
Appendix
A Broader Impact Statement
Learning markers of mood from mobile data
presents an opportunity for large-scale adaptive
interventions of suicidal ideation. However, there
are important concerns regarding its implications
to society and policy.

Applications in mental health: Suicide is the sec-
ond leading cause of death among adolescents. In
addition to deaths, 16% of high school students
report seriously considering suicide each year, and
8% make one or more suicide attempts (CDC,
2015). Despite these alarming statistics, there is
little consensus concerning imminent risk for sui-
cide (Franklin et al., 2017; Large et al., 2017). Cur-
rent research conducts clinical interviews and pa-
tient self-report questionnaires that provide long-
term assessments of suicide risk. However, few
studies have focused on imminent suicidal risk,
which is of critical clinical importance as a step to-
wards adaptive real-time interventions (Glenn and
Nock, 2014; Schuck et al., 2019). Given the impact
of suicide on society, there is an urgent need to
better understand the behavior markers related to
suicidal ideation.

“Just-in-time” adaptive interventions delivered via
mobile health applications provide a platform of ex-
citing developments in low-intensity, high-impact
interventions (Nahum-Shani et al., 2018). The abil-
ity to intervene precisely during an acute risk for
suicide could dramatically reduce the loss of life.
To realize this goal, we need accurate and timely
methods that predict when interventions are most
needed. Monitoring (with participants’ permission)
mobile data to assess mental health and provide
early interventions is, therefore, a rich opportunity
for scalable deployment across high-risk popula-
tions. Our data collection, experimental study, and
computational approaches provide a step towards
data-intensive longitudinal monitoring of human
behavior. However, one must take care to summa-
rize behaviors from mobile data without identifying
the user through personal (e.g., personally identifi-
able information) or protected attributes (e.g., race,
gender). This form of anonymity is critical when
implementing these technologies in real-world sce-
narios. Our goal is to be highly predictive of mood
while remaining as privacy-preserving as possible.
We outline some of the potential privacy and secu-
rity concerns below.

Limitations: While we hope that our research can
provide a starting point on the potential of detect-
ing mood unobtrusively throughout the day in a
privacy-preserving way, we strongly acknowledge
there remain methodological issues where a lot
more research needs to be done to enable the real-
world deployment of such technologies. We em-
phasize that healthcare providers and mobile app
startups should not attempt to apply our approach
in the real world until the following issues (and
many more) can be reliably resolved:

1. We do not make broad claims across teenage
populations from only 17 participants in this
study. Furthermore, it remains challenging for
models to perform person-independent pre-
diction which makes it hard to deploy across
large populations.

2. Our current work on predicting daily mood is
still a long way from predicting imminent sui-
cide risk. Furthermore, any form of prediction
is still significantly far away from integrating
methods like this into the actual practice of
mental health, which is a challenging problem
involving a broad range of medical, ethical,
social, and technological researchers (Resnik
et al., 2021; Lee et al., 2021).

3. Text and keystrokes can differ for participants
who speak multiple languages or non-prestige
vernaculars. One will need to ensure that the
method works across a broad range of lan-
guages to ensure accessibility in its desired
outcomes.

4. This study assumes that participants have no
restrictions for data/network connections &
data plans on their phones, which may leave
out vulnerable populations that do not meet
this criterion.

Privacy and security: There are privacy risks as-
sociated with making predictions from mobile data.
To deploy these algorithms across at-risk popula-
tions, it is important to keep data private on each
device without sending it to other locations. Even
if data is kept private, it is possible to decode data
from gradients (Zhu and Han, 2020) or pretrained
models (Carlini et al., 2020). In addition, sensitive
databases with private mobile data could be at-risk
to external security attacks from adversaries (Lyu
et al., 2020). Therefore, it is crucial to obtain user
consent before collecting device data. In our exper-



iments with real-world mobile data, all participants
have given consent for their mobile device data to
be collected and shared with us for research pur-
poses. All data was anonymized and stripped of all
personal (e.g., personally identifiable information)
and protected attributes (e.g., race, gender).

Social biases: We acknowledge that there is a risk
of exposure bias due to imbalanced datasets, es-
pecially when personal mobile data and sensitive
health labels (e.g., daily mood, suicidal thoughts
and behaviors, suicide risk). Models trained on
biased data have been shown to amplify the un-
derlying social biases especially when they corre-
late with the prediction targets (Lloyd, 2018). This
leaves room for future work in exploring methods
tailored for specific scenarios such as mitigating
social biases in words (Bolukbasi et al., 2016), sen-
tences (Liang et al., 2020a), and images (Otter-
bacher et al., 2018). Future research should also fo-
cus on quantifying the trade-offs between fairness
and performance (Zhao and Gordon, 2019).

Overall, we believe that our proposed approach can
help quantify the tradeoffs between performance
and privacy. We hope that this brings about future
opportunities for large-scale real-time analytics in
healthcare applications.

B Dataset Details
The Mobile Assessment for the Prediction of Sui-
cide (MAPS) dataset was designed to elucidate
real-time indicators of suicide risk in adolescents
ages 13 � 18 years. Current adolescent suicide
ideators and recent suicide attempters along with
aged-matched psychiatric controls with no lifetime
suicidal thoughts and behaviors completed baseline
clinical assessments (i.e., lifetime mental disorders,
current psychiatric symptoms). Following the base-
line clinical characterization, a smartphone app,
the Effortless Assessment of Risk States (EARS),
was installed onto adolescents’ phones, and passive
sensor data were acquired for 6-months. Notably,
during EARS installation, a keyboard logger is con-
figured on adolescents’ phones, which then tracks
all words typed into the phone as well as the apps
used during this period. Each day during the 6-
month follow-up, participants also were asked to
rate their mood on the previous day on a scale rang-
ing from 1� 100, with higher scores indicating a
better mood. After extracting multimodal features
and discretizing the labels (see Section 2), we sum-
marize the final dataset feature and label statistics

in Table 9.

C Experimental Setup
We provide additional details on the model imple-
mentation and experimental setup.

C.1 Implementation Details
All models and analyses were done in Python.
SVM models were implemented with Scikit-
learn and MLP/NI-MLP models were imple-
mented with PyTorch. BERT, XLNet, and Long-
former models were fine-tuned using Hugging
Face (website: https://huggingface.co, GitHub:
https://github.com/huggingface).

C.2 Hyperparameters
We performed a small hyperparameter search over
the ranges in Table 10. This resulted in a total of
35 hyperparameter configurations for SVM and
12 for MLP (6 for apps only). By choosing the
best-performing model on the validation set, we
selected the resulting hyperparameters as shown in
Table 10.

C.3 Model Parameters
Each model has about two million parameters. See
Table 10 for exact hidden dimension sizes.

C.4 Training Resources and Time
All experiments were conducted on a GeForce RTX
2080 Ti GPU with 12 GB memory. See Table 11
for approximate running times.

D Experimental Details
We present several additional analysis of the data
and empirical results:

D.1 Details on Mood Prediction
There is often a tradeoff between privacy and pre-
diction performance. To control this tradeoff, we
vary the parameter �, which is the amount of noise
added to the identity-dependent subspace across
batches and training epochs. In practice, we au-
tomatically perform model selection using this
performance-privacy ratio R computed on the vali-
dation set, where

R =
sMLP � sNI-MLP

tMLP � tNI-MLP
(4)

is defined as the improvement in privacy per unit of
performance lost. Here, s is defined as the accuracy
in the user prediction task and t is defined as the F1
score on the mood prediction task.



Table 9: Mobile Assessment for the Prediction of Suicide (MAPS) dataset summary statistics.

Users Datapoints Modalities Features Dimensions Labels

17 1641
Text bag-of-words, one-hot 2000

Daily mood: negative, neutral, positiveKeystrokes bag-of-timings 100
App usage bag-of-apps, one-hot 274

Table 10: Model parameter configurations. *Integer kernel values denote the degree of a polynomial kernel.

Model Parameter Value

SVM C 0.1, 0.5, 1, 2, 3, 5, 10
Kernel* RBF, 2, 3, 5, 10

MLP

hidden dim 1 (multimodal & text only) 1024, 512
hidden dim 2 (multimodal & text only) 128, 64

hidden dim 1 (keystrokes only) 64, 32
hidden dim 2 (keystrokes only) 32, 16

hidden dim 1 (apps only) 128
hidden dim 2 (apps only) 128, 64

dropout rate 0, 0.2, 0.5
learning rate 0.001

batch size 100
epochs 200

NI-MLP � 0.1, 1, 2, 3, 5, 10
� 1, 5, 10, 25, 50, 100, 150

Table 11: Approximate training times (total across 10-fold cross validation and hyperparameter search).

Model Modality Time (hours)

SVM

Text + Keystrokes + Apps 10
Text + Keystrokes 10

Text + Apps 10
Text 8

Keystrokes 1
Apps 1

MLP (100 epochs, 3 runs)

Text + Keystrokes + Apps 6
Text + Keystrokes 5

Text + Apps 6
Text 5

Keystrokes 4
Apps 2

NI-MLP all 4

In the rare cases where NI-MLP performed bet-
ter than the original MLP and caused R to be-
come negative, we found this improvement in per-
formance always came at the expense of worse
privacy as compared to other settings of � and � in
NI-MLP. Therefore, models with negative R were
not considered for Table 1.

D.2 Details on Preserving Privacy
For Table 5, the model with the best privacy out of
those within 5% performance of the original MLP
model (or, if no such model existed, the model with
the best performance) was selected.

Interestingly, in Figure 4, we find that the trade-
off curve on a model trained only using app fea-
tures does not exhibit a Pareto tradeoff curve as ex-

pected. We attribute this to randomness in predict-
ing both mood and identities. Furthermore, Wang
et al. (2017) found that adding noise to the identity
subspace can sometimes improve generalization by
reducing reliance on identity-dependent confound-
ing features, which could also explain occasional
increased performance at larger � values.

Note that we do not include privacy results for fea-
tures learned by SVM, which finds a linear separa-
tor in a specified kernel space rather than learning
a representation for each sample. Explicitly pro-
jecting our features is computationally infeasible
due to the high dimensionality of our chosen kernel
spaces.



Table 12: Top 5 words associated with positive and negative moods (each row is a different user).

Top 5 positive words Top 5 negative words
hot, goodnight, ft, give, keep soon, first, ya, friend, leave
still, y’all, guys, new, come amazing, see, said, idk, look
mind, days, went, tf, next tired, hair, stg, snap, anyone

girls, music, happy, mean, getting omg, people, talking, ask, might

Table 13: Top words associated with positive and negative moods across users. We find that while certain positive
words are almost always indicative of mood, others are more idiosyncratic and depend on the user.

Positive words Positive users Negative users Negative words Negative users Positive users
make 9 1 i’m/im 10 5
yes 9 1 feel 7 3
got 7 1 yeah 7 5
still 7 1 can’t/cant 6 2

wanna 7 1 people 6 4
like 7 2 know 6 4
need 7 2 go 6 5
send 7 2 one 6 6
get 7 2 today 5 1

good 7 3 day 5 2

D.3 Qualitative Analysis
In this section, we provide more empirical analysis
on the unimodal and multimodal features in the
MAPS dataset.

D.3.1 Understanding the unimodal
features

Text: We begin with some basic statistics regarding
word distributions. For each user, we tallied the
frequencies of each word under each daily mood
category (positive, neutral, and negative), as well as
the overall number of words in each mood category.
We define “positive” words and emojis to be those
with a higher relative frequency of positive mood
compared to the overall positive mood frequency,
and lower than overall negative mood frequency.
Likewise, “negative” words and emojis have higher
than overall negative mood frequency and lower
than overall positive mood frequency. We filtered
out words for specific users if the word was used
less than 40 times. Finally, we ranked the words by
the difference in relative frequency (i.e., a word is
“more positive” the larger the difference between
its positive mood relative frequency and the user’s
overall positive mood relative frequency). See Ta-
ble 12 for examples of top positive and negative
words. For each word, we also counted the number
of users for which the word was positive or nega-
tive. See Table 13 for the words with the highest
user counts.

Keystrokes: We show some sample bag-of-timing
histograms in Figure 6. It is interesting to find that

certain users show a bimodal distribution across
their keystroke histograms with one peak represent-
ing faster typing and another representing slower
typing. Visually, the overall keystroke histograms
did not differ that much across users which might
explain its lower accuracies in both mood and user
prediction when trained with NI-MLP (see Fig-
ure 4).

App usage: Similar to “positive” words, we define
“positive” apps to be those with higher than overall
positive mood relative frequency and lower than
overall negative mood relative frequency, and “neg-
ative” apps to be the opposite. Apps were also then
sorted by difference in relative frequency.

D.3.2 Understanding the multimodal
features

Characters with keystrokes: For each user, we plot-
ted histograms of keystroke timings of alphanu-
meric characters, symbols (punctuation and emo-
jis), spacebar, enter, delete, and use of autocorrect,
split across daily mood categories. See Figure 7
for examples across one user. We find particularly
interesting patterns in the autocorrect keys and
symbols where keystrokes are quite indicative of
mood, which attests to the unique nature of typed
text.

Words with keystrokes: For each user, we plotted
histograms of the word-level keystroke timings of
the top 500 words, split across the daily mood cat-
egories of positive, neutral, and negative. We also
performed Wilcoxon rank-sum tests at 5% signifi-



Figure 6: Examples of keystroke timing histograms for different users. We find that the distribution of keystroke
timings varies between unimodal and bimodal for different users.

Figure 7: Example of more character key-presses and how their keystroke patterns can be indicative of either
positive, neutral, or negative mood. We find particularly interesting patterns in the autocorrect keys and symbols
where keystrokes are quite indicative of mood.



cance level (Wilcoxon, 1992) between the timings
of positive and negative mood for each user/word
combination to determine which words had sig-
nificantly different timings between positive and
negative mood.

E Negative Results and Future
Directions

Since this is a new dataset, we explored several
more methods throughout the research process. In
this section we describe some of the approaches
that yielded initial negative results despite them
working well for standard datasets:

1. User specific models: We also explored the set-
ting of training a separate model per user but we
found that there was too little data per user to train a
good model. As part of future work, we believe that
if NI-MLP can learn a user-independent classifier,
these representations can then be used for further
finetuning or few-shot learning on each specific
user. Previous work in federated learning (Smith
et al., 2017; Liang et al., 2020b) offers ways of
learning a user-specific model that leverages other
users’ data during training, which could help to
alleviate the lack of data per user.

2. User-independent data splits: We have shown
that text, keystrokes, and app usage features are
highly dependent on participant identities. Conse-
quently, models trained on these features would
perform poorly when evaluated on a user not found
in the training set. We would like to evaluate if
better learning of user-independent features can im-
prove generalization to new users (e.g., split the
data such that the first 10 users are used for train-
ing, next 3 for validation, and final 4 for testing).
Our initial results for these were negative, but we
believe that combining better privacy-preserving
methods that learn user-independent features could
help in this regard.

3. Fine-grained multimodal fusion: Our ap-
proach of combining modalities was only at the
input level (i.e., early fusion (Baltrušaitis et al.,
2018)) which can be improved upon by leverag-
ing recent work in more fine-grained fusion (Liang
et al., 2018). One such example could be to align
each keystroke feature and app data to the exact
text that was entered in, which provides more fine-
grained contextualization of text in keystroke and
app usage context.


