Kurt Micallef


2023

pdf
UM-DFKI Maltese Speech Translation
Aiden Williams | Kurt Abela | Rishu Kumar | Martin Bär | Hannah Billinghurst | Kurt Micallef | Ahnaf Mozib Samin | Andrea DeMarco | Lonneke van der Plas | Claudia Borg
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

For the 2023 IWSLT Maltese Speech Translation Task, UM-DFKI jointly presents a cascade solution which achieves 0.6 BLEU. While this is the first time that a Maltese speech translation task has been released by IWSLT, this paper explores previous solutions for other speech translation tasks, focusing primarily on low-resource scenarios. Moreover, we present our method of fine-tuning XLS-R models for Maltese ASR using a collection of multi-lingual speech corpora as well as the fine-tuning of the mBART model for Maltese to English machine translation.

pdf
Exploring the Impact of Transliteration on NLP Performance for Low-Resource Languages: The Case of Maltese and Arabic
Kurt Micallef | Fadhl Eryani | Nizar Habash | Houda Bouamor | Claudia Borg
Proceedings of the Workshop on Computation and Written Language (CAWL 2023)

Maltese is a low-resource language of Arabic and Romance origins written in Latin script. We explore the impact of transliterating Maltese into Arabic script on a number of downstream tasks. We compare multiple transliteration pipelines ranging from simple one-to-one character maps to more sophisticated alternatives that explore multiple possibilities or make use of manual linguistic annotations. We show that the sophisticated systems are consistently better than simpler systems, quantitatively and qualitatively. We also show transliterating Maltese can be considered as an option to improve the cross-lingual transfer capabilities.

2022

pdf
Pre-training Data Quality and Quantity for a Low-Resource Language: New Corpus and BERT Models for Maltese
Kurt Micallef | Albert Gatt | Marc Tanti | Lonneke van der Plas | Claudia Borg
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing

Multilingual language models such as mBERT have seen impressive cross-lingual transfer to a variety of languages, but many languages remain excluded from these models. In this paper, we analyse the effect of pre-training with monolingual data for a low-resource language that is not included in mBERT – Maltese – with a range of pre-training set ups. We conduct evaluations with the newly pre-trained models on three morphosyntactic tasks – dependency parsing, part-of-speech tagging, and named-entity recognition – and one semantic classification task – sentiment analysis. We also present a newly created corpus for Maltese, and determine the effect that the pre-training data size and domain have on the downstream performance. Our results show that using a mixture of pre-training domains is often superior to using Wikipedia text only. We also find that a fraction of this corpus is enough to make significant leaps in performance over Wikipedia-trained models. We pre-train and compare two models on the new corpus: a monolingual BERT model trained from scratch (BERTu), and a further pretrained multilingual BERT (mBERTu). The models achieve state-of-the-art performance on these tasks, despite the new corpus being considerably smaller than typically used corpora for high-resourced languages. On average, BERTu outperforms or performs competitively with mBERTu, and the largest gains are observed for higher-level tasks.