Nicholas Tomlin


2023

pdf
Neural Unsupervised Reconstruction of Protolanguage Word Forms
Andre He | Nicholas Tomlin | Dan Klein
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a state-of-the-art neural approach to the unsupervised reconstruction of ancient word forms. Previous work in this domain used expectation-maximization to predict simple phonological changes between ancient word forms and their cognates in modern languages. We extend this work with neural models that can capture more complicated phonological and morphological changes. At the same time, we preserve the inductive biases from classical methods by building monotonic alignment constraints into the model and deliberately underfitting during the maximization step. We evaluate our performance on the task of reconstructing Latin from a dataset of cognates across five Romance languages, achieving a notable reduction in edit distance from the target word forms compared to previous methods.

2022

pdf
Automated Crossword Solving
Eric Wallace | Nicholas Tomlin | Albert Xu | Kevin Yang | Eshaan Pathak | Matthew Ginsberg | Dan Klein
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present the Berkeley Crossword Solver, a state-of-the-art approach for automatically solving crossword puzzles. Our system works by generating answer candidates for each crossword clue using neural question answering models and then combines loopy belief propagation with local search to find full puzzle solutions. Compared to existing approaches, our system improves exact puzzle accuracy from 57% to 82% on crosswords from The New York Times and obtains 99.9% letter accuracy on themeless puzzles. Our system also won first place at the top human crossword tournament, which marks the first time that a computer program has surpassed human performance at this event. To facilitate research on question answering and crossword solving, we analyze our system’s remaining errors and release a dataset of over six million question-answer pairs.

pdf
Understanding Game-Playing Agents with Natural Language Annotations
Nicholas Tomlin | Andre He | Dan Klein
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We present a new dataset containing 10K human-annotated games of Go and show how these natural language annotations can be used as a tool for model interpretability. Given a board state and its associated comment, our approach uses linear probing to predict mentions of domain-specific terms (e.g., ko, atari) from the intermediate state representations of game-playing agents like AlphaGo Zero. We find these game concepts are nontrivially encoded in two distinct policy networks, one trained via imitation learning and another trained via reinforcement learning. Furthermore, mentions of domain-specific terms are most easily predicted from the later layers of both models, suggesting that these policy networks encode high-level abstractions similar to those used in the natural language annotations.