-
cantly different manner. One such task is speech
translation, involving automatic speech recognition
(ASR) (Gulati et al., 2020) system and machine
translation (MT) (Vaswani et al., 2017) system.
Another task is speech-to-speech translation (S25),
which involves ASR system, MT system, and text-
to-speech (TTS) (Ren et al., 2020) system. Recent
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trends tend to utilize a single neural network to
directly translate input speech from one language
to text or speech in another language, bypassing
intermediate symbolic representations. The results
shows that the performance of end-to-end models
is nearing that of cascade solutions, but the effec-
tiveness comparison between the two technologies
remains unclear. Both methods face specific chal-
lenges. The primary challenge with the end-to-end
approach is the lack of training data, while the cas-
cade method has to go through the ASR, MT and
even TTS processes, leading to the errors accumu-
lation. Due to the data insufficiency in end-to-end
training, We ultimately chose the cascade approach
on the IWSLT 2024 offline speech translation task
and speech-to-speech translation task.

For the IWSLT offline speech translation task,
we apply different training strategies across the
three tracks, adapting to diverse data and model
conditions. In the constrained training track, we ini-
tiate training with an ASR model from scratch, fol-
lowed by the utilization of R-Drop (Wu et al., 2021)
and domain data selection (Wang et al., 2019b)
techniques to train the NMT model. Within the
constrained with Large Language Models (LLMs)
training track, we commence ASR model training
initialization using Wav2vec 2.0 (Baevski et al.,
2020) and mBARTS50 (Tang et al., 2020). Sub-
sequently, we train the LLama2-7B-based (Tou-
vron et al., 2023) MT model through continual
pre-training with sentence-aligned parallel data
(Guo et al., 2024), supervised fine-tuning (Xu
et al., 2023), and contrastive preference optimiza-
tion (CPO) (Xu et al., 2024). In the unconstrained
training track, we fine-tune the whisper model
(Radford et al., 2023) for speech recognition, and
then ensemble (Farinhas et al., 2023) the transla-
tion outputs of NMT models and LLMs to gen-
erate superior translation result. For the IWSLT
S2S translation task, we initially employ the of-
fline speech translation system described above to
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generate the translated text. Next, we utilize the
VITS (Kim et al., 2021) model to generate the cor-
responding speech and employ the OpenVoice (Qin
et al., 2023) model for timbre cloning.

In comparison to last year, our cascade offline
speech translation system and S2S translation sys-
tem is performing significantly better, particularly
following translation hypothesis ensembling with
NMT models and LLMs.

2 Datasets and Preprocessing

2.1 ASR Data

There are six different datasets used in the training
of our ASR models, such as MuST-C V2 (Cat-
toni et al., 2021), LibriSpeech (Panayotov et al.,
2015), TED-LIUM 3 (Hernandez et al., 2018),
CoVoST 2(Wang et al., 2020), VoxPopuli (Wang
et al., 2021), Europarl-ST (Iranzo-Sanchez et al.,
2020), as described in Table 1. We use the exactly
same data processing strategy to train our ASR
models following the configuration of (Wang et al.,
2022). We extend one data augmentation method
(Zhang et al., 2022): adjacent voices are concate-
nated to generate longer training speeches. Tsiamas
et al. (2022) propose Supervised Hybrid Audio Seg-
mentation (SHAS), a method that can effectively
learn the optimal segmentation from any manually
segmented speech corpus. In the test phase, we use
SHAS to split long audios into shorter segments.

Dataset Duration(h)
LibriSpeech 960
MuST-C 590
CoVoST 1802
TEDLIUM3 453
Europarl 161
VoxPopuli 1270

Table 1: Data statistics of ASR corpus.

2.2 MT Data

We use the same data processing strategy following
(Wu et al., 2023) to extract our MT data from the
officially available text-parallel and speech-to-text-
parallel data. Table 2 illustrates the bilingual data
sizes after labse filtering (Feng et al., 2022) and
domain selection (Wang et al., 2019b).
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language pairs en2de en2ja en2zh
Clean Data 5.8M  56M 22M
Domain Data 04M 04M 04M

Table 2: Bilingual data sizes of MT corpus.

3 ASR Model

3.1 Constrained training

In this track, we train the constrained ASR model
using the Conformer (Gulati et al., 2020) and U2
(Zhang et al., 2020) model architectures. The
first model is standard auto-regressive ASR mod-
els built upon the Transformer architecture. The
last one is a unified model that can perform both
streaming and non-streaming ASR, supported by
the dynamic chunking training strategy. The model
configurations are as follows:

1) Conformer: The encoder is composed of 2
layers of VGG and 16 layers of Conformer, and the
decoder is composed of 6 layers of Transformer.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

2) U2: Two convolution subsampling layers with
kernel size 3*3 and stride 2 are used in the front of
the encoder. We use 12 Conformer layers for the
encoder and 6 Transformer layers for the decoder.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

During the training of ASR models, we set the
batch size to the maximum of 20,000 frames per-
card. Inverse sqrt is used for Ir scheduling with
warm-up steps set to 10,000 and peak Ir set as Se-4.
Adam is used as the optimizer. All ASR models
are trained on 8 NPUs for 100 epochs. Parameters
for last 5 epochs are averaged. Audio features are
normalized with utterance-level CMVN for Con-
former, and with global CMVN for U2. All audio
inputs are augmented with spectral augmentation
(Park et al., 2019), and Connectionist Temporal
Classification (CTC) is added to make the model
converge better.

3.2 Constrained with LLLMs training

LLM is currently the mainstream method in the
field of artificial intelligence. In ASR, the pre-
training model has been proved to be an effective
means to improve the quality, especially the mod-
els such as wav2vec (Schneider et al., 2019) and
Hubert (Hsu et al., 2021) have been proposed in
recent years. Li et al. (2020) combine the encoder



of wav2vec2 (Baevski et al., 2020) and the decoder
of mBARTS50 (Tang et al., 2020) to fine-tune an
end2end model. We also adopt a similar strategy,
but combine the encoder of wav2vec2 and the de-
coder of mBARTS50 to fine-tune an ASR model
(W2v2-mBART). Due to the modality mismatch be-
tween pre-training and fine-tuning, in order to bet-
ter train cross-attention, we freeze the self-attention
of the encoder and decoder. We first use all the
constrained data for fine-tuning, and only use the
MUST-C data after 30 epochs of training.

3.3 Unconstrained training

Whisper (Radford et al., 2023) is an automatic
speech recognition (ASR) system trained on
680,000 hours of multilingual and multitask su-
pervised data collected from the web. It show that
the use of such a large and diverse dataset leads to
improved robustness to accents, background noise
and technical language. The Whisper architecture
is a simple end-to-end approach, implemented as an
encoder-decoder Transformer. Even though it en-
ables transcription in multiple languages, we only
use its speech recognition feature, transcribing au-
dio files to English text. In this task, we use it as a
pre-trained model, and use the MUST-C dataset for
fine-tuning to improve its performance in specific
domains. We trained for 2 epochs with a small
learning rate of 10e-6.

4 MT Model

4.1 Constrained training

Transformer stands as the state-of-the-art model
in recent machine translation evaluations. Re-
search to enhance this model type is divided into
two main avenues: one focuses on using wider
networks (e.g., Transformer-Big) (Vaswani et al.,
2017), while the other emphasizes deeper language
representations (e.g., Deep Transformer (Wang
et al., 2017, 2019a)). Under the constrained condi-
tions, we combine these two improvements, adopt
the Deep Transformer-Big model structure, and
utilize the clean bilingual data filtered by the
labse model (Feng et al., 2022) to train the NMT
model from scratch. The primary features of Deep
Transformer-Big include pre-layer normalization,
a 25-layer encoder, a 6-layer decoder, 16-head self-
attention, 1024-dimensional embedding, and 4096-
dimensional FFN embedding.

To regularize the training of NMT and alleviate
the inconsistency between training and inference
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caused by the randomness of dropout(Srivastava
et al., 2014; Gao et al., 2022), we introduce R-
Drop(Wu et al., 2021), which forces the output
distributions of different sub-models generated by
dropout to be consistent with each other.

Since the quality of the translation model is eas-
ily affected by the domain, we try to select domain-
related data to incrementally train the model. We
adopted the domain adaptation strategy by (Wang
et al., 2019b). The strategy uses a small amount
of in-domain data to tune the base model, and then
leverages the differences between the tuned model
and the base to score bilingual data. The score is
calculated based on formula 1.

lOgP(yLT; Gzn) - lOQP(y|SU; ebase)

(D
lyl

score =

Where 0, denotes the base model; 6;,, denotes
the model after fine-tuning on a small amount of
in-domain data, and lyl denotes the length of the
sentence. Higher score means higher quality.

Specifically, we use TED and MUST-C data as
in-domain data. We score all the training bilingual
data through Equation 1, and filter out 80% - 90%
of the data according to the score distribution. We
use the remaining 0.4M in-domain data to continue
training on the previous model.

In the training of NMT models, each model un-
dergoes training utilizing 8 NPUs. The batch size
remains fixed at 6144, the update frequency is 2,
the dropout is 0.1, and the learning rate is main-
tained at 5e-4. A total of 4000 warmup steps are
executed, and the model is saved every 2000 steps.
Additionally, A is set to 5 for R-Drop.

4.2 Constrained with LLLMs training

Generative LLMs have made significant strides in
various NLP tasks. However, these advancements
have not fully translated to translation tasks, partic-
ularly for medium-sized models, which still trail be-
hind traditional supervised encoder-decoder trans-
lation models. Previous studies have attempted
to enhance the translation ability of these LLMs
through prompt translation (Zhang et al., 2023;
Moslem et al., 2023), but the improvements re-
main limited. Fortunately, recent research is mak-
ing more progress through supervised fine-tuning
(SFT) (Zeng et al., 2024), and showing that it is pos-
sible to break away from the reliance on massive
amounts of parallel data that traditional translation
models typically require.



Translate this from [source language] to [target language]:
[source language]: <source sentence>

[target language]:

Figure 1: The translation prompt used for training and evaluation. [source language] and [target language] represent
the full name of the language written in English format, e.g., Translate this from English to Chinese.

Among the officially designated LL.Ms, we opt
to perform MT tasks based on the Llama2-7B base
model. To enhance the cross-lingual capability of
Llama2-7B, we first adopt the method of contin-
ual pre-training with sentence-aligned parallel data
(Guo et al., 2024). We construct the data for this
format from the clean data listed in Table 2.

Since Guo et al. discovered that constructing
translation instruction written in the source lan-
guage notably improves performance. We then use
the domain data to construct a dataset of transla-
tion instructions in English format, and leverage
this source-language consistent instruction for SFT.
The translation prompt used for training and evalu-
ation is shown in Figure 1.

Finally, we introduce CPO (Xu et al., 2024),
which trains the model to avoid producing ade-
quate but imperfect translations. To generate the
triplet data, we additionally fine-tune a relatively
small LM (BLOOM (Shoeybi et al., 2019)) and
generate the output for each instance using a sim-
ple sampling strategy. With examples of correct
and incorrect translations, the model is optimized
to distinguish high-quality translations.

During the fine-tuning of LLMs, We adopt LoORA
(Hu et al., 2021) method to fine-tune the LLLM on
8 NPUs. The epoch size is 1, the batch size is 128,
the maximum text length is 512, and the learning
rate is 2e-3. Additionally, the weight decay is 0.01.

4.3 Unconstrained training

LLMs are becoming a one-fits-many solution, but
they sometimes hallucinate or produce unreliable
output. In the unconstrained track, we utilize
translation hypothesis ensembling with NMT mod-
els and LLMs (Farinhas et al., 2023). First, we
gather translation hypotheses from various NMT's
and LLMs. Next, we utilize the external model
COMET (Rei et al., 2022) to select the optimal re-
sult. This involves calculating the average COMET
score between each translation hypothesis and the
other hypotheses to determine its quality score.
Subsequently, we choose the translation hypothesis
with the highest quality score as the best result.
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5 TTS Model

Several recent end-to-end TTS models enabling
single-stage training and parallel sampling have
been proposed, but their sample quality does not
match that of two-stage TTS systems. VITS (Kim
et al., 2021) is a parallel end-to-end TTS method
that generates more natural sounding audio than
current two-stage models. The method adopts
variational inference augmented with normalizing
flows and an adversarial training process, which
improves the expressive power of generative mod-
eling. In the S28 translation system, we first use the
speech translation system to generate the transla-
tion text, and then use the VITS model to generate
the corresponding speech.

To improve the similarity of synthesized audio’s
timbre to that of the source language audio, we also
use OpenVoice (Qin et al., 2023) model for timbre
cloning. It is a versatile voice cloning approach that
requires only a short audio clip from the reference
speaker to replicate their voice and generate speech
in multiple languages.

6 Experiments and Results

The only difference between our S2S translation
system and speech translation system is the addi-
tion of TTS and timbre cloning modules. Since we
did not perform additional training on these two
modules, we only present the experimental results
of the speech translation system.

We utilize the open-source fairseq (Ott et al.,
2019) for training the NMT model, the open-source
ALMA (Xu et al., 2023) for fine-tuning LLM
model. We assess the ASR models using the word
error rate (WER) and evaluate the MT models us-
ing case-sensitive SacreBLEU (Post, 2018) and
COMET scores. Our ASR system is evaluated on
the test sets of tst-COM, while our MT system is
evaluated on the test sets of tst-COM and tst2022.

Table 3 presents our final evaluation results for
three language pairs across the constrained training,
constrained with LLM training, and unconstrained
training tracks. As the final evaluation result shows,



en2de en2ja en2zh
Cascade System BLEU COMET BLEU COMET BLEU COMET
Constrained 33.64 0.7762 19.19 0.7992 34.77 0.8046
Constrained with LLMs  22.55 0.7646 15.70 0.8253 32.66 0.8230
Unconstrained 33.18 0.7925 18.46 0.8325 33.76 0.8358

Table 3: BLEU and COMET of speech translation on tst-2022 test set.

the cascade system based on the NMT model per-
form better in the BLEU metric, while the cascade
system based on the LLM model perform better in
the COMET metric. When ensembling the transla-
tion results of both NMT and LLM, the cascade sys-
tem is performing well in both BLEU and COMET.

6.1 ASR Results

We compare the results of different model architec-
tures, the overall experimental results about ASR
is described in Table 4. We evaluated our system
on tst-COM test set. For long audio in the test set,
we use SHAS for segmentation. We calculate the
WER after the reference and hypothesis are lower-
cased and the punctuation is removed. In Table 4,
all ASR systems achieve good performance, and
the results are relatively close.

tion. Following this, we utilize tst-dev as a more
precise domain dataset for additional fine-tuning,
resulting in even greater quality improvements.

NMT System en2de en2ja en2zh
R-Drop baseline 32.65 13.88 27.14
+ Domain data selection 36.33 1642 27.48
+ tst-dev fine-tuning 38.12  20.05 28.86

Table 5: BLEU of NMT model on tst-COM test set.

Table 6 shows the COMET of the LLM model
fine-tuning at each stage on the tst-2022 test set.
From the results, it becomes evident that the three
methods of continuous training with Interlinear
Text Format Documents, SFT, and CPO are orthog-
onal and can all improve the machine translation
capabilities of LLM.

ASR System tst-COM

Conformer 5.3 LLM System en2de en2ja en2zh
U2 6.1 Llama2-7B 0.5966 0.6925 0.6934
w2v2-mBART 4.9 + continual pre-training 0.7555 0.8016 0.8141
Whisper 4.5 + SFT 0.7641 0.8150 0.8220
Whisper fine-tuning 4.3 + CPO 0.7646 0.8253 0.8230

Table 4: WER of ASR on tst-COM test set.

6.2 MT Results

When evaluating the MT model, we use the Whis-
per fine-tuning model transcription results as the
source text. Since the NMT model performs well
on BLEU, we are using BLEU to evaluate the per-
formance of the NMT model at each stage on the
tst-COM test set. While the LLM model performs
well on COMET, we are using COMET to evaluate
the performance of the LLM model at each stage
on the tst-2022 test set.

Table 5 is illustrating the BLEU of the NMT
model being trained in each phase on the tst-COM
test set. These results highlight the importance of
employing the domain data selection method to
carefully choose domain-specific data for further
fine-tuning the model to facilitate domain adapta-
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Table 6: COMET of LLM model on tst-2022 test set.

7 Conclusion

This paper presents our cascade speech translation
system and S2S translation system in the IWSLT
2024 evaluation. We try several ASR model train-
ing strategies and achieve good performance. For
the MT system, we explore two research direc-
tions based on NMT and LLM, and enhanced
them through various technical means. Finally,
we achieve further improvements by ensembling
the translation results of NMT models and LLMs.
For the TTS, we directly use open source models
to generate speech and timbre clones. Our experi-
mental results show that LLM-based ASR and MT
are promising research directions.
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Abstract

This article introduces the process of HW-TSC
and the results of IWSLT 2024 Indic Track
Speech to Text Translation. We designed a
cascade system consisting of an ASR model
and a machine translation model to translate
speech from one language to another. For the
ASR part, we directly use whisper large v3 as
our ASR model. Our main task is to optimize
the machine translation model (en2ta, en2hi,
en2bn). In the process of optimizing the trans-
lation model, we first use bilingual corpus to
train the baseline model. Then we use mono-
lingual data to construct pseudo-corpus data to
further enhance the baseline model. Finally,
we filter the parallel corpus data through the
labse(Feng et al., 2022) filtering method and
finetune the model again, which can further
improve the BLEU score. We also selected
domain data from bilingual corpus to finetune
previous model to achieve the best results.

1 Introduction

This article describes the Indic track speech-to-text
translation task submitted by HW-TSC at IWSLT
2024.

From a system architecture perspective, current
research on speech-to-text translation can be di-
vided into two forms: end-to-end and cascade sys-
tems. Cascade systems usually consist of a speech
recognition (ASR) module and a text-to-text ma-
chine translation (MT) module. Although integrat-
ing these modules may be complex, the results are
still very satisfactory as long as there are sufficient
data resources to train each module. Additionally,
the end-to-end approach can generate translation
results directly from the unified model with speech
input. However, what we need to know is that the
parallel data required to train an end-to-end speech
translation model is extremely scarce.

2 Methods

Our approach ultimately adopts a cascade ap-
proach.

2.1 ASR

In our cascaded system we have whisper-large-v3
as our ASR module. The researchers of Whis-
per(Radford et al., 2023) has scaled up the super-
vised speech recognition dataset from thousands to
680,000 hours. Pretraining on such a large-scale
weakly supervised dataset enables the model to
be applicable to various data types or domains.
Furthermore, Whisper has expanded the scope of
weakly supervised pretraining to include multilin-
gual and multitask scenarios. Therefore, we ul-
timately chose the powerful recognition-capable
Whisper-large-v3 model as our ASR module.

22 MT

Our cascade system includes the Transformer
(Vaswani et al., 2017) as the MT module, which has
become a prevalent method for machine translation
in recent years. The Transformer has achieved im-
pressive results, even with a primitive architecture
that requires minimal modification. To improve the
offline MT model performance, we utilize multiple
training strategies.

2.2.1 labse

Language-agnostic BERT Sentence Embedding
(Feng et al., 2022) is an effective parallel corpus
filtering method, which can effectively filter out
high-quality bilingual data. We can use the filtered
high-quality bilinguals and then finetune our model.
Finally, we applied this method to this competition,
which greatly improved the results in the three di-
rections. In this experiment, we get 37 million fil-
tered high-quality bilinguals in the en2ta direction,
55 million filtered high-quality bilinguals in the
en2hi direction, and 43 million filtered high-quality
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bilinguals in the en2bn direction from bilingual
data.

2.2.2 Data Diversification

Data Diversification (DD) (Nguyen et al., 2020)
is a simple but effective strategy to boost neu-
ral machine translation (NMT) (Bahdanau et al.,
2015) performance. It diversifies the training data
by using the predictions of multiple forward and
backward models and then merging them with the
original dataset on which the final NMT model is
trained. This method is more effective than knowl-
edge distillation and dual learning. Finally,

2.2.3 Forward Translation

Forward translation (FT) (Abdulmumin, 2021) uses
source-side monolingual data to improve model
performance. The general procedure of FT involves
three steps: (1) randomly sampling a subset from
large-scale source monolingual data; (2) using a
"teacher"” NMT model to translate the subset into
the target language, thereby constructing synthetic
parallel data; and (3) combining the synthetic and
authentic parallel data to train a "student" NMT
model.

2.2.4 Back Translation

Augmenting parallel training data with back-
translation (BT) (Sennrich et al., 2016; Wei et al.,
2023) has been shown effective for improving
NMT using target monolingual data. Numerous
works have expanded the understanding of BT and
investigated various approaches to generate syn-
thetic source sentences. Edunov et al. found that
back-translations obtained via sampling or noised
beam outputs tend to be more effective than those
via beam or greedy search in most scenarios. For
optimal joint use with FT, we employ sampling
back-translation (ST) (Edunov et al., 2018).

2.2.5 Domain Fine-tuning

Previous studies have shown that fine-tuning a
model with in-domain data can significantly en-
hance its performance. We use the model scoring
method to select data from the bilingual training
data that are close to the dev set in domain, and
then use these domain data to finetune the model,
which can further improve the result. Finally, we
select 12 million domain data in the en2ta direction,
15 million domain data in the en2hi direction, and
10 million domain data in the en2bn direction from
the bilingual training data.

2.2.6 Regularized Dropout

Regularized Dropout (R-Drop) (Wu et al., 2021)
improves performance over standard dropout, es-
pecially for recurrent neural networks on tasks
with long input sequences. It ensures more con-
sistent regularization while maintaining model un-
certainty estimates. The consistent masking also
improves training efficiency compared to standard
dropout. Overall, Regularized Dropout is an en-
hanced dropout technique that often outperforms
standard dropout.

3 Experiments Setup

3.1 ASR

In our cascade system, we use whisper-large-v3
as our ASR module, which we will not introduce
here.

32 MT
3.2.1 Model

For our experiments using the MT model, we
utilize the Transformer deep model architec-
ture. The configuration of the MT model is as
follows:n_encoder layers = 35, n_decoder layers =
3, n_heads = 8, d_hidden = 512, d_FFN = 2048.

3.2.2 Dataset

To train the MT model, we collected all available
parallel corpora from the official website and se-
lected paralla data similar to the dev domain. The
amount of data is shown in Table 1. We first trained
respective baseline models in the three directions
using bilingual data. Then, we construct pseudo-
corpus based on existing monolingual data in each
language direction to gradually enhance the base-
line model.

Bilingual Source Target
en-ta 5TM 200M  70M
en-hi 80M 200M  230M
en-bn 82M 200M  190M

Table 1: Bilingual and monolingual data used for train-
ing.

3.2.3 Training

We utilize the open-source Fairseq (Ott et al., 2019)
for training, with the following main parameters:
each model is trained using 8 GPUs, with a batch
size of 2048, a parameter update frequency of 32,
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and a learning rate of 5e-4. Additionally, a la-
bel smoothing value of 0.1 was used, with 4000
warmup steps and a dropout of 0.1. The Adam
optimizer is also employed, with 31 = 0.9 and 2 =
0.98. During the inference phase, a beam size of 4
is used. The length penalties are set to 1.0.

3.3 Results

We can see results From Table 2, In the field of
machine translation, Domain Finetuning, Forward
Translation, and labse filter method are frequently
employed methods to enhance translation quality.
It is evident from Table 4 that these training strate-
gies can effectively improve the overall quality of
the system.

Language-pair Training strategies Bleu
en-hi Bilingual baseline 51.9
+ FT+BT 53.8
+ labse Bilingual Finetune 54.7
+ Domain Finetune 64.8
en-ta Bilingual baseline 41.9
+ FT+BT 42.2
+ labse Bilingual Finetune 43.1
+ Domain Finetune 45.2

en-bn Bilingual baseline 38
+ FT+BT 40.4
+ labse Bilingual Finetune 42.1
+ Domain Finetune 44.8

Table 2: All the results for dev testsets in three
directions(EN-HI,EN-TA,EN-BN).FT means Forward
Translation. BT means Back Translation.

At the same time, we also calculated the blue of
NLLB-200-3.3B (Costa-jussa et al., 2022) in three
directions, as shown in Table 3, for comparison
with our results. As can be seen from Table 2 and
Table 3, our model is far better than the NLLB
model.

Language-pair NLLB baseline

en-hi 40.9
en-ta 204
en-bn 25.7

Table 3: NLLB-200-3.3B results for dev testsets in three
directions(EN-HI,LEN-TA ,EN-BN).

4 Conclusion

In this paper, we report on our work on IWSLT2024
speech-to-text translation evaluation in Indic Track.
We mainly introduce our cascade system and the
main optimization processes and methods of the
MT model. We improve the final results by fo-
cusing on optimizing the MT model. For cascade
systems, the impact of the MT model on the results
is crucial. For the future we plan to further explore
the direction of end-to-end systems.
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Abstract

This paper presents RACAI’s system used for
the shared task of "Subtitling track: Subtitle
Compression” (the English to Spanish language
direction), organized as part of "the 21st edi-
tion of The International Conference on Spo-
ken Language Translation IWSLT 2024)". The
proposed system consists of multiple models
whose outputs are then ensembled using an al-
gorithm, which has the purpose of maximizing
the similarity of the initial and resulting text.
We present the introduced datasets and the mod-
els’ training strategy, along with the reported
results on the proposed test set.

1 Introduction

Subtitles play a vital role in ensuring accessibility
and comprehension of audiovisual (AV) content for
viewers with diverse needs, including those with
hearing impairments or language barriers. How-
ever, traditional subtitling methods often generate
text exceeding recommended reading speed con-
straints, hindering comprehension and viewer en-
gagement. This problem becomes particularly pro-
nounced for audiences with slower reading speeds
or limited language proficiency.

In the context of the 21st edition of The Inter-
national Conference on Spoken Language Transla-
tion (IWSLT 2024), the Subtitle Compression task,
part of the Subtitling track, required participants
to propose systems that rephrase subtitles that are
non-compliant with the reading speed constraint
without limitations on the training data conditions.
This paper describes the possibility of using large
language models (LLMs) to achieve this while try-
ing to benefit from the initial content in the source
language. Sometimes, sentences have formats that
make them hard to compress, especially when a
translation step has been made. The most funda-
mental example of such inconvenience is regarding
idioms. They might not have perfect equivalents in

the target language, and thus, their compression be-
comes even more challenging to process. Problems
of this kind can be partially solved by initially com-
pressing the sentence in the source language and
then translating it. Our contribution is twofold: a)
we introduce a new method that is able to combine
the predictions of multiple models; b) we explore
different parameters for the proposed algorithm and
present the results on the shared task dataset.

The rest of the paper is structured as follows:
Section 2 presents related work, Section 3 describes
the method proposed, including dataset description
(in Section 3.3), model training (in Section 3.4) and
ensemble process (in Section 3.5); results are given
in Section 4 and we conclude in Section 5.

2 Related work

In this section, we explore the various methodolo-
gies and research efforts that have contributed to
the development of compression tasks. Although
the compression task is inherently monolingual, we
consider not only the works focused on text sum-
marization but also those addressing automatic sub-
titling, machine translation (MT), and automatic
speech recognition (ASR). This is because these
domains often employ similar techniques and face
comparable challenges in reducing and transform-
ing textual data while maintaining its essential in-
formation and coherence.

2.1 Automatic subtitling

Recent advancements in speech translation (ST)
have focused on developing systems that can trans-
late spoken language directly into another language,
bypassing the need for separate automatic speech
recognition and machine translation (MT) steps.
This approach, known as end-to-end ST, has shown
promising results. Papi et al. (2023a) build on this
progress by exploring the use of direct architectures
for both simultaneous translation (SimulST) and
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automatic subtitling tasks. Their work contributes
to the growing body of research on efficient and
effective methods for real-time speech translation
applications. Bahar et al. (2023) tackle the same
task, by proposing En-Ru and En-Pt production
models, which support formality control via prefix
tokens.

2.2 Text summarization models

Sentence compression has been extensively ex-
plored using various transformer-based architec-
tures. The T5 model (Raffel et al., 2023) employs
a text-to-text transformer architecture, leveraging
its encoder-decoder structure to identify and elim-
inate redundant information through a process of
denoising and reconstruction. Specifically, TS uses
a unified framework that converts all NLP tasks
into a text-to-text format, allowing it to adapt to
sentence compression tasks through task-specific
prompting and fine-tuning.

BART (Lewis et al., 2020) utilizes a novel de-
noising autoencoder approach, where the input sen-
tence is corrupted through token masking and dele-
tion, and the model is trained to reconstruct the orig-
inal sentence. During pre-training, BART learns
to predict the original tokens from their corrupted
versions, developing a robust understanding of sen-
tence structure and semantics. This pre-training
objective enables the model to develop a strong
ability to recognize and remove redundant informa-
tion.

The Llama2 model (Touvron et al., 2023) relies
on a combination of masked language modelling
and denoising objectives to learn a robust represen-
tation of language. Specifically, it uses a multi-task
learning framework that jointly optimizes masked
language modelling, sentiment analysis, and next-
sentence prediction tasks. This multi-task learning
approach enables Llama2 to develop a comprehen-
sive understanding of language syntax, semantics,
and pragmatics.

2.3 Automatic speech recognition

Automatic speech recognition (ASR) has witnessed
significant advancements with the emergence of
transformer-based architectures. The Whisper
model (Radford et al., 2023) employs a conditional
waveform-to-text model that leverages a combi-
nation of self-supervised learning and supervised
finetuning to achieve state-of-the-art performance
on various ASR benchmarks. It uses a multi-task
learning framework that jointly optimizes masked

acoustic modelling, phoneme recognition, and sen-
tence transcription tasks, enabling it to learn ro-
bust representations of spoken language that can
generalize across different accents, languages, and
recording conditions.

2.4 Translation models

Machine translation has seen significant ad-
vancements with the development of large-scale
transformer-based models. NLLB (No Language
Left Behind) (Team et al., 2022) is a family of
translation models that aim to bridge the gap be-
tween high-resource and low-resource languages.
NLLB uses a multilingual masked language mod-
elling objective to pre-train a single model on
a massive dataset of 50 languages, enabling it
to learn shared representations across languages
and achieve state-of-the-art performance on var-
ious translation benchmarks. NLLB employs a
novel "language-agnostic" approach that treats all
languages equally, without relying on language-
specific adapters or fine-tuning, making it particu-
larly effective for low-resource languages.

2.5 Summarization Datasets

The development of effective text summarization
models relies heavily on the availability of high-
quality, linguistically diverse datasets. In this re-
gard, the Google Sentence Compression (Filippova
and Altun, 2013) dataset is a prominent resource,
comprising approximately 200,000 sentence pairs
extracted from news articles. Each pair consists
of an original sentence and its corresponding com-
pressed version, with an average compression ratio
of 35%. Notably, this dataset is primarily com-
posed of English sentences, with a focus on formal,
written language.

TaPaCo (Scherrer, 2020) is a freely available
paraphrase corpus that offers a unique resource for
natural language processing (NLP) research. Ex-
tracted from the Tatoeba database, a crowdsourced
platform primarily designed for language learners,
TaPaCo provides a vast collection of paraphrases
in 73 languages.

The PAWS-X (PAWS eXtended) (Yang et al.,
2019) dataset takes a multilingual approach to text
summarization, featuring a diverse range of texts
from the web in four languages: English, French,
German, and Spanish. With over 1 million pairs of
original texts and their corresponding summaries,
PAWS-X provides a comprehensive benchmark
for evaluating cross-lingual summarization perfor-
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mance. The dataset’s structure is noteworthy, with
each instance comprising a source text, a target
summary, and corresponding metadata such as lan-
guage labels and genre information.

3 Method

3.1 Overview

Our proposed method analyzes both the original
text in English and the translated text in Spanish
in order to have an alternative approach in case
the latter is not being compressed within the estab-
lished limits. Therefore, we had to obtain the initial
subtitles in the language of the video through an
automatic speech recognition model. With that in
mind, we can compress and translate the English
text in this exact order such that we obtain a new
set of Spanish sentences to be fitted within the time
intervals presented in the given SRT file. We define
a sentence based on the presence of strong punc-
tuation; a sentence may span over multiple time
intervals in the SRT file. Having a series of alter-
natives for each sentence that has to be processed,
we run an algorithm to determine the assignment
of the compressed sentences that maximizes the
similarity between the reference and the prediction
texts. A general representation of the method is
presented in Figure 1.

3.2 Performance identifiers and metrics

We focused on multiple metrics to define the per-
formance of our models and to determine a relation
of order between sentences with the same meaning.

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) (Lin, 2004) is a set of metrics used
to evaluate the quality of summarization models. It
measures the overlap between the generated sum-
mary and the reference summary, focusing on recall
(i.e., how much of the reference summary is cov-
ered by the generated summary). There are several
variants of ROUGE, including:

a) ROUGE-1: measures the overlap of unigrams
(single words) between the generated and reference
summaries;

b) ROUGE-2: measures the overlap of bigrams
(pairs of adjacent words) between the generated
and reference summaries;

¢) ROUGE-L: measures the longest common
subsequence between the generated and reference
summaries.

ROUGE scores range from O to 1, with higher
scores indicating better summarization quality.

BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002) is a metric used to evaluate the
quality of machine translation models, but it can
also be applied to summarization tasks. It mea-
sures the similarity between the generated sum-
mary and the reference summary based on n-gram
overlap. BLEU calculates the precision of n-grams
(sequences of n items) in the generated summary
compared to the reference summary. BLEU scores
range from O to 1, with higher scores indicating
better summarization quality.

MPNet (Quyen and Kim, 2023) is a type of neu-
ral network architecture that uses word embeddings
to represent words as vectors in a high-dimensional
space. In this context, MPNet is used to calcu-
late the distance between words or phrases in the
generated summary and the reference summary.
The distance calculation can be done using vari-
ous metrics, such as cosine similarity (in this case),
Euclidean distance, or Manhattan distance. The
resulting distance score can be used to evaluate
the semantic similarity between the generated and
reference summaries.

BLEURT (BERT-based Learned Utility for
Ranking Translation Outputs) (Sellam et al., 2020)
is a metric that evaluates the quality of summa-
rization models using a BERT-based approach. It
learns to predict a utility score for each generated
summary based on its similarity to the reference
summary. BLEURT analyzes different factors, in-
cluding:

a) Fluency: measures the grammatical correct-
ness and coherence of the generated summary;

b) Relevance: measures the degree to which the
generated summary covers the main points and
ideas of the original text;

¢) Informativeness: measures the amount of new
information presented in the generated summary;

d) Coherence: measures the degree to which the
generated summary is well-organized and easy to
follow.

The BLEURT score is a weighted sum of these
individual metrics, providing a comprehensive eval-
uation of the generated summary’s quality.

3.3 Dataset Choice and Creation

As part of the gathered Spanish corpora, PAWS-X
and TaPaCo were used as they are, while Google’s
Sentence Compression dataset was filtered to elim-
inate pairs of sentences with very low compression
rate. In addition to these resources, we created a
new one (Sent-Comp-ES) by translating Google’s
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Original Uncompressed Compressed
Input Data Spanish SRT
II Sentence 1\ — laternative 1.1, Alternative 1.2, ... Alternative 1.K 1
T5 and Bart Sentence 2 —> Alternative 2.1, Alternative 2.2, ... Alternative 2.K
models on P Sentence 3 —> Alternative 3.1, Alternative 3.2, ... Alternative 3.K
Spanish

English Audio

sentence N — Alternative N.1, Alternative N.2, ... Alternative N.K)

Whisper | model

Optimal
Assignation
Algorithm

Maximize compliance and similarity

Predicted

Spanish SRT

Figure 1: Scheme of the overall transformation.

Alternative
Spanish SRT
English SRT
NLLB| model
T5 model Compressed
on English English SRT
Dataset Language Dimension
Sent. Comp. English 200k
Sent-Comp-Es Spanish 53k
TaPaCo Spanish 85k
PAWS-X (filtered)  Spanish 9k

Table 1: Datasets used for extractive summarization.

Sentence Compression dataset (referred as Sent.
Comp. later in the paper) for extractive summariza-
tion (i.e., the task of selecting a subset of words
from a sentence to form a summary). In the trans-
formation process, multiple rules have been estab-
lished such that the quality of the data is preserved,
with the downside of obtaining less data than the
initial resource. The conducted steps are in exact
order:

a) Eliminate the English pairs with an associated
compression rate smaller than 10% for sentences
with at least 10 characters;

b) Eliminate the English pairs with an associated
ROUGE score smaller than 0.8;

c) Translate the remaining sentences to Spanish
using Facebook’s NLLB model;

d) Eliminate the Spanish pairs not respecting the
extractive summarization pattern (i.e., eliminate
those pairs for which the compressed sentence is
not a subsequence of words from the initial sen-
tence);

e) Check again for the associated compression

rate and ROUGE score while keeping the same
constraints as aforementioned;

In the end, from 200k pairs of English sentences,
we formed 53k pairs of Spanish sentences that can
be used for extractive summarization training. Fur-
thermore, all processed data can be as well used for
abstractive summarization.

3.4 Model Choice and Training

Since this paper focuses on an ensemble selection
system, we had to define the models we want to
use and train. Regarding the Spanish text mod-
els, we finetuned the base checkpoints of T5 and
Bart, while for Llama2, we chose the 13B parame-
ters checkpoint. Through the previous models, we
propose to tackle both extractive and abstractive
summarization. On the other hand, for the audio
processing, since it can be assumed that for generat-
ing the given Spanish text, a variant of the original
English text is already composed, we decided to
go with a pre-trained large checkpoint of the Whis-
per v2 model. Wee feed the model pre-segmented
audio by taking timestamps of the original Span-
ish SRT, without activating the internal VAD. For
the English text summarization, a pre-trained large
checkpoint of T5 was used.

TS5 and Bart were trained on a joint dataset con-
taining TaPaCo, PAWS-X and Sent-Comp-ES, to-
taling at 147k pairs of sentences, with a simple
prompt, namely "comprimir: " (en: "compress: ").
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Model Learning Rate Epoch Avg. Compression ROUGE BLEU MPNET
T5-base le-4 4 48% 0.60 0.23 0.81
T5-base 2e-5 4 47% 0.61 0.20 0.74
T5-base le-4 15 46% 0.61 0.24 0.81

Bart-base 2e-5 4 46% 0.60 0.24 0.82
Bart-base 2e-5 15 47% 0.62 0.25 0.84
Llama2-13B le-4 1 18% 0.57 0.23 0.80
Llama2-13B le-4 4 33% 0.60 0.24 0.85

Table 2: Metrics obtained on the gathered corpora while training for Spanish sentence compression.

We also finetuned Llama?2 on all the data available
(200k pairs) using QLoRA (Dettmers et al., 2023),
with a more complex prompt trying to settle the
context and the general task:

### TAREA: Parafrasee la frase de entrada
para hacerla lo mds corta posible en térmi-
nos de numero de caracteres, conservando
el significado inicial y teniendo una gra-
matica y puntuacidén correctas. Si no es
posible o no esta seguro, mantenga la frase
sin cambios.

### SENTENCIA SIN COMPRIMIR: <UNCOMP>
### SENTENCIA COMPRIMIDA: <COMP>

(Note: the <UNCOMP> and <COMP> tokens are
replacing the uncompressed and compressed
sentences respectively.)

Table 2 contains the results acquired during train-
ing. According to the reported performance and
considering Llama2’s inference time, we decided
to exclude it from the prediction system. Another
important reason is that Llama2 was trained for
abstractive summarization, which makes the re-
construction of the SRT file from sentences really
difficult.

3.5 Algor