Xuancai Li
2020
End-to-End Speech Translation with Adversarial Training
Xuancai Li
|
Chen Kehai
|
Tiejun Zhao
|
Muyun Yang
Proceedings of the First Workshop on Automatic Simultaneous Translation
End-to-End speech translation usually leverages audio-to-text parallel data to train an available speech translation model which has shown impressive results on various speech translation tasks. Due to the artificial cost of collecting audio-to-text parallel data, the speech translation is a natural low-resource translation scenario, which greatly hinders its improvement. In this paper, we proposed a new adversarial training method to leverage target monolingual data to relieve the low-resource shortcoming of speech translation. In our method, the existing speech translation model is considered as a Generator to gain a target language output, and another neural Discriminator is used to guide the distinction between outputs of speech translation model and true target monolingual sentences. Experimental results on the CCMT 2019-BSTC dataset speech translation task demonstrate that the proposed methods can significantly improve the performance of the End-to-End speech translation system.
Search