Ivan Provilkov


2021

pdf
Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation
Ivan Provilkov | Andrey Malinin
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Neural Machine Translation (NMT) is known to suffer from a beam-search problem: after a certain point, increasing beam size causes an overall drop in translation quality. This effect is especially pronounced for long sentences. While much work was done analyzing this phenomenon, primarily for autoregressive NMT models, there is still no consensus on its underlying cause. In this work, we analyze errors that cause major quality degradation with large beams in NMT and Automatic Speech Recognition (ASR). We show that a factor that strongly contributes to the quality degradation with large beams is dataset length-bias - NMT datasets are strongly biased towards short sentences. To mitigate this issue, we propose a new data augmentation technique – Multi-Sentence Resampling (MSR). This technique extends the training examples by concatenating several sentences from the original dataset to make a long training example. We demonstrate that MSR significantly reduces degradation with growing beam size and improves final translation quality on the IWSTL15 En-Vi, IWSTL17 En-Fr, and WMT14 En-De datasets.

2020

pdf
BPE-Dropout: Simple and Effective Subword Regularization
Ivan Provilkov | Dmitrii Emelianenko | Elena Voita
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Subword segmentation is widely used to address the open vocabulary problem in machine translation. The dominant approach to subword segmentation is Byte Pair Encoding (BPE), which keeps the most frequent words intact while splitting the rare ones into multiple tokens. While multiple segmentations are possible even with the same vocabulary, BPE splits words into unique sequences; this may prevent a model from better learning the compositionality of words and being robust to segmentation errors. So far, the only way to overcome this BPE imperfection, its deterministic nature, was to create another subword segmentation algorithm (Kudo, 2018). In contrast, we show that BPE itself incorporates the ability to produce multiple segmentations of the same word. We introduce BPE-dropout - simple and effective subword regularization method based on and compatible with conventional BPE. It stochastically corrupts the segmentation procedure of BPE, which leads to producing multiple segmentations within the same fixed BPE framework. Using BPE-dropout during training and the standard BPE during inference improves translation quality up to 2.3 BLEU compared to BPE and up to 0.9 BLEU compared to the previous subword regularization.