Multiple pre-training objectives fill the vacancy of the understanding capability of single-objective language modeling, which serves the ultimate purpose of pre-trained language models (PrLMs), generalizing well on a mass of scenarios. However, learning multiple training objectives in a single model is challenging due to the unknown relative significance as well as the potential contrariety between them. Empirical studies have shown that the current objective sampling in an ad-hoc manual setting makes the learned language representation barely converge to the desired optimum. Thus, we propose MOMETAS, a novel adaptive sampler based on meta-learning, which learns the latent sampling pattern on arbitrary pre-training objectives. Such a design is lightweight with negligible additional training overhead. To validate our approach, we adopt five objectives and conduct continual pre-training with BERT-base and BERT-large models, where MOMETAS demonstrates universal performance gain over other rule-based sampling strategies on 14 natural language processing tasks.
Supervised approaches to named entity recognition (NER) are largely developed based on the assumption that the training data is fully annotated with named entity information. However, in practice, annotated data can often be imperfect with one typical issue being the training data may contain incomplete annotations. We highlight several pitfalls associated with learning under such a setup in the context of NER and identify limitations associated with existing approaches, proposing a novel yet easy-to-implement approach for recognizing named entities with incomplete data annotations. We demonstrate the effectiveness of our approach through extensive experiments.
Gazetteers were shown to be useful resources for named entity recognition (NER). Many existing approaches to incorporating gazetteers into machine learning based NER systems rely on manually defined selection strategies or handcrafted templates, which may not always lead to optimal effectiveness, especially when multiple gazetteers are involved. This is especially the case for the task of Chinese NER, where the words are not naturally tokenized, leading to additional ambiguities. To automatically learn how to incorporate multiple gazetteers into an NER system, we propose a novel approach based on graph neural networks with a multi-digraph structure that captures the information that the gazetteers offer. Experiments on various datasets show that our model is effective in incorporating rich gazetteer information while resolving ambiguities, outperforming previous approaches.