Qihuang Zhong


2023

pdf
Revisiting Token Dropping Strategy in Efficient BERT Pretraining
Qihuang Zhong | Liang Ding | Juhua Liu | Xuebo Liu | Min Zhang | Bo Du | Dacheng Tao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Token dropping is a recently-proposed strategy to speed up the pretraining of masked language models, such as BERT, by skipping the computation of a subset of the input tokens at several middle layers. It can effectively reduce the training time without degrading much performance on downstream tasks. However, we empirically find that token dropping is prone to a semantic loss problem and falls short in handling semantic-intense tasks. Motivated by this, we propose a simple yet effective semantic-consistent learning method (ScTD) to improve the token dropping. ScTD aims to encourage the model to learn how to preserve the semantic information in the representation space. Extensive experiments on 12 tasks show that, with the help of our ScTD, token dropping can achieve consistent and significant performance gains across all task types and model sizes. More encouragingly, ScTD saves up to 57% of pretraining time and brings up to +1.56% average improvement over the vanilla token dropping.

pdf
Token-Level Self-Evolution Training for Sequence-to-Sequence Learning
Keqin Peng | Liang Ding | Qihuang Zhong | Yuanxin Ouyang | Wenge Rong | Zhang Xiong | Dacheng Tao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Adaptive training approaches, widely used in sequence-to-sequence models, commonly reweigh the losses of different target tokens based on priors, e.g. word frequency. However, most of them do not consider the variation of learning difficulty in different training steps, and overly emphasize the learning of difficult one-hot labels, making the learning deterministic and sub-optimal. In response, we present Token-Level Self-Evolution Training (SE), a simple and effective dynamic training method to fully and wisely exploit the knowledge from data. SE focuses on dynamically learning the under-explored tokens for each forward pass and adaptively regularizes the training by introducing a novel token-specific label smoothing approach. Empirically, SE yields consistent and significant improvements in three tasks, i.e. machine translation, summarization, and grammatical error correction. Encouragingly, we achieve averaging +0.93 BLEU improvement on three machine translation tasks. Analyses confirm that, besides improving lexical accuracy, SE enhances generation diversity and model generalization.

pdf
Self-Evolution Learning for Discriminative Language Model Pretraining
Qihuang Zhong | Liang Ding | Juhua Liu | Bo Du | Dacheng Tao
Findings of the Association for Computational Linguistics: ACL 2023

Masked language modeling, widely used in discriminative language model (e.g., BERT) pretraining, commonly adopts a random masking strategy. However, random masking does not consider the importance of the different words in the sentence meaning, where some of them are more worthy to be predicted. Therefore, various masking strategies (e.g., entity-level masking) are proposed, but most of them require expensive prior knowledge and generally train from scratch without reusing existing model weights. In this paper, we present Self-Evolution learning (SE), a simple and effective token masking and learning method to fully and wisely exploit the knowledge from data. SE focuses on learning the informative yet under-explored tokens and adaptively regularizes the training by introducing a novel Token-specific Label Smoothing approach. Experiments on 10 tasks show that our SE brings consistent and significant improvements (+1.43 2.12 average scores) upon different PLMs. In-depth analyses demonstrate that SE improves linguistic knowledge learning and generalization.

2022

pdf
A Contrastive Cross-Channel Data Augmentation Framework for Aspect-Based Sentiment Analysis
Bing Wang | Liang Ding | Qihuang Zhong | Ximing Li | Dacheng Tao
Proceedings of the 29th International Conference on Computational Linguistics

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task, which focuses on detecting the sentiment polarity towards the aspect in a sentence. However, it is always sensitive to the multi-aspect challenge, where features of multiple aspects in a sentence will affect each other. To mitigate this issue, we design a novel training framework, called Contrastive Cross-Channel Data Augmentation (C3 DA), which leverages an in-domain generator to construct more multi-aspect samples and then boosts the robustness of ABSA models via contrastive learning on these generated data. In practice, given a generative pretrained language model and some limited ABSA labeled data, we first employ some parameter-efficient approaches to perform the in-domain fine-tuning. Then, the obtained in-domain generator is used to generate the synthetic sentences from two channels, i.e., Aspect Augmentation Channel and Polarity Augmentation Channel, which generate the sentence condition on a given aspect and polarity respectively. Specifically, our C3 DA performs the sentence generation in a cross-channel manner to obtain more sentences, and proposes an Entropy-Minimization Filter to filter low-quality generated samples. Extensive experiments show that our C3 DA can outperform those baselines without any augmentations by about 1% on accuracy and Macro- F1. Code and data are released in https://github.com/wangbing1416/C3DA.

pdf
Improving Sharpness-Aware Minimization with Fisher Mask for Better Generalization on Language Models
Qihuang Zhong | Liang Ding | Li Shen | Peng Mi | Juhua Liu | Bo Du | Dacheng Tao
Findings of the Association for Computational Linguistics: EMNLP 2022

Fine-tuning large pretrained language models on a limited training corpus usually suffers from poor generalization. Prior works show that the recently-proposed sharpness-aware minimization (SAM) optimization method can improve the model generalization. However, SAM adds a perturbation to each model parameter equally (but not all parameters contribute equally to the optimization of training), which we argue is sub-optimal and will lead to excessive computation. In this paper, we propose a novel optimization procedure, namely FSAM, which introduces a Fisher mask to improve the efficiency and performance of SAM. In short, instead of adding perturbation to all parameters, FSAM uses the Fisher information to identity the important parameters and formulates a Fisher mask to obtain the sparse perturbation, i.e., making the optimizer focus on these important parameters. Experiments on various tasks in GLUE and SuperGLUE benchmarks show that FSAM consistently outperforms the vanilla SAM by 0.67 1.98 average score among four different pretrained models. We also empirically show that FSAM works well in other complex scenarios, e.g., fine-tuning on generation tasks or limited training data. Encouragingly, when training data is limited, FSAM improves the SAM by a large margin, i.e., up to 15.1.