Zejiang Shen


2023

pdf
Are Layout-Infused Language Models Robust to Layout Distribution Shifts? A Case Study with Scientific Documents
Catherine Chen | Zejiang Shen | Dan Klein | Gabriel Stanovsky | Doug Downey | Kyle Lo
Findings of the Association for Computational Linguistics: ACL 2023

Recent work has shown that infusing layout features into language models (LMs) improves processing of visually-rich documents such as scientific papers. Layout-infused LMs are often evaluated on documents with familiar layout features (e.g., papers from the same publisher), but in practice models encounter documents with unfamiliar distributions of layout features, such as new combinations of text sizes and styles, or new spatial configurations of textual elements. In this work we test whether layout-infused LMs are robust to layout distribution shifts. As a case study we use the task of scientific document structure recovery, segmenting a scientific paper into its structural categories (e.g., “title”, “caption”, “reference”). To emulate distribution shifts that occur in practice we re-partition the GROTOAP2 dataset. We find that under layout distribution shifts model performance degrades by up to 20 F1. Simple training strategies, such as increasing training diversity, can reduce this degradation by over 35% relative F1; however, models fail to reach in-distribution performance in any tested out-of-distribution conditions. This work highlights the need to consider layout distribution shifts during model evaluation, and presents a methodology for conducting such evaluations.

2022

pdf
OLALA: Object-Level Active Learning for Efficient Document Layout Annotation
Zejiang Shen | Weining Li | Jian Zhao | Yaoliang Yu | Melissa Dell
Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)

Layout detection is an essential step for accurately extracting structured contents from historical documents. The intricate and varied layouts present in these document images make it expensive to label the numerous layout regions that can be densely arranged on each page. Current active learning methods typically rank and label samples at the image level, where the annotation budget is not optimally spent due to the overexposure of common objects per image. Inspired by recent progress in semi-supervised learning and self-training, we propose OLALA, an Object-Level Active Learning framework for efficient document layout Annotation. OLALA aims to optimize the annotation process by selectively annotating only the most ambiguous regions within an image, while using automatically generated labels for the rest. Central to OLALA is a perturbation-based scoring function that determines which objects require manual annotation. Extensive experiments show that OLALA can significantly boost model performance and improve annotation efficiency, facilitating the extraction of masses of structured text for downstream NLP applications.

pdf
VILA: Improving Structured Content Extraction from Scientific PDFs Using Visual Layout Groups
Zejiang Shen | Kyle Lo | Lucy Lu Wang | Bailey Kuehl | Daniel S. Weld | Doug Downey
Transactions of the Association for Computational Linguistics, Volume 10

Accurately extracting structured content from PDFs is a critical first step for NLP over scientific papers. Recent work has improved extraction accuracy by incorporating elementary layout information, for example, each token’s 2D position on the page, into language model pretraining. We introduce new methods that explicitly model VIsual LAyout (VILA) groups, that is, text lines or text blocks, to further improve performance. In our I-VILA approach, we show that simply inserting special tokens denoting layout group boundaries into model inputs can lead to a 1.9% Macro F1 improvement in token classification. In the H-VILA approach, we show that hierarchical encoding of layout-groups can result in up to 47% inference time reduction with less than 0.8% Macro F1 loss. Unlike prior layout-aware approaches, our methods do not require expensive additional pretraining, only fine-tuning, which we show can reduce training cost by up to 95%. Experiments are conducted on a newly curated evaluation suite, S2-VLUE, that unifies existing automatically labeled datasets and includes a new dataset of manual annotations covering diverse papers from 19 scientific disciplines. Pre-trained weights, benchmark datasets, and source code are available at https://github.com/allenai/VILA.

pdf
Don’t Say What You Don’t Know: Improving the Consistency of Abstractive Summarization by Constraining Beam Search
Daniel King | Zejiang Shen | Nishant Subramani | Daniel S. Weld | Iz Beltagy | Doug Downey
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

Abstractive summarization systems today produce fluent and relevant output, but often “hallucinate” statements not supported by the source text. We analyze the connection between hallucinations and training data, and find evidence that models hallucinate because they train on target summaries that are unsupported by the source. Based on our findings, we present PINOCCHIO, a new decoding method that improves the consistency of a transformer-based abstractive summarizer by constraining beam search to avoid hallucinations. Given the model states and outputs at a given step, PINOCCHIO detects likely model hallucinations based on various measures of attribution to the source text. PINOCCHIO backtracks to find more consistent output, and can opt to produce no summary at all when no consistent generation can be found. In experiments, we find that PINOCCHIO improves the consistency of generation by an average of 67% on two abstractive summarization datasets, without hurting recall.

2021

pdf
PAWLS: PDF Annotation With Labels and Structure
Mark Neumann | Zejiang Shen | Sam Skjonsberg
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Adobe’s Portable Document Format (PDF) is a popular way of distributing view-only documents with a rich visual markup. This presents a challenge to NLP practitioners who wish to use the information contained within PDF documents for training models or data analysis, because annotating these documents is difficult. In this paper, we present PDF Annotation with Labels and Structure (PAWLS), a new annotation tool designed specifically for the PDF document format. PAWLS is particularly suited for mixed-mode annotation and scenarios in which annotators require extended context to annotate accurately. PAWLS supports span-based textual annotation, N-ary relations and freeform, non-textual bounding boxes, all of which can be exported in convenient formats for training multi-modal machine learning models. A read-only PAWLS server is available at https://pawls.apps.allenai.org/, and the source code is available at https://github.com/allenai/pawls.