Peerapon Vateekul


2022

pdf
Enhancing Lifelong Language Learning by Improving Pseudo-Sample Generation
Kasidis Kanwatchara | Thanapapas Horsuwan | Piyawat Lertvittayakumjorn | Boonserm Kijsirikul | Peerapon Vateekul
Computational Linguistics, Volume 48, Issue 4 - December 2022

To achieve lifelong language learning, pseudo-rehearsal methods leverage samples generated from a language model to refresh the knowledge of previously learned tasks. Without proper controls, however, these methods could fail to retain the knowledge of complex tasks with longer texts since most of the generated samples are low in quality. To overcome the problem, we propose three specific contributions. First, we utilize double language models, each of which specializes in a specific part of the input, to produce high-quality pseudo samples. Second, we reduce the number of parameters used by applying adapter modules to enhance training efficiency. Third, we further improve the overall quality of pseudo samples using temporal ensembling and sample regeneration. The results show that our framework achieves significant improvement over baselines on multiple task sequences. Also, our pseudo sample analysis reveals helpful insights for designing even better pseudo-rehearsal methods in the future.

2021

pdf
Rational LAMOL: A Rationale-based Lifelong Learning Framework
Kasidis Kanwatchara | Thanapapas Horsuwan | Piyawat Lertvittayakumjorn | Boonserm Kijsirikul | Peerapon Vateekul
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Lifelong learning (LL) aims to train a neural network on a stream of tasks while retaining knowledge from previous tasks. However, many prior attempts in NLP still suffer from the catastrophic forgetting issue, where the model completely forgets what it just learned in the previous tasks. In this paper, we introduce Rational LAMOL, a novel end-to-end LL framework for language models. In order to alleviate catastrophic forgetting, Rational LAMOL enhances LAMOL, a recent LL model, by applying critical freezing guided by human rationales. When the human rationales are not available, we propose exploiting unsupervised generated rationales as substitutions. In the experiment, we tested Rational LAMOL on permutations of three datasets from the ERASER benchmark. The results show that our proposed framework outperformed vanilla LAMOL on most permutations. Furthermore, unsupervised rationale generation was able to consistently improve the overall LL performance from the baseline without relying on human-annotated rationales.

pdf
ESRA: Explainable Scientific Research Assistant
Pollawat Hongwimol | Peeranuth Kehasukcharoen | Pasit Laohawarutchai | Piyawat Lertvittayakumjorn | Aik Beng Ng | Zhangsheng Lai | Timothy Liu | Peerapon Vateekul
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We introduce Explainable Scientific Research Assistant (ESRA), a literature discovery platform that augments search results with relevant details and explanations, aiding users in understanding more about their queries and the returned papers beyond existing literature search systems. Enabled by a knowledge graph we extracted from abstracts of 23k papers on the arXiv’s cs.CL category, ESRA provides three main features: explanation (for why a paper is returned to the user), list of facts (that are relevant to the query), and graph visualization (drawing connections between the query and each paper with surrounding related entities). The experimental results with humans involved show that ESRA can accelerate the users’ search process with paper explanations and helps them better explore the landscape of the topics of interest by exploiting the underlying knowledge graph. We provide the ESRA web application at http://esra.cp.eng.chula.ac.th/.