
Grey-box Adversarial Attack And Defence For Sentiment Classification
Supplementary Material

Ying Xu ∗
IBM Research

Australia

Xu Zhong ∗
IBM Research

Australia

Antonio Jimeno Yepes
IBM Research

Australia

Jey Han Lau
University of Melbourne

Australia

Abstract

We introduce a grey-box adversarial attack
and defence framework for sentiment classifi-
cation. We address the issues of differentiabil-
ity, label preservation and input reconstruction
for adversarial attack and defence in one uni-
fied framework. Our results show that once
trained, the attacking model is capable of gen-
erating high-quality adversarial examples sub-
stantially faster (one order of magnitude less
in time) than state-of-the-art attacking meth-
ods. These examples also preserve the origi-
nal sentiment according to human evaluation.
Additionally, our framework produces an im-
proved classifier that is robust in defending
against multiple adversarial attacking meth-
ods. Code is available at: https://github.com/
ibm-aur-nlp/adv-def-text-dist

1 Reproducibility

1.1 Target model architectures
We constructed C-LSTM and C-CNN as target
models for adversarial attack and C-BERT for
transferability test.

For C-LSTM, we tuned a number of hyper-
parameters including the learning rate lr ∈ {1e−
2, 1e−3, 1e−4}, the batch size bs ∈ {32, 64, 128},
the number of hidden layers l ∈ {1, 2, 3}, the num-
ber of hidden units u ∈ {64, 128, 256}, and the
number of attention units ua ∈ {50, 150, 300}. Af-
ter manual parameter tuning, we finally use the
model with 2 hidden layers (256 units per layer)
and one attention layer with 50 units that was
trained with a learning rate of 1e-3 and batch size
of 32.

For C-CNN, we tuned hyper-parameters includ-
ing the learning rate lr ∈ {1e− 2, 1e− 3, 1e− 4},
the batch size bs ∈ {32, 64, 128}, filter size for 1
convolutional layer fs ∈ {3, 5, 7}, filter sizes for
2 convolutional layers fs ∈ {[5, 3], [3, 3], [4, 2]},

∗This work was completed during the employment of the
authors in IBM Research Australia.

the number of hidden units u ∈ 64, 128, 256,
and the dropout keep probability keep_prob ∈
{0.6, 0.8, 1.0}. After manual parameter tuning, we
finally use the model with 2 convolutional layers
of filter sizes [5, 3] and 256 units per hidden layer
that is trained with a learning rate of 1e-3, batch
size 32, and the dropout keep probability at 0.8.

For C-BERT, we used the default hyper-
parameters for the BERT encoding layer, e.g. the
batch size is set to 32 and the learning rate is set
1e-5. On top of the BERT encoder, we use a fully-
connected layer of 1024 units whose output is pro-
jected to the final binary outputs.

For all three classification models, we keep up-
dating the model until the ACC score on the dev
set stops improving for 5000 steps.

1.2 Hyper-parameters for attacking methods
We report the attacking performance for three state-
of-the-art attacking methods, TYC, HOTFLIP and
TEXTFOOLER, and different variants of our grey-
box attack method. For all attacking methods,
we tune their respective hyper-parameters so as
to achieving ACC scores on the target models that
corresponds to the attacking thresholds at T1 (80-
90%), T2 (70-80%), and T3 (60-70%). The three
attacking thresholds are chose based on the idea
that all or most of the compared attacking methods
should be able to achieve and generate adversarial
examples that are reasonably readable.

For the attacking method TYC, we tune the
overshoot ε ∈ {200, 2000, 20000}, the number
of attacking iterations i ∈ {5, 10, 20} 1, and the
up limit of the number of changed words lim ∈
{7, 10, 15, 20, 25, 30, 35, 40, 45, 50}. We first tune
the first two hyper-parameters ε and i; and then
tune lim by fixing ε = 2000 and i = 5. After

1The original implementation did not set a up limit for the
attacking iteration, i.e. keep attacking until the output of the
target model changed. However, we found that it could lead
to unpractically long attacking time. Therefore, we set a limit
on the attacking iterations.

https://github.com/ibm-aur-nlp/adv-def-text-dist
https://github.com/ibm-aur-nlp/adv-def-text-dist

manual tuning, the hyper-parameters of TYC at
different attacking thresholds are shown in Table
S1.

For the attacking method HOTFLIP, we tune only
one hyper-parameter, e.g. the up limit of the num-
ber of changed words lim ∈ {1, 2, 3, 4, 5, 6, 7}.
We manually tuned lim and its values at different
attacking thresholds are shown in Table S1.

Similarly, for the attacking method
TEXTFOOLER, we tune only one hyper-parameter,
e.g. the up limit of the number of changed
words lim ∈ {1, 2, 3, 4, 5, 6, 7}. This method has
several other hyper-parameters, such as similar
score threshold, similar score window, number
of synonyms for each word, and important score
threshold2. We use the default values for these
hyper-parameters in most cases, and only try to re-
lax the limitations when the attacking performance
is not improved even all words (for example, all
50 words for the yelp50 dataset) are allowed to
be changed. In Table 2 of the main paper, when
attacking the C-CNN for threshold T2 and T3,
we also relaxed the other four hyper-parameters.
However, no attacking improvement was observed.
Hyper-parameters of TEXTFOOLER at different
attacking thresholds are shown in Table S1.

Finally, for our attacking method, we tune hyper-
parameters in two stages. During the pre-training
of the auto-encoder, we try to build an auto-encoder
that can reconstruct the input as faithfully as pos-
sible. Therefore we use the BLEU score on the
development set as the tuning criteria. During the
training of the attacking models, we initialise the
auto-encoder with the weights obtained from the
pre-training stage, and continue to train it accord-
ing to the objective functions defined in Section 3.2.
In this second stage, we are trying to find a balance
between the attacking performance and reconstruc-
tion performance; and we use the ACC score of the
target model on development set (which indicate
the attacking performance) as the tuning criteria.
We tune the attacking model in a total of 200,000
mini-batches with a batch size of 16, during which
time we save the model when the ACC score of the
target model on the development set drop into the
ranges corresponding to T1, T2, and T3.

During the pre-training stage, we tune a num-
ber of hyper-parameters including the learning rate
lr ∈ {1e − 2, 1e − 3, 1e − 4}, the batch size

2Please refer to the original paper of TEXTFOOLER and
its Github implementation for definition of these hyper-
parameters

C-LSTM C-CNN

Methods Thresholds lim lim

Tsai T1 15 15
T2 25 30
T3 40 –

HotFlip T1 3 1
T2 4 5
T3 6 7

TextFooler T1 1 50
T2 2 –
T3 3 –

Table S1: The up limit of the number of changed words
for TYC, HOTFLIP and TEXTFOOLER for achieving
different attacking thresholds.

bs ∈ {32, 64, 128}, the number of hidden lay-
ers l ∈ {1, 2, 3}, and the number of hidden units
u ∈ {64, 128, 256}. After manual tuning, we fi-
nally use the auto-encoder with 2 hidden layers
(512 units per layer) for both encoder and decoder
and an attention layer with the same number of
hidden units that is trained with a learning rate of
0.001 and a batch size of 32.

During the training of the attacking models, we
tune a number of hyper-parameters including the
learning rate lr ∈ {1e − 3, 1e − 4, 1e − 5, 1e −
6}, the two weighting parameters mitigating dif-
ferent objective functions (refer to Section 3.2)
e.g. λ1 ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and
λ2 ∈ {0.2, 0.5, 0.7, 1, 0}, the Gumbel-softmax
temperature τ ∈ {0.1, 1.0, 10.0}. We found that
the Gumbel-softmax temperature τ = 0.1 pro-
vides the best performance, and therefore tune the
other hyper-parameters while fixing τ at 0.1. For
AE+LS+CF, we fixed the λ2 = 1.0 3 and tuned an
additional hyper-parameter β ∈ {0.1, 0.5, 0.95}
that is introduced by label smoothing. We found
that β = 0.95 provides the best balancing between
BLEU and ACC score, and therefore fixed it at
0.95 while tuning the weighting parameter λ1. Fi-
nally, for AE+LS+CF+CPY, we tune an additional
hyper-parameter, the up limit of the number of
changed words lim ∈ {3, 5, 7, 9, 11, 15, 19}, to-
gether with the weighting parameter λ1. Detailed
hyper-parameters of different variations of our mod-
els are shown in Table S2.

1.3 Hyper-parameters for defending methods

The defending models adversarially trained from
HOTFLIP and TEXTFOOLER are based on the same
set of hyper-parameters in adversarial attack at at-

3We found that the effect of changing λ2 is not significant.

C-LSTM C-CNN

Models Thresholds lr λ1 λ2 lim lr λ1 λ2 lim

AE+BAL T1 1e-4 0.2 0.7 – 1e-4 0.2 1.0 –
T2 1e-4 0.2 0.7 – 1e-4 0.2 1.0 –
T3 1e-4 0.15 1.0 – 1e-4 0.2 1.0 –

AE+LS+CF T1 1e-5 0.8 1.0 – 1e-5 0.7 1.0 –
T2 1e-5 0.8 1.0 – 1e-5 0.7 1.0 –
T3 1e-5 0.8 1.0 – 1e-5 0.7 1.0 –

AE+LS+CF+CPY T1 1e-5 0.8 1.0 9 1e-5 0.7 1.0 9
T2 1e-5 0.8 1.0 9 1e-5 0.7 1.0 11
T3 1e-5 0.8 1.0 11 1e-5 0.7 1.0 19

Table S2: The hyper-parameters of different variants of our method for achieving different attacking thresholds.

tacking threshold T2. Please refer to Table S1 for
detailed hyper-parameter settings.

For AE+LS+CF-based defending model, besides
the hyper-parameters required to be tuned in the
attacking model, we tune an additional hyper-
parameter: the alternative step at_step ∈ {2, 5},
indicating for how many defending steps we per-
form one attacking step (please refer to Section
3.1 for definition of attacking steps and defend-
ing steps). The hyper-parameters for the defend-
ing models reported in this paper are set as fol-
lows: lr = 1e − 5, λ1 = 0.4, λ2 = 1.0, and
at_steps = 2. Note that involving the defending
component increased the number of trainable pa-
rameters to 76,655,822. For number of parameters
for attacking models, please refer to Table S4.

2 Conditional generation

The main framework we introduced in the paper
assumes no access to the ground-truth of the in-
put example, i.e. it generates adversarial exam-
ple purely based on the input example. However,
most existing attacking methods assumes access
to the ground-truth label of the input, such as
TEXTFOOLER, so that the attack is only performed
against examples that are correctly classified by the
target model.

In this section, we explore the conditional gen-
eration in grey-box attack, which assumes access
to the ground-truth of input examples at attack-
ing time. Specifically, two seperate models are
trained for positive-to-negative (PTN) and negative-
to-positive (NTP) attack, respectively. The ratio-
nale is that, in conditional generation, given the
ground truth of the input example, our attacking
algorithm can choose between models for PTN and
NTP accordingly, thereby performing more accu-

rate attack.
As an additional experiment, we also explore

the GAN-based auxiliary loss that were introduced
in (Ren et al., 2020) for label preservation, which
we denote as +GAN. Specifically, we involve an
additional discriminative module D which consists
of a discriminative model for each target class
t = {1, ..., |C|} and |C| denotes the number of
classes. The training phase is therefore divided
into generative (attacking) steps, which are opti-
mised to generate adversarial examples to fool the
target model C; and discriminative steps, which
are optimised to discriminate between the origi-
nal examples (labeled as ’1’) and generated ex-
amples (labeled as ’0’) of a specific class t. The
discriminative losses for different classes are fi-
nally added together as the loss for discrimina-
tive steps, e.g. Ldisc =

∑|C|
t=1(L

t
disc), where

Lt
disc = LCEDt (logitsDt([x,x∗]), [1, 0]). While

for generative steps, an additional loss Laux is
added to L so as to fool the discriminators, where
Laux =

∑|C|
t=1 LCEt

D
(logitsDt([x,x∗]), [1, 1]). Intu-

itively, the GAN-based auxiliary losses are added
to ensure that the generated adversarial examples,
whose ground-truth label is t, are drawn from the
same distribution of the input examples of class t.

We performed the same experiment with that
reported in Table 1 of the main paper, in which we
compared the performance of different variants of
our grey-box attack framework on the development
partition of yelp50. Table S3 includes the full
results for both unified and conditional generation
models for each of the variants, and Table S4 shows
the number of trainable parameters for attacking
variants.

Generally speaking, conditional generation did
not help in terms of reconstruction, indicated by the

ACC BLEU SENT
ALL POS NEG SUC POS NEG AGR UKN DAGR

(A
)U

ni
fie

d

AE 66.0 99.8 28.4 55.3 71.7 58.7 – – –
AE+BAL 75.6 72.3 78.8 65.9 73.9 70.9 0.12 0.80 0.08
AE+LS 74.3 77.8 70.4 80.3 84.6 86.3 0.46 0.44 0.10
AE+LS+GAN 74.6 77.1 71.9 75.9 80.1 81.3 0.42 0.54 0.04
AE+LS+CF 76.6 66.5 86.7 79.9 82.5 85.0 0.64 0.28 0.08
AE+LS+CF+GAN 79.6 69.4 89.9 74.5 79.4 81.9 0.62 0.34 0.04
AE+LS+CF+CPY 77.4 70.9 83.8 85.7 90.6 90.2 0.68 0.30 0.02

(B
)C

on
di

tio
na

l

AEptn+LS – 74.4 – 81.9 87.6 – 0.54 0.36 0.10
AEptn+LS+GAN – 75.4 – 81.9 89.7 – 0.22 0.62 0.16
AEptn+LS+CF – 74.2 – 80.6 85.6 – 0.60 0.32 0.08
AEptn+LS+CF+GAN – 75.4 – 80.6 81.6 – 0.80 0.18 0.02
AEptn+LS+CF+GAN+CPY – 77.8 – 85.9 89.7 – 0.78 0.2 0.02
AEntp+LS – – 74.4 82.7 – 88.6 0.60 0.20 0.20
AEntp+LS+GAN – – 74.6 83.1 – 88.2 0.74 0.18 0.08
AEntp+LS+CF – – 75.4 77.8 – 85.1 0.54 0.22 0.10
AEntp+LS+CF+GAN – – 79.4 78.8 – 84.4 0.66 0.28 0.06
AEntp+LS+CF+GAN+CPY – – 77.8 83.5 – 89.2 0.74 0.14 0.12

Table S3: Performance of adversarial examples generated by different auto-encoder variants on the yelp50 de-
velopment set.

Models Number of Parameters

AE 61,791,232
AE+BAL 61,791,232
AE+LS 61,791,232
AE+LS+GAN 66,227,406
AE+LS+CF 72,219,648
AE+LS+CF+GAN 76,655,822
AE+LS+CF+CPY 72,219,648

Table S4: Number of parameters for different auto-
encoder variants.

similar BLEU scores reported in the table; but it
improved the sentiment agreement score from 0.68
to 0.80 and 0.74, respectively, for PTN and NTP
attack. However, conditional generation requires
access to the ground-truth of the input example and
a 1-time query against the target model in attacking
time. Therefore, we only reported the performance
of unified generation in the main paper.

In terms of the GAN-based auxiliary loss, our
results demonstrated that it brought benefits in
terms of label preservation in conditional gener-
ation. However, it did not help with label preserva-
tion in unified generation, and decreased the BLEU
score by 5 points. Therefore, we did not report it
in the main paper.

References

Yankun Ren, Jianbin Lin, Siliang Tang, Jun Zhou,
Shuang Yang, Yuan Qi, and Xiang Ren. 2020. Gen-
erating natural language adversarial examples on a

large scale with generative models. arXiv preprint
arXiv:2003.10388.

