Yixin Wan


2023

pdf
Does BERT Exacerbate Gender or L1 Biases in Automated English Speaking Assessment?
Alexander Kwako | Yixin Wan | Jieyu Zhao | Mark Hansen | Kai-Wei Chang | Li Cai
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

In English speaking assessment, pretrained large language models (LLMs) such as BERT can score constructed response items as accurately as human raters. Less research has investigated whether LLMs perpetuate or exacerbate biases, which would pose problems for the fairness and validity of the test. This study examines gender and native language (L1) biases in human and automated scores, using an off-the-shelf (OOS) BERT model. Analyses focus on a specific type of bias known as differential item functioning (DIF), which compares examinees of similar English language proficiency. Results show that there is a moderate amount of DIF, based on examinees’ L1 background in grade band 912. DIF is higher when scored by an OOS BERT model, indicating that BERT may exacerbate this bias; however, in practical terms, the degree to which BERT exacerbates DIF is very small. Additionally, there is more DIF for longer speaking items and for older examinees, but BERT does not exacerbate these patterns of DIF.

pdf
PIP: Parse-Instructed Prefix for Syntactically Controlled Paraphrase Generation
Yixin Wan | Kuan-Hao Huang | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2023

Syntactically controlled paraphrase generation requires language models to generate paraphrases for sentences according to specific syntactic structures. Existing fine-tuning methods on this task is costly, as all parameters of the model need to be updated during the training process. Inspired by recent studies on parameter-efficient learning, we propose Parse-Instructed Prefix (PIP), a novel adaptation of prefix-tuning to tune large pre-trained language models on syntactically controlled paraphrase generation task in a low-data setting with significantly less training cost. We introduce two methods to instruct a model’s encoder prefix to capture syntax-related knowledge: direct initiation (PIP-Direct) and indirect optimization (PIP-Indirect). Comparing to traditional fine-tuning methods for this task, PIP is a compute-efficient alternative with 10 times less learnable parameters. Comparing to existing prefix-tuning methods, PIP excels at capturing syntax control information, achieving significantly higher performance at the same level of learnable parameter count.

2022

pdf
Improving the Adversarial Robustness of NLP Models by Information Bottleneck
Cenyuan Zhang | Xiang Zhou | Yixin Wan | Xiaoqing Zheng | Kai-Wei Chang | Cho-Jui Hsieh
Findings of the Association for Computational Linguistics: ACL 2022

Existing studies have demonstrated that adversarial examples can be directly attributed to the presence of non-robust features, which are highly predictive, but can be easily manipulated by adversaries to fool NLP models. In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory. Through extensive experiments, we show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy, exceeding performances of all the previously reported defense methods while suffering almost no performance drop in clean accuracy on SST-2, AGNEWS and IMDB datasets.

pdf bib
Using Item Response Theory to Measure Gender and Racial Bias of a BERT-based Automated English Speech Assessment System
Alexander Kwako | Yixin Wan | Jieyu Zhao | Kai-Wei Chang | Li Cai | Mark Hansen
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)

Recent advances in natural language processing and transformer-based models have made it easier to implement accurate, automated English speech assessments. Yet, without careful examination, applications of these models may exacerbate social prejudices based on gender and race. This study addresses the need to examine potential biases of transformer-based models in the context of automated English speech assessment. For this purpose, we developed a BERT-based automated speech assessment system and investigated gender and racial bias of examinees’ automated scores. Gender and racial bias was measured by examining differential item functioning (DIF) using an item response theory framework. Preliminary results, which focused on a single verbal-response item, showed no statistically significant DIF based on gender or race for automated scores.