Sirui Wang


2023

pdf
Let Me Check the Examples: Enhancing Demonstration Learning via Explicit Imitation
Sirui Wang | Kaiwen Wei | Hongzhi Zhang | Yuntao Li | Wei Wu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Demonstration learning aims to guide the prompt prediction by providing answered demonstrations in the few shot settings. Despite achieving promising results, existing work only concatenates the answered examples as demonstrations to the prompt template (including the raw context) without any additional operation, neglecting the prompt-demonstration dependencies. Besides, prior research found that randomly replacing the labels of demonstrations marginally hurts performance, illustrating that the model could not properly learn the knowledge brought by the demonstrations. Inspired by the human learning process, in this paper, we introduce Imitation DEMOnstration learning (Imitation-Demo) to strengthen demonstration learning via explicitly imitating human review behaviour, which includes: (1) contrastive learning mechanism to concentrate on similar demonstrations.(2) demonstration-label re-prediction method to consolidate known knowledge. Experiment results show that our proposed method achieves state-of-the-art performance on 5 out of 14 classification corpus. Further studies also prove that Imitation-Demo strengthens the associations between the prompt and demonstrations, which could provide the basis for exploring how demonstration learning works.

pdf
Pay Attention to Implicit Attribute Values: A Multi-modal Generative Framework for AVE Task
Yupeng Zhang | Shensi Wang | Peiguang Li | Guanting Dong | Sirui Wang | Yunsen Xian | Zhoujun Li | Hongzhi Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Attribute Value Extraction (AVE) boosts many e-commerce platform services such as targeted recommendation, product retrieval and question answering. Most previous studies adopt an extractive framework such as named entity recognition (NER) to capture subtokens in the product descriptions as the corresponding values of target attributes. However, in the real world scenario, there also exist implicit attribute values that are not mentioned explicitly but embedded in the image information and implied text meaning of products, for which the power of extractive methods is severely constrained. To address the above issues, we exploit a unified multi-modal AVE framework named DEFLATE (a multi-modal unifieD framEwork For impLicit And expliciT AVE) to acquire implicit attribute values in addition to the explicit ones. DEFLATE consists of a QA-based generation model to produce candidate attribute values from the product information of different modalities, and a discriminative model to ensure the credibility of the generated answers. Meanwhile, to provide a testbed that close to the real world, we collect and annotate a multi-modal dataset with parts of implicit attribute values. Extensive experiments conducted on multiple datasets demonstrate that DEFLATE significantly outperforms previous methods on the extraction of implicit attribute values, while achieving comparable performance for the explicit ones.

2022

pdf
DABERT: Dual Attention Enhanced BERT for Semantic Matching
Sirui Wang | Di Liang | Jian Song | Yuntao Li | Wei Wu
Proceedings of the 29th International Conference on Computational Linguistics

Transformer-based pre-trained language models such as BERT have achieved remarkable results in Semantic Sentence Matching. However, existing models still suffer from insufficient ability to capture subtle differences. Minor noise like word addition, deletion, and modification of sentences may cause flipped predictions. To alleviate this problem, we propose a novel Dual Attention Enhanced BERT (DABERT) to enhance the ability of BERT to capture fine-grained differences in sentence pairs. DABERT comprises (1) Dual Attention module, which measures soft word matches by introducing a new dual channel alignment mechanism to model affinity and difference attention. (2) Adaptive Fusion module, this module uses attention to learn the aggregation of difference and affinity features, and generates a vector describing the matching details of sentence pairs. We conduct extensive experiments on well-studied semantic matching and robustness test datasets, and the experimental results show the effectiveness of our proposed method.

pdf
Improving Semantic Matching through Dependency-Enhanced Pre-trained Model with Adaptive Fusion
Jian Song | Di Liang | Rumei Li | Yuntao Li | Sirui Wang | Minlong Peng | Wei Wu | Yongxin Yu
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the Dependency-Enhanced Adaptive Fusion Attention (DAFA), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, (i) DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. (ii) It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.

pdf
Robust Lottery Tickets for Pre-trained Language Models
Rui Zheng | Bao Rong | Yuhao Zhou | Di Liang | Sirui Wang | Wei Wu | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.

pdf
CQG: A Simple and Effective Controlled Generation Framework for Multi-hop Question Generation
Zichu Fei | Qi Zhang | Tao Gui | Di Liang | Sirui Wang | Wei Wu | Xuanjing Huang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-hop question generation focuses on generating complex questions that require reasoning over multiple pieces of information of the input passage. Current models with state-of-the-art performance have been able to generate the correct questions corresponding to the answers. However, most models can not ensure the complexity of generated questions, so they may generate shallow questions that can be answered without multi-hop reasoning. To address this challenge, we propose the CQG, which is a simple and effective controlled framework. CQG employs a simple method to generate the multi-hop questions that contain key entities in multi-hop reasoning chains, which ensure the complexity and quality of the questions. In addition, we introduce a novel controlled Transformer-based decoder to guarantee that key entities appear in the questions. Experiment results show that our model greatly improves performance, which also outperforms the state-of-the-art model about 25% by 5 BLEU points on HotpotQA.

pdf
PATS: Sensitivity-aware Noisy Learning for Pretrained Language Models
Yupeng Zhang | Hongzhi Zhang | Sirui Wang | Wei Wu | Zhoujun Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A wide range of NLP tasks benefit from the fine-tuning of pretrained language models (PLMs). However, a number of redundant parameters which contribute less to the downstream task are observed in a directly fine-tuned model. We consider the gap between pretraining and downstream tasks hinders the training of these redundant parameters, and results in a suboptimal performance of the overall model. In this paper, we present PATS (Perturbation According To Sensitivity), a noisy training mechanism which considers each parameter’s importance in the downstream task to help fine-tune PLMs. The main idea of PATS is to add bigger noise to parameters with lower sensitivity and vice versa, in order to activate more parameters’ contributions to downstream tasks without affecting the sensitive ones much. Extensive experiments conducted on different tasks of the GLUE benchmark show PATS can consistently empower the fine-tuning of different sizes of PLMs, and the parameters in the well-performing models always have more concentrated distributions of sensitivities, which experimentally proves the effectiveness of our method.

2021

pdf
Large-Scale Relation Learning for Question Answering over Knowledge Bases with Pre-trained Language Models
Yuanmeng Yan | Rumei Li | Sirui Wang | Hongzhi Zhang | Zan Daoguang | Fuzheng Zhang | Wei Wu | Weiran Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The key challenge of question answering over knowledge bases (KBQA) is the inconsistency between the natural language questions and the reasoning paths in the knowledge base (KB). Recent graph-based KBQA methods are good at grasping the topological structure of the graph but often ignore the textual information carried by the nodes and edges. Meanwhile, pre-trained language models learn massive open-world knowledge from the large corpus, but it is in the natural language form and not structured. To bridge the gap between the natural language and the structured KB, we propose three relation learning tasks for BERT-based KBQA, including relation extraction, relation matching, and relation reasoning. By relation-augmented training, the model learns to align the natural language expressions to the relations in the KB as well as reason over the missing connections in the KB. Experiments on WebQSP show that our method consistently outperforms other baselines, especially when the KB is incomplete.

pdf
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou | Wayne Xin Zhao | Sirui Wang | Fuzheng Zhang | Wei Wu | Ji-Rong Wen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Recent works have shown that powerful pre-trained language models (PLM) can be fooled by small perturbations or intentional attacks. To solve this issue, various data augmentation techniques are proposed to improve the robustness of PLMs. However, it is still challenging to augment semantically relevant examples with sufficient diversity. In this work, we present Virtual Data Augmentation (VDA), a general framework for robustly fine-tuning PLMs. Based on the original token embeddings, we construct a multinomial mixture for augmenting virtual data embeddings, where a masked language model guarantees the semantic relevance and the Gaussian noise provides the augmentation diversity. Furthermore, a regularized training strategy is proposed to balance the two aspects. Extensive experiments on six datasets show that our approach is able to improve the robustness of PLMs and alleviate the performance degradation under adversarial attacks. Our codes and data are publicly available at bluehttps://github.com/RUCAIBox/VDA.

pdf
ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer
Yuanmeng Yan | Rumei Li | Sirui Wang | Fuzheng Zhang | Wei Wu | Weiran Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Learning high-quality sentence representations benefits a wide range of natural language processing tasks. Though BERT-based pre-trained language models achieve high performance on many downstream tasks, the native derived sentence representations are proved to be collapsed and thus produce a poor performance on the semantic textual similarity (STS) tasks. In this paper, we present ConSERT, a Contrastive Framework for Self-Supervised SEntence Representation Transfer, that adopts contrastive learning to fine-tune BERT in an unsupervised and effective way. By making use of unlabeled texts, ConSERT solves the collapse issue of BERT-derived sentence representations and make them more applicable for downstream tasks. Experiments on STS datasets demonstrate that ConSERT achieves an 8% relative improvement over the previous state-of-the-art, even comparable to the supervised SBERT-NLI. And when further incorporating NLI supervision, we achieve new state-of-the-art performance on STS tasks. Moreover, ConSERT obtains comparable results with only 1000 samples available, showing its robustness in data scarcity scenarios.

2020

pdf
Learn with Noisy Data via Unsupervised Loss Correction for Weakly Supervised Reading Comprehension
Xuemiao Zhang | Kun Zhou | Sirui Wang | Fuzheng Zhang | Zhongyuan Wang | Junfei Liu
Proceedings of the 28th International Conference on Computational Linguistics

Weakly supervised machine reading comprehension (MRC) task is practical and promising for its easily available and massive training data, but inevitablely introduces noise. Existing related methods usually incorporate extra submodels to help filter noise before the noisy data is input to main models. However, these multistage methods often make training difficult, and the qualities of submodels are hard to be controlled. In this paper, we first explore and analyze the essential characteristics of noise from the perspective of loss distribution, and find that in the early stage of training, noisy samples usually lead to significantly larger loss values than clean ones. Based on the observation, we propose a hierarchical loss correction strategy to avoid fitting noise and enhance clean supervision signals, including using an unsupervisedly fitted Gaussian mixture model to calculate the weight factors for all losses to correct the loss distribution, and employ a hard bootstrapping loss to modify loss function. Experimental results on different weakly supervised MRC datasets show that the proposed methods can help improve models significantly.

pdf
Table Fact Verification with Structure-Aware Transformer
Hongzhi Zhang | Yingyao Wang | Sirui Wang | Xuezhi Cao | Fuzheng Zhang | Zhongyuan Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Verifying fact on semi-structured evidence like tables requires the ability to encode structural information and perform symbolic reasoning. Pre-trained language models trained on natural language could not be directly applied to encode tables, because simply linearizing tables into sequences will lose the cell alignment information. To better utilize pre-trained transformers for table representation, we propose a Structure-Aware Transformer (SAT), which injects the table structural information into the mask of the self-attention layer. A method to combine symbolic and linguistic reasoning is also explored for this task. Our method outperforms baseline with 4.93% on TabFact, a large scale table verification dataset.