Tomer Wolfson


2022

pdf
Weakly Supervised Text-to-SQL Parsing through Question Decomposition
Tomer Wolfson | Daniel Deutch | Jonathan Berant
Findings of the Association for Computational Linguistics: NAACL 2022

Text-to-SQL parsers are crucial in enabling non-experts to effortlessly query relational data. Training such parsers, by contrast, generally requires expertise in annotating natural language (NL) utterances with corresponding SQL queries.In this work, we propose a weak supervision approach for training text-to-SQL parsers. We take advantage of the recently proposed question meaning representation called QDMR, an intermediate between NL and formal query languages.Given questions, their QDMR structures (annotated by non-experts or automatically predicted), and the answers, we are able to automatically synthesize SQL queries that are used to train text-to-SQL models. We test our approach by experimenting on five benchmark datasets. Our results show that the weakly supervised models perform competitively with those trained on annotated NL-SQL data.Overall, we effectively train text-to-SQL parsers, while using zero SQL annotations.

pdf
Break, Perturb, Build: Automatic Perturbation of Reasoning Paths Through Question Decomposition
Mor Geva | Tomer Wolfson | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 10

Recent efforts to create challenge benchmarks that test the abilities of natural language understanding models have largely depended on human annotations. In this work, we introduce the “Break, Perturb, Build” (BPB) framework for automatic reasoning-oriented perturbation of question-answer pairs. BPB represents a question by decomposing it into the reasoning steps that are required to answer it, symbolically perturbs the decomposition, and then generates new question-answer pairs. We demonstrate the effectiveness of BPB by creating evaluation sets for three reading comprehension (RC) benchmarks, generating thousands of high-quality examples without human intervention. We evaluate a range of RC models on our evaluation sets, which reveals large performance gaps on generated examples compared to the original data. Moreover, symbolic perturbations enable fine-grained analysis of the strengths and limitations of models. Last, augmenting the training data with examples generated by BPB helps close the performance gaps, without any drop on the original data distribution.

2020

pdf
Obtaining Faithful Interpretations from Compositional Neural Networks
Sanjay Subramanian | Ben Bogin | Nitish Gupta | Tomer Wolfson | Sameer Singh | Jonathan Berant | Matt Gardner
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural module networks (NMNs) are a popular approach for modeling compositionality: they achieve high accuracy when applied to problems in language and vision, while reflecting the compositional structure of the problem in the network architecture. However, prior work implicitly assumed that the structure of the network modules, describing the abstract reasoning process, provides a faithful explanation of the model’s reasoning; that is, that all modules perform their intended behaviour. In this work, we propose and conduct a systematic evaluation of the intermediate outputs of NMNs on NLVR2 and DROP, two datasets which require composing multiple reasoning steps. We find that the intermediate outputs differ from the expected output, illustrating that the network structure does not provide a faithful explanation of model behaviour. To remedy that, we train the model with auxiliary supervision and propose particular choices for module architecture that yield much better faithfulness, at a minimal cost to accuracy.

pdf
Break It Down: A Question Understanding Benchmark
Tomer Wolfson | Mor Geva | Ankit Gupta | Matt Gardner | Yoav Goldberg | Daniel Deutch | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 8

Understanding natural language questions entails the ability to break down a question into the requisite steps for computing its answer. In this work, we introduce a Question Decomposition Meaning Representation (QDMR) for questions. QDMR constitutes the ordered list of steps, expressed through natural language, that are necessary for answering a question. We develop a crowdsourcing pipeline, showing that quality QDMRs can be annotated at scale, and release the Break dataset, containing over 83K pairs of questions and their QDMRs. We demonstrate the utility of QDMR by showing that (a) it can be used to improve open-domain question answering on the HotpotQA dataset, (b) it can be deterministically converted to a pseudo-SQL formal language, which can alleviate annotation in semantic parsing applications. Last, we use Break to train a sequence-to-sequence model with copying that parses questions into QDMR structures, and show that it substantially outperforms several natural baselines.