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Introduction

It is our great pleasure to welcome you to the fourth edition of SustaiNLP: Workshop on Simple and
Efficient Natural Language Processing.

The Natural Language Processing community has, in recent years, demonstrated a notable focus on im-
proving higher scores on standard benchmarks and taking the lead on community-wide leaderboards (e.g.,
GLUE, SentEval). While this aspiration has led to improvements in benchmark performance of (predo-
minantly neural) models, it has also came at a cost, i.e., increased model complexity and the evergrowing
amount of computational resources required for training and using the current state-of-the-art models.
Moreover, the recent research efforts have, for the most part, failed to identify sources of empirical gains
in models, often failing to empirically justify the model complexity beyond benchmark performance.

Because of these easily observable trends, we organized the SustaiNLP workshop with the goal of pro-
moting more sustainable NLP research and practices, with two main objectives: (1) encouraging develo-
pment of more efficient NLP models; and (2) providing simpler architectures and empirical justification
of model complexity. For both aspects, we encouraged submissions from all topical areas of NLP.

This year, we received 46 submissions, proposing a multitude of viable resource-efficient NLP methods
and spanning a wide range of NLP applications. We have selected 26 submissions for presentation at the
workshop, yielding an acceptance rate of 57%.

Many thanks to the SustailNLP program committee for their thorough and thoughtful reviews. We would
also like to thank to our panelists and invited speakers whose discussions and talks we strongly believe
will make the workshop exciting and memorable.

We are looking forward to the fourth edition of the SustaiNLP workshop!

SustaiNLP Organizers
June 2023
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KwikBucks: Correlation Clustering with Cheap-Weak and
Expensive-Strong Signals

Sandeep Silwal™!, Sara Ahmadian?, Andrew Nystrom?, Andrew McCallum?,
Deepak Ramachandran*?, Mehran Kazemi* >
1 MIT, 2 Google Research
silwal@mit.edu, {sahmadian, nystrom, mccallum,
ramachandrand, mehrankazemi}@google.com

Abstract

For text clustering, there is often a dilemma:
one can either first embed each examples inde-
pendently and then compute pair-wise similar-
ities based on the embeddings, or use a cross-
attention model that takes a pair of examples
as input and produces a similarity. The for-
mer is more scalable but the similarities of-
ten have lower quality, whereas the latter does
not scale well but produces higher quality sim-
ilarities. We address this dilemma by devel-
oping a clustering algorithm that leverages the
best of both worlds: the scalability of former
and the quality of the latter. We formulate
the problem of text clustering with embedding-
based and cross-attention models as a novel
version of the Budgeted Correlation Cluster-
ing problem (BCC) where along with a lim-
ited number of queries to an expensive oracle
(a cross-attention model in our case), we have
unlimited access to a cheaper but less accurate
second oracle (embedding similarities in our
case). We develop a theoretically motivated al-
gorithm that leverages the cheap oracle to ju-
diciously query the strong oracle while main-
taining high clustering quality. We empirically
demonstrate gains in query minimization and
clustering metrics on a variety of datasets with
diverse strong and cheap oracles.

1 Introduction

Modern ML techniques have made incredible ad-
vances at the cost of needing resource-intensive
models (Sharir et al., 2020). Many recent ap-
proaches are so resource-intensive that despite
amazing accuracy, they are infeasible to be scaled
as-is in practical usage. The total effect of all such
deployments on energy usage is also a major sus-
tainability concern (Wu et al., 2022).

With the increased cost in querying ML models,
the cost of obtaining similarities between objects
of different types (texts, images, etc.) has also

*Co-advised. "'Work done while interning at Google.
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substantially increased. In this paper, we aim to
answer a challenging question when working with
such costly similarity measure models: how can
we group similar objects together when similari-
ties of objects are obtained via expensive queries?
This problem can be naturally cast as a popular and
versatile clustering framework, named Correlation
Clustering (CC), which has been extensively stud-
ied over the past 15+ years (Bonchi et al., 2022):
given similarities between arbitrary objects repre-
sented as a graph, CC minimizes a natural objective
that attempts to cluster together similar vertices
while simultaneously separating dissimilar ones.
The high cost of querying large ML models moti-
vates the use of the Budgeted CC (BCC) setting
studied in (Bressan et al., 2019; Garcia-Soriano
et al., 2020a) where relationships between nodes
are determined by making a limited number of
queries to an oracle, e.g. a large ML model.

We posit that in many practical settings, coarse
but efficient approximations of an expensive model
can be obtained through substantially cheaper but
weaker models. These weaker models can be used
as a guide to spend the query budget for the expen-
sive model more carefully. A motivating example,
which heavily inspires our work, is in text cluster-
ing where one wishes to obtain similarity signals
from the latest highly-accurate cross-attention (CA)
language models (e.g., (Brown et al., 2020; Thoppi-
lan et al., 2022)), but may be hindered by the com-
putational burden as obtaining each pair-wise simi-
larity between data points requires an inference call
to the model, giving rise to a worse case O(n?) in-
ference calls, where n is the number of data points.
Embedding based models (e.g., (Mikolov et al.,
2013; Devlin et al., 2018) can come to the rescue
as they require only O(n) inference calls to ob-
tain embedding vectors for each data point that
can then be used for fast similarity computation.
While embedding models typically produce sub-
stantially lower quality similarity signals than CA

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 1-31
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models (see, e.g., (Menon et al., 2022)), they can
still provide a good approximation to guide where
the budget for the CA model should be spent.
Inspired by the above, we introduce a variant of
BCC where, along with a limited number of queries
to an expensive oracle, we also have unlimited ac-
cess to a cheaper but less accurate second oracle.
We develop an algorithm dubbed KwikBucks that
extends the well-known KwikCluster algorithm
to budgeted CC with cheap-weak and expensive-
strong signals. KwikBucks uses the weak sig-
nal as a guide to minimize the number of calls
to the strong signal. Under the assumption that
the weak signal returns a strict superset of the
strong signal edges, our algorithm approximately
matches the performance of KwikCluster, i.e., a
3-approximation, using a small number of queries
to the expensive model. In our experiments, we
strengthen our theoretical modelling with several
well-motivated optimizations and demonstrate that
KwikBucks manages to produce high quality clus-
terings with only a small number of queries to the
expensive oracle even when there is only a weak
correlation between the weak and strong signal.
We conduct extensive experiments with multiple
datasets to evaluate the performance of KwikBucks
over natural extensions of previous algorithms
for closely-related problems. KwikBucks recov-
ers the best clustering solution with a much smaller
strong signal budget than the alternatives, and it
finds asymptotically better solutions in many cases.
KwikBucks is also robust to the choice of weak
signal oracle across different dataset settings and
obtains significant improvements over five base-
lines — 64% relative improvement in clustering
quality (measured in terms of F1 score) when av-
eraging over 9 datasets, and over > 3.5x reduction
in query complexity compared to the best baseline.

1.1 Related Work

Our paper spans correlation clustering, clustering
with budget constraints, and learning from multiple
annotators. For brevity, we focus on the closely
related key works in these areas.

Correlation clustering is one of the most well
studied graph clustering problems and has been
actively researched over the past 15+ years (see
the book (Bonchi et al., 2022)). It has numerous
applications in ML and beyond, including spam
detection (Ramachandran et al., 2007; Bonchi et al.,
2014), social network analysis (Bonchi et al., 2015;

Tang et al., 2016), entity resolution (Getoor and
Machanavajjhala, 2012), and many others (Gionis
et al., 2005; Hassanzadeh et al., 2009; Cohen and
Richman, 2002; Kim et al., 2011). (Bansal et al.,
2004) introduced and gave the first constant factor
approximation for complete graphs (see Def. 1).
Variants include incomplete signed graph (Bansal
et al., 2004; Ailon et al., 2008), where the problem
is APX-Hard (Demaine et al., 2006), and weighted
graphs (Charikar et al., 2005), where it is Unique-
Games hard (Chawla et al., 2000).

Clustering under budget constraints studies
the problem of a limited number of pairwise simi-
larity queries. In this setting, a line of work looked
at spectral clustering on partially sampled matrices:
Fetaya et al. (2015) in general setting, and Shamir
and Tishby (2011) and Wauthier et al. (2012) for
bi-partitioning. The most relevant works to our
paper are those of Garcia-Soriano et al. (2020a)
and Bressan et al. (2021) who devised algorithms
for correlation clustering that given a budget of )
queries attain a solution whose expected number of
disagreements is at most 3- OPT +O(%3), where
OPT is the optimal cost for the instance. Another
closely related line of work studies “same-cluster”
queries for various clustering problems including
CC (Ailon et al., 2018; Saha and Subramanian,
2019). The differences between these works and
ours are (1) they assume all (g) similarity queries
are already known in advance whereas we must
query the strong signal to obtain similarities, (2)
their queries give access to the optimal clustering,
whereas we only query for edge signs.

Learning from multiple annotators considers
cost-effective learning from multiple annotators
where the cost of a labeler is proportional to its
overall quality. The most relevant work to our
setting is (Guha et al., 2015) as it considers hierar-
chical clustering which uses lightweight similarity
scores to identify candidate pairs with high similar-
ity (detailed comparison in Section A). Ensemble
approaches (Dietterich, 2000) are also relevant, but
they require knowing the similarities in advance
and do not apply to our budgeted setting. Lastly we
survey additional related works on learning from
multiple annotators as well as algorithms with pre-
dictions in Section A.

1.2 Preliminaries and Notation

The input of correlation clustering is a complete
undirected graph G = (V,ET UE )on |V|=n



vertices. £+ and E~ represent the partitions of
all possible (%) edges where an edge e = (u,v) €
E™ indicates that v and v are similar and e =
(u,v) € E~ indicates that u and v are dissimilar.
We simplify the notation to G = (V, E = E™) so
any present edge is a positive edge and any missing
edge is a negative edge. Additionally, we use m to
denote the size of |E| and T'(v) = {u | (v,u) € E}
to denote the neighborhood of vertex v.

A clustering is a partitioning C' = {C1,Cy,--- }
of V into disjoint subsets. Let C,, ,, denote the indi-
cator variable if the vertices v and w are assigned to
the same cluster. We study the min-disagreement
formulation of the correlation clustering problem
defined as follows (Bansal et al., 2004).

Definition 1 (Correlation Clustering (CC)). Given
a graph G = (V, E), the objective of correlation
clustering (CC) is to output a clustering C' that
minimizes:

Z Cv,u + Z (1 - Cv,u)- (1)

e=(v,u)¢E e=(v,u)eE

KwikCluster (Ailon et al., 2008) is a well-
known CC algorithm which proceeds by succes-
sively picking a vertex p, called a pivot, uniformly
at random from the graph and forming a cluster
{p} UT'(p). The algorithm removes this cluster
and recurses on the remaining graph until all ver-
tices are assigned to clusters. Based on the fact that
the set of pivots is a maximal independent set con-
structed from a random order of vertices, Bonchi
et al. (2013) suggests an equivalent algorithm that
first constructs the independent set and then assigns
any non-pivot to its first neighbor in the indepen-
dent set. Both algorithms yield 3-approximation
in expectation, however the second algorithm is
more efficient as the assignment of non-pivots can
be performed in parallel.

Despite practicality and simplicity of
KwikCluster (and its variants), the algo-
rithm assumes access to the full similarity graph
G and is not feasible when similarity measures
are expensive to acquire. We consider budget CC
studied before by (Garcia-Soriano et al., 2020b;
Bressan et al., 2019) where there is a limit (budget)
for the number of queries that can be made.

Definition 2 (Expensive / Strong Oracle). Given
an edge e, the query Og(e) outputs whether e € E,
i.e., e is a positive edge.

Following the motivations provided in Section 1,
we also introduce a second weaker oracle which is

cheaper to query.

Definition 3 (Cheap / Weak Oracle). Given any
vertex v, the query Ow (v) outputs a similarity
score in R between v and every other vertex in 'V,
where higher values indicate higher similarity

We frequently refer to G as the strong signal
graph and likewise a strong signal edge refers to
an edge in £. We interchangeably use the terms
signal or oracle, the terms strong and expensive
signal, and also the terms weak and cheap signal.

2 Theoretical Modelling

We introduce an algorithm that leverages the cheap
signal for strong signal query efficiency. Our
goals are twofold: (1) Design a flexible algo-
rithm paradigm which can adapt to incorporate
constraints necessitated by practice, i.e., limited ac-
cess to expensive queries, (2) Analyze the quality
of the produced solution with respect to the CC
objective (see equation 1). We first introduce a
modelling assumption for the weak oracle for the
purpose of theoretical analysis. While this results
in a different but related weak oracle formulation
compared to Definition 3, it lets us derive a robust
algorithm design which we subsequently adapt to
the more realistic setting of Definition 3.

First, we introduce a noise factor ~ that deter-
mines the usefulness of a weak signal. v = 0
corresponds to a perfect weak signal that exactly
matches the strong signal and v = n corresponds
to a completely uninformative weak signal.

Assumption 1. For a fixed noise parameter v > 0,
the query O’YW(U) outputs a subset of V such that
L(v) € Oy (v) and |0y, (v)] < (1 47)|T(v)].

The existence of such a signal with a small ~,
say O(1/n) or v < 1 might seem like a strong
assumption for most applications. However, our
experiments show that weak signal can actually
provide predictive hints about the true underlying
strong signal graph. More precisely, given vertex
v, we order V' with respect to the weak signal,
and observe that true strong signal neighbors of v
are often ranked higher. Thus, returning the most
similar vertices for an input node captures many of
the true strong signal neighbors of v and mimics the
clean abstraction of Assumption 1 (See Appendix
F.6 for further empirical justification).

Using the above characterization, we next
explain the high level ideas of our algorithm
KwikBucks (Algorithm 1). It is inspired by a vari-
ant of KwikCluster (Bonchi et al., 2013) adapted



Algorithm 1 KwikBucks (Our Algorithm)

Require: A bound on sampled vertices, ¢, the
strong signal budget, Q.
1: P < GetPivots(t,Q)
2: return AssignToClusters(P,V \ P,Q)

Algorithm 2 AssignToClusters(P,U, Q)
Require: List of pivots, P, a vertex set, U, remain-
ing strong signal budget, Q).

A < () {the set of singletons}

1:

2: Cp — {p} {cluster for any pivot p € P}
3: while Q > 0 and U # () do

4: v < extract first vertex of U

5. N, < WeakFilter(v, P)

6: p < FirstNeighbor(v, N,, Q)
7. if p # () then

8: Cp = Cp U {v}

9: else
10: A+ AU {v}
11: A« AUuU
12: return Upc pCp Uyea {v}

to our two oracle setting. In this variant, we first
pick pivots by forming a maximal independent set
from a random ordering of vertices, and then assign
non-pivots to their first neighbor (which must exist
by maximality of the independent set). A naive
extension of this algorithm can result in (n!-?)
queries to the strong signal (see 1). However, one
may argue that by using the weak signal, we can
prune the possible neighborhood of vertices which
results in fewer strong signal queries.

While the weak signal can help us make smarter
queries to the strong signal, we can still show that
even for a weak signal with a small error rate, i.e.,
v = O(1), we still need 2(n?) queries to the strong
signal when forming a maximal independent set
(see 2). To circumvent this difficulty, we consider
another modification of KwikCluster by Bonchi
et al. (2013) where instead of picking a maximal
independent set, we pick ¢ vertices uniformly at ran-
dom and then pick an independent set from them.
The caveat of this approach is that some non-pivots
may not have any neighbor in the chosen pivot set,
and so these non-pivots are returned as singleton
clusters. This results in an algorithm which returns
a solution with cost at most 30 PT + O(n?/t). We
additionally modify this algorithm by incorporat-
ing the weak signal to further prune possible strong
signal queries. While this algorithm has an addi-

Algorithm 3 GetPivots(¢, Q)

Require: A bound on the number of sampled ver-
tices, t, the remaining strong signal budget, Q.

1: {v1,...,v} < t sampled vertices

2: P+ {1)1}

: fori > 2do

4 N; < WeakFilter(v;, P)

5. if FirstNeighbor(v;, N;, Q) = () then
6

7

(98]

P+ PU {Ul}
: return P

Algorithm 4 FirstNeighbor(v, N, Q)

Require: Input vertex, v, an ordered list of ver-
tices, IV, the remaining strong signal budget,
Q.
while Q > 0 and N # () do
u <— extract first vertex from N
Q+Q—-1

1:
2
3
4 if Og(v,u) =1 then
5
6:

return {u}
return ()

tive error for correlation clustering cost, it helps us
direct our queries to “impactful” portions of graph.
We now have all the ingredients for describing our
algorithm, KwikBucks.

KwikBucks first picks all pivots via random sam-
pling as shown in GetPivots: each sampled vertex
is added to the pivot set if it is not connected to the
current subset of pivots that is trimmed down by
WeakFilter (which uses the weak signal). Then, it
continues to assign non-pivots to clusters, through
AssignToClusters, which finds the first vertex
(FirstNeighbor) in the subset of ordered pivots
trimmed down by the weak signal via WeakFilter.
If no such vertex exists, then the vertex is assigned
to its own cluster, i.e., a singleton cluster. Note that
having a small ¢ (the number of sampled vertices)
helps query efficiency by functionally reducing the
set of vertices that the weak signal is applied to
(both when selecting pivots and when assigning to
pivots) and then further queried by the strong sig-
nal. This comes at the cost of a small additive error.
Our next theorem formally bounds the number of
queries and the effect of ¢ (proof in Appendix B).

Theorem 1. Under Assumption 1, KwikBucks uses
n +t+ 2ytm/n + 2vt>m/n? queries to Og to
achieve approximation 30PT + O(n?/t).

Our next corollary, considers the interesting case



Algorithm 5 WeakFilter(v, S)

Algorithm 6 WeakFilterByRanking(v, S, k)

1: Return O}, (v) N S

of a constant-size pivot set, i.e., t = 1/¢, which will
incur an additive error of en?. This can be thought
as the ‘right scale’ as we make a mistake on only
an ¢ fraction of all edges. We complement our
corollary by presenting a matching lower bound in
the appendix (Lemma 3) showing that Q(n+d~y/e)
strong signal queries are necessary to obtain the
guarantees of Corollary 1.

Corollary 1. Let d be the average degree of the
strong signal graph and suppose n is sufficiently
large (n > 1/¢). We can achieve approximation
3-OPT +en? with n + O(dy/e) queries to Og.

3 The Final Empirical Algorithm

We now extend the algorithm for the idealized
setting of Section 2 into a practical version of
KwikBucks for general weak signals, i.e. Definition
3. While this version does not satisfy Assumption
1 and hence does not have similar approximability
guarantees, it still retains some theoretical moti-
vation (sketched below), and is empirically very
successful (see Section 4).

The modifications we make for our practical al-

gorithm are based on the following natural induc-
tive bias: ‘similar’ edges according to the strong
signal are likely to have a high weak signal simi-
larity score. At a high level, we incorporate this
assumption throughout our algorithm design by
ranking potential queries to the strong signal ac-
cording to weak signal similarity values.
Weak Filter by Ranking The most noticeable
change occurs for WeakFilter: In our theoretical
modelling, it returns a subset of .S which intersects
with the noisy neighborhood returned by the cheap
oracle. For the general weak signal version (Def-
inition 3), we update the WeakFilter function to
instead rank the vertices in .S with respect to the
weak signal similarity to v and then output the top
k elements in S with the highest similarities (Al-
gorithm 6)). Intuitively, for a suitable parameter
k, the top k candidates capture many of the strong
signal neighbors of v in S. Indeed, we empirically
verify this in our experiments and show that pre-
dictive weak signals usually rank true strong signal
neighbors much higher compared to a random or-
dering. For our experiments we fix £k = 100 and
perform ablation studies on this parameter.

Require: Input vertex v;set S C V
1: w; < similarity of (v, u;) for all u; € S as
computed by weak signal
2: Sort elements of S in decreasing w; values
3: Return First k elements of new sorted order

To better understand the effect of this modifica-

tion, consider AssignClusters where non-pivot
vertices attempt to connect to a pivot. In our theoret-
ical modeling and in the classical KwikCluster al-
gorithm, each non-pivot vertex checks for a strong
signal edge among the list of pivots in an order-
ing which is fixed for all vertices. This ordering
can be thought of as the ordering inherited from
GetPivots. In contrast, WeakFilterByRanking
introduces a data adaptive ordering step where
each non-pivot vertex can re-rank pivots based on
weak signal similarities. As shown in Section 4,
this has a sizeable impact on the empirical perfor-
mance of our algorithm. In Section D.1, we explain
these gains by introducing a natural data model that
makes some well-motivated assumptions about the
relationship between the strong and weak signal, as
well as the inherent clusterability of the underlying
graph. Under this model, we prove that the quality
of the clustering after re-ranking is strictly better
than for the unranked filter.
Further optimizations. We make three additional
enhancements to KwikBucks. The first one sim-
ply sorts the non-pivots based on the maximum
weak signal similarity to the pivots so that ‘eas-
ier’ non-pivots are assigned clusters first which
improves query efficiency. The second one mod-
ifies the WeakFilterByRanking function slightly
by increasing the weak signal similarity value be-
tween a non-pivot v and a pivot p if p has ‘many’
nearest neighbors (in weak signal similarity) of
v already in its cluster. Finally, the last enhance-
ment introduces a post-processing step where we
potentially merge some clusters after our algorithm
terminates. As shown in Section D.2, this opti-
mization is motivated by a theoretical worst-case
example for KwikCluster. The merging step pro-
ceeds by first curating a list of clusters to consider
for merging based on the average weak signal value
between the two clusters and we sample a small
number of strong signal edges between potential
clusters to merge to determine if the pair is suit-
able for merging. Each of these optimizations is
described in detail in Section C.



4 Experiments

Datasets. We use 9 datasets, 8 publicly available
and 1 proprietary internal. Each dataset exhibits
different properties such as varying strong signal
graph densities and diverse strong and weak signals
to demonstrate the versatility of our method. We
provide high-level descriptions here and refer to
Section E for more details.

Four public datasets are comprised of text inputs:
Stackoverflow (SOF) (Xu et al., 2017), SearchSnip-
pets (Phan et al., 2008), Tweet (Yin and Wang,
2016) and AgNews (Rakib et al., 2020). For Stack-
overflow and SearchSnippets, we use word2vec
embedding similarities (Mikolov et al., 2013) as
the cheap signal and a large cross-attention based
language model as the strong signal. For Tweet
and AgNews, BERT embedding similarities (De-
vlin et al., 2018) are the cheap signal; the strong
signal of an input pair is the indicator variable of
the two examples belonging to the same class plus
a small amount of i.i.d. noise to prevent the forma-
tion of disconnected connected components, which
is the ‘easy’ case for KwikCluster !

The other four public datasets are comprised of
attributed graphs: Cora (Sen et al., 2008), Ama-
zon Photos (Shchur et al., 2018), Citeseer (Sen
et al., 2008), and Microsoft Medicine (Shchur and
Giinnemann, 2019). For Cora and Amazon photos,
node embedding (learned using deep graph info-
max (Velickovic et al., 2019)) similarities are the
cheap signal; the strong signal is generated simi-
larly to those of Tweet and AgNews. For Citeseer
and Microsoft Medicine, node attribute similarities
are the cheap signal and the existence/absence of
edges in the graph is the strong signal.

Moreover, we report results on a large propri-
etary dataset based on the shopping reviews of
a commercial website. We use internally devel-
oped (and finetuned) embedding based and cross-
attention based language models for the cheap and
expensive signals respectively; both models are
based on the publicly available language models
such as BERT and T5 (Raffel et al., 2020).

Baselines. Since our work is the first BCC algo-
rithm which utilizes both strong and weak signals,
we adapt algorithms from prior work, e.g. some
which only use a strong signal, to our setting. We
also propose several new algorithms as baselines.

Baseline 1: A variant of KwikBucks where we

'One can easily show that in such a case the classical
KwikCluster algorithm is able to recover OPT.

do not use the weak signal ordering computed in
Algorithm 6 when checking for a strong signal edge
between a node and a set of pivots. Rather we use
the the order the pivots were picked.

Baseline 2: Algorithm presented in (Garcia-
Soriano et al., 2020b; Bressan et al., 2019). It
follows the KwikCluster algorithm and uses the
strong signal to query edges. If the query budget
is depleted, the algorithm is terminated and any
remaining vertices are returned as singletons.

Baseline 3 /4: We compute a k-NN graph based
on the weak signal to narrow down the set of all
possible queries to a small set of relevant pairs.
Each edge of the k-NN graph is re-weighted (either
0 or 1) based on the strong signal. Baseline 3
runs the classic spectral clustering algorithm and
baseline 4 runs the vanilla KwikCluster algorithm
to completion on this graph.

Baseline 5: This baseline is inspired by the base-
line used in (Garcia-Soriano et al., 2020b). We
pick k random vertices and query their complete
neighborhood using the strong signal. & is again
chosen as high as possible within the allotted query
budget. Instead of running an affinity propagation
algorithm, which was already shown in (Garcia-
Soriano et al., 2020b) to be inferior to Baseline 2,
we run the vanilla KwikCluster algorithm.

Evaluation metrics. We evaluate our algorithm
and baselines based on the correlation clustering
objective (equation 1). For the purpose of evaluat-
ing metrics, we use all edges of the strong signal
graph in contrast to the duration of algorithm exe-
cution which we limit the access. In addition, we
compute the precision and recall of edges of the
strong signal graph. Given a clustering C, its preci-
sion is defined as the ratio between the number of
strong signal edges whose endpoints are together
in the same cluster and the total number of pairs
of vertices clustered together in C. The recall is
defined as the fraction of all strong signal edges
whose vertices are clustered together in some clus-
ter of C; see equation 2 and 3. We combine the
precision and recall into a single metric via the
standard F} score

Parameter configurations. Our algorithm has
two main parameters to select: ¢ in Algorithm 3
corresponding to the number of vertices we select
uniformly at random which is then pruned to form
the set of pivots, and k in Algorithm 6 correspond-
ing to the number of top vertices we select based
on the weak-signal similarity for the strong signal



Table 1: F values for a fixed budget of 3n to the expensive-strong signal, where n indicates the dataset size. For
Citeseer and Medicine, we use a budget of 50n as they have substantially sparse graphs. Winners are in bold and

second winners are underlined.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal | Avg.
B1 A3+ 73215 .02+0 T4+ 01 ST+ 44z .07 +01 .02+.00 .00+.00 .30
B2 28110  Blin  15:m T4+ 01 S8+13 53+ .09+ 01 .03+0 .05+04 .36
B3 33+07 70+04  21+03 .60+.04 Sd100 .66+05 .00+.00 .00+.00 - -
B4 Ol+o0  .0lxo  .03+00 .00+.00 Ol+0  .00+00 4601 25+00 .00+.00 .08
B5 .00+0 .00+00 .00+00  .00x00  .00x00 .00:+00 .04+ 01 .00+.00 .00-.00 .00
KwikBucks ‘ T2+05 92105 28:04  87ro0 82102 831w Alto 2900 d4+0 ‘ .59

to query. We pick both these parameters in a data-
driven manner. Thorough motivation and trade-offs
associated with both parameters are presented in
Section F.2; ablation studies of these parameters are
provided in our empirical results. Lastly, we always
reserve 10% of the query budget for performing the
merge post processing step. If the main algorithm
terminates with remaining budget, we correspond-
ingly increase the merge post processing budget to
incorporate this.

Results. We highlight key experimental themes
and defer additional details to Appendix F.

Superior performance over baselines: Table 1
shows that our algorithm outperforms the base-
lines in terms of the F) metric: it consistently
has the highest F; value for the fixed query bud-
get result displayed in Table 1. For example for
the SOF dataset, the best baseline has a 2.2x fac-
tor smaller F} value. Figures 1(a),(b) show the
CC objective and F7 score as a function of the
query budget for the SOF dataset. It shows that
our algorithm achieves a higher F} score and a
lower correlation clustering objective value with
only ~ 7 - 10® queries whereas the baselines re-
quire at least 25 - 10® queries to match KwikBucks
with 7 - 10? queries, showing the efficacy of our
algorithm with a 3.6x reduction in query complex-
ity. Intuitively, the weak signal allows us to make
clustering progress much faster by directing the
query budget to impactful strong signal queries af-
ter filtering using the weak signal. The results for
other datasets are deferred to Figures 3 and 4 in
the appendix which display qualitatively similar
behaviour. The strong signal graphs of Citeseer
and Medicine are quite sparse. Therefore for these
datasets, the trivial clustering of all singletons al-
ready achieves a very low CC objective score. As
argued above, in these cases the F score is a much
more meaningful measure of cluster quality. As

shown in Figures 4, our algorithm achieves supe-
rior F values compared to the baselines. Lastly we
note that the performance of our algorithm stabi-
lizes once it has exploited sufficiently many strong
signal queries. We note that B3 is omitted from the
CC objective value plots for clarity as it always had
much higher objective value than other algorithms.

Relative performance of baselines is dataset de-
pendent: As shown in Table 1, for many datasets
such as Cora, Search, and AgNews, B2 is the best
among our five baselines. However this does not
generalize across all datasets. As shown in Figures
4, B3 is the best baseline (with respect to the F}
score) for the Tweet and Photos datasets while B4
is the best baseline for the Citeseer and Medicine
datasets. B4 can be a competitive baseline in the
case where the strong signal graph is extremely
sparse, such as in Citeseer (see Figure 4). This
is because the weak signal k-NN graph is able to
recover many relevant edges of the (sparse) graph
if the weak signal is informative.

Varying weak signal performance: We perform
addition weak signal ablation studies with the SOF
and Search datasets. We replace the Word2Vec
(W2V) embeddings used in our cheap oracle with
tf-idf embeddings and fix all other components of
the algorithm. Figure 1(c) and 7 show the perfor-
mance of our algorithm on these datasets and in
both cases, the algorithm’s performance noticeably
worsens. The intuitive answer for why this is the
case is because the alternative weak similarities
computed from tf-idf embeddings are worse than
W2V embeddings at ranking strong signal neigh-
bors. We empirically verify this claim. For every
vertex v in the SOF dataset, we rank all other ver-
tices in decreasing weak signal similarities to v.
The average rank of the true strong signal neigh-
bors of v is then computed and this value is plotted
in a histogram for all vertices v in Figure 1(d). A
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Figure 1: (a) and (b) represent the CC objective and the F1-scores for the Stackoverflow dataset across various
query budgets. (c) compares performance across weak signals of various strength (Baseline 1 corresponds to a
random weak signal). (d) represents a (normalized) histogram showing average rank assigned to actual strong
signal neighbors by two different weak signals (lower is better). (e) represents an ablation study on some of the
main components of the algorithm. (f) represents a sensitivity analysis to the parameter corresponding to the

number of pivots selected.

‘good’ weak signal should rank actual strong sig-
nal neighbors much higher than non strong signal
neighbors. Indeed we observe this to be the case for
the W2V embeddings and this fact is qualitatively
captured the aforementioned figures which show
that W2V has superior F1 score plots. We also
observe that even the weaker tf-idf embeddings
still provide significant gains over not using a weak
signal. Overall, these experiments along with Base-
line B1 empirically verify that (1) the quality of the
weak signal correlates with the performance of the
algorithm, and (2) the two-oracle framework we
introduced is superior than the previously studied
single-oracle setting even when the cheap signal is
considerably weak.

Ablation studies. We perform ablation studies
on all tune-able parameters of our algorithm. A
sample of the ablation studies for SOF is shown in
Figure 1(e) and details of other results are presented
in Section F.4. We observe that removing any of the
main components of the algorithm (merging, order-
ing with respect to weak signal, and ordering with
respect to the statistics of the neighboring nodes)
deteriorates the performance of the algorithm, thus

all the introduced components are paramount in
KwikBucks. We also verify the role of the param-
eter ¢ corresponding to the number of pivots we
select for our algorithm in Figure 1(f). We observe
that both large and small choices for this param-
eters can be harmful, but choosing larger values
is a safer option compared to smaller values as it
asymptotically offers a similar performance as the
optimal value.

5 Conclusion

We introduced and studied a novel variant of
the (budgeted) correlation clustering algorithm
where besides having a limited query budget to
an expensive-strong oracle, one also has access
to a readily available cheap-weak oracle. We de-
veloped an algorithm for this setting with strong
theoretical motivations and demonstrated its strong
practical performance for text clustering. We an-
ticipate the proposed framework could become a
standard building block, especially for text cluster-
ing strategies.
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A Additional Related Works

In the realm of learning from multiple annotators,
there is a long line of work studying these both
empirically and theoretically. Empirical work on
this can be divided into two main streams: (1) each
labeler is coming from a different generative model,
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(2) each labeler is an expert over an unknown sub-
set of categories, (3) different labelers with quality
proportional to their cost. In the first case, the
learning algorithm focuses on learning parameters
of each labeler and then for each example decides
which labeler to query (Yan et al., 2011, 2012; Lin
et al., 2015, 2014; Fang et al., 2012). In the sec-
ond case, it uses data to measure the class-wise
expertise in order to optimally place label queries
(Ipeirotis et al., 2014; Donmez, 2008). In the last
case, empirical results comparing designed algo-
rithms to baselines are developed: active learning
from noisy data streams (Younesian et al., 2020),
active learning using diverse labelers (Huang et al.,
2017), and content segmentation for personal assis-
tants (Guha et al., 2015). Theoretical work looked
at the setting where the weak labeler made mis-
takes mostly in heterogeneous regions of space,
i.e., correct in label-homogeneous regions but may
deteriorate near classification boundaries. Differ-
ent formulations were considered in this setting:
non-parametric setting (Urner et al., 2012), fitting
classifiers in a hypothesis class (Zhang and Chaud-
huri, 2015), online selective sampling with appli-
cations in linear classifiers and robust regression
(Malago et al., 2014; Dekel et al., 2012).

The idea of judiciously utilizing an expensive
but accurate strong model with the help of cheaper
but noisier methods have already been success-
fully used in many practical and important do-
mains. In nearest neighbor search and informa-
tion retrieval, the dominant algorithmic paradigm
is to return multiple possible nearest neighbors us-
ing scalable methods and then re-rank the returned
points using exact distance calculations (which is
prohibitive to perform over the entire input)’. In
recommendation systems, the “standard practice
for machine learning-driven recommendations in
industry" (Wong, 2022) is driven by the two-step
procedure of cheaply retrieving a set of possible
candidates and iterating over them using a more
powerful but costlier ML models (Wong, 2022;
Bergum, 2022; Eder, 2022). Similar ideas are also
used in question answering and vision applications
(Zhong et al., 2017; Barz and Sonntag, 2021).

There has also been extensive work in incor-
porating additional predictions in algorithmic de-
sign for online algorithms (Bamas et al., 2020b;
Purohit et al., 2018; Lykouris and Vassilvitskii,

“We refer to http://ann-benchmarks.com/ for a large

collection of practical nearest neighbor search algorithms and
(Andoni et al., 2018) for a overview of theoretical works.


https://blog.twitter.com/engineering/en_us/topics/insights/2022/model-based-candidate-generation-for-account-recommendations
https://blog.twitter.com/engineering/en_us/topics/insights/2022/model-based-candidate-generation-for-account-recommendations
http://ann-benchmarks.com/

2018; Purohit et al., 2018; Gollapudi and Panigrahi,
2019), sublinear space and time algorithms (Chen
et al., 2022; Hsu et al., 2019; Eden et al., 2021),
and other algorithmic and data structural prob-
lems (Mitzenmacher, 2018; Bamas et al., 2020b,a;
Wei and Zhang, 2020; Jiang et al., 2020; Diakoniko-
las et al., 2021; Charikar et al., 2001; Antoniadis
et al., 2020a,b; Anand et al., 2022; Nguyen and
Diirr, 2021). We refer to the Algorithms-with-
Predictions website® for comprehensive references.
The high level motivations of these works is to ap-
ply predictions to aid in beyond worst-case analysis
of algorithmic problems. The prototypical exam-
ples of predictions used in these works include algo-
rithm parameter settings (for example ‘warm starts’
or ‘seeds’ which can be constructed from past in-
puts). Thus a common underlying assumption is
that many similar inputs are given so that predic-
tions are meaningful and feasible. Furthermore in
many of these works, the predictions are modeled
after particular problem settings in mind and the
inputs are always fully specified. In contrast, our
predictions are inspired by a particular application
domain, e.g. text clustering, which we connect to
CC, rather than motivating the predictions from a
purely algorithmic problem perspective. Further-
more, our predictions (e.g. queries from the weak
signal) help us learn about the true underlying input
(e.g. the strong signal graph).

We also give a detailed comparision to the work
of (Guha et al., 2015). While at a high level both
(Guha et al., 2015) and our work aggregate infor-
mation across various signals, the two works differ
in terms of the generality of oracles considered, the
formal guarantees given, and the problems stud-
ied. The oracles used in (Guha et al., 2015) are
highly specialized to the datasets at hand; for ex-
ample, the cheap oracle used in (Guha et al., 2015)
is an inverted index model which heavily relies
on the specifics of the datasets used. In contrast,
we take a broader view of weak and strong oracles
and present theoretically founded algorithms which
only assume query access to the weak and strong
model and not any particular model idiosyncrasies.
Therefore, our algorithm has provable guarantees
on both the approximation quality and the query
complexity, making it broadly applicable across dif-
ferent oracles. In terms of problems, we study cor-
relation clustering while the focus of (Guha et al.,

Shttps://algorithms-with-predictions.github.
io/
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2015) is not on a clustering problem. Rather, they
use hierarchical clustering as an intermediate prob-
lem to perform user modeling and do not consider
any specific clustering objective functions. The
strong signal queries made by our algorithm are
guided through formal reasoning and they exploit
the structure of the clustering problem we are study-
ing. In (Guha et al., 2015) the weak signal is used
at a more intuitive level and serves the informal
role of filtering possible strong signal queries with
no formal reasoning.

B Omitted Proofs of Section 2

Proposition 1. There exists a strong signal graph
G such that the KwikCluster algorithm makes
Q(n'5) strong signal queries.

Proof. Consider the case where the strong signal
graph consists of \/n cliques, all of size \/n. In
this case, every time KwikCluster picks a pivot, it
has to examine an existence of an edge from this
pivot to all the unassigned vertices. So for at least
the first \/n/2 times KwikCluster picks a pivot, it
has to make at least n/2 calls to Og , resulting in

Q(n'?) calls to Og. O
Proposition 2. Consider a variation of
KwikCluster, called KwikCluster”, which

for a chosen pivot p from uncovered vertices V',
only queries V' N Oy, (p) from strong signal. There
exists a graph G such that KwikCluster? still
makes Q(nz) strong signal queries in expectation
even when v = O(1).

Proof. Consider the following strong signal graph:
the graph G is comprised a fully connected clique
on 0.9n nodes. The graph also has 0.1n nodes,
called ‘outside vertices” which all connect to the
same 0.1n vertices in the fully connected clique but
have no edges between them. Suppose that O;V
returns the correct strong signal neighborhood for
vertices in the clique but for the outside vertices, it
returns an additional 2(n) arbitrary vertices among
the outside vertices.

Now consider the simulation of KwikCluster”
on (G. With constant probability, the first time a
pivot is picked, it comes from the clique vertices
which have no neighbors among the outside ver-
tices. Condition on this event. Now the algorithm
still needs to run until the outside vertices have
been selected in a cluster. However, every time
each such vertex is picked as a pivot, we need to
check over 2(n) erroneous vertices. Furthermore,
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removing an outside vertex v and its neighborhood
I'(v) does not remove any of the other outside ver-
tices. Thus it follows that the expected number of
queries made to Og, while still utilizing O, in
this natural variant of KwikCluster, is £2(n?) with
constant probability since there are 2(n) outside
vertices, each which requires 2(n) queries to Og.
Altogether, this natural algorithm can incur (n?)
queries, a super linear amount. O

Lemma 1. Let t be the parameter of GetPivots
(Algorithm 3). Algorithm 3 uses t + 2vt>m /n>
queries to Og.

Proof. Let T = {vy,...,v:} denote the set of ¢
sampled vertices in line 1 of Algorithm 3. Fix a ver-
tex v € T, we show that there are O(yt|E|/n + 1)
queries in expectation for such vertex. Let P; de-
note the set of pivots right before we start scanning
vertex v;. When we check for the neighbors of ver-
tex v;, we immediately stop if a strong signal neigh-
bor in P; is found. Let A(v;) = O, (v;) \ T'(v;)
be the vertices which O;’V errs on for query v; and
can result in needless calls to Og. The number of
expected calls to the strong signal is exactly the ex-
pected number of unnecessary calls E[| A(v;) N F;|]
plus one call that may result in the early stoppage in
line 4 of Algorithm 4. So for each v;, the expected
number of calls to Og can be bounded by

L+ E[|A(v;) N B[] < 1+E[|A(v:) N T
=1+ E,E[[A(vi) N T | v

t
<1+42E,E [|A[ Sy vi]
n

2t
<14+ =B, [[0w)]
2tym

=1 .
+ 2

Summing over all ¢ vertices in 7" results in the final

bound. ]
Lemma 2. Let P be the out-
put of GetPivots(t,Q), then
AssignToClusters(P,V \ P,Q)  makes

n + 2ytm/n queries to Og.

Proof. Consider a fixed vertex u € V '\ P. We
perform a similar analysis as in Lemma 1: ideally
S = O} (u) N P informs us the pivot which u
should connect to. However since the cheap or-
acle can be noisy, we can have many vertices in
(O (u)\T'(u)) N P. The number of queries to Og
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is at most |(O},(v) \ I'(«)) N P| + 1. It remains
to calculate the following expected value:

E[| (O (u) \T'(u)) N P[] <~ [T(u)| - %

Thus the total expected number of queries for
non-pivot vertices is

(1421 1)

AP+ E ST rw) <

u inV\P

>

ueV\P

Theorem 2 ((Bonchi et al., 2013)). Let T’ be the
maximal independent set formed by scanning ran-
domly sampled t vertices of a graph G. Then the
expected number of edges of G not incident with
an element of T union the neighborhood of T' in
G is at most n? /2t.

Proof. The bound on the number of queries to
Og. There are two tasks which require calls
to Og: forming the set of pivots in GetPivots
and assigning non-pivot vertices to a pivot in
AssignClusters. The expected number of queries
forGetPivots is handled by Lemma 1 and the ex-
pected number of queries for AssignClusters is
handled by Lemma 2.

We now need to bound the approximation guar-
antee. Consider the subgraph G’ of the strong sig-
nal graph which is the union of the pivots returned
by GetPivots and their neighborhood. Theorem 2
gives us that the number of edges not part of this
subgraph is at most O(n?/t) which can be charged
to the additive error incurred by our algorithm (all
vertices which do not have a strong signal edge to
any of the pivots are clustered as singletons). Now
on this subgraph note that we are exactly mimick-
ing the KwikCluster algorithm on G’. This is be-
cause the pivots of Get-Pivots are chosen from the
same distribution as the KwikCluster algorithm
since we ensure that all pivots chosen are not in the
neighborhood of previously chosen pivots. Thus
we obtain a 3- OPT guarantee on G’. To obtain the
final guarantee on the original strong signal graph,
note that the OPT clustering of G restricted to G
cannot be better than the OPT correlation cluster-
ing of G’. The result follows from considering our
additive error as well. O



We now show a lower bound on the query com-
plexity of our algorithm. First we recast the lower
bound result of (Garcia-Soriano et al., 2020b) in
the language of strong and weak oracles. They
show that any algorithm which only has access to
the strong signal must make (n3/(Ac?)) queries
to obtain a c- OPT +A correlation clustering objec-
tive guarantee. We can translate their lower bound
into our setting of strong and weak oracles by es-
sentially making the weak oracle useless through
a suitable choice of v. The lower bound shows
that for constant € and n large enough, Corollary
1 is optimal. First we formally state the guaran-
tees given by (Garcia-Soriano et al., 2020b) in our
language of strong and weak signals.

Theorem 3 ((Garcia-Soriano et al., 2020b)). For
2

any ¢ > 1 and A such that 8n < A < 557, any

algorithm finding a clustering with expected cost at

most c- OPT +A must make at least Q(n?/(Ac?))

adaptive strong signal queries.

Lemma 3. Let ¢ > Q(1/n) be sufficiently small.
In the worst case input, any algorithm must use at
least Q(n + dv) strong signal queries to obtain a
3- OPT +0O(en?) approximation to the correlation
clustering objective.

Proof. We recall the lower bound example of
(Garcia-Soriano et al., 2020b) (which is proved in
Theorem 4.1 in (Garcia-Soriano et al., 2020b)). Let
k = n?/(32¢A) (note that k < n by design). Their
worst case strong signal graph example consists of
k equal sized cliques and all vertices have degree
©(n/k). Now we consider the case where the weak
oracle is completely useless and always returns the
entire set of vertices on any query. This corre-
sponds to the case where v = ©(k) (for ~y defined
in Assumption 1). Now directly applying Theorem
4.1 of (Garcia-Soriano et al., 2020b) gives us that
any algorithm which only has access to the strong
signal must make at least Q(n®/(Ac?)) queries
to obtain a ¢- OPT +A correlation clustering ob-
jective guarantee. The theorem follows by noting
that if A = en? then any algorithm must make
Q(n/e) = Qn+k-n/k) = Q(n+dy) queries in
this worst case example, as desired. Note that the
valid range of € here follows from the restriction
on A so e > 8/n and cannot be larger than some
fixed constant. O
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C Additional Algorithmic Details for
Empirical Algorithm.

We provide additional details on the algorithm de-
sign of Section 3.

Algorithm 7 SortNonPivots(T,V \ T)

Require: 7', the set of pivots; V' \ T, vertices
which are not pivots
1: for verticesv € V' \ T'do
2: W, < Maximum weak signal similarity
between v and any vertex in T’
3: Return V' \ T sorted in decreasing w, values

Optimizing non-pivot order. Continuing on the
theme of ranking, once we curate the pivots, we
need to assign the non-pivots to a pivot. To do so,
we sort the non-pivots based on ‘easiness’ to assign
to a pivot. Hence we sort the non-pivots by the
maximum weak similarity to some pivot. This has
the effect of utilizing our query budget as efficiently
as possible as ‘easier’ non-pivots are checked first.
We re-rank the vertices V' \ P in SortNonPivots
before calling AssignClusters in KwikBucks.
Utilizing Weak Signal Neighborhood. We can
use strong signal queries that we have already
made for vertices in the weak signal neighbor-
hood to further optimize the sorting of the pivots
in WeakFilterByRanking. The inductive bias we
are using is that if many vertices in the immediate
weak signal neighborhood of a vertex v connect
to the same pivot p, then the likelihood v having a
strong signal edge to p is high. Thus to better uti-
lize our expensive query budget, we should query
(v, p) earlier than later. To make the intuition more
precise, we simply update the similarities to piv-
ots computed by v in WeakFilterByRanking to
account for the inductive bias. The new similarity
score w'p of a pivot p is equal to wy, the similarity
score between v and p computed by the weak sig-
nal, plus a term for the number of vertices in the
k-weak signal neighborhood of v that are already
connected to p:

/ j—

Wy

wp, + A(# of vertices in k-weak signal
neighborhood of v that are already

in p’s cluster)

This has the affect of ‘boosting’ some pivots to a
higher ranking. See Section F.2 for further details.



C.1 Details on Post-processing Merging

In this section we provide the details of our post-
processing merging strategy outlined in Section
3.

Let ', ..., C; be the clusters outputted by our
algorithm. First we curate a list of cluster pairs to
consider for merging. Then we rank the pairs in
terms of suitability for merging. Finally we enu-
merate over the pairs in the order computed (until
we run out of any query budget) and determine if
the pair should be merged. Each of the three steps
is described in detail below.

1. Curating pairs of clusters. It is prohibitive
to consider all pairs of clusters (which might
be super linear if there are many clusters). We
again appeal to the weak signal and construct
a k-nn weak signal similarity graph on the
vertices for some small k, such as &k = 20.
Then we only consider pairs of clusters which
are edges in the graph. More precisely, we
consider the pair (C;, C;) for merging if there
is some v € C; and u € C} such that (v, u) is
an edge in the k-nn graph. This narrows down
the number of pairs considerably.

. Ranking pairs by suitability. For each pair
(Cs, Cj) of clusters from the prior step, we
compute the average weak signal value be-
tween vertices in C; and C; respectively. We
then rank the pairs in decreasing order based
on this value.

. Determining if a pair should be merged. Fi-
nally, we enumerate over the pairs in the order
computed previously. Suppose we are decid-
ing if we want to merge the pair (C;, C;). We
must ensure the pair has a high number of
strong signal edges (more than 0.5 fraction).
To do so we simply sample a small number of
random pairs of vertices (say 20), one vertex
from each cluster, and estimate the fraction of
these random edges which are strong signal
edges.

D Theoretically Motivating Practical

Modifications of the Algorithm

In this section we provide theoretical justifications
for the practical modifications of our algorithm.
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D.1 Theoretically motivating raking pivots
by weak signal

In the classical KwikCluster algorithm and our
query efficient variant in the two oracle model of
Section 2, it is imperative that the pivots are se-
lected in a random order to provide theoretical guar-
antees on the quality of the computed clustering.
Specifically, the worst case theoretical guarantees
dictate that vertices must connect to the first pivot
in the random order which they have a strong signal
edge to.

Nevertheless, in our data driven optimization of
the algorithm, we choose an adaptive ordering of
the pivots for each vertex where the order is based
on the weak-signal similarity scores. We empiri-
cally observed that this ordering is superior to the
random ordering and achieves a higher clustering
quality while utilizing a > 3.5x factor or more less
strong signal queries. The explanation behind this
improvement is two fold:

1. Increased query efficiency: fewer strong sig-
nal queries are used when a vertex attempts to
connect to a pivot.

2. Maintaining cluster quality: connecting to
pivots with larger weak signal similarities are
high quality pivots.

The positive effects of the first point are straight-
forward to explain. Indeed, making the natural
assumption that higher weak signal similarities are
more indicative of a strong signal edge, checking
pivots in the weak signal ordering leads to less
queries wasted when a vertex attempts to connect
to a pivot. In addition to the empirical results of
Section 4, this point is further expanded upon in
Figure 7 and Section F.6.

Thus the main goal of this section is to provide
an intuitive and theoretically motivated understand-
ing of the second point. While it may not be true
that re-ranking pivots according to the weak sig-
nal similarities maintains the worst case guarantees
proved in Section 2, we study a natural data set
model where such a re-ranking provably helps. We
wish to capture our data driven observations that
pivots with larger weak signal similarities are of
high quality and larger weak signal values indicate
better cluster relationships.

In our experiments, the weak signal scores are
mostly computed using distances between embed-
ding vectors. If a weak signal is useful, then it



must have be predicative of the strong signal val-
ues, even if the weak signal is noisy. To mimic this,
we consider the following general family of data
sets:

* Each vertex v has an associated vector p, €
R, representing it’s ‘true” embedding repre-
sentation.

The weak signal values are computed accord-
ing to an appropriate distance measure d on
the embedding vectors (for example cosine or
Euclidean distances) plus a random noise term
¢ (expanded upon shortly). This models the
setting where the weak signals are helpful but
noisy signals as they only have noisy access
to the ‘true’ representations.

There exists a function f : R=0 — [0,1]
which gives the probability of a strong sig-
nal edge. More precisely, let p,, and p,, denote
the embedding of vertices v and u. Then the
probability of having the strong signal edge
(v,u) is given by f(d(v,w)). This is quite a
general formulation as it includes a wide array
of geometric or kernel similarity graphs for
appropriate choices of f and d.

For example, if f = exp(—x/c) and d is the Eu-
clidean distance, then the true strong signal graph
is the Gaussian kernel similarity graph where o is
the scale of the kernel. Intuitively, the closer u and
v are under the metric d, the higher probability f
assigns to the edge between v and v.

We additionally impose the following cluster-
ability assumptions on the data set. Our goal is
to capture a natural underlying cluster structure
which can be accessed via strong and weak sig-
nal queries. Vertices which are part of the same
underlying cluster should have higher weak sig-
nal similarity scores, even if the scores are noisy,
and the strong signal edges should be highly ac-
curate. Our model defined below satisfies these
intuitive criteria. Furthermore under our natural
model, there is a ‘true’ pivot for a vertex v, even
though v may have strong signal edges to other
pivots.

Our cluster assumptions on the data set is the
following.

1. The ‘true’ embedding vectors p, € R? can
be partitioned into k clusters such that all vec-
tors in a cluster are within distance R of each
other.
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. All embedding vectors in different clusters are
distance at least 2R from each other.

. The probability of a strong signal edge is at
least 1 — p for distances at most 2R and at
most p for distances at least 2R. We think of
p < 1/2 as a small parameter close to 0.

. Given inputs u, v, the weak signal outputs
d(pu, py) + & where £ is uniformly random in
[—R, R]. Thus smaller values are interpreted
as having higher weak signal similarity.

Note that we only have access to the strong and
weak signal values via queries and do not know
the true underlying embedding vectors p,,. We now
argue that the above assumptions are motivated and
natural.

* The assumption (1) gives a cluster structure to
the data and allows us to compare the classical
KwikCluster algorithm and our re-ranking
modification under natural clusterability as-
sumptions. The exact formulation we are em-
ploying is inspired by the works of (Awasthi
et al., 2012; Balcan and Liang, 2012; Ashtiani
et al., 2016) which study clustering under sim-
ilar proximity assumptions. For example, it
can be easily checked that the ‘margin’ prop-
erty assumption of (Ashtiani et al., 2016) di-
rectly implies our assumptions (1) and (2).

* Our assumption (3) is a natural and necessary
assumption on the function f as it ensures the
true strong signal graph captures the underly-
ing cluster structure of the inputs. This also
corresponds to picking an appropriate scale
parameter if f is a kernel function, for exam-
ple picking o in the Gaussian kernel. A judi-
cious choice of o ensures that the underlying
kernel similarity graph, which corresponds to
the strong signal, is able to capture the cluster
structure of the data set. Thus our assumption
that p < 1 ensures that the similarity graph
has strong inter-cluster connectivity while hav-
ing sparse connectivity across different clus-
ters. Indeed in practice, the kernel scale pa-
rameter is often picked using the ‘median’ rule
and thus 0 = O(R) is a natural choice which
ensures our choice of p.

* Our data set construction ensures that the
strong signal is ‘more powerful’ than the weak



signal. Indeed, the weak signal only has ac-
cess to the distances between the true em-
bedding vectors up to some additive noise as
stated in assumption (4). While the exact form
of the random noise is not very consequential,
we stick to the uniform noise model as it as
several desirable properties:

1. Given vertices v, u, w where u is in v’s
true cluster (according to the true em-
bedding vectors) and w is not, the weak
signal can potentially output a smaller
value on query (v, w) compared to (v, u).
Thus the weak signal incorrectly states w
is more similar to v than u due to the ad-
ditive noise. For example if d(v,u) = R
and d(v,w) = 2R, this happens with
probability 1/8. Therefore the weak sig-
nal accurately reflects our desired goal
of an indicative but noisy signal.

. The weak signal can be modeled by
fast nearest neighbor search algorithms
which return noisy nearest neighbor es-
timates. On the other hand, we imag-
ine the strong signal as being expensive
since it needs the true distances among
the embedding vectors without any addi-
tive noise.

We believe that this natural graph model we ex-
amined for our algorithm modification helps ex-
plain and predict the strong empirical performance
of our method. Thus our goal is to show that un-
der the above data set modelling, re-ranking piv-
ots based on weak signal similarity values prov-
ably helps. Assume that we have picked a pivot
u from each of the k clusters of Assumption (1).
We permute them randomly to form an ordering
U1, ..., ug. This corresponds to the random order-
ing used by the KwikCluster algorithm and our
theoretical algorithm of Section 2. Each non-pivot
vertex v re-ranks the pivots forming the ordering
Uz, (1)s - - - » U, (k) Where m, is a permutation de-
pending on the weak signal similarities from the
pivots to v. The weak signal similarities are cal-
culated as detailed above: the weak signal outputs
‘noisy’ distances based on the true embedding vec-
tors and smaller distances correspond to higher
similarities. Note that each non-pivot vertex v has
a ‘true’ pivot u corresponding to the pivot chosen
from the cluster that the true embedding vector
Py 1s part of. We say that a non-pivot vertex v is

18

correctly assigned by a clustering algorithm C if C
assigns v to its ‘true’ pivot. The following lemma
shows that assigning vertices to pivots based on
weak signal similarities strictly outperforms using
a random order.

Intuitively, if another pivot v/ is ranked higher
than « in the random ordering, our proposed medi-
cation of re-ranking asked on weak signal similari-
ties is likely to correct the ordering re-ranking u to
ahead. The lemma below provides theoretical justi-
fication of why this is sound and complements our
experimental evaluation which demonstrates the
empirical advantage of our re-ranking procedure.

Lemma 4. Consider the setting above. Let C be
the clustering where every non pivot vertex picks
the first pivot in this ordering that it has a strong
signal edge to. Let C' be the clustering where each
non pivot vertex re-ranks the pivots using weak
signal similarities then picks the first pivot that it
has a strong signal edge to. Let A be the number
of non-pivot vertices that C correctly assigns and
similarly define B. We have E[A] < E[B|.

Proof. Fix a non-pivot vertex v. Let X denote the
indicator variable for C correctly assigning v and
define Y similarly for C’. Tt suffices to show that
E[X] < E[Y]. The lemma then follows by linearity
of expectations and summing across all non-pivot
vertices v. Note here that the expectation of each
variable is with respect to the randomness used by
the respective algorithms.

Let u denote the true pivot of v. If v does not
have a strong signal edge to u (according to the
strong signal) then both algorithms will fail. Sim-
ilarly, if v only has a strong signal edge to v and
to no other pivots, then the performance of either
clustering is the same. Now consider the case that
v has at least two strong signal edges to pivots, one
to u and rest arbitrary. Then the probability that
v is correctly classified by the random ordering is
at most 1/2. This is because if there is at least 1
other pivot that v as a strong signal edge to, then
the probability that the random ordering places u
ahead of it is at most 1/2.

One the other hand, the probability that v is
correctly classified by the weak signal ordering
is strictly larger than 1/2. To see this, we calcu-
late the probability that v has the highest weak
signal similarity. Identically, it suffices to calcu-
late the probability that the weak signal outputs the
smallest noisy distance value for u. Recall the mod-
elling assumptions of the data set: we know that



d(v,u) < R whereas d(v,u') > 2R for all other
pivots u’ that are not equal to u. The weak signal
outputs d(v, u’) plus a uniformly random value in
[—R, R]. Let &, be the random value added for
d(v,u). With probability 1/2, this value is nega-
tive so the noisy distance computed by the weak
signal is strictly smaller for w than all other pivots
u’ (since in the best case, their distance is at least
2R — R = R). Furthermore, conditioning on the
additive noise being positive for u, there is a non-
zero probability that v has the smallest additive
noise (in absolute value) among all pivots. wu is
again ranked the highest in this case. Altogether,
the probability that v is ranked the highest in terms
of the weak signal similarity is strictly larger than
1/2. It follows that E[X] < E[Y], as desired. []

D.2 Explaining why merging helps

We consider a particular worst case example for
the KwikCluster algorithm which motivates why
a post processing merging step helps. At a high
level, it is possible to pick pivots which do not
have a strong signal edge but nevertheless ‘should’
belong to the same cluster. Then when we a cluster-
ing algorithm is run, these two pivots can possibly
lead to two disjoint clusters whereas that merging
them lowers the correlation clustering objective
and improves the overall clustering quality.

Concretely, consider the following example: we
have a complete graph on n vertices where every
edge is a strong signal edge except a single edge
(u,v) which is not. In the classical KwikCluster
algorithm, if u is picked as a pivot then we will
form two clusters, one consisting of all vertices be-
sides u and the the other cluster being the singleton
{u}. The same is true if we pick v to be the pivot.
Thus the expected correlation clustering objective
of the algorithm is

n

(n—l)+<1—1>-1—>3.

n
On the other hand, clustering every vertex to be one
cluster has correlation clustering objective value
1. Thus in the case where there are two clusters
in the above example, a merging post-processing
improves the overall cluster quality. This crisply
captures our motivation.

While the above situation may not be represen-
tative, our merging post processing verifies that
a possible merge is sound (after ranking possible
cluster candidates to merge using the weak signal)
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by querying a (small) number of strong single val-
ues and merging only if the average strong single
similarity is sufficiently high. Thus our post pro-
cessing merge routine can only help the overall
clustering.

D.3 Inherent Trade-offs Between Precision
and Recall

The goal of this section is to show that there is an
inherent tradeoff between precision and recall of
any clustering algorithm on graphs.We first restate
the definitions of precision and recall as defined in
our experimental section. Let G be an unweighted
(not necessarily complete) graph and let C be a clus-
tering of its vertices. The edges of G correspond
to the edges in the strong signal graph (i.e., the
edges are pairs of vertices the strong signal labels
as ‘similar.”). Correspondingly, the non-edges of G
represent the negative edges of the strong signal.

We first restate the definitions of precision and
recall as defined in our experimental section. The
recall of C is defined as the fraction of edges of
G which are together in some cluster given by C.
The precision of C is defined as the fraction whose
numerator is the number of edges of G which are
together in some cluster and the denominator is the
total number of pairs of vertices that are clustered
together.

We state a natural (random) graph dataset such
that with high probability, any clustering C has
either recall or precision bounded away from 1 by
a fixed constant. In particular, G will be sampled
from the standard G(n, 1/2) Erdos-Renyi graph
distribution. Note the order of the quantifiers: we
first generate a random graph. There is an event E/
which G satisfies with high probability. Condition
on this event, any clustering of the vertices of G
will either have its precision or recall bounded away
from 1, including the OPT correlation clustering.

Note that we have not made an attempt to op-
timize the constants in the following lemma for
clarity. It is likely that one can optimize our proof
and obtain a smaller constant than 0.75.

Lemma 5. Let G be sampled from the G(n,1/2)
distribution. ~ With probability at least 1 —
1/poly(n), all clusterings of G have recall or pre-
cision at most 0.75.

Proof. Let C' > 1 be a fixed constant. We first
consider the following event E : for any subset
S of vertices of size at least C'logn, there are at



most 1.01|S|?/4 and at least 0.99|S|? /4 edges of
G within S.

We now show that E holds with probability at
least 1 — 1/poly(n). For a fixed subset S of k
vertices for k > C'logn, the expected number
of edges within S is (})/2. Thus the probability
that there are more than 1.01k%/4 and less than
0.99k2/4 edges within S is at most exp(—ck?)
by a standard Chernoff bound for a fixed constant
c > 0. There are (Z) such choices of S and thus
union bounding over all S and all £ > C'logn, we
have that the probability there exists some set S
with |S| > C'logn vertices violating the required
number of edges is at most

Z (Z) exp(—ck?)
k>C'logn
ne\k
< Z 2(?> exp(—e2k?/6)

k>C'logn

k>C'logn
< n - exp(—Q(k%))

1
<
~ poly

(n)

for k > C'logn for a sufficiently large constant C
and n large enough. Thus P(E) > 1 — 1/poly(n)
where we can make the polynomial arbitrarily large
by increasing C'. We also condition on the fact that
G itself has at least 0.999n2 /4 edges with also hap-
pens with inverse polynomial failure probability.

Now consider an arbitrary clustering C. If the
recall of C is at most 0.75 then we are done so
suppose the recall is at least 0.75. Given this, we
claim that there exist a cluster within C of size at
least 0.74n.

To see this, let (1, - - - , C; be the clusters of C.
The clusters of size at most C'log n have at most
n - (Clogn)?/2 edges of G inside them. All other
clusters C; have at most 1.01|C;|?/4 edges of G
inside them. Altogether, the number of edges of G
inside some cluster is at most

>

|Ci|>Clogn

12
n-(Clogn)?/2 + LOLIGH

subject to the constraint that |C;| < 0.74n and
>-;1Ci| < n. This is a convex function which is
maximized at its boundary, meaning the number of

Z exp(log 2 + klog(ne) — klogk — ck?)
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edges of G5 inside some cluster of C is at most

1 1.01-0.74%n?
n-(Clogn)2/2+074- 1
2
< 0.75 - 0‘9929”

which contradicts the fact that the recall of C is at
least 0.75. Thus there exists a cluster of C of size
at least 0.74n. Now given this, we show that the
precision must be at most 0.75.

Towards this end, let C; be the cluster of C of size
at least 0.74n. It has at most 1.01|C;|?/4 edges of
G inside it and ('C;”) pairs of vertices. Let A be
the other edges of GG not inside C; and let B be the
total pairs of vertices where both of the vertices in
the pair lie outside of C;. Then the precision of C;
is bounded by

1.01|Cy|?/4 + A
(Gh+B

Since |C;| > 0.74n, one can easily verify that

1.01|C;|?/4 + B

1

8

|Ci
2

(0.26m)?
2

B <

and thus

12
LOC2/4+A _

(lcz’i\) +B (\C;il) +B
1.01|/C;|%/4 B
(9 (5 + 5B
B
<0.51 + 9B
< 0.75,
as desired. O]

D.4 Motivating Using Weak Signal
Neighborhood Statistics.

In Figure 2, we plot the the fraction of times a
vertex v connects to a pivot p in the KwikBucks
algorithm as a function of the number of nearest
neighbors of v (in terms of the weak signal simi-
larity) which have already connected to the same
pivot p.. We see that the probability increases as a
function of the number of nearest neighbors, empir-
ically justifying our algorithmic design optimiza-
tion of ‘Utilizing Weak Signal Neighborhood’ in
Section C. Note that this optimization has the affect
of slightly boosting such pivots p (if they exist) to
a higher similarity (and thus a better ranking).
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Figure 2: The propensity for a vertex v to connect to a pivot p given that k of v’s neighbors have already connected

to p.

E Details for Dataset & Weak/Strong
Signals

We provide a detailed description of the datasets
used in the paper as well as the weak and strong sig-
nals used for each of the datasets. Table 2 provides
a summary.

Stackoverflow (SOF) and SearchSnippets:
Stackoverflow and SearchSnippets are commonly
used for short-text clustering/classification. For
stackoverflow, we used a subset collected by (Xu
et al., 2017) consisting of of 20,000 question titles
associated with 20 different categories obtained
from a dataset released as part of a Kaggle chal-
lenge. For SearchSnippets, we used the dataset
from (Phan et al., 2008) which consists of 12,340
snippets (extracted from web search snippets) as-
sociated with 8 groups. For these two datasets, we
experimented with two different types of cheap
signals: word2vec embeddings (Mikolov et al.,
2013) and tf-idf embeddings. In both cases, we
trained/finetuned on the training set of the datasets.
We used the Gensim package (Rehurek and Sojka,
2011) for word2vec and sklearn (Pedregosa et al.,
2011) for tf-idf. Word2vec provides a vector rep-
resentation for each English word; to compute the
embedding for a sentence/document, we average
the embeddings of each of its words. For the strong
signal, for each dataset we finetuned a T5-1.1 XXL
model (11B parameters) (Raffel et al., 2020) on
the training data where given two examples, the
model was finetuned to predict if they belong to the
same cluster or not. In both cases, we sampled 10K
positive pairs and 50K negative pairs and finetuned
the model for 10 epochs on a 4x4 DragonFish TPU
architecture.

Twitter and AgNews: Twitter and News
data are commonly used for short-text cluster-
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ing/classification. From Twitter, we use the dataset
created by (Yin and Wang, 2016) consisting of
2,472 tweets with 89 categories. From News, we
use the data from (Rakib et al., 2020) which is
a subset of the dataset from (Zhang and LeCun,
2015) containing 4 topics. For the cheap signal,
we use pretrained BERT embeddings (Devlin et al.,
2018) where we feed each example into the BERT
model, obtain contextual token embeddings, and
then average them (ignoring the [CLS] and [SEP]
tokens) to obtain the embedding for each example.
We use the 12-layer uncased BERT-Base model
for this experiment. For the strong signal, we first
created a graph by connecting two nodes if they
belong to the same category, then added noise to
the graph by flipping the existence/non-existence
of an edge for 5% of node pairs selected uniformly
at random (note that without adding noise, the prob-
lem becomes much easier as graph of the strong
signal becomes composed of multiple connected
components).

Internal: This is a vertical of a large, internal,
proprietary text dataset. The weak signal is em-
bedding similarity, and the strong is an indicator
variable from a cross-attention model.

Citeseer and Microsoft Medicine: Citeseer
(Sen et al., 2008) and Microsoft Medicine (Shchur
and Giinnemann, 2019) are attributed graph
datasets. Citeseer is a citation network in which
nodes represent papers, edges represent citations,
and features are bag-of-word abstracts. Microsoft
Medicine is a subset of the Microsoft Academic
graph where the nodes represent authors, edges
represent co-authorship, and node features are a
collection of paper keywords from author’s papers.
For both datasets, we used the cosine similarity
between the node features as the weak signal and



we assume the edges of the graph correspond to the
strong signal.

Cora and Amazon Electronics Photos: Sim-
ilar to Citeseer and Microsoft Medicine, Cora
and Amazon Electronics Photos are also attributed
graph datasets. They are typically used for node
classification but here we adapt them to our prob-
lem. Cora (Sen et al., 2008) is a citation network
similar to the Citeseer dataset with the node labels
corresponding to paper topics. Amazon Electron-
ics Photos (Shchur et al., 2018) is a subgraphs of
the Amazon copurchase graph where the nodes
represent goods, an edge between two nodes repre-
sents that they have been frequently purchased to-
gether, node features are bag-of-word reviews, and
class labels are product categories. For these two
datasets, we used the deep graph infomax (DGI)
model (Velickovic et al., 2019) to learn unsuper-
vised node representations and used these repre-
sentations as the cheap signal. We also used noisy
labels as the strong signal similar to the Twitter
dataset.

Total cost analysis: Our work is mostly based
on the applications where the weak oracle values
are computed via distances based on embeddings
and the strong signal values are the output of a
large cross-attention transformer model. In this
case, there are three different factors that comprise
the total cost of the clustering algorithm: 1- the
cost of the queries to the strong signal, 2- the cost
of computing embeddings from the cheap signal,
and 3- the cost of geometric operations on the em-
beddings. So the total cost can be summarized as
follows:

Total Cost = ns(s + nele + nala

where ng represents the number of calls to the
strong signal, (g represents the cost of making a
call to the strong signal, g represents the num-
ber of calls needed to compute embeddings, (g
represents the cost of obtaining one embedding,
ng represents the number of geometric operations
(cosine similarity in our case) we perform on the
embeddings, and (¢ represents the cost of a single
geometric operation.

The number of calls ng required to obtain em-
beddings is  (i.e. the number of data points) which
is smaller than ng (which, in our case, is typically
a linear factor of n) and the cost (g of obtaining
one embedding is significantly smaller than the
cost of obtaining one strong signal similarity (g.
Therefore, np(r can be subsumed in 1g(g.
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When using 32 TPU v3 chips for the strong sig-
nal and a CPU for the geometric operations, each
call to the strong signal was approximately 10%
times slower (i.e. (g ~ 10%(¢). This gap becomes
even more stark if we use fast geometric algorithms
such as nearest neighbor search or use TPUs for
geometric operations. It follows from the analysis
of our algorithm that g € O(nk) where k is the
parameter defined in Algorithm 6. This is compara-
ble to ng. Therefore, ng(q is negligible compared
to ng(g in our experiments.

Following the above justifications, as well as for
theoretical simplicity, in this paper we ignored the
cost of querying the weak signal in our analysis (i.e.
assume np(p + nala =~ 0). However, if future
work considers costlier operations for the cheap
signal, these extra terms should also be considered
in determining the total clustering cost.

F Additional Experimental Results

F.1 Precision and Recall

The precision and recall (with respect to a cluster-
ing (') definitions used in Section 4 are defined as
follows:

Ze:(i,j) Ci,jOS(e)
Ze:(i,j) Cij

where C; ; is the indicator for if vertices 4, j are in
the same cluster.

Precision(C, Og) = 2

>e—(iy) CiiOs(€)
Ee:(i,j) Os(e)

As stated in (Garcia-Soriano et al., 2020b), while
our algorithm and baselines have been designed to
minimize the total correlation clustering objective,
it is important to consider precision and recall as
they are problem independent measures of cluster
quality. Furthermore in cases where the underlying
strong signal graph is extremely sparse, the corre-
lation cost objective might not be meaningful. For
example in such a case, returning all vertices as
singleton clusters already has low objective value
(equation 1). We use the entire strong signal graph
for the purposes of evaluating the experimental met-
rics, such as CC objective, precision, and recall.

Recall(C, Og) = 3)

F.2 Parameter Selection Details

We first describe how to select the value ¢ in Algo-
rithm 3 and & in Algorithm 6, which selects the top



Table 2: Properties of datasets used in our experiments. n denotes the number of vertices and Non-zero entries
denotes the number of non-zero entries in the adjacency matrix of the strong signal graph (i.e. twice the number of

edges), both rounded to two significant digits.

Name Type Weak Signal Strong Signal n Non-zero entries
SOF Text W2V / tf-idf Cross-attention model 4.9 - 10° 2.3-106
Search Text W2V / tf-idf Cross-attention model 3.3 - 103 2.0-106
Twitter Text BERT Embeddings  Noisy label indicator 2.4 - 103 4.7-10°
AgNews Text BERT Embeddings  Noisy label indicator ~ 8.0 - 103 1.8-107
Internal Text Embeddings Cross-attention model 1.0 - 10° 9.5-107
Cora  Attributed Graph ~ DGI Embeddings  Noisy label indicator 2.7 - 103 1.5-10°
Photos  Attributed Graph ~ DGI Embeddings  Noisy label indicator 7.7 - 103 1.2-107
Citeseer  Attributed Graph Node Features Adjacency matrix 3.3-103 10*
Med. Attributed Graph Node Features Adjacency matrix 6.3-10* 1.6 - 106

k vertices in weak-signal similarity for the strong
signal to query.

The intuition in picking ¢ is that it must be suffi-
ciently large so that only few vertices do not have a
pivot in their neighborhood (and thus contribute to
the additive error of Theorem 1). This parameter
naturally depends on the density of the underlying
strong signal graph: for sparser graphs, one must
pick a larger value of ¢ since each vertex on average
has a small degree and is thus less likely to have a
pivot chosen in its neighborhood than a vertex with
a larger degree. We use the above intuition to de-
sign the following data-dependent method to select
t: we first sample a sublinear number of random
strong signal edges (1/n strong signal edges to be
exact). This returns an estimate of the density of
the graph up to small additive error (for example
via standard Chernoff bounds). We then set ¢ to be
10 times the inverse of the density. If the density is
extremely sparse, i.e. less than 1/1000 fraction of
possible edges exist, we simply set ¢ to be equal to
n/2.

The second parameter we set is k in
WeakFilterByRanking. We can pick a value of
k < n because intuitively, a meaningful weak sig-
nal assigns a high similarity score to relevant pivots
relative to all other pivots and thus such pivots have
higher ranking. To understand the trade offs in se-
lecting k, consider the most prominent place where
itis used in our algorithm: when a vertex v attempts
to find a strong signal edge to one of the pivots by
iterating through them in the weak signal ordering.
The trade offs are the following: a smaller value of
k leads to better query efficiency as v is guaranteed
to only make k strong signal queries in this step.
However the clustering quality can suffer because
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the first k£ pivots, for a small %, in the weak sig-
nal order might not have a strong signal edge to v.
Conversely a larger value of k leads to increased
exploration from v as it attempts to connect to a
pivot. However in the case that v is truly a sin-
gleton cluster, i.e. it has no strong signal edges to
any pivot, we potentially waste many strong signal
queries. To balance these trade offs, we pick an
‘intermediate’ value of k& = 100 for all our exper-
iments. Ablation studies for both parameters are
given in Section F.

We also always set £ = 10 when we use the
“Utilizing Weak Signal Neighborhood" optimiza-
tion of Section 3. We also always fix A = 1/10
which appropriately normalizes the second term to
be between 0 and 1 (note the weak signal similar-
ity w,, is between —1 and 1). The parameter 10
here is fairly robust and can likely be replaced by
any (small) reasonable value and we also perform
ablation studies on this optimization.

For spectral clustering, we always use k = 25
for the number of clusters. Higher values were
computationally prohibitive to use.

F.3

We present additional experimental results in Fig-
ure 3 and 4 which show similar qualitative results
as Figure 1: our algorithm KwikBucks has superior
query complexity over the baselines as it achieves
a higher F} value (and lower CC objective values)
while utilizing fewer strong signal queries than
baselines.

Results

F.4 Additional Ablation Results

In our ablation experiments, we fix all parame-
ter settings except the component we are altering.
We perform ablation studies on 4 representative



Table 3: CC objective values are shown for a fixed budget of 3n. See Table 1 for the corresponding F} values.
We normalize the smallest CC value to 1.0 so smaller quantities are desirable. See Figures 3 and 4 for results as a
function of query budget. For the sparser graph datasets of Citeseer, Med., and Internal we use the budget of 507.
Due to their sparsity, the CC objective value is less meaningful than F}; values for these two datasets.

SOF Search Tweet AgNews Cora Photos Citeseer Medicine Internal
Bl 1.9 2.5 1.2 2.0 2.0 2.5 1.3 1.1 1.01
B2 1.8 2.0 1.2 2.0 2.0 2.4 1.3 1.1 1.04
B3 6.4 4.0 6.3 2.5 2.5 2.2 745.1 2550.8 -
B4 2.0 6.0 1.1 4.1 3.0 3.2 1.0 1.0 1.01
B5 2.0 6.0 1.1 4.1 3.0 3.2 1.3 1.3 1.01
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Figure 3: Empirical results for the Cora, Stackoverflow, Search, and News datasets.
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datasets: Cora, Citeseer, Stackoverflow (SOF), and
Search. Our first observation is that the merge post
processing procedure can help return a higher qual-
ity clustering, for example for the Cora, SOF, and
Citeseer datasets; see Figures 5 and 6 for details
and Section D.2 for theoretical intuition of why
post processing merging helps.

Next we consider removing the SortNonPivots
step and replacing it with an using an arbitrary
ordering of non pivot vertices. We see that the pos-
itive benefits of removing this component are more
subdued compared to the merge post processing.
However, this change never hurts the quality of
the clustering. Overall, we view the different data-
driven components introduced in Section 3 and C
as having complementary benefits as each optimize
a different part of the algorithm.

We observe that one must choose a sufficiently
large value of ¢ in GetPivots which is the initial
number of random vertices sampled which are later
processed to be pivots. As argued in Section F.2, it
is important to select a sufficiently large value of ¢
to limit the number of vertices which do not have a
pivot in their strong signal neighborhood (as cap-
tured by the additive error term in Theorem 1). For
our ablation studies, we consider two other settings
of ¢, one which is a factor of 10 smaller than the
choice used in our main experimental results and
one which is a factor of 10 larger. They represent
the ‘Small’ and ‘Large’ pivot choices respectively.
We see in Figures 5 and 6 for the Cora and Citeseer
datasets, that a smaller choice of ¢ can lead to a
decrease in the performance of our algorithm. Nev-
ertheless, our data driven density based approach
outlined in F.2 hits the ‘sweet spot’ and performs
comparable to the best choice of pivots in all cases
as shown in Figures 5 and 6.

We also perform ablation experiments on the
choice of k in WeakSignalFilterPractice by
considering k = 10 and k¥ = 1000 (a ‘small’ and
‘large’ choice respectively as before). Our abla-
tion experiments also show that a large choice of k&
in WeakSignalFilterPractice can lead to many
queries wasted as argued in Section F.2. Indeed, we
see in the above figures that for the Citeseer dataset,
a large value of k leads to worse performance ini-
tially as we waste many strong signal queries on
vertices which have no strong signal edge to any of
the pivots. This is due to the sparse nature of the
Citeseer dataset. However as the query budget is
increased, the quality of the clustering improves.
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The choice of k seems to have negligible impact on
the other datasets we tested on and our choice of
k = 100 (which we fixed in the main experimental
results) was always competitive.

FE.5 Measuring the Quality of Weak Signals

We design a simple and informative experiment to
measure the quality of weak signals. For the Stack-
overflow (SO) dataset, we run KwikBucks where
we replace the weak signal with a linear interpola-
tion of the strong signal and a random matrix will
all entries i.i.d. from the uniform distribution in
[—1, 1]. The purpose of this experiment is to show
a higher quality weak signal gives better clustering
results than using a lower quality weak signal. In-
deed, Figure 8 shows that KwikBucks performs the
best if we replace the weak signal completely with
the strong signal, as naturally expected. As we vary
the amount of randomness in the weak signal, the
performance degrades and the case where the weak
signal is a fully random matrix performs the worst
as a function of query budget. It is also interest-
ing to consider the cases where the weak signal are
given by the (stronger) W2V model versus the com-
paratively weaker tf-idf model: the performance
of using the W2V embeddings for the weak signal
lies between the ‘half-random’ and ‘2/3 random’
case whereas the tf-idf plot lies between the 2/3
random’ and ‘fully random’ cases. The random in-
terpolated weak signal cases, while artificial, help
us qualitatively access the usefulness of a particular
real world weak signal instance.

F.6 Average Rankings of Strong Signal
Neighbors

In this Section we present additional experiments
in the similar spirit as the right figure of the sec-
ond row of Figure 1 for the Tweet, Med., and Cora
datasets. For every vertex v in these datasets, we
rank all the other vertices in decreasing weak signal
similarities to v. The average rank of the true strong
signal neighbors of v is computed and plotted as a
histogram (normalized to be a distribution). Intu-
itively, a good weak signal should have the property
that true strong signal neighbors have much higher
weak signal similarity scores (and thus better rank-
ings) than the an arbitrary vertex. Indeed, we see
that to be the case of the datasets in Figure 9 where
the distributions are much more left shifted and has
a much smaller mean compared to the case if the
weak signal was fully random. This validates the
connection between our empirical weak signal Def-



inition 3 and the theoretical assumption we made
for the weak oracle in Assumption 1. Indeed, Fig-
ure 9 gives empirical validation to the claim that
returning a top k£ most similar vertices to a vertex
v in terms of weak signal similarity captures many
actual true strong signal neighbors.
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Figure 4: Empirical results on the datasets omitted from Figure 3. The results are qualitatively similar to that of
Figure 3.
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Figure 5: Figures for ablation studies for Cora and Citeseer datasets.
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Abstract

Due to the high costs associated with finetuning
large language models, various recent works
propose to adapt them to specific tasks with-
out any parameter updates through in-context
learning. Unfortunately, for in-context learn-
ing there is currently no way to leverage unla-
beled data, which is often much easier to ob-
tain in large quantities than labeled examples.
In this work, we therefore investigate ways to
make use of unlabeled examples to improve the
zero-shot performance of pretrained language
models without any finetuning: We introduce
Semantic-Oriented Unlabeled Priming (SOUP),
a method that classifies examples by retrieving
semantically similar unlabeled examples, as-
signing labels to them in a zero-shot fashion,
and then using them for in-context learning. We
also propose bag-of-contexts priming, a new
priming strategy that is more suitable for our
setting and enables the usage of more examples
than fit into the context window.

1 Introduction

In recent years, there has been a trend in NLP to-
wards larger and larger language models (LMs)
(Radford et al., 2018, 2019; Raffel et al., 2020;
Brown et al., 2020; Fedus et al., 2021). Different
from prior pretrained LMs that are typically fine-
tuned for specific downstream tasks using labeled
training datasets (Devlin et al., 2019; Liu et al.,
2019), recent work proposes to use such large mod-
els in zero- or few-shot settings without any fine-
tuning (Brown et al., 2020; Sanh et al., 2021) due
to the often prohibitive costs associated with train-
ing, storing and deploying large models (Strubell
et al., 2019). In particular, Brown et al. (2020) pro-
pose priming where training examples are simply
provided as additional context together with test
examples; this in-context learning does not require
updating the parameters of the model.

In prior work on in-context learning, only la-
beled examples are used for priming (Brown et al.,
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Up
) x = Not worth watching. E(x)
[
[
. - p(good) = 0.3
(2) Not worth the time! The movie is [MASK].
p(bad) = 0.7

Not worth the time! The movie is bad. o p(good) = 0.1
Not worth watching. The movie is [MASK]. p(bad) = 0.9
(3)
The movie is o p(good) = 0.3
Not worth watching. The movie is [MASK]. p(bad) = 0.7

Figure 1: Schematic representation of the steps involved
in SOUP for binary sentiment classification of movie
reviews. (1) Semantic Search: For a given input =, we
retrieve semantically similar, unlabeled examples from a
set Up using a sentence encoder E. (2) Self-Prediction:
We obtain zero-shot predictions for all similar examples
using natural language prompts. (3) Bag-of-Contexts
Priming: We use the retrieved examples along with
their most probable labels one at a time as in-context
examples to obtain predictions for x; the resulting dis-
tributions over possible labels are finally averaged.

2020; Lu et al., 2021; Kumar and Talukdar, 2021;
Min et al., 2021; Jiang et al., 2021). But in many
settings, these are extremely scarce or even entirely
unavailable, while unlabeled examples can easily
be accessed. Unfortunately, there is currently no
way to leverage unlabeled examples for priming.
Other approaches for leveraging unlabeled data
such as domain-adaptive pretraining (Gururangan
et al., 2020) would again require finetuning.

Therefore, we investigate how we can make use
of unlabeled examples to improve the performance
of large-scale language models without requiring
changes to their parameters: We propose a self-
supervised method called Semantic-Oriented Unla-
beled Priming (SOUP), which uses unlabeled exam-
ples for in-context learning. Following the observa-
tion that semantically similar examples are better

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 32-38
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candidates as in-context examples than dissimilar
ones (Gao et al., 2021a; Liu et al., 2021), we first
retrieve the semantically most similar unlabeled
examples as contexts for a given input; then, we
query the language model to obtain predictions for
these unlabeled examples, and finally provide them
along with their most likely labels as additional
context. Intuitively, this approach is particularly
helpful whenever the retrieved examples are easier
to classify then the actual input of interest.

Whereas in prior work, the in-context examples
and test example are usually concatenated to form a
single input that is provided to the LM, we propose
to use one in-context example at a time and com-
pute a weighted average of the so-obtained label
distributions to obtain a final prediction. Besides re-
sulting in much better performance, one benefit of
this methods is that we are no longer constrained by
the maximum sequence length of the used LM and
thus, more neighbors can be used for priming than
with the usual, concatenation-based approach. We
also investigate an iterative variant of our approach
where predictions for unlabeled examples are it-
eratively improved with SOUP. On four English
text classification datasets, we show that SOUP im-
proves performance of pretrained LMs.

2 Related Work

First proposed by Brown et al. (2020), in-context
learning has been studied by many recent works
(Lu et al., 2021; Kumar and Talukdar, 2021; Min
et al., 2021; Jiang et al., 2021). Concurrent with
our work, Min et al. (2021) also propose to perform
priming with individual examples and combine the
resulting predictions; however, they use a differ-
ent combination technique and, similar to all prior
work on in-context learning, only investigate set-
tings with labeled examples. Our approach is also
related to various approaches that leverage unla-
beled data in few- or zero-shot settings (Xie et al.,
2019; Gururangan et al., 2020; Schick and Schiitze,
2021a), but all of them require finetuning the un-
derlying language model.

We make use of different Transformer-based sen-
tence encoders (Reimers and Gurevych, 2019; Gao
et al., 2021b) and of textual instructions to im-
prove model performance, an approach that was
first proposed by Radford et al. (2019) and has
since been investigated extensively (Schick and
Schiitze, 2021a,b,c; Gao et al., 2021a, i.a.).
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3 Semantic-Oriented Unlabeled Priming

We introduce Semantic-Oriented Unlabeled Prim-
ing (SOUP), our approach for in-context learning
with unlabeled examples. To this end, let M be a
masked language model (Devlin et al., 2019) where
for some sequence of tokens t¢1,...,%; that con-
tains exactly one mask token, M (t | t1,...,1t)
denotes the probability that M assigns to ¢ at the
masked position.! Further, let E be a sentence
encoder where E'(z) denotes the representation as-
signed to by E, and Dy be a set of unlabeled
examples. We consider a text classification setup
where for a given input x, a label y from a set Y
has to be predicted.

Obtaining predictions for = with SOUP consists
of the following steps:

1. Semantic Search: We search for unlabeled
examples that are semantically most similar
to x using the sentence encoder E.

. Self-Prediction: We use M to obtain predic-
tions for these neighboring examples.

. Bag-of-Contexts Priming: We use the neigh-
bors and their estimated labels as additional
context for priming M and compute an av-
erage of the resulting label distributions to
obtain a final prediction for x.

3.1 Semantic Search

Similar to prior work (Gao et al., 2021a; Liu et al.,
2021), the unlabeled examples x,, € Dy are en-
coded to obtain vector representations F(x,,); this
can be done in advance for the entire set Dy;. We
also compute the representation e(x) of our test ex-
ample and use semantic search to find the k nearest
neighbors of x according to a specific similarity
measure (e.g., cosine similarity). We denote the set
of neighbors as N, = {z1,...,xx} C Dy.

3.2 Self-Prediction for Unlabeled Examples

We use M to predict the label distribution for each
x; € N, which is done similar to prior work by
providing a short prompt and assigning meaning-
ful names to all labels (e.g., Radford et al., 2019;
Schick and Schiitze, 2021a,c). We use the same
notation as Schick and Schiitze (2021a,c) in that
we make use of a pattern P that converts inputs x
into cloze questions P(x) containing a single mask,

"We focus on masked language models, but our approach
can easily be transferred to autoregressive language models.



and a verbalizer v that maps each label y € Y to
a single token v(y) representing its meaning. We
define the probability of y being the correct label
for x based on M (v(y) | P(x)), the probability
that M assigns to v(y) at the masked position in
P(x). We normalize this probability and set

M (v(y) | P(x))
M (v(y) | P(e))

with ¢ denoting an empty sequence following prior
work (Brown et al., 2020).

py | ) o« ey

3.3 Priming

Let N, = {(z;, g)i)}le be the selected in-context
neighbors with their predicted labels. Based on
these semantically similar examples, we want to
obtain a prediction for x. In the following, let P(xl)
denote P(x;) with the mask token replaced by ;.

Concatenation Priming Previous work usually
provides all in-context examples at a time to the
LM. That is, all examples are concatenated fol-
lowed by the test example to obtain the input
¢ = [P(21), P(22),..., P(x},), P(x)], which is
provided to the LM to get the final prediction. We
refer to this variant as CONCAT priming.

Bag-of-Contexts Priming We propose bag-of-
contexts (BOC) priming where instead, we only
use individual examples for priming and prediction
each time and then compute the average of the
resulting label distributions as the final prediction.
The key advantage of this method lies in the fact
that it allows us to use more examples than fit in
the context window of the used model.

For each in-context example x; € N, we con-
struct a corresponding context ¢; = [P(x;); P(z)],
similar to CONCAT with k = 1. For each ¢;, we
then use the LM to obtain a distribution ¢;(y) over
possible labels y € Y for x, where we employ nor-
malization analogous to Eq. 1. Finally, we make
use of a weighting function w(z;) : N — R™ and
compute

D w(wi) - aiy)

i=1

ar(y) = 2

N

with Z = Zle w(z;). We obtain the final predic-
tion for z as § = argmax,cy qr(y). We experi-
ment with the following two weighting functions.
uniform: w(xz;) = 1. similarity-based: w(x;) is
the cosine similarity between z; and x.
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3.4 Iterative SOUP

We also experiment with an iterative variant of
SouP where the labels for the unlabeled examples
in Dy are iteratively refined. To this end, we treat
each example x,, € Dy as a test example: We
use SOUP to reclassify z,, with Dy \ {x,} as the
set of unlabeled examples. This means for each
example =, we select in-context neighbors from
Dy \ {z,} as priming contexts to allow us to refine
the prediction for x. We can repeat this process for
multiple iterations.

4 Experiments

Datasets We evaluate SOUP on four English
datasets: IMDb (Maas et al., 2011) and Yelp Re-
views (Zhang et al., 2015) for sentiment analy-
sis as well as AG’s News and Yahoo Questions
(Zhang et al., 2015) for text categorization. For
each dataset, we use one of the the patterns and ver-
balizers introduced by Schick and Schiitze (2021a);
further details can be found in Appendix A. For
IMDb, the unlabeled in-context examples are se-
lected from the training set of SST-2 (Socher et al.,
2013) following Liu et al. (2021). For all other
datasets, the in-context examples are obtained from
the respective training sets.’

Experimental Setup For our main experiments,
we use ALBERT-xlarge-v2 (Lan et al., 2020) as
underlying LM and paraphrase-MiniLM-L6-v2
(Reimers and Gurevych, 2019) as sentence encoder.
As the context window of ALBERT is 512 tokens,
we truncate each example to 120 tokens for CON-
CAT. To enable a fair comparison between both
priming strategies, we also set the maximum to-
ken number for BOC to 120. We compare SOUP
to zero-shot performance using only the patterns
and verbalizers (“prompt only”), similar to Radford
et al. (2019) and Schick et al. (2021). We do not
compare to other baselines as we are not aware of
other approaches that enable leveraging unlabeled
data in zero-shot settings without finetuning. For
iterative SOUP, we use 3 iterations to improve the
labels assigned to unlabeled data.

Results As shown in Table 1, when using CON-
CAT with £ = 3, our method clearly performs
worse than the prompt-only baseline. However, us-
ing our proposed BOC approach consistently out-

%To ensure a resource-friendly evaluation, we restrict both
the unlabeled sets and the test sets to a maximum of 10,000
randomly selected examples.



k w(z;) AG’s Yahoo IMDb Yelp Sentence Encoder AG’s Yahoo IMDb Yelp
Prompt only - - 66.01 48.04 72.67 43.37 paraphrase-MiniLM-L6-v2 69.70 52.67 72.97 46.21
Soup (Conc.) 3 —  43.88 21.96 54.71 29.56 msmarco-bert-base-dot-v5  69.93 53.04 74.47 45.82
5 unif. 6818 4564 6330 4043 unsup-simese-roberta-large  69.76 52.40 73.90 45.19
sim. 68.18 45.57 68.31 40.43 )
Soup (BoC) 10 unif. 69.64 4993 71.03 44.05 Table 3: Soup (ALBERT-xlarge-v2, k = 50, uniform
sim.  69.74 49.98 71.01 43.93 weighting) is robust to choice of sentence encoder.
50 unif. 69.70 52.67 7297 46.21
sim.  70.00 52.56 72.95 46.20
iSoup (BoC) 50 unif. 69.88 4522 73.78 45.79 size for both methods. With exception of ALBERT-

Table 1: Accuracy with zero-shot prompting, SOUP with
CONCAT and BOC as well as iterative SOUP (iSOUP)
using different numbers of neighbors (k) and both uni-
form (“unif.”) and similarity-based (“sim.”) weighting.

Size Method AG’s Yahoo IMDb Yelp
xlarge  Promptonly 66.01 48.04 72.67 43.37
xlarge ~ SOUP 69.70 52.67 7297 46.21
xxlarge Promptonly  73.51 57.890 76.67 45.84
xxlarge SoUP 74.89 61.82 79.54 41.00

Table 2: Performance of a prompt-only baseline and
Soup with k£ = 50 and uniform weighting using differ-
ent model sizes

performs not only priming with CONCAT by a large
margin, but also leads to consistent improvements
over our baseline on three out of four datasets for
k > 10. Moreover, performance grows consis-
tently with the number of in-context examples, with
k = 50 resulting in improvements for each dataset
considered. On average, similarity-based weight-
ing leads to negligible gains over uniform weight-
ing. For our iterative variant of SOUP, we therefore
only experiment with uniform weighting; iterative
SouP leads to slight improvements for two tasks,
but performs much worse than SOUP for Yahoo.

5 Analysis

We examine the influence of both increasing the
language model’s size and replacing the Sentence
Transformer with different encoders on the per-
formance of SOUP. We also briefly discuss the
efficiency of our method.

Model Size We first focus on the impact of model
size on the performance of SOUP; to this end, we
also evaluate our method (with £ = 50 and uni-
form weighting) and the prompt-only baseline us-
ing ALBERT-xxlarge-v2 (Lan et al., 2020), a model
that is about four times as large as ALBERT-xlarge-
v2. As shown in Table 2, for our prompt-only base-
line performance consistently improves with model
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xxlarge-v2 on Yelp, for which our method surpris-
ingly leads to worse performance, SOUP consis-
tently outperforms the baseline method.

Sentence Encoder We also investigate the im-
pact of the sentence encoder on downstream task
performance. As paraphrase-MiniLM-L6-v2 was
trained on a mixture of tasks that has some over-
lap with the tasks we evaluate on, we additionally
consider msmarco-bert-base-dot-v5 (Reimers and
Gurevych, 2019), a model that was trained exclu-
sively on MS MARCO passages (Bajaj et al., 2018),
and unsup-simcse-roberta-large (Gao et al., 2021b),
an encoder that was trained in a fully unsupervised
fashion. As can be seen in Table 3, the choice
of sentence encoder has little influence on perfor-
mance, illustrating that performance improvements
do not come from the encoder being pretrained on
downstream task data.

Efficiency One disadvantage of our approach is
that the number of required forward passes grows
linearly with k. After precomputing encodings and
labels for Up, classifying a single example with
k = 3 took about 0.6s using a single NVIDIA
GeForce GTX 1080Ti; for kK = 10 and k& = 50,
the required times were 1.5s and 6.8s. However,
performance can be improved a lot with decoder-
only LMs (e.g., Radford et al., 2018, 2019; Brown
et al., 2020), as this enables the precomputation of
contextualized representations for each x,, € Up.

6 Conclusion

We have presented SOUP, a method for unlabeled
priming that classifies inputs by retrieving semanti-
cally similar unlabeled examples, classifying these
examples in a zero-shot fashion and providing them
as additional contexts for in-context learning. Be-
yond that, we have proposed a new priming strategy
that leads to much better performance and scales to
more than just a few examples. We have shown that
with sufficiently many retrieved examples, SOUP
consistently leads to improved performance.
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A Dataset Details

For each task except IMDb, we use one of the
patterns and verbalizers introduced by Schick and
Schiitze (2021a). In the following, we describe in
detail the patterns and verbalizers used.

IMDb For the IMDb Large Movie Review
Dataset (Maas et al., 2011), the task is to estimate
the binary sentiment of a movie review based on
the review’s text. We use the following pattern and
verbalizer for an input review a:

P(a) = a. The movie is [MASK].
v(0) =bad (1) = good

Yelp For the Yelp Reviews Full Star dataset
(Zhang et al., 2015), the task is to estimate the
rating that a customer gave to a restaurant on a 1-to
5-star scale based on their review’s text. We use
the following pattern for an input text a:

P(a) = a. In summary, the restaurant is [MASK].

As a verbalizer v, we define:

v(l) =terrible v(2) =bad  wv(3) = okay
v(4) = good v(5) = great

AG’s News AG’s News (Zhang et al., 2015) is a
task to classify a news article as belonging to one
of the categories World (1), Sports (2), Business
(3) or Science/Tech (4). We define the following
pattern for an input news text a:

P(a) = a. News Category: [MASK].

Intuitively, we use a verbalizer that maps 1-4 to
“World”, “Sports”, “Business” and “Science”, re-
spectively.

Yahoo Yahoo Questions (Zhang et al., 2015) is a
text classification dataset. Given a question and an
answer, the text has to be classified to one of ten
possible categories. We make use of the following
pattern for a input question @ and an answer b:

P(a,b) = a b. Question Category: [MASK].

Our verbalizer maps labels 1-10 to the tokens “So-
ciety”, “Science”, “Health”, “Education”, “Com-
puter”, “Sports”, “Business”, “Entertainment”,
“Relationship” and “Politics”.
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Abstract

In this paper, we introduce the range of
oBERTa language models, an easy-to-use set
of language models which allows Natural Lan-
guage Processing (NLP) practitioners to obtain
between 3.8 and 24.3 times faster models with-
out expertise in model compression. Specifi-
cally, oBERTa extends existing work on prun-
ing, knowledge distillation, and quantization
and leverages frozen embeddings, improves
distillation, and model initialization to deliver
higher accuracy on a broad range of transfer
tasks. In generating oBERTa, we explore how
the highly optimized RoBERTa differs from the
BERT for pruning during pre-training and fine-
tuning. We find it less amenable to compres-
sion during fine-tuning. We explore the use of
oBERTa on seven representative NLP tasks and
find that the improved compression techniques
allow a pruned oBERTa model to match the
performance of BERTy,s. and exceed the per-
formance of Prune OFA Large on the SQUAD
V1.1 Question Answering dataset, despite be-
ing 8x and 2x respectively faster in inference.
We release our code, training regimes, and as-
sociated model for broad usage to encourage
usage and experimentation. '+

1 Introduction

The massive improvement in contextual word rep-
resentations driven by the usage of the Transformer
architecture (Vaswani et al., 2017) has led to the
wide-scale deployment of language models. These
models are customized for various use cases and
tasks like question answering, sentiment analysis,
information retrieval, and document classification
and deployed into general domains and special-
ized domains such as financial, medical, and legal.
While these models are effective, they commonly

"https://github.com/neuralmagic/sparseml/
Zhttps://sparsezoo.neuralmagic.com/
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Figure 1: Performance of Sparse Language Models on
the SQUAD V1.1 (Rajpurkar et al., 2016a) compared to
an uncompressed BERT},q5e (Devlin et al., 2019) with re-
lation to realized inference improvements with regards
to mean latency with a batch size of 1.

contain hundreds of millions of parameters, which
can lead to slow inference times without using
specialized hardware accelerations like graphics
processing units (GPU) or Tensor Processing Units
(TPU). Without hardware acceleration, the infer-
ence on CPUs can be slow and impractical for
real-world deployments.

Approaches such as knowledge distillation (KD)
(Hinton et al., 2015), quantization (Zafrir et al.,
2019), and pruning (Kurtic et al., 2022) have been
leveraged to improve model efficiency and, when
paired with specialized inference engines?, it is
possible to accelerate inference times on CPUs
and GPUs significantly. While there has been sub-
stantial effort to create effective methods for com-

3https://github.com/neuralmagic/deepsparse
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pression (Jiao et al., 2020; Sun et al., 2020) and
improved model performance (Liu et al., 2019),
general users of language models have been slower
to adopt these methods. Years after its release, the
original BERT},s uncased (Devlin et al., 2019) is
still the most popular language model *, followed
by the slightly compressed DistilBERT (Sanh et al.,
2019a) for latency-sensitive deployments. To en-
able broad adoption, regular users must be able to
leverage more efficient language models without
additional compression steps or tuning.

We present a case study on how to compress a lan-
guage model for efficient CPU inference leverag-
ing KD, structured pruning, unstructured sparsity,
and quantization such that the compressed models
can be applied to a broad range of natural language
processing (NLP) tasks without expertise in com-
pression of language models.

As part of this study, we release a set of efficient
language models optimized to deliver the great-
est improvement in inference while minimizing
losses in accuracy. We then show how these mod-
els can be used for sparse transfer learning (1ofi-
nova et al., 2021; Zafrir et al., 2021) such that most
compression happens during the pre-training stage.
The pre-trained sparse models can be transferred
to various NLP tasks, preserving sparsity without
extensive optimization. Using these sparse trans-
fer models and the DeepSparse inference engine,
we show these sparse models can be fine-tuned to
produce task-specific sparse models with minimal
accuracy loss and result in greatly improved infer-
ence speeds with minimal accuracy loss.

As shown in Figure 1, oBERTa provides state-
of-the-art performance for sparse language mod-
els on the SQUAD v1.1 Question Answering
dataset. oBERTa variants exceed the perfor-
mance of BERT},q despite being eight times faster,
exceed the performance of Prune OFAj,,. and
OBERT g While being two to five times faster.
In this paper, we focus on the following research
questions:

¢ RQI1: Is RoBERTa more sensitive to unstruc-
tured pruning than BERT?

* RQ2: What is the impact of using a larger
teacher for KD during the pruning of language

“Based on monthly downloads on the huggingface model
hub in march 2023
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models?

* RQ3: Can frozen embeddings improve the
accuracy of pruned language models?

As part of our experimentation, we release the as-
sociated models and the training regimes to aid
reproducibility and encourage efficient inference
models.

In summary, our contributions are as follows:

* We provide a thorough case study on how
to compress a less studied language model?,
RoBERTa (Liu et al., 2019), and evaluate per-
formance on a set of seven NLP tasks finding
that it is possible to effectively compress a
language model without using its original pre-
training dataset.

* We demonstrate the impact of varying the size
of teachers in KD, freezing embeddings, and
variations in learning rates when applied to
sparse language models.

* We demonstrate that our compressed models
can be leveraged to deliver accuracy of over
91% on the popular SQUAD v1.1 (Rajpurkar
et al., 2016a) Question Answering Task with
nearly three times faster inference than the
previous state-of-the-art uses of unstructured
sparsity.

2 Background and Related work

While many methods to improve model efficiency
exist, the same goal generally underpins them:
given an original model # with an accuracy of
acc(f) and an inference cost of ¢(f) minimize
the inference cost. While the methods used
for compression can be highly optimized and
specialized, they can commonly be used together
to deliver massive improvements in inference
speeds with minimal losses in accuracy.

Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).

>While the RoBERTa model was downloaded over 10m
times in May 2023 on the huggingface hub it has not a model
of focus for compression research.



Using these models, it becomes relatively easy
to excel at a broad range of natural language
processing tasks such as Question Answering,
Text Classification, and sentiment analysis.
Unstructured Pruning is a compression approach
that removes individual weights or groups of
weights in a model by applying a mask or setting
the weight values to 0. This compression approach
has been broadly studied in computer vision (Han
et al., 2015), and many methods can remove 70%
or more of model weights with little to no loss
in accuracy. Models pruned can be 20x smaller
in terms of pure model size and, when paired
with a sparsity-aware inference engine such as
DeepSparse (Magic, 2023), provide 3-5x speedups
in inference throughput.

Focused on language models, recent work has
shown that it is possible to prune models during
fine-tuning (Sanh et al., 2020) (Kurti¢ et al., 2022)
or during pre-training (Zafrir et al., 2021) and
transfer to novel domains (Campos et al., 2022)
and datasets.

Structured Pruning is a compression approach
that removes fundamental structural components
in a language model such as individual attention
heads (Voita et al., 2019) or entire model layers

such as transformer encoders (Sanh et al., 2019b).

Structural pruning has become one of the most
popular methods for inference optimization as it is
easy to estimate the speedups and implement.
Freezing Embeddings, as introduced by Devlin
et al. (Devlin et al., 2019), involves training the
embedding layer of a language model and then
toggling the ability to continue to optimize, or
not, the values of in the embeddings as training
continues.

Knowledge Distillation (Hinton et al., 2015) is a
training method where a model is not explicitly a
compression method but a training method where
a model, called the student learns to emulate a
teacher model which is commonly larger or better
performing. The loss extracted from the original
training data in KD is augmented or replaced by
KL divergence between the student and teacher
model.

KD leverages the hardness parameter / to control
the mixture of regular and distillation loss (with
a higher distillation favoring the KL divergence
loss) and a temperature parameter ¢ to control the
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softness of the distribution.

As applied to language models, the approach
has been used to improve the performance of
structurally pruned language models resulting in
models like DistilBERT (Sanh et al., 2019b) and
TinyBERT (Jiao et al., 2020).

Quantization reduces the precision for the model
weights and activations to lower the computa-
tional requirements of model execution. While
researchers have explored reducing representation
to binary representations (Pouransari and Tuzel,
2020), current hardware limits inference speedups
to 8 or 4-bit representations.  Quantization
can be applied after the model is trained in
a one-shot fashion, but this can lead to large
losses in accuracy because of rounding errors.
To avoid this pitfall, quantization is applied as
quantization-aware training (QAT), where the
forward pass of the model is simulated with lower
precision. In contrast, the backward pass happens
in full precision. By using QAT models, learn
to be robust to rounding errors and can result in
quantization having little to no loss in accuracy. In
language models, research has produced quantized
language models such as Q8BERT (Zafrir et al.,
2019) and is commonly used in conjunction with
structured and unstructured pruning (Zafrir et al.,
2021) as a way of introducing compounding
compression.

Additional approaches such as early exiting
(Xin et al., 2020) or token pruning (Kim et al.,
2021) have also improved inference efficiency.
Still, the inference improvements can be very
dataset dependent and, as a result, out of our
experimentation frame. For a broader survey on
compression approaches, we recommend Treviso
et al. recent work (Treviso et al., 2022)

3 Improving Sparse Transfer Learning

While quantization and pruning have been well
studied as applied to language models, work has
studied the compression BERTp,se 0r BERT ;g
Despite existing research, we find that a clear case
study that explores how best to create a family of
compressed models is lacking, and this work seeks
to remedy that. As part of our research, we com-
pare the impact of varying pruning methods, prun-
ing stage, teachers for KD, and freezing portions



of the model as applied to the ROBERTa language
model.

While performing task-specific compression al-
lows NLP practitioners to broadly adopt improve-
ments in inference efficiency, having access to pre-
optimized models is key. We produce a family of
8 general purpose language models, collectively
called oBERTa, which progressively get smaller
and faster with minimal losses in accuracy.

The oBERTa models leverage a combination of
structured and unstructured pruning to provide a
set of compressed models which can meet a wide
set of latency needs. This compression approach
has not been extensively documented nor discussed.
Our approach to producing the o BERTA models
builds on prior explorations of the combination
of compression methods (Kurti¢ et al., 2022) and
addresses compression approaches in a staged man-
ner as shown in Figure 2.

First, we create three structural variants starting
with a RoBERTay,,,c model. The base uses 12 trans-
former layers, the medium uses 6, and the small
uses 3. Following prior work, we select interleaved
layers for the 6-layer model and the first, middle,
and last layers for the 3-layer model. Then, each of
these 3 models is further pre-trained using masked
language modeling on the Wikipedia-Bookcorpus
text dataset, leveraging KD from a ROBERTaj, g,
teacher. After that, each model is pruned using
gradual magnitude pruning (GMP) to a desired
sparsity level (90% and 95%) during additional
pre-training based on masked language modeling,
similar to Zafir et al. (Zafrir et al., 2021). Further
background on the ROBERTA model and why we
did not prune using the WebText corpus can be
found in the appendix.

After pre-training, the sparsity profile is fixed, and
models are fine-tuned and quantized on their target
task with a small set of variable hyperparameters.
Experimentation on the impact of larger teachers,
frozen embeddings, and variations in pruning algo-
rithms are discussed in subsequent portions of this
work.

3.1 Downstream Compression

We explore the impact of introducing unstructured
sparsity during task-specific fine-tuning. We re-
peat each experiment with three different seeds
and report the average F1 and Exact Match (EM)
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metrics in tables 2 and 3. Following a basic hyper-
parameter sweep, our baseline ROBERTay,s. model
achieves a performance of 83.95 EM and 91.13 F1
in the broadly used question-answering benchmark
SQUAD V1.1 (Rajpurkar et al., 2016a).

We also perform unstructured pruning varying the
sparsity 50-95% and the pruning method: GMP
and Optimal BERT Surgeon (OBS) (Kurti¢ et al.,
2022). We prune each model for eight epochs, fol-
lowed by an additional two epochs to allow the
network to stabilize and re-converge. Knowledge
distillation is used during training with the dense
baseline model as a teacher, hardness set to 1.0 and
temperature set to 5.0. Further hyperparameters
are in the appendix A.7.

Table 1 shows the impact of sparsity on BERT e,
as reported by previous work. Comparing these
results with tables 2 and 3, we conclude that
RoBERTa is more sensitive to pruning than BERT,
although RoBERTa,s. pruned with OBS remains
substantially more accurate than BERT},. for the
same level of sparsity.

Table 2 shows that pruning ROBERTA,. to 90%
with OBS results in a relative drop in F1 of 1.59%,
which is three times the relative drop reported for
BERTyse With the same pruning algorithm. More-
over, table 3 shows that ROBERTA,,. becomes
very sensitive to pruning with GMP for sparsities
above 85%, with the relative drop in F1 increasing
almost threefold between 85% and 90% sparsity.
We conjecture that RoOBERTa is more sensitive to
pruning than BERT because the latter is relatively
under-trained (Liu et al., 2019), making the more
optimized ROBERTa more sensitive to the loss in
expressivity caused by pruning.

Model Sparsity F1 Impact

BERT gy (Deviin et al., 2010) 0 8850 | N/A
BERT yrec (Deviin et al., 2019) 0 90.9 N/A
ROBERTapye (Lil et al., 2019) 0 9113 | N/A
ROBERTA 40 (LiU et al., 2019) 0 9460 | N/A

84.90
87.25
87.98
86.7

-4.07 %
-1.41 %
-0.58%
-2.03%

PruneBerty,,se (Sanh et al., 2020)
PruneOFA |0 (Zafrir et al., 2021)
OBERT g (Kurti€ et al., 2022)

G M Py |50 (Kurtic and Alistarh, 2022)

Table 1: Performance of existing dense and sparse lan-
guage models on the SQUAD v1.1 Question Answering
Dataset

3.2 Upstream Compression

Based on our fine-tuning experiments, achieving a
high degree of sparsity on the ROBERTA model



Sparsity (%) | EM Impact | F1 Impact
50 84.80 | 1.01% | 91.49 | 0.40%
60 84.64 | 0.82% | 91.33 | 0.22%
70 84.42 | 0.56% | 91.13 | 0.00%
80 84.64 | 0.82% | 91.33 | 0.22%
85 82.89 | -1.26% | 90.12 | -1.11%
90 82.48 | -1.75% | 89.68 | -1.59%
95 79.01 | -5.89% | 87.05 | -4.47%

Table 2: Impact of Sparsity introduced by OBS on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

Sparsity (%) | EM Impact F1 Impact
50 8490 | 1.13% 91.46 | 0.36%
60 84.27 | 0.38% 90.91 | -0.24%
70 83.37 | -0.69% 90.30 | -0.91%
80 81.64 | -2.76% 88.80 | -2.49%
85 81.64 | -2.76% 88.80 | -2.49%
90 76.51 | -8.86% 84.90 | -6.83%
95 69.39 | -17.34% | 79.35 | -12.93%

Table 3: Impact of Sparsity introduced by GMP on the
F1 and EM scores of pruned RoBERTa models on the
SQUAD V1.1 Dataset

leads to improvements in performance, but there
are greater than expected losses in accuracy.
Additionally, such compression is task-specific
and non-amortizable, so we explore how best to
generate general pruned ROBERTa models. While
we eventually apply the winning set of training
combinations to all of our variants of oBERTa, we
first seek to answer the following questions: Does
GMP or OBS perform better during pretraining
pruning? Does Freezing the Embeddings during
pretraining pruning further improve performance?
Does the use of larger teachers further improve
performance?

We prune various models while varying individual
variables during pretraining to evaluate these ques-
tions. We experiment by pruning an o0BERTapse
(12 layers) model to 90% and 95% sparsity on all
non-embedding layers. All pretraining pruning
happens using the Wikipedia-BookCorpus dataset,
where we train for five epochs using a learning
rate of 5e-5 and a batch size of 256 using 4 A100
GPUS. To evaluate the impact of these models,
we evaluate performance on the previously used
SQUAD vl1.1 question-answering dataset, where
we train with a fixed training regime of 10 epochs
with a learning rate of 1.5e-4 based on the work
of Kurtic et al. We train without KD for each
finetuning run with an unpruned RoBERTap,g
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or an unpruned RoBERTajyge. Details for the
hyperparameters used to train all teacher models
can be found in the appendix A.5.

Comparing the use of OBS vs. GMP as shown

GMP OBS

F1

92.18
8834
88.75
89.65
86.58
86,99 3
8760 497%

F1
92.18
8772 -

Impact
0.00%
T29%

OBERTA e KD
OBERTA e KD
oKD

OBERTa 95% ROBERTApe KD
OBERTa 95% ROBERTA qyge KD

8860 -
89.63
84.90

4.93%
3.09%
10.25%

6.55%
6.55%

86.14
86.14

813%
6.72%

7984

Table 4: Impact on F1 of SQUAD V1.1 of using OBS
vs. GMP as the pruning method during pretraining.
Impact measures the relative loss in performance vs.
the unpruned RoBERTay,, baseline.

in table 4, we can see that GMP consistently
outperforms OBS. This is the opposite of what is
seen when pruning downstream or, in prior work,
pruning BERT. Without access to the original
training corpus OBS is likely unable to leverage
the loss aware saliency importance as well as it
can when it has the original dataset.

Evaluating the impact of variations in the hardness

| | Hardness 0.5 Hardness 1.0

Model
RoBERTApe
oBERTa 90% No KD

Fl

92.18
88.21
89.19
90.14
85.82
86.98
87.66

EM

85.59
80.19
81.74
83.51
7177
79.23
80.40

Fl
92.18
88.34

EM

85.59
80.19
81.35
83.12
78.81
79.41
80.44

Tmpact
0.00%
-431%

TImpact
0.00%
-6.31%

TImpact
0.00%
-4.17%

TImpact
0.00%
-6.31%

oBERTa 90% Base KD
oBERTa 90% Large KD
oBERTa-95 No KD
oBERTa-95 Base KD
oBERTa-95 Large KD

-3.25%
-2.21%
-6.90%
-5.64%
-4.91%

-4.50%
-2.43%
-9.14%
-1.43%
-6.07%

88.75
89.65
86.58
86.99
87.60

-3.72%
-2.75%
-6.07%
-5.63%
-4.97%

-4.95%
-2.88%
-1.92%
-1.22%
-6.01%

Table 5: Impact on F1 of SQUAD V1.1 by hardness in
KD during pretraining pruning. Impact measures the rel-
ative loss in performance vs. the unpruned ROBERTay,s
baseline.

of KD as shown in table 5, there is a bit more
of a muted set of conclusions. The 95% sparse
models perform better with a hardness of 1.0,
while the 90% models do better with a hardness of
0.5. Given that our goal is to preserve most of the
RoBERTa model without actually using its large
dataset, we set our hardness to 1.0 as it keeps the
model from explicitly learning the new dataset.

When we evaluate the impact of freezing embed-
dings during pre-training, as shown in table 6, we
find strong evidence that using frozen embeddings
consistently leads to worse performance and, as
a result, does not freeze embeddings during our
model pruning. Looking at the impact of varying
the size of the teacher for pretraining KD as shown
in table 7, we unsurprisingly find clear evidence



| | Frozen Embeddings

Fl EM

92.18 0.00%  85.59
8771 -4.85% 79.62
89.7 -2.69%  81.74
89.59 -281% 8298

Trained Embeddings

F1 EM

92.18 o 8559
88.21 -431% 80.19
89.19 3 83.07
90.14 - o 8351

Model

ROBERTap,se

0BERTayc 90% no KD

0oBERTay 0% RoBERTay.e KD
0oBERTayse 90% RoOBERTa e KD

Impact Impact
0.00%
-6.98%
-4.50%
-3.05%

Impact
0.00%

-6.31%
-2.94%
-2.43%

Table 6: Impact on F1 of SQUAD V1.1 concerning
the use of frozen embeddings or not during pretraining
pruning. Impact measures the relative loss in perfor-
mance vs. the unpruned ROBERTay,,. baseline.

that using a larger teacher during pretraining
pruning leads to improvements in performance.
Using these experiments, we generate the recipe,

| | Base Upstream Teacher

Model F1 EM
RoBERTA . 92.18 85.59
oBERTa 90% no KD
0oBERTa 90% Base KD
oBERTa 90% Large KD

Large Upstream Teacher

Fl1 Impact EM

92.18 0.00% 8559
88.1 -4.43%
8922 -321%
89.98 -2.39%

Impact
0.00%

-4.17%
-3.72%
2.74%

Impact
0.00%

-5.84%
-4.95%
-2.89%

Impact
0.00%

-6.46%
-4.17%
-2.86%

88.34
88.75
89.65

80.59
81.35
83.12

80.06
82.02
83.14

Table 7: Impact on F1 of SQUAD V1.1 with respect
variation is the size of the teacher in KD during pre-
training pruning. Impact measures the relative loss in
performance vs. the unpruned ROBERTay,,. baseline.

which we then use to create the many variants of
oBERTa. We evaluate their performance in Table
17 where it is important to note that these results
are accuracy, loss, and perplexity relative to the
RoBERTa-large teacher, not the true dataset. The
compression recipe, as shown in Figure 2 is as
follows:

. Starting with a pre-trained language model,
removing some portion of transformer layers
in an interleaved fashion.

. Using Knowledge Distillation from a large
uncompressed model, pre-train the pruned
model with a hardness of 1.0 and without
freezing embeddings.

. Using Knowledge Distillation from a large
uncompressed model, prune during further
pretraining using GMP where sparsity levels
are enforced at the parameter level. The re-
sulting model is the sparse-transfer-student.

. Train an uncompressed large language model
on the desired NLP task’s dataset. This is the
sparse-transfer teacher.

. Using the sparse-transfer teacher fine-tune the
sparse-transfer-student with knowledge distil-
lation to convergence. Experiment with the
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use of frozen embeddings and various sizes
of sparse-transfer teachers.

Using the fine-tuned sparse-transfer student
and teacher, train with quantization-aware
training. If embeddings were frozen during
initial fine-tuning they should be unfrozen
here.

4 Experimental Results

Based on the aforementioned experiments, we gen-
erate 8 variants of oBERTa, each with a different
size and sparsity profile; details can be found in
table 18. Within this table, we report the impact
on the model size as measured by the raw and
compressed size of the ONNX ¢ model file. Em-
beddings are unpruned and each layer is pruned to
the target sparsity profile independent of the rest of
the model. As a result, the overall sparsity profile
may vary as modules in the network may not be
able to reach exactly 90% or 95% sparsity.

Using these inference-optimized models, we evalu-
ate their sparse transfer performance by finetuning
these models on their target task using a fixed train-
ing regime and minor hyperparameter exploration.
For each task, we train them for 10 epochs or 20
(10 of which are Quantization Aware Training),
with the longer schedule being reserved for models
which are being quantized.

We evaluate performance on a benchmark of di-
verse NLP tasks ranging from question answer-
ing, sentiment analysis, document classification,
token classification, and text classification. For
question answering, we leverage the SQuAD v1.1
(Rajpurkar et al., 2016a) and SQuAD V2.0 (Ra-
jpurkar et al., 2018) datasets. We leverage the SST-
2 (Socher et al., 2013) dataset for sentiment analy-
sis. For text classification, we use the Quora Dupli-
cate Query Detection (QQP) (SambitSekhar, 2017)
and the MNLI (Williams et al., 2018) datasets. We
leverage the IMDB (Maas et al., 2011) dataset for
document classification and CONLL2003 (Tjong
Kim Sang and De Meulder, 2003) for token classi-
fication.

Looking at performance on question answering as
shown in table 8 and 9. Moving to text classifi-
cation on QQP and MNLI as shown in tables 11
and 10 Shifting focus to document classification

Shttps://onnx.ai/



| Sparse Transfer Sparse Transfer With Quantization

model Fl Recovery  EM F1 Recovery EM

Sparse Transfer With Quantization

Sparse Transfer

OBERTapy.e 9215 100.00% 8578 | 93.18  101.11% 87.29 model Accuracy Recovery Accuracy Recovery
OBERTapqse 90% 9095 98.69% 8442 | 8946  97.08% 32,61 OoBERTap5e 95.24% 100.00% 95.44% 100.21%
OBERTayy,, 95% 5084 97.49% 8308 | 8923 9683% SL12 OBERTap,. 90% 93.64% 98.32% 93.28 97.94%
OBERTaMEDIUM 9037 98.06% 8384 | 8377  90.91% 90.37 0BERTap,s. 95% 93.48% 98.15% 92.80 97.23%
OBERTapepium 90% | 8926 96.86% 8218 | 8865  96.20% 8188 - 7
OBERTasmaLL 8487 02.00% 7655 | 8482  9205% 7677 OBERTaMEDIUM 93.36% 98.03% (94‘08 98'7?%
OBERTasmarL 90% | 8466 9187%  76.18 | SLI8  92.18% 742l OBERTavgpum 90% | 92.24% 96.85% 92.08 96.69%
0BERTagpALL 93.04% 97.69% 92.52 97.15%
OBERTagyiaL 1 90% 91.60% 96.18% 91.28 95.84%

Table 8: Sparse Transfer performance of the o BERTA
family on the SQUAD V1.1 dataset. The sparse transfer
was performed over 10 epochs and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTap .

Sparse Transfer Sparse Transfer With Quantization

Table 12: Sparse Transfer performance of the o0 BERTA
family on the IMDB dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTa, .

model FI Recovery  EM Fi Recovery  EM
OBERTapgse 8277 100.00% 7956 | 85208  103.06% _ 82.347 | | Sparse Transfer Sparse Transfer With Quantization
OBERTapyyse 90% 8133 98.26% 7827 | 8143 98.38% 7892
OBERTap,sc 95% 7798  94.22% 74.67 78.09 94.35% 7482 model Accuracy Recovery Accuracy Recovery
OBERTaMEDIUM 7751 93.65% 7425 | 78.137 _ 9441% 75179 OBERTapgge 94.60 100.00% 92.66 97.95%
OEEE?MEDMM 90% ;‘?23 ;(2)22‘; ;;g ;Tgl 22; (') Z Z;;zlw 0BERTap,. 90% 92.78 98.08% 92.546 97.83%
o a, . .44% 9 .59 .50% .
nBERTazmtt 90% T0.79 __ 85.53% 6731 | 6935 81.19% 6521 OBERTayse 95% K] 96.74% 91.399 96.62%
oBERTapEDIUM 92.89 98.19% 91.06 96.26%
OBERTaypEpium 90% | 88.76 93.83% 89.91 95.04%
OBERTa 90.48 95.64% 91.28 96.49%
Table 9: Sparse Transfer performance of the o BERTA BERTana 0% | 5934 R T AT

family on the SQUAD V2.0 dataset. The sparse transfer
was performed over 10 epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned o0BERTay .

| | Sparse Transfer Sparse Transfer With Quantization

model Accuracy  Recovery  Accuracy(MM) | Accuracy  Recovery  Accuracy(MM)
OBERTap, 7.88% 100.00% __8757% 88.06% 10020% __ 88.01%
OBERTap, 85.17% 96.91% 89.73% 85.09% 96.83% 84.76%

OBER Tayse 95% 84.32% 95.95% 84.08% 95.28% 83.83%
OBERTaMEDIUM 85.29% 97.05% 85.17% 95.15% 83.74%
OBERTappium 90% | 81.61% 92.87% 81.32% 93.73%

OBERTasMALL 0.80% 91.95% 81.55% 92.29% 319
OBERTaspaLL 90% 79.23% 90.15% 79.24% 90.06% 79.42%

Table 10: Sparse Transfer performance of the o BERTA
family on the MNLI dataset. Sparse transfer was per-
formed over 10 epochs and sparse transfer with quan-
tization over 20. Recovery is based on the relative
performance of the unpruned 0BERTay .

Sparse Transfer Sparse Transfer With Quantization

model Recovery Combined | Accuracy  Recovery Fl Combined

OBERT: 100.00% 88.66% 89.86% 98.18% 88.12% _ 86.73%

99.44% 87.92% OT21% _ 99.66% __ 89.68% _ BSI6%
99.26% 87.58% 90.72% i 8908% _ 081%

IMEDIUM 9981% 88447 9133% 89.80% _ 88.28%

EDiuM 90% 98 86% 8721% 90.60% 89.01% _ 87.42%
OBERTasMALL 9.3% __ 8921% _ 8771% 89,74 §7.99 86.25
OBERTagyar, 90% 9806%  ST99%  ®6.25% 8973 8798 86.08

Table 11: Sparse Transfer performance of the o BERTA
family on the QQP dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTay .

as shown in table 12 and sentiment analysis in 13
Finally, looking at performance on token classifi-
cation as shown in table 14

4.1 Inference Benchmark

To evaluate the performance of our inference-
optimized models, we benchmark performance us-

Table 13: Sparse Transfer performance of the 0 BERTA
family on the SST-2 dataset. The sparse transfer was
performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned 0BERTay .

Sparse Transfer Sparse Transfer With Quantization

model Accuracy  Recovery  FI Accuracy  Recovery  Fl
OBERTapge 99.26% 100.00% _ 9551% | 99.30% 100.05% __ 95.98%
OBERTapyee 90% 99.11% 99.85% 94.98% | 99.05% 99.79% 94351%
OBER Tapgse 95% 98.89% 99.63% 9332% | 98.15% 99.43% 92.61%
OBERTaMEDIUM 99.04% 99.77% 9439% | 99.18% 99.92% 95.15%
OBERTapiepiuM 90% |_98.79% 99.53% 9331% | 98.73% 99.46% 92.70%
OBERTasMALL 99.01% 99.75% 94.00% | 98.98% 99.72% 94.13%
OBERTasyiaLL 90% 9847% 99.20% 91.13% | 98.25% 98.98% 89.79%

Table 14: Sparse Transfer performance of the o BERTA
family on the CONLL-2003 dataset. The sparse transfer
was performed over ten epochs, and sparse transfer with
quantization over 20. Recovery is based on the relative
performance of the unpruned oBERTa,gc.

ing the popular DeepSparse library version 1.3.2 7
and an Intel Xeon Gold 6238R Processor. Per-
formance is measured using models that have
been sparse-transferred to the SQuAD v1.1 dataset
and exported to a standard ONNX model format.
Benchmarks are run on 4 and 24 cores and a se-
quence length of 384 with batch sizes of 1, 16, and
64. For each model, the benchmark is run for 60
seconds with a warm-up period of 10 seconds, and
we report the throughput (items per second) and
the mean, median, and standard deviation per item
latency. We present a set of summary statistics
of relative speedup across batch sizes and infer-

"pip install deepsparse==1.3.2
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24 Cores 4 Cores

Model BS1 BS 16 BS1 BS 16 BS 64

BS64 |

1.00
1.00
3.10
3.29
4.12
8.72
4.73
1.96
6.20
6.35
8.94
3.89
12.47
12.22
16.21

1.00
1.00
4.29
3.80
7.05
4.56
8.22
1.99
8.04
741
12.86
3.96
14.12
14.40
21.35

1.00
1.00
4.46
3.80
7.37
4.65
8.56
1.99
8.44
6.84
13.65
3.99
14.08
14.67
23.96

1.00
1.00
4.09
3.60
7.67
4.12
9.41
1.96
8.43
7.83
14.99
3.95
15.50
14.05
29.77

1.00
1.00
4.31
3.34
7.59
3.85
9.06
1.99
8.33
6.56
14.81
3.97
15.48
14.19
27.14

1.00
1.00
4.32
3.40
7.40
4.37
8.68
2.02
8.45
6.72
14.95
4.03
15.70
14.13
27.58

BERThqse

0BERTap,e

0BERTay, . Quantized
OBERTayyse 90%

0BERTap,¢. 90% Quantized
OBERTapys, 95%

0BERTap,se 95% Quantized
OoBERTamEDIUM
oBERTaypEpium Quantized
oBERTayEpium 90%
oBERTayEpium 90% Quantized
OoBERTagyALL

0oBERTag141 1. Quantized
OBERTagyaLL 90%
OBERTagyaL L 90% Quantized

Table 15: Latency reduction of the oBERTa family con-
cerning the unpruned oBERTay, as measured on 24
and 4 cores. Speedup is measured relative to the latency
reduction in MS/batch, and BS refers to batch size.

ence server configurations as shown in table 15.
Full inference performance results can be found
in the appendix. In analyzing performance, we
can see that the introduction of quantization to a
dense model delivers roughly a 4x speedup while
quantization on sparse models is closer to 2x. With
the introduction of sparsity, 90% leads to slightly
under 4x speedup, while 95% leads to slightly over
4x. The impact of structural pruning is roughly
equivalent to the size of the as a 6-layer model
is two times faster than a 12-layer, and a 3-layer
model is four times faster. Combing compression
forms is only partially additive, as a small (3-layer)
90% quantized model performance is 24x vs the
expected 32x (4x from structural pruning, 2x quan-
tization, 4x unstructured pruning.

Looking at the variation in a speedup by batch size
and the number of cores, we can see that allocat-
ing more cores leads to a smaller gap in inference
speedup, especially with small batches. From this,
we extract that compression is significant when
performing streaming inference (batch size 1) on
smaller CPUs.

Next, we go ahead and benchmark the oBERTa
model performance against existing sparse-transfer
models such as o BERT and PruneOFA using the
models that have been published ® in Neural
Magic’s Sparse-Zoo °. We run these models us-
ing four cores and a batch size of 1 and compare
their speedup (or slowdown) relative to their per-

8Since the PruneBERT model is not available in the
700, we extrapolate numbers using the performance of our
0BERTap,. pruned 90% as both models feature 12 transformer
encoders and 90% sparsity.

“https://sparsezoo.neuralmagic.com/
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formance on the SQUAD v1.1 question-answering
benchmark. Results can be found in table 16 and
full results in 45. Looking at the improvements
in accuracy and inference throughput, we find the
oBERTa models are 1.3 to 4 times better than mod-
els with approximately the same accuracy.
Looking at the competitive results, we find

Vs. BERTpase
Recovery  Speedup
OoBERTapase 90% 91.00 | 102.77% 3.57
OBERTurge 95% Quantized 90.21 | 101.87% 341

| prunedOFA uye 90% Quantized | 89.96 | 101.59%  2.38
[ OBERTay, 90% Quantized | 89.46 | 101.03% 7.6

| oBERTaypium 90% | 89.26 | 98.99%  7.78
‘ obertpase 90% Quantized ‘ 88.00 ‘ 99.38% 6.96

| oBERTasyiaLL 90% | 84.66 | 90.97%  13.95
| pruneBERT 90% | 8490 | 95.88% 357

Vs. BERTjarge
Recovery  Speedup
100.44%  20.21
99.57% 1931

| 99.29%  13.47
[9874% 4307

|
96.75%  43.99

|

|

|

Model F1

[97.13% 3937

| 88.91%  78.91
[9371% 7382

Table 16: Speedups of the o BERTa-family compared to
existing published sparse models compared to the per-
formance of BERTy,s. and BERT-large. Speedup mea-
sures the reduction in latency of MS/batch. 0BERTay,g
90% exceeds the accuracy of o0BERT 4 95% quan-
tized despite being faster, 0 BERTay,se 90% quantized
performs at the level of pruneOFA ;.. 90% Quantized
despite being 3x faster, o BERTayepium 90% can out-
perform oBERT,,5c 90% Quantized despite being 30%
faster, and o0BERTagyar 90% performs on par with
pruneBERT 90% despite being nearly four times faster.

that the oBERTa-* models can deliver significant
gains in performance (F1) relative to speedups.
The oBERTap,scPruned 90% Quantized model
achieves an undertaking that nearly matches
pruneOFA-large 90% Quantized while deliver-
ing nearly 13x faster inference. Similarly, the
0BERTAgsMALL 90% model provides similar accu-
racy to PruneBERT despite being over four times
faster.

5 Discussion

Sparse Models require higher learning rates as
shown in the tables in A.8 sparse language mod-
els can be used as general-purpose contextual lan-
guage models but require the use of a much higher
learning rate. When using structurally pruned mod-
els like the 6-layer o BERTaypgprum and the 3-layer
oBERTagpmar 1, the optimal learning rate does not
vary much within the same task despite the model
size. With the introduction of sparsity, the learning
rate needs to scale, usually by a factor of five or ten.
We find this counterintuitive as the sparse models
have fewer parameters to fune, so we would expect



them to prefer a much lower learning rate. We at-
tribute this to the loss of expressivity in the network
driven by its sparsity. Since the network has fewer
degrees of freedom to optimize the points which
can be optimized move much more than those that
cannot.

Larger models compress better as shown by the
gap between the sparse and dense models and the
gap between models and their quantized counter-
parts. While 12-layer models can receive 90 or 95
% sparsity and quantization with little to no loss in
accuracy, the three and 6-layer models see a much
bigger dip. This aligns with Li et al. 2020 (Li et al.,
2020) in which they demonstrate that larger models
are more robust to pruning and quantization. Em-
pirically, this makes sense as the smaller models
have fewer degrees of freedom, and other portions
of the network cannot counteract the reduction in
expressivity caused by pruning and quantization.
Bigger Teachers are not always better as shown
in the table in A.9 the introduction of larger teach-
ers does not always lead to improvements in accu-
racy. The impact is highly task and model depen-
dent as some datasets like MNLI or QQP see little
impact in using larger teachers, yet datasets like
SQUAD or SQUAD v2.0 see large impacts, which
are even more pronounced when the student model
is smaller.

Frozen embeddings can help, but not always. As
shown by A.10 the impact of freezing the embed-
dings is highly task-specific and inconsistent across
tasks or models. In question answering, freezing
leads to 1-2 point movement for unpruned mod-
els and 5-7 points for pruned models. In other
tasks like QQP and MNLI, the impact of frozen
embeddings tends to be minor or none.

6 Limitations

While our approach is effective at compressing
models, it is not the most efficient. In order to
discover the most optimal compression approaches
and evaluate their performance performed hun-
dreds of experiments. As a result, scaling our
approach to every novel language understanding
language model is not tractable. Another limita-
tion of our work is we did not track the complete
compute utilization of our entire experimentation
process but we can provide some estimates. Exper-
iments in pruning during fine-tuning leveraged a
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single V100 16 GB GPU and took approximately
14 hours per experiment. The pre-training of struc-
turally pruned models with knowledge distillation
required 4 A100 40GB GPUs for approximately
72 hours. Pruning during pre-training with Knowl-
edge distillation required approximately 100 hours
on the same setup. Task-specific fine-tuning hap-
pened on a single V100 16GB GPU and depending
on the size of the task was anywhere from a few
minutes to 20 hours. Based on all of our exper-
iments we estimate 400 V100 hours of pruning
during fine-tuning, roughly 16,000 A100 hours'®
for pretraining, and assuming an average of 10
V100 hours per sparse transfer run, a total of 4000
V100 hours for sparse-transfer and sparse-transfer
with quantization.

7 Conclusion and Future Work
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A Appendix
A.1 Model Generation Approach

oBERTa models are generated in a multi-stage ap-
proach with details found in figure 2

A.2 Roberta and Training Methodology

RoBERTa (Liu et al., 2019) is a language model
that can best be considered more robust and op-
timized for the popular BERT model. While the
models share architectures, their training differs as
RoBERTA uses a 160 GB corpus for 10 epochs
compared to the 4GB one used by BERT. As a
result, the training time of ROBERTA is about 100
times higher than its predecessor.

Given this high cost of training and the regular need
for longer training when pruning a model (Kurti¢
et al., 2022), we focus on compressing RoBERTa
without following its expensive pre-training regime.
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Our research leverages the popular open-source
compression library SparseML!! to implement un-
structured pruning, structured pruning, and quanti-
zation via quantization-aware training. In all our
experiments, we prune each network component
independently using either GMP or OBS (Kurtic et
al.). One exception is the embeddings layer, which
we do not prune.

Table 17: Pretraining performance using knowledge
distillation from a RoOBERTa large model.

Model ACC | Loss | Perplexity
0BERTap,e 0.580 | 3.775 | 43.593
oBERTap,se 90% 0.506 | 4.448 | 85.420
oBERTap,e 95% 0.439 | 4.734 | 113.702
oBERTanedium 0.533 | 4.296 | 73.391
oBERTapedium 90% | 0.631 | 1.896 | 6.662
oBERTagman 0.465 | 4.561 | 95.670
oBERTagm.1 90% 0.404 | 4.669 | 106.614

A.3 Model Details

Model details can be found in table 18

A.4 Dataset Details

Dataset statistics are detailed in Table 19.

A.5 Teacher models

Performance of the RoBERTay,.and

RoBERTa, ¢ models on our sparse transfer
datasets. We explore the optimal hyperparameters
relative to performance in published results as
shown in table 20 and 21

A.6 Upstream Pruning

Following the findings that more extensive teach-
ers distill better (Liu et al., 2019) and our experi-
ments, we use both ROBERTap,seand ROBERTa ;g
as teachers eventually find the large model works
better. Using this teacher, we use the parameters
shown in table 22 to prune the models for o BERTa.
This same set of parameters is applied to the struc-
turally pruned models, but there is no induced spar-
sity.

"https://github.com/neuralmagic/sparseml
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Figure 2: The set of oBERTa language models follows a compounding compression approach. First models are
structurally pruned and further pre-trained using KD and a ROBERTa,. teacher. Next, each model is pruned during
additional pre-training to a target sparsity. After pruning, the sparsity pattern is locked, and models are fine-tuned
with KD on specialized NLP tasks. During fine-tuning, models may be quantized for additional improvements in

inference efficiency.

Model Parameters | Prunable Sparse Sparsity | size (MB) | Compression | GZIP size (MB) | Compression
0BERTapgse 124,647,170 | 85,526,016 | 1,539 0.0% 474 1.00 435 1.00
0BERTap,s Quantized 124,647,170 | 85,526,016 | 1,539 0.0% 119 3.98 85 5.12
0oBERTap,sc 90% 124,647,170 | 85,526,016 | 76,442,738 | 89.4% | 474 1.00 183 2.38
0BERTaps5 90% Quantized 124,647,170 | 85,526,016 | 76,442,738 | 89.4% 119 3.98 42 10.36
0BERTapse 95% 124,647,170 | 85,526,016 | 80,689,466 | 94.3% | 474 1.00 163 2.67
0BERTap5e 95% Quantized 124,647,170 | 85,526,016 | 80,689,466 | 94.3% 119 3.98 37 11.76
oBERTavEpIUM 82,119,938 | 43,058,688 | 1,538 0.0% 312 1.52 289 1.51
oBERTapEpium Quantized 82,119,938 | 43,058,688 | 1,538 0.0% 78 6.08 53 8.21
oBERTapepium 90% 82,119,938 | 43,058,688 | 38,222,138 | 88.8% | 312 1.52 161 2.70
oBERTapepium 90% Quantized | 82,119,938 | 43,058,688 | 38,222,138 | 88.8% | 78 6.08 33 13.18
oBERTagmaLL 60,856,322 | 21,825,024 | 1,538 0.0% 233 2.03 214 2.03
0oBERTagmaLL Quantized 60,856,322 | 21,825,024 | 1,538 0.0% 60 7.90 39 11.15
oBERTagmaLL 90% 60,856,322 | 21,825,024 | 19,111,068 | 87.6% | 233 2.03 149 2.92
oBERTagmar1, 90% Quantized | 60,856,322 | 21,825,024 | 19,111,838 | 87.6% | 60 7.90 30 14.50

Table 18: Description of the o BERTa model family and their sparsity and size. Prunable parameters are the sum of
all non-embedding parameters in the model. Since sparsity profiles are assigned at a module level, overall sparsity
profiles do not perfectly match the target 90% or 95% which are targeted.

A.7 Sparse Transfer Hyper-parameters

Our work aims not to produce the highest possible
performance of a sparse language model. Instead,
we aim to make light language models that perform
well on various tasks with minimal hyperparameter
optimization. As a result, in all of our experiments,
we leverage the parameters shown in 23 and 24
and perform a grid search over them.
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A.8 Learning Rate

In our exploration of sparse transfer learning, we
perform a wide study on the impact of the optimal
learning rate for each task and each model in the
oBERTa family. The results as shown in table 25

A.9 Knowledge Distillation

In our exploration of sparse transfer learning, we
perform a wide study on the impact of knowledge
distillation. Across tasks, we look at the impact
using no teacher, ROBERTap,scand ROBERTayye



Dataset | Train | Eval
SQUAD v1.1 (examples) ‘ 87599 ‘ 10570
SQuAD v2.0 (examples) 130319 11873
MNLI (examples) | 392702 | 19628
QQP (examples) | 363,846 | 40,430
IMDB (examples) | 25000 | 25000
CONLL2003 (examples) ‘ 14041 ‘ 3250
SST2 (examples) | 67349 | 872
Wikipedia (words) | 6078422 | -
TBC (words) | 74004228 | -

Table 19: Statistics for training and evaluation datasets

as shown in tables 26,27,28,29,30,31

A.10 Freezing Embeddings

In our exploration of sparse transfer learning, we
perform a wide study on the impact of freezing
the embeddings during finetuning. Across tasks,
we look at the impact of frozen and unfrozen em-
beddings as shown in tables 32,33,34,35,36, and
37. Besides question answering, we do not find
a strong trend with the impact of frozen embed-
dings. In some tasks, sparse and dense models
perform better with frozen embeddings while not
for others. Focusing on question answering, by
using frozen embeddings dense models see large
losses in F1 score and the opposite can be seen for
pruned models.

A.11 Inference Benchmarks

We provide full results for our experiments
in benchmarking the impact of compression
on inference efficiency as shown in tables
45,43,42,38,40,39,44,44

A.12 Limitations

While much of our work has focused on show-
casing the broad usability of compressed language
models, they are not without fault. While our exper-
iments focus on the compression of ROBERTa, the
size of its training dataset makes complete explo-
ration of the ability of pruning during pretraining
somewhat limited. The work in the paper shows
the ability to compress RoOBERTa on a smaller pre-
training dataset but does not contrast it with the
impact of compression on the full dataset.

13
51

A second limitation of our work is the high com-
putational demand required for creating public do-
main sparse language models. Despite amortiz-
ing the cost of compression to a few pretraining
training regimes, the reduction of other language
models like ALBERT (Lan et al., 2019) or XLM-
R (Conneau et al., 2019) require completely new
training, pruning, and transfer experiments.

A.13 Responsible NLP Research -
Reproducibility Checklist

A.13.1 Scientific Artifacts

Datasets. We experiment with well-established
benchmarks with usage in many broad domains.
We do not perform any modification or augmenta-
tion in any dataset. Since datasets are not modified,
we did not look for any personal or sensitive con-
tent.

In our pre-training experiments, we leverage the
Toronto Book Corpus (TBC) (Zhu et al., 2015)!?
and the Wikipedia (Foundation, 2021)"3. For fine-
tuning we make use of SQuAD vl1.1 (Rajpurkar
et al., 2016b) '*, SQuAD v2.0 (Rajpurkar et al.,
2018) 13, Quora Duplicate Question Dataset (QQP)
(Shankar, 2017)'°, and Multi-Genre Natural Lan-
guage Inference (MNLI) (Williams et al., 2018)
17, Large Movie Review Dataset IMDB) (Maas
etal., 2011)'8, Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013)'?, and the shared task
of CoNLL-2003 concerns language-independent
named entity recognition (CONLL-2003) (Tjong
Kim Sang and De Meulder, 2003)*datasets.

Models. The model used as a starting point for
all of our experiments is RoBERta, publicly avail-
able via HuggingFace Hub 2!. All other models
presented in this paper will be released in openly-
available repositories along with their compression
recipes, training metrics, and hyper-parameters.

Phttps://huggingface.co/datasets/bookcorpus
Bhttps://huggingface.co/datasets/wikipedia
“https://huggingface.co/datasets/squad
Shttps://huggingface.co/datasets/squadv2
'Shttps://huggingface.co/datasets/glue
"https://huggingface.co/datasets/glue
Bhttps://huggingface.co/datasets/imdb
Phttps://huggingface.co/datasets/glue
Dhttps://huggingface.co/datasets/conl12003
' https://huggingface.co/bert-base-uncased



Model Training Epochs | Batch Size | Learning Rate | Weight Decay | Warmup | Target Metric | Target Score | Actual | Recall
SQUAD V1.1 | 3 16 1.00E-05 0 0 F1 90.40 92.15 | 101.94%
SQUAD V2.0 | 3 16 3.00E-05 0 0 F1 82.91 83.53 | 100.74%
QQP 5 16 2.00E-05 0 0 ACC 91.90 91.52 | 99.59%
MNLI 3 16 1.00E-05 0 0 ACC 87.60 87.88 | 100.31%
SST-2 3 16 2.00E-05 0 0 ACC 94.80 94.61 | 99.80%
CONLL2003 | 3 16 3.00E-05 0 0 ACC 99.10 99.29 | 100.19%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 95.24 | 100.60%

Table 20: Training parameters along with performance metrics and the recovery vs. the published performance of

the same model for the RoBERTa base model

Model Training Epochs | Batch Size | Learning Rate | Weight Decay | Warmup | Target Metric | Target Score | Actual | Recall
SQUAD VI.1 | 3 16 1.00E-05 0 0 F1 94.50 94.62 | 100.12%
SQUAD V2.0 | 3 16 1.00E-05 0 0 F1 89.40 89.14 | 99.71%
QQP 3 16 1.00E-05 0 0 ACC 92.20 91.76 | 99.52%
MNLI 3 16 1.00E-05 0 0 ACC 90.20 90.61 | 100.45%
SST-2 3 16 1.00E-05 0 0 ACC 96.40 96.22 | 99.81%
CONLL2003 |3 16 3.00E-05 0 0 ACC 99.10 99.39 | 100.29%
IMDB 3 16 1.00E-05 0 0 ACC 94.67 96.12 | 101.53%

Table 21: Training parameters along with performance metrics and the recovery vs. the published performance of

the same model for the RoOBERTa large model

A.13.2 Computational Experiments

Upstream. During upstream pruning due to the
large size of language models and their associ-
ated teachers we leverage 4x A100 40GB NVIDIA
GPUs. We train for 5 epochs and an entire train-
ing and pruning run takes approximately 72 hours.
Since the cost of such a large compute instance
is high, these experiments were only run with a
single seed and without major hyper-parameter ex-
ploration.

Sparse-Transfer Our experimentation on finetun-
ing our compressed models uses the workhorse
16GB V100. Our sparse-transfer datasets vary
greatly in size and as a result, so do experiments.
Finetuning for CONL2003 takes less than 10 min-
utes while larger datasets like QQP take about 24
hours. Due to the number of datasets which we
evaluate and the number of models in the oBERTa
family, we only perform experimentation with a
single fixed seed.

DeepSparse inference. We pair our compressed
models with DeepSparse (Magic, 2023) a publicly-
available sparsity-aware CPU inference engine. All
models are exported using the standard ONNX??
format. For our competitive benchmarking against
existing compressed language models, we leverage
the model representations shared in the SparseZoo
23, This approach means that some older mod-

2https://onnx.ai/
Bhttps://sparsezoo.neuralmagic.com/
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els such as oBERT may have had less optimized
ONNA exports. We believe this difference in ex-
portation causes the nearly 4x improvement in the
performance of oBERTa base vs bert-base.

A.13.3 Computational Packages

All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our experimentation is done using
NeuralMagic’s SparseML >* which has specialized
integration with HuggingFace’s Transformers >
and Datasets 20 libraries.

*https://github.com/neuralmagic/sparseml
Bhttps://github.com/huggingface/transformers
Phttps://github.com/huggingface/datasets




| 5 Epochs

Datasets \ BookCorpus & English Wikipedia
Batch size | 256

Initial learning rate Se-4

Learning rate schedule linear decay with rewinds
Learning rate rewinds periodic every 0.5 epochs
Max sequence length 512

Weight decay 0.01

Knowledge Distillation

(hardness, temperature) (1.0,5.5)

Student model dense oBERTa-* model
Teacher model RoBERTaj,ge

Pruning frequency ‘ 100x per epoch

Initial Sparsity | 0.7 for 12 layer model, 0.5 for the 6-layer, and 0.3 for the 3-layer

Table 22: Upstream pruning hyper-parameters.

| 10 Epochs
Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9¢e-5,7e-5,5e-5,3e-5,2¢e-5,1e-5
Learning rate schedule linear decay to 0
Batch size | 12
Weight Decay \ 0.0, 0.01, 0.05, 0.1
Knowledge Distillation hardness | 1.0,0.0
Frozen Embeddings | 1.0,0.0
Knowledge Distillation temperature | 7.0
Knowledge Distillation Teacher ‘ RoBERTap,se, ROBERTayge

Table 23: Sparse-transfer learning hyper-parameters used to fine-tune upstream-pruned models at downstream tasks.
Each Experiment tunes this set of parameters to find a task-specific optimal combination.

| 20 Epochs
Initial learning rate 2.1e-4,1.9e-4,1.7e-4,1.5e-4,1.3e-4,1.1e-4,9¢-5,7e-5,5e-5,3e-5,2¢e-5,1e-5
Learning rate schedule linear decay to 0. Rewind to 5e-5 for QAT at epoch 10
Freeze Batch Norm Epoch | 18
Batch size | 12
Weight Decay \ 0.0, 0.01, 0.05, 0.1
Knowledge Distillation hardness | 1.0, 0.0
Frozen Embeddings ‘ 1.0,0.0
Frozen Embeddings Schedule ‘ Frozen until epoch 10, unfrozen for QAT
Knowledge Distillation temperature \ 7.0
Knowledge Distillation Teacher \ RoBERTap,se, ROBERTajrge

Table 24: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.
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Optimal Learning Rate
model SQUAD | SQUAD V2 | MNLI QQP IMDB SST2 CONLL2003
RoBERTapuse 1.00E-05 | 3.00E-05 1.00E-05 | 2.00E-05 | 1.00E-05 | 2.00E-05 | 3.00E-05
RoBERTaage 1.00E-05 | 1.00E-05 1.00E-05 | 1.00E-05 | 1.00E-05 | 1.00E-05 | 3.00E-05
0BERTapasc 1.00E-05 | 1.00E-05 1.00E-05 | 2.00E-05 | 1.00E-05 | 2.00E-05 | 3.00E-05
0BERTapasc 90% 1.50E-04 | 1.50E-04 7.00E-05 | 1.70E-04 | 1.30E-04 | 9.00E-05 | 1.50E-04
0BERTapasc 95% 1.50E-04 | 1.30E-04 9.00E-05 | 2.10E-04 | 1.30E-04 | 9.00E-05 | 5.00E-05
oBERTamepiuM 5.00E-05 | 5.00E-05 2.00E-05 | 3.00E-05 | 3.00E-05 | 2.00E-05 | 3.00E-05
oBERTameprum 90% | 1.50E-04 | 1.30E-04 1.50E-04 | 1.50E-04 | 5.00E-05 | 1.50E-04 | 1.50E-04
oBERTasmaLL 1.50E-04 | 1.50E-04 3.00E-05 | 5.00E-05 | 3.00E-05 | 5.00E-05 | 3.00E-05
oBERTasmarL 90% 1.50E-04 | 1.50E-04 2.10E-04 | 2.10E-04 | 1.50E-04 | 2.10E-04 | 1.90E-04

Table 25: Sparse-transfer learning with Quantization hyper-parameters used to fine-tune upstream-pruned models
at downstream tasks. Each Experiment tunes this set of parameters to find a task-specific optimal combination.

model No KD | KD-Base | KD-Large
O0BERTay,,.(Target) 91.52% | N/A N/A
0BERTap,s 90% 91.97 92.78 92.55
0BERTay,s 95% 91.40 91.17 91.514
oBERTapEeprum 90.94 91.86 91.78
oBERTapepium 90% | 87.16 87.16 89.56
oBERTaSMALL 89.56 88.65 90.83
oBERTagyarL 90% | 85.58 89.22 89.45

Table 26: Impact of knowledge distillation on the accu-
racy (matched) MNLI Dataset across model sizes for
the various sizes of o BERTa as compared to the regu-
larly trained baseline

model No KD | KD-Base | KD-Large
0BERTay,(Target) 91.52 N/A N/A
oBERTay,s. 90% 63.18 91.01 90.93
0BERTay,sc 95% 90.46 90.45 90.72
OBERTB.MED]UM 90.75 90.96 90.96
oBERTapgpium 90% | 89.93 90.41 89.82
OBERTaSMALL 86.63 87.34 87.65
oBERTagpmaLL 90% 88.72 89.40 87.50

Table 27: Impact of knowledge distillation on the ac-
curacy QQP Dataset across model sizes for the various
sizes of o BERTa as compared to the regularly trained
baseline

model No KD | KD-Base | KD-Large
OBERTay,(Target) 91.52 N/A N/A
0BERTayp,s 90% 91.97 92.78 92.55
0oBERTay,s 95% 91.4 91.17 91.514
oBERTamEpIuM 90.94 91.86 91.78
OBERTB.MED]UM 90% | 87.16 87.16 89.56
oBERTagmALL 89.56 88.65 90.83
oBERTagmaLL 90% 85.58 89.22 89.45

Table 28: Impact of knowledge distillation on the accu-
racy SST-2 Dataset across model sizes for the various
sizes of o BERTa as compared to the regularly trained
baseline
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model No KD | KD-Base | KD-Large
OBERTayp,(Target) | 91.52% | N/A N/A
0oBERTay,s. 90% 99.17 99.08 99.11
0oBERTap,s 95% 98.89 98.47 97.51
oBERTamEepium 99.21 99.16 99.19
oBERTapgepium 90% | 99.01 98.8 98.79
oBERTaSMALL 99.05 98.95 98.94
oBERTagyarLL 90% | 98.88 98.55 98.55

Table 29: Impact of knowledge distillation on the ac-
curacy on the CONLL2003 Dataset across model sizes
for the various sizes of o0BERTa as compared to the
regularly trained baseline

model No KD | KD-Base | KD-Large
0BERTay,(Target) 91.52% | N/A N/A
0oBERTay,s. 90% 89.01 90.86 90.92
0BERTay,s. 95% 87.06 89.84 89.21
OBERTB.MEDIUM 84.36 88.20 85.74
oBERTapgpium 90% | 84.71 89.26 88.61
oBERTagmaLL 82.00 80.77 77.08
oBERTaSMALL 90% 73.31 84.66 83.13

Table 30: Impact of knowledge distillation on the F1
SQUAD vl.1 Dataset across model sizes for the various
sizes of o BERTa as compared to the regularly trained
baseline

model No KD KD-Base KD-Large
0BERTay, (Target) 91.52% N/A N/A
0BERTap,s 90% 75.57852204 | 80.25256971 | 81.32561567
0BERTap,s 95% 72.61 77.67 77.98
oBERTayEpIuM 69.42634 70.97328 71.55996
oBERTapEepium 90% | 68.25281 76.02975 76.64135
oBERTagMmALL 66.8281 62.9573 63.1224
oBERTagyarL, 90% | 55.3959 70.0796 70.7913

Table 31: Impact of knowledge distillation on the F1
SQUAD v2.0 Dataset across model sizes for the various
sizes of o BERTa as compared to the regularly trained
baseline



model Frozen | Unfrozen
0BERTap,g (Target) | N/A 87.88%
0BERTap,5. 90% 84.50 83.81
0BERTap,5e 95% 83.91 83.41
oBERTaMEDIUM 84.37 83.32
oBERTapgeprum 90% | 81.61 77.00
oBERTaSMALL 80.24 80.36
OBERT&SMALL 90% 78.46 74.25

Table 32: Impact of frozen vs trained embeddings on
the accuracy (matched) MNLI Dataset across model
sizes for the various sizes of oBERTa as compared to
the uncompressed baseline

model Frozen | Unfrozen
0BERTap,s (Target) | N/A 91.52%
0BERTap,se 90% 90.93% | 90.99%
0BERTap,se 95% 90.72% | 90.85%
OBERTaMEDIUM 90.96% 91.35%
oBERTapmEepium 90% | 89.82% | 90.48%
oBERTagmALL 90.59% | 90.72%
oBERTagparL 90% 89.40% | 89.74%

Table 33: Impact of frozen vs trained embeddings on
the accuracy on QQP across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline

model Frozen | Unfrozen
0BERTap,s (Target) | N/A 91.52%
0BERTap,se 90% 92.55 | 91.74
0BERTap,se 95% 91.514 | 914
oBERTaMEDIUM 91.78 92.89
oBERTaMEDIUM 90% 89.56 88.76
oBERTaSMALL 90.83 90.48
oBERTagmarrL 90% | 89.45 | 89.34

Table 34: Impact of frozen vs trained embeddings on
the accuracy SST2 Dataset across model sizes for the
various sizes of o0BERTa as compared to the uncom-
pressed baseline
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model Frozen | Unfrozen
0BERTap,e (Target) | N/A 91.52%
0BERTay,s 90% 97.51 98.55
0BERTap,se 95% 99.11 99.13
oBERTaMEDIUM 99.19 99.18
OBERT&MEDIUM 90% | 98.79 98.9
oBERTaSMALL 98.94 98.94
OBERTEISMALL 90% 98.55 98.69

Table 35: Impact of frozen vs trained embeddings on the
accuracy on CONLL2003 Dataset across model sizes
for the various sizes of 0BERTa as compared to the
uncompressed baseline

model Frozen | Unfrozen
0BERTap,s (Target) | N/A 91.52%
0BERTap,se 90% 90.92 | 83.99
0BERTay,4 95% 89.21 87.08

oB ERTaMEDIUM 85.74 89.95
OBERTE[MEDIUM 90% | 88.61 86.63
oBERTaSMALL 77.08 84.64
oBERTaSMALL 90% 83.13 77.43

Table 36: Impact of frozen vs trained embeddings on
SQUAD v1.1 F1 across model sizes for the various sizes
of oBERTa as compared to the uncompressed baseline

model Frozen | Unfrozen
0BERTap,s (Target) | N/A 91.52%
oBERTay,s. 90% 71.56 78.05
0BERTay,se 95% 81.33 78.45
OBERT&MEDIUM 77.98 76.86
OBERT&MEDIUM 90% | 76.64 72.77
OBERTaSMALL 71.32 63.12
oBERTagpyarL 90% 70.79 59.38

Table 37: Impact of frozen vs trained embeddings on the
SQUAD v2.0 Dataset across model sizes for the various
sizes of oBERTa as compared to the uncompressed
baseline



model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
0oBERTap;se 16.69 1.00 59.90 59.82 1.02
0BERTap,se Quantized 51.68 3.10 19.34 19.28 0.58
0BERTap,se 90% 54.87 3.29 18.21 18.15 0.31
0oBERTap,e 90% Quantized 68.70 4.12 14.55 14.50 0.20
OoBERTapuse 95% 145.57 8.72 6.86 6.86 0.11
0BERTapuse 95% Quantized 78.90 4.73 12.66 12.68 0.31
oBERTapmepIUM 32.78 1.96 30.49 30.44 1.19
oBERTapepium Quantized 103.47 6.20 9.65 9.60 0.57
oBERTapgpium 90% 106.01 6.35 9.42 9.34 0.28
oBERTayepium 90% Quantized | 149.25 8.94 6.69 6.65 0.42
oBERTagmaLL 64.93 3.89 15.39 15.31 0.66
oBERTagmarL Quantized 208.09 12.47 4.80 4.78 0.28
oBERTagmarLL 90% 203.95 12.22 4.89 4.86 0.33
oBERTagmarLL 90% Quantized | 270.63 16.21 3.69 3.68 0.25

Table 38: Inference performance of the o BERTa model family using a batch size of 1, 24 cores, and a sequence
length of 384

model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
0oBERTap,. 19.55 1.00 818.23 811.93 15.52
0BERTayp,, Quantized 83.92 4.29 190.65 189.55 4.21
0oBERTap,5 90% 74.29 3.80 215.35 214.31 2.47
0oBERTap,s. 90% Quantized 137.83 7.05 116.07 115.43 2.56
OoBERTap,s 95% 89.07 4.56 179.62 178.92 3.19
0BERTap,se 95% Quantized 160.68 8.22 99.56 98.91 2.63
oBERTayEDIUM 38.95 1.99 410.73 408.13 6.11
oBERTapepum Quantized 157.12 8.04 101.82 101.27 221
oBERTapepum 90% 144.95 7.41 110.37 109.62 1.56
oBERTayepium 90% Quantized | 251.32 12.86 63.65 63.40 1.76
OoBERTagmaLL 77.49 3.96 206.46 205.75 2.07
oBERTagnarL Quantized 276.10 14.12 57.94 57.43 1.63
oBERTagmaLL 90% 281.57 14.40 56.81 56.73 0.64
oBERTagmaLL 90% Quantized | 417.35 21.35 38.32 38.01 1.55

Table 39: Inference performance of the o BERTa model family using a batch size of 16, 24 cores, and a sequence
length of 384

model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
0oBERTap,se 19.02 1.00 3365.11 3352.63 29.49
0oBERTayp,, Quantized 84.80 4.46 754.73 749.38 18.69
oBERTaps 90% 7222 3.80 886.13 881.75 10.65
0oBERTayp,s 90% Quantized 140.14 7.37 456.67 453.59 11.03
0oBERTap,s 95% 88.35 4.64 72441 72043 10.85
0BERTap,se 95% Quantized 162.76 8.56 393.21 390.45 12.15
oBERTayEDpIUM 37.94 1.99 1686.85 1685.03 8.09
oBERTapepium Quantized 160.48 8.44 398.80 396.47 9.27
oBERTapepium 90% 130.02 6.84 49222 486.90 9.64
oBERTapepium 90% Quantized | 259.51 13.64 246.61 244.54 7.13
oBERTagmALL 75.81 3.99 844.15 841.30 8.72
oBERTagyarL Quantized 267.70 14.07 239.06 237.86 7.02
oBERTagmaLL 90% 278.93 14.67 229.43 228.41 3.43
oBERTagnarL 90% Quantized | 455.71 23.96 140.43 139.81 5.40

Table 40: Inference performance of the o BERTa model family using a batch size of 64, 24 cores, and a sequence
length of 384

model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
0oBERTapc 4.89 1.00 204.65 204.93 1.82
0oBERTap,s. Quantized 20.01 4.09 49.95 49.88 0.66
oBERTap,s. 90% 17.60 3.60 56.82 56.70 0.72
0oBERTap,s. 90% Quantized 37.50 7.67 26.66 26.61 0.38
0oBERTap,s 95% 20.15 4.12 49.62 49.60 0.54
0BERTap,s. 95% Quantized 46.02 9.41 21.72 21.70 0.31
oBERTayepium 9.59 1.96 104.28 104.33 0.90
oBERTapepium Quantized 41.23 8.43 24.25 24.18 0.33
oBERTapEpium 90% 38.30 7.83 26.10 26.05 0.41
oBERTayepium 90% Quantized | 73.28 14.99 13.64 13.60 0.19
oBERTagnmaLL 19.31 3.95 51.78 51.74 0.35
oBERTagmarL Quantized 75.81 15.50 13.18 13.18 0.19
oBERTagpmaLL 90% 68.70 14.05 14.55 14.50 0.20
oBERTagmarL 90% Quantized 145.57 29.77 6.86 6.86 0.11

Table 41: Inference performance of the o BERTa model family using a batch size of 1, 4 cores, and a sequence
length of 384
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model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
0BERTapyse 5.14 1.00 3113.07 3113.92 19.89
0BERTap,s. Quantized 22.14 431 722.72 719.24 11.40
0BERTapsse 90% 17.15 3.34 932.97 931.21 5.76
0BERTap,se 90% Quantized 39.03 7.59 409.90 408.71 4.64
0oBERTapuse 95% 19.80 3.85 808.16 806.80 4.15
0BERTapse 95% Quantized 46.54 9.06 343.75 34275 4.12
oBERTapmepiuM 10.24 1.99 1563.00 1557.90 16.53
oBERTapEpium Quantized 42.82 8.33 373.61 372.88 4.05
oBERTayepium 90% 33.69 6.56 474.88 474.25 3.64
oBERTayEpium 90% Quantized | 76.10 14.81 210.24 209.41 2.45
oBERTagmALL 20.41 3.97 783.81 782.99 6.59
oBERTagmarL Quantized 79.57 15.48 201.07 200.60 2.12
oBERTagmaLL 90% 72.92 14.19 219.40 218.84 2.53
oBERTagmarL 90% Quantized | 139.50 27.14 114.68 114.45 1.53

Table 42: Inference performance of the o BERTa model family using a batch size of 16, 4 cores, and a sequence
length of 384

model Throughput (items/sec) | Speedup | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
OoBERTapse 5.06 1.00 12655.34 12680.81 57.78
0oBERTap,s. Quantized 21.88 4.32 2924.89 2921.95 31.78
0oBERTap,s. 90% 17.18 3.40 3724.72 3724.23 15.27
0oBERTap,s. 90% Quantized 37.44 7.40 1709.44 1699.64 26.97
oBERTap,se 95% 22.13 4.37 2892.15 2893.08 22.94
0BERTap,5e 95% Quantized 43.94 8.68 1456.53 1451.76 20.45
oBERTayEpium 10.21 2.02 1567.70 1562.90 14.53
oBERTayepium Quantized 42.74 8.45 374.35 373.15 4.00
oBERTapEpium 90% 33.99 6.72 470.67 469.99 3.58
oBERTayepium 90% Quantized | 75.64 14.95 211.53 210.80 2.61
oBERTagnaLL 20.42 4.03 783.67 783.29 5.16
oBERTagnvarL Quantized 79.44 15.70 201.40 201.43 2.90
oBERTagmarL 90% 71.50 14.13 223.77 223.41 1.78
oBERTagmarL 90% Quantized 139.55 27.58 114.65 114.48 1.53

Table 43: Inference performance of the o BERTa model family using a batch size of 64, 4 cores, and a sequence
length of 384

Model Throughput (items/sec) | Speedup vs BERT-Base | Speedup vs BERT-Large | Latency Mean (ms/batch) | Latency Median (ms/batch | Latency Std (ms/batch)
bertpase 4.923 1.00 5.65 203.1165 202.7077 1.3646
bert-large 0.8706 0.18 1.00 1148.6105 1145.145 9.5526
OBERTapc 4.89 0.99 5.61 204.65 204.93 1.82
OBERTay,,,. Quantized 20.01 4.07 22.99 49.95 49.88 0.66
0BERTap,s. 90% 17.60 3.57 20.21 56.82 56.70 0.72
O0BERTap,s 90% Quantized 37.50 7.62 43.07 26.66 26.61 0.38
O0BERTap,s. 95% 20.15 4.09 23.14 49.62 49.60 0.54
OBERTapyse 95% Quantized 46.02 935 52.86 21.72 21.70 0.31
oBERTapEpiuM 9.59 1.95 11.01 104.28 104.33 0.90
oBERTapepium Quantized 41.23 8.37 47.36 24.25 24.18 0.33
oBERTapepium 90% 38.30 778 43.99 26.10 26.05 0.41
oBERTapepium 90% Quantized | 73.28 14.89 84.18 13.64 13.60 0.19
0BERTasmaLL 19.31 3.92 22.18 51.78 51.74 0.35
0BERTagmarL Quantized 75.81 15.40 87.07 13.18 13.18 0.19
0BERTagmaLL 90% 68.70 13.95 78.91 14.55 14.50 0.20
0BERTagmarL 90% Quantized 145.57 29.57 167.21 6.86 6.86 0.11
pruneOFA-large 80% Quantized | 12.7315 2.59 14.62 78.5322 78.3961 0.4826
prunedOFA-large 90% Quantized | 11.7265 2.38 13.47 85.2647 85.1616 0.4292
obert-large 0.876 0.18 1.01 1141.5707 1138.5756 9.0121
obert-large 95% 7.508 1.53 8.62 133.1785 132.9672 1.0091
obert-large 95% Quantized 16.8077 3.41 19.31 59.4828 59.322 0.6445
pruneBERT 17.60 3.57 20.21 56.82 56.70 0.72
obert-large 97% 8.0414 1.63 9.24 124.3431 124.1421 1.0249
obert-large 97% Quantized 15.8631 3.22 18.22 63.0278 62.9979 0.6018
obertyase 90% 18.2881 371 21.01 54.6688 54.5896 0.5476
obertyase 90% Quantized 34.2797 6.96 39.37 29.1616 29.0977 0.3156
obertyase 95% 25.1818 5.12 28.92 39.6997 39.5986 0.5805
obertyase 95% Quantized 40.6387 8.25 46.68 24.5986 24.5222 0.3231

Table 44: Inference performance of the other sparse models using a batch size of 1, 4 cores, and a sequence length
of 384 comparing the o BERTa models to previous sparse language models such as pruneOFA (Zafrir et al., 2021)
PruneBERT (Sanh et al., 2020) and oBERT (Kurtié et al., 2022)
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Vs. BERT-Base Vs. BERT-Large

Model F1 Recovery Speed up | Recovery Speed up
BERT}gse 88.55 | 100.00% 1.00 97.74% 5.65
BERT-large 90.60 | 102.32%  0.18 100.00% 1.00
0BERTapye 92.20 | 104.12% 0.99 101.77%  5.61
0BERTap,s Quantized 93.18 | 105.23% 4.07 102.85%  22.99
0BERTap,se 90% 91.00 | 102.77%  3.57 100.44%  20.21
0BERTapyse 90% Quantized 89.46 | 101.03% 7.62 98.74%  43.07
0BERTap,s 95% 89.84 | 101.46% 4.09 99.16% 23.14
0BERTap,se 95% Quantized 88.40 | 99.83% 9.35 97.57% 52.86
oBERTapmepIum 90.36 | 102.04% 1.95 99.74% 11.01
oBERTayepium Quantized 90.37 | 102.06% 8.37 99.75% 47.36
oBERTaymepium 90% 89.26 | 100.80%  7.78 98.52%  43.99
oBERTapmepium 90% Quantized | 86.93 | 98.17% 14.89 95.95% 84.18
oBERTagnyALL 84.87 | 95.84% 3.92 93.68% 22.18
0oBERTagpmar 1 Quantized 84.82 | 95.79% 15.40 93.62% 87.07
oBERTagmar1, 90% 84.66 | 95.61% 13.95 93.45% 78.91
oBERTagmar 1, 90% Quantized | 78.71 | 88.89% 29.57 86.88% 167.21
pruneOFA-large 80% Quantized | 90.30 | 101.98%  2.59 99.67% 14.62
pruneOFA-large 90% Quantized | 89.96 | 101.59%  2.38 99.29% 13.47
oBERT-large 95% 90.19 | 101.85% 1.53 99.55% 1.01
oBERT-large 95% Quantized 90.21 | 101.87% 3.41 99.57% 8.62
pruneBERT 84.90 | 95.88% 3.41 93.71% 19.31
oBERT-large 97% 90.18 | 101.84% 13.05 99.54% 73.82
oBERT-large 97% Quantized 90.13 | 101.78% 1.63 99.48% 9.24
0BERThuse 90% 88.47 | 99.91% 3.22 97.65% 18.22
0BERTyse 90% Quantized 88.00 | 99.38% 3.71 97.13% 21.01
0BERT s 95% 88.19 | 99.59% 6.96 97.34% 39.37
O0BERTp,5e 95% Quantized 88.11 | 99.50% 5.12 97.25% 28.92

Table 45: Speedups of the o BERTa-family as compared to existing published sparse models as compared to the
performance of BERT},se and BERT-large. Speedup measures the reduction in latency of MS/batch.
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Abstract

In this paper, we consider the problem of
improving the inference latency of language
model-based dense retrieval systems by in-
troducing structural compression and model
size asymmetry between the context and query
encoders. First, we investigate the impact
of pre and post-training compression on the
MSMARCO, Natural Questions, TriviaQA,
SQUAD, and SCIFACT, finding that asymme-
try in the dual-encoders in dense retrieval can
lead to improved inference efficiency. Know-
ing this, we introduce Kullback—Leibler Align-
ment of Embeddings (KALE), an efficient and
accurate method for increasing the inference ef-
ficiency of dense retrieval methods by pruning
and aligning the query encoder after training.
Specifically, KALE extends traditional Knowl-
edge Distillation after bi-encoder training, al-
lowing for effective query encoder compres-
sion without full retraining or index generation.
Using KALE and asymmetric training, we can
generate models which exceed the performance
of DistilBERT despite having 3x faster infer-
ence.

1 Introduction

A bi-encoder-based retrieval, often called dense
retrieval, is a retrieval function that leverages the
vector representation of queries and documents as
a proxy for relevance. Using two encoders, one
for the query and one for the document, the input
data is mapped into a common latent space where
closeness becomes a proxy for relevance.

Dense retrievers have become increasingly popular
due to their ability to capture the semantic relation-
ships between query and document terms. How-
ever, bi-encoder-based models can also be com-
putationally expensive, particularly when dealing

* Corresponding author: dcampos3 @illinois.edu
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Retrieval Accuracy vs. Speedup
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Figure 1: Using KALE and asymmetric training on the
lead to when measuring QPS vs. Recall at 100 on the
NQ dataset. Using Asymmetry and KALE, it is possible
to 3x QPS with nearly no loss in accuracy and 4.5x with
under 2% loss in accuracy. We calculate QPS as the
mean number of queries per second with a batch size
of 1 and a max sequence length of 32 on a T4 GPU.
Impact on retrieval accuracy is measured by the relative
drop in retrieval accuracy at 100

with large datasets. As a result, there has been a
growing interest in methods for compressing these
models to reduce their computational complexity
without sacrificing performance.

While the use of smaller models (Wang et al., 2020)
has provided a path to improving model perfor-
mance, compression cannot be adjusted to suit
varying latency needs. In other words, a model
must match latency requirements before it can be
experimented with. Additionally, since bi-encoders
require a complete index generation to evaluate
performance iteratively compressing models and

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 59-77
July 13,2023 ©2023 Association for Computational Linguistics



retraining them can be very expensive. Seeing the
bottleneck caused by trying to train compressed
models for retrieval we explore approaches to com-
press models after training. By doing so it becomes
cheaper to evaluate the impact of compression of
retrieval and generate variants of many sizes.

In this paper, we explore the role of asymmetry
in the size of query and document encoders that
leverage language models. Through experiments
on several benchmarks, we demonstrate that our
approach can significantly reduce the number of
parameters in the bi-encoder model without sacri-
ficing performance.

As shown in figure 1, the combination of asymmet-
ric bi-encoders and post-training KALE allows for
3x more QPS than an uncompressed bi-encoder
with less than 1% loss in accuracy and nearly 5x
with less than 2%.

Building on the favorable implications of asym-
metry for efficient inference, we introduce a
compression mechanism called Kullback-Leibler
Allingment of Embeddings (KALE). KALE uses
an alignment of representations to compress mod-
els without requiring any form of retraining or in-
dex regeneration.

To ground our approaches, we evaluate the effec-
tiveness of KALE and asymmetry on several bench-
mark datasets and compare the results to existing
efficient inference approaches.

The following research questions drive our work:

¢ Is the performance of dense retrieval meth-
ods more driven by the query or document
encoder size?

* Isit possible to compress query encoders with-
out retraining and index regeneration?

* How can dense retrieval asymmetry and post-
training alignment be leveraged to improve
query encoder latency?

It is in answering these questions that we deliver
the following contributions:

* We present the first robust studies on the
role of document-query encoder symmetry,
demonstrating that the size of the document
encoder dominates performance.

¢ We introduce and demonstrate the effective-
ness of KALE, a post-training compression
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and alignment approach demonstrating its ef-
fectiveness and

* We empirically demonstrate on various bench-
marks how Asymmetric Compression can
lead to 4.5 better QPS with 1% loss in recall
accuracy at 100.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) provide contextual lan-
guage representations built on the Transformer ar-
chitecture (Vaswani et al., 2017) which can be spe-
cialized and adapted for specific tasks and domains
(Lee et al., 2020). Using contextual word repre-
sentations, it becomes relatively easy to excel at a
broad range of natural language processing tasks
such as Question Answering, Text Classification,
and sentiment analysis.

Bi-Encoders, commonly called dual-encoders or
dense retrievers, decompose ranking by leveraging
the inner product of query and document represen-
tations to produce a relevance score for query docu-
ment pairs. While not as accurate at cross-encoders
(Reimers and Gurevych, 2019), they are more effi-
cient for inference and easier to deploy. Bi-encoder
document representations are query invariant, al-
lowing them to be pre-computed and loaded into
an Approximate Nearest Neighbor (ANN) such as
FAISS (Johnson et al., 2019).

At runtime, a query is an encoder into a latent
space, and the k£ documents are retrieved us-
ing a nearest neighbor algorithm such as HNSW
(Malkov and Yashunin, 2016). Since the entire doc-
ument index has already been created the retrieval
latency is limited to a single call of the query en-
coder.

Bi-encoders commonly leverage LLM such as
BERT (Devlin et al., 2019) to retrieve short pas-
sages of text leading to the task descriptor of Dense
Passage Retrievers (DPR) (Karpukhin et al., 2020).
Driven by their efficiency in deployment and
relevance performance, DPR-based models have
rapidly become the building blocks for systems do-
ing product search (Magnani et al., 2022), open do-
main question answering (Karpukhin et al., 2020)
and customer support (Mesquita et al., 2022).
Efficient Inference study methods and models
which decrease the model execution cost while



minimizing the losses to model performance.
Knowledge Distillation (Hinton et al., 2015) is a
training method where a model, called the student,
learns to emulate a teacher model, which is com-
monly larger or better performing than the student.
Unstructured pruning removes individual weights
or groups of weights in a model by applying a mask
or setting the weight values to 0. When paired with
a sparsity-aware inference engine, it is possible to
gain 3-5x speedups in inference throughput with
little to no loss in accuracy (Kurtié et al., 2022).
Structured pruning removes fundamental structural
components in a language model, such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers (Sanh et al., 2019). Removing en-
tire model layers is one of the most pervasive ap-
proaches, as latency gains are easy to realize, and
pruning is straightforward.

While their training regimes may differ, models
like DistilBERT (Sanh et al., 2019) and TinyBERT
(Jiao et al., 2020), and MiniLM (Wang et al., 2020)
leverage structural pruning as ways of generation
2-10x speedups.

Methods like quantization (Pouransari and Tuzel,
2020) (Zafrir et al., 2019), early exiting (Xin et al.,
2020) or token pruning (Kim et al., 2021) have
been effective in other NLP tasks. Still, our work
primarily focuses on structured pruning and its re-
lationship with asymmetry. We leave studying the
impacts of asymmetry on these compression meth-
ods to future work.

Asymmetrical deep learning broadly refers to
any non-uniformity in shape or attribute of mod-
els. Traditional modeling approaches favor unifor-
mity as it is preferable for optimization algorithms
(Mihaylova and Martins, 2019), and using models
for inference should match training as closely as
possible (Ranzato et al., 2015) as improvements
in training loss during optimization result in im-
provements in model performance during infer-
ence. However, this does not account for cost
or latency asymmetries during usage. Kasai et
al. demonstrated how the sequence-to-sequence
encoder depth dominates language model perfor-
mance for machine translation (Kasai et al., 2020).
Tay et al. 2021 extend this work by finding a Deep-
Narrow which shows that for broad language mod-
eling, it is possible to have 50% fewer parameters
and a 40% faster inference with no loss in accu-
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racy.

Embedding Distillation Concurrent to our work
on bi-encoder compression, Kim et al. 2023 study
how distillation in embeddings leads to general
compression of bi-encoders and cross-encoders
(Kim et al., 2023). Our work differs from theirs as
we focus on the role of asymmetry between query
and document encoders and how to leverage it for
improved inference efficiency.

3 Method

The use of representation models for retrieval
begins with a document space d and a query
space ¢ where each of which is generated by
some model m. Models do not need to share
the same initialization, shape, or size, but their
representation vectors must share size without
some projection. These two models learn a notion
of relevance by training to minimize the distance
of positive query-document pairs as shown in
equation 1 where X is a query vector and y is a
document vector, and - denotes the dot product of
the vectors.

Xy

Ix||y]

The query and document encoder models are
commonly initialized with a pre-trained language
model such as BERT. Then, using pairs of labels
for positive relevance scores for queries and doc-
uments, the models are trained to minimize the
distance between queries and their relevant docu-
ments (Karpukhin et al., 2020)
While it is common practice to initialize the query
encoder and document encoder with identical lan-
guage models, this ignores the cost asymmetry
of the usage patterns. The document encoder is
usually only used once during a large-scale batch
generation of the index. Index generation happens
in a latency-insensitive environment and can easily
leverage many GPUs and large batch sizes to im-
prove efficiency.
The query encoder runs every time a user issues
a query, which can be irregular and sporadically.
The query encoder responds to each user query
independently. Thus, query encoders often use
a batch size of 1 and commonly leverage small
inference-optimized hardware like the T4 GPU or
small CPUs.

L=1

)
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Figure 2: Measuring the impact on recall at 20 on the NQ retrieval dataset by varying the number of transformer

layers for the query encoder and document encoder

Since the document encoder does not run very of-
ten, any improvement in latency produces a single
fixed gain utterly dependent on the corpus size
and index refresh cycle. The query encoder’s user-
facing nature means latency improvements occur
whenever a user queries.

3.1 Role of model symmetry with Bi-encoders

Since the query encoder runs many times online
and the document encoder runs once, offline, we
question: Is there some form of asymmetry be-
tween the query encoder and the document encoder
that can be exploited? Do the two encoders need
to be compressed symmetrically?

To answer this question, we explore the impact on
the performance of pruning the query and docu-
ment encoders on the NQ passage retrieval dataset
(Kwiatkowski et al., 2019). Using a BERT-base
uncased model with 12 transformer encoder lay-
ers, we generate structurally pruned models with
9,6,3,2 and 1 layer. We also further pre-train the
three and six-layer models using knowledge dis-
tillation, represented as 6 p and 3x p, from a 12-
layer model on the Wikipedia-book corpus similar
to distilBERT (Sanh et al., 2019).

Then, using each of these seven models, we train
dense retrieval models on the NQ passage retrieval
dataset with variations of query and document mod-
els resulting in 72 variants. With each of these
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models, we generate a full index and evaluate re-
trieval performance on the development portion
of the dataset. We do not tune any parameters to
avoid overfitting and to explore asymmetry without
overoptimizing. Each model’s retrieval accuracy
is evaluated with retrieval sets of depth 20, 100,
and 200. We compare the impact of varying the
encoders to the uncompressed baseline and a dis-
tilBERT model (denoted by 64p).

Looking at the impact of symmetric compression

Table 1: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

Layers enc | Top 20 | Impact Top 100 | Impact Top 200 | Impact
12 79.86% | 0.00% 85.84% | 0.00% 88.42% | 0.00%
6ap 73.88% | -749% | 84.74% | -1.29% | 87.26% | -1.31%
9 73.41% | -8.08% | 83.68% | -2.51% | 86.51% | -2.16%
6xD 75.04% | -6.04% | 85.15% | -0.80% | 87.45% | -1.10%
6 71.69% | -10.23% | 83.30% | -2.96% | 86.04% | -2.69%
3KkD 73.32% | -8.19% | 83.43% | -2.80% | 86.20% | -2.51%
3 66.93% | -16.20% | 80.61% | -6.09% | 84.49% | -4.45%
2 66.87% | -16.27% | 80.42% | -6.32% | 83.85% | -5.17%
1 54.96% | -31.18% | 71.88% | -16.26% | 76.73% | -13.22%

as shown in table 1, we see that the impact of com-
pression is more pronounced with a small recall
set as retrieval accuracy impact at 20 is 3x that
of at 200. As shown in table 1 we observe major
accuracy gains by fine-tuning the pruned model
with a 4% gap between 6 and 6 p and a 8% gap
between 3 and 3 p with a 4% gap for recall at 20
on the NQ dataset.

Looking at the impact of asymmetry of the depth



of encoders as shown in table 2 and figure 2 we
find there is the size of the query and document en-
coders cause similar impacts on retrieval accuracy.
A retriever with 3 layers in the query encoder and
12 in the document encoder loses 11.9% of its re-
trieval accuracy and 12.55% when the sizes of the
document encoder and query encoders are flipped.
These asymmetric retrievers perform better than
the symmetric 3-layer models, which lose 16.2%
which highlights the ability to improve retrieval
performance by having non-uniform compression.
It is worth noting that having a larger document en-
coder is preferable to a larger query encoder which
supports the notion that the document encoder is
more important than the query encoder (Li and Lin,
2021).// Similar results can be seen with the intro-
duction of fine-tuned three and 6-layer models as
shown in table 6. Unsurprisingly, KD-optimized
language models outperform non-distilled mod-
els, and any asymmetrical variant that leverages a
distilled model outperforms the un-distilled vari-
ant. Without further optimization, a model with
a distilled 3-layer query encoder and a 12-layer
document encoder will outperform a model with
symmetrical 6-layer models despite being 2x faster.

3.2 Inference Benchmarks

To evaluate the impact of structural pruning, we
benchmark inference speeds of query encoding
while varying the number of transformer layers.
We perform benchmarking using an Intel Xeon
Gold 6238R Processor and a T4 Nvidia GPU. For
each model, we evaluate the performance on encod-
ing 6500 queries with a batch size of one and a max
context length of 32. For CPU inference, we eval-
uate the performance of models using the ONNX
library !, and for GPU inference, we evaluate na-
tive Pytorch inference. We repeat each run five
times to ensure consistency and report the mean.
Summary statistics can be found in table 3 and full
results, including percentile, standard deviation,
and confidence intervals, can be found in the ap-
pendix .5.
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Table 2: Impact of Structural pruning before fine-tuning
on Retrieval Accuracy on NQ passage retrieval dataset

‘ layers, ‘ layersg ‘ Top 20 ‘ Impact ‘ Top 100 ‘ Impact ‘ Top 200 ‘ Impact

[12 12 [ 79.86% | 0.00% | 85.84% | 0.00% | 88.42% | 0.00%
9 12 74.27% | -1.00% 84.40% | -1.67% 86.95% | -1.66%
6 12 73.63% | -1.80% 84.27% | -1.83% 86.79% | -1.85%
3 12 69.83% | -12.55% | 82.58% | -3.80% | 85.35% | -3.48%
2 12 69.67% | -12.76% | 82.19% | -4.25% | 84.68% | -4.23%
1 12 59.00% | -26.12% | 75.37% | -12.19% | 81.00% | -8.39%
12 9 74.21% | -1.07% 84.40% | -1.67% 87.06% | -1.53%
9 9 73.41% | -8.08% 83.68% | -2.51% 86.51% | -2.16%
6 9 71.63% | -10.30% | 83.05% | -3.25% 85.98% | -2.76%
3 9 67.89% | -14.98% | 80.94% | -5.71% 84.79% | -4.10%
2 9 67.15% | -15.92% | 80.53% | -6.19% 83.66% | -5.39%
1 9 56.04% | -29.83% | 73.35% | -14.55% | 78.12% | -11.65%
12 6 72.22% | -9.57% | 83.41% | -2.83% | 85.84% | -2.91%
9 6 71.61% | -10.33% | 83.30% | -2.96% | 85.93% | -2.82%
6 6 71.69% | -10.23% | 83.30% | -2.96% | 86.04% | -2.69%
3 6 66.93% | -16.20% | 80.28% | -6.48% | 83.96% | -5.04%
2 6 66.12% | -17.20% | 80.33% | -6.42% 83.49% | -5.58%
1 6 59.53% | -25.46% | 75.37% | -12.19% | 79.83% | -9.71%
12 3 70.36% | -11.90% | 81.72% | -4.80% | 84.60% | -4.32%
9 3 68.67% | -14.01% | 80.47% | -6.25% | 84.46% | -4.48%
6 3 67.92% | -14.95% | 80.06% | -6.74% | 83.85% | -5.17%
3 3 66.93% | -16.20% | 80.61% | -6.09% | 84.49% | -4.45%
2 3 63.30% | -20.74% | 78.37% | -8.71% | 83.02% | -6.11%
1 3 59.53% | -25.46% | 75.68% | -11.84% | 80.08% | -9.43%
12 2 69.56% | -12.90% | 81.33% | -5.25% 84.49% | -4.45%
9 2 67.92% | -14.95% | 80.75% | -5.93% 84.32% | -4.64%
6 2 67.53% | -15.43% | 80.33% | -6.42% | 83.82% | -5.20%
3 2 66.90% | -16.23% | 80.36% | -6.38% | 84.24% | -4.73%
2 2 66.87% | -16.27% | 80.42% | -6.32% | 83.85% | -5.17%
1 2 60.06% | -24.80% | 75.29% | -12.29% | 79.75% | -9.80%
12 1 57.40% | -28.13% | 73.24% | -14.68% | 78.56% | -11.15%
9 1 57.51% | -27.99% | 73.24% | -14.68% | 77.87% | -11.94%
6 1 57.26% | -28.30% | 73.52% | -14.35% | 78.34% | -11.40%
3 1 57.04% | -28.58% | 73.93% | -13.87% | 78.39% | -11.34%
2 1 56.57% | -29.17% | 73.71% | -14.13% | 77.98% | -11.81%
1 1 54.96% | -31.18% | 71.88% | -16.26% | 76.73% | -13.22%

layers size compressed size method QPS Speedup
12 418 387 GPU 105.852 1.00
9 337 212 GPU 139.494 1.32
6 256 236 GPU 172.338 1.63
3 175 161 GPU 299.45 2.83
2 148 136 GPU 441.422 4.17
1 121 111 GPU 660.64 6.24
12 418 387 CPU 47.278 1.00
9 337 212 CPU 63.24 1.34
6 256 236 CPU 90.386 1.91
3 175 161 CPU 166.012 3.51
2 148 136 CPU 229.666 4.86
1 121 111 CPU 378.534 8.01

Table 3: Variation in model throughput according to the
serving method and the number of transformer layers.
Structural pruning can lead to a 6 and 8-layer perfor-
mance increase on GPU and CPU and pruning a model
to 3 layers allows a CPU to offer better inference per-
formance than the GPU.

Table 4: Impact of structural pruning with and without
KALE on Accuracy at 100 across various datasets.

Layers KALE NQ TriviaQA MSMARCO SCIFACT SQUAD
12 N/A 85.84% 85.84% 88.77% 90.70% 77.16%
9 N 79.97% 79.97% 82.01% 71.07% 71.38%
9 Y 84.90% 84.90% 86.16% 84.87% 73.54%
6 N 68.20% 68.20% 72.68% 22.98% 59.97%
6 Y 83.68% 83.68% 84.68% 85.13% 69.87%
3 N 43.88% 43.88% 11.39% 40.80% 34.42%
3 Y 81.14% 81.14% 82.11% 82.57% 64.37%
2 N 46.90% 46.90% 31.46% 42.66% 37.01%
2 Y 81.94% 81.94% 81.96% 82.57% 63.72%
1 N 12.22% 12.22% 0.00% 3.17% 11.66%
1 Y 71.33% 71.33% 54.36% 66.83% 51.39%




4 KL Alignment of Embeddings

While training asymmetric models can improve
latency, it requires novel training regimes and
experimentation, and existing workloads need
to regenerate their entire index to take advan-
tage of any inference speedups. Generation of
the passage index can take longer than model
training (Karpukhin et al., 2020), which makes
regenerating a new index and retraining a model to
meet changing latency requirements an inefficient
experimentation pathway.
Moreover, coupling asymmetry into training
makes generating query encoder variants more
difficult, as each encoder requires its own index
and document encoder.
Motivated by this bottleneck, we introduce
Kullback-Leibler Allingment of Embeddings
(KALE), a simple method of improving bi-encoder
latency by aligning the embeddings of compressed
models. KALE is applied after model training and
leverages large batch sizes to make compression
computationally inexpensive and independent
of training. A single V100 GPU KALE can
produce a compressed query encoder in less than 5
minutes.
First, a bi-encoder model trains with separate
query and document encoders. When training
is complete, the document encoder, ejocuments
is frozen, and using the query encoder, ¢4, a
structurally pruned copy, e, , is made. Then, using
a sample of queries, the e, model is fine-tuned
to minimize the KL divergence of their query
representations as shown in equation 2. While
the KL divergence is a measure of differences
in probability distributions it has been applied
successfully for representation alignment (Kim
et al., 2023). To leverage it, we treat each of the
representation vectors as a probability over a set of
eq (2)

logits.
)1 .2
)log < q(@) @

We explored the use of various distance functions
such as cosine similarity, Manhattan distance, and
the KL divergence but found little sensitivity in
any metric besides KL divergence. We believe this
is due to us freezing the document representations,

=D eyle

zeX

Dxi(eq | €q)

'https://onnx.ai/
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and as a result, cosine distance allows the query
embeddings to drift more than probability distribu-
tion matching methods. To explore this further, we
experiment with tuning the temperature for the KL
divergence and add a loss scaling factor but find a
temperature of one and a scaling factor of ten to be
most optimal.

Additionally, we explored using a contrastive loss
with random negative and hard negatives mined
from the trained encoder but found no positive
impact for either method. We leave further explo-
ration of training objective improvement for future
work.

4.1 Experimental Results

We evaluate the effectiveness of KALE by tak-
ing uncompressed BERTpasg models and pruning
them with and without KALE on a variety of well-
established passage retrieval benchmarks. First,
models are trained, and indexes are generated us-
ing un-optimized BERTpasg models. Next, the
document encoders are frozen, and the query en-
coders are structurally pruned to have 9,6,3,2 or
1 transformer layer. Finally, query encoders are
aligned using KALE, and we compare the perfor-
mance of compressed models by comparing the
impact on retrieval accuracy at 20,100, and 200.
To aid reproducibility, each model is trained using
the Tevatron (Gao et al., 2022) 2 library, which
makes use of hugginface’s transformers to pro-
vide a simple interface for exploring neural rank-
ing models. Our experiments focus on the plain
BERTgase-uncased 12-layer transformer model.
While never more capable models exist, the unal-
tered BERT model is widely used in production
workloads, which our experiments seek to emulate.
Our work aims not to produce the highest possi-
ble retrieval accuracy for a dense encoder. Instead,
our goal is to find the role of asymmetry in bi-
encoder models. As a result, we leverage the well-
established parameters in all of our experiments
without using an advanced methodology like con-
trastive or curriculum learning.

There are fewer parameters for using KALE, and
we deliberately do not optimize on anything but
the loss between e, and e, . In general, higher
degrees of pruning require longer training with
smaller batches.

Zhttps://github.com/texttron/tevatron
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Figure 3: Impact of structural pruning with and without KALE on the NQ, MSMARCO, TriviaQA, SciFACT, and
SQuAD Passage Retrieval dataset with the recall set sizes of 20,100, and 200. Across datasets, we see a consistent
trend where KALE is effective but most effective when the network is heavily pruned and recall set sizes are small.
When the model is pruned to 2 or 1 layer with a recall set size of 20, the difference between using KALE or not can
be up to 10 times the loss in recall accuracy
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Datasets We use a wide variety of standard dense
retrieval benchmarks, including MSMARCO V1.1
3 (Campos et al., 2016), NQ Passage Ranking *
(Kwiatkowski et al., 2019), SciFact Passage Rank-
ing > (Wadden et al., 2020), TriviaQA passage
Ranking 6 (Joshi et al., 2017), and SQUAD Pas-
sage Ranking 7 (Rajpurkar et al., 2016).

For each dataset, we evaluate performance by mea-
suring the recall accuracy with retrieval depths of
20,100, and 200. Additionally, for the MSMARCO
dataset, we also report MRR @ 10; for Scifact, we
also report NDCG @10 and RR@10.
Computational Experiments Our experimenta-
tion on fine-tuning our compressed models uses
a 16 GB V100 GPU. Experiments in bi-encoder
model training leverage 1 V100 for the MS-
MARCO and 4 for each other experiment. Due
to the vast number of models and datasets we train
on, each experiment happens with the same fixed
seed.

4.2 Evaluating KALE

We compare the performance of using KALE for
post-training compression in figure 3 across the
five datasets and see a fairly consistent trend. When
the recall set is small and the query encoders are
pruned to a high degree, the impact of KALE is
most visible, often driving over 50 improvements
in retrieval accuracy. Additionally, using KALE
allows the models to have a steady and gradual
drop in recall accuracy relative to speedup instead
of the sharp drop shown by the regular usage of
structural pruning. Without KALE, post-training
compression causes a 20-50% loss in retrieval ac-
curacy. With the use of KALE, these losses are
cut to 1-10%. In practice, this allows using one or
2-layer encoder models running with CPU-based
inference with minor impacts on accuracy.

We also notice a surprising performance improve-
ment between 3 and 2-layer query encoders with
and without KALE. We believe this shows the phe-
nomena studied elsewhere: the first and last layers

3https://huggingface.co/datasets/Tevatron/msmarco-
passage

*https://huggingface.co/datasets/Tevatron/wikipedia-nq

Shttps://huggingface.co/datasets/Tevatron/scifact

Shttps://huggingface.co/datasets/Tevatron/wikipedia-
trivia

https://huggingface.co/datasets/Tevatron/wikipedia-
squad
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MSMARCO | NQ | TriviaQA
8877% | 85.84% | 85.03%

SQUAD | SCIFACTS |
716% | 9070% |

Model | Layers
BERTpase | 12

84.68% 83.68% | 83.01% 69.87% 85.13%
88.19% 85.15% | 84.96% 71.94% 91.23%
88.35% 8474% | 84.83% 71.69% 89.37%
86.50% 85.37% 84.04% 70.89% 89.20%
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BERTpAsE

3kd — 3kd
3jd — Okd
Gicd — Skd
Okd — Ok

82.11% 81.14% | 81.67% 64.37%
86.13% 83.66% | 84.11% 71.98%
84.79% 85.76% | 83.91% 67.85%
82.95% 8343% | 82.33% 6371%
86.75% 80.78% 83.48% 64.14%

BERTpAsE

3kd — 3kd
3jd — Okd
Gid — Skd
Okd — Oka

81.96% 81.23% 67.00% 82.57%
83.02% 67.02% 91.33%

82.90% 62.75% 8837%

82.13% 62.52% 89.93%
83.32% 52.74% 91.93%

BERTpAsE

3kd — 3kd
3d — Okd
Okd — 3k
Gkd = 6kd

71.33% | 75.40% 51.39% 66.83%
77.017% | 80.82% 55.62% 76.03%
7981% | 80.23% 52.26% T8.61%
7657% | 718.65% 50.88% T1.07%
74.71% 80.31% 52.74% 77.89%
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Table 5: Impact of model asymmetry and use of KALE
for structural pruning on the Retrieval at 100 accuracies
across various datasets. Layers refer to the number of
transformer encoder layers in the query encoder.

do most of the work (Oh et al., 2022).

4.3 Aiding Asymmetry with KALE

Seeking to optimize compression further, we com-
bine KALE with asymmetrical finetuning and eval-
uate the results similarly to our earlier experiments.
Results on the impact of KALE and asymmetry
on the five datasets on the recall accuracy at 100
can be found in table 5 where 34 — 614 denotes a
three-layer query encoder and six-layer document
encoder, 3,y — 34 denotes dual three layer en-
coders. Full results and metrics for each task can
be found in the appendix section .4.

First, it is immediately observable that post-
training compression via KALE performs worse
than models natively designed for that size. We
believe this is due to the convergence of the KALE
models to have some distance from the uncom-
pressed model because of dropout. We experi-
mented with not using dropout in KALE, but model
performance quickly suffered.

Looking at the best retrieval accuracy vs. the model
speedups shown in figure 4, we can see a substan-
tial variation in the impact of compression across
datasets. In tasks like SClIfacts, it is possible to get
over 4x speedup while improving accuracy, while
on tasks like SQuAD, even minor speedups lead
to major losses in accuracy. We believe this vari-
ation is driven by the relative difficulty of each
dataset, where easier tasks are more compressible
than harder tasks.

We believe these variations in results highlight the
utility of post-training compression methods like
KALE. Given the task variability in the impact of
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Figure 4: The impact on retrieval accuracy of the
best combinations of asymmetrical training and KALE
across the NQ, MSMARCO, TriviaQA, SQUAD, and
SClfacts retrieval datasets

compression, iteration speed and cost are essential
to effectively tuning model inference speed and
accuracy.

5 Limitations

While our work makes a broad study on how to
improve model efficiency our scope is limited. Our
work is limited to the usage of BERT-base and it
is not clear how our compression approaches scale
to more varied architectures like the sequence-to-
sequence models used by DocT5 (Lee et al., 2022)
or more optimized models like RoBERTa (Liu
et al., 2019) or compressed models like MiniLM
(Wang et al., 2020).

6 Conclusion and Future Work

In this work, we have demonstrated how the use
of asymmetry between the query and document
encoders in bi-encoder models can be leveraged
for improved inference efficiencies across CPUs
and GPUs. Using our post-training compression
framework, KALE, we can compress models up
to 6x with little loss in accuracy. Compressing
models without regenerating the document index
or the document encoder makes it practical to have
many query encoders tailored to each use case’s
latency needs.
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In the future, we wish to study how asymmetry in
retrieval can be implemented with models which
are widely different and may have different hidden
sizes, such as using MiniLM for the query model
and RoBERTA-Large for the document model.
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.1 Asymmetrical Dense Retrieval

the impact of structural pruning with asymmetrical
dense retrieval can be found in table 6. Similar to
other works studying the use of knowledge distilla-
tion found (Sanh et al., 2020), the use of distillation
improves performance by a non-negligible level.

Table 6: Impact of Structural pruning with knowledge
distilled variants before fine-tuning on Retrieval Accu-
racy on NQ passage retrieval dataset

‘ layers, ‘ layersy ‘ Top 20 ‘ Impact ‘ Top 100 ‘ Impact ‘ Top 200 ‘ Impact

[12 [12 [ 79.86% | 0.00% | 85.84% | 0.00% | 88.42% | 0.00%
Guistitbert | Oaistitvert | 73.88% | -1.49% | 84.74% | -1.29% | 87.26% | -1.31%
6xD 12 73.99% | -135% | 8432% | -1.17% | 86.65% | -2.00%
[ 5 71.63% | -10.30% | 83.16% | -3.12% | 85.82% | -2.94%
kD 6 71.00% | -11.10% | 82.35% | -4.06% | 8548% | -3.32%
65D 3 68.42% | -14.32% | 80.94% | -5.11% | 84.24% | -4.13%
65D 2 68.39% | -14.36% | 80.58% | -6.13% | 84.00% | -4.98%
6xD i 36.:62% | 29.10% | 72.24% | -15.84% | 7181% | -12.00%
3kp 12 71.72% | -10.20% | 83.21% | -3.06% | 85.90% | -2.85%
3kD 9 68.95% | -13.66% | 81.715% | -4.17% | 84.19% | 4.10%
3kD 6 68.09% | -14.74% | 81.52% | -5.03% | 84.76% | 4.13%
3kD 3 65.84% | -17.55% | 19.58% | -1.29% | 83.41% | 5.61%
3kD 2 66.81% | -16.34% | 719.50% | -1.38% | 82.71% | -6.45%
3kD 0 54.46% | 31.81% | 71.44% | -16.77% | 76.59% | -13.38%
12 6KD 78.78% | -135% | 85.84% | 0.01% | 87.45% | -1.10%
9 6xD 71.26% | 3.26% | 85.18% | -0.17% | 81.34% | -1.22%
6 65D 7645% | 4.26% | 84.96% | -1.03% | 87.06% | -1.53%
65D 65D 75.04% | 6.03% | 85.15% | -0.80% | 87.45% | -1.10%
3 6xD 74.49% | 6.13% | 84.24% | -1.87% | 86.54% | 2.13%
3kD 6xD 77.01% | -3.57% | 85.16% | -0.09% | 87.42% | -1.13%
2 6xD 7443% | -6.80% | 83.68% | -2.51% | 86.32% | -2.38%
1 6xD 68.09% | -14.74% | 79.22% | -1.11% | 83.19% | -5.92%
12 3kp 76.45% | -4.26% | 84.49% | -1.58% | 86.70% | -1.94%
9 3kD 76.12% | 4.68% | 84.29% | -1.80% | 86.26% | -2.44%
6 3kD 75.15% | -5.89% | 83.43% | 2.80% | 86.45% | -2.22%
65D 3kD 77.40% | 3.09% | 85.37% | -0.54% | 87.48% | -1.06%
3kD 3kD 73.32% | -8.18% | 83.43% | -2.80% | 86.20% | 2.51%
3 3kD 71.88% | 9.99% | 83.66% | -2.54% | 8637% | 2.32%
2 3kD 72.22% | -9.56% | 81.93% | -4.55% | 85.08% | 3.11%
1 3kD 6731% | -15.71% | 719.25% | -1.67% | 82.77% | 6.39%

.2 Dense Retrieval and KALE
Hyperparameters

Our experiments focus on minimal hyperparameter
optimization. For training of the dense retrievers,
we use the datasets described in 7 where the shorter
training lengths and smaller batch sizes correspond
to MSMARCO while the other datasets leverage
the longer and larger training. For the use of KALE
we perform task-specific grid search using the pa-
rameters described by 8.

3 KALE

As shown in table 9, we explore the impact of
KALE for the NQ dataset, in table 10, we explore
the impact on TriviaQA, in table 11, we evaluate
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Parameter | Possible Values
Training Length 3,40 Epochs
Initial learning rate le-5, 5e-5, 5e-6
Learning rate schedule Linear
Batch size | 8,128,
Negative Passages | 1,8

Table 7: Hyperparmaters used to train bi-encoder mod-
els for retrieval

Parameter | Possible Values
Training Length 1,10,100 Epochs
Initial learning rate Se-5, S5e-4, 5e-6
Learning rate schedule constant
Batch size ‘ 4.64,256
Loss Temperature | 1,10

Table 8: Hyperparmaters used by KALE for aligning the
embeddings of a pruned model with its uncompressed
target.

the MSARCO passage retrieval, in table 12 we ex-
plore Scifacts, and in table 13 we explore SQUAD.
The impact of pruning and KALE is fairly con-
sistent across datasets, but there are larger losses
on some smaller datasets, such as SClfacts and
SQUAD.

4 KALE and Asymmetric Training

Building on the impact of asymmetry and KALE,
we explore comparing them across various datasets
as shown in 14, 15,16, 17, 18.

.5 Inference Benchmarks

Evaluation of inference on GPU can be found in
25,26,27,28 ,29,30 while CPU results can be found
in 19, 20, 21, 22, 23, 24.



Layers | KALE | Top 20 | Impact | Top 100 | Impact | Top 200 | Impact
12 N/A 79.86% | 0.00% 85.84% | 0.00% 88.42% | 0.00%

9 N 68.70% | -13.97% | 79.97% | -6.84% | 83.55% | -5.51%
9 Y 77.40% | -3.08% | 84.90% | -1.10% | 87.04% | -1.56%
6 N 50.69% | -36.53% | 68.20% | -20.55% | 73.52% | -16.85%
6 Y 75.51% | -5.45% | 83.68% | -2.52% | 86.18% | -2.53%
3 N 27.34% | -65.77% | 43.88% | -48.88% | 51.19% | -42.11%
3 Y 72.69% | -898% | 81.14% | -5.48% | 84.76% | -4.14%
2 N 27.81% | -65.18% | 46.90% | -45.36% | 54.54% | -38.32%
2 Y 71.83% | -10.06% | 81.94% | -4.54% | 84.54% | -4.39%
1 N 457% | -94.28% | 12.22% | -85.76% | 15.87% | -82.05%
1 Y 58.86% | -26.30% | 71.33% | -16.90% | 75.65% | -14.44%

Table 9: Impact of structural pruning with and without KALE on the NQ retrieval dataset

Layers | KALE | Top 20 | Impact Top 100 | Impact Top 200 | Impact
12 N/A 79.43% | 0.00% 85.84% | 0.00% 86.63% | 0.00%

9 N 71.16% | -10.41% | 79.97% | -5.35% | 83.13% | -4.04%
9 Y 77.46% | -2.48% | 84.90% | -1.28% | 85.95% | -0.78%
6 N 53.98% | -32.04% | 68.20% | -18.91% | 74.05% | -14.52%
6 Y 7537% | -5.11% | 83.68% | -2.38% | 85.25% | -1.59%
3 N 28.99% | -63.50% | 43.88% | -43.84% | 55.62% | -35.80%
3 Y 73.17% | -7.88% | 81.14% | -3.95% | 84.04% | -2.99%
2 N 33.98% | -57.22% | 46.90% | -39.29% | 58.52% | -32.45%
2 Y 72.39% | -8.86% | 81.94% | -4.47% | 83.64% | -3.45%
1 N 3.15% | -96.03% | 12.22% | -90.02% | 12.49% | -85.58%
1 Y 63.04% | -20.63% | 71.33% | -11.33% | 79.23% | -8.54%

Table 10: Impact of structural pruning with and without KALE on the TriviaQA retrieval dataset

Layers | KALE | MRR@10 | Impact Top 20 | Impact Top 100 | Impact Top 200 | Impact
12 N/A 32.47% 0.00% 70.47% | 0.00% 88.77% | 0.00% 93.84% | 0.00%

9 N 27.68% -14.74% | 62.97% | -10.65% | 82.01% | -7.62% 87.62% | -6.63%
9 Y 30.38% -6.43% 67.21% | -4.64% 86.16% | -2.94% 91.85% | -2.12%
6 N 20.86% -35.75% | 52.66% | -25.27% | 72.68% | -18.12% | 79.20% | -15.60%
6 Y 28.71% -11.57% | 65.44% | -7.14% 84.68% | -4.60% 90.74% | -3.30%
3 N 1.49% -9542% | 5.10% | -92.76% | 11.39% | -87.17% | 15.16% | -83.85%
3 Y 26.56% -18.19% | 62.36% | -11.51% | 82.11% | -7.50% 88.51% | -5.68%
2 N 3.48% -89.28% | 13.55% | -80.77% | 31.46% | -64.56% | 38.71% | -58.75%
2 Y 26.10% -19.61% | 61.68% | -12.48% | 81.96% | -7.67% 88.41% | -5.79%
1 N 0.00% -100.00% | 0.00% | -100.00% | 0.00% -100.00% | 0.00% -100.00%
1 Y 13.16% -59.47% | 34.64% | -50.84% | 54.36% | -38.77% | 62.82% | -33.05%

Table 11: Impact of structural pruning with and without KALE on the MSMARCO retrieval dataset
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Layers | KALE | RR@10 | Impact | recall 10 | Impact | NDCG@10 | Impact | Top20 | Impact | Top 100 | Impact | Top 200 | Impact
12 N/A 59.11% | 0.00% 78.71% | 0.00% 62.55% 0.00% 82.38% | 0.00% 90.70% | 0.00% 93.77% | 0.00%
9 N 25.30% | -57.20% | 39.66% | -49.61% | 27.46% -56.10% | 45.43% | -44.85% | 71.07% | -21.64% | 79.03% | -15.72%
9 Y 59.76% | 1.10% 74.86% | -4.89% | 62.26% -0.46% | 79.63% | -3.34% | 84.87% | -6.43% | 89.90% | -4.13%
6 N 8.67% | -85.33% | 15.06% | -80.87% | 9.16% -85.36% | 21.75% | -73.60% | 22.98% | -74.66% | 30.17$ | -67.83%
6 Y 54.99% | -6.97% | 72.53% | -1.85% | 58.22% -6.92% | 77.07% | -6.45% | 85.13% | -6.14% | 81.710% | -6.47%
3 N 9.00% | -84.77% | 16.00% | -79.67% | 9.72% -84.46% | 22.40% | -72.81% | 40.80% | -55.02% | 51.56% | -45.01%
3 Y 55.18% | -6.65% | 71.22% | -1.89% | 58.30% -6.79% | 76.73% | -6.86% | 82.57% | -8.96% | 86.90% | -7.33%
2 N 9.65% | -83.67% | 16.93% | -78.49% | 10.39% -83.39% | 24.26% | -70.55% | 42.66% | -52.97% | 51.49% | -45.09%
2 Y 54.45% | -1.88% | 71.72% | -8.88% | 57.71% -7.74% | 76.07% | -71.66% | 82.57% | -8.96% | 85.90% | -8.39%
1 N 0.30% | -99.49% | 13.30% | -83.10% | 0.49% -99.22% | 1.50% | -98.18% | 3.17% | -96.50% | 4.23% | -95.49%
1 Y 40.52% | -31.45% | 55.25% | -29.81% | 43.23% -30.89% | 59.00% | -28.38% | 66.83% | -26.32% | 70.22% | -25.11%

Table 12: Impact of structural pruning with and without KALE on the SCIFACTS retrieval dataset

Layers | KALE | Top 20 | Impact Top 100 | Impact Top 200 | Impact
12 N/A 63.82% | 0.00% 77.16% | 0.00% 81.06% | 0.00%

9 N 56.16% | -12.00% | 71.38% | -7.49% | 76.41% | -5.74%
9 Y 58.74% | -71.96% | 73.54% | -4.69% | 78.51% | -3.15%
6 N 42.79% | -32.95% | 59.97% | -22.28% | 66.63% | -17.80%
6 Y 53.51% | -16.15% | 69.87% | -9.45% | 75.03% | -7.44%
3 N 18.67% | -70.75% | 34.42% | -55.39% | 42.02% | -48.16%
3 Y 47.62% | -25.38% | 64.37% | -16.58% | 69.89% | -13.78%
2 N 20.82% | -67.38% | 37.01% | -52.03% | 45.01% | -44.47%
2 Y 46.60% | -26.98% | 63.72% | -17.42% | 69.53% | -14.22%
1 N 530% | -91.70% | 11.66% | -84.89% | 15.88% | -80.41%
1 Y 34.72% | -45.60% | 51.39% | -33.40% | 58.01% | -28.44%

Table 13: Impact of structural pruning with and without KALE on the SQUAD retrieval dataset

Model Layers | KALE | MRR@10 | Impact | Top 20 | Impact | Top 100
BERT-base | 12 N 32.47% 0.00% 70.47% | 0.00% 88.77%
BERT-base | 6 Y 28.71% -11.57% | 65.44% | -71.14% | 84.68%
6xqg —6xa | 6 N 32.21% -0.78% | 69.94% | -0.75% | 88.19%
64p — 6ap 6 N 32.13% -1.02% | 70.37% | -0.14% | 88.35%
6kqd —3ka | 6 N 30.44% -6.24% | 67.82% | -3.76% | 86.50%
BERT-base | 3 Y 26.56% -18.19% | 62.36% | -11.51% | 82.11%
3kd —3ka | 3 N 30.01% -71.56% | 67.42% | -4.33% | 86.13%
3kd —6ka | 3 N 29.60% -8.82% | 66.53% | -5.59% | 84.79%
6xd —3ka | 3 Y 28.19% -13.16% | 64.00% | -9.19% | 82.95%
6xq —6ka | 3 Y 30.40% -6.37% | 67.62% | -4.05% | 86.75%
BERT-base | 2 Y 26.10% -19.61% | 61.68% | -12.48% | 81.96%
3kd — 3kd | 2 Y 28.57% -12.00% | 65.67% | -6.81% | 84.23%
3kd — Oka | 2 Y 29.52% -9.09% | 66.16% | -6.12% | 85.57%
6rq — 3k | 2 Y 28.07% -13.54% | 64.28% | -8.78% | 83.24%
6rg — 6rqg | 2 Y 30.00% -7.58% | 66.91% | -5.06% | 85.77%
BERT-base | 1 Y 10.87% -66.53% | 29.80% | -57.71% | 48.05%
3kd —3ka | 1 Y 19.09% -41.21% | 47.56% | -32.51% | 66.69%
3kd —6ka | 1 Y 21.74% -33.04% | 52.29% | -25.80% | 72.13%
6kd — 3ka | 1 Y 20.82% -35.88% | 50.92% | -27.75% | 71.26%
6xqg — 6ka | 1 Y 20.67% -36.33% | 51.81% | -26.49% | 70.70%

Table 14: Impact of model asymmetry and use of KALE for structural pruning on the MSMARCO retrieval dataset

13
71



Model Layers | KALE | recall 20 | Impact | recall 100 | Impact | recall 200
BERT-base | 12 N 79.86% | 0.00% 85.84% 0.00% 88.42%
BERT-base | 6 Y 75.51% | -5.45% | 83.68% -2.52% | 86.18%
6xq —Okg | 6 N 75.04% | -6.03% | 85.15% -0.80% | 87.45%
6ap — 6ap 6 N 73.88% | -7.49% | 84.74% -1.29% | 87.26%
6kq —3ka | 6 N 77.40% | -3.09% | 85.37% -0.54% | 87.48%
BERT-base | 3 Y 72.69% | -8.98% | 81.14% -5.48% | 84.76%
3kd —3ka | 3 N 71.88% | -9.99% | 83.66% -2.54% | 86.37%
3kd — 6ka | 3 N 77.01% | -3.57% | 85.76% -0.09% | 87.42%
6xd —3ka | 3 Y 74.16% | -7.14% | 83.43% -2.81% | 85.62%
6xq — 6ka | 3 Y 69.28% | -13.25% | 80.78% -5.89% | 84.10%
BERT-base | 2 Y 71.83% | -10.06% | 81.94% -4.54% | 84.54%
3kd — 3ka | 2 Y 70.08% | -12.25% | 82.71% -3.65% | 85.60%
3kd —Okg | 2 Y 75.40% | -5.58% | 84.27% -1.83% | 86.81%
6rd — 3k | 2 Y 73.49% | -7.98% | 83.02% -3.29% | 85.76%
6rpqd — 6ka | 2 Y 68.42% | -14.33% | 80.39% -6.35% | 83.57%
BERT-base | 1 Y 58.86% | -26.30% | 71.33% -16.90% | 75.65%
3kd —3ka | 1 Y 62.69% | -21.50% | 77.17% -10.10% | 81.33%
3kd —6ka | 1 Y 68.14% | -14.68% | 79.81% -1.02% | 82.94%
6k — 3ka | 1 Y 63.82% | -20.09% | 76.57% -10.80% | 80.33%
6rq — 6ka | 1 Y 60.03% | -24.83% | 74.71% -12.97% | 78.64%

Table 15: Impact of model asymmetry and use of KALE for structural pruning on the NQ retrieval dataset

Model Layers | KALE | recall 20 | Impact | recall 100 | Impact | recall 200
BERT-base | 12 N 79.43% | 0.00% 85.03% 0.00% 86.63%
BERT-base | 6 Y 75.37% | -5.11% | 83.01% -2.38% | 85.25%
6xqg —6xa | 6 N 79.44% | 0.01% 84.96% -0.08% | 86.60%
6ap — Oap 6 N 78.96% | -0.59% | 84.83% -0.23% | 86.61%
6rqd —3ka | 6 N 77.31% | -2.67% | 84.04% -1.17% | 85.62%
BERT-base | 3 Y 73.17% | -7.88% | 81.67% -3.95% | 84.04%
3kd —3ka | 3 N 77.80% | -2.05% | 84.11% -1.09% | 85.96%
3kd —6ka | 3 N 77.52% | -2.40% | 83.91% -1.31% | 85.72%
6kq — 3ka | 3 Y 74.98% | -5.60% | 82.33% -3.18% | 84.35%
6xq —6ka | 3 Y 76.76% | -3.36% | 83.48% -1.82% | 85.40%
BERT-base | 2 Y 72.39% | -8.86% | 81.23% -4.47% | 83.64%
3kd — 3kd | 2 Y 76.48% | -3.71% | 83.02% -2.36% | 85.16%
3kd — 6ka | 2 Y 75.98% | -4.34% | 82.90% -2.50% | 85.00%
6kqd — 3ka | 2 Y 74.60% | -6.08% | 82.13% -3.41% | 84.44%
6kq — 6ka | 2 Y 76.56% | -3.61% | 83.32% -2.01% | 85.49%
BERT-base | 1 Y 63.04% | -20.63% | 75.40% -11.33% | 79.23%
3kd — 3ka | 1 Y 71.66% | -9.78% | 80.82% -4.95% | 83.56%
3kd —6ra | 1 Y 71.13% | -10.45% | 80.23% -5.65% | 82.86%
6rd —3ka | 1 Y 68.11% | -14.25% | 78.65% -7.50% | 81.89%
6rq — 6kg | 1 Y 7091% | -10.73% | 80.31% -5.55% | 83.05%

Table 16: Impact of model asymmetry and use of KALE for structural pruning on the TriviaQA retrieval dataset
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Model Layers | KALE | recall 20 | Impact | recall 100 | Impact | recall 200
BERT-base | 12 N 63.82% | 0.00% 77.16% 0.00% 81.06%
BERT-base | 6 Y 53.51% | -16.15% | 69.87% -9.45% | 75.03%
6xq —Okg | 6 N 54.80% | -14.14% | 71.94% -6.77% | 77.73%
64p — 6ap 6 N 54.60% | -14.45% | 71.69% -71.08% | 77.23%
6kq —3ka | 6 N 52.97% | -17.00% | 70.89% -8.13% | 76.68%
BERT-base | 3 Y 47.62% | -25.38% | 64.37% -16.58% | 69.89%
3kd —3ka | 3 N 55.05% | -13.74% | 71.98% -6.72% | 77.76%
3kd — 6ka | 3 N 48.86% | -23.43% | 67.85% -12.06% | 74.04%
6kd — 3ka | 3 Y 44.65% | -30.04% | 63.77% -17.35% | 70.79%
6xq — 6ka | 3 Y 45.36% | -28.93% | 64.14% -16.87% | 71.07%
BERT-base | 2 Y 48.43% | -24.11% | 67.02% -13.14% | 73.19%
3kd —3kd | 2 Y 48.43% | -24.11% | 67.02% -13.14% | 73.19%
3kd —Okg | 2 Y 43.45% | -31.92% | 62.75% -18.68% | 69.74%
6rd — 3k | 2 Y 4290% | -32.78% | 62.52% -18.97% | 69.47%
6rpqd — 6ka | 2 Y 35.08% | -45.03% | 52.74% -31.65% | 59.93%
BERT-base | 1 Y 3472% | -45.60% | 51.39% -33.40% | 58.01%
3kd —3ka | 1 Y 36.19% | -43.29% | 55.62% -27.92% | 62.92%
3kd —6ka | 1 Y 34.75% | -45.55% | 52.26% -32.27% | 59.35%
6k — 3ka | 1 Y 32.18% | -49.58% | 50.88% -34.06% | 58.52%
6rq — 6ka | 1 Y 35.08% | -45.03% | 52.74% -31.65% | 59.93%

Table 17: Impact of model asymmetry and use of KALE for structural pruning on the SQUAD retrieval dataset

Model Layers | KALE | recip_rank | Impact | NDC@10 | Impact | Recall 20
BERT-base | 12 N 59.11% 0.00% 62.55% 0.00% 82.38%
BERT-base | 6 Y 54.99% -6.97% | 58.22% -6.92% | 77.07%
6xq —6ka | 6 N 65.52% 10.84% | 67.87% 8.51% 83.92%
64p — 6ap 6 N 66.25% 12.08% | 67.81% 8.41% 82.16%
6ka — 3ka | 6 N 61.90% 4.72% 65.30% 4.40% 82.48%
BERT-base | 3 Y 55.18% -6.65% | 58.30% -6.79% | 76.73%
3kda —3ka | 3 N 65.32% 10.51% | 67.51% 7.93% 84.36%
3ka —6ka | 3 N 62.78% 6.21% 64.86% 3.69% 79.80%
6ka —3ka | 3 Y 62.07% 5.01% 64.73% 3.49% 82.57%
6ka —6ka | 3 Y 61.82% 4.58% 65.41% 4.57% 82.41%
BERT-base | 2 Y 54.45% -71.88% | 57.71% -1.74% | 76.07%
3kd — 3ka | 2 Y 61.78% 4.52% 64.78% 3.57% 82.76%
3kd —6ka | 2 Y 61.41% 3.89% 63.61% 1.69% 82.46%
6ka — 3ka | 2 Y 61.82% 4.58% 64.80% 3.60% 82.51%
6ka — 6ka | 2 Y 62.09% 5.04% 65.27% 4.35% 81.51%
BERT-base | 1 Y 40.52% -31.45% | 43.23% -30.89% | 59.00%
3kd — 3ka | 1 Y 42.93% -27.37% | 44.19% -29.35% | 61.06%
3ka — 6ka | 1 Y 42.33% -28.39% | 44.03% -29.61% | 63.33%
6kq —3ka | 1 Y 42.72% -27.73% | 45.68% -26.97% | 65.81%
6rq — 6ka | 1 Y 45.60% -22.86% | 48.83% -21.93% | 69.11%

Table 18: Impact of model asymmetry and use of KALE for structural pruning on the SCIFACTS retrieval dataset
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items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 44.890 80.414 2.17E-02 2.92E-02 | 2.09E-02 | 1.97E-02 | 3.07E-02
Run 2 48.370 74.628 2.01E-02 2.11E-02 | 2.00E-02 | 1.96E-02 | 2.22E-02
Run 3 47.290 76.334 2.06E-02 2.19E-02 | 2.04E-02 | 1.96E-02 | 2.28E-02
Run 4 48.260 74.810 2.01E-02 2.13E-02 | 2.00E-02 | 1.95E-02 | 2.22E-02
Run 5 47.580 75.872 2.04E-02 2.14E-02 | 2.03E-02 | 1.98E-02 | 2.28E-02
average | 47.278 76.412 2.06E-02 2.30E-02 | 2.03E-02 | 1.96E-02 | 2.41E-02
stdev 1.410 2.348 6.46E-04 3.49E-03 | 3.65E-04 | 1.04E-04 | 3.68E-03
CI 1.236 2.058 5.66E-04 3.06E-03 | 3.20E-04 | 9.14E-05 | 3.23E-03
Lower | 46.042 74.353 2.00E-02 1.99E-02 | 2.00E-02 | 1.96E-02 | 2.09E-02
High 48.514 78.470 2.12E-02 2.60E-02 | 2.06E-02 | 1.97E-02 | 2.74E-02

Table 19: Inference Benchmark for 12-layer Query encoder on a CPU using ONNX

items/sec | Full Time | Mean Time | 95th 50th 5th 99th
Run 1 63.200 57.808 1.54E-02 1.65E-02 | 1.52E-02 | 1.49E-02 | 2.20E-02
Run 2 63.570 56.787 1.52E-02 1.60E-02 | 1.50E-02 | 1.48E-02 | 1.70E-02
Run 3 62.740 57.537 1.54E-02 1.64E-02 | 1.52E-02 | 1.48E-02 | 1.76E-02
Run 4 63.440 56.908 1.52E-02 1.59E-02 | 1.51E-02 | 1.48E-02 | 1.70E-02
Run 5 63.250 57.077 1.53E-02 1.60E-02 | 1.51E-02 | 1.48E-02 | 1.69E-02
average | 63.240 57.223 1.53E-02 1.62E-02 | 1.51E-02 | 1.48E-02 | 1.81E-02
stdev 0.316 0.433 1.16E-04 2.49E-04 | 6.48E-05 | 6.69E-05 | 2.20E-03
CI 0.277 0.380 1.02E-04 2.18E-04 | 5.68E-05 | 5.86E-05 | 1.93E-03
Lower | 62.963 56.844 1.52E-02 1.59E-02 | 1.51E-02 | 1.48E-02 | 1.62E-02
High 63.517 57.603 1.54E-02 1.64E-02 | 1.52E-02 | 1.49E-02 | 2.00E-02

Table 20: Inference Benchmark for 9-layer Query encoder on a CPU using ONNX

items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 91.090 39.631 1.04E-02 1.11E-02 | 1.03E-02 | 1.02E-02 | 1.19E-02
Run 2 90.990 39.677 1.04E-02 1.11E-02 | 1.03E-02 | 1.01E-02 | 1.22E-02
Run 3 91.290 39.547 1.04E-02 1.11E-02 | 1.03E-02 | 1.01E-02 | 1.22E-02
Run 4 89.420 40.372 1.06E-02 1.24E-02 | 1.02E-02 | 1.01E-02 | 1.51E-02
Run 5 89.140 40.499 1.07E-02 1.21E-02 | 1.03E-02 | 1.01E-02 | 1.49E-02
average | 90.386 39.945 1.05E-02 1.16E-02 | 1.03E-02 | 1.01E-02 | 1.32E-02
stdev 1.020 0.452 1.23E-04 6.03E-04 | 3.95E-05 | 4.27E-05 | 1.61E-03
CI 0.894 0.396 1.08E-04 5.29E-04 | 3.47E-05 | 3.74E-05 | 1.41E-03
Lower | 89.492 39.549 1.04E-02 1.10E-02 | 1.03E-02 | 1.01E-02 | 1.18E-02
High 91.280 40.342 1.06E-02 1.21E-02 | 1.03E-02 | 1.02E-02 | 1.47E-02

Table 21: Inference Benchmark for 6-layer Query encoder on a CPU using ONNX
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items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 166.340 | 21.704 5.47E-03 5.84E-03 | 5.40E-03 | 5.35E-03 | 6.34E-03
Run 2 164.830 | 21.902 5.53E-03 6.14E-03 | 5.40E-03 | 5.31E-03 | 7.35E-03
Run 3 167.570 | 21.544 5.43E-03 5.87E-03 | 5.34E-03 | 5.30E-03 | 6.42E-03
Run 4 165.370 | 21.830 5.51E-03 6.11E-03 | 5.39E-03 | 5.30E-03 | 6.96E-03
Run 5 165.950 | 21.755 5.49E-03 5.92E-03 | 5.40E-03 | 5.32E-03 | 6.54E-03
average 166.012 | 21.747 5.49E-03 5.98E-03 | 5.39E-03 | 5.32E-03 | 6.72E-03
stdev 1.043 0.136 3.58E-05 1.41E-04 | 2.49E-05 | 2.20E-05 | 4.23E-04
CI 0.914 0.119 3.14E-05 1.23E-04 | 2.18E-05 | 1.93E-05 | 3.71E-04
Lower 165.098 | 21.628 5.45E-03 5.86E-03 | 5.37E-03 | 5.30E-03 | 6.35E-03
High 166.926 | 21.867 5.52E-03 6.10E-03 | 5.41E-03 | 5.33E-03 | 7.09E-03
BERT-base | 2 Y 54.45% -7.88% 57.711% -7.74% 76.07%
Table 22: Inference Benchmark for 3-layer Query encoder on a CPU using ONNX
items/sec | Full Time | Mean Time | 95th 50th 5th 99th
Run 1 228.690 15.786 3.85E-03 4.53E-03 | 3.72E-03 | 3.67E-03 | 5.29E-03
Run 2 230.420 15.668 3.81E-03 4.24E-03 | 3.74E-03 | 3.65E-03 | 4.72E-03
Run 3 228.800 15.779 3.84E-03 4.23E-03 | 3.77E-03 | 3.73E-03 | 4.68E-03
Run 4 230.530 15.661 3.81E-03 4.23E-03 | 3.74E-03 | 3.68E-03 | 4.63E-03
Run 5 229.890 15.704 3.82E-03 4.25E-03 | 3.75E-03 | 3.70E-03 | 4.64E-03
average | 229.666 15.720 3.83E-03 4.29E-03 | 3.74E-03 | 3.69E-03 | 4.79E-03
stdev 0.876 0.060 1.72E-05 1.32E-04 | 1.84E-05 | 3.00E-05 | 2.81E-04
CI 0.768 0.053 1.51E-05 1.16E-04 | 1.61E-05 | 2.63E-05 | 2.47E-04
Lower | 228.898 15.667 3.81E-03 4.18E-03 | 3.73E-03 | 3.66E-03 | 4.55E-03
High 230.434 15.772 3.84E-03 4 41E-03 | 3.76E-03 | 3.71E-03 | 5.04E-03
Table 23: Inference Benchmark for 2 layer Query encoder on a CPU using ONNX
items/sec | Full Time | Mean Time | 95th 50th 5th 99th
Run 1 378.680 | 9.534 2.14E-03 2.39E-03 | 2.10E-03 | 2.08E-03 | 2.88E-03
Run 2 378.950 | 9.528 2.14E-03 2.31E-03 | 2.11E-03 | 2.08E-03 | 2.66E-03
Run 3 377750 | 9.558 2.13E-03 2.30E-03 | 2.12E-03 | 2.06E-03 | 2.67E-03
Run 4 376.560 | 9.588 2.16E-03 2.35E-03 | 2.12E-03 | 2.06E-03 | 2.74E-03
Run 5 380.730 | 9.483 2.14E-03 2.30E-03 | 2.11E-03 | 2.08E-03 | 2.66E-03
average | 378.534 | 9.538 2.15E-03 2.33E-03 | 2.11E-03 | 2.07E-03 | 2.72E-03
stdev 1.543 0.039 7.46E-06 3.64E-05 | 8.72E-06 | 9.49E-06 | 9.64E-05
CI 1.353 0.034 6.54E-06 3.19E-05 | 7.65E-06 | 8.31E-06 | 8.45E-05
Lower | 377.181 9.504 2.14E-03 2.30E-03 | 2.11E-03 | 2.06E-03 | 2.64E-03
High 379.887 | 9.572 2.15E-03 2.36E-03 | 2.12E-03 | 2.08E-03 | 2.81E-03

Table 24: Inference Benchmark for 1 layer Query encoder on a CPU using ONNX
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items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 103.16 35.00 9.22E-03 9.33E-03 | 9.16E-03 | 9.08E-03 | 1.20E-02
Run 2 111.51 32.36 8.50E-03 8.61E-03 | 8.47E-03 | 8.42E-03 | 8.73E-03
Run 3 114.02 31.66 8.31E-03 8.41E-03 | 8.28E-03 | 8.22E-03 | 8.60E-03
Run 4 90.39 39.94 1.06E-02 1.07E-02 | 1.05E-02 | 1.04E-02 | 1.25E-02
Run 5 110.18 32.77 8.62E-03 8.74E-03 | 8.58E-03 | 8.51E-03 | 9.06E-03
average | 105.85 34.35 9.04E-03 9.15E-03 | 9.00E-03 | 8.93E-03 | 1.02E-02
stdev 9.54 3.37 9.17E-04 9.19E-04 | 9.04E-04 | 9.02E-04 | 1.92E-03
CI 8.36 2.95 8.04E-04 8.06E-04 | 7.92E-04 | 7.91E-04 | 1.68E-03
Lower | 97.49 31.40 8.24E-03 8.35E-03 | 8.21E-03 | 8.14E-03 | 8.50E-03
High 114.21 37.30 9.85E-03 9.96E-03 | 9.79E-03 | 9.73E-03 | 1.19E-02

Table 25: Inference Benchmark for 12-layer Query encoder on a T4 GPU

items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 140.35 25.72 6.69E-03 6.78E-03 | 6.66E-03 | 6.61E-03 | 6.94E-03
Run 2 148.25 24.35 6.31E-03 6.52E-03 | 6.26E-03 | 6.22E-03 | 6.64E-03
Run 3 147.04 24.55 6.37E-03 6.47E-03 | 6.32E-03 | 6.28E-03 | 7.19E-03
Run 4 116.15 31.08 8.14E-03 8.25E-03 | 8.09E-03 | 8.01E-03 | 1.09E-02
Run 5 145.68 24.78 6.44E-03 6.50E-03 | 6.39E-03 | 6.35E-03 | 8.83E-03
average | 139.49 26.10 6.79E-03 6.91E-03 | 6.74E-03 | 6.69E-03 | 8.11E-03
stdev 13.39 2.84 7.70E-04 7.62E-04 | 7.66E-04 | 7.52E-04 | 1.79E-03
CI 11.74 2.49 6.75E-04 6.68E-04 | 6.72E-04 | 6.59E-04 | 1.57E-03
Lower 127.75 23.61 6.11E-03 6.24E-03 | 6.07E-03 | 6.04E-03 | 6.54E-03
High 151.23 28.58 7.46E-03 7.57E-03 | 7.42E-03 | 7.35E-03 | 9.67E-03

Table 26: Inference Benchmark for 9-layer Query encoder on a T4 GPU

items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 163.72 22.05 5.67E-03 5.75E-03 | 5.62E-03 | 5.56E-03 | 7.75E-03
Run 2 161.90 22.30 5.74E-03 5.81E-03 | 5.70E-03 | 5.63E-03 | 6.17E-03
Run 3 165.07 21.87 5.62E-03 5.70E-03 | 5.58E-03 | 5.51E-03 | 6.86E-03
Run 4 189.71 19.03 4.84E-03 4.92E-03 | 4.82E-03 | 4.77E-03 | 5.07E-03
Run 5 181.29 1991 5.07E-03 5.92E-03 | 4.94E-03 | 4.88E-03 | 6.68E-03
average | 172.34 21.03 5.39E-03 5.62E-03 | 5.33E-03 | 5.27E-03 | 6.51E-03
stdev 12.43 1.47 4.07E-04 3.99E-04 | 4.17E-04 | 4.11E-04 | 9.85E-04
CI 10.89 1.29 3.56E-04 3.50E-04 | 3.65E-04 | 3.61E-04 | 8.63E-04
Lower 161.44 19.75 5.03E-03 5.27E-03 | 4.97E-03 | 4.91E-03 | 5.64E-03
High 183.23 22.32 5.74E-03 5.97E-03 | 5.70E-03 | 5.63E-03 | 7.37E-03

Table 27: Inference Benchmark for 6-layer Query encoder on a T4 GPU
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items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 269.73 13.39 3.28E-03 3.30E-03 | 3.26E-03 | 3.20E-03 | 3.87E-03
Run 2 282.90 12.76 3.12E-03 3.38E-03 | 3.23E-03 | 2.65E-03 | 4.39E-03
Run 3 268.47 13.45 3.30E-03 3.31E-03 | 3.28E-03 | 3.25E-03 | 3.76E-03
Run 4 318.47 11.34 2.74E-03 2.79E-03 | 2.72E-03 | 2.69E-03 | 3.17E-03
Run 5 357.68 10.09 2.43E-03 2.50E-03 | 2.41E-03 | 2.39E-03 | 2.69E-03
average | 299.45 12.21 2.97E-03 3.05E-03 | 2.98E-03 | 2.84E-03 | 3.58E-03
stdev 38.31 1.45 3.78E-04 3.90E-04 | 3.93E-04 | 3.75E-04 | 6.58E-04
CI 33.58 1.27 3.31E-04 3.42E-04 | 3.45E-04 | 3.29E-04 | 5.77E-04
Lower | 265.87 10.93 2.64E-03 2.71E-03 | 2.64E-03 | 2.51E-03 | 3.00E-03
High 333.03 13.48 3.30E-03 3.40E-03 | 3.33E-03 | 3.16E-03 | 4.16E-03

Table 28: Inference Benchmark for 3-layer Query encoder on a T4 GPU

items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 465.83 7.75 1.78E-03 1.83E-03 | 1.76E-03 | 1.74E-03 | 2.53E-03
Run 2 435.46 8.29 1.92E-03 2.01E-03 | 1.91E-03 | 1.89E-03 | 2.04E-03
Run 3 471.01 7.67 1.77E-03 1.84E-03 | 1.75E-03 | 1.74E-03 | 1.95E-03
Run 4 413.49 8.73 2.02E-03 2.06E-03 | 2.00E-03 | 1.96E-03 | 2.61E-03
Run 5 421.32 8.57 1.98E-03 2.05E-03 | 1.96E-03 | 1.94E-03 | 2.07E-03
average | 441.42 8.20 1.89E-03 1.96E-03 | 1.88E-03 | 1.86E-03 | 2.24E-03
stdev 25.94 0.48 1.15E-04 1.12E-04 | 1.15E-04 | 1.07E-04 | 3.07E-04
CI 22.73 0.42 1.00E-04 9.83E-05 | 1.01E-04 | 9.34E-05 | 2.69E-04
Lower | 418.69 7.78 1.79E-03 1.86E-03 | 1.78E-03 | 1.76E-03 | 1.97E-03
High 464.16 8.62 1.99E-03 2.05E-03 | 1.98E-03 | 1.95E-03 | 2.51E-03

Table 29: Inference Benchmark for 2-layer Query encoder on a T4 GPU

items/sec | Full Time | Mean Time | 95th 50th Sth 99th
Run 1 627.64 5.75 1.22E-03 1.26E-03 | 1.21E-03 | 1.20E-03 | 1.28E-03
Run 2 673.96 5.36 1.13E-03 1.18E-03 | 1.12E-03 | 1.11E-03 | 1.22E-03
Run 3 651.45 5.54 1.18E-03 1.24E-03 | 1.17E-03 | 1.16E-03 | 1.28E-03
Run 4 677.99 5.33 1.12E-03 1.19E-03 | 1.11E-03 | 1.10E-03 | 1.22E-03
Run 5 672.16 5.37 1.13E-03 1.18E-03 | 1.12E-03 | 1.11E-03 | 1.22E-03
average | 660.64 5.47 1.15E-03 1.21E-03 | 1.14E-03 | 1.14E-03 | 1.24E-03
stdev 21.12 0.18 4.28E-05 3.74E-05 | 4.44E-05 | 4.25E-05 | 3.30E-05
CI 18.51 0.16 3.75E-05 3.27E-05 | 3.89E-05 | 3.72E-05 | 2.89E-05
Lower | 642.13 5.31 1.12E-03 1.18E-03 | 1.11E-03 | 1.10E-03 | 1.21E-03
High 679.15 5.63 1.19E-03 1.24E-03 | 1.18E-03 | 1.17E-03 | 1.27E-03

Table 30: Inference Benchmark for 1-layer Query encoder on a T4 GPU
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Lessons on Parameter Sharing across Layers in Transformers

Sho Takase*

Abstract

We propose a novel parameter sharing method
for Transformers (Vaswani et al., 2017). The
proposed approach relaxes a widely used tech-
nique, which shares the parameters of one layer
with all layers such as Universal Transform-
ers (Dehghani et al., 2019), to improve the
efficiency. We propose three strategies: SE-
QUENCE, CYCLE, and CYCLE (REV) to assign
parameters to each layer. Experimental results
show that the proposed strategies are efficient
in terms of the parameter size and computa-
tional time in the machine translation task. We
also demonstrate that the proposed strategies
are effective in the configuration where we use
many training data such as the recent WMT
competition. Moreover, we indicate that the
proposed strategies are also more efficient than
the previous approach (Dehghani et al., 2019)
on automatic speech recognition and language
modeling tasks.

1 Introduction

Transformer-based methods have achieved notable
performance in various NLP tasks (Vaswani et al.,
2017; Devlin et al., 2019; Brown et al., 2020). In
particular, Brown et al. (2020) indicated that the
larger parameter size we prepare, the better perfor-
mance the model achieves. However, the model
which is composed of many parameters occupies
a large part of a GPU memory capacity. Thus, it
is important to explore a parameter efficient way,
which achieves better performance than a basic
model with the same parameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Lan et al., 2020). De-
hghani et al. (2019) proposed Universal Trans-
former which consists of parameters for only one
layer of a Transformer-based encoder-decoder, and
uses these parameters /N times for an [N-layered

* A part of this work was done when the author was at
Tokyo Institute of Technology.

Shun Kiyono
LINE Corporation
{sho. takase, shun.kiyono}@linecorp.com
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Figure 1: Examples of three parameter assignment
strategies proposed in this study when we set M = 3
and N = 6.

encoder-decoder. Dabre and Fujita (2019) and
Lan et al. (2020) also used such parameter shar-
ing across layers for their Transformers.

Dehghani et al. (2019) reported that Universal
Transformer achieved better performance than the
vanilla Transformer in machine translation if the
parameter sizes of both models are (almost) the
same. However, when we prepare the same num-
ber of parameters for Universal Transformer and
vanilla Transformer, the dimension sizes of each
layer in Universal Transformer are much larger
than ones in the vanilla Transformer. Thus, Univer-
sal Transformer requires much more computational
time since its weight matrices are larger. For exam-
ple, Universal Transformer requires twice as much
training time as the vanilla Transformer in WMT
English-to-German dataset, which is a widely used
machine translation dataset (see Table 1).

In this paper, we propose a new parameter shar-
ing method that is faster than using the same param-
eters for all layers such as Universal Transformers.
Universal Transformers raise their expressiveness
power by increasing the size of weight matrices
for each layer. On the other hand, stacking (more)
layers is another promising approach to raise ex-
pressiveness power of neural methods (He et al.,
2016). Thus, the most straight-forward way to

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 78-90
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make Universal Transformers faster is stacking lay-
ers with smaller weight matrices for each layer.
However, the approach using the same parameters
for all layers limits the improvement of stacking
layers (Dabre and Fujita, 2019). Therefore, in-
stead of preparing parameters for only one layer,
we prepare parameters for M layers to construct an
N-layered encoder-decoder, where 1 < M < N.
In other words, the proposed method relaxes the
parameter sharing strategy in previous studies (De-
hghani et al., 2019; Dabre and Fujita, 2019; Lan
et al., 2020). Because this relaxation addresses the
above limitation of improvement by stacking lay-
ers, the proposed method can be fast by stacking
layers with using small weight matrices for each
layer. For the actual parameter assignment strate-
gies, we provide several simple examples (Figure 1)
and investigate their performance empirically. The
main focus of this study is to demonstrate that such
simple strategies can be a better alternative to the
existing parameter sharing strategy used in Univer-
sal Transformers.

We mainly conduct experiments on machine
translation datasets. Experimental results show that
the proposed method achieves slightly better scores
to the previous method, that assigns parameters of
one layer to all layers, with smaller computational
time. In addition, we indicate that the proposed
method outperforms the previous parameter shar-
ing method when we spend almost the same train-
ing time. Moreover, we conduct experiments on au-
tomatic speech recognition and language modeling
tasks (Section 4 and Appendix A). Experimental re-
sults on these tasks also indicate that the proposed
method are also efficient in these situations.

2 Proposed Method

As described in Section 1, we use parameters
for M layers in the construction of an N-layered
Transformer-based encoder-decoder. We provide
three examples for the parameter assignment: SE-
QUENCE, CYCLE, and CYCLE (REV). This section
describes these parameter assignment strategies.

Figure 1 shows examples of three parameter as-
signment strategies for an encoder side when we
set M = 3 and N = 6. Let enc; be the ¢-th layer
of an encoder. Figure 2 describes the algorithm to
assign each parameter to each layer of the encoder.
For the decoder side, we assign each parameter
with the same manner.

Algorithm Encoder Construction

Input: the total number of layers N, number of
independent layers M, sharing strategy TYPE
€ {SEQUENCE, CYCLE, CYCLE (REV)}

Output: ency, ..., ency

1: foriin[1,...,N| do

2: if - == 1 then

3: enc; < CreateNewLayer

4: else if TYPE == SEQUENCE then

5: if (i — 1) mod | N/M | == 0 then
6: enc; <— CreateNewLayer

7: else

8: enc; < enc;_q

9: else if TYPE == CYCLE then

10: if - < M then

11: enc; < CreateNewLayer

12: else

13: €NC; <= €NC((;—1) mod M)+1

14: else if TYPE == CYCLE (REV) then

15: if i < M then

16: enc; < CreateNewLayer

17: elseif i < (M x ([N/M] — 1)) then
18: €NC; <= €NC((;—1) mod M)+1

19: else
20: €NC; <= €NCpr_((i—1) mod M)

Figure 2: Proposed parameter assignment strategies for
encoder construction. CreateNewLayer is a function
that creates a new encoder layer.

2.1 SEQUENCE

The simplest strategy is to assign the same param-
eters to sequential | N/M | layers. We name this
strategy SEQUENCE. For example, when we set
M = 3 and N = 6, two sequential layers share
their parameters as illustrated in Figure 1.

2.2 CYCLE

In CYCLE, we stack M layers whose parameters
are independent from each other. Then, we repeat
stacking the M layers with the identical order to
the first M layers until the total number of layers
reaches N. When we set M = 3 and N = 6, we
stack 3 layers twice as illustrated in Figure 1.

2.3 CYCLE (REV)

Liu et al. (2020) and Takase et al. (2022) reported
that higher decoder layers tends to obtain larger



gradient norms!. Their report implies that higher
layers require more degrees of freedom than lower
layers for their expressiveness. In other words,
lower layers probably have redundant parameters
compared to higher layers. Thus, we propose the
CYCLE (REV) strategy reusing parameters of lower
layers in higher layers.

In this strategy, we repeat stacking M layers in
the same manner as CYCLE until M x([N/M]—1)
layers. For the remaining layers, we stack M layers
in the reverse order. When we set M = 3 and
N = 6, we stack 3 layers and then stack the 3
layers in the reverse order as in Figure 1. Thus, the
lowest layer and highest layer share parameters.

3 Experiments on Machine Translation

We investigate the efficiency of the proposed pa-
rameter sharing strategies. In detail, we indicate
that our proposed strategies are faster than Uni-
versal Transformers while achieving comparable
(or better) performance when we use the same pa-
rameter size. In this section, we conduct experi-
ments on machine translation datasets. First, we
focus on the English-to-German translation task
because this task is widely used in the previous
studies (Vaswani et al., 2017; Ott et al., 2018; De-
hghani et al., 2019; Kiyono et al., 2020). We con-
duct comparisons based on following aspects: (i)
comparison with Universal Transformers in terms
of efficiency and (ii) comparison with models with-
out parameter sharing across layers to investigate
whether our proposed strategies can achieve com-
parable (or better) performance to the models with
larger memory footprint.

In addition to the widely used training data, we
conduct experiments on a large amount of train-
ing dataset in the English-to-German translation
task. Then, we investigate if our findings are con-
sistent in other language direction (i.e., German-
to-English) and other language pair (i.e., English-
to-French and French-to-English). We describe
details in the following subsections.

3.1 Standard Setting
3.1.1 Datasets

We used the WMT 2016 training dataset, which
is widely used in previous studies (Vaswani et al.,

'In particular, this property is observed during warm-up
when we use the post layer normalization (Post-LN) setting,
which is originally used in Vaswani et al. (2017) and widely
used in machine translation.
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2017; Ott et al., 2018; Takase and Kiyono, 2021).
This dataset contains 4.5M English-German sen-
tence pairs. Following previous studies, we con-
structed a vocabulary set with BPE (Sennrich et al.,
2016b) in the same manner. We set the number of
BPE merge operations at 32K and shared the vocab-
ulary between the source and target languages. We
measured case-sensitive detokenized BLEU with
SacreBLEU (Post, 2018)°.

3.1.2 Methods

For the proposed parameter assignment strategies,
we fixed M = 6 and set N = 12,18 based on
the Vanilla configuration below. We compare the
proposed strategies with the following baselines.

Vanilla: This is the original Transformer (base)
setting in (Vaswani et al., 2017). To stabilize the
training, we applied Admin (Liu et al., 2020). See
Section 5 for more details of Admin.

Universal: As the parameter sharing strategy
in previous studies such as Universal Transform-
ers (Dehghani et al., 2019), we set M = 13. In
this setting, we increased the dimensions of each
layer for a fair comparison in terms of the num-
ber of parameters. This configuration corresponds
to the Universal Transformer base setting in (De-
hghani et al., 2019). Moreover, we prepared the
model using twice as many layers to investigate the
effect of stacking many layers in Universal Trans-
formers. We call this setting Universal (deep). In
addition, we prepared Universal (small) whose
dimension sizes are the identical to ones of Trans-
former (base).

Furthermore, we prepare two models that consist
of a large number of parameters for reference.

Vanilla (big): This is the original Transformer (big)
setting in (Vaswani et al., 2017).

Vanilla (deep): We stacked layers until N = 18 in
the Vanilla configuration.

>The BLEU score computed by SacreBLEU is often lower
than the score obtained by the procedure of Vaswani et al.
(2017) as reported in Ott et al. (2018). In fact, when we used
the same procedure as Vaswani et al. (2017), SEQUENCE of
M = 6, N = 12 in Table 1 achieved 29.40 in the averaged
BLEU score in newstest2014 and the best model in Table 2
achieved 35.14 in the averaged BLEU score in newstest2014.
However, since Post (2018) encouraged using SacreBLEU for
the compatibility of WMT results, we used SacreBLEU.

3The original Universal Transformers (Dehghani et al.,
2019) use the sinusoidal positional encoding for each layer
and adaptive computation time technique (Graves, 2017) but
we omitted them in this study to focus on the difference among
parameter sharing strategies.



Method [ M N [ #Params [ Speed [ 2010 2011 2012 2013 2014 2015 2016 [ Avg.
Vanilla 6 6 61M | x2.02 | 24.14 2193 2225 26.14 27.05 29.59 3423 | 2648
Universal 1 6 63M | x1.00 | 24.37 2233 2270 2640 27.65 30.24 34.60 | 26.90
Universal (deep) 1 12 63M | x0.52 | 2442 2230 22.61 2652 2776 29.75 34.01 | 26.77
Universal (small) | 1 6 24M | x2.52 | 22.89 21.11 2129 2475 2471 28.16 32.81 | 25.10
SEQUENCE 6 12 61M | x1.31 | 24.65 2232 22.83 2698 27.88 30.27 3499 | 27.13
CYCLE 6 12 61M | x1.31 | 2451 2243 2269 26.61 2791 3037 34.77 | 27.04
CYCLE (REV) 6 12 61M | x1.31 | 24.66 22.47 22.87 26.68 27.72 3037 34.81 | 27.08
SEQUENCE 6 18 61M | x098 | 2453 2244 2273 2659 2773 30.30 34.80 | 27.02
CYCLE 6 18 61M | x098 | 24.74 22.60 23.04 26.89 28.14 30.54 3479 | 27.25
CYCLE (REV) 6 18 61M | x098 | 2493 2277 23.09 26.88 28.09 30.60 34.84 | 27.31
Methods consisting of a large number of parameters for reference
Vanilla (big) 6 6 210M | x0.81 | 24.31 2221 2275 2639 2828 30.35 3340 | 26.81
Vanilla (deep) 18 18 149M | x0.96 | 2454 2230 22.75 2657 28.03 30.24 34.19 | 26.94

Table 1: The number of layers, number of parameters, computational speeds based on the Universal configuration,
BLEU scores on newstest2010-2016, and averaged scores when we trained each method on widely used WMT 2016
English-to-German training dataset. Scores in bold denote the best results for each set. The results of our proposed
strategies are statistically significant (p < 0.05) in comparison with Universal. The lowest part indicates results of
methods consisting of a large number of parameters for reference.

3.1.3 Results

Table 1 shows BLEU scores on newstest2010-2016
for each method. We trained three models with
different random seeds, and reported the averaged
scores. Table 1 also shows the total number of
parameters and computational speeds*. The com-
putational speed is based on the speed of Universal.

(i) Comparison with Universal in terms of effi-
ciency In the comparison between Universal and
Vanilla, Universal achieved better scores although
their parameter sizes are almost the same. This
result is consistent with the report in (Dehghani
et al., 2019). However, the training time of Uni-
versal is more than twice as much as the one of
Vanilla. In addition, Universal (deep) didn’t im-
prove the performance from Universal, and thus
stacking many layers have small effect on BLEU
scores when the model shares parameters of one
layer with all layers.

In contrast, the proposed strategies (SEQUENCE,
CYCLE, and CYCLE (REV)) were faster and
achieved slightly better scores than Universal when
we set M = 6 and N = 12. Thus, our proposed
parameter sharing strategies are more efficient than
Universal in terms of the parameter size and com-
putational time.

In comparison among Universal (small) and the
proposed strategies, Universal (small) was faster

“We regard processed tokens per second during the training
as the computational speed.

>We used the same dimension sizes for Vanilla and Uni-
versal (small) but their training speeds are different from each
other. Since Universal (small) consists of small parameters,
the computational time for updating is smaller than Vanilla.
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but the configuration drastically sacrificed BLEU
scores. These results imply that the strategy in
Universal Transformer, which shares parameters of
one layer with all layers, damages computational
time or the quality of output sequences. In com-
parison with those Universal configurations, our
proposed strategies improved both of the computa-
tional speed and BLEU scores.

Figure 3 illustrates the negative log-likelihood
(NLL) values on newstest2013 for each training
step. In this figure, we used M = 6 and N = 12
for our proposed strategies. This figure shows that
Universal achieved better NLL values in the be-
ginning of the training but the proposed strate-
gies outperformed others when the training step
is larger than 15,000. When we have finished train-
ing, the proposed strategies achieved better NLL
values than Universal (and Vanilla). This result
also indicates that the proposed strategies achieved
better performance. We emphasize that the pro-
posed strategies reached this better performance
with small computational time in comparison with
Universal because the proposed strategies are faster
as in Table 1.

(ii) Comparison with models without parameter
sharing across layers The lowest part of Table
1 indicates results when we prepared more param-
eters. We trained these models to investigate the
performance of models without parameter sharing
across layers. In other words, the purpose of these
settings are comparison with models using larger
memory footprint. As shown in Table 1, the pro-
posed strategies achieved better performance than
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Figure 3: Negative log-likelihood (NLL) of each method
on newstest2013. For our proposed parameter sharing
strategies, we used M = 6 and N = 12.

models consisting of a large number of parame-
ters in the averaged BLEU scores of newstest2010-
2016. This result implies that the proposed parame-
ter sharing strategies are not only efficient but also
effective in constructing better encoder-decoder
models.

3.2 High Resource Setting
3.2.1 Datasets

In the high resource setting, we constructed 44.2M
translation sentence pairs as a training dataset with
the procedures of (Kiyono et al., 2020) which
achieved the best result in the WMT 2020 news
translation task. In addition, we augmented the
training data by using the back-translation tech-
nique (Sennrich et al., 2016a) in the same manner
as (Kiyono et al., 2020). We obtained 284.3M
pairs as synthetic training data. For evaluation,
we add newstest2018 and 2019 to the set used in
Section 3.1 to because (Kiyono et al., 2020) used
these two test sets. In the same as Section 3.1, we
measured case-sensitive detokenized BLEU with
SacreBLEU.

3.2.2 Methods

We used the original Transformer (big) set-
ting (Vaswani et al., 2017) as our baseline in using
genuine training data. We call this setting Vanilla
in this experiment. Moreover, we also prepared
Universal, which shares the parameters with all
layers, namely, M = 1, N = 6. We increased the
dimensions of each layer in Universal to make their
parameter size almost the same as others. For the
proposed strategies, we used M = 6 and N = 12.

In using both of the genuine and synthetic (back-
translated) datasets, we applied CYCLE (REV) to
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the BASE setting in (Kiyono et al., 2020) because
CYCLE (REV) achieved the best BLEU scores on
most test sets in Table 1. We also used M = 6
and N = 12 in this configuration. We compare the
reported scores of the best model in (Kiyono et al.,
2020). Their model is composed of 9 layers (i.e.,
M =9 and N = 9); thus, it contains considerably
more parameters than ours.

3.2.3 Results

Table 2 shows BLEU scores of each method on
each test set. Similar to the experiments in Section
3.1, we reported the averaged scores of three mod-
els trained with different random seeds. Table 2
also shows the total number of parameters®.

Table 2 shows that the proposed strategies
achieved better BLEU scores than Vanilla and Uni-
versal when we prepared almost the same number
of parameters. This result indicates that the pro-
posed strategies are also parameter efficient in the
high resource setting. In addition, since we used
M = 6 and N = 12 for proposed strategies, they
are also more efficient than Universal in terms of
computational time (see Table 1).

When we used additional synthetic data for train-
ing in the same manner as (Kiyono et al., 2020),
CYCLE (REV) achieved comparable BLEU scores
to the best system of (Kiyono et al., 2020) except
for newstest2019”7 even though the parameter size
of CYCLE (REV) was smaller than theirs. This re-
sult indicates that CYCLE (REV) is also efficient in
the construction of models for recent competitive
tasks. In addition, this result implies that our pro-
posed strategies can be used in the configuration
where we train many parameters with a tremendous
amount of data such as recent pre-trained language
models, e.g., GPT series (Brown et al., 2020). We
investigate the effect of the proposed strategies on
language models in Appendix A.

3.3 Other Direction and Language Pair
3.3.1 Datasets

We conduct experiments on the other direction and
language pair. For the German-to-English training
dataset, we used the identical data in Section 3.1.
For English-to-French and French-to-English, we

®The parameter sizes of Vanilla (big) in Table 1 and Vanilla
in Table 2 are different from each other due to the difference
of sharing embeddings. Following (Kiyono et al., 2020), we
did not share embeddings in the high resource setting.

"For newstest2019, synthetic data might harm the quality
of a model because models trained with only genuine data
outperformed those trained with both data.



Method [ #Params | 2010 2011 2012 2013 2014 2015 2016 2018 2019 | Avg.
Genuine training data
Vanilla 242M 26.53 24.09 24.51 2851 3140 33.52 39.08 47.11 42.80 | 33.06
Universal 249M 27.00 2420 2496 2894 3173 33.53 39.38 47.54 43.11 | 33.38
SEQUENCE 242M 2731 2424 2486 29.15 3190 33.84 3993 48.15 43.12 | 33.61
CYCLE 242M 2723 2445 2513 29.12 3210 34.04 39.82 48.11 43.19 | 33.69
CYCLE (REV) 242M 2737 2446 2514 29.16 32.06 3398 40.28 48.34 43.43 | 33.80
+ Synthetic (back-translated) data
Kiyono et al. (2020) 514M - - - - 33.1 - - 49.6 42.7 -
CYCLE (REV) 343M 28.29 2499 2598 30.01 33.54 3493 4137 49.55 42.18 | 34.54

Table 2: BLEU scores on newstest2010-2016, 2018, and 2019. We add newstest2018 and 2019 to the set in the
standard setting to compare the top system on WMT 2020 (Kiyono et al., 2020).

German-to-English | English-to-French | French-to-English
Method M N | 2013 2014 2013 2014 2013 2014
Vanilla 6 6 | 30.48 30.96 33.41 38.41 33.48 36.06
Universal 1 6 | 31.06 31.32 33.58 38.84 33.83 37.11
SEQUENCE 6 18 | 31.31 31.97 34.49 40.18 34.26 37.45
CYCLE 6 18 | 31.46 32.18 34.50 40.17 33.97 37.59
CYCLE (REV) | 6 18 | 31.32 32.12 34.67 40.13 34.16 37.32

Table 3: The number of layers and BLEU scores on each dataset. Each method is composed of almost the same

number of parameters.

used the WMT 2014 training dataset. We applied
the same pre-processing as in (Ott et al., 2018), and
used 35.8M English-French sentence pairs. Each
configuration, we used newstest2013 and new-
stest2014 as valid and test sets, respectively. We
also measured case-sensitive detokenized BLEU
with SacreBLEU in these experiments.

3.3.2 Methods

We compare our proposed strategies with baselines
used in Section 3.1. We used the Transformer
(base) setting with Admin as Vanilla and prepared
Universal which is M = 1, N = 6 with large
dimension sizes for each internal layer. For the pro-
posed strategies, we used M = 6 and N = 18. In
these configurations, the training time of proposed
strategies are almost the same as one of Universal
as described in Table 1.

3.3.3 Results

Table 3 shows BLEU scores of each method on
each dataset. This table indicates that Universal
outperformed Vanilla in all datasets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all datasets. These results are consistent
with results in Table 1. These results also indicate
that the proposed strategies are more efficient than
Universal, which shares parameters of one layer
with all layers, because they achieved better per-
formance with almost the same parameter size and

computational time.

In the comparison among the proposed strate-
gies, CYCLE and CYCLE (REV) outperformed SE-
QUENCE on German-to-English but it is difficult
to conclude that CYCLE and CYCLE (REV) are
superior to SEQUENCE on English-to-French and
French-to-English. This result implies that the best
strategy might depend on a language pair®. How-
ever, we emphasize that our proposed strategies out-
performed Universal. For applying our proposed
parameter sharing strategies to other datasets, we
recommend using SEQUENCE as a first step be-
cause it is the easiest to implement.

4 Experiments on Automatic Speech
Recognition

4.1 Datasets

To investigate the effect of our proposed strate-
gies on other modality, we conduct comparisons
on the automatic speech recognition (ASR) task.
We used the de-facto standard English ASR bench-
mark dataset: LibriSpeech (Panayotov et al., 2015).
The dataset contains 1,000 hours of English speech
from audiobooks. We used the standard splits of
LibriSpeech; used all available training data for
training and two configurations (clean and other)
of development and test sets for evaluation. We

8Section 4 and Appendix A imply that a sort of task and
Transformer architectures also have an influence on the per-
formance of proposed strategies.
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Enc Dec Dev Test
Method M N M N | #Params | Speed | clean other clean other
Vanilla 6 6 6 6 52M x2.94 | 398 9.06 4.18 09.18
Universal 1 6 1 6 54M x1.00 | 3.73 885 4.14 8.80
SEQUENCE &8 16 4 8 50M x1.41 | 3.16 7.84 332 17.71
CYCLE 8 16 4 8 50M x1.41 | 328 786 357 797
CYCLE(REV) | 8 16 4 8 50M x141 | 311 810 3.60 8.11

Table 4: The parameter sizes, computational speeds based on the Universal configuration, and word error rates of
each method. For word error rates, lower is better. Scores in bold denote the best results for each set.

applied the same pre-processing as in (Wang et al.,
2020). We measured word error rate on each set.

4.2 Methods

We also compare our proposed strategies with base-
lines in Section 3. As the base architecture, we
used Transformer based speech-to-text model (T-
Md) described in (Wang et al., 2020). In contrast
to the Post-LN architecture, which is the original
Transformer architecture (Vaswani et al., 2017), the
Transformer in T-Md consists of the Pre-LN config-
uration. We prepared 6 layers for the encoder and
decoder in Vanilla and Universal. For proposed
strategies, we stacked more layers for the encoder
side in the same as in (Wang et al., 2020). We pre-
pared N = 16 and M = 8 for the encoder side,
and N = 8 and M = 4 for the decoder side.

4.3 Results

Table 4 shows word error rates of each method
on each dataset. This table indicates that Univer-
sal outperformed Vanilla in all sets. The proposed
parameter sharing strategies (SEQUENCE, CYCLE,
and CYCLE (REV)) achieved better scores than Uni-
versal in all sets even though they are faster than
Universal. These results are consistent with results
in machine translation experiments in Section 3.
Thus, the proposed strategies are also more effi-
cient in the ASR task.

In contrast to machine translation experiments,
SEQUENCE outperformed CYCLE and CYCLE
(REV) in the ASR task. We consider that this re-
sult might be caused by the difference of tasks.
In addition, the cause might be the difference of
layer normalization positions in the Transformer
architecture. We used Post-LN based method (Ad-
min) (Liu et al., 2020) in machine translation exper-
iments, but Pre-LN based method in this ASR task.
Liu et al. (2020) and Takase et al. (2022) demon-
strated that the position of the layer normalization
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has a strong effect on the property of Transform-
ers. The experimental results in language modeling
(Appendix A) also imply that SEQUENCE is more
appropriate when we use the Pre-LN based Trans-
former. The main focus of this study is empirical
comparisons to the widely used parameter sharing
strategy, Universal (Dehghani et al., 2019), but we
will address theoretical analyses on the training
dynamics in the future to understand the relation
between parameter sharing strategies and Trans-
former architectures.

5 Related Work

Parameter Sharing In the past decade, various
studies reported that a large amount of training data
improve the performance in NLP tasks (Suzuki and
Isozaki, 2008; Brants et al., 2007; Mikolov et al.,
2013; Sennrich et al., 2016a; Edunov et al., 2018).
Moreover, recent studies indicated that the larger
parameter size we prepare, the better performance
the model achieves when we have a large amount
of training data (Devlin et al., 2019; Brown et al.,
2020). In fact, the best system on the WMT 2020
news translation task is composed of about 10 times
as many parameters as the widely used Transformer
(base) setting (Kiyono et al., 2020). However, due
to the limitation on a GPU memory capacity, we
have to explore a parameter efficient way, which
achieves better performance while saving the pa-
rameter size.

Parameter sharing is a widely used technique as
a parameter efficient way (Dehghani et al., 2019;
Dabre and Fujita, 2019; Xia et al., 2019; Lan et al.,
2020). Dehghani et al. (2019) proposed Universal
Transformer. Their method requires parameters
for only one layer (i.e., M = 1) of a Transformer-
based encoder-decoder, and shares these parame-
ters with NV layers. Dabre and Fujita (2019) in-
vestigated the effectiveness of Transformer sharing
parameters of one layer across all layers on various



translation datasets. Lan et al. (2020) used this pa-
rameter sharing strategy to construct a parameter
efficient model. As reported in these studies, we
can achieve better performance by the Transformer
sharing parameters of one layer across all layers
when we use the same parameter size as the original
Transformer. However, this strategy requires much
more computational time as described in Table 1
because weight matrices for each layer are much
larger. To solve this problem, we propose a new
parameter sharing strategies that prepare parame-
ters for M layers and assign them into NV layers,
where 1 < M < N. Experimental results show
that our proposed strategies are more efficient than
the method sharing parameters of one layer with
across layers (Dehghani et al., 2019; Dabre and
Fujita, 2019; Lan et al., 2020). In addition, experi-
mental results imply that the proposed parameter
sharing strategies are effective to improve the per-
formance. In fact, in language modeling, previous
studies demonstrated that the parameter sharing is
useful to improve the performance (Melis et al.,
2018; Merity et al., 2018; Takase et al., 2018),

Xia et al. (2019) proposed an encoder-decoder
which shares parameters of the encoder part and de-
coder part. Xiao et al. (2019) proposed the method
to share the attention weights to make the compu-
tation of Transformers fast. These techniques are
orthogonal to our proposed method. Thus, we can
combine them to improve the efficiency of parame-
ters and computational time.

Training Acceleration In this study, we explore
a parameter efficient method. On the other hand,
recent studies proposed method to accelerate the
training. Li et al. (2020) proposed a training strat-
egy for a deep Transformer. Their strategy trains a
shallow model and then stacks layers to construct a
deep model. They repeat this procedure until the de-
sired deep model. They indicated that their strategy
was faster than the training of whole parameters
of a deep Transformer. Takase and Kiyono (2021)
compared regularization methods in terms of train-
ing time. Their experimental results show that the
simple regularizations such as word dropout are
more efficient than complex ones such as adver-
sarial perturbations. We can use those findings to
accelerate the training of our proposed strategies.

Deep Transformers To raise expressiveness
power of Transformers, we stack many layers
in the proposed method. The stability of train-
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ing deep Transformers depends on their architec-
tures (Nguyen and Salazar, 2019; Xiong et al.,
2020; Liu et al., 2020). Transformer architectures
can be categorized into two types based on the
position of layer normalizations: Post-LN and Pre-
LN. Most of recent studies used the Pre-LN set-
ting when they stacked many layers (Wang et al.,
2019; Brown et al., 2020) because Pre-LN makes
the training process more stable than the Post-
LN setting, which is used in the original Trans-
former (Nguyen and Salazar, 2019; Xiong et al.,
2020). On the other hand, several studies proposed
methods to stabilize the training of Post-LN based
Transformers (Liu et al., 2020; Takase et al., 2022).
In this study, we used Admin (Liu et al., 2020) in
machine translation experiments because it stabi-
lizes the training of Post-LN based Transformers
while keeping the advantages of Post-LN in the ma-
chine translation task. For other experiments, we
used the Pre-LN configuration based on the imple-
mentations of baselines. These experiments show
that our proposed strategies are effective in major
two architectures: Post-LN and Pre-LN.

6 Conclusion

We proposed three parameter sharing strategies:
SEQUENCE, CYCLE, and CYCLE (REV), for the
internal layers in Transformers. In contrast to the
previous strategy, which prepares parameters for
only one layer and shares them across layers such
as Universal Transformers (Dehghani et al., 2019),
the proposed strategies prepare parameters for M
layers to construct N layers. The proposed strate-
gies stack layers whose weight matrices are smaller
than ones of Universal Transformers to raise expres-
siveness power while saving computational time.

Experimental results in the standard machine
translation setting show that the proposed strate-
gies achieved slightly better BLEU scores to those
of Universal with a small computational time when
we prepared almost the same parameters for each
method (M = 6 and N = 12). In addition, the
proposed strategies outperformed Universal under
the same computational budgets (M 6 and
N = 18). Thus, the proposed strategies are ef-
ficient in terms of the parameter size and compu-
tational time. Through additional experiments, we
indicated that the proposed strategies are also more
efficient than Universal in the high resource set-
ting, other language pairs, and another modality
(speech-to-text).



Limitations

As described in Section 1, the purpose of this study
is to relax the existing parameter sharing strategy
which shares the parameters of one layer with all
layers (Dehghani et al., 2019; Dabre and Fujita,
2019; Lan et al., 2020). Experimental results in-
dicate that the proposed simple parameter sharing
strategies can be a better alternative to the existing
method. As many studies on neural methods, this
study also depend on empirical observations. In
other words, this study lacks theoretical justifica-
tions for proposed parameter sharing strategies.

We conducted experiments on various situations.
We mainly focused on sequence-to-sequence tasks
and trained each model from scratch. Our con-
ducted experiments indicated the efficiency of the
proposed strategies but we did not conduct experi-
ments on the pre-training and then fine-tuning con-
figuration such as comparison with BERT (Devlin
et al., 2019) due to the limitation of our computa-
tional budgets. Thus, it is difficult to claim that the
proposed strategies are also more efficient in such
configuration. In addition, we have to investigate
the effectiveness in a more realistic situation. For
example, we will investigate the performance of
the combination of our proposed method, which is
the parameter efficient way for internal layers, and
a parameter efficient embedding such as Takase
and Kobayashi (2020).

Through experiments in various configurations,
it is difficult to conclude which strategy is the
best. Experimental results imply that the best strat-
egy depends on the task and Transformer architec-
ture (Post-LN or Pre-LN). Such phenomena are
reported in previous studies (Press et al., 2020; Gu-
lati et al., 2020). In fact, the architecture explored
by Press et al. (2020) is better in the language mod-
eling task but ineffective in the machine transla-
tion task. Since it is intractable to investigate a
tremendous amount of possible parameter assign-
ment way due to the limitation of computational
budgets, there might be a superior way to three sim-
ple strategies proposed in this paper. However, we
emphasize that all our proposed strategies are more
efficient than the Universal configuration. Because
the purpose of our experiments is not to detect the
best parameter sharing strategy but to indicate that
our proposed parameter sharing strategies are more
efficient than the Universal configuration, we con-
sider that our conducted experiments are sufficient
to verify our claims.
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Ethics Statement

As discussed in Strubell et al. (2019), recent neural
models require substantial energy consumption. To
address this issue, we explore a parameter efficient
way for Transformers in this study. We believe that
our proposed strategies are effective to reduce the
energy consumption.

On the other hand, we spent a large amount of
computational costs to investigate the usefulness of
our proposed strategies in various situations. Ap-
pendix B indicates our used GPUs and the number
of updates that correspond to the computational
costs.
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A Experiments on Language Modeling

A.1 Dataset

We focused Transformer-based encoder-decoders
in the main experiments of this paper. However, re-
cent studies often employed the decoder side only
as a pre-trained model. Thus, we conduct exper-
iments on the language modeling task to investi-
gate the efficiency of our proposed strategies when
we use the decoder side only. We used Wikitext-
103 (Merity et al., 2017) which contains a large
amount of training data. We measured perplexity
of validation and test sets.

A.2 Methods

We used the Transformer with adaptive in-
puts (Baevski and Auli, 2019) as the base archi-
tecture. In the same as in Baevski and Auli (2019),
the Transformer in the language modeling consists
of the Pre-LN configuration. We set N = 6 for
Vanilla and Universal. For the proposed strategies,
weset N =12 and M = 6.

A.3 Results

Table 5 shows perplexities of each method. This
table indicates that Vanilla achieved better perfor-
mance than Universal. Thus, the sharing param-
eters of one layer with all layers might not be
suitable for a large-scaled language modeling task.
In contrast, the proposed strategies outperformed
Vanilla. This result indicates that our proposed
strategies are also more efficient than Universal in
the language modeling.

Through the comparison among proposed strate-
gies, SEQUENCE achieved the best perplexity. As
described in Section 4, SEQUENCE might be more
appropriate to the Transformer with the Pre-LN
configuration. To explore the reason, we believe
that we have to conduct the theoretical analysis of
the Transformer during its training. We address
this issue in the future study.

The lower part of Table 5 shows the reported
score of Baevski and Auli (2019), our reproduced
score, and SEQUENCE with more parameters. This
part indicates that SEQUENCE achieved better per-
plexities than others even though the parameter size
of SEQUENCE is smaller. Therefore, SEQUENCE is
also efficient when we prepare a large amount of
parameters for a language model.
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Method | #Params | Valid  Test
Vanilla 121M 20.39  21.13
Universal 121M 22775 23.84
SEQUENCE 121M 1897 19.69
CYCLE 121M 19.00 19.69
CYCLE (REV) 121M 19.60 20.24
Models with more parameters

Baevski and Auli (2019)} 247TM 18.53 19.24
Baevski and Auli (2019) 247M - 18.7

SEQUENCE 234M 17.71 18.55

Table 5: The parameter sizes and perplexities of each
method. The lower part indicates scores reported in
Baevski and Auli (2019) and the score of SEQUENCE
with more parameters. Scores in bold denote the best
results for each set.  represents our re-run of Baevski
and Auli (2019).

B Details of Experimental Settings

We used NVIDIATesla V100 GPUs for all exper-
iments. Table 6 shows the hyper-parameters for
training in each task. The descriptions in our code
also help to understand configurations in this study.



Params Machine Translation ASR Language Model
Leaning rate 0.001 0.001 0.001
Scheduler inverse sqrt inverse sqrt inverse sqrt
Adam j (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
Warmup updates 4k 4k 2k

Max updates 50k 150k 50k

Table 6: Hyper-parameters used in our experiments.
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To Asymmetry and Beyond: Structured Pruning of Sequence to Sequence
Models for Improved Inference Efficiency *

Daniel Campos!? and ChengXiang Zhai'
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Abstract

Sequence-to-sequence language models can be
used to produce abstractive summaries which
are coherent, relevant, and concise. Still, model
sizes can make deployment in latency-sensitive
or web-scale implementations difficult. This
paper studies the relationship between model
size, structured pruning, inference efficiency,
and summarization accuracy on widely used
summarization datasets. We show that model
accuracy is tied to the encoder size while in-
ference efficiency is connected to the decoder.
Using asymmetric pruning can lead to nearly
3x improvement in inference latency with 1
point loss in Rouge-2. Moreover, we find both
the average degradation and the role of asym-
metry to be consistent across model sizes and
variations in datasets. We release our code!,
training regimes, and associated model ? for
broad usage to encourage usage and experimen-
tation.

1 Introduction

The application of sequence-to-sequence lan-
guage models has become an important tool
for natural language processing tasks such as
machine translation (Sutskever et al., 2014),
audio transcription (Radford et al., 2022), and
abstractive summarization (Raffel et al., 2020).
Sequence-to-sequence models effectively turn
each of these aforementioned tasks into two-step
problems: extraction and generation, and heavily
condition the generation on the input.
Besides ensuring on-topic responses sequence to
sequence models have the added benefit of being
able to map inputs to targets with varying lengths
* Corresponding author: dcampos3 @illinois.edu
"https://github.com/spacemanidol/Efficient-Web-Scale-

Absractive-Summarization
“https://huggingface.co/spacemanidol

91

Accuracy vs. Inference Speed

T
ol i
A

)

E1

2 10 A
o~

g

=

S 20 A
<

=l

I

Yt

53

% =30+ —a— Prune Decoder | |
I3 —&— Prune Encoder

Prune Both
| I
1 2 3

Inference Speedup

Figure 1: Impact of Asymmetrical Pruning on inference
speedups and ROUGE-2 degradation on Query Indepen-
dent Web Summarization. Inference Time is the mean
inference time for a batch size of 1 on an A10 GPU over
seven iterations.

and modalities in ways encoder or decoder-only
systems cannot.

When used for abstractive summarization,
sequence-to-sequence modeling has two steps,
extraction using the encoder and generation using
the decoder, which usually involves repeated
execution until an end-of-sequence token is
emitted. Since the encoder runs once on the input
(Sutskever et al., 2014) its cost of execution is
proportional to the batch size. The cost of decoder
execution can be highly variable based on the
generation length (Tay et al., 2021). Despite the
broad study of sequence-to-sequence models
(Raffel et al., 2020) and how they compress (Li
et al.,, 2022), the role of model symmetry as
applied to inference efficiency and model accuracy

Proceedings of The Fourth Workshop on Simple and Efficient Natural Language Processing (SustaiNLP), pages 91-109
July 13,2023 ©2023 Association for Computational Linguistics



is lacking.

Recent advances in scaling language models have
led to a wide study on scaling laws as applied
to language model performance (Kaplan et al.,
2020), training data size (Hoffmann et al., 2022),
machine translation (Henighan et al., 2020), and
even reinforcement learning (Neumann and Gros,
2022).

We build on this work and study the impact of
scaling on abstractive summarization and what
role model asymmetry has in it. This asymmetry
can manifest in various ways, such as the number
of layers and hidden units in the encoder and
decoder and the type of attention mechanisms
used.

In this paper, we explore the role of asymmetry in
the number of layers in encoder-decoder language
modeling for summarization and its impact on
the performance of these models. As shown in
Figure 1, the symmetry of pruning drives the
impact on accuracy and inference speedups for
sequence-to-sequence models.

The following research questions drive our work:

* What scaling laws can be observed in abstrac-
tive summarization?

* What impact does encoder-decoder asymme-
try have on abstractive summarization accu-
racy?

* What impact does encoder-decoder asymme-
try have on abstractive summarization infer-
ence efficiency?

* What is asymmetries impact on accuracy
and inference efficiency does scale have in
encoder-decoder models for abstractive sum-
marization?

It is in answering these questions that we deliver
the following contributions:

* We present the first robust study on scaling
laws applied to the compression of sequence-
to-sequence modeling.

* We demonstrate that the asymmetric inference
cost of sequence-to-sequence models leads
to asymmetric pruning for optimal inference
efficient compression.
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* We empirically demonstrate on a wide variety
of benchmarks how Asymmetric Compres-
sion can lead to a 2.7x inference speedup with
no loss in accuracy on the XSUM dataset.

2 Related Work

Transformer Based Language Models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020) provide contextual language representations
built on the Transformer architecture (Vaswani
et al., 2017) which can be specialized and adapted
for specific tasks and domains (Lee et al., 2020).
Using these models, it becomes relatively easy to
excel at a broad range of natural language process-
ing tasks such as question answering, text classifi-
cation, and sentiment analysis.

Scaling Laws has become an increasingly impor-
tant area of study as models’ size and training data
grows. Performance of the transformer-based lan-
guage model improves with the relation to model
size (Radford, 2018) and that larger models outper-
form smaller models (Brown et al., 2020) on most
NLP tasks. Increasing the training corpus size can
lead to large improvements in performance, and
model sizes can have a optimal training data size
(Hoffmann et al., 2022). Li et al. (2020) (Li et al.,
2020) explore the relationship between model size
and training efficiency finding larger models train
faster and are more robust to pruning and quantiza-
tion (Na et al., 2022).

Asymmetrical in sequence-to-sequence models
broadly refers to non-uniformity between encoder
and decoder model shape or attributes. Training
and inference procedures should match as closely
as possible (Ranzato et al., 2015) (Mihaylova
and Martins, 2019) as improvements in training
loss during optimization result in improvements
in model performance during Inference. While
this may lead to the best model performance, it
ignores the variable inference cost of sequence-to-
sequence models.

During Inference, latency is dominated by the
asymmetric execution of the language model. The
auto-encoding encoder executes once over the en-
tire input sequence, while the auto-regressive de-
coder executes iteratively until an end-of-sequence
token is produced.

Kasai et al. demonstrated how the sequence-to-
sequence language model performance for ma-



Table 1:

Information about the architecture and attributes of the FLAN-TS models

Model Size(MBs) | Parameters | Encoder Layers

Parameters Encoder

Decoder Layers | Parameters decoder | Ratio End:Dec | Hidden Size

Flan-t5-small 3 | 146 60511616 | 8 35332800

8 41628352 0.849 512

Flan-t5-base * | 472 222903552 | 12 109628544

12 137949312 0.795 768

Flan-t5-large > | 1500 750251008 | 24 341231104

24 441918976 0.772 1024

chine translation is dominated by the encoder depth
(Kasai et al., 2020). Tay et al. 2021 extend this
work by finding a DeepNarrow which shows that
for broad language modeling, it is possible to have
50% fewer parameters and a 40% faster inference
with no loss in accuracy (Tay et al., 2021).
Efficient Inference for language modeling is a
growing area of study that broadly focuses on re-
ducing the inference cost without losses in accu-
racy.

Unstructured Pruning has been broadly studied
(Han et al., 2015) (Sanh et al., 2020) (Kurti¢ et al.,
2022) (Zafrir et al., 2021) (Campos et al., 2022)
but realizing speedups can be difficult.

Structured Pruning removes fundamental structural
components in a language model such as individ-
ual attention heads (Voita et al., 2019) or entire
model layers such as transformer encoders (Sanh
et al., 2019). Rosenfeld et al. 2020 demonstrate
that unstructured pruning impacts follow scaling
laws (Rosenfeld et al., 2020) where larger models
can be pruned with greater ease.

Compressing Sequence-to-sequence is a grow-
ing area of study where approaches from regular,
efficient Inference has shown some transfer abil-
ity. Shleifer et al. show that it is possible to gain
1.93x speedup on a BART summarization model
by applying structural pruning (Shleifer and Rush,
2020) but find compression approaches differ in
their success depending on the dataset. Leveraging
semi-structured pruning, Lagunas et al. can gain
a 1.19 speedup (Lagunas et al., 2021) for minor
losses in accuracy. While they find that the en-
coder is easier to prune than the decoder, they do
not use this evidence of asymmetry to speed up
performance further.

Li et al. investigate how to enable quantization,
finding that without specialized distillation dur-
ing quantization, performance collapses (Li et al.,
2022). Leveraging that generation occurs itera-
tively, and some tokens are easier to generate than
other CALM (Schuster et al., 2022) apply early
exiting to improve inference speed by 1.4x. While
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existing work has found interest in asymmetry, it
has not been studied directly, nor has relationships
in model scale been explored.

While there are other approaches such as knowl-
edge distillation (Hinton et al., 2015) (Sanh et al.,
2019) (Jiao et al., 2020), quantization (Zafrir et al.,
2019), early exiting (Xin et al., 2020) and token
pruning (Kim et al., 2021) these are not the fo-
cus on our work as understanding the impact of
many variables together limits the depth of our ex-
ploration. We leave further study of the interplay
between summarization and quantization, unstruc-
tured pruning, structured pruning, and knowledge
distillation for future work.

3 Scale and Abstractive Summarization

3.1 Background

Sequence-to-sequence language models such as
BART (Lewis et al., 2021), T5 (Raffel et al., 2020),
and PEGASUS (Zhang et al., 2020) combine trans-
former encoders and decoders to produce models
which can adapt to novel tasks and reach top perfor-
mance on tasks ranging from information retrieval
(Nogueira et al., 2020) to summarization (Raffel
et al., 2020).

We focus on the instruction-tuned FLAN-T5 mod-
els (Wei et al., 2021) as their performance is com-
petitive and they feature wide variations in model
size ranging from 60 million to 11 billion parame-
ters and given the cost of training the larger vari-
ants, focus on the small, base, and large variants.
Details on model size and architecture can be found
in table 1.

Abstractive summarization is a method of se-
quence compression where a source document D
is transformed into a target document d,,,, which
is shorter but faithful to the input.

Datasets of use are a combination of public
and academic benchmarks and a proprietary web
search dataset. The CNN/DailyMail (CNNDM)
(See et al., 2017) and XSUM (Narayan et al., 2018)
datasets are based on the summarization of English
new language models. The Query Independent
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Figure 2: Model Size vs. Gain to summarization accu-
racy as measured by the relative Gain in rouge-2 vs. the
small model.

Web Summary (QIWS) is a proprietary corpus of
abstractive summaries of web pages that are used
to create informative contextual snippets for search
engine users. It is important to note the differ-
ences in compression factor in each dataset as each
impact how decoder-driven inference latency is.
Further information on the makeup of each dataset
can be found in table 11.

Metrics For each dataset, we evaluate model
performance by measuring the ROUGE-1 (R-1),
ROUGE-2 (R-2), ROUGE-L (R-L), RougeSum-
L (RSL) © (Lin, 2004), and Generation Length
(GenL) on the test portion of the dataset. To aid
the reproducibility and extension of our work, we
experiment using HuggingFace’s Transformers ,
release our training and pruning scripts ® and model
variants for datasets that are publicly available
datasets °.

3.2 Scaling Laws for Abstract Summarization

To study the role of scale in abstractive summariza-
tion, we train small, base, and large models of the
three datasets mentioned above. We do not study

Rouge-L is sentence level vs. RougeSum-L is summary
level

https://github.com/huggingface/transformers

8https://github.com/spacemanidol/Efficient-Web-Scale-
Absractive-Summarization

“https://huggingface.co/spacemanidol
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the XL (3B) and XXL (11B) as they are expensive
and slow to train.

For all of our experiments, we train on various
hardware but fix the batch size to 64 using gradient
accumulation and leverage the hyperparameters
in 12. While further hyperparameter optimization
and instruction tuning would likely lead to further
gains in accuracy, our work is not focused on
absolute Gains but on the relative relation of scale.

As shown in 2, 13, 14, and 15, there is a substan-

tial role between scale and performance, but there
is a substantial variation across datasets.
Datasets with short candidate summaries, such as
XSUM, see nearly three times the impact compared
to the long summaries of QIWS and CNNDM. Dur-
ing qualitative evaluations, the role of scale can eas-
ily be observed as smaller models generate more
short keyword summaries while introducing scale
makes responses more natural.

3.3 Inference Benchmark

To evaluate the impact of asymmetry on inference,
we run experiments on the throughput of each
model. Using an A10 GPU and the models from
our QIWS datasets, we evaluate performance with
a max sequence length of 1024, a max summary of
256, and batch sizes 1, 8, and 16 using native infer-
ence in PyTorch. We report the mean and standard
deviation of timings on seven runs.

In comparing the impact of scale on R-2 vs. the
effects on latency across batch sizes in 2, 4, 3 it
becomes clear that larger models are more expen-
sive to execute significantly as batch sizes increase.
This is because of potential differences in output
length within a batch as the batch completes when
all sequences have produced an EOS token. To
alleviate this issue bottleneck, improved stream-
ing methods for improved batching have been pro-
posed (Yang et al., 2020) but can be challenging to
manage.

4 To Asymmetry and Beyond

While prior work has studied how to improve in-
ference and tangentially explored the asymmetry
between the encoder and decoder, we study that
explicitly and across model scales. We focus our
studies on structural pruning as inference gains
are easy to realize, and this approach is highly



Table 2: Impact of scale on inference throughput for abstractive summarization models trained on the XSUM
dataset. Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 17.55 | 0.00% 138 1 230 1 330 1

base 19.77 | 12.63% | 199 1.44 550 2.39 931 2.82
large 21.15 | 20.51% | 445 3.22 1480 6.43 2700 8.18

Table 3: Impact of scale on inference throughput for abstractive summarization models trained on the QIWS dataset.
Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 29.03 | 0 524 1 653 1 729 1

base 3419 | 17.77% | 746 1.42 1060 1.62 1310 1.80
large 37.37 | 28.72% | 1,430 2.73 2240 3.43 3320 4.55

Table 4: Impact of scale on inference throughput for abstractive summarization models trained on the CNNDM
dataset.Latency is measured in MS/batch and the impact is the impact to latency vs. the small model

Model | R-2 Gain BS 1 Latency | Impact | BS 8 Latency | Impact | BS 16 Latency | Impact
small 11.09 | 0 171 1.00 252 1.00 344 1.00
base 15.69 | 41.50% | 255 1.49 550 2.18 845 2.46
large 1634 | 47.41% | 525 3.07 1370 5.44 2300 6.69

Table 5: Relation between scale and asymmetry on
model performance on the QIWS dataset. As shown by
the results in bold pruning only the decoder leads to
less degradation than just the encoder or both, across
all scales.

Base
R-2
34.19
34.00
34.50
33.70
31.93
28.05

Small
R-2

29.03
28.90
28.56
27.94
24.85
15.41

Large
R-2

37.37
37.59
36.56
35.74
35.13
33.69

R
100.00%
99.55%
98.40%
96.24%
85.61%
53.08%

R
100.00%
99.44%
100.91%
98.58%
93.38%
82.03%

R
100.00%
100.59%
97.84%
95.64%
94.01%
90.15%

enc dec

oo ||| | ]
A EESENEY

27.92
27.75
25.20
23.67
18.23

98.18%
96.69%
94.28%
80.35%
74.78%

36.39
35.90
34.22
33.42
30.31

97.38%
96.07%
91.58%
89.43%
81.11%

96.17%
95.60%
86.82%
81.55%
62.79%

33.57
33.06
32.23
27.47
25.57

T ENE
N E-N RN E-NE-Y

26.82
26.62
23.12
19.14
6.09

92.38%
91.72%
79.64%
65.92%
20.99%

32.88
32.81
28.70
26.53
19.64

96.18%
95.96%
83.95%
77.60%
57.43%

36.32
35.98
33.00
30.78
22.77

97.20%
96.29%
88.31%
82.38%
60.94%

LR ENE
IS ESE

compatible with other methods like quantization
and unstructured pruning. We do not study how
asymmetry is impacted by unstructured pruning or
quantization as these methods are difficult to com-
bine optimized libraries like FasterTransformers'©.
Following Shleifer et al., we adopt the "Shink and
then fine" (STF) tune approach for compression.
First, a model is trained until convergence on a
fine-tuning summarization task. Then, entire lay-
ers are removed from the encoder, decoder, or both,
and the model is further fine-tuned until it has re-

"https://github.com/NVIDIA/FasterTransformer
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converged. We do not study the use of knowledge
distillation to avoid the additional training over-
head without guaranteed improvements following
Shleifer et al.’s results.

Each model we study has a uniform number of
encoder and decoder layers, so we prune only the
encoders, decoders, and a symmetric combination
of the two combinations. We used our three scales
of uncompressed models (small, base, large), and
we pruned the model in multiples of 1 on the en-
coder, the decoder, and both. After pruning, mod-
els are fine-tuned again and evaluated. This means
that for each dataset, we have 16 variants for each
model size leading to 48 models per dataset and
144 models overall.

Given the wide number of models and the cost
of multiple seeds or model-specific optimization,
we train each model once and do not optimize the
parameters for each model. While this leads to a
worse-than-ideal performance, our goal is not to
hyper-optimize models but explore where there is
high sensitivity. To save space, we use the short-
hand l¢y. and .. to refer to the number portion of
transformer encoder and decoder layers (out of 6),
and R refers to the percentage performance recall
vs. uncompressed baseline. Detailed results have
been moved to the A.3 to save space.



Table 6: Relation between scale and asymmetry on
model performance on the CNNDM dataset. As shown
by the results in bold as the model size grows the impact
of pruning becomes more muted

Small Base Large

Tone | laee | R2 R R-2 R R2 R

6 6 17.55 100.00% 19.77 100.00% 21.15 100.00%
6 5 17.68 100.74% 19.92 100.76% 21.30 100.69%
6 4 17.27 98.36% 19.85 100.42% 21.32 100.81%
6 3 16.40 93.43% 18.85 95.37% 21.08 99.66 %

6 2 15.35 87.42% 18.68 94.51% 20.67 91.73%

6 1 11.33 64.57% 16.48 83.38% 19.49 92.12%

5 6 17.69 100.81% 19.92 100.76% 21.13 99.88%

4 6 17.35 98.84% 19.67 99.50% 20.83 98.47%

3 6 16.80 95.70% 18.85 95.37% 20.53 97.06%

2 6 15.54 88.51% 18.22 92.14% 19.74 93.33%

1 6 13.31 75.83% 17.06 86.27% 18.68 88.31%

5 5 17.07 97.23% 19.72 99.74% 21.23 100.34%
4 4 16.20 92.28% 19.17 96.99% 20.90 98.81%

3 3 14.91 84.95% 17.46 88.29% 20.13 95.16%

2 2 11.97 68.17% 15.87 80.26% 18.47 87.30%

1 1 6.05 34.45% 12.23 61.88% 1551 73.32%

Table 7: Scale and Pruning on XSUM dataset

Small Base Large

Tone | laee | R2 R R2 R R2 R

6 6 11.09 100.00% 15.69 100.00% 16.34 100.00%
6 5 11.61 104.74% 15.27 97.35% 19.80 121.16%
6 4 11.43 103.12% 14.91 95.03% 19.30 118.09%
6 3 11.24 101.36% 15.40 98.17% 18.92 115.77%
6 2 10.53 94.98% 15.19 96.82% 17.96 109.93%
6 1 6.03 54.42% 13.73 87.53% 16.47 100.76%
5 6 11.18 100.82% 15.92 101.47% 19.43 118.88%
4 6 10.61 95.68% 14.10 89.91% 18.33 112.16%
3 6 10.11 91.16% 13.84 88.21% 16.90 103.39%
2 6 8.59 77.52% 12.10 77.12% 14.97 91.61%
1 6 7.70 69.43% 10.27 65.47% 12.52 76.63%
5 5 10.73 96.76% 15.72 100.22% 19.18 117.38%
4 4 10.19 91.96% 14.30 91.15% 17.56 107.43%
3 3 9.50 85.69% 12.44 79.32% 15.89 97.21%
2 2 7.31 65.91% 10.67 68.05% 12.15 74.34%
1 1 4.00 36.09% 7.74 49.35% 8.96 54.86%

.
4.1 Scale and Pruning

Role of scale and compression on CNNDM

Looking at abridged results in 5, 6, and 7, there
is a clear scaling law as smaller models see much
larger drops in performance when compressed
to the same degree. For example, on the QIWS
dataset, compression to % of the layers on the
encoder and decoder cause an 80% drop in R-2 on
a small model but only 40% on the larger model.
This scale comparison is 65% to 26% on CNNDM
and 64% to 45% on XSUM datasets.

Similar scaling results hold with encoder or
decoder pruning, where compressing large models
lead to a 5x lower loss in performance than small
models. As the model’s size grows, the impact of
decoder vs. encoder-only pruning becomes more
muted. On the CNNDM dataset, the gap between
the decoder only and encoder only pruned to % is
10% with the FLAN-TS small but only 4% with
the large variant. When comparing asymmetric
and symmetric, the gap is even further pronounced
where the small gap is 30% while the large is 20%.
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Figure 3: Relationship between model compression,
model size, and summarization accuracy measured by
rouge-2 vs. Number Layers. smallepcoger refers to a
FLAN-TS5 small which has only pruned the encoder,

96 smallgecoger for only the decoder, and smallpyy, for the

encoder and decoder



As shown in Figure 3, the impact of compression
becomes more muted as the model size grows. In
other words, larger models are more compressible
and amenable to asymmetry in this compression.
The impact of asymmetry is easiest to understand
as it is not surprising that complete pruning of a
model leads to higher losses than partial pruning
across datasets and model sizes. While this finding
is not immediately surprising, evaluating the
inference costs becomes important.

4.2 Inference Benchmarks

We evaluate the impact of asymmetry in a similar
method to our scale experiments. Using an A10
GPU, we evaluate performance for summarization
on a portion of each model’s respective evaluation
datasets with a max sequence length of 1024, a
max summary length of 256, and batch sizes 1, 8,
and 16. We choose these batch sizes to represent
streaming workloads (batch size 1), real-time re-
sults for the top results from a search query (batch
size 8i), and max throughput given the A10’s mem-
ory budget (batch size 16)

QIWS CNN/DailyMail XSUM

Impact
336%
5.99%
9.85%

Speedup
1.80
2.44
383

Impact
0.34%
207%
7.88%

Speedup
1.6
2.03
2.70

lene Impact
15.77%
9.93%

0.76%

Speedup
164
2.07
271

model symmetrically leads to realizable inference
improvements of up to 5x at the expense of sum-
marization accuracy.

Alternatively, when only the decoder is pruned, it is
possible to see most of the inference speedups seen
during constant pruning with a substantially lower
impact on accuracy. On the CNN/DM dataset,
constant pruning leads to 8% better inference but
losses nearly four times the performance of non-
uniform compression.

Small Base Large
lence | lgec | Impact Speedup | Impact Speedup | Impact Speedup
6 6 -3.76% 1.79 -1.42% 1.76 -4.36% 1.80
6 6 -14.39% | 2.69 -6.62% | 2.13 -5.99% 2.44
6 6 -46.92% | 3.97 -17.97% | 3.69 -9.85% 3.83
3 3 -13.18% | 1.02 -5.72% 1.04 -8.42% 1.04
2 2 -18.45% | 1.02 -19.65% | 1.05 -10.57% | 1.04
1 1 -37.21% | 1.03 -25.22% | 1.06 -18.89% | 1.06
3 3 -20.36% | 1.40 -16.05% | 1.86 -11.69% | 191
2 2 -34.08% | 1.30 -22.40% | 2.48 -17.62% | 2.20
1 1 -79.01% | 391 -42.57% | 3.95 -39.06% | 2.44

Table 9: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-TS models on QIWS concerning
model size. Speedup is measured by comparing the
improvements in latency for batch size one vs. the un-
compressed baseline. The impact is the relative loss of
Rouge-2 of compressed models vs. the uncompressed
baseline.

[3 | 6 | -842% | 104 | -204% | L14 | 339% | Ll6 | lenc | lacc | Impact | Speedup (BS1) | Speedup (BS8) | Speedup (BS16)
2 6 [ -1057% | 1.04 | 667% | 1.19 [ 839% | 121 6 3 -0.34% 1.65 1.18 1.15
‘ 1 ‘ 6 ‘ -18.89% ‘ 1.06 ‘ -11.69% ‘ 1.27 ‘ -23.37% ‘ 1.30 6 2 -2.27% 2.03 1.25 1.22
| 3 | 3 | -11.69% | 191 | -484% | 194 | 279% | 206 | [J 1 -1.88% | 270 1.36 129
2 2 [ 17.62% | 2.20 [ 1270% | 278 | 25.66% | 283 | R
[T [T | 39.06% | 244 | 26.68% | 496 | -45.14% | 484 | g ; _ég‘;gﬁ Hg 122 igg
6 1 -11.69% | 1.27 221 243
Table 8: Relationship between accuracy and speedup 3 |3 | 484% | 194 .96 97
of encoder only, the decoder only, encoder and de- 2 [2 [-1270% | 2.78 2.88 292
1 1 -26.68% | 4.96 5.54 5.64

coder pruning on FLAN-TS Large models on CNN/DM,
XSUM, and QIWS. Speedup is measured by compar-
ing the improvements in latency for batch size one vs.
the uncompressed baseline. The impact is the relative
loss of Rouge-2 of compressed models vs. the uncom-
pressed baseline.

Looking at the focused set of results for large mod-
els across datasets in table 8 on the impact of R-2
vs. inference speedup, we can see a clear relation-
ship between asymmetry and inference efficiency.
While detailed inference results can be found in
the appendix A.4 on this focused set of results,
we can see that pruning only the encoder leads to
no more than 30% improvement in inference effi-
ciency at a sizable loss in accuracy. Pruning the
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Table 10: Relationship between accuracy and speedup
of encoder only, decoder only, encoder and decoder
pruning on FLAN-T5 large models on CNN with vari-
ation in inference batch size. Speedup is measured by
comparing the improvements in latency vs. the uncom-
pressed baseline at various batch sizes. The impact is
the relative loss of Rouge-2 of compressed models vs.
the uncompressed baseline.

5 Discussion

5.1 Scale, Inference, and Pruning

As shown in table 9, the gains found by pruning are
extremely consistent independently with scaling.
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Figure 4: Role of scale and compression on generation
length

Pruning only the encoder leads to a 4-6% improve-
ment in latency, and pruning just the decoder leads
to 400%, as does uniform compression. This is
expected as structural pruning removes a constant
portion of the network, which leads to consistent
latency gains irrespective of model scale.

5.2 Scale, Pruning and Generated length

Despite expecting a significant trend in the role of
scale and pruning in a generation, we do not see
any noticeable trends. As shown in figures 6 and
4, there is no discernible trend of the Role of scale
and pruning in generation length. There is a minor
jump in generation length from FLAN-TS small
to FLAN-TS base across all datasets but no such
jump from FLAN-T5 base to FLAN-TS large. We
believe this is because the smaller models are less
fluent and need more tokens to ensure accurate cov-
erage. As models scale, this is no longer needed,
and the models converge to a uniform summary
length.

5.3 Asymmetry with large batches

Despite the allures of asymmetrical pruning, it is
not without fault. As shown in table 10 and Fig-
ure 5, the improvements in inference efficiency
are heavily influenced by the batch size. When
the batch size is minimal, the difference in the
type of non-uniformity has a significant impact

Impact of batch size on inference speedups
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Figure 5: Relationship between inference batch size
and realized inference speedup with uniform and no
uniform pruning of FLAN-T5 large on CNNDM
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on inference efficiency. As batches scale, the
speedup from encoder only or decoder only be-
comes much closer and becomes minor when com-
pared to uniform methods. This indicates why
further work on improving generative inference
methods is highly relevant, as this problem im-
pacts other efficiency-driven processes like CALM
(Schuster et al., 2022).

6 Conclusion and Future Work

In this work, we explore the role of symmetry in
the pruning of sequence-to-sequence models for ab-
stractive summarization, finding that pruning asym-
metrically can lead to inference speedups with low
losses in accuracy. Our work also explores the rela-
tionship between model scale and the sensitivity to
pruning, finding that larger models see lower losses
when pruned. This compresses FLAN-TS models
to deliver 3x inference gains with a 1 Rouge-2
point loss.

In future work, we seek to study how pseudo la-
beling, early exiting, and quantization can be com-
bined to improve further the inference efficiency
of sequence-to-sequence models.
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A Appendix
A.1 Training Details

In all of our experiments, we leverage the parame-
ters shown in 12 on the datasets shown in 11

A.2 Scale and Abstractive summarization

The role of model scale on performance on the
QIWS, CNN/DM, and XSUM datasets can be
found in tables 14,13, and 15

A.3 Asymmetry in Summarization

The role of the model scale, structural pruning,
and asymmetry on performance on the QIWS,
CNN/DM, and XSUM datasets can be found in
tables 22,23,24,16,17,18,19,20, and 21.

A.4 Inference Benchmarks

Detailed variations in latency measurements across
batch size, scale, structural pruning, and asymme-
try on performance on the QIWS, CNN/DM, and
XSUM datasets can be found in tables 25,26, 27,
28,29, 30, 33, 31, and 32.

A.5 Responsible NLP Research -
Reproducibility Checklist

A.5.1 Scientific Artifacts

Datasets. We perform our experimentation on
well-established benchmarks using many broad
domains and a proprietary web summarization
dataset. We do not perform any modification or
augmentation on public benchmarks in any dataset.

11
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Models. The model used as a starting point for all
of our experiments is the family of flan-t5 models,
publicly available via HuggingFace Hub 3. All
other models presented in this paper are openly-
available in the hugging face hub.

A.5.2 Computational Experiments

Our experimentation on finetuning our compressed
models uses a single 40GB A100. Finetuning time
varies across datasets ranging from 1 hour for T5-
small to 24 hours for T5-Large.

A.5.3 Computational Packages

All of our experimentation is done using public
libraries and datasets to ensure extensibility and
reproducibility. Our investigation is done using
HuggingFace’s Transformers 4 and Datasets '°.

Bhttps://huggingface.co/bert-base-uncased
Yhttps://github.com/huggingface/transformers
Bhttps://github.com/huggingface/datasets



Table 11: Statistics for the abstractive summarization datasets which we study. Source and Summary refer to the
number of words in each, and the compression factor is the ratio between the two on the train portion of the dataset.

Dataset Train Validation | Test Source | Summary | Compression
CNNDM T | 287,113 | 13,368 11,490 | 691.87 | 51.57 14.80
XSUM 2 204,045 | 11,332 11,334 | 373.86 | 21.09 18.70
QIWS 10000 1000 1000 1410.12 | 73.78 19.11

HyperParameter ‘ Value

Training Length ‘ 3,10 Epochs

Initial learning rate le-4

Learning rate schedule constant

Batch size ‘ 64

Weight Decay | 0.01,0.05,0.1

Table 12: Training Hyperparameters for summarization
experiments
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Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small 50.22 | 0.00% 29.03 | 0.00% 45.87 | 0.00% 40.19 | 0.00% 62.79 | 0.00%
base 54.84 | 9.20% 3419 | 17.77% | 50.38 | 9.83% 44.68 | 11.18% | 6291 | 0.19%
large 57.81 | 15.11% | 37.37 | 28.72% | 53.14 | 15.84% | 48.16 | 19.84% | 62.85 | 0.10%

Table 13: Impact of Scale on summarization performance on QIWS dataset

Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small | 39.31 | 0.00% 17.55 | 0.00% 36.50 | 0.00% 27.97 | 0.00% 77.62 | 0.00%

base 42.14 | 7.20% 19.77 | 12.63% | 39.32 | 7.75% 30.15 | 7.80% 71.86 | -7.42%
large 4399 | 11.90% | 21.15 | 20.51% | 41.12 | 12.68% | 31.64 | 13.11% | 71.01 | -8.51%

Table 14: Impact of Scale on summarization performance on CNNDM dataset

Model | R-1 Impact | R-2 Impact | RSL Impact | R-L Impact | Genl | Impact
small 33.2675 | 0.00% 11.09 | 0.00% 26.17 | 0.00% 26.17 | 0.00% 28.01 | 0.00%
base 38.7782 | 16.56% | 15.69 | 41.45% | 31.14 | 19.01% | 31.15 | 19.04% | 25.92 | -7.48%
large 39.7125 | 19.36% | 16.34 | 47.36% | 31.72 | 21.21% | 31.72 | 21.23% | 26.74 | -4.54%

Table 15: Impact of Scale on summarization performance on XSUM dataset

Table 16: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the
CNN/DailyMail Abstractive Summarization Dataset

3
2}
a
Q
o

R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
39.31 | 0.00% 17.55 | 0.00% 36.50 | 0.00% 27.97 | 0.00% 77.62 | 0.00%
39.33 | 0.04% 17.68 | 0.74% 36.54 | 0.13% 28.21 | 0.87% 76.46 | -1.49%
38.75 | -1.42% 17.27 | -1.64% 36.01 | -1.32% 2791 | -0.23% 78.63 | 1.31%
37.18 | -5.42% 1640 | -6.57% 3446 | -5.58% 2722 | -2.70% 75.69 | -2.48%
3547 | -9.76% 1535 | -12.58% | 32.78 | -10.17% | 26.28 | -6.06% 75.08 | -3.27%
29.27 | -25.55% | 11.33 | -35.43% | 26.97 | -26.09% | 22.33 | -20.18% | 67.99 | -12.40%
39.59 | 0.71% 17.69 | 0.81% 36.80 | 0.83% 28.08 | 0.39% 77.81 | 0.25%
39.12 | -0.47% 1735 | -1.16% 36.38 | -0.31% 27.73 | -0.88% 76.22 | -1.80%
38.57 | -1.87% 16.80 | -4.30% 35.79 | -1.92% 27.15 | -2.92% 78.13 | 0.67%
36.82 | -6.32% 1554 | -11.49% | 34.00 | -6.84% 2579 | -7.78% 77.77 | 0.20%
3358 | -14.58% | 13.31 | -24.17% | 30.96 | -15.16% | 23.72 | -15.19% | 70.79 | -8.79%
38.59 | -1.82% 17.07 | -2.77% 3580 | -1.91% 27.55 | -1.52% 7793 | 0.41%
37.31 | -5.08% 1620 | -7.72% 34.60 | -5.19% 26.83 | -4.07% 79.83 | 2.85%
3528 | -10.25% | 1491 | -15.05% | 32.54 | -10.85% | 25.74 | -7.98% 74.61 | -3.88%
30.79 | -21.66% | 11.97 | -31.83% | 28.03 | -23.19% | 22.88 | -18.19% | 78.53 | 1.18%
21.30 | -45.80% | 6.05 -65.55% | 19.57 | -46.39% | 16.62 | -40.56% | 60.03 | -22.66%

=[N B N —| D] & | O\ 00| 00| 00| 0| 00| OO T
—| D[ | h| O\ 00| 00| 00| CO| CO| ==| I | | O\ co| T

Table 17: The relation between pruning asymmetry and symmetry for a FLAN-TS base model on the
CNN/DailyMail Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 42.14 | 0.00% 19.77 | 0.00% 39.32 | 0.00% 30.15 | 0.00% 71.86 | 0.00%
12 10 42.49 | 0.84% 19.92 | 0.76% 39.62 | 0.75% 30.27 | 0.40% 74.38 | 3.51%
12 8 42.28 | 0.34% 19.85 | 0.42% 3948 | 0.41% 30.35 | 0.64% 70.74 | -1.56%
12 6 41.30 | -1.99% 18.85 | -4.63% 38.44 | -2.25% 29.16 | -3.28% 74.76 | 4.04%
12 4 40.31 | -4.34% 18.68 | -5.49% 3771 | -4.10% 2945 | -2.33% 67.52 | -6.04%
12 2 36.75 | -12.80% | 16.48 | -16.62% | 34.22 | -12.97% | 27.61 | -8.43% 67.67 | -5.82%
10 12 4249 | 0.84% 19.92 | 0.76% 39.62 | 0.75% 30.27 | 0.40% 7438 | 3.51%
8 12 4227 | 0.31% 19.67 | -0.50% 3941 | 0.22% 29.99 | -0.52% 74.34 | 3.45%
12 41.30 | -1.99% 18.85 | -4.63% 3844 | -2.25% 29.16 | -3.28% 74.76 | 4.04%
12 40.51 | -3.86% 18.22 | -7.86% 37.66 | -4.23% 28.42 | -5.75% 77.04 | 7.21%
12 39.03 | -7.38% 17.06 | -13.73% | 36.15 | -8.08% 27.23 | -9.69% 73.36 | 2.09%
0 10 42.19 | 0.13% 19.72 | -0.26% 39.38 | 0.14% 30.12 | -0.11% 73.56 | 2.37%
8 41.64 | -1.18% 19.17 | -3.01% 38.83 | -1.26% 29.60 | -1.84% 74.59 | 3.80%
6 39.33 | -6.67% 17.46 | -11.71% | 36.67 | -6.74% 28.07 | -6.92% 7227 | 0.57%
4 36.99 | -12.23% | 15.87 | -19.74% | 34.43 | -12.43% | 26.63 | -11.68% | 69.08 | -3.87%
2 3099 | -26.45% | 12.23 | -38.12% | 28.43 | -27.71% | 23.28 | -22.79% | 66.70 | -7.18%

N B OV 0o = | | O\

13
103



Table 18: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the
CNN/DailyMail Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 43.99 | 0.00% 21.15 | 0.00% 41.12 | 0.00% 31.64 | 0.00% 71.01 | 0.00%
24 20 44,15 | 0.37% 21.30 | 0.69% 41.31 | 0.46% 31.73 | 0.31% 71.20 | 0.26%
24 16 44,10 | 0.27% 21.32 | 0.81% 41.29 | 0.39% 31.83 | 0.60% 70.19 | -1.16%
24 12 4374 | -0.57% 21.08 | -0.34% 40.97 | -0.38% 31.60 | -0.13% 69.99 | -1.44%
24 8 4335 | -1.45% 20.67 | -2.27% 40.58 | -1.32% 31.29 | -1.11% 72.88 | 2.63%
24 4 41.42 | -5.84% 19.49 | -7.88% 38.78 | -5.69% 30.35 | -4.06% 70.39 | -0.89%
20 24 44.10 | 0.26% 21.13 | -0.12% 41.28 | 0.38% 31.58 | -0.17% 71.04 | 0.04%
16 24 4376 | -0.52% 20.83 | -1.53% 40.92 | -0.49% 31.22 | -1.31% 71.59 | 0.80%
12 24 4333 | -1.50% 20.53 | -2.94% 4043 | -1.68% 30.82 | -2.58% 73.28 | 3.20%
8 24 4246 | -3.48% 19.74 | -6.67% 39.64 | -3.60% 2998 | -5.23% 7347 | 3.46%
4 24 41.25 | -6.23% 18.68 | -11.69% | 38.30 | -6.86% 28.78 | -9.04% 76.05 | 7.08%
20 20 44.10 | 0.25% 21.23 | 0.34% 41.25 | 0.32% 31.65 | 0.05% 70.90 | -0.16%
16 16 43.69 | -0.67% 20.90 | -1.19% 40.86 | -0.64% 31.30 | -1.06% 71.85 | 1.18%
12 12 42.81 | -2.67% 20.13 | -4.84% 39.97 | -2.80% 30.58 | -3.33% 72.81 | 2.53%
8 8 40.57 | -7.78% 1847 | -12.70% | 37.82 | -8.04% 28.96 | -8.46% 73.39 | 3.34%
4 4 36.11 | -1791% | 15.51 | -26.68% | 33.48 | -18.59% | 26.30 | -16.88% | 68.58 | -3.43%

Table 19: The relation between pruning asymmetry and symmetry for a FLAN-T5 small model on the Query
Independent Web Snippets Abstractive Summarization Dataset
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R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
50.22 | 100.00% | 29.03 | 100.00% | 45.87 | 100.00% | 40.19 | 100.00% | 62.79 | 100.00%
50.20 | 99.96% 28.90 | 99.55% 45.80 | 99.83% 40.45 | 100.65% | 62.81 | 100.03%
49.74 | 99.04% 28.56 | 98.40% 45.55 | 99.30% 40.27 | 100.20% | 62.68 | 99.83%
48.59 | 96.74% 27.94 | 96.24% 44.65 | 97.33% 39.27 | 97.70% 62.67 | 99.82%
45.36 | 90.32% 24.85 | 85.61% 41.38 | 90.21% 36.92 | 91.87% 62.68 | 99.84%
34.47 | 68.64% 15.41 | 53.08% 31.00 | 67.58% 27.68 | 68.88% 61.68 | 98.24%
49.32 | 98.21% 2792 | 96.17% 44.72 | 97.48% 39.10 | 97.28% 62.90 | 100.18%
49.08 | 97.72% 27.75 | 95.60% 44.29 | 96.56% 38.76 | 96.45% 62.87 | 100.13%
46.40 | 92.39% 25.20 | 86.82% 41.81 | 91.14% 36.71 | 91.34% 62.74 | 99.93%
45.08 | 89.77% 23.67 | 81.55% 40.44 | 3531% 3531 | 87.85% 62.82 | 100.06%
39.81 | 79.26% 18.23 | 62.79% 35.39 | 77.14% 29.97 | 74.56% 62.83 | 100.07%
48.47 | 96.51% 26.82 | 92.38% 43.88 | 95.66% 38.38 | 95.49% 62.81 | 100.04%
47.55 | 94.68% 26.62 | 91.72% 43.13 | 94.02% 37.99 | 94.51% 62.67 | 99.81%
42.33 | 84.28% 23.12 | 79.64% 39.89 | 86.95% 33.39 | 83.08% 62.71 | 99.88%
39.69 | 79.02% 19.14 | 65.92% 3549 | 77.36% 30.90 | 76.89% 62.79 | 100.00%
2298 | 45.75% 6.09 20.99% 20.52 | 44.74% 18.36 | 45.69% 61.90 | 98.58%
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Table 20: The relation between pruning asymmetry and symmetry for a FLAN-TS base model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 54.84 | 0.00% 34.19 | 0.00% 50.38 | 0.00% 44.68 | 0.00% 62.91 | 0.00%

12 10 55.02 | 0.33% 34.00 | -0.56% 50.20 | -0.35% 44.67 | -0.02% 62.79 | -0.19%
12 8 5597 | 2.05% 3450 | 0.91% 51.12 | 1.48% 4490 | 0.48% 62.75 | -0.24%
12 6 54.54 | -0.55% 33.70 | -1.42% 4994 | -0.87% 44.19 | -1.11% 62.81 | -0.16%
12 4 52.64 | -4.01% 31.93 | -6.62% 4728 | -6.16% 4298 | -3.81% 62.85 | -0.09%
12 2 49.02 | -10.61% | 28.05 | -17.97% | 4498 | -10.71% | 40.36 | -9.68% 62.89 | -0.02%
10 12 5423 | -1.11% 3357 | -1.82% 49.93 | -0.89% 44.00 | -1.52% 62.87 | -0.05%
8 12 54.02 | -1.50% 33.06 | -3.31% 4949 | -1.76% 43.80 | -1.96% 62.85 | -0.09%
6 12 48.74 | -11.13% | 32.23 | -5.72% 48.74 | -3.26% 4292 | -3.95% 62.82 | -0.14%
12 4793 | -12.61% | 27.47 | -19.65% | 46.21 | -8.28% 39.77 | -11.00% | 62.79 | -0.19%
12 4745 | -13.48% | 25.57 | -2522% | 43.20 | -14.26% | 37.69 | -15.66% | 62.77 | -0.22%
0 10 54.25 | -1.08% 32.88 | -3.82% 49.51 | -1.72% 4324 | -3.23% 62.82 | -0.13%
8 53.89 | -1.73% 32.81 | -4.04% 49.32 | -2.10% 43.77 | -2.04% 62.82 | -0.14%
6 50.26 | -8.34% 28.70 | -16.05% | 45.62 | -9.45% 40.05 | -10.37% | 62.82 | -0.13%
4 4777 | -12.89% | 26.53 | -22.40% | 43.34 | -13.97% | 37.85 | -1529% | 62.84 | -0.10%
2 39.59 | -27.80% | 19.64 | -42.57% | 35.80 | -28.95% | 31.38 | -29.78% | 62.85 | -0.09%
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Table 21: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the Query
Independent Web Snippets Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 57.81 | 100.00% | 37.37 | 100.00% | 53.14 | 100.00% | 48.16 | 100.00% | 62.85 | 100.00%
24 20 5821 | 100.69% | 37.59 | 100.59% | 53.44 | 100.58% | 48.46 | 100.62% | 62.80 | 99.91%
24 16 57.25 | 99.04% 36.56 | 97.84% 52.71 | 99.19% 47.71 | 99.06% 62.83 | 99.97%
24 12 56.78 | 98.21% 35.74 | 95.64% 52.34 | 98.49% 46.81 | 97.18% 62.78 | 99.88%
24 8 56.19 | 97.19% 35.13 | 94.01% 51.59 | 97.08% 45.68 | 94.85% 62.79 | 99.90%
24 4 54.53 | 94.32% 33.69 | 90.15% 50.00 | 94.10% 44.65 | 92.71% 62.83 | 99.97%
20 24 57.34 | 99.19% 36.39 | 97.38% 52.66 | 99.10% 47.28 | 98.18% 62.81 | 99.93%
16 24 56.26 | 97.33% 35.90 | 96.07% 51.04 | 96.04% 46.82 | 97.22% 62.81 | 99.93%
12 24 55.31 | 95.67% 34.22 | 91.58% 50.60 | 95.23% 45.11 | 93.66% 62.88 | 100.04%
8 24 54.80 | 94.79% 33.42 | 89.43% 49.95 | 94.00% 44.11 | 91.59% 62.70 | 99.76%
4 24 51.40 | 88.92% 30.31 | 81.11% 46.49 | 87.48% 41.12 | 85.38% 62.70 | 99.75%
20 20 56.81 | 98.28% 36.32 | 97.20% 52.21 | 98.25% 46.82 | 97.21% 62.69 | 99.74%
16 16 56.10 | 97.05% 3598 | 96.29% 51.05 | 96.07% 45.89 | 95.28% 62.71 | 99.76%
12 12 54.16 | 93.70% 33.00 | 88.31% 49.58 | 93.31% 44.80 | 93.02% 62.77 | 99.87%
8 8 51.77 | 89.55% 30.78 | 82.38% 47.31 | 89.03% 41.32 | 85.79% 62.73 | 99.81%
4 4 45.70 | 79.06% 22.77 | 60.94% 41.36 | 77.84% 36.09 | 74.94% 62.70 | 99.76%

Table 22: The relation between pruning asymmetry and symmetry for a FLAN-TS small model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
33.27 | 0.00% 11.09 | 0.00% 26.17 | 0.00% 26.17 | 0.00% 28.01 | 0.00%
33.79 | 1.56% 11.61 | 4.74% 26.73 | 2.14% 26.74 | 2.18% 27.79 | -0.78%
3347 | 0.61% 1143 | 3.12% 26.64 | 1.81% 26.65 | 1.83% 2740 | -2.18%
33.04 | -0.69% 11.24 | 1.36% 26.26 | 0.36% 26.27 | 0.38% 28.08 | 0.26%
3148 | -5.36% 10.53 | -5.02% 25.39 | -2.99% 25.38 | -3.01% 26.58 | -5.13%
23.16 | -30.39% | 6.03 -45.58% | 19.02 | -27.32% | 19.02 | -27.33% | 36.68 | 30.93%
3331 | 0.13% 11.18 | 0.82% 26.16 | -0.04% 26.16 | -0.06% 28.31 | 1.08%
3255 | -2.15% 10.61 | -4.32% 25.50 | -2.55% 2550 | -2.55% 2835 | 1.19%
31.82 | -4.36% 10.11 | -8.84% 2492 | -4.78% 2492 | -4.77% 2843 | 1.50%
29.65 | -10.87% | 8.59 -22.48% | 23.02 | -12.02% | 23.02 | -12.03% | 27.90 | -0.39%
28.46 | -14.46% | 7.70 -30.57% | 22.09 | -15.60% | 22.09 | -15.59% | 27.87 | -0.50%
32.50 | -2.29% 10.73 | -3.24% 25.67 | -1.90% 25.68 | -1.88% 28.07 | 0.19%
31.77 | -4.50% 10.19 | -8.04% 25.14 | -3.94% 25.14 | -3.95% 28.09 | 0.29%
3042 | -8.57% 9.50 -14.31% | 24.16 | -7.66% 24.16 | -7.67% 2791 | -0.38%
26.71 | -19.70% | 7.31 -34.09% | 21.38 | -18.30% | 21.38 | -18.31% | 26.35 | -5.93%
19.54 | -41.26% | 4.00 -63.91% | 16.00 | -38.86% | 16.00 | -38.87% | 35.73 | 27.54%
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Table 23: The relation between pruning asymmetry and symmetry for a FLAN-T5 base model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lenc | ldec | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
12 12 38.78 | 0.00% 15.69 | 0.00% 31.14 | 0.00% 31.15 | 0.00% 25.92 | 0.00%
12 10 38.46 | -0.83% 1527 | -2.65% 30.70 | -1.43% 30.71 | -1.42% 26.72 | 3.11%
12 8 38.11 | -1.72% 1491 | -497% 30.34 | -2.59% 30.34 | -2.60% 27.64 | 6.65%
12 6 38.55 | -0.58% 1540 | -1.83% 30.87 | -0.87% 30.88 | -0.87% 2742 | 5.80%
12 4 38.04 | -1.91% 15.19 | -3.18% 30.63 | -1.64% 29.65 | -4.82% 2640 | 1.85%
12 2 35.39 | -8.74% 1373 | -12.47% | 28.96 | -7.02% 28.96 | -7.03% 27.55 | 6.32%
10 12 39.04 | 0.68% 1592 | 1.47% 31.22 | 0.24% 31.23 | 0.25% 26.89 | 3.75%
8 12 37.05 | -4.45% 14.10 | -10.09% | 29.29 | -5.95% 29.30 | -5.93% 27.68 | 6.82%
6 12 36.45 | -6.01% 13.84 | -11.79% | 28.96 | -7.02% 28.96 | -7.02% 27.21 | 4.99%
12 3432 | -11.48% | 12.10 | -22.88% | 26.99 | -13.35% | 26.99 | -13.34% | 27.20 | 4.94%
12 31.88 | -17.78% | 10.27 | -34.53% | 24.85 | -20.21% | 24.85 | -20.22% | 28.22 | 8.88%
0 10 38.80 | 0.05% 15.72 | 0.22% 31.07 | -0.25% 31.08 | -0.23% 26.92 | 3.88%
8 3721 | -4.04% 14.30 | -8.85% 29.55 | -5.13% 29.54 | -5.15% 2740 | 5.72%

6 3492 | -9.95% 12.44 | -20.68% | 27.56 | -11.51% | 27.57 | -11.50% | 27.72 | 6.96%

4 3248 | -16.24% | 10.67 | -31.95% | 2549 | -18.15% | 25.50 | -18.14% | 27.98 | 7.98%

2 2744 | -2923% | 7.74 -50.65% | 21.95 | -29.51% | 21.96 | -29.52% | 29.38 | 13.38%
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Table 24: The relation between pruning asymmetry and symmetry for a FLAN-TS large model on the Extreme
Summarization (XSUM) Abstractive Summarization Dataset

lene | lgee | R-1 Impact R-2 Impact RSL Impact R-L Impact GenL | Impact
24 24 39.71 | 0.00% 16.34 | 0.00% 31.72 | 0.00% 31.72 | 0.01% 26.74 | 0.00%
24 20 43.18 | 8.74% 19.80 | 21.17% 3521 | 11.01% 3522 | 11.04% 2591 | -3.10%
24 16 42.73 | 7.59% 19.30 | 18.10% 3476 | 9.58% 3476 | 9.59% 26.40 | -1.29%
24 12 4234 | 6.61% 18.92 | 15.78% 34.52 | 8.84% 3453 | 8.87% 2549 | -4.68%
24 8 41.30 | 4.00% 17.96 | 9.94% 33.73 | 6.34% 3375 | 6.39% 25.02 | -6.45%
24 4 39.55 | -0.40% 16.47 | 0.77% 3225 | 1.66% 32.25 | 1.68% 26.30 | -1.64%
20 24 4277 | 771% 19.43 | 18.90% 34.83 | 9.82% 34.84 | 9.83% 26.18 | -2.09%
16 24 41.55 | 4.63% 1833 | 12.17% 33.64 | 6.05% 33.65 | 6.07% 26.33 | -1.53%
12 24 39.95 | 0.61% 16.90 | 3.40% 32.13 | 1.29% 32.14 | 1.31% 27.14 | -100.00%
8 24 37.57 | -5.39% 1497 | -8.38% 29.94 | -5.61% 29.94 | -5.60% 25.99 | -100.00%
4 24 3481 | -12.35% | 12.52 | -23.36% | 27.32 | -13.86% | 27.32 | -13.86% | 27.61 | -100.00%
20 20 42.48 | 6.98% 19.18 | 17.39% 34.62 | 9.13% 34.62 | 9.13% 25.84 | -3.36%
16 16 40.78 | 2.69% 17.56 | 7.44% 32.99 | 4.00% 33.00 | 4.02% 26.47 | -1.00%
12 12 38.94 | 6.98% 15.89 | -2.78% 31.21 | -1.61% 31.22 | -1.58% 26.59 | -0.57%
8 8 34.65 | -12.75% | 12.15 | -25.65% | 27.36 | -13.76% | 27.36 | -13.73% | 28.16 | 5.30%
4 4 20.82 | -2491% | 8.96 -45.14% | 23.59 | -25.62% | 23.60 | -25.60% | 28.10 | 5.09%

Table 25: Role of model symmetry in inference efficiency on FLAN-TS small model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
8 8 29.03 | 0.00% 524 | 395 1.00 653 2.49 | 1.00 729 5.12 | 1.00
8 6 28.90 | -0.45% 406 1.28 1.29 514 5.02 | 1.27 583 247 | 1.25
8 5 28.56 | -1.60% 348 2.34 1.51 455 1.6 1.44 527 1.85 | 1.38
8 4 27.94 | -3.76% 293 3.35 1.79 394 6.32 | 1.66 469 265 | 1.55
8 2 24.85 | -14.39% | 195 1.61 2.69 353 338 | 1.85 426 6.38 | 1.71
8 1 1541 | -46.92% | 132 0.959 | 3.97 211 2.82 | 3.09 389 294 | 1.87
6 8 2792 | -3.83% 512 5.15 1.02 626 | 4.19 | 1.04 684 281 | 1.07
5 8 27.75 | -4.40% 508 3.56 1.03 617 491 | 1.06 666 4.16 | 1.09
4 8 2520 | -13.18% | 514 | 3.55 1.02 603 4.52 | 1.08 639 2.08 | 1.14
2 8 23.67 | -18.45% | 514 | 514 1.02 585 536 | 1.12 608 445 1 1.20
1 8 1823 | -37.21% | 510 | 5.81 1.03 574 | 421 | 1.14 595 7.06 | 1.23
6 6 26.82 | -7.62% 407 5.26 1.29 496 877 | 1.32 548 1.97 | 1.33
5 5 26.62 | -8.28% 346 6.84 1.51 430 | 3.54 | 1.52 480 124 | 1.52
4 4 23.12 | -20.36% | 375 4.25 1.40 441 6.92 | 148 478 10.6 | 1.53
2 2 19.14 | -34.08% | 402 | 2.05 1.30 452 9.84 | 1.44 476 829 | 1.53
1 1 6.09 -79.01% | 134 | 6.2 3.91 527 3.03 | 1.24 549 134 | 1.33

Table 26: Role of model symmetry in inference efficiency on FLAN-T5 base model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD Speedup
12 12 34.19 | 0.00% 746 11 1.00 1060 | 2.84 | 1.00 1310 6.8 1.00
12 10 34.00 | -0.56% 625 327 | 1.19 943 4.69 | 1.12 1200 4.8 1.09
12 8 3450 | 0.91% 523 2.19 | 143 814 423 | 1.30 1070 5.34 1.22
12 6 33.70 | -1.42% 425 1.92 | 1.76 652 3.39 | 1.63 970 4.79 1.35
12 4 31.93 | -6.62% 350 132 | 2.13 510 3.1 2.08 815 2 1.61
12 2 28.05 | -17.97% | 202 141 | 3.69 451 292 | 235 762 0911 | 1.72
10 12 3357 | -1.82% 710 6.2 1.05 995 2.74 | 1.07 1290 4.2 1.02
8 12 33.06 | -3.31% 690 572 | 1.08 953 572 | 1.11 1270 43 1.03
6 12 32.23 | -5.72% 716 8 1.04 944 722 | 1.12 1080 5.29 1.21
4 12 2747 | -19.65% | 710 1.75 | 1.05 911 10.1 | 1.16 1,000 | 8.84 1.31
2 12 25.57 | -25.22% | 706 54 1.06 862 7.11 | 1.23 921 7.04 1.42
10 10 32.88 | -3.82% 633 11.6 | 1.18 915 11 1.16 1120 5.51 1.17
8 8 32.81 | -4.04% 512 498 | 1.46 737 9.78 | 1.44 911 4.98 1.44
6 6 28.70 | -16.05% | 401 3.16 | 1.86 572 473 | 1.85 702 1.57 1.87
4 4 26.53 | -22.40% | 301 292 | 248 415 3.01 | 2.55 509 0.997 | 2.57
2 2 19.64 | -42.57% | 189 1.98 | 3.95 312 2.88 | 3.40 389 0.892 | 3.37
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Table 27: Role of model symmetry in inference efficiency on FLAN-TS large model on the QIWS dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
24 24 37.37 | 0.00% 1430 | 6.08 | 1.00 2240 | 4.81 1.00 3320 1.02 | 1.00
24 20 37.59 | 0.59% 1210 | 4.73 | 1.18 1990 | 6.89 1.13 3010 | 2.63 | 1.10
24 16 36.56 | -2.16% 1000 | 2.70 | 1.43 1750 | 5.92 1.28 2710 1.57 | 1.23
24 12 3574 | -4.36% 795 6.61 | 1.80 1510 | 1040 | 1.48 2400 1.59 | 1.38
24 8 35.13 | -5.99% 585 499 | 244 1260 | 7.14 1.78 2090 | 7.17 | 1.59
24 4 33.69 | -9.85% 373 1.16 | 3.83 1030 | 10.50 | 2.17 1790 1.72 | 1.85
20 24 36.39 | -2.62% 1410 | 3.66 | 1.01 2130 | 10.90 | 1.05 3090 | 598 | 1.07
16 24 3590 | -3.93% 1395 | 3.52 | 1.03 2060 | 9.89 1.09 2880 | 3.32 | 1.15
12 24 3422 | -8.42% 1380 | 5.20 | 1.04 1900 | 9.65 1.18 2630 | 0.81 | 1.26
8 24 33.42 | -10.57% | 1370 | 5.49 | 1.04 1790 | 19.00 | 1.25 2400 1.34 | 1.38
4 24 30.31 | -18.89% | 1350 | 7.33 | 1.06 1670 | 5.30 1.34 2170 | 2.79 | 1.53
20 20 36.32 | -2.80% 1200 | 5.37 | 1.19 1880 | 7.89 1.19 2780 1.15 | 1.19
16 16 3598 | -3.71% 1020 | 3.49 | 1.40 1530 | 5.62 1.46 2230 1.80 | 1.49
12 12 33.00 | -11.69% | 749 5.30 | 1.91 1160 | 2.94 1.93 1710 | 0.89 | 1.94
8 8 30.78 | -17.62% | 650 332 | 220 970 278 2.31 1550 | 0.79 | 2.14
4 4 2277 | -39.06% | 585 223 | 244 890 3.21 2.52 1450 | 0.92 | 2.29

Table 28: Role of model symmetry in inference efficiency on FLAN-TS5 small model on the CNNDM dataset

lenc | ldec | R-2 Impact BS1 | STD Speedup | BS8 | STD Speedup | BS 16 | STD Speedup
8 8 17.55 | 0.00% 138 5.05 1.00 230 7.61 1.00 330 3.71 1.00
8 6 17.68 | 0.74% 133 0.292 1.04 211 0.425 1.09 300 0.954 1.10
8 5 17.27 | -1.64% 116 0.196 1.19 193 0.448 1.19 279 0.537 1.18
8 4 16.40 | -6.57% 98.1 | 0.242 1.41 174 0.153 1.32 259 0.424 1.27
8 2 15.35 | -12.58% | 63.2 | 0.207 2.18 137 0.1 1.68 218 0.303 1.51
8 1 11.33 | -35.43% | 457 | 0.106 3.02 118 0.0827 | 1.95 198 0.148 1.67
6 8 17.69 | 0.81% 166 0.303 0.83 230 1.42 1.00 303 1.06 1.09
5 8 17.35 | -1.16% 165 0.267 0.84 219 0.521 1.05 283 1.13 1.17
4 8 16.80 | -4.30% 164 0.185 0.84 211 0.89 1.09 265 1.85 1.25
2 8 15.54 | -11.49% | 162 332 0.85 191 0.332 1.20 226 625 1.46
1 8 13.31 | -24.17% | 161 0.626 0.86 180 0.423 1.28 206 0.55 1.60
6 6 17.07 | -2.77% 131 0.617 1.05 192 0.247 1.20 261 0.768 1.26
5 5 16.20 | -7.72% 113 0.306 1.22 164 0.642 1.40 220 1.36 1.50
4 4 1491 | -15.05% | 95.1 | 0.0955 | 1.45 135 0.21 1.70 182 0.268 1.81
2 2 11.97 | -31.83% | 57.8 | 0.27 2.39 78.9 | 0.078 2.92 103 0.238 3.20
1 1 6.05 -65.55% | 39.1 | 0.136 3.53 50.2 | 0.132 4.58 63.4 0.0845 | 5.21

Table 29: Role of model symmetry in inference efficiency on FLAN-T5 base model on the CNNDM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD | Speedup
12 12 19.77 | 0.00% 199 3.74 | 1.00 550 3.81 | 1.00 931 2.09 1.00
12 10 19.92 | 0.76% 179 331 | 1.11 524 16.2 | 1.05 889 4.41 1.05
12 8 19.85 | 0.42% 155 450 | 1.28 493 14 1.12 884 3.61 1.05
12 6 18.85 | -4.63% 126 1.95 | 1.58 449 5.88 | 1.22 800 4.59 1.16
12 4 18.68 | -5.49% 99.2 | 1.02 | 2.01 405 1.41 | 1.36 737 5.06 1.26
12 2 1648 | -16.62% | 753 | 0.85 | 2.64 372 1.98 | 1.48 697 4.55 1.34
10 12 19.92 | 0.76% 198 | 475 | 1.01 495 145 | 1.11 811 1.18 1.15
8 12 19.67 | -0.50% 196 372 | 1.02 441 7.82 | 1.25 715 4.39 1.30
6 12 18.85 | -4.63% 187 | 481 | 1.06 396 133 | 1.39 613 9.45 1.52
4 12 18.22 | -7.86% 183 3.54 | 1.09 330 | 5.04 | 1.67 509 2.1 1.83
2 12 17.06 | -13.73% | 176 352 | 1.13 272 1.79 | 2.02 400 3.25 2.33
10 10 19.72 | -0.26% 171 321 | 1.16 462 119 | 1.19 776 4.62 1.20
8 8 19.17 | -3.01% 141 297 | 141 37 12.1 | 14.86 628 6.48 1.48
6 6 17.46 | -11.71% | 109 1.71 | 1.83 281 2.61 | 1.96 478 3.55 1.95
4 4 15.87 | -19.74% | 82.5 | 1.24 | 241 198 1.71 | 2.78 329 0.74 2.83
2 2 1223 | -38.12% | 50.7 | 1.30 | 3.93 112 | 259 | 491 178 0.557 | 5.23
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Table 30: Role of model symmetry in inference efficiency on FLAN-T5 LARGE model on the CNNDM dataset

lene | ldec | R2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS16 | STD | Speedup
24 24 21.15 | 0.00% 445 2.35 1.00 1480 | 20.1 | 1.00 2700 | 7.22 | 1.00
24 20 21.30 | 0.69% 390 337 1.14 1390 | 4.24 | 1.06 2590 | 7.7 1.04
24 16 21.32 | 0.81% 335 13.9 1.33 1330 | 7.7 1.11 2470 | 7.42 | 1.09
24 12 21.08 | -0.34% 270 3.28 1.65 1250 | 11 1.18 2340 | 6.68 | 1.15
24 8 20.67 | -2.27% 219 8.67 2.03 1180 | 8.17 | 1.25 2220 | 425 | 1.22
24 4 19.49 | -7.88% 165 1.81 2.70 1090 | 6.6 1.36 2090 | 9.15 | 1.29
20 24 21.13 | -0.12% 418 13.8 1.06 1320 | 153 | 1.12 2400 | 7.26 | 1.13
16 24 20.83 | -1.53% 421 16.8 1.06 1150 | 16 1.29 2080 | 6.07 | 1.30
12 24 20.53 | -2.94% 391 12.5 1.14 1000 | 21.7 | 1.48 1750 8.18 | 1.54
8 24 19.74 | -6.67% 373 13.1 1.19 882 6.92 | 1.68 1430 | 4.79 | 1.89
4 24 18.68 | -11.69% | 350 | 4.32 1.27 670 15 2.21 1110 | 321 | 243
20 20 21.23 | 0.34% 359 43 1.24 1240 | 153 | 1.19 2260 | 6.73 | 1.19
16 16 2090 | -1.19% 1289 | 2.5 0.35 994 21.6 | 1.49 1820 | 427 | 148
12 12 20.13 | -4.84% 229 12.1 1.94 756 12.6 | 1.96 1370 | 4.6 1.97
8 8 18.47 | -12.70% | 160 31.8 2.78 513 255 | 2.88 926 7.24 | 2.92
4 4 1551 | -26.68% | 89.7 | 0.588 | 4.96 267 2.14 | 554 479 43 5.64

Table 31: Role of model symmetry in inference efficiency on FLAN-TS5 small model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD Speedup | BS 16 | STD Speedup
8 8 11.09 | 0.00% 135 2.73 | 1.00 227 3.51 1.00 332 1.91 1.00
8 6 11.61 | 4.74% 108 1.70 | 1.25 196 1.94 1.16 303 7.95 1.10
8 5 1143 | 3.12% 94.1 | 3.02 | 143 183 343 1.24 281 6.77 1.18
8 4 11.24 | 1.36% 82.7 | 2.66 | 1.63 168 2.33 1.35 263 2.24 1.26
8 2 10.53 | -5.02% 558 | 1.72 | 242 141 1.53 1.61 234 5.01 1.42
8 1 6.03 -45.58% | 41.1 | 0.64 | 3.28 124 0414 | 1.83 215 4.69 1.54
6 8 11.18 | 0.82% 133 351 | 1.02 204 3.63 1.11 295 5.72 1.13
5 8 10.61 | -4.32% 134 342 | 1.01 193 3.76 1.18 273 104 1.22
4 8 10.11 | -8.84% 130 277 | 1.04 185 13.6 1.23 245 6.45 1.36
2 8 8.59 -22.48% | 126 477 | 1.07 163 6 1.39 203 4.1 1.64
1 8 7.70 -30.57% | 126 338 | 1.07 148 2.02 1.53 180 2.85 1.84
6 6 10.73 | -3.24% 104 045 | 1.30 178 3.24 1.28 254 2.37 1.31
5 5 10.19 | -8.04% 91.6 | 2.10 | 1.47 151 1.78 1.50 219 10.3 1.52
4 4 9.50 -14.31% | 79 338 | 1.71 124 2.42 1.83 178 1.59 1.87
2 2 7.31 -34.09% | 49.5 | 2.56 | 2.73 748 | 1.9 3.03 101 0.719 | 3.29
1 1 4.00 -6391% | 32 1.25 | 422 48.7 | 2.11 4.66 61.9 1.81 5.36

Table 32: Role of model symmetry in inference efficiency on FLAN-T5 base model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD Speedup
12 12 15.69 | 0.00% 205 3.81 | 1.00 546 8.7 1.00 917 4.72 1.00
12 10 15.27 | -2.65% 171 2.79 | 1.20 508 6.39 | 1.07 876 3.02 1.05
12 8 1491 | -497% 150 1.32 | 1.37 476 2.82 | 1.15 830 1.08 1.10
12 6 15.40 | -1.83% 129 433 | 1.59 450 9.33 | 1.21 789 3.73 1.16
12 4 15.19 | -3.18% 101 2.16 | 2.03 411 5.27 | 1.33 744 1.71 1.23
12 2 1373 | -12.47% | 76 1.76 | 2.70 380 343 | 1.44 706 8.13 1.30
10 12 1592 | 1.47% 200 6.37 | 1.03 494 245 | 1.11 818 1.72 1.12
8 12 14.10 | -10.09% | 195 547 | 1.05 445 20.8 | 1.23 713 1.71 1.29
6 12 13.84 | -11.79% | 190 3.89 | 1.08 396 9.79 | 1.38 612 4.64 1.50
4 12 12.10 | -22.88% | 185 224 | 1.11 337 3.09 | 1.62 505 1.96 1.82
2 12 10.27 | -34.53% | 180 2.08 | 1.14 282 4.03 | 1.94 399 2.85 2.30
10 10 1572 | 0.22% 174 4.09 | 1.18 475 185 | 1.15 772 1.79 1.19
8 8 14.30 | -8.85% 140 1.95 | 1.46 373 221 | 146 625 1.51 1.47
6 6 12.44 | -20.68% | 112 1.71 | 1.83 290 6.77 | 1.88 480 35 1.91
4 4 10.67 | -31.95% | 842 | 3.75 | 2.43 201 1.58 | 2.72 330 443 2.78
2 2 7.74 -50.65% | 51.5 | 3.01 | 3.98 112 1.02 | 4.88 179 0.894 | 5.12
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Table 33: Role of model symmetry in inference efficiency on FLAN-T5 large model on the XSUM dataset

lenc | ldec | R-2 Impact BS1 | STD | Speedup | BS8 | STD | Speedup | BS 16 | STD | Speedup
24 24 16.34 | 0.00% 447 194 | 1.00 1480 | 23 1.00 2700 16.1 1.00
24 20 19.80 | 21.16% | 374 4.84 | 1.20 1410 | 17.5 | 1.05 2580 7.52 | 1.05
24 16 19.30 | 18.09% | 327 194 | 1.37 1320 | 8.18 | 1.12 2460 7.19 | 1.10
24 12 18.92 | 15.77% | 272 791 | 1.64 1240 | 7.06 | 1.19 2340 7.5 1.15
24 8 17.96 | 9.93% 216 7.81 | 2.07 1170 | 114 | 1.26 2210 649 | 1.22
24 4 16.47 | 0.76% 165 311 | 271 1090 | 3.66 | 1.36 2080 7.17 | 1.30
20 24 19.43 | 18.88% | 406 21.5 | 1.10 1310 | 11.5 | 1.13 2390 7.76 | 1.13
16 24 18.33 | 12.16% | 412 20.3 | 1.08 1140 | 6.88 | 1.30 2080 7.01 | 1.30
12 24 16.90 | 3.39% 384 18.8 | 1.16 986 11 1.50 1750 686 1.54
8 24 14.97 | -8.39% 369 8.87 | 1.21 822 15.5 | 1.80 1420 15.5 | 1.90
4 24 12.52 | -23.37% | 345 441 | 1.30 649 326 | 2.28 110 596 | 24.55
20 20 19.18 | 17.38% | 357 11.8 | 1.25 1230 | 13.2 | 1.20 2260 2.16 | 1.19
16 16 17.56 | 7.43% 288 591 | 1.55 995 941 | 1.49 1820 533 | 148
12 12 15.89 | -2.79% 217 3.09 | 2.06 748 325 | 1.98 1370 6.59 | 1.97
8 8 12.15 | -25.66% | 158 6.04 | 2.83 511 9.62 | 2.90 920 2.06 | 2.93
4 4 8.96 -45.14% | 92.3 | 2.88 | 4.84 267 1.51 | 5.54 481 1.69 | 5.61
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Abstract

We examine the effects of model size and pre-
finetuning in an active learning setting where
classifiers are trained from scratch on 14 binary
and 3 multi-class text classification tasks. We
make an important observation that, in realistic
active learning settings, where the human anno-
tator and the active learning system operate in
asynchronous mode, a compact pre-finetuned
1-layer transformer model with 4.2 million pa-
rameters is 30% more label efficient when com-
pared to the larger 24-layer 84 million param-
eter transformer model. Further, in line with
previous studies, we note that pre-finetuning
transformer models on related tasks improves
label efficiency of downstream tasks by 12%-
50%. The compact pre-finetuned model does
not require GPUs, making it a viable solution
for large-scale real-time inference with cheaper
CPU options.

1 Introduction

Active learning is a popular approach used to re-
duce the manual labeling effort required to train a
classifier. In active learning, we iteratively acquire
labels from an annotator and use them to train a
classifier.

Most existing academic literature (Huang and
Zhou, 2013; Shao et al., 2019) on active learning
assumes that manual labeling process can only hap-
pen after the model update is complete, making
the active learning loop ‘synchronous’. In practice,
this implies that human annotators have to wait un-
til an active learning iteration (training on labeled
data and inference on all unlabeled data) process
is complete before they can provide more labels.
As pointed out by (Huang et al., 2021), in realistic
production settings, ‘synchronous’ active learning
will significantly decrease annotators’ productiv-
ity. To this end, typical production systems such as
Sagemaker GT (sag) employ ‘asynchronous’ active
learning setup where the human annotators contin-
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uously provide annotations while the training and
inference happen in the background.

Pre-finetuning proposed by Aghajanyan et al
(2021) is a stage after pre-training to further refine
representations before end-task finetuning. The
purpose of the pre-finetuning step is to increase
the similarity between data used for pre-training
and downstream finetuning tasks (Phang et al.,
2018; Pruksachatkun et al., 2020; Gururangan et al.,
2020). Aghajanyan et al pose pre-finetuning as a
Multi-task learning (MTL) problem on 47 tasks,
and their experiments show that incorporating pre-
finetuning to ROBERTa and BART models yields
consistent improvements in downstream task fine-
tuning, particularly in the low data regime.

In this work, we examine the effects of model
size and pre-finetuning in a realistic asynchronous
active learning setting on a diverse set of 14 bi-
nary and 3 multi-class text classification tasks. Our
contributions are three-fold:

1. We present evidence that a small transformer
model is ideal for use in large scale environ-
ments with asynchronous active learning set-
ting. With a given training and inference in-
frastructure, large models, counter-intuitively,
can increase the number of labeled data re-
quired to achieve precision/recall targets set
by customers because of their slow train-
ing/inference speeds.

2. We conduct an extensive study surrounding
the label efficiency of standard pre-trained rep-
resentations and their respective pre-finetuned
counterparts. We show empirical evidence
that pre-finetuning helps to reduce the number
of labeled data required to build transformer-
based classifiers.

3. We present evidence that pre-finetuning can
be formulated as a large-scale multi-label clas-
sification problem, which enables us to pre-
finetune on a large corpus of 2664 classifi-
cation tasks. This technique helps us learn
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Figure 1: Besides standard pre-training (Stage 1) and then finetuning (Stage 3), our training procedure includes an
intermediate pre-finetuning step (Stage 2) where we create ProdNet by training transformer model on data curated

from thousands of existing classifiers.

from thousands of tasks simultaneously. To
the best of our knowledge, this is the first work
to realize the gain of pre-finetuning under a
restricted latency budget in a large-scale asyn-
chronous active learning setting.

2 Pre-Finetuning

2.1 Transformer Models

The details of various transformer architectures
used in this study are shown in Table 2 in Appendix
A.1. We perform pre-finetuning on BERT-variants
models on e-commerce product classification tasks
to create ProdNet variants (ProdNet-1L, ProdNet-
2L, ProdNet-4L, ProdNet-6L, and ProdNet-24L-
P). For example, we pre-finetune BERT-6L to cre-
ate ProdNet-6L. The training process for creating
ProdNet-based classifiers is illustrated in Fig. 1.
We note the model parameters, training speed, and
inference latency of various transformer models
used in the study in Table 1. Note, the ProdNet vari-
ants have the same model architecture with the cor-
responding non-pre-finetuned counterparts (BERT
variants). One major difference between BERT-
24L-P model and the other BERT variants is that
BERT-24L-P is unsupervised pre-trained using in-
ternal e-commerce product data while other BERT
variants are pre-trained using public datasets. For
the sake of readability, most of experiment results
only include the results of 3 model pairs (under-
scored in Table 1), and we have verified that our
conclusions hold for all 5 model pairs.

2.2 Pre-finetuning Datasets

To pre-finetune transformers, we selected 2664 pro-
prietary binary classifiers created from Feb’20 to
Sep’21 to classify the e-commerce products. We
leverage human labeled training data from the se-
lected binary classifiers, and aggregate all training
samples from 2664 binary classifiers. Note that one
instance may be a member of multiple binary clas-
sifiers. For e.g., a bundle instance with an ‘eraser’
and a ‘ruler’ may be a member of both ‘eraser’ and
‘ruler’ classifiers. Appendix A.2 shows the details
of data used for pre-finetuning.

For each instance (product data), we use the
item_name and product_description both for pre-
finetuning and finetuning. We focused on the text
attributes in this work, and the idea of creating
ProdNet is readily generalized to image and multi-
modal attributes.

2.3 Methodology

In the existing literature, a common approach for
pre-finetuning is multi-task learning (MTL), and
the number of tasks used has been fairly limited,
e.g., 49 tasks were used in (Aghajanyan et al.,
2021). Even at this scale, scientists have reported
‘negative transfer’, where the learning from up-
stream tasks can reduce accuracy of downstream
tasks. Since we aim to learn from a large set
of 2664 binary classification tasks, the traditional
MTL approach does not scale. To this end, we for-
mulate the pre-finetuning as a large multi-label clas-
sification problem using multi-label softmax loss
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Models — BERT-1L BERT-2L BERT-4L BERT-6L BERT-24L.-P
Parameters | ProdNet- 1L ProdNet- 2L ProdNet-4L. ProdNet-61. ProdNet- 24L-P
# Trans. layers 1 2 4 6 24

Hidden layer size 128 128 312 768 256

# Attention head 2 2 12 12 16

Parameters (MM) 4.2 4.4 14.5 66 84

CPU infer. latency 1.09 2.02 15.3 86 100

GPU infer. latency 0.16 0.18 0.4 8.6 10.6

GPU training time 28 32 54 197 233

Table 1: Inference latency (reported in milli-seconds) is the inference latency per instance computed on CPU
(ml.c5.2xlarge) and GPU (ml.g4dn.xlarge) instances with batch size as 32 and max sequence length as 128. Training
time is reported in seconds on a GPU (ml.g4dn.xlarge) instance with 2000 labeled data. We focus on three model
pairs (underscored) for most of our experiments: BERT-1L vs. ProdNet-1L, BERT-2L vs. ProdNet-2L, and

BERT-24L-P vs. ProdNet-24L-P.

function recommended by Mahajan et al (2018).
While the solution is not generic to all multi-task
problems with heterogeneous tasks, it is ideal for
our use case since all our tasks of interest are bi-
nary classification tasks, which can be combined
to create a multi-label dataset. The details about
multi-label softmax loss and our experiments are
shown in Appendix A.3.

3 Finetuning

We perform asynchronous active learning experi-
ments on the selected finetuning tasks to examine
the effects of model size and pre-finetuning in an
active learning setting.

3.1 Active Learning

To measure the label efficiency of a classifier, we
employ pool-based active learning setting (detailed
in Appendix A.4) (Lewis and Gale, 1994; Settles,
2009; Gal et al., 2017). In each active learning it-
eration, we perform two operations: 1) judiciously
select a subset of unlabeled instances for the data
pool and send them to the annotator, and 2) train
a classifier using new and the previously labeled
instances. We continue active learning until con-
vergence criteria are achieved. We use two con-
vergence criteria for experiments which exactly
mimics a production setup: 1) the estimated re-
call/precision for each class-of-interest should be
no smaller than the business-specified targets, and
2) predictions on unlabeled data should have stabi-
lized (Bloodgood and Vijay-Shanker, 2014).

For experiments, we use a bot (in lieu of a human
annotator) to do the labeling job. To simulate real-
istic production scenario, we adopt asynchronous

active-learning and labeling i.e., the bot keeps pro-
viding labels regardless of the progress of training
/inference/query acquisition process in the active
learning loop. Throughout our experiments, the bot
provides 3000 labels per day to mimic the labeling
speed of a human annotator.

3.2 Finetuning Datasets

The finetuning datasets were sourced from propri-
etary binary and multi-class e-commerce product
classification tasks created from Oct’21 to Mar’22.
We deliberately selected classification tasks cre-
ated after Oct’21 to 1) simulate real-world scenario
where the pre-finetuned model will be used for new
classification tasks, and 2) avoid any overlap with
the datasets used for pre-finetuning. We selected 14
diverse binary classification tasks with the positive
class prevalence ranging from 0.13 to 0.88. We
also selected 3 multi-class classification datasets
with class cardinalities 10, 8, and 3, respectively.
The datasets have a long-tail distribution in terms
of class sizes. Since we use a bot for the label-
ing job to avoid the human-in-the-loop, we need
fully-labeled datasets of the finetuning tasks as the
source of labels used by the bot, and we also need
to compute metrics on data pool, which acts as the
test data for active learning experiments. To curate
fully-labeled datasets, we employed trained human
annotators to manually label all instances in data
pool. Note the data pool size of the 17 selected
finetuning tasks are ranging from 8M to 17K.

3.3 Maetrics

The key metric of interest is the number of labeled
data required for the active learning process to
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converge, since our goal is to require as few hu-
man annotations as possible to build a classifier
which satisfies precision/recall targets set by cus-
tomers. For each active learning experiment, we
track the progression of class-level recall, and pre-
cision computed on data pool. We summarize the
class-level metrics by reporting macro-recall and
macro-precision. We choose macro over micro
averaging because performance of each class is
equally important for our use-case.

4 Experiments Results

Results on binary and multi-class classification
tasks: Fig. 2 (a), and (b) show the relative number
of labeled data required for active learning experi-
ments to converge averaged across 14 binary classi-
fication tasks and 3 multi-class classification tasks,
respectively. The results of individual task (includ-
ing the targeted/achieved precision/recall and num-
ber of required labels) are reported in Table 7 and
8 in Appendix A.7. We observed that
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* On average ProdNet-1L requires the least
number of labeled data for model convergence
among all the benchmarking models, increas-
ing the label efficiency by 40% and 30% com-
pared with ProdNet-2L and ProdNet-24L-P,

respectively.

* The pre-finetuned models (ProdNet) consis-
tently reduces the number of labeled data re-
quired for model convergence compared to the
non-pre-finetuned counterparts. On average,
ProdNet-1L requires 51% of labels required
by BERT-1L classifier. Similarly, ProdNet-
2L requires 50% of the labels that BERT-2L
needs, and ProdNet-24L-P requires 88% of
labels that BERT-24L-P model takes.

* The gain of pre-finetuning BERT-24L-P
model is smaller when compared with the
gain of pre-finetuning BERT-1L and BERT-
2L. This is intuitive as BERT-24L-P model
is unsupervised pre-trained using our internal
product data, and it has already learnt inter-
nal product related information. In contrast,
BERT-1L and BERT-2L are pre-trained using
public corpora without the product specific
information.

* Interestingly, even without the effect of pre-
finetuning, BERT-1L is more label efficient
than BERT-2L, which demonstrates the im-
portance of smaller model size in the asyn-
chronous active learning setting.

Do bigger models mean fewer labels? Fig.
3 illustrates the relative number of labeled data
required for active learning experiments to con-
verge versus number of parameters in the model
on FEE dataset. The results show an interest-
ing phenomenon that the number of labeled data
required for active learning experiments to con-
verge increases with the rising model parameter
size. This is counter-intuitive, as larger models
are usually better than smaller models for cases
where the training and test datasets are fixed in
academic settings. However, in an asynchronous
active learning setting, larger models take longer
to train and infer (e.g., ProdNet-24L-P is ~ 100
times slower than ProdNet-1L in CPU inference),
thereby forcing human annotators to label ‘stale’
data. As such, larger models miss the opportu-
nity to assist query acquisition module to select
unlabeled instances effectively, and unnecessarily
accumulate excessive labeled data from annotators.
Smaller models, especially when pre-finetuned on
1000s of previously authored classifiers, provide a
viable alternative with fast classifier authoring-time
and low inference-cost. In addition, the compact
pre-finetuned model does not require GPUs for in-
ference, making it a viable solution for real-time
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large-scale inference with cheaper CPU options.
Why does ProdNet learn faster than the non-
pre-finetuned counterpart? Although researchers
have cautioned against using attention as a reli-
able means of model interpretability (Serrano and
Smith, 2019; Jain and Wallace, 2019), several re-
cent works use attention weights to partially ex-
plain what words/tokens that are most influential to
the model (Galassi et al., 2019; Letarte et al., 2018;
Vashishth et al., 2019; Clark et al., 2019). To get
an intuitive understanding if pre-finetuning helps,
we illustrate attention weights! of the [CLS] token
in the last layer for pre-finetuned (ProdNet-2L) and
non-pre-finetuned (BERT-2L) models as shown in
Fig.4. We choose to visualize [CLS] token since
in downstream task finetuning, we pass the last
layer [CLS] representation to a task-specific feed-
forward layer and train the classifier end-to-end. It
is worth mentioning that we visualize the attention
of [CLS] token in the original ProdNet-2L (Stage
2 in Fig 1) and BERT-2L (Stage 1 in Fig 1) models
without downstream tasks finetuning. Our rationale
is that if a model is able to pay attention to the key
information in downstream tasks before finetuning,
then the model might learn faster when finetuned
with the downstream task data (few-shot learning).
The input text Veterinary Formula Flea and
Tick Spray for Dogs is from the downstream task
PetCare which aims to classify pet-care products
designed to treat fleas, ticks, ringworm, or other
parasites. The orange and blue color demonstrate
the 2 attention heads of ProdNet-2L. and BERT-2L.
The darker color indicates more attention. In this
example, we can observe that ProdNet-2L is able

'We used BertViz for
https://github.com/jessevig/bertviz.
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[SEP] [SEP]
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Figure 4: Attention visualization of (a) ProdNet-2L, and
(b) BERT-2L

to pay more attention to flea and tick compared
with BERT-2L.. We hypothesize that pre-finetuning
on relevant e-commerce product classification data
helps the model understand potentially important
words for the downstream task, thereby allowing
the model to learn the downstream task faster.

Appendix A.8 shows additional results on the
attention analysis.

5 Conclusion

In this paper, we present empirical evidence on 14
binary and 3 multi-class text classification tasks
that compact transformer models consistently re-
duce number of labeled data required to build new
classifiers in realistic asynchronous active learning
settings when compared to larger models. Smaller
models take less time for training and inference,
and allow active learning query acquisition module
to select next batch of informative instances more
frequently, thereby allowing the classifier to learn
fast. Further, we conclude that pre-finetuning helps
compact models to learn even faster.
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A Appendix

A.1 Transformer models in study

Table 2 introduces the transformer models used in
this study. We choose the BERT based models in
our study as they are well-established models, and
we focus on investigating the impact of different
model sizes in the asynchronous active learning
settings. The study can be easily extended to other
transformer based models (e.g, ROBERTa)

A.2 Pre-finetuning dataset

Table 3 illustrates the dataset that we used to pre-
finetune transformers.

Table 4 shows dataset statistics for the super-
vised pre-finetuning.

A.3 multi-label softmax

Due to the multi-label property of the pre-
finetuning data, we formulate the pre-finetuning
as a multi-label classification problem using multi-
label softmax loss function recommended by Ma-
hajan et al (Mahajan et al., 2018). multi-label soft-
max loss computes probabilities over all labels in
the label space using a softmax activation and is
trained to minimize the cross-entropy between the
predicted softmax distribution and the target distri-
bution of each instance. The target is a vector with
k non-zero entries, each set to 1/k corresponding
to the k£ > 1 labels for the instance. We exper-
imented both the conventional per-class sigmoid
outputs with binary cross entropy loss and multi-
label softmax. Results show using multi-label soft-
max loss function improves the top-1 accuracy by
20% compared with the model using per-class sig-
moid outputs with binary cross entropy loss.

A.4 Active learning strategy

To measure the label efficiency of a classifier
M, we employ pool-based active learning set-
ting (Algorithm 1) (Lewis and Gale, 1994)(Settles,
2009)(Gal et al., 2017), consisting of a seed set of
labeled instances (z,y) € Dseed (| Dseed| = 100) to
initialize the classifier M in the first iteration, an
unlabeled pool of data Djo01, and a query acquisi-
tion function A(z, M) that ranks the next set of
unlabeled instance x € Dpoo1 to be sent to the anno-
tator. In each active learning iteration, we perform
two operations: 1) judiciously select a subset of
unlabeled instances and send them to the annotator,
and 2) train a classifier using new and the previ-
ously labeled instances. To pick the next set of unla-

Algorithm 1: Active learning setup used in
production and for experiments.

1 Input: Pool of unlabeled data Dy, Batch
size B, Initial labeled dataset S (could be
empty), Business targets on precision and
recall

Output: Trained classifier M that meets
business targets

[ 8]

w

while convergence criteria are not met do

4 Rank instances from D, using query
strategy A(x, M).

5 Label top-ranked B instances, add them
to S. (Comment: In production, human
annotators provide labels, while in
experiments a bot does the labeling

job)
6 Remove S from unlabeled data
Dpoo] <~ Dpool \ S.
7 (asynchronous process) Train the
classifier M on S.
8 (asynchronous process) Predict Dpool
using the classifier.
9 (asynchronous process) Estimate current

precision/recall using out-of-fold
scores (k-fold cross validation)

10 end

beled instances for annotation, we take the trained
classifier to perform inference on all instances in
unlabeled data pool, rank them based on entropy
score (calculated from the model prediction score)
and select instances which have high entropy score
(these are confusing instances that are most likely
to increase the accuracy of the classifier in the next
active learning iteration). We continue active learn-
ing until convergence criteria are achieved. We use
two convergence criteria for experiments which ex-
actly mimics a production setup: 1) the estimated
recall/precision for each class-of-interest should be
equal to or greater than the corresponding business-
specified targets, and 2) predictions on unlabeled
data should have stabilized (Bloodgood and Vijay-
Shanker, 2014).

A.5 Data distribution in multi-class datasets

Table 5 presents the data distribution of the three
multi-class datasets.
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Architecture Description

BERT- It is a internal BERT-based language model (84 million parameters). It is pre-trained on

24L-P multilingual, multi-locale and multimodal (text + structured fields) e-commerce product
data, and then pre-finetuned using the multi-task soft labels generated from the previously
pre-trained teacher model with 500 million parameters.

BERT-6L It is widely known as DistilBERT (Sanh et al., 2019), which is a 6-layer transformer model
unsupervised pre-trained using English Wikipedia and Toronto Book Corpus.

BERT-4L It is known as TinyBERT (Jiao et al., 2019). We used the 4 layer TinyBERT, which is
distilled from the 12-layer BERT teacher model unsupervised pre-trained using English
Wikipedia and Toronto Book Corpus.

BERT-2L Itis a 2-layer transformer model (Turc et al., 2019) unsupervised pre-trained with a masked
language modeling objective on Book Corpus and English Wikipedia.

BERT-1L In order to minimize the model size and investigate the impact of small transformer model,
we extracted the first transformer layer from the BERT-2L and made it as a BERT-1L
model.

Table 2: Various transformer models under study (The model artifacts of BERT-6L., BERT-4L., BERT-2L used in
this study are available in HuggingFace.).

Classifier— C1 Cc2 C3 e C2664
product

instance.

Al 1 . 0

A2 0 1 1 . 0

An 1 0 0 . 0

Table 3: Illustration of dataset used to pre-finetune transformers. The rows of the table represent product instances,
and the columns represent the 2664 binary classifiers used in our pre-finetuning. Each cell represents the membership
of an product instance to a class. For example, if the class “C1” was created to identify “Face Masks”, then product
instance A1 was classified as a FaceMask and product instance A2 was not.
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L ‘ Ntrn ‘ Nyal

‘ Nist

|n | L

2664 | 4,607,904 | 918,894

| 820,839

| 2,383 | 2.62

Table 4: Statistics of the supervised pre-finetuning dataset. L is number of classification tasks. 14y, Nyqr, and nsst
refer to number of instances in training, validation and test dataset, respectively. 7 is average number of instances
per classification task and L is average number of labeled data per instance (product data)

Table 5: Multi-class datasets (HS, FEE, and AB) have
long-tail distribution in terms of class sizes. S denotes
the relative size of each class. E.g., the class HS-2 has
41.88% of 1.15M products in HS dataset.

HS (1.15M)  FEE (750K) AB (8.4M)
Class  S(%) | Class  S(%) | Class  S(%)
HS-0 052 | T0 50.56 | A-0 18.39
HS-1 036 | T-1 6.36 | A-1 46.58
HS-2 41.88 | T2 30.84 | - -
HS-3  25.81 | T-3 10.69 | - -
HS-4 030 | T4 0.53 | - -
HS-5 044 | T5 0.62 | - -
HS-6 236 | T-6 028 | - -
HS-7 11.10] - - - -
HS-8  14.65| - - - -
not-in- 2.59 | not-in- 0.12 | not-in- 35.03
k k k

A.6 Hyperparameters

Table 6 is the hyperparameters used in pre-
finetuning and finetuning various transformer mod-
els.

A.7 Per-task experiment results

Table 7 and Table 8 shows 1) the relative number of
labeled data required for various active learning ex-
periments to converge, and 2) the relative (macro)
recall/(macro) precision of the models measured on
data pool Dyoo1, in the 14 binary classification tasks
and 3 multi-class classification tasks, respectively.

A.8 Why does ProdNet learn faster than the
non-pre-finetuned counterpart?

To obtain a global understanding if pre-finetuning
helps, we aggregate attention weights computed on
500 positive examples for four classification tasks
(listed in Table 7). Specifically, we calculate the
average attention for the key phrases a human ex-
pert deemed most critical to the classification task.
For example, for PetCare products, the key phrases
identified are flea, tick, worm, and parasites. The
results are shown in Table 9. We observe that in

Hyperparameters Pre- Finetuning
finetuning

Loss function Multi-label ~ Softmax
softmax

Train batch size 32 32

Val batch size 32 -

Dropout factor 0.1 0.3

Max seq length 128 128

Optimizer AdamW AdamW

Learning rate 2e° 2e5 [1e™?

Weight decay 0.01 0.01

Early stopping True False

Max training epoch | 10 5

Table 6: Hyperparameters we used in the pre-finetuning
and finetuning stages to train various transformer mod-
els. In downstream task finetuning, we use learning rate
2e¢~5 for BERT-6L and ProdNet-6L, and learning rate
1e~* for rest of benchmarking transformer models. In
order to fully utilize the labeled data for training, we do
not use validation dataset in downstream task finetun-

ing.

general ProdNet-2L is able to pay more attention
to the key tokens than BERT-2L.. We hypothesize
that pre-finetuning on relevant e-commerce prod-
uct data helps the model understand potentially
important words for the downstream task, thereby
allowing the model to learn the downstream task
faster.

118



Models— | ProdNet-1L BERT-1L | ProdNet-2L BERT-2L | ProdNet-24L-P  BERT-24L-P
Tasks | Top: relative number of labeled data

(R/P target) Bottom: relative recall(R)/precision(P) computed on data pool

Speakers X 2.56x 2.33x 2.57x 1.76x 2.7x

(rlp) 1.11r/lp 1.10#/1.02p 1.117/1.01p 1.07r/p 1.11#/1.02p 1.11#/1.03p
Pillows X 1.43x 1.09x 2.05x 1.08x 1.74x

(rlp) 1.09+/1.01p 1.17/1.01p 1.07+/1.01p 1.027/1.02p 1.11#/1.02p 1.11#/1.03p
Plants X 1.80x 2.12x 5.87x 1.32x 1.47x

(rlp) 1.01+/1.02p r/1.03p r/1.03p r/1.04p r/1.03p 1.01#/1.03p
Bottle X 1.74x 1.52x 2.94x 1.10x 1.28x

(rlp) 1.34r/1.01p 1.38r/1.01p 1.28r/p 1.32r/1.01p 1.32r/p 1.3r/1.03p
Jackets X 1.32x 1.79x 2.40x 0.99x 1.20x

(rlp) 1.07r/1.02p 1.06r/1.04p 1.08r/1.02p 1.08r/p 1.1r/p 1.13r/1.01p
Belt x 1.34x 2.01x 3.85x 1.66x 1.75x

(rlp) 1.06r/1.01p 1.05r/1.02p 1.06r/1.02p 1.05r/1.02p 1.06r/1.04p 1.06r/1.03p
Postcard x 1.37x 2.10x 3.10x 1.47x 1.55x

(rlp) 1.16r/1.01p 1.16r/1.01p 1.17rlp 1.157/1.02p 1.16r/1.02p 1.16r/1.03p
PetCare x 1.57x 1.25x 2.12x 1.74x 2.17x

(rlp) 1.127/1.02p 1.12#/1.03p 1.127/1.01p 1.127/1.02p 1.12#/1.04p 1.127/1.04p
T39253 x 221x 1.45x 231x 1.72x 1.78x

(rlp) 1.06r/p 1.07#/1.01p 1.04r/p 1.057/p 1.08#/1.01p 1.08#/1.02p
FireStarter X 2.98x 1.22x 2.01x 1.89x 2.32x

(rlp) 1.08r/1.02p 1.08r/1.03p 1.08r/1.01p 1.08r/1.02p 1.08r/1.03p 1.08r/1.04p
Batteries X 1.65x 0.92x 5.15x 0.81x 1.52x

(rlp) 1.25r/p 1.24r/1.01p 1.14r/1.01p 1.24r/1.01p 1.28r/1.01p 1.28r/1.03p
Radio x 1.95x 1.55x 2.55x 1.34x 1.40x

(rlp) 1.04r/1.04p 1.01r/1.04p 1.03r/1.04p r/1.04p 1.02r/1.04p 1.03r/1.04p
GDevices X 2.02x 0.96x 2.40x 1.29x 1.45x

(rlp) 1.12r/1.01p 1.13r/1.02p 1.097/1.01p 1.13r/1.01p 1.13r/1.02p 1.13r/1.02p
Extg x 2.37x 1.27x 3.51x 1.34x 1.46x

(rlp) 1.06r/1.01p 1.07r/1.03p 1.02r/1.01p 1.05r/1.02p 1.07r/1.03p 1.07r/1.03p

Table 7: For each classification task in the first column, we report the relative number of labeled data required to
converge the active learning process by various classifiers. We also report the relative recall and precision measured
on data pool Dy, as “recall/precision”. For each classification task, we denoted the recall/precision targets set by
customers as (r/p), and the number of labeled data required to converge with ProdNet-1L classifier as x. (Note:
different classification tasks may have different recall/precision targets, and they require different number of labeled
data to converge the experiments with ProdNet-1L classifier. Since we do not compare performance across different
classification tasks, we use the same letters for the denotation of different tasks.) For example, on Speakers dataset
the recall/precision targets are set as (r/p), the ProdNet-1L classifier achieved 1.11r recall at p precision when
the active learning experiment converged at x labels, while the BERT-1L classifier achieved 1.10r recall at 1.02p
precision when the active learning experiments converged at 2.56x labels. For each classification task, we highlight

the least number of labeled data required for convergence in bold.
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Models— | ProdNet-1L

BERT-1L

| ProdNet-2L

BERT-2L

| ProdNet-24L-P

BERT-24L-P

Tasks | Top: relative number of labeled data

(R/P Bottom: relative macro-recall/macro-precision computed on data pool

target)

HS x 2.71x 2.30x 3.48x 1.08x 1.09x

(rlp) 1.15#/1.13p 1.161/1.17p 1.137/1.12p 1.137/1.11p 1.16+/1.17p 1.167/1.17p
FEE x 1.84x 1.06x 3.12x 1.32x 1.35x

(rlp) 1.06+/1.07p 1.05r/1.08p 1.05r/1.07p 1.05r/1.06p 1.06r/1.07p 1.05r/1.08p
AB x 1.60x 2.39x 3.89x 2.44x 2.73x

(rlp) 1.087/p 1.12r/p 1.04r/p 1.08r/p 1.087/1.01p 1.057/1.02p

Table 8: For each multi-class classification task in the first column, we report the relative number of labeled data
required to converge the active learning process by various classifiers. We also report relative macro-recall and
macro-precision measured on data pool Dyoo1. For example, on HS dataset the macro-recall/macro-precision targets
are set as (r/p), the ProdNet-1L classifier achieved 1.15r (macro-recall) at 1.13p (macro-precision) when the active
learning experiment converged at x labels, while the BERT-1L classifier achieved 1.16r (macro-recall) at 1.17p
(macro-precision) when the active learning experiment converged at 2.71x labels. For each classification task, we
highlight the least number of labeled data required for convergence in bold.

Models— | | ProdNet-2L BERT-2L
Class rationale | Key token Average Token Average Token
attention ranking attention ranking
Task: PetCare
To classify pet-care products flea 0.45 15% 0.36 0%
designed to prevent fleas, ticks worm 0.44 16.7% 0.42 37.7%
ringworm, or other aras’ites || tick 0.43 17.4% 0.39 44.3%
gworm, P : parasites 0.38 24.2% 0.33 56.2%
Task: Speakers
blue 0.70 4.9 % 0.39 52.6%
To classify wireless battery portable 0.60 11.2% 0.37 57.2%
operated portable speakers. speaker 0.40 35.3% 0.30 69.7%
wireless 0.29 52.1% 0.48 34.7%
Task: Pillow
cushion 0.42 23.1% 0.25 68.4%
To classify pillows and cushions | pillow 0.60 24.0% 0.25 65.9%
with feather fillings or inserts. feather 0.13 75.1% 0.45 32.0%
Task: Seed
seed 0.61 13.0% 0.31 50.4%
To classify seeds which are plant 0.60 13.6% 0.47 19.6%
used for growing plants. fruits 0.42 36.0% 0.38 36.1%
vegetable 0.27 63.4% 0.24 64.8%

Table 9: Global aggregation of attention values for key phrases of a classification task. We take 500 positive samples
to the original ProdNet-2L and BERT-2L models without downstream task finetuning. We calculate the average
attention of each token that the [CLS] token pays to in the last transformer layer. The average attention (higher the
better) received by the identified key tokens is noted in the column Avg. attention. We also rank all the tokens in
the 500 positive samples based on their average received attention, and calculate the rank of identified key tokens
(smaller the better). Key tokens were identified by a trained expert who provided the labeled data required to train
the classifiers.
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Abstract

Fine-tuning large pre-trained models for down-
stream tasks can be really expensive. In the
past, researchers have proposed various alter-
natives like adapter and prompt-based meth-
ods for tuning these large language models us-
ing minimal parameters. However, applying
prompt-tuning for smaller language models has
not been effective so far and not much work
is done in pushing forward soft prompting for
these smaller models. To improve the train-
ing efficiency of the language models and re-
duce the size of tuned parameters, we propose
a novel Adapter-based Efficient Prompt Tun-
ing approach (ADEPT). In this paper, we show
that tuning the parameters of soft prompts with
adapter modules while keeping the rest of the
model frozen can be a promising method to
optimize smaller language models for down-
stream tasks. Our method achieves up to 98%
performance of full fine-tuning while using only
0.02% of total model parameters.

1 Introduction

With the rapid advancement in computational fa-
cilities and the research in the field of Natural
Language Processing (NLP), pre-trained language
models (Peters et al., 2018; Conneau et al., 2018;
Devlin et al., 2019; Yang et al., 2019; Raffel et al.,
2020; Qiu et al., 2020; Xue et al., 2021; Dodda-
paneni et al., 2021) have been used widely in var-
ious tasks. These models use different statistical
and probabilistic methods to decide the likelihood
of a given sequence of words occurring in a sen-
tence. To efficiently use the language models, re-
searchers fine-tune these pre-trained language mod-
els on downstream tasks. With the conventional
practices of fine-tuning the models, new parame-
ters are generally introduced for every downstream
task. However, this approach of fine-tuning lan-
guage models becomes difficult especially when
there are a lot of trainable parameters. With lan-
guage models becoming larger and larger (Brown
et al., 2020), we can often anticipate challenges
related to maintaining multiple copies of model
parameters for inference, training time, and lack
of necessary computing power. The concept of
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awful

vocab |:|

The delivery was bad. The items were broken.

b——————— Inputtext ————————|

MASK
F— Prompt —

Figure 1: Prompt-based tuning using discrete prompt.
The prompt “Experience was” with a [MASK] is
prepended to the input text.

prompt-tuning was introduced to improve parame-
ter efficiency in the downstream tasks. In prompt
tuning, there’s no need for new parameters as we
convert our problem into a language modeling task.
This method can be promising, especially when
there are very few training examples for e.g. few
shot learning (Gao et al., 2021), where the standard
fine-tuning would not be efficient.

A prompt is usually a sequence of words or pa-
rameters that are appended or prepended to the
input so that the given downstream task can be
constructed as a language modeling problem (Liu
et al., 2021a). An example is shown in Figure 1.
In order to classify the sentiment of a given text,
like an amazon product review “The delivery was
bad. The items were broken.”, we can prepend
a prompt, such as “Experience was” or “It was”,
with a [MASK] to the sentence and anticipate the
language model to predict a negative adjective such
as “awful” for the [MASK] position.

As shown by Lester et al. (2021); Kim et al.
(2021), soft prompt-tuning for smaller language
models do not perform well when compared
to traditional fine-tuning. This approach only
works for significantly larger models (BERT e,
RoBERTaj,ge , €tc). In this paper, we propose a
novel approach to leverage soft prompt tuning for
smaller language models. We insert adapter mod-
ules in the language model, then jointly fine-tune
the parameters of this adapter module along with
soft prompts while keeping the rest of the model
frozen. Through empirical results on 3 benchmark
datasets from SuperGLUE (Wang et al., 2019) and
4 text classification datasets, we demonstrate the
effectiveness of our proposed approach for these
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smaller LM models (RoBERTa (Liu et al., 2019)
and BERT (Devlin et al., 2019)). Our method opti-
mizes only 0.02% of total model parameters during
training and yet achieves better performance than
other tuning strategies while being competitive to
fine-tuning.

Our main contributions can be summarised as
follows:

* anew Adapter-based Efficient Prompt Tuning
(ADEPT) approach to leverage soft prompts
for smaller language models - "roberta-base"
and "bert-base-cased".

* analyze the effectiveness of our approach with
respect to other soft prompt-tuning and fine-
tuning methods.

* an ablation study to investigate the importance
of the number of prompt tokens and adapter
hidden size.

2 Related Work

The effectiveness of prompt tuning was demon-
strated by (Brown et al., 2020) where the authors
showed that GPT-3 model could handle wide va-
riety of tasks using only a few training examples.
The use of prompts was first proposed by (Radford
and Narasimhan, 2018). The authors showed that
language models can perform well in few-shot and
zero-shot settings through these natural language
prompts. More recently, Jiang et al. (2020) pro-
posed an approach to automatically discover bet-
ter prompts in order to improve the factual knowl-
edge retrieval from these language models. More-
over, Schick and Schiitze (2021) introduced Pattern
Exploiting Training (PET) which uses cloze-style
phrases and achieves state-of-the-art performance
on few supervised and semi-supervised tasks -
classification on Yelp Reviews, AG’s News, Ya-
hoo Questions (Zhang et al., 2015) and MNLI
(Williams et al., 2018). This work was further
improved by (Tam et al., 2021) for few-shot natural
language understanding without using any unla-
beled data. In all of these approaches, prompts
were manually designed in the form of discrete
tokens. Thus, in such scenarios, it is important
to design appropriate prompts based on different
downstream tasks. The importance of prompt en-
gineering and the complete paradigm of prompt
tuning is summarized in Liu et al. (2021a).

In contrast to discrete prompts (Shin et al., 2020;
Hambardzumyan et al., 2021; Gao et al., 2021;

Reynolds and McDonell, 2021), soft prompts are
randomly initialized vectors that are prepended
or appended to the input text. The parameters
of the entire language model are fixed and only
the prompt parameters are fine-tuned. Liu et al.
(2021b) showed that automatically searching bet-
ter prompts in the continuous space gives com-
petitive performance for natural language under-
standing. Soft prompts were initially proposed by
Zhong et al. (2021) where OptiPrompt was pro-
posed and outperformed discrete prompts on knowl-
edge probing tasks. Li and Liang (2021) and Qin
and Eisner (2021) used a similar idea for generation
tasks where they prepended task-specific prompts
in the input text and achieved comparable perfor-
mance as the original model fine-tuning. Han et al.
(2021) proposed prompt-tuning with rules (PTR)
which significantly outperformed state-of-the-art
baselines for relation classification tasks. The ef-
fectiveness of soft prompt-tuning was further lever-
aged by Lester et al. (2021) where they applied
soft prompts on the T5 model and achieved a good
performance on the SuperGLUE benchmark. Fur-
thermore, Su et al. (2021); Vu et al. (2022) studied
the transferability of prompt tuning across different
tasks and models. They showed that soft prompts
can be transferred to similar tasks without training
and can be a good initialization for the underlying
language model.

3 Approach

We propose a novel adapter-based prompt-tuning
architecture for downstream classification tasks.
Figure 2 shows an overview<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>