Papers from the Seventh
Scandinavian Conference
of Computational Linguistics

Reykjavik 1989

Edited by
JORGEN Pind
and

Eirikur Rognvaldsson

Reykjavik 1990
Institute of Lexicography
Institute of Linguistics



© 1990 Institute of Lexicography
Institute of Linguistics

These proceedings are published with financial aid from IBM



Contents

Preface

Part I: Morphology, Syntax and Discourse analysis
Stefdn Briem:

Automatisk morfologisk analyse af islandsk tekst . . . ... ... ....
Eva Ejerhed:

A Swedish Clause Grammar And Its Implementation . .. .. ... ..
Lars M Gustafsson:

Hindelsestyrd textgenerering . . . . . . . ... ... ...........
Steffen Leo Hansen:

P4 vej mod en fagsproglig tekstfortolker? . . . . . .. ... .. .. ...
Janne Bondi Johannessen:

Is Two-level Morphology a Morphological Model?
Gunnel Kdllgren:

Automatic Indexing and Generating of Content Graphs from Unrestrict-
ed Text . . . . . . . e e e

Gregers Koch:
Computational Man-Machine Interaction in Simple Natural Language .
Jordan Zlatev:

Criteria for Computational Models of Morphology: The Two-Level Model
asan NLP Framework . . . . ... ... ... ... . ...........

Part II: Machine Translation

Poul Andersen:
How Close Can We Get to the Ideal of Simple Transfer in Multi-lingual
Machine Translation (MT)? . . . . .. ... ... ... .. ... .....
Annelise Bech:
The Design and Application of a Domain Specific Knowledgebase in the
TACITUS Text Understanding System . . . . .. ... ..........
Anna Braasch:
Udnyttelse af maskinlaesbare ordbogsdata til maskinoversazttelse .

r

ix

41

51

103



vi Computational Linguistics — Reykjavik 1989

Stefdn Briem:
Maskinoversattelse fra esperanto tilislandsk . . . ... ... ... ... 138

Boel Victoria Bgggild-Andersen:
Valence Frames Used for Syntactic Disambiguation in the EUROTRA-

DK Model. . . ... ... e e e 146
Hanne Fersge:
Representational Issues within Eurotra . . ... ... ... ....... 157

Barbara Gawroriska- Werngren:
Identifiering av diskursrefenter vid maskinéversdttning frdn ryska till
svenska . . ... L e e 170
Niels Jeger:
Text Treatment and Morphology in the Analysis of Danish within EU-

ROTRA . . . e e e 183
Sabine Kirchmeier-Andersen:

Coordination in Eurotra. . . . . . .. .. ... ... ... . ... 191
Gudrin Magnisddttir:

Collocations in Knowledge Based Machine Translation. . . . . . .. .. 204
Susanne Nghr Pedersen:

The Treatment of Support Verbs and Predicative Nouns in Danish . . . 208
Klaus Schubert:

Kunskap om virlden eller kunskap om texten? . . ... ... ... ... 218
Bengt Sigurd:

Erfarenheter av Swetra—ett svenskt MT-experiment . . . . .. . . ... 229
Ole Togeby:

Translation of Prepositions by Neural Networks . . .. ... ... ... 237

Ivar Utne:
Machine Aided Translation between the two Norwegian Languages Nor-
wegian-Bokmal and Norwegian-Nynorsk . . . . . ............. 250

Part III: Computational Lexicography
Henrik Holmboe:

Dansk radizrordbog . . . . . . . ... .. oL 263
Jon Hilmar Jdénsson:
A Standardized Dictionary of Icelandic Verbs . . . . . . .. ... .... 268

Arne Jonsson:

Application-Dependent Discourse Management for Natural Language

Interfaces: An Empirical Investigation . . . ... ............. 297
Jorgen Pind:

Computers, Typesetting, and Lexicography . . .. ... ......... 308
Bjorn P. Svavarsson & Jorgen Pind:

Database Systems for Lexicographic Work . .. ... .......... 326



: Contents vii

Anna Sdguall Hein:
Lemmatising the Definitions of Svensk Ordbok by Morphological and
Syntactic Analysis. A Pilot Study . . ... ... . ... ......... 342
Ivar Utne:
What Should be Included in a Commercial Word Data Base, and Why? 358

List of Participants 373






Preface

The present volume is & -collection of papers that were read at the Seventh
Scandinavian Conference of Computational Linguistics (Nordiska Datalingvistik-
dage) and the Symposium on Computational Lexicography and Terminology in
Reykjavik, June 26th~28th, 1989.

The Conference and the Symposium were jointly organized by the Institute of
Linguistics and the Institute of Lexicography, University of Iceland. In addition
to the editors of this volume, Sigurdur Jénsson, cand.mag., of I6unn Publishing
Co., was a member of the organizing committe.

The book is divided into three sections: Morphology, Syntax and Discourse
Analysis (8 papers), Machine Translation (15 papers), and Computational Lex-
icography (7 papers).

A few papers were presented at the conference but not received for publica-
tion.

The editors would like to thank Sigurdur Jénsson for taking the initiative in
holding the Conference and the Symposium in Iceland, and for his assistance in
organizing these events. Thanks are due to Bjorn P6r Svavarsson, and Fridrik
Magniisson, of the Institute of Lexicography, for help in bringing out these pro-
ceedings.

Jorgen Pind and Eirikur Régnvaldsson

ix






Part 1

Morphology, Syntax, and
Discourse Analysis






STEFAN BRIEM

Automatisk morfologisk analyse af
islandsk tekst

Abstract

Automatic Morphological Analysis of Icelandic Tert

One of the projects worked on at the Institute of Lexicography at the
University of Iceland is a frequency analysis of Icelandic vocabulary and
grammar. The most time-consuming part of the work consists in morpho-
logical analysis of text samples containing in all more than half a million
running words. For every single word the analysis results in registration
of the word class, the flexion form and the lemma to which the text word
belongs.

If manually performed, this kind of analysis would be enormously
monotonic work requiring high precision. A method has been developed
to perform the analysis to a great extend automatically using a computer.
However the manual work can not be eliminated, but it has already been
reduced significantly, and at the same time the character of the manual
work is altered to be mainly a matter of correcting activity.

The method of automatic analysis is based on a corpus of tags and word
forms originating in a previous manually performed analysis of more than
54,000 text words and on a set of rules for possible relations between words
of the same sentence. On the basis of frequencies compiled by the previous
analysis and of points given by the rules when fulfilled, a computer program
automatically selects the probably ‘best sentence’ among a (usually great)
number of homograph sentences. Furthermore, in case of words not found
in the collection of word forms, the program makes use of a collection of
more than 5,000 back parts of word forms in order to make an intelligent
guess.

At the current stage the result of the automatic analysis is completely
correct for about 70% of the text words and partly correct for about 15%.
Our experience shows that the manual effort is reduced by about 2/3. By
extension of the word form collection and by improvement of the relation
rules and points giving, a significant improvement of the automatic analysis
is expected in the near future, e.g. leading to 85%-90% of text words being
correctly analysed.



4 Computational Linguistics — Reykjavik 1989

1 Indledning

Automatisk morfologisk analyse af islandsk tekst hgrer til en af Leksikografisk
Instituts opgaver. Det drejer sig om en fase af et stgrre projekt, som er udar-
bejdelse af en islandsk frekvensordbog. Bogen skal give oplysninger om brugen
af islandsk nutidssprog, det skriftlige sprog, i form af forskellige slags oversigter
over hyppigheden af ord, ordformer, bgjningsformer, ordklasser o.s.v.

Det kan give en idé om projektets omfang at det vil omfatte ca. en halv
million tekstord. Langt den stgrste del af arbejdet ligger i den morfologiske
analyse, som bliver seerlig omhyggeligt udfgrt. I den sidste ende vil analysen
blive manuelt udfgrt eller i hvert fald manuelt kontrolleret. Men det har allerede
vist sig at arbejdet reduceres i betydelig grad ved at man i forste omgang udfgrer
analysen automatisk ved hjzlp af en datamat.

2 Formal

Formalet med den morfologiske analyse uanset om den bliver udfert manuelt
eller maskinstgttet er fglgende.

For det fgrste skal analysen for hvert enkelt tekstords vedkommende fgre til
registrering af ordklasse og bgjningsform.

Desuden registrerer man hvilket kasus verber og prapositioner styrer. De
fleste ord, som man plejer at klassificere som prapositioner, bruges i nogen
tilfeelde som adverbier, og omvendt, mange ord, som traditionelt klassificeres
som adverbier, bruges ogsd som praepositioner. I dette projekt har man derfor
valgt at behandle praepositioner og adverbier under ét, hvilket medfgrer, at man
ogsa registrerer adverbiers kasusstyrelse, nir den forekommer.

Endvidere registrerer man for hvert tekstord det tilhgrende leksikonsord, ogsd
kaldt lemma.

Som et eksempel tager vi folgende korte tekst og det tilstraebte resultat af
dens analyse:

TEKST:

Pad er pridjudagur i dag. Magnls kemur &
morgun. Hann dvaldist &samt dr. Jésteini
Samilelssyni alllengi i Danmérku. Félagi
hans hefur ordid eftir.




Stefin Briem: Automatisk morfologisk analyse af islandsk tekst

ANALYSE:

fphen pad pad
sfgl3e er vera
nken pridjudagur bpridjudagur
ao 1 i
nkeo dag dagur
nken Magnis Magniis
sfgle kemur koma

ao a a
nkeo morgun morgunn
fpken hann hann
sfm3e dvaldist dvelja
ab dsamt asamt
nkeb dr. dr.
nkebp Jésteini Jésteinn
nkeb Samelssyni Samfielsson
aa alllengi alllengi
abp i i
nvepbp Danmérku Danmérk
nken félagi félagi
fpkee hans hann
sfgle hefur hafa
ssg ordid verda
aa eftir eftir

I den midterste kolonne har vi tekstordene, ét i hver linie, og til hgjre de
tilhgrende leksikonsord. Til venstre har vi sa tegn for de grammatiske oplysninger
som analysen har fort til. Det forste tegn star for ordklasse. For hvert tekstord
er der hgjst 7 grammatiske tegn i en bestemt raeekkefglge. Den kan man kalde en
grammatisk streng. En blank linie betegner begyndelsen af en ny satning.

3 Den automatiske analyse

Den metode, som man her benytter til automatisk morfologisk analyse, er base-
ret pd en tidligere manuelt udfgrt analyse af godt 54.000 tekstord (Fridrik
Magnisson 1988) og fungerer ved hjalp af et st af morfologiske regler og ved
betragtning og vurdering af sandsynligheder.

Hovedanalysen udfgres med én s@tning ad gangen. Det m& derfor vaere helt
klart, hvor hver sztning begynder. For at opnd det udfgres der en foranalyse
som har til formal at registrere startfeltet for hver sztning af den tekst, som skal
analyseres.



6 Computational Linguistics — Reykjavik 1989

3.1 Foranalyse

Foranalysen udfgres halvautomatisk, d.v.s. i samarbejde mellem menneske og
maskin.

TEKST: BEGYNDELSESORD:
bad er pridjudagur i dag. Magniis kemur & < bad
morgun. Hann dvaldist &samt dr. Jésteini < Hann
Samielssyni alllengi i Danmorku. Félagi 1
hans hefur ordid eftir. Eg
Og
En
ba
Hin
begar
Vio

bar
betta

A A AANAANANAAAAANANANANANANANANA

POINTERREGISTER: | -eeeee
0 < bad
26 # Magnuis
49 < Hann
115 < Félagi

‘ |—— begyndelsesord
# for egennavne, ellers <

startfelt i teksten

Her har vi den samme tekst igen. Til hgjre er vist de fprste 20 ord i en samling af
649 begyndelsesord, ordnet efter hyppighed. Disse 20 ord er altsd de hyppigste
i begyndelsen af islandske sztninger, i hvert fald i den tekst som samlingen
er baseret pi. Det program, som udfgrer foranalysen, bruger denne samling til
automatisk at finde ud af de fleste satningsbegyndelser i en tekst. Nar der er
tvivl stopper programmet op, inviterer mennesket til en afggrelse og fortsatter
ndr en beslutning er truffet.

I dette eksempel ma et menneske trade til for at afggre, at Magnis er et
proprium og at Jésteinn ikke er begyndelsen af en ny sztning.



Stefan Briem: Automatisk morfologisk analyse af islandsk tekst 7

Resultatet, et pointerregister, bruges si sammen med teksten under hoved-
analysen, den egentlige antomatiske morfologiske analyse, som vi nu gar over til
at betragte.

3.2 Den automatiske hovedanalyse

SYSTEMETS BESTANDDELE

pointere tekst
grammatiske
strenge
PROGRAM ordformer
s@t af
regler
sidstedele

resultat

Dette billede viser systemets bestanddele. I centrum er et program, hvori der er
indbygget et st af 75 regler, isaer morfologiske regler. Programmet ggr brug af
en samling af ordformer og en samling af sidstedele af ord. Det er programmets
opgave for hvert enkelt ord i en given tekst at finde frem til den mest sandsynlige
streng blandt de 566 forskellige grammatiske strenge, samt at finde det tilhgrende
leksikonsord.

Vi vil nu betragte de enkelte bestanddele narmere.



8 Computational Linguistics — Reykjavik 1989

3.2.1 Stgtteregistre

Lad os begynde med de 3 stgtteregistre som programmet bruger uandrede fra
tekst til tekst.

Det forste stgtteregister indeholder 566 grammatiske strenge i alfabetisk
rakkefplge. Tallene er hyppighedstal.

GRAMMATISKE STRENGE:
434 a a
27 a
34 a
17 a
a
a

............

............

............

Det andet stgtteregister indeholder knap 18.000 ordformer i alfabetisk raekke-
folge sammen med det tilhgrende leksikonsord og leengst til venstre nummeret pa
en grammatisk streng. Hver ordform kan optraede mange gange p.g.a. forskelle
i leksikonsord og forskellige bgjningsformer. Tallene i anden kolonne er hyppig-
hedstal fra den tidligere analyse.

ORDFORMER:
421 1 vélstjoérum vélstjéri
453 5 vélum vél
455 3 vélunum vél
116 4 vér ég
116 171 vid ég
0 52 vid vid
4 498 vid vid
6 27 vid vid
484 1 vida vida
215 1 vidamesta vidamikill
208 1 vidamikid vidamikill




Stefan Briem: Automatisk morfologisk analyse af islandsk tekst 9

Og det tredje stgtteregister indeholder godt 5.000 sidstedele af ordformer i
baglans alfabetisk raekkefglge, hver sammen med den tilsvarende sidstedel af et
leksikonsord og nummeret pd en grammatisk streng. Tallene i anden kolonne er
sandsynlighedstal som man kan knytte til hver sidstedel for at styre programmets
anvendelse af dette register.

SIDSTEDELE:
377 0 trjaa tré
287 adda a&ddur

0
311 0 =adda addur
41 0 alda old
287 1 falda faldur
311 1 falda faldur
377 0 halda hald

0 elda eldi

............

------------

fjalla fjall
valla vollur

377 0 efla efli
429 0 regla regla
377 0 bila bil
373 0 heimila heimili
377 0 heimila heimili
287 O mikla mikill
311 0 mikla mikill
409 0 jokla jokull
417 0 jokla jokull
377 0 falla fall

0

0

............

------------

3.2.2 Set af regler

Lad os nu betragte det regelsat som er direkte indbygget i programmet. Til hver
regel er der knyttet et antal points, som gives hver gang reglen er opfyldt.

Programmet arbejder med én s®tning ad gangen. Det slar tekstordene op
i samlingen af ordformer. I de fleste tilfzelde findes der nogle muligheder for
hvert tekstord. Det kan fgre til et stort antal af homografe sztninger, der bliver
kandidater til stillingen ‘den bedste sztning’. Hvis tekstordene betragtes hver
for sig uanset deres stilling i satningen, er det umuligt at afggre hvilken af de
homografe sztninger er den rigtige eller den bedste.

Men her traeder reglerne til. For hver enkelt af de homografe sztninger
kalkulerer programmet det totale antal points som reglerne giver hver gang de
er opfyldt. Den s@tning, som fir de fleste points, anses for at vaere den bedste
og bliver valgt som analysens resultat.



10 Computational Linguistics — Reykjavik 1989

I praksis kan antallet af homografe satninger blive si enormt, at det ville
tage datamaten méaneder eller endog ar at betragte dem alle. Men da antallet
er kendt tidligt under processen, lgses dette problem nemt ved optimalisering af
kun en del af setningen ad gangen. Det medfsrer en nedsettelse af analysens
korrekthed pa kun ca. 1%.

De fleste af reglerne er meget enkle og kan derfor nemt omskrives til et
programmeringssprog. Her er vist nogen fa af reglerne i dansk oversattelse.
Tallene er de tilhgrende points.

e Hvis der eftir et faldstyrende adverbium fglger et ikke fald-
styrende adverbium og derpd fglger et faldbgjet ord, si vil det
faldbgjede ord sta i det fald som det fgrste adverbium styrer.
400

¢ Det er sandsynligt at ad er en konjunktion, hvis et ukendt ord
folger efter. 500

o Hvis der efter et adjektiv fglger et substantiv, si har de naesten
altid samme kgn, tal og fald. 1000

o Hvis der efter et adjektiv folger et substantiv i bekendt form, s&
er der stgrre sandsynlighed for at adjektivet har bestemt form
end ubestemt. 10

e Et verbum i perfektparticipium er sandsynligt, hvis det fglgende
ord er verbet vera eller hvis verbet vera er et af de to for-
anstaende ord. 200

Kongruensbgjning er en af de starkeste stgttepiller for den automatiske
analyse. Et eksempel pd kongruensbgjning har vi her i tredje regel i tilfzlde
af substantiv og tilhgrende adjektiv. Andre analoge regler for kongruensbgjning
omfatter ogsd pronominer og talord.

3.2.3 Resultat

Korrektheden af den automatiske analyse fremgar af sammenligning mellem den
pa neeste side anfgrte og den tidligere viste korrekte analyse af samme tekst. I
dette eksempel har programmet bl.a. taget fejl af tekstordet félagi. Ifpige den
automatiske analyse skulle det vere singularis dativ af substantivet félag som
betyder forening, men i virkeligheden drejer det sig om singularis nominativ af
substantivet félagi som betyder kammerat. Lidt senere far vi flere eksempler pa
homografi.



Stefan Briem:

Automatisk morfologisk analyse af islandsk tekst

11

AUTOMATISK ANALYSE:

f

(=T - ]

B op

Hh
o

[+

o

B ppPEP

p B B
o Hho P

WO IR Hh'T

K O Fh ¥

T e R K

o

h

g
e

oo

QMK O

en
3en

n

w oo o

o o

# #*

pad
er

pridjudagur
i

dag

Magnis
kemur
a

morgun

hann
dvaldist
asamt

dr.
Josteini
SamGielssyni
alllengi

i

Danmoérku

félagi
hans
hefur
ordid
eftir

pad
vera

pridjudagur
i
dagur

Magniis
koma
a

morgunn

hann
dvaldist
dsamt

dr.

Josteinn
Samielssonur
alllengi

i

Danmork

félag
hann
hafa
verda
eftir

# betyder at analysen er baseret pa ordets sidstedel.

3.3 Preastation og kvalitet

Resultatet af analysen af en prgvetekst pd 5.000 ord blev:

Praestation:
Maskin/menneske: Foranalyse 2-5 min.
Maskin: Hovedanalyse 15-20 min.
Menneske: Korrektur 20 timer

Kvalitet:
70% tekstord korrekt analyseret
15% tekstord ukorrekt analyseret
15% tekstord slet ikke analyseret

Foranalysen tager nasten ingen tid. Hovedanalysen tager heller ikke lang

tid og det er jo datamatens tid. Stgrstedelen af arbejdstiden er stadigvak den

menneskelige arbejdstid som kraves til korrekturleesning af den automatiske

analyses resultat.



12 Computational Linguistics — Reykjavik 1989

Kvaliteten af den automatiske analyse pa det nuvaerende stadium er vist her
i procenter.

3.4 Problemer

De stgrste problemer hidrgrer fra folgende tre faktorer:

1. Mange ukendte tekstord
2. Uregelmessig interpunktion

3. Homografer blandt hyppige ordformer

Ukendte ord medfgrer at det bliver svaert at analysere de narmest liggende
ord korrekt og praecist.

P& grund af uregelmaessig brug af interpunktion i islandsk har man i den
automatiske analyse helt set bort fra interpunktionen, selv om den selviglgelig i
mange tilfzelde kunne give vardifulde oplysninger.

Jeg vil nu give et par eksempler pd homografer blandt hyppige ordformer,
som tit bliver fejlagtigt analyseret under den automatiske analyse.

ordform  leksikonsord dansk
vid pron. pers. 1. p. pl. nom. vi
vid { vid praep./adv. ved
(vidur sb. masc. sg. akk. ved)

Ordformen vid har tre helt forskellige meninger. De mest almindelige er
personligt pronomen og praposition. Den tredje er her sat i parenteser, fordi den

er ikke naer si hyppig som de andre; og den er faktisk slet ikke med i samlingen
af ordformer.

ordform  leksikonsord dansk
. verda vb. p.p./sup. blevet
ordid { ord sb. neutr. sg. nom./akk. bek. ordet
. verda vb. p.p. blevet
ordin { ord sb. neutr. pl. nom./akk. bek. ordene

De to andre ordformer, ordid og ordin har hver for sig to helt forskellige
meninger.

Disse bestemte homografer udger maske ikke ret store problemer. Men der
kraeves i hvert fald mere praecise regler end de hidtidige til at skelne i mellem
dem.



Stefan Briem: Automatisk morfologisk analyse af islandsk tekst 13

3.5 Forbedringer

Til slut skal vi betragte de muligheder der gives for at forbedre den automatiske
analyse.

e Stgrre korpus, d.v.s. flere ordformer og flere sidstedele

e Flere og mere pracise regler

o Pracisering af pointsgivning

e Udnyttelse af interpunktion

Den forbedring som man venter at opnd uden stgrre besvear skulle fgre til
85%-90% korrekt analyse.

Litteratur

Magniisson, Fridrik. 1988. Hvad er titt? J6n Hilmar Jénsson [ed.]. I Ord og tunga I:
1-49. Ordabék Haskdélans. Reykjavik.



EvA EJERHED

A Swedish Clause Grammar and Its
Implementation

Abstract

The paper is concerned with the notion of clause as a basic, minimal
unit for the segmentation and processing of natural language. The first
part of the paper surveys various criteria for clausehood that have been
proposed in theoretical linguistics and computational linguistics, and pro-
poses that a clause in English or Swedish or any other natural language can
be defined in structural terms at the surface level as a regular expression
of syntactic categories, equivalently, as a set of sequences of word classes,
a possibility which has been explicitly denied by Harris (1968) and later
transformational grammarians. The second part of the paper presents a
grammar for Swedish clauses, and a newspaper text segmented into clauses
by an experimental clause parser intended for a speech synthesis applica-
tion. The third part of the paper presents some phonetic data concerning
the distribution of perceived pauses (Strangert and Zhi 1989, Strangert
1989) and intonation units (Huber 1988) in relation to clause units.

1 What is a Clause in Linguistic Theory?

In traditional grammar a clause is defined as a unit consisting of a subject
and a predicate. The terms suppositum and appositum were used in scholastic
grammar to denote the syntactic functions of these two basic parts of a clause.
Traditional grammar makes a distinction between main clauses and dependent
clauses.

In current transformational grammar as presented by Radford (1988), three
types of clauses are recognized (see (1)).

(1) (a) Ordinary Clauses

SI
/\
C S
e
NP I VP

14



Eva Ejerhed: A Swedish Clause Grammar 15

(b) Exceptional Clauses
S

T

NP I VP

(c) Small Clauses
SC

/\

NP XP

According to Radford (1988) “the three Clause types differ principally in that
Ordinary Clauses contain both I and C, Exceptional clauses contain I (=infini-
tival to) but not C, and Small Clauses contain neither C nor I. Moreover, both
Exceptional Clauses and Small Clauses are highly restricted in their distribu-
tion: for example, Exceptional Clauses typically occur only as the Complements
of certain specific types of verbs; and Small Clauses occur mainly as the Comple-
ments of a subset of Verbs and Prepositions ...” It should be noted that I here
is tense, modal, or infinitival to, and C is complementizer. Examples of ordinary
clauses are given in (2), (3) and (4) below.

(2) s’
& 3
| NP/}\\VP
Mall.ry milght \}'
\7 S
thilnk C/\S
me NF 1 e
hle wiill reslign
(3) s’

whether NP I VP

he  should m



16 Computational Linguistics — Reykjavik 1989

(4) g’

/I\

whether NP I VP

In computational linguistics, there is no single answer to the question of what
a clause is, since this depends on the particular grammatical theory chosen in a
given computational framework.

In order to illustrate one particular and explicit notion of clause, or more
precisely predication, in computational linguistics, I want to quote an interesting
study by Henry Kué&era (ms, 1985) on the computational analysis of predicational
structures in the Brown Corpus.

He considers a predication to be, first of all, any verb or verbal group with a
tensed verb that is subject to concord (for person and number) with its grammat-
ical subject. These verbal constructions he calls finite predications. In addition
to that, he also includes in his analysis non-finite predications, consisting of in-
finitival complements, gerunds and participles. What he did in his study was to
identify and classify all the predications, which were 145,287 in all the 54,724
sentences of the Brown Corpus.

Table 1 shows for each genre in the corpus, the mean sentence length (words

Genre Words Pred. Words
per per per
Sent. Sent. Pred.

A. Press, report. 20.81 2.65 7.85
B. Press, edit. 19.73 2.74 7.20
C. Press, reviews 21.11 2.65 7.96
D. Religion 21.23  2.90 7.32
E. Skills 18.63 2.60 7.17
F. Pop. lore 20.29 2.82 7.20
G. Belles lett. 21.37 2.94 7.27
H. Misc. 24.23 2.82 8.59
J. Learned 22.34  2.87 7.78
K. Fiction, gen. 13.92 2.41 5.78
L. Mystery/detect. 12.81 2.29  5.59
M. Science fict. 13.04 2.23 5.85
N. Adv./Western 1292 230 5.62
P. Romance 13.60 2.45 5.55
R. Humor 17.64 2.84 6.21
CORPUS 18.49 2.65 6.97

Table 1:



Eva Ejerhed: A Swedish Clause Grammar 17

per sentence), sentence complexity (predications per sentence), and mean pred-
ication length (words per predication).

Table 2 below shows that whereas sentence length varies a great deal between
a mean of 21 words per sentence in informative prose (INFO) and 13 words per
sentence in imaginative prose (IMAG), sentence complexity does not vary that
much between genres: 2.80 versus 2.38 predications per sentence.

Measure INFO IMAG CORPUS

Words/Sent.  21.12  13.55 18.49

Pred./Sent. 2.80 2.38 2.65

Words/Pred. 7.54 5.69 6.97
Table 2:

Table 3 below shows how the finite (F') and non-finite (NF) predications were
distributed in the genres of informative and imaginative prose.

Group Type No. Pred. Percent
per
Sent.

INFO F 68,157 191  68.09%

NF 31,935 0.89 31.91%
100,092 2.80 100.00%

IMAG F 34,329 1.81 75.96%
NF 10,866 0.57 24.04%
45,195 2.38 100.00%

CORPUS F 102,486 1.87 70.54%
NF 42,801 0.78 29.46%
145,287 2.65 100.00%

Table 3:

What Kuéera considers as the main result of his study is the lack of correla-
tion between sentence length and sentence complexity, and it is indeed surprising.

Kutera’s study was concerned with finding, counting and classifying predi-
cations units (verbal groups) in the Brown Corpus. It was not concerned with
what would have been an even more difficult goal, that of finding entire clause
units, in the sense of demarcating their beginnings and endings. There is an ob-
vious relation between predications and clauses, in that a reasonable definition
of clause, I think, would be one in which there is one predication, in Kucera’s
sense of the term, per clause.

In Ejerhed (1988), which is a computational linguistic study of clauses in
English, done in collaboration with Ken Church when I visited ATT Bell Labo-
ratories 1986-87, I used a definition of clause that differed somewhat from the
one considered in the previous paragraph. In my definition of clause in English,



18 Computational Linguistics — Reykjavik 1989

only finite and to-infinitival predications are criterial for clausehood. Other in-
finitival predications, gerunds and participles are not taken to imply the presence
of a clause unit.

Another feature of my definition of clause that was used in parsing clauses in
unrestricted text, is that the opening of a new clause always implies the closure
of the previous clause unit, whether or not this unit is complete with subject and
predicate, or complete with respect to the argument structure of its predicate. To
illustrate this no-nesting of clauses, the sentence in (2) is reproduced in (5) below
with clause boundaries inserted where the clause parsers described in Ejerhed
(1988) would place them.

(5) [Mary might think] [that he will resign]

There are several reasons for the move to adopt the hypothesis that clauses do
not nest, at a very superficial level of syntactic structure.

The first reason is that the hypothesis makes possible an exceedingly simple
definition of, and recognition algorithm for, clauses: a clause can be defined as
a set of permissible sequences of word classes by means of a regular expression,
i.e. by using the operations of concatenation, union and Kleene star on elements
that are word classes.

That such a simple definition of clauses, or sentence forms as he called them,
was possible, was something Harris considered, but rejected in the following
passage from Harris (1968:31-32):

. in English a wh-clause can be away from its noun (usually if no other
noun intervenes):

Finally the man arrived whom they had all come to meet.

In describing senterces, one can still say that there is a constituent, even
though with non-contiguous parts: the subject above is MAN with ad-
joined THE on the left and WHOM ... after the verb on the right.2® But
the difficulty lies in formulating a constructive definition of the sentence.
For if we wish to construct the sentence by defining a subject constituent
and then next to it a verb (or predicate) constituent, we are unable to
specify the subject if it is discontiguous, because we cannot specify the
location of the second part (the adjunct at a distance). At least we can-
not specify the location of the distant adjunct until we have placed the
verb constituent in respect to the subject; but we cannot place the verb
in respect to the subject as a single entity unless the subject has been
fully specified.24

23 And one can specify that it can be at a distance primarily if no noun intervenes.

24 To the eztent that such problems did not arise, it would be possible to define
sentence forms as short sequences of morpheme classes (or word classes), each class
being ezpandable by a certain neighborhood of other classes (my emphasis EE).

The sentence discussed in the passage above would be parsed as indicated in
(6), given the clause grammar of Ejerhed (1988).



Eva Ejerhed: A Swedish Clause Grammar 19

(6)

[Finally] [the man arrived] [whom they had all come to meet]

The second reason for the hypothesis that clauses do not nest has to do with
performance considerations, i.e. observational data from studies in psycholin-
guistics and phonetics.

For a review of the clausal hypothesis in psycholinguistics and studies relat-
ing to it, the reader is referred to Flores d’Arcais and Schreuder (1983:14-19).
They present the clausal hypothesis as a view of sentence comprehension that is
characterized by two major features. First, clauses are taken to be the primary
units of normal speech perception. Incoming material is organized in immediate
memory clause by clause; the listener or reader accumulates evidence until the
end of a clause. Second, at the end of a clause, working memory is cleared of
surface grammatical information and the content of the clause is represented in
a more abstract form. They point out that these two major properties of the
hypothesis are logically independent.

Phonetic evidence for the segmentation of speech (in perception as well as
production) at the level of clauses, as structurally defined units, will be dis-
cussed in the last section of the paper, after a presentation and illustration of a
structural definition of Swedish clauses.

2 A Swedish Clause Grammar

This grammar for Swedish clauses has the same structural units as targets as the
grammar for English clauses in Ejerhed (1988), modulo the difference between
the two languages, i.e. finite (tensed) clauses and infinitival clauses introduced
by att are clauses. In addition, there are three types of clause fragments: verb
phrase fragments, noun phrase fragments and adverb fragments.

In an appendix to this paper, there is a Swedish newspaper text from April
1984 which has been segmented into clauses and clause fragments, labelled to
the right according to the type of unit in the grammar that they instantiate. The
categories that are criterial to the identification of a clause or clause fragment
according to the grammar, have been labelled underneath.

GRAMMAR

Main clause (mc)

1. mc-noninv (COORD) NP’ VFIN
2. mc-inv (COORD) VFIN (SADV) NP
3. mc-coord COORD VFIN

Subordinate clause (sc)

4. sc-comp (COORD) (PREP) COMP
5. sc-coord COORD (SADV) VFIN/VSUP



20 Computational Linguistics — Reykjavik 1989

6. sc-nocomp (COORD) NP’ (SADV) VFIN/VSUP
VP-fragment

7. mc vp-fragment VFIN
8. sc vp-fragment (SADV) VFIN/VSUP

NP-fragment

9. (COORD) (COMP) NP’
10. NP’ COORD NP’
ADV-fragment

11. (COORD) PP/ADVP/SADV=*

A few words on the notation used in the grammar are required. For readabil-
ity, concatenation is represented simpy by juxtaposition. Union (i.e. alternatives)
is represented by /, and the special case where something alternates with noth-
ing (i.e. optionality) is represented by (). Kleene star is represented by *, which
has scope over /. The three dots . .. should be read as a variable over any word
class.

e COORD is the category of coordinating conjunctions, och, eller, men.

e NP is a non-recursive noun phrase consisting of any prenominal modifiers
plus head noun. NP does not include any postnominal modifiers. For the
concept of such a noun phrase as applied to English, see Church (1988).

e NP’ conmsists of a non-recursive NP followed by postnominal modifiers that
are non-clausal, i.e. prepositional phrases PP, or adverbs ADV. Thus, NP’ =
NP PP/ADV*

e VFIN is the category of finite verbs, active or passive, and VSUP is the cate-
gory of supinum forms of verbs occurring after the auxiliary hava. Because
finite forms of hava can be optionally deleted in subordinate clauses in
Swedish, it is necessary to allow occurrences of VSUP in such cases to count
as finite.

e COMP is the category of subordinating conjunctions, including att as infini-
tive marker.

e SADV is the category of sentence adverbs, inte, ofta, aldrig.
e ADVP is the category of adverbial phrases.

e PREP is the category of prepositions.



Eva Ejerhed: A Swedish Clause Grammar 21

Each of the regular expressions 1 through 11 constitutes an alternative def-
inition of clause or clause fragment. The way that these alternative definitions
interact in the processing of a text is very important. In cases where two or more
alternative analyses compete, the reqular expression that matches the longest sub-
string wins. This can be illustrated by considering how the first sentence of the
text in the appendix is processed. The sentence is repeated below with numbers
indicating linear positions in the string of words.

7) 0 Allti 1 verkar 2 sa 3 okontrollerat 4
ng
NP VFIN

The regular expression 9, NP-fragment, matches the string of words from 0 to
1.

The regular expression 7, VP-fragment, matches the string of words from 1
to 4.

The regular expression 1, non-inverted main clause, matches the string of
words from 0 to 4. This is the expression that matches the longest substring,
and it wins over the alternative analyses of the string from 0 to 4.

The status of the implementation of this particular clause grammar for
Swedish is that it is in the process of being implemented. What that means, is
that I do not yet have a running program for Swedish that automatically decides
the location of boundaries between clauses and clause fragments in unrestricted
text. This is an ambitious and long range goal, and the biggest problem in de-
veloping such a program is lexical. Each word in a text has to be labelled with
a unique syntactic category (including information about the form of the word)
before any matching against the regular expressions in the grammar can take
place. The category label assigned to a word has to be the one that is correct
for the word in its context of occurrence.

A successful approach to the problem of automatically assigning unique and
correct syntactic categories to English words in context is probabilistic (Church
1988, DeRose 1988, Eeg-Olofsson 1985). This is one of several approaches that
will be applied to Swedish in the context of a joint corpus based research project
between the universities of Stockholm and Umed (Kallgren, Ejerhed) that will
start in the fall of 1989.

Another approach to the disambiguation of the syntactic category and form
of a word in context is rule based, constraint based or heuristic, and the disam-
biguation between alternative analyses of a word is done as an integrated part
of the parsing of a text, rather than as a separate subroutine completed before
parsing begins. A version of this approach has been applied to Swedish with
successful (95% correct) results (Brodda 1983, Killgren 1984a, 1984b).

Fred Karlsson claimed in his paper at this conference, on the basis of his
recent research on disambiguation, that more than 60% of the consecutive words
in a Swedish text are at least two-way ambiguous, as compared with 45% in
English according to DeRose (1988), and 11% in Finnish. Karlsson’s figure for
Swedish tallies with what is reported in Allén (1970:XV, XXV): 645,000 out of
the 1,000,669 words of the Swedish corpus Press-65 were homographs, and that
amounts to 64.5%.



22 Computational Linguistics — Reykjavik 1989

What I have by way of implementation at this time is a modification of
the finite state parser for Swedish, described in Ejerhed & Church (1983), Ejer-
hed & Bromley (1985), and Ejerhed (1986). Subject to the limitations of its
lexicon, which is currectly being expanded, the modified parser, in its parsing
of orthograhpic sentences as input, is capable of identifying and assigning con-
stituent structure to substrings that can be put in direct correspondence with the
11 different clauses and clause fragments enumerated in the new clause grammar
described here.

3 Phonetic Data concerning Clause Boundaries

There are two recent phonetic studies of spoken Swedish, based on recordings of
several different speakers reading the same texts aloud. One is by Eva Strangert
(Strangert and Zhi 1989, Strangert 1989) and the other by Dieter Huber (1988).

Strangert’s research project, which is still going on, studies perceived pauses
in 2 texts of a total of 810 words read aloud by 10 different speakers at 3 differ-
ent speech rates, and the acoustic and grammatical properties of such pauses.
The first of the two texts is identical to the text in the appendix of this paper.
Acoustically, a perceived pause can be signalled in several different ways: by fi-
nal lengthening, a special fundamental frequency contour, silence, and/or voice
quality irregularities. Strangert and Zhi (1989) reports findings primarily con-
cerning these acoustic properties of the pauses perceived by two different judges.
Strangert (1989) is also concerned with the distribution of the perceived pauses
in relation to the following kinds of boundaries: paragraph, sentence, clause and
phrase.

Using the definition of clause presented in this paper, I have segmented the
two texts used in Strangert’s study and found that they comsist of a total of
115 units that are clauses or clause fragments. The number of perceived pauses
at these 115 clause boundaries is presented in Table 4 below, for which I am
indebted to Eva Strangert. A perceived pause is here a pause judged by both
of the two judges to be present in the speech of at least 5 of the 10 speakers.
For the purposes of this table, all clause boundaries have been included, whether
they are sentence internal, or happen to coincide with sentence boundaries or
paragraph boundaries. In Strangert (1989) these three boundary conditions are
treated separately.

Speech  Number of clause Percent

rate boundaries with (N = 115)
perceived pauses

Fast 57 50

Normal 78 68

Slow 97 84

Table 4: The frequency of clause boundaries where pauses were perceived.



Eva Ejerhed: A Swedish Clause Grammar 23

The study of Huber (1988) is concerned with intonation units in recordings
of 3 newspaper texts read aloud by 4 different speakers of Swedish, a total of 2.2
hours of connected speech. He defines the concept of intonation unit in purely
acoustical terms, related to fundamental frequency only, and devises a method
of automatically segmenting connected speech into such intonation units. The
advantage of this segmentation procedure is that it makes no reference to either
higher level linguistic information concerning syntax, or to lower level physio-
logical information concerning pausing, breathing, phonation onset or offset etc.
He arrives at a total of 1664 intonation units in the accumulated text materi-
al (3 texts, 4 speakers). Table 5 shows the grammatical correlates of the 1664
intonation units, averaged across four speakers and three texts. For the exact
definitions of the grammatical units, see Huber (1988:78). Of interest here is
that he defines as sentences “graphic sentences that begin with a capital letter
and end with a full stop (or some other mark of ‘final’ punctuation)”. And he
defines as clauses “units of linguistic organisation smaller than the sentence and
consisting of at least one subject and one finite verb”.

Grammatical Number of Percent
Unit intonation units

SENTENCE 299 18.2
CLAUSE 662 39.7
SUBJECT 83 4.8
VERBPHRASE 76 4.5
ADVERBIAL, init. 35 2.0
ADVERBIAL, final 141 8.5
PARENTHETICAL 132 8.0
MISCELLANEOUS 238 14.3
Total 1666 100.0

Table 5: Frequency of intonation units corresponding to different grammatical categories.

Unfortunately, these figures cannot be directly related to the notions of clause
and clause fragment discussed in this paper, because the definitions of the gram-
matical categories do not agree. However, it is likely that we can equate mono-
clausal sentences (which accounted for 63.6% of the 1-IU-per-sentence that oc-
curred) with a subset of main clauses (Rules 1-3 in the Swedish clause grammar),
clauses with either a subset of main clauses (in the case of multiclausal sentences)
or a subset of subordinate clauses (Rules 4-6), and initial adverbials with adverb-
fragment (Rule 11), and these three categories together account for 60% of all
intonation units. It is also likely that subject corresponds to NP-fragment, and
verbphrase to VP-fragment on the basis of the illustrative examples of these
categories in Huber (1988:83-85). If so, close to 70% of Huber’s intonation units
would correspond to a clause or clause fragment in the sense of the present paper.
In order to establish the exact extent to which the notions of clause and clause
fragment proposed here correlate with the intonation units found in Huber’s
study, a separate study is being undertaken in collaboration with Huber.



24 Computational Linguistics — Reykjavik 1989

Acknowledgement

The work on this paper was done while the author was a member of the Speech
group headed by Bertil Lyberg, Department of Research and Development,
Swedish Telecom, Stockholm, as well as of the Department of Linguistics, Uni-
versity of Umed. I am indebted to Swedish Telecom in Stockholm for the use of
the resources of its Speech Lab, and to Eva Strangert in Ume4 for collaboration
on pauses.

References

Allén, S. 1970. Nusvensk frekvensordbok baserad pd tidningstezt. 1. Graford, homo-
grafkomponenter. Data linguistica, 1. Almqvist & Wiksell, Stockholm.

Brodda, B. 1983. An experiment with heuristic parsing of Swedish. Proceedings of the
First Conference of the European Chapter of the Association for Computational
Linguistics:66-73. Pisa.

Church, K.W. 1988. A stochastic parts program and Noun Phrase parser for unre-
stricted text. Proceedings of the Second Conference on Applied Natural Language
Processing:136-143. Association for Computational Linguistics, Austin, Texas.

DeRose, S.J. 1988. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14(1):31-39.

Eeg-Olofsson, M. 1985. A probability model for computer aided word class determina-
tion. ALLC Journal, 5(1 & 2):25-30.

Ejerhed, E. 1986. A finite state parser for Swedish with morphological analyzer and
semantics. Proceedings. of SAIS-86. Institutionen for Datavetenskap, Linkopings
universitet.

Ejerhed, E. 1988. Finding clauses in unrestricted text by finitary and stochastic meth-
ods. Proceedings of the Second Conference on Applied Natural Language Process-
ing:219-227. Association for Computational Linguistics, Austin, Texas.

Ejerhed, E. and H.J. Bromley. 1986. A self-extending lexicon: description of a word
learning program. F. Karlsson [Ed.] Papers from the Fifth Scandinavian Con-
ference of Computational Linguistics:59-72. Publication No. 15, Department of
General Linguistics, University of Helsinki.

Ejerhed, E. and K.W. Church. 1983. Finite state parsing. F. Karlsson [Ed.]. Papers
from the Seventh Scandinavian Conference of Linguistics:410-432. Publication
No. 9, Department of General Linguisics, University of Helsinki.

Flores d’Arcais, G.B. and R. Schreuder. 1983. The process of language understanding: A
few issues in contemporary psycholinguistics. G.B. Flores d’Arcais and R. Jarvella
[Eds.]. The Process of Language Understanding:1-41. Wiley, Chichester.

Harris, Z. 1968. Mathematical structures of language. Wiley, New York.

Huber, D. 1988. Aspects of the communicative function of voice in text intonation—
Constancy and variability in Swedish fundamental frequency contours, Depart-
ment of Computational Linguistics, University of Géteborg, Department of Infor-
mation Theory, Chalmers Institute of Technology, G6teborg, and Department of
Linguistics and Phonetics, University of Lund.



Eva Ejerhed: A Swedish Clause Grammar 25

Karlsson, F. 1989. The resolution of morphological ambiguities. Paper presented at the
Scandinavian Conference of Computational Linguistics, Reykjavik, June 26-28,
1989.

Kugera, H. n.y. Computational analysis of predicational structures in English. Brown
University, Providence, R.I. (unpublished).

Kucera, H. 1985. The analysis of the English verbal group. Paper presented to the
ICAME Sixth International Conference on English Language Research on Com-
puterised Corpora, Lund (unpublished).

Killgren, G. 1984a. HP-systemet som genvig vid syntaktisk mirkning av texter. Sven-
skans beskrivning, 14:39—45, Lunds universitet.

Kaillgren, G. 1984b. HP—A heuristic finite state parser based on morphology. A. Sagvall
Hein [Ed.]. De nordiska datalingvistikdagarna 1983:155-162. Centrum fér Dator-
lingvistik, Uppsala Universitet.

Radford, A. 1988. Transformational Grammar: A First Course. Cambridge University
Press, Cambridge.

Strangert, E. and M. Zhi. 1989. Pause patterns in Swedish: A project presentation and

some data. Fonetik-89. Speech Transmission Laboratory Quarterly Progress and
Status Report, 1:27-31. KTH, Stockholm.

Strangert, E. 1989. Pauses, syntax and prosody. Paper presented to the Nordic Prosody
V meeting in Turku, Finland, August 23-25, 1989 (to appear).

Department of Linguistics
University of Umea

S-90187 Umed

Sweden

EJERHED@SEUMDC51 (Bitnet)



26 Computational Linguistics — Reykjavik 1989

Text Al

The text is divided into paragraphs by consecutive numbering. The paragraphs
are divided into orthographic sentences by sentence final punctuation marks.
The sentences are divided into non-recursive clauses or clause fragments marked
by [ ], and each such unit is labelled according to the Swedish clause grammar
presented in this paper.

Paragraph 1

[Allting verkar sa okontrollerat.] mc-noninv
NP VFIN

[Det tycks] mc-noninv
NP VFIN

[som om ingen léngre hiller i styret.] sc-comp
COMP

(Framfér allt] adv-fragment
P NP

[verkar liget vara okontrollerat imnme i Tripeli] mc-inv
VFIN NP

[dir ungdomar i femtondrsidldern pi nagot sitt
sc-comp COMP
har fatt tag i skjutvapen.]

Paragraph 2

[Det sade en ung spanjor] mc-noninv
N VFIN

[som var en av de 113 personer] sc-comp
COMP

[som lyckades komma ut ur Libyen sc-comp
COMP

med den férsta flygningen]

[sedan USA bombade Tripoli och Bengazi sc-comp
COMP
i bérjan av veckan.]

[Den unge spanjoren fanns ombord mc-noninv
NP VFIN
pa det reguljarplan fran Libyan Airlines]

[som kraftigt forsenat landade pa sc-comp
COMP

den internationella flygplatsen utanfér Rom

sent pa torsdagen.]

Paragraph 3

[Planet Atervinde aldrig till Tripoli mc-noninv
NP VFIN

p4 torsdagskvillen.)



Eva Ejerhed: A Swedish Clause Grammar

27

{En vintande skara journalister fick mc-noninv
NP VFIN
officiellt beskedet]

[att besdttningen helt enkelt var foér uttréttad.] sc-comp
CoMP

Paragraph 4

[Libyan Airlines flygniang 167 tillbaka till mc-noninv
NP ADV P

den libyska huvudstaden uppskéts darfoér till

NP VFIN

nagon ging under fredagen.]

Paragraph 5

[Ingen av de 113 passagerarna pi den firsta mc-noninv
RP P NP P NP

utflygningen fran Tripoli var svensk.]

P NP NP VFIN

[Det finns omkring 200 svenskar i Libyen] mc-noninv
NP VFIN

[varav ungefir hdlften bor i huvudstaden Tripoli.] sc-comp
COMP

[Den svenska ambassaden har rekommenderat] mc-noninv
NP VFIN

[att de svenskar] np-fragment
COMP

[som arbetar i Libyen] sc-comp
COMP

[skall evakuera sina familjer] vp-fragment
VFIN

[s&4 spart tillfdlle ges.] sc-comp
COMP

Paragraph 6

[Den unge spanjoren,] np-fragment
NP

[som ville vara anonym,] sc-comp
COMP

[talade om en skrickstiémning i Tripolil vp-fragment
VFIN

[dir ingen egentligen vet] sc-comp
COMP

[vem som bestimmer.] sc-comp
COMP

Paragraph 7

[En vild ryktesflora grasserar ocksé mc-noninv
NP VFIN

om ledaren Muammar Gadaffi.]



28 Computational Linguistics — Reykjavik 1989

[(Det har &ven under torsdagen férekommit mc-noninv
NP VFIN
skottlossning i den militérfdrlaggningen i Tripolil

[dar Gadaffi och hans familj bodde] sc-comp
comMp
[ndr de amerikanska bombplanen slog till sc-comp
comMp

natten till tisdagen.]

Paragraph 8
[Det osikra liget befistes mc-noninv
NP VFIN

pa torsdagen ytterligare]

[av att minst tre passagerarplan frin Spanien, sc-comp
P COMP

Rumdnien och Jugoslavien avbrét sina flygningar

till Tripoli.]

[Planen startade] mc-noninv
NP VFIN

[men fick atervinda till sina hemorter.] mc-coord
COORD VFIN

Paragraph 9

[Da det giéllde Libyan Airlines férsta utflygning] sc-comp
COMP

[florerade ocksa ryktena.] mc-inv
VFIN SADV NP

[Da planet skulle ha startat aterfdrden sc-comp
COMP

fran Rom k1 17]

[hade det &nnu inte lyft frin utgingspunkten mc-inv
VFIN NP
Tripoli.]

[Flera passagerare demeaterade dock uppgifter mc-noninv
NP VFIN

om skottlossning i samband med starten utanfdr

Tripoli.]

Paragraph 10

[Men de bekraftade] mc-noninv
COORD NP VFIN

[att det radder kaotiska férhadllanden i sc-comp
COMP

den libyska huvudstaden.]



Eva Ejerhed: A Swedish Clause Grammar 29

(De flesta passagerarna var fran Sststater.] mc-noninv
NP VFIN
Paragraph 11

(De flesta haller sig inomhus dven under dagtid,] mc-noninv
NP VFIN

[sade en polsk medborgare.] mc-inv

VFIN NP

[Ute pa gatornal adv-fragment
ADV P NP

[dr det alldeles fér osiikert.] mc-inv

VFIN NP

[Det finns alldeles fdr manga ungdomar med gevir] mc-noninv
NP VFIN

[f6r att man skall kunna kidnna sig sidker.] sc-comp

P COMP

Paragraph 12

[Och ryktena om &verste Gadaffi] np-fragment
COORD KNP P NP

[och vad som har hént honom] sc-comp
COORD COMP

[4r lika minga som fantastiska.] vp-fragment

VFIN



LARS M GUSTAFSSON

Handelsestyrd textgenerering

Abstract

This paper describes the system RADAR, an event-driven text gen-
erator. The system reads input from a radar-system i.e. time,id,position,
and generates comments in Swedish about the objects on the screen. The
problem as such is quite easy to grasp and is not discussed much, but
the techniques that have been utilized are described in more detail. The
system is written in an object-oriented environment, implemented as a
meta-interpreter in Prolog. Another technique that plays a major role is
Data Driven Execution, this is also implemented on top of a Prolog-system.
The source code for the entire system is available in C-Prolog and fully
portable. The system makes an object-instance for every new physical
object on the Radar-screen and lets the objects themselves generate com-
ments about their situation. The Data Driven Execution rules generate
comments on the simplest level, i.e. X appears, Y disappears. Other rules
try to combine these simple observations with the comments generated by
the objects themselves to more complex phrases and sentences.

1 Inledning

Detta papper beskriver uppbyggnaden av programmet RADAR, som ir imple-
menterat helt i C-Prolog. En ursprungsversionen till programmet skrevs pa Inst.
for Allmédn Sprakvetenskap vid Lunds Universitet. Den nuvarande versionen av
systemet dr utvecklat i huvudsak vid Carnegie-Mellon University i Pittsburgh
och CoTech AB i Lund. Det problem som studerats ar att utifrdn informationen
fran en 6vervakningsradar generera kommentarer i realtid. Som framgér av titeln
sd ir det beskrivna systemet baserat pa att textgenereringen sker fortlopande.
Det finns alltsd ingen méjlighet att planera lingre sammanhéngande yttranden
dir hdnsyn tas till senare hindelser. Problemet som siddant ar ganska lattfattligt
och inte mycket att orda om. Diremot s kommer dom tekniker som anvéints
att beskrivas mer i detalj och deras fortjdnster vid denna typ av textgenerering
kommer forhoppningsvis att framga.

30



Lars M Gustafsson: Hdindelsestyrd textgenerering 31

2

Anvanda tekniker

Det ir i forsta hand tvd metodiker jag anvint mig av.

1. OOP-Object Oriented Programming
2. DDE-Data Driven Execution

Jag kommer f6rst att beskriva (motiveringen for och implementeringen av)

objektorienteringen. Dérefter kommer jag att beskriva den datadrivna exekverin-
gen, for att till sist komma in pad hur dessa bidda tekniker kan knytas samman
till ett system.

3

Varfor objektorientering?

. Det ir i det hir fallet naturligt med ett objekttinkande eftersom det finns

en naturlig korrespondens mellan objekten i yttervirlden och deras repre-
sentation i en objektorienterad programmeringsmiljé.

. Modulariteten ligger pa klassnivén (konceptnivin), dir man i klassbeskriv-

ningen anger de variabler och metoder som tillsammans med drvda vari-
abler och metoder utgor objektbeskrivningen.

. Sen bindning, dvs. dynamisk allokering av nya objektinstanser under ex-

ekveringen. Men dven mojligheten att fortlopande ligga till funktioner och
datatyper som inte kunnat forutses vid den ursprungliga programkonstruk-
tionen.

. Arvning, detta ir visserligen inte nédvindigt for OOP, men vildigt natur-

ligt och arbetsbesparande. Arvning skapar ocksa en genomgéende konsis-
tens i programmet. Detta kan naturligtvis (som traditionellt) till en viss
niva uppnas genom en hard disciplin hos programmeraren, men det ir vare
sig Onskvart eller effektivt.

Problemets realtidskaraktir gor att multipel drvning ar av stor nytta. Man

kan d& specificera objektrepresentationen mer i detalj efterhand som informatio-
nen kommer in. Tex. kan man lata ett okdnt objekt forst drva egenskaper frin
klassen Flygplan. Darefter nir man fitt nya indikationer (fart, hojd osv.) sd kan
man precisera objektet genom drvning fran klassen Jetplan. Denna precisering
kan fortgd under hela objektinstansens livslingd genom ytterligare observation-
er, tex. visuella rapporter. Mojlighet finns dven att ta bort drvningar som visat
sig bero pa felaktiga informationer.



32 Computational Linguistics — Reykjavik 1989

4 Implementationer av OOP

Smalltalk-80

Simula

Ada

C++

Objective-C

Scheme

Flavours

Prolog meta-interpretator

Detta ar ndgra av dora méjligheter som finns fér den som vill anvinda sig av
objektorienterad programmering. De olika spraken har naturligtvis sina férdelar
respektive nackdelar, ADA tex. saknar en naturlig drvningsmekanism. Smalltalk-
80 ar den mest renodlade implementationen och tilliter inget annat &n objekt-
programmering, vilket férsvarar kontruktion av hybridsystem.

For min implementation si har jag skrivit en objektmekanism som en metain-
terpretator i Prolog. Detta gor det mojligt att konstruera hybridsystem dar vissa
delar ar objektorienterade medan andra delar av programmet utnyttjar andra
problemlésningsparadigmer.

5 OOP i Prolog

Objekten representeras som enhetsklausuler i Prolog med metoderna och vari-
ablerna i en lista.

object(name, [metod_1, metod_2,..., metod_n]).

Den hierarkiska informationen lagras i en separat klausul.
isa( Obj, Obj_Super ).

Mojligheter finns ocksd att definiera andra typer av relationer, tex.
partof( Obj, 0Obj_0 ).

All kommunikation mellan objekten sker med predikatet send, tex.

send(Name, show). Metoden show gor att objektet ritar
ut sig pa skidrmen.

send(Name, alert(A)). Returnerar vardet pa alert i A.

send(plane, Skapar en instans av klassen plane,

create_instance(Name)). ett unikt namn (id) returneras i

Name ; om Name ar instansierat sa
blir istillet detta objektets namn.
send (Name, set(description,
viggen_1).
send(Name, kill(description). Sitter/tar bort variabler.



Lars M Gustafsson: Hdandelsestyrd teztgenerering 33

all

smhi ud controller manmade_object
plane boat base
mig21 viggen fb (o1 hms_dalarna karlskrona

Figure 1: Object hierarchy in Radar

6 Objekthierarkien

Detta ar en forminskad version av den objekthierari som jag anvint mig av i
systemet. Controller ir huvudobjektet som kontrollerar resten av systemet och
innehdller metoder for anpassning till mekanismen fér ménsterdriven exekver-
ing som kommer att beskrivas senare. Andra exempel pi objekt &r smhi, som
anropas for viderinformation och ud som hanterar information om det politiska
laget. Alla relationerna i denna hierarki ir av 'isa’-typ, alla l16ven ar alltsd ob-
jektinstanser.

7 Metoder

Har dr nagra av dom metoder som objekten i programmet dr utrustade med.
Metoderna i objektet ’all’ arvs av alla andra objekt i systemet. Dessa metoder
skulle visserligen kunna vara inbyggda systemfunktioner men pa detta sitt blir
systemet 'renare’ och man kan dven modifiera dessa metoder om s4 skulle Gnskas.
Metoden internals hos klassen manmade_objects finns hos alla objekt i systemet.
Det ar denna metod som ger objekten mdjlighet att sjilv generera kommentar-



34 Computational Linguistics — Reykjavtk 1989

Objects Methods
all create_instance
set (NewMethod)
kill(Method)
smhi visibility(Visi)
“ud alert(Alert)
controller start

manmade_object show
see(List, Sdist)
firing range(Range)
country(Country)
internals

Figure 2: Methods in the classes of Radar |

Objects Methods
plane moving.dimensions(3)

boat moving dimensions(2)
base moving dimensions(0)
internals®
show*

* Qverides the inherited methods.

Figure 3: Methods in the classes of Radar Il

er utifrdn varje objekts egna speciella férutsittningar. Metoden internals finns
alltsd hos alla objekt, men funktionen varierar beroende pd objektets typ.

8 Data Driven Exekvering

Grundprincipen med Data Driven Exekvering dr att man har en gemensam
dataarea —"blackboard”, dar alla fakta lagras. Runt denna area ligger ett an-
tal regler som kan paverka innehéllet i dataarean om vissa triggvilkor ar upp-
fyllda. Dessa regler kan triggas av "IF-ADDED” eller "IF-ERASED” vilkor.
Dom vintar alltsd pd att ett visst mOnster av information skall dyka upp eller
forsvinna och pd si sétt trigga actiondelen av regeln. Dessa regler skulle direkt
kunna &verforas till en ren parallell maskinarkitektur eftersom det inte finns
nagon speciell ordningsf6éljd mellan reglerna.

Detta gor att man kan trigga outputregeln (Rule_5) vid vissa tidpunkter si
att systemet genererar "den bista” output det hunnit skapa fram till denrna
tidpunkt. Vid komplexa scenarios kan detta vara nédvidndigt for att systemet
skall kunna jobba i realtid.



Lars M Gustafsson: Handelsestyrd teztgenerering 35

Rule_1
Rule_2
Rule_n /
position(.......... Rule_3
fact(.....)  'atitlo... /
position(.......) o

" position(....... )
fact(.......... )

Rule_7 / Rule_4

Rule_6
Rule_S *

Figure 4: The structure of the pattern-matcher



36 Computational Linguistics — Reykjavik 1989

% Rule_1

[condition_1, condition_2,...,condition_n]
—-—=>
[action_1,action_2,...,action_n]

% Rule_n
[condition_1, condition_2,...,condition_n])
—-——>
[action_1,action_2,...,action_n]
%End Rule
0 ---> [stop].

All rules are tried starting from the top,
vhenever a rule triggers, the matcher restarts
from the first rule.

All rules are tried until no more matches
are possible (and the matcher reaches the
End Rule).

Figure 5: Rule format in pattern-matcher

9 Regelformat

I figur 5 vises regelformatet dir ”condition” kan vara forekomsten eller fran-
varon av ett visst monster i dataarean. Action dr de operationer som utférs
da regeln triggas. Dessa operationer piverkar innehdllet i dataarean si att ett
nytt tillstdnd uppstar som eventuellt kan trigga nya regler. Principen ar alltsd
att man ligger in fakta om objekten pd den ligsta nivan (fysisk position) och
startar direfter matchningsmekanismen och liter den stegvis bygga upp mer
komplexa uttryck dnda upp till det slutliga yttrandet.

10 Generering av enkla observationer

Genereringen av enkla observationer kan ske pé tre olika sitt.
1. Generering utifrdn matchning frdn position-nivén.
2. Generering av en instans av manmade_object via metoden internals.

3. Generering av ett objekt av klassen "base” som har en speciell variant av
internals som kontrollerar alla objekt som ndrmar sig och passerar osv.

Om man efter programkonstruktionen vill ligga till ett objekt som stéller
speciella krav pd pd att nya kommentarer genereras, s& ar det bara att se till



Lars M Gustafsson: Handelsestyrd textgenerering

37

Match Levels In Radar

Real world

Perceptions == | From radarequipment

position(T,ID,X,Y,2)

Simple observations

fact(Time, Points,Imig21,dyker,upp,fran,norr] ).
fact(Time, Points,[viggen,dyker,upp,fran,norr]).

/Level 2

Complex observations (phrases)

fact2(Time, Points,
[mig21,och,viggen,dyker,aterigen,upp,fran,norr] ).

Sorting and filtering

Utterance

mig 21_1 och viggen_1 dyker aterigen upp fran norr,
medan hms_dalarna stavar mot sydvast .

Figure 6: Match levels in Radar



38

Computational Linguistics — Reykjavik 1989

er lonal level

position(mig21,4,15,15).
position(hms_dalarna,4,35,5).
position(cc,4,40,5).

Level 1
position(kariskrona,4,50,25).

Simple observations

fact(4,6,[cc,stavar,vasterut]).
fact(4,6,lmig21,flyger,osterut]).
fact(4,5,[hms_dalarna,stavar,osterut)).
fact(4,6,[mig21,flyger,norrut}).

Le

vel 2

] i r

fact2(4,46,[hms_dalarna,och,cc,ar,fortfarande,pa
,kollisionskurs]).
fact2(4,6,[mig21,flyger,mot,nordvast).
fact2(4,5,[hms,dalarna,stavae,osterut]).

Sorting and filte

ring

Utterance . [1=10 , [2=12

hms_dalarna och cc ar fortfarande pa kollisionskurs ,.
medan mig21 flyger mot nordvast.

Figure 7: Sample stages in the matching process



Lars M Gustafsson: Hindelsestyrd textgenerering 39

att dessa genereras av objektet sjdlv i metoden internals. Det Ovriga systemet
behover alltsd inte modifieras.

11 Faktanivaer i systemet

Systemet utgdr frdn informationen frdn en 6vervakningsradar, bestdende av
tid,id,position. Fran denna information finns det ett antal regler som detekter-
ar uppdykande och férsvinnande objekt. Vidare finns det p& denna nivd andra
regler som detekterar kurs och hastighet osv. Dessa regler skapar dom enkla
observationer som syns i figur 6 pa nivan ”simple-observations”.

Dar variabeln "Points” indikerar hur intressant denna information bed6ms
vara. Detta riknas ut ifrdn objektets egenpoing, hindelsens podng, nationalitet,
beredskapsgrad osv. Dessa enkla observationer kombineras sedan ihop av en an-
nan uppsittning regler till kompletta fraser. Poingen frdn den nedersta nivin
fors upp till 6verliggande nivd genom att man tar hinsyn till bl.a. dom ingdende
objektens poing, hindelsens poing samt eventuella samordningspoang. Utifran
dessa fraser bildas sedan ett yttrande mha. ett antal sorterings och filtreringsre-
gler. De egenskaper hos objekten som behdvs vid matchningen fas naturligtvis

: hms_dalarna och ¢c_1 er fortfarende ps hollisionskura ,
cec_1 staver vesterut meden mig2i_1 flyger mot nordvest,

2 toms_delarna och cc_l ar inte lengre pa kollitionskure , |.
ccl_1 stavar nu osterut medan mig 21 fortfarande Flyger
mot nordvast. -

rees [NTER [J

ST
m Li
£
0.8
Lysk rarpsdhat
BTEI
20 - 10
ruaht attackalan
[ Ar o] EETED
a1 I - 29
sibthachet=10 suensh_jaktolan
-]
Sh 0
acensh fiskebat

Figure 8: Interacting with Radar



40 Computational Linguistics — Reykjavik 1989

genom att man via "send” till respektive objekt fragar om den Onskade egen-
skapen.
I figur 7 ser man hur hela genereringsprocessen gar till vid en viss tidpunkt.

12 Systemets anvindargranssnitt

I figur 8 ser man ett exempel pd hur bildskdrmen kan se ut vid en given tidpunkt
i prototypsystemet.

Litteratur

Cox, Brad J. 1986. Object Oriented Programming, An Evolutionary Approach. Addison-
Wesley, Reading, Massachusetts.

Covington, Michael A., Donald Nute, Andre Vellino 1988. Prolog Programming in
Depth. Scott, Foresman and Co., London.

Bratko, Ivan. 1986. Prolog Programming for Artificial Intelligence. Addison-Wesley,
Wokingham.

Clocksin, William F., Christopher S. Mellish. 1981. Programming in Prolog. Springer,
Heidelberg.

Goldberg, and Robson. 1983. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusetts.

Fornell, Jan. Sigurd, Bengt 1983. Commentator. Praktisk Lingvistik, 8. Lund.

Cognitive Technology AB
Box 1691

221 01 LUND
1mgQhunm.gu.se



STEFFEN LEO HANSEN

Pa vej mod en fagsproglig
tekstfortolker?

Abstract

The FAGFLADE Project

“FAGFLADE?" is short for Danish “fagsproglig graenseflade” (“special
purpose language interface”). The aim of the FAGFLADE project is to de-
velop and test theories and methods for automatic interpretation of texts
written in special purpose language. We use the expression “text inter-
preter” to designate a program which transfers the information contained
in a natural language text into knowledge representations in a knowledge
base. Thus a text interpreter is meant to perform part of the task of a
knowledge acquisition system in an expert system.

The FAGFLADE project takes as its basis the text of the Danish Com-
panies Act (“Lov om aktieselskaber”). It is not our ambition to build an
expert system, nor do we aim at the construction of a complete text inter-
pretation system, fit for use, and capable of translating statutes into legal
knowledge bases. Rather, we take the development of a specific interpreter
to be an ideal goal which defines an overall project capable of giving rise to
a handful of interesting subprojects for the investigation of general theories
and principles concerning interpreters, e.g. in the domain of syntactic and
semantic analysis, parsing strategies, knowledge representation, dictionary
databases, and terminological analysis.

The choice of the Danish Companies Act as a text basis is motivated
partly by our desire to work with an LSP central to industry and com-
merce, partly by the evident practical perspectives which will open up if
text interpreters for legal directives become a realistic possibility.

This paper deals with the initial phase of the project. In this phase we
have constructed a framework for the syntactic and semantic analysis of
simple sentence structures, and we have developed a program, written in
Quintus Prolog, which carries out syntactic and semantic parsing of these
structures.

1 Introduktion

P34 Institut for Datalingvistik pA Handelshgjskolen i Kgbenhavn har vi siden
instituttet blev oprettet i 1985 udviklet en tradition for et forskningssamarbejde,

41



42 Computational Linguistics — Reykjavik 1989

der i starten formede sig som en rakke datalingvistiske seminarer over udvalgte
emner, men som siden 1937 har fgrt til arbejdet pa et egentligt forskningsprojekt
med deltagelse af alle forskningsmedarbejdere, nemlig projektet FAGFLADE,
hvilket star for ‘fagsproglig grenseflade’.

Mailet for dette projekt er at afprgve og udvikle teorier og metoder bag
konstruktionen af en tekstfortolker, dvs. et system som analyserer en tekst og
overfgrer viden herfra til vidensrepraesentation i en vidensbase. En siddan tekst-
fortolker, forestiller vi os, kan indgd som komponent i et ekspertsystem som en
del af et vidensindlaeringsmodul.

Den tekst vi har valgt som grundlag for projektet er den danske ,Lov om
aktieselskaber*, og det sprog som er repraesenteret i loven er dermed det sublan-
guage som fortolkeren skal kunne analyser og forsta.

Projektet sigter ikke mod at udvikle et faerdigt ekspertsystem, men er ud-
gangspunkt for en raekke mindre projekter der fokuserer pd problemer og om-
rader knyttet til udviklingen af en tekstfortolker, det vil forst og fremmest sige
grundlaget for den syntaktiske og semantiske analyse, vidensreprasentation, ud-
vikling og afprgvning af parsing strategier, den maskinlaesbare ordbogs struktur
og omfang samt terminologiske problemer s som identifikation og reprasenta-
tion af flerledede termer, synonymer, definitioner og begrebsrelationer.

I dag er projektet ndet dertil at der er udviklet en parser i Quintus Prolog
som kan klare simple setningsstrukturer, dvs. s@tninger der kun indeholder
valensbundne led som optraeder pd den forventede position i s@tningen. Vi kan
altsd ikke pa nuvarende tidspunkt klare spgrgebisatninger eller topikaliseringer,
heller ikke adverbialer, ledsztninger og adskillige andre ting.

Det output vi far fra parseren er dels stningens syntaktiske struktur i form af
et konstituentstrukturtrze, dels en semantisk struktur. Den syntaktiske struktur
anvendes ikke i gvrigt af tekstfortolkeren, hvorimod den semantiske struktur
skal danne udgangspunkt for den vidensreprasentation som skal overfgres til
vidensbasen.

Et input som

Denne aftale pafgrer selskabet en forpligtelse

vil derfor give flg. output:

(1) s(np(det(denne), n(aftale)), vp(v(péfgrer),
np(n(selskabet)), np(det(en), n(forpligtelse))))

(2) pafgre(agent(aftale), theme(forpligtelse),
locus(selskab))

Grundlaget for den syntaktiske analyse og den semantiske repraesentation
er dels en konstituentstruktur grammatik, dels et leksikon med en leksikalsk
beskrivelse af verberne ud fra en valensbaseret kombination af grammatiske funk-
tioner og roller. Jeg skal i det fgplgende komme naermere ind pd de overvejelser
der ligger til grund for denne leksikalske beskrivelse og pa4 dens implementering
i selve parserprogrammet.



Steffen Leo Hansen: Fagflade 43

2 Konstituenterne

Den parser vi har bygget er en ‘left-corner, bottom-up’ parser. Den starter
sdledes med det fgrste ord i en input-sekvens og forsgger at opbygge en kon-
stituentstruktur for et S som har dette fgrste ord som sit venstre hjgrne. Gram-
matikken der rummer flg. genskrivningsregler, hvoraf 2-9 reprasenterer de sim-
ple s@tningsstrukturer som parserne kan klare netop nu:

(1) s --> NP VP
(2) VP -—-> v

(3) VP --> '} NP

(4) VP --> v PP

(5) VP --> ' AP

(6) VP --> v NP NP
7 VP --> v NP PP
(8) VP --> v NP AP
9 VP --> v PP PP
(10) PP --> P NP

(11) PP --> P AP

(12) NP --> N

(13) NP -—> DET N

(14) AP --> A

(15) AP --> A PP

I leksikon er hvert enkelt ordform forsynet med en oplysning om konsti-
tutenttype. Subkategoriseringen af VP’erne genfindes i leksikon som en sub-
kategoriseringsramme, der reprasenterer de konstitutenttyper som verbet kan
forbindes med som valensled. Denne konstituentramme skal unificeres med en
identisk ramme i en Prolog regel og tjener derfor det formal at effektivisere selve
parsningen. Hvis unificationen lykkes, vil parseren valge den pdg=ldende regel.

Vi kan séledes begynde at se pd opbygningen af en post i leksikon der har form
af en Prolog klausul med pradikatet d/6 hvis argumenter alle er sammensatte
termer:

d(word(_), lexeme(_), lexcat(_), gram_form(_),
synt_spec(_,_), sem_spec(_,_)).

For verbet ‘pifare’ som optreeder i eksempelseetningen ovenfor ser udfyldnin-
gen af de fgrste argumenter sdledes ud:

d
word: pafgrer
lexeme: pafgre
gram_form: [presl
lexcat: v
synt_spec
const_frame: v_np_np

adj: [nil]



44 Computational Linguistics — Reykjavik 1989

Argumentet lezcat indeholder oplysning om konstituenttype, synt_spec har
to sammensatte termer som argumenter: dels const_frame, der angiver konsti-
tutentrammen, dels adj (adjekt), der som argument har en liste over tilladte
prapositioner hvis der kan optraede et valensbundet PP. Notationen [nil] an-
giver at det ikke kan forekomme ved dette verbum.

3 Funktioner

De funktioner der opereres med i FAGFLADE er hentet fra den valensteori
som Herslund og Sgrensen (1985, 1988a, 1988b) har udviklet i deres arbejde
med franske verber. Der kan her kun blive plads til at skitsere hovedtrakkene i
denne teori, der bygger pa en distinktion mellem sztningsled der hgrer til hele
satningen, frie tilfpjelser, og saetningsled som er dikteret af det konkrete verbum
som optrader i setningen. Et valensled defineres som det syntaktiske udtryk for
de relationer der bestar mellem et verbum som semantisk pradikat og dets argu-
menter og mellem argumenter indbyrdes, og det er derfor kun verbalafhangige
satningsled med argumentstatus der kan opfattes som valensled. Endvidere an-
tages det at valensled alene kan beskrives i form af funktioner, og at der til enhver
leksikalsk beskrivelse af et verbum hgrer et valensskema med angivelse af hvilke
funktioner, resp. valensled, det pidgaldende verbum forbindes med. Der opereres
med et inventar pa tre grammatiske funktioner: subjekt, objekt og adjekt. Hertil
har vi i FAGFLADE for egen regning fgjet en fjerde funktion, agential, for ogsa
at kunne hindtere passiv.

Sammenlignet med antallet af valensled i traditionelle valensgrammatikker
er der sket en drastisk reduktion i antallet af funktioner. Funktionen adjekt
repraesenterer pad den ene side en valensgrammatisk nytenkning, og er pa den
anden side den funktion som rummer ngglen til rationaliseringen i antallet af
funktioner.

Traditionelt er man vant til at arbejde med valensled som DO (dativobjekt),
IO (indirekte objekt), A eller LO (adverbial/lokativobjekt), SP og OP (hhv.
subjekts- og objektspraedikat). Ved anvendelsen af et givet verbum kan man
sdledes komme ud for at det er muligt at velge mellem en konstruktion hvor
verbet optrader med DO eller IO: man kan fx. ‘give nogen noget’ eller ‘give noget
til nogen’, eller det kan vaere et valg mellem DO og LO: ‘jeg har efterladt ham
mine bgger’ overfor ‘jeg har efterladt mine bgger hos ham’. Hvad man derimod
ikke kan komme ud for, er en kombination af begge funktioner samtidig, dvs.
at de ovennavnte, traditionelle valensled gensidigt udelukker hinanden. Derfor
antages det, at de alle repraesenterer en og samme ledfunktion som imidlertid
kan realiseres pa forskellig made. Vi kan illustrere det med flg. eksempler:

(1) Han efterlod bgrnene en betragtelig formue
| S -~ /
DO O

(2) Han efterlod en betragtelig formue til bgrnene

v M-

0] 10




Steffen Leo Hansen: Fagflade 45

(3) Han efterlod sin bog hos sin broder
Nt N ettt
0] LO

(4) Han efterlod sin bil pd banegirden
| N —
0 LO

(5) Han efterlod hende dypt frustreret
—— ———
0] OP

Argumentationen for at sammenfatte i dette tilfzelde DO, 10, LO og OP i
een og samme funktion, adjekt, er, at uanset hvilken betegnelse man valger at
anvende s3 gelder det i alle konstruktioner at funktionen som sddan etablerer en
ny relation i stningen, i ovennavnte tilfzlde en relation mellem objekt + adjekt.
Denne relation opfattes som en sekundar praedikation der kan parafraseres med
enten VERE eller HAVE og som supplerer verbets betydning ved at placere
referenten for O i forhold til referenten for adjektet.

Placeringen kan veaere enten meget konkret som i eksemplerne (3): bogen
er hos hans broder, og (4): bilen er pd banegirden, eller mere abstrakt som i
(1): bgrnene har en betragtelig formue. Der kan imidlertid ogsd vare tale om
en placering i forhold til en egenskab eller en klasse, nemlig i de tilfzelde hvor
adjektet svarer til en praedikativ konstruktion med enten SP eller, som i (5), med
OP.

Begrundelsen for at indfgre adjekt er derfor pd den ene side at det er atheen-
gigt af setningens verbal som argument i logisk forstand, og pd den anden side at
det som argument ggr det muligt at relatere et af de to fundamentale valensled,
S og O, til et andet argument i setningen og at denne relation mellem valensled
indbyrdes er udtryk for en sekundar praedikation. Udfyldningen af adjektet kan
vare forskellig, men den sekundzre pradikation er konstant.

Som tidligere navnt omfatter den leksikalske beskrivelse af et verbum et
valensskema som angiver hvilke funktioner der kan forekomme sammen med et
givet verbum. Et sddant valensskema findes ogsi i det leksikon som vores parser
benytter, men inden vi skal se narmere pd dette vil det vaere ngdvendigt at
behandle de tematiske roller, idet de grammatiske funktioner i valensskemaet
associeres med en semantisk rolle.

4 Roller

Med udgangspunkt i opfattelsen af verbet som et pradikat med tilhgrende ar-
gumenter kan de semantiske relationer mellem argumenterne beskrives vhja.
semantiske roller. Den semantiske analyse stgtter sig ligeledes pd Herslund og
Sgrensen (1985) samt endvidere pa Korzen et alii (1983) og deres arbejde med
den sikaldte PK-grammatik, idet den ovenfor omtalte valensteori og de syntak-
tiske funktioner er udgangspunkt for at associere funktioner med roller.

Antallet af roller synes at vare en temmelig ubestemmelig stgrrelse, men vi
har foretrukket at reducere antallet i henhold til de navnte arbejder og i vores
projekt indskraenket det til tre: agent, tema og locus.



46 Computational Linguistics — Reykjavik 1989

agent svarer til den traditionelle opfattelse af agent og kan kun associeres med
funktionerne subjekt og agential.

locus optraeder kun ved praedikater med mindst to argumenter. Denne rolle
relaterer referenten for et andet argument til den location som locus-
argumentet udtrykker. Locus kan associeres med funktionerne subjekt, ad-
jekt og agential.

tema er semantisk set den meste generelle og den mindst precise af de tre roller.
Referenten for tema er den ‘entity’ som enten pdvirkes af handlingen eller
placeres mht. en location. Tema kan associeres med funktionerne subjet,
object og adjekt.

Distribution og kombination af roller associeret med funktioner kan sdledes
se ud som vist i flg. skemaet:

VERB SUBJ OBJ ADJ AGL
anse agent tema locus none
anses tema none locus agent
bestemme agent tema none none
bortfalde tema none none nomne
eje locus tema none none
ejes tema none none locus
finde agent tema locus nomne
pafgre agent tema locus none
veere tema npone locus none

Af skemaet fremgdr at fx. verbet anse optraeder med en funktionsramme
‘subjekt + objekt + adjekt’ og at der dertil svarer rollerammen ‘agent + tema +
locus’. Udtrykket ‘none’ betyder at den padgaldende funktion ikke kan forekomme
ved det anfgrte verbum.

Jeg vil gerne knytte en enkelt kommentar til rollen locus med udgangspunkt
i disse s@tninger:

(1) spgrgsmalet bortfalder sub(theme)
(2) ministeren bestemmer reglen  sub(agent) obj(theme)
(3) stifterne ejer dette selskab sub(locus) obj(theme)
(4) disse aktier er fondsaktier sub(theme) adj(locus)
(5) bestyrelsen finder disse sub(agent) obj(theme)
undersggelser ngdvendige adj(locus)
(6) denne aftale pdfgrer sub(agent) obj(theme)
selskabet en forpligtelse adj(locus)
(7) disse underspgelser anses sub(theme) adj(locus)
for ngdvendige af bestyrelsen agt(agent)

I stning (4) og (5) er locus associeret med funktionen adjekt, som her svarer
til hhv. det traditionelle subjektspradikativ (4) og objektspraedikativ (5), og i
(6) er locus associeret med et adjekt der svarer til det traditionelle dativobjekt.
Jeg anfgrte tidligere at rollen locus kun optrzeder sammen med et andet
valensled og at den denoterer en location for referenten denoteret af det andet



Steffen Leo Hansen: Fagflade 47

valensled. Ser vi p de tre sztninger ovenfor si er det subjektet, disse aktier, der
i (4) localiseres ekstensionalt i forhold til en klasse, klassen af fondsaktier, adjek-
tet, og i (5) er det objektet, disse undersggelser, der localiseres intensionalt med
hensyn til egenskaben at veere npdvendig, udtrykt i adjektet. Ligesom for funk-
tionernes vedkommende kan locationen ogsd vere mere abstrakt sddan som det
er tilfzeldet i (6) hvor objektet, en forpligtelse, localiseres i forhold til selskabet,
adjektet, forstaet pd den made at det er selskabet som har en forpligtelse.

Vi kan hermed afslutte udfyldningen af argumenter i leksikonposten og ind-
s@tte valensskemaet i form af de semantiske specifikationer:

d
word: pafgrer
lexeme: pafgre
gram_form: (pres]
lexcat: v
synt_spec
const_frame: v_np_np
adj: [nil]
sem_spec
func_to_role
sub: agent
obj: theme
adj: locus
agl: none
aspect: nil

Jeg vil ikke komme yderligere ind p& rollerne her. P4 nuvarende tidspunkt
i projektet fungerer denne opfattelse af roller kombineret med valensteorien
udmarket ndr det galder om at producere en semantisk reprasentation af de
simple satninger vi arbejder med. Nar vi skal i gang med at etablere selve videns-
basen kan det imidlertid meget vel vise sig at denne semantiske reprasentation
er utilstraekkelig, og at fx. antallet af rcller skal suppleres.

5 Opbygningen af den semantiske
reprasentation

De oplysninger der ligger i leksikon som vist ovenfor indtastes manuelt ved hjzlp
af en serlig editor, DICTED, udviklet af Henrik Kersting (under udgivelse) i
forbindelse med FAGFLADE projektet. De danner udgangspunkt for en proce-
dure som genererer et nyt leksikon i form af en prolog database, hvor lexemnavnet
associeres med en semantisk repraesentation i form af et lambdaudtryk beregnet
pa baggrund af argumenterne i den sammensatte term func(tion)_to_role.
Det skal her indskydes, at kun verber og adjektiver, herunder ogsd participier,
pa nuvarende tidspunkt forekommer med en specifik semantisk reprasentation.
Alle andre ordklasser, dvs. determinativer, praepositioner og substantiver, har det
pigazldende leksemnavn som semantisk reprasentation. Sammensatte NP’er har



48 Computational Linguistics — Reykjavik 1989

kerneleddets leksemnavn som semantisk reprasentation og PP’er har styrelsens
kerne som semantisk reprasentation. Udtrykkene aktie, aktierne, disse aktier og
af disse aktier har siledes alle en og samme reprasentation, nemlig aktie.

Argumenterne i termen func_to_role er de fire syntaktiske funktioner i
ordnet rakkefglge: subj, obj, adj, agl, afbildet p& de semantiske roller agent, tema
og locus. Alle fire funktioner optraeder, ogsd i de tilfaelde hvor de rent faktisk
ikke kan forekommer og derfor som verdi har ‘none’ som vi si det ovenfor. De
anvendes ved konstruktionen af lambdaudtrykkket, hvis argumenter ligeledes
forekommer i kanonisk rakkefglge: agent(_), theme(_), locus(_).

Verbet ‘péfgre’ har siledes flg. func_to_role reprasentation:
func_to_role( sub(agent), obj(theme), adj(locus), agl(none))
som konverteres til flg. lambdaudtryk:
X"Y-Z-pafgre(agent(Z), theme(Y), locus(X) )
Dette udtryk beregnes af flg. regel:

% Verb + adject + object (V NP NP).
% Verb + object + adject (V NP PP & V NP AP).

build_LambdaExpr(Lexeme,
func_to_role(sub(RoleS),obj(Rolel),adj(RoleAd),agl(none)),
X"Y"Z"Expr) :-
RoleS \== none,
Role0 \== none,
RoleAd \== none,
RoleSTerm =.. [RoleS,Z],
RoleOTerm =.. [Role0,Y],
RoleAdTerm =.. [RoleAd,X],
sort_RoleTerms ([RoleSTerm,Role0Term,
RoleAdTerm], SortedRT),
Expr =.. [Lexeme|SortedRT].

Nar parseren skal bygge en s®tnings semantiske struktur har den da for
verbernes vedkommende den type informationer til sin rddighed som vist pa fig.
side.

Kolonnen med funktioner og roller kan laeses pd to mader: dels som udtryk
for en afbildning af syntaktiske funktioner pa roller, dels kan man for hvert ver-
bum afizese en funktionsramme og en rolleramme ved alene at lese funktioner
og roller. Rammerne udtrykker tilladte kontekster for et verbum i form af kon-
stituenter, funktioner eller roller. Strukturerne, den syntaktiske og semantiske,
bygges af parseren ved at relatere ordene i den konkrete s@tning til konstitu-
tenttyper, roller eller funktioner.



Steffen Leo Hansen: Fagflade 49

Konsti- Func-to- Prolog lambda
tuent role map- udtryk
ramme ping
VERBER
anser v_np_pp sub(agent) X"Y"Z-anse(agent(Z),theme(Y),locus(X))
obj(theme)
adj(locus)
anses v_pp-pp sub(theme) X"Y-Z-anse(agent(Y),theme(Z),locus(X))
adj(locus)
agl(agent)
bestemmer v_np sub(agent) Y-"Z-bestemme(agent(Z),theme(Y))
obj(theme)
bortfalder v sub(theme) Z-bortfalde(theme(Z))
ejer v_np sub(locus) Y-Z"eje(theme(Y),locus(Z))
obj (theme)
ejes v_pp sub(theme) Y-Z"eje(theme(Z),locus(Y))
agl(locus)
er v_ap sub(theme) Y~Z"vare(theme(Z),locus(Y))
adj(locus)
er v_np sub(theme) Y-Z-vare(theme(Z),locus(Y))
adj(locus)
finder v_pp_ap sub(agent) X-Y"Z-finde(agent(Z),theme(Y),locus(X))
obj(theme)
adj(locus)
folger v_pp sub(theme) Y-Z~fglge(theme(Z),locus(Y))
adj(locus)
pafgrer v_np_np sub(agent) X-Y“Z-pafgre(agent(Z),theme(Y),locus(X))
¢bj(theme)
adj(locus)
undtager v_np_pp sub(agent) X-Y-Z-undtage(agent(Z),theme(Y),locus(X))
obj(theme)
adj(locus)

Under parsningen af s®tningen ,Denne aftale pafgrer selskabet en forplig-
telse* vil parseren—nar den skal bygge den semantiske struktur for satningen—
starte med at identificere denne aftale som et NP der opbevares i en variabel.
I leksikon under pdfgrer vil den f4 oplysninger om den konstituentramme der
gelder for verbet samt det lambdaudtryk der svarer til verbet. Ud fra en match-
ing af konstituentrammen finder den frem til den regel som skal anvendes og
identificerer herefter en konstitutentstruktur med to NP’er efter verbet. Det
forste NP, selskabet, associeres med rollen locus som er tildelt adjektet, det an-
det NP, en forpligtelse, med rollen tema som er tildelt objektet. Til sidst vil
den udfylde rollen agent med subjektet, det fgrste NP den laste, og aflevere det
feerdige resultat:

pafgre(agent (aftale), theme(forpligtelse), locus(selskab))

Den semantiske reprasentation vi kan fa frem nu er baseret pa rollestrukturen
fordi vi anser den for et centralt element ndr den information sztningen inde-
holder skal fastholdes som vidensreprasentation i vidensbasen. Vi er godt klar
over at der er flere forskellige semantiske faenomener som ikke er reprasenteret
i den nuvaerende fase, tidsrelationer, modalitet eller fx. adverbialsemantik. Vi
har ogs4 en liste over punkter som skal lgses og andre punkter som forestir. Det



50 Computational Linguistics — Reykjavik 1989

er ogsa derfor jeg har kaldt indlaegget ,P4 vej mod en fagsproglig tekstfortolk-
er*, og forhdbentlig kan vi nar vi mgdes igen om to ir praesentere en yderligere
udbygning og forbedring af vores tekstfortolker.

Hvis der er nogen der er interesseret i en mere udfgrlig rapport om projektet
samt en detaljeret gennemgang af programmet, s4 kan man orientere sig narmere
i LAMBDA NR. 11.

Litteratur

Hansen, Steffen Leo (forthcoming), FAGFLADE: Text, Types and Tokens, Lambda.

Hansen, Steffen Leo and Carl Vikner. 1989. FAGFLADE: The Initial Phase of a Project
in Natural Language Interpretation. Lambda, 11. Institut for Datalingvistik, HHk.

Herslund, Michael. 1988a. On Valence and Grammatical Relations. Copenhagen Studies
on Language, 11:3-35, Copenhagen.
Herslund, Michael. 1988b. Le datif en frangais. Louvain-Paris, Editions Peeters.

Herslund, Michael and Finn Sgrensen. 1985. De franske verber. En valensgrammatisk
fremstilling. I. Verbernes syntaks. Romansk Institut, Kebenhavns Universitet.

Kersting, Henrik. 1989. DICTED: An Editor for Dictionaries Stored as Prolog Data-
bases. Lambda, 12.

Korzen, Hanne, Henning Nglke, Henrik Prebensen and Finn Sgrensen. 1983. PC-
Grammar: An Alternative?, Acta Linguistica Hafniensia, 18:5-53, Copenhagen.

Sgrensen, Finn. 1988. Om rollen Locus, Notat. Institut for Datalingvistik, Handelshgj-
skolen i Kgbenhavn.

Institut for Datalingvistik
Dalgas Have 15

DK-2000 Kgbenhavn F.
Danmark



JANNE BONDI JOHANNESSEN

Is Two-level Morphology a
Morphological Model?

Abstract

This paper contains a close look at Koskenniemi's Two-level morphol-
ogy from a linguistic point of view. The model will be compared to three
other traditional, linguistic morphological models, IA, IP and WP. It will
be shown that there are linguistic phenomena that can hardly be handled
by some of the just mentioned models, and not at all in a linguistically
satisfactory manner by the Two-level morphology.

1 Introduction

Koskenniemi’s Two-level morphology (TM) has become well known since it was
developed in 1983. One reason for this is probably that it is one of the few
models within computational linguistics that has taken morphology seriously.
To store full wordforms, inflected and derivated, in the lexicon may be possible
for a language like English, with relatively poor morphology. But Koskenniemi
saw that for Finnish, where a single verb can have between 12.000 and 18.000
different graphemic forms (included clitics), such a solution would not work.
If the American computational linguists had been Red Indians speaking the
Cherokee-language Oneida, instead of white and English-speaking, then they
too would probably have developed a morphological model that could handle
their verbs with up to 100.000 forms each.

I assume the Two-level morphology to be well-known, and I will thus only
give a very short description of it, before I procede to the main task; to compare
the Two-level morphology with other morphological models, and to see if this
model can be said to be a morphological model.

2 A Short Description of Two-level
Morphology

The Two-level morphology is designed to perform both analysis and synthesis on
the basis of more or less the same data. It has at its disposal a rule module and

51



52 Computational Linguistics — Reykjavik 1989

a lexicon module. The rule module takes care of one-segment correspondences,
mostly phonological ones. The lexicon module may consist of several lexicons,
one or more for stems and others for affixes. From each lexicon there is a pointer
to the next possible lexicons. The entries in the lexicon may look different from
their surface representation, which the rule module takes care of. (1) and (2) are
examples of lexicon entries in two sublexicons for Norwegian:

(1) LEXICON Nouns
vintEr /MNoun Lexeme=WINTER
gutt /MNoun Lexeme=WINTER

(2) LEXICON /MNounSg
0 /Genitive Num=sg/Defin=ind/Gender=m/.
en /Genitive Num=sg/Defin=def/Gender=m/.

The information that we get about a word-form that is analyzed, is the infor-
mation that is accumulated through all the lexicons that have been consulted.
Thus if we analyze vinteren, we get the information from both the stem- and the
suffix lexicon:

(3) vinteren: Lexeme=WINTER Num=sg/Defin=def/Gender=m/

(This accumulation is the reason for the seeming zero-inflectional morph that
is apparent in (2). It is not meant as a suffix, it is just there to ensure that the
information about singular and indefinite is collected. This information could not
have been represented in the stem lexicon, even if the stem is identical to the word
form of indefinite singular, because the stem lexicon also points to lexicons for
plural and definite forms. Since information is accumulated on its way through
the lexicons, we would, if we had given the singular indefinite information in
the stem lexicon, have gotten absurd results like vintrene = singular, plural,
indefinite, definite. In other words: The stem lexicon can only include information
that is common for all the wordforms belonging to one lexeme.)

The lexical form of the entry we have looked at is vintEr (1), but the surface
representation should be as in (4), of course:

(4) vinter

The default alphabet then includes a lexical E that corresponds to a sur-
face e, (E:e), (in addition to the usual e:e). The reason for this cumbersome
representation is that vinter and many other Norwegian lexemes go through a
morphophonemic change that deletes the e before certain morphological endings:

(5) Singular: vinter - vinteren
Plural: vint_rer - vint_rene

If we want to have the same lexical entry for all wordforms of one and the
same lexeme, which is obviously the most satisfactory solution from a linguistic
point of view, we have to make the ‘e’ which can go away, a little different
from other ‘e’-s that can not be deleted (e.g. in vinteren), so that we can later
formulate a rule that refers only to the appropriate ‘¢’. Only then can we keep
one lexical entry for this lexeme, vintEr, instead of two, e.g. as in (6):



Janne Bondi Johannessen: Two-level Morphology 53

(6) vinter /MNounSg Lexeme=WINTER
vintr /MNounP1 Lexeme=WINTER

We then formulate a rule that overrules the lexical default values:

(7) "E-deletion in stem before plural"
E:0 <= _ Liquid P1Suffix ;

(The rule context consists of names that refer to certain sets and definitions
that we have predefined.)

3 How Can Two-level Morphology be
Characterized When Compared to Other
Linguistic Models for Morphological
Description?

In our century traditionally there have been three models for morphological
analysis; IA (Item and arrangement), IP (Item and Process) and WP (Word
and paradigm). For a discussion of these models, see Hockett 1954, Matthews
1972, 1974, Robins 1970. A fourth model can also be mentioned, which I shall
not go into here; NM (Natural morphology), see Wurzel 1982 or Bybee 1985.
Below I shall compare the Two-level morphology with each of the three models.
(The discussion will to a large degree be built on Johannessen 1988.) As they
have not existed quite simultaneously, I will start with the oldest one and then
end with the newer one.

3.1 Item and Arrangement

The main characteristic of this model is that there are minimal units, mor-
phemes, that can be arranged in a number of ways to form bigger units. The
morphemes are abstract units that are represented through their allomorphs.
Since at the time of IA (approximately 1930-1950) the view held that syntax
and morphology should be described in the same way; that there is ideally a
one-to-one relationship between morpheme and allomorph, more precisely a re-
lationship where one morpheme has one surface realization and vice versa:

(8) IA:

Morphemes: Allomorphs: ‘Word’

{gutt} + {indef pl} gutt-er gutter (= boys)
{hus} + {indef pl} hus-0 hus (= houses)

IA and TM have in common that the different elements are arranged lexically,
as we see. But the elements of IA (morphemes) are abstract, so that in (8)
we have the same second element in both words, it is just realized differently
(different allomorphs). In TM on the other hand, the two plural formatives have
nothing in common because of their different realization in the lexicon. In TM
they are actually two different endings, since they are different graphemically:



54 Computational Linguistics — Reykjavik 1989

(9) T™M:

Lexical (stem) entries: Lexical (affix) entries: ‘Word’

gutt er gutter (= boys)
hus O(nothing) hus (= houses)

We do not see any morphosyntactic information here, since it is irrelevant
for the model. The grammatical features that are present in the lexicon entries,
can not be made use of by the rules. TM does not get past the concrete level of
allomorphs, it can thus not be equivalent with the IA-model.

3.2 Item and Process

The IP model was popular until the 1960s. Like IA this too is a model based
on the morpheme-allomorph distinction. The difference from the IA model is
that the IP model allows processes, that is, it allows elements to undergo a
metamorphosis to gain a shape different from the original one. This is possible
both at phoneme and morpheme level. The model allows rules of both sorts.

When it comes to the process part, we can say that IP and TM have some-
thing in common. We have seen the rule part of TM, and even if there we deal
with pairs of segments that correspond with each other in certain circumstances,
the idea could be that the correspondence looks like a process. (In fact: The rule
formalism is designed to take care of morphophonemic changes that are abundant
in Finnish (vowel harmony and consonant gradation)). I can also cite Karlsson
and Koskenniemi (1985:127): What is described by rules is “fairly natural one-
segment modifications; mostly automatic, transparent, productive, exceptionless
alternations between phonologically closely related single phonemes in predomi-
nantly phonological contexts.” Phonological rules are then taken care of in TM.
Morphological rules, on the other hand, i.e. processes that form e.g. plural word-
forms from stems, are not possible in TM, which handles all formatives in the
lexicon part.

Morphophonemic changes can thus be described in TM in a manner similar
to IP (when we ignore the lack of morphemic level in TM) :

(10) IP:

Morphemes: Allomorphs: Morphophonemic rule: ‘Word'’
{bok} + {indef pl} bok-er o->g/ _Cer bgker
(11) T™:

Lexical (stem) Lexical (affix) Two-level rule: ‘Word:’

entry: entry:

bok er o : @/-C er bgker

The two models are similar so far, but only as long as the rule-context is
purely phonological (graphemical). Morphological context is impossible in TM,
but possible in IP :

(12) IP:
Morphemes: Allomorphs: Morphophonemic rule: ‘Word’

{bok} + {indef pl} bok-er o->g / _C {+pl ind} bgker



Janne Bondi Johannessen: Two-level Morphology 55

The only way TM can use morphological information, is to make the morpho-
logical information ‘phonological’ by adding extra characters in the rule context.
The extra character will then symbolize the morphological class or feature. E.g.
can we put a dollar sign in front of the affix (which must of course also be present
in the lexicon where the affix has its entry) or the morphological ending may
itself get a different lexical shape, to satisfy the need for a context that can be
morphologically unique:

(13) TM:
+ morphophonemic rule: o -> g / _ C $er

or
+ morphophonemic rule: o -> g / _ C Er

Now one might want to reply that it is not important. But in natural language
it is often necessary to distinguish between phonological and morphological con-
ditioning. A number of Norwegian dialects have productive palatalization of /k/
and /g/ in front of noun suffixes, but not otherwise:

(14) /stok/ (= stick)
/stoc-en/ (= the stick (nom.))
/drek-e/ (= (to) drink)
/stoc-a/ (= the stick (dative))
/tak-a/ (= thanked)

It would be a mistake to phonologize this type of morphophonological process.
It is the morphological category of the suffix that conditions the alternation of
the stem, and not the phonological shape.

3.3 Preliminary Summary

We have looked at two linguistic models for morphological analysis which both
have the distinction morpheme-allomorph, i.e. which take the segmental side of
natural languages very seriously. One of them, IP, is a little more flexible in that
it accepts segmental changes triggered by some phonological or morphological
feature.

When we compared TM to these models, we saw that it seems to be inspired
by them. It too emphasizes the segmental side, through the linked lexicons.
Also it seems to be inspired by the rule module of IP, although TM only allows
“phonological” conditioning for the triggering of rules.

The serious defect of TM, however, is that it lacks a conceptual, morpholog-
ical level. It operates only at the concrete, phonological (graphemic) one, which
is of course the reason for the just mentioned phonological triggering.

We have seen that IA and IP are not fashionable today. The reason is that
they are too limited to account for all facts about natural language. But the
knowledge that morphological processes can be more than just elements ar-
ranged in a certain order is not new. E.g., the American linguist Edward Sapir
in his book “Language” in 1921 distinguished between six different processes,



56 Computational Linguistics — Reykjavik 1989

(i.e. ways of expressing morphological characteristics) where he included things
like “internal modification of the radical or grammatical element”, reduplication,
accentual and quantitative processes.

It is this knowledge that led to a revision of morphology by Matthews in
1972.

3.4 Word and Paradigm

The WP is a model that attempts to take morphology seriously in that a gram-
matical feature can be realized in many different ways, like Sapir suggested. In
this model the underlying representation is even more abstract than in the two
preceding morpheme models. Any wordform is represented through its lexeme
(an invariant representation of the word) with the grammatical (morphosyntac-
tic) information represented as an unorded set:

(15) GUTT)y masculine, indefinite, plural

To reach the correct wordform, the stem, which is the starting point, can go
through various processes:

(16) GUTTy masculine, indefinite, plural:

Stem: gutt
+ operation: suffix -er
= Word gutter

The number of processes is potentially infinite, the reason for this is that
it is the word which is the basic unit in this model: If a wordform differs in
more than one way from any other wordform in the same paradigm, then it goes
through more than one process to reach its final shape. And all the processes
will be exponents of the same grammatical (morphosyntactic) feature. We shall
look more closely at three linguistic phenomena that are problematic for the two
other linguistic models and for TM, but not for WP.

The first and most important difference between the WP model and the
morpheme models is that while the morpheme models need a one-to-one rela-
tionship between morphological contents and its realization, WP accepts a many
to one/one to many-relationship:

(17) BOKy feminine, indefinite, plural
Stem: bok
+ operation: suffix -er
+ operation: change stem vowel
= Word: bgker

As we have seen previously, the morpheme models and TM necessarily must
give priority to one of the realizations, and let the other(s) be conditioned by it.
This poses strong constraints upon the linguist, who will have to give arbitrary
priority to one realization, e.g. to let an affix trigger a vowel change.



Janne Bondi Johannessen: Two-level Morphology 57

A second problem is that while there still might be some universal claims
about the priority of affixes to ‘internal modifications’, so that the first problem
may look smaller, a worse case occurs when there are more than one affiz that
represents a grammatical feature. This is the case in German past participles:

(18) ge-sag-t

In the German case we might still argue to give priority to the suffix, though,
since the other verbal features in the language are marked by suffixes, but con-
sider the Kubachi dialect of Dargwa from the Northeast Caucasus, where each
adjective agrees with the noun’s gender and number both initially and finally,
in addition to agreeing with number penultimately:

(19) Kubachi (dialect of Dargwa, Northeast Caucasus):
b-1k’a-zi-b qalé’e ‘little bird’
d-1ik'a-zu-d qulé’-ne ‘little birds’
(The example is from Anderson 1988:32)

The morpheme models that we considered previously would have to give one
affix priority over the other, or make use of the concept circumfix. The TM on
the other hand, does not present a satisfactory solution.

It could represent the prefixed affixes in a separate lexicon, and have point-
ers from there to the further lexicons. This however would mean that the stem
would occur as many times in the stem lexicon as there are prefixes in the lan-
guage, since the suffixes have to agree with the prefixes. Other equally inelegant
solutions are also possible.

But even if TM has problems in representing phenomena like the above, it
can do it in an inelegant way. The third problem is more serious, however:

The third area is phenomena that are not ‘segmental’ in their nature. We
recall Sapir who allowed internal modification as a means for representing mor-
phological features. A typical example of this is the Germanic umlaut and ablaut,
which in many cases is the sole distinguishing factor between two wordforms of
the same lexeme:

(20) mann (indef sg)-menn (indef pl) (man-men)
se (infinitive)-sd (preterite) (see—saw)
mouse (sg)-mice (pl)

Both the morpheme models that we looked at and TM have problems in
describing such phenomena as vowel alternation, when it is not the biproduct of
some other segmental, morphological process, but rather the main exponent of
that morphological feature.

The main problem for TM is that all grammatical (morphosyntactic) infor-
mation is only represented in the lexicon part of the system, and not in the rule
part. If a two-level rule should take care of this information, it would 1) need a
segment to trigger the rule, and 2) let the morphological information be accom-
panied by the trigger, and not by what is really the difference between the two
forms—the vowel alternation:



58 Computational Linguistics — Reykjavik 1989

(21) T™M:

Lexical (stem) Lexical (affix) Two-level rule: ‘Word’:
entry: entry:

mann -0 ate <=> _ C* -0 menn

4 Conclusion

The question which is the title of this paper, ‘Is Two-level morphology a mor-
phological model?’, can from the previous discussion be answered quickly and
clearly negatively. The reason for this is that a minimum to be demanded from
a morphological model, is for it to accept morphological features and categories
as primitives. In that way it could allow morphological conditioning on stem
variation. But TM has to make use of artificial null-segments and other triggers,
i.e. it has to make the originally morphological context ‘phonological’, segmen-
tal. Anything that is morphological—like the information in the lexicons—can
be used only by the linguist, not by the model. In this way it does not have any
possibility of making generalizations independently of phonological shape. It is
even worse than the morpheme models, as it can not say that both a suffix and
a vowel alternation could represent ‘plural’, e.g..

It therefore seems fair to say that TM is not a morphological model. There
are, however, languages that can be well described by it, viz. the languages
that are usually called agglutinative in traditional typology. These are languages
like Finnish, whose morphology consists of easily separable affixes that each
corresponds to one morphological unit. The phonological alternations in Finnish
are not realizations of morphological features, only phonologically determined
automatic alternations, which the two-level rules handles well. The important
rule-part of the model makes the TM more phonological than morphological.

We may ask a last question: Is it important that a computational model
has linguistic qualities? From the above discussion I think the answer should be
positive.

References

Anderson, S.R. 1988. Inflection. In Hammond, M. & M. Noonan (eds.), Theoretical
Morphology, 23—44. Academic Press Inc., San Diego.

Bybee, J. L. 1985. Morphology. A Study of the Relation between Meaning and Form.
John Benjamins Publishing Company, Amsterdam.

Hockett, C.F. 1954. Two Models of Grammatical Description. Word, 10, 210-231. New
York.

Johannessen, J. 1988. Automatisk morfologisk analyse og syntese. Lingvistisk institutt,
Universitetet i Oslo, Oslo. Hovedoppgave.

Koskenniemi, Kimmo. 1983. Two-level Morphology: A General Computational Model
for Word-form Recognition and Production. Publ. no. 11, Department of General
Linguistics, University of Helsinki, Helsinki.



Janne Bondi Johannessen: Two-level Morphology 59

Killgren, G. 1983. Computerized Analysis and Synthesis of Finnish Nominals. In Pa-
pers from the Seventh Scandinavian Conference of Linguistics, 433—444. Publ. no.
10, Department of General Linguistics, University of Helsinki, Helsinki.

Karlsson, F. and K. Koskenniemi. 1985. A Process Model of Morphology and Lexicon.
Folia Linguistica, 207-231, Haag.

Matthews, P.H. 1972. Inflectional Morphology. Cambridge University Press, Cambridge.

—1974. Morphology. An Introduction to the Theory of Word-structure. Cambridge
University Press, Cambridge.

Rankin, I. 1986. SMORF—An Implementation of Hellberg’s Morphology System. In
Papers from the Fifth Scandinavian Conference of Computational Linguistics,
161-172. Publ. no. 15, Department of General Linguistics, University of Helsinki,
Helsinki.

Robins, R.H. (ed.) 1970. Diversions of Bloomsbury. Selected Writings of Linguistics.
North-Holland Publishing Company, Amsterdam.

Sapir, E. 1921. Language. Harcourt, Brace & World, New York.

Waurzel, W. U. 1982. Phonologie - Morphonologie — Morphologie. In Linguistische Stu-

dien, 93, Reihe A, Arbeitsberichte. Akademie der Wissenschaften der DDR, Zen-
tralinstitut fiir Sprachwissenschaft, Berlin.

Institutt for humanistisk informatikk,
Universitetet i Oslo,

P.b. 1102 Blindern, N-0317

Oslo 3.



GUNNEL KALLGREN

Automatic Indexing and Generating of
Content Graphs from Unrestricted Text*

1 Introduction

For quite some time, I have been exploring the surface signals of language, and
trying to put them to as much use as possible, primarily in morphology-based
part-of-speech assignment (Kallgren 1984a,b,c, 1985) and pattern-based syntac-
tic analysis (Kéllgren 1987). This kind of large-scale, probabilistic parsing on the
basis of morphological and syntactic patterns has lately come to use in several
projects. Some models that have been documented are the UCREL parser in
England for the Brown and LOB corpora (Garside & Leech 1987), the VOL-
SUNGA parser in the USA for the Brown corpus (DeRose 1988), Ken Church’s
stochastic models (Church 1988), as well as other work in the US (Black 1988),
but I am sure work along these lines is going on in several places.

The impetus behind the works just mentioned is mainly a need for analyzing
large amounts of unrestricted text in a way that is not too resource-demanding,
either on time or on computing power. As a secondary goal, I have seen the needs
of large-scale information retrieval. Keeping my original surface-orientation, I
have gone further from the analysis into parts-of-speech and constituents and
started to look at the extraction and representation of some kind of ‘content’
from the surface of texts, without any kind of knowledge base support. This
might seem quite impossible. Many of the other papers in this volume deal with
how unavailable inferences are to the comprehension of text, and of course they
are right. If the aim is to build a computerized system that will in any way
simulate language understanding, it is necessary to have a large knowledge base
and mechanisms for making inferences from it, but there are also applications
where the human knowledge and inferencing capacities can be used instead. My
approach in the experiment to be reported here has been to let each one do

*My sincere thanks to Boris Prochaska and Sten-Erik Bergner, formerly at Ericsson Tele-
com, who wrote the original version of the graph drawing program that I have used, and to
Howard Gayle who set me in contact with them. Sune Magnberg has done a great job in trans-
ferring the program to a PC environment and has also written the part of the whole system
that checks for collocational pairs. I also wish to thank Benny Brodda, Kari Fraurud, and Sune
Magnberg for valuable comments on earlier drafts of this article.

60



Gunnel Killgren: Automatic Indezing 61

what he/she/it is good at; let the computer store, sort, and find facts, and let
the human being do the inferencing,.

This is actually the way it normally is in the field of information retrieval,
where it is the human user that (interactively, at best) decides whether she/he
has got the desired material. The problem is then to produce an optimal basis
for that decision. I have so far been testing automatic indexing of texts, i. e.
to find central concepts in texts automatically (Kallgren 1984c). This is not all
that difficult, but not all that effective either. In order to be covering, the index
lists will easily grow too long; if shortened, important descriptors may disappear.
This is an instance of what is known as the conflict between recall and precision.
Still it is clear that simple word lists can be quite informative, though a bit
boring.

I have also gone to the other extreme and tried to actually generate coherent
abstracts automatically (Kallgren 1988). This would certainly be desirable, and
though it is far away, I do not think it is impossible.

What I will report on here is something in between. It is a way of showing
central concepts and their interrelations in what I have called ‘content graphs’.
It is then up to the user to interpret the relations and make the inferences that
are needed in order to get a picture of the content of the concerned text.

In principle, it may be wrong to talk about content graphs. The graphs
picture ‘what a text is about’, rather than its content, but to call them ‘aboutness
graphs’ is just too clumsy. What these graphs actually do is to give a hint about
the content of a given text, not a full and true representation of it.

Given these limitations, the graphs still have their justification. The deriva-
tion of them from texts is an interesting task, for a set of reasons: The process
can be fully automatized. It can be run on unrestricted text without manual pre-
processing. The output can often be strikingly accurate. It also seems to have
some interesting psycholinguistic implications.

2 Surface-Oriented Indexing and Information
Retrieval

Of course, different kinds of surface-oriented methods have been used exten-
sively through the years in research on automatic information retrieval. Salton
& McGill (1983) give a broad overview of the field and also report interest-
ing data on the notoriously difficult evaluation of information retrieval systems.
Many of the systems described make use of adjacency and term frequency fea-
tures in different combinations, and some systems take into account not only
terms that are immediately adjacent but also terms that appear within a lim-
ited distance of each other (ibid. p. 33). Sophisticated methods for computing
frequency and relative weight of terms occuring in documents are also described.
Frequency of immediately adjacent terms is used as a means of finding complex
terms (such as ‘information retrieval’), but the authors do not report any work
dealing with frequency of more loosely connected terms. The results of their ex-
perimentation is encouraging in that they show that well-constructed automatic



62 Computational Linguistics — Reykjavik 1989

indexing systems may perform quite as well as manual indexing, and also that
simple surface-based procedures can be as good as or better than more refined
methods (ibid. p. 102).

The original inspiration for this work comes from Phillips (1985) which relates
to some very early work within computational linguistics (e.g. Sinclair et al.
1970). Many of the ideas suggested at that time would deserve a renewed interest
today, when computational power as well as linguistic knowledge has increased
(the former considerably more than the latter, however). A good old idea that
turns up every now and then is the concept of collocation. Collocations are words
that appear together considerably more often than would be expected on purely
statistical grounds. They can either be immediately adjacent or appear within
a limited distance from each other. This distance, in terms of number of words,
¢an be called a span. ‘Collocation’ and ‘span’ are basic concepts in my method
for generating graphs.

To search for collocations can be a way of finding the idioms of a language,
both those that are entirely fixed, like ‘red tape’, and those that contain slots,
like ‘pull someone’s leg’. It can also be a way of finding relations between words.
In the kind of content analysis that is carried out in the social sciences, cooccur-
rences between predesigned pairs or sets of words have sometimes been investi-
gated. My treatment of the collocations is related to both uses; to the former in
regarding all words in a text as liable to enter collocative relations, to the latter
in assigning some kind of semantic load to the relations. This amounts to saying
that the fact that two words cooccur suspiciously often carries some meaning in
itself.

There is, however, one limitation on what words can form collocations in my
system. To avoid uninteresting collocations, such as article plus noun etc., I only
take content words into regard, not form words. The distinction between content
words and form words is of course not totally clear (which linguistic distinctions
are?), but clear enough to be operationalizable. There are some rare instances
of homography, as when ‘out’ can be a noun in connection with baseball, and
some adverbs can be felt to be ‘content heavy’. Disregarding this, form words
can be given as lists of words from the closed categories: pronouns, prepositions,
adverbs, auxiliary verbs, articles, particles, and conjunctions. Removing such
words from running text, or placing them on so-called ‘stop lists’, is a much
used practice in automatic indexing, and it is estimated that about 250 common
words cover 40-50 percent of an average English text (Salton & McGill p. 71).
Lemmatization and rank ordering, as described in steps 2 and 3 in the algorithm
below, are also well-established techniques.

3 The Algorithm

The method can now be presented in the form of an algorithm, which I will
proceed to describe and examplify.



Gunnel Killgren: Automatic Indezring 63

(1) THE ALGORITHM:

1. Eliminate all form words.

2. Lemmatize the remaining words, i. e. disregard differences at the end of words
that either belong to the sets of derivational and inflectional endings or are
admissible combinations of those.

3. Rank the lemmas in order of frequency.

4. Decide on a lowest frequency of lemmas and exclude the lemmas below that level.
The level is dependent on the length of the text and the degree of recall wanted.
The lemmas above the frequency threshold form the set of INDEX words.

5. Decide on a SPAN length. The length of the span is not dependent on text length
or wanted recall, but might be language dependent.

6. Find all instances where two words from the index set appear within the same
span. These are the COLLOCATIONAL PAIRS.

7. Find all pairs that are identical, disregarding order, as the pairs in themselves
are unordered.

8. Rank the collocational pairs in order of frequency.

9. Decide on a lowest frequency of collocational pairs, based on the same principles
as for the lemma frequency. Pick out all pairs above that frequency.

10. Construct ADJACENCY LISTS, i. e., for each lemma, list all other lemmas with
which it forms a pair.

11. Use the adjacency lists as input to the GRAPH-drawing program.
Alternative version with graphs drawn by hand:

10’ Try to find optimal orderings of the pairs, look for central concepts that occur
in many pairs.

11’ Draw the GRAPH.

4 Implementation

The system has been tested for Swedish, and the programs for removing form
words and lemmatizing content words so far only exist in Swedish versions. They
are a set of Lisp procedures running on PCs. For the purpose of demonstration, I
will however use an English text where the lemmatizing has been done manually.
The full English text is given in Appendix A and all examples below are taken
from that text. Appendix B contains three shorter Swedish texts and Appendix
C their respective graphs. These have been produced in a wholly automatical
way as specified in the algorithm.

The removal of form words is, as stated above, simply done by removing all
words on a pre-specified list from the text. Lemmatization is normally a far from



64 Computational Linguistics — Reykjavik 1989

trivial process, but can in this connection be done in a simplified manner. The
text, devoid of its form words, is treated as a word list and sorted alphabet-
ically. Words that start in a similar way are compared as to their endings. If
two words are identical all the way, they clearly belong together. If the parts
where they differ belong to the pre-defined set of endings, they are also regarded
as belonging together. This matching can be done in more or less sophisticated
ways. Either the pairs of matched endings must signal the same part-of-speech
and be morphologically connected, as when berry and berries form a lemma
berr with matching endings y — ies. Otherwise, anything ‘endinglike’ will do,
as when favorite, favored and favorable are matched. Actually, I think the latter
alternative, lemmatizing across part-of-speech boundaries, should be preferred,
as we are primarily looking for semantic relations, regardless of how they are ex-
pressed. In this way, the truncated stems (see below) that represent each lemma
come to refer to a concept more than just a word. This kind of lemmatization
has been called ‘root lemmatization’ and a linguistically sophisticated way of
doing it is described in Fjeldvig-Golden (1984).

Semantically erroneous lemmatization can of course not be avoided, as when
late, which in the text is used in the sense of deceased, is lemmatized with a
temporal lately. This is however not such a big problem as one might suspect, as
such infelicitious pairings rarely reach a frequency where they will influence the
outcome of the entire process. To solve the problem, on the other hand, would
demand a very large apparatus based on not only semantic but also pragmatic
knowledge.

What is left when possible endings have been removed is a truncated stem,
where the truncation process has sometimes been quite brutal. The truncated
stems can now be sorted according to frequency and those below a certain level
are removed. For the short sample text of two typed pages, a frequency level of
two was settled. This is of course the minimal frequency. A frequency of one has
no discriminatory effect whatsoever, as those lemmas can never occur in more
than one pair. The lemmas with a frequency of two or more in the sample text
are given in (2). They are called indez words and are saved on a separate file
to be matched against the full text in the next step of the process. For a longer
text, a higher frequency level might have been preferred in order to limit the
set of index words. This is a typical instance of balancing recall and precision to
reach a result that is felt to be adequate.



Gunnel Killgren: Automatic Indering 65

(2) INDEX WORDS. (LEMMAS WITH FREQUENCY >= 2.)

acre hair orchard
berr I past
brown includ plant
captivat North Island produc
chance Jim_Macloughlin seed
Chinese kiwi ship
commercial kiwifruit sold
countr late success
develop lemon tast

ear like Te_Puke
egg market thousand
favor me vine

five millionaire white
flesh most wild
fruit new world
green New_Zealand year

Next, a span length has to be settled. This does not, however, seem to be con-
nected to recall and precision in the same way as the frequency limits. Rather,
there seems to be an optimal span length. Increasing or decreasing the span
length in relation to the optimal length will increase/decrease recall in the way
that would be expected, while both increase and decrease of span length, inter-
estingly enough, seem to reduce precision. An increase in span length will give
more of accidental and thereby uninteresting collocations and also a higher rel-
ative frequency of such uninteresting collocations among all collocations above
the critical threshold that is to be set in step 9 of the algorithm. At the same
time, increased span length seems to give surprisingly few new ‘hits’, while the
old hits run a risk of being outnumbered by the new accidental collocations. A
decrease in span length will remove many wanted collocations, while the relative
proportion of hits among the remaining collocations will not increase. Any vari-
ation of the span length thus seems to give a reduced proportion of semantically
significant collocations. This is, however, only subjective impressions from small-
scale tests with varying span length. Similar results have been reached by others
(Sinclair et al. 1970, referred in Phillips 1985), and have led to establishing a
span length of four orthographic words as optimal.

This is a point that would deserve a more thorough investigation. It probably
has something to do with the normal size of common constructions: modifier
and noun will almost always appear within less than four words distance, as will
mostly subject—verb and verb—object, while e. g. more peripheral adverbials
will not occur that close to the nexus part of the sentence.

In the sample application, the span length is settled to the optimal 4. The
original text, including form words, is searched for occurences of the (truncated)
stems of the index words. Whenever a word containing such a stem is found, a
span of four words is scanned for more occurences of (stems of) index words. If



66 Computational Linguistics — Reykjavik 1989

any are found, the resulting pairs are stored and the search goes on. In (3) a
clause from the text is given with all index words capitalized.

(3) THOUSANDs oF ACREs ARE NEWLY PLANTED EACH YEAR IN A
DOZEN OR MORE COUNTRIEs, ...

Here, thousand collocates with acre and new, but not with plant. Acre col-
locates with new and plant, new with plant and year, and plant with year.
Countr has no collocations in this instance. The internal order of the colloca-
tional pairs is of no importance, so the stems within each pair are stored in
alphabetical order. The pairs are then sorted alphabetically and the frequency
of each collocational pair is calculated.

The next step is again to decide on a lowest frequency, this time of colloca-
tional pairs. This decision governs which pairs, and consequently which lemmas,
are to be regarded as representative of the content of the text. As this has such
great impact on the output, it may well be that it should be possible to vary
the frequency threshold for collocational pairs interactively, in order to facilitate
closer inspection of interesting findings. A way of making expansions of the sets
of lemmas and relations will be described below.

In (4), all collocational pairs with a frequency equal to or above 2 in the
sample text are given in alphabetical order.

(4) COLLOCATIONAL PAIRS WITH FREQUENCIES.

berr — kiwifruit
commercial — kiwifruit
develop — kiwifruit
flesh — green

I — kiwifruit

I — New.Zealand

N W NN NN

The idea is that this can give a more or less accurate picture of concepts
and relations that are central to the text, at least in the sense that they show a
high frequency. Mostly, this is sufficient to provide a hint about what the text
is about. In some cases there may however be a need for enlarging the basis of
the representation. This can be done by setting a lower minimal frequency level
for lemmas or collocational pairs or both, but this means redoing parts of the
processing. A better way can be to use a set of expansion operations as defined
below.

Without changing the given frequency levels for lemmas and collocational
pairs, we can derive the following sets of concepts and relations between concepts:

(5) EXPANSIONS

Primary concepts: the lemmas occuring in the pairs originally picked out by
the algorithm.



Gunnel Killgren: Automatic Indezing 67

First expansion: all collocations between primary concepts.

Second expansion: all other lemmas collocating with primary concepts. This
gives the set of secondary concepts.

Third expansion: all collocations between secondary concepts.
Fourth expansion: all lemmas collocating with secondary concepts.

Etc.

The second and fourth (generally: all even) expansions are ‘opening’ expan-
sions, as they bring in new concepts. The first and third (and all odd) expansions
are ‘closing’, as they establish relations between existing concepts and make the
corresponding graph more closely knit.

In (6) below, we see for each of the primary concepts the collocations it enters:
a) with other primary concepts and with a frequency above the minimal level;
b) with other primary concepts but with a frequency below the minimal level
(first expansion); c) all collocations between primary concepts and other lemmas
from the set of index words (second expansion). To construct all interrelations
between all those items would in its turn give the third expansion.

From (6) we can also see that another characteristic of the collocations is
their ability to delimit the interpretation of polysemous words. The pairs that a
word can enter will often signal the specific meaning in which the word is used
in a particular text. This is not so striking in this text as in some others, but
looking at e g green we will see that we have to do with the green of fruit, not
that of green paint, and commercial does not directly refer to e. g. banking, but
to commercial aspects of growing fruit.



68 Computational Linguistics — Reykjavik 1989

(6) COLLOCATIONAL PAIRS WITH FREQUENCIES: A) PRIMARY CONCEPTS, B)
FIRST EXPANSION, C) SECOND EXPANSION

Primary concepts Possible expansions
kiwifruit:
a) 3  kiwifruit I b) 1 kiwifruit New._Zealand
2 kiwifruit berr c) 1 kiwifruit captivat
2 kiwifruit commercial 1  kiwifruit chance
2  kiwifruit develop 1  kiwifruit includ
1  kiwifruit Jim_Macloughlin
1  kiwifruit millionaire
1  kiwifruit adjacency
1  kiwifruit plant
1  kiwifruit sold
1  kiwifruit tast
1  kiwifruit vine
1  kiwifruit year
berr(y):
a) 2 Dberr kiwifruit c¢) 1 berr brown
1 berr like
1 berr tast
1  berr wild
commercial:
a) 2 commercial kiwifruit b) 1 commercial New_Zealand
¢) 1 commercial orchard
develop:
a) 2 develop kiwifruit b) 1 develop New_Zealand
c¢) 1 develop taste
1 develop vine
flesh:
a) 2  flesh green b) 1 fleshl
1 flesh kiwifruit
c¢) 1 flesh tast
green:
a) 2 green flesh b) 1 greenl
1  green kiwifruit
c¢) 1 green fruit
1 green seed
I:
a) 3 I kiwifruit c) 1 11
2 I New_Zealand 1 Ivine
New_Zealand:
a) 2 New_Zealand I c¢) 1 New_Zealand captivat
1 New_Zealand lemon
1 New_Zealand North Island
1 New_Zealand produc

1 New_Zealand tast
Both (4) and (6) can, as said before, give hints about the content of texts if
the lists are interpreted by a normally inventive human being. A graphic repre-
sentation of the same facts seems, however, to be more striking and to facilitate



Gunnel Kallgren: Automatic Indezing 69

inference making. To proceed to this, a set of adjacency lists is constructed on the
basis of (4). The adjacency lists form the input to the graph-drawing program,
where each lemma will correspond to a node in the graph. In an adjacency list,
each lemma, i. e. each node, is given a list of all its immediately adjacent nodes.
This way, each collocational pair will be represented twice, corresponding to the
two possible directions of the arc between the nodes. The graphs resulting from
this system are however undirected. It would be possible to have weighted arcs
in the graph, corresponding to the frequencies of collocational pairs, but this has
not been implemented in the present system. The adjacency lists derived from
(4) are shown in (7).

(7) ADJACENCY LISTS

kiwifruit(I, berr, commercial, develop)
berr(kiwifruit)

commercial(kiwifruit)
develop(kiwifruit)

flesh(green)

green(flesh)

I(kiwifruit, New Zealand)
New_Zealand(I)

5 Graph-Drawing

The last step in the algorithm is the drawing of a graph. Automatic drawing of
graphs by means of a computer is a demanding task, especially if the work, as
in the present case, is to be done on a PC. We have, however, been able to find
a satisfactory solution.

The program consists of two main parts. The first one finds the areas and
subareas that together build up the graph. It tries to avoid crossing arcs, but
if that is not possible, the program finds the best places to add ‘pseudo-nodes’,
i. e. crossings. Its output is a ‘road description’ of the graph. The second part of
the program performs the computationally heavy task of actually drawing the
graph, laying it out nicely on the screen or in a file that can be stored or printed
out on paper.

The first part of the program was originally written by Boris Prochaska as
a part of his examination at the Royal Institute of Technology in Stockholm
(Prochaska 1988), and the second part was written by Sten-Erik Bergner, who
was Boris’ supervisor during his examination job at Ericsson Telecom. Their
version of the program is written in PSL-Lisp and had to be rewritten in GC-
Lisp, a subset of Common Lisp, for use on PCs. This non-trivial job has been
undertaken by Sune Magnberg, whose programming skills, earlier knowledge of
graph theory, and general combination of inventiveness and patience, made the
job of transporting the ‘portable’ Lisp possible.

The result of all this is a graphic representation of the lemmas and relations
that have a high frequency in a given text and, for that reason, can be assumed



70 Computational Linguistics — Reykjavik 1989

to have strong connections to what the text is about. The graph that, by means
of the described system, can be automatically derived from the text in Appendix
A is shown in (8), while (9) is the first expansion of that graph (cf. (5)).

8
NEW_ZEALAND
< FLESH
I
GREEN
DEVELOP KIWIFRUIT BERRY
COMMERCIAL
9
NEW_ZEALAND
FLESH
1

/ GREEN [—

DEVELOP KIWIFRUIT BERRY

COMMERCIAL




Gunnel Killgren: Automatic Indezing 71

6 Concluding Remarks

These graphs support in principle the same inferences as did the lists of pairs,
but in a neater way. The kind of relations that are signalled by the arcs varies
considerably and is left to the human user to guess—at the risk of making
mistakes. A very natural question to ask is whether all this apparatus gives
anything more than would a simple list of high-frequency words. My impression
is that it does. Below is a list of the 9 most frequent lemmatized content words in
the text, all lemmas with a frequency of 4 or higher. The list should be compared
to the words of the adjacency lists, (7), and to the full text in Appendix A.

(10) CONTENT WORDS FROM KIWI-TEXT, LEMMATIZED AND SORTED AC-
CORDING TO FREQUENCY

13 kiwifruit
10 New_Zealand
5 Dberr

ship
Chinese
vine

I

lemon
market

o B R R Ot

Kiwifruit, New_Zealand, berry/ies, and I are also represented among the
eight lemmas picked out by the graph-constructing algorithm and the graph
clearly shows their centrality. The graph also shows commercial and development
as highly central, while the descriptions green and flesh are shown to be some-
what less central. The pure frequency statistics, however, has it that ship/ping,
Chinese, and lemon are quite as important as market and vine. But the article
(in Appendix A) is certainly not about the shipping of Chinese lemons, it is a
subjectively colored boasting about the commercial success of kiwifruit and all
that this has meant to New Zealand, interspersed with lyric bursts about the
look and taste of the berry. There is no doubt that this is more clearly signalled
by the graph than by the frequency list, although both representations need a
good deal of human inference making to be added.

The results have not yet been independently evaluated, but the method has
been applied to several Swedish texts. Three short Swedish texts are shown in
Appendix B and their corresponding graphs in Appendix C. One very interesting
finding is that the method seems to be utterly impossible on literary texts, but
okey on others. Why this is so is something that has to be investigated more
closely. It must also be investigated for which text types the method is best suited
and under what circumstances it runs a risk of being seriously misleading.

Another step would be to try the method under realistic circumstances in
connection with information retrieval. The idea is something like this: The user
sits at a terminal and types in a search question, either in natural language,
in which case it has to be parsed, or as a set of key words with or without
Boolean operators. The key words are then matched against graphs that have



72 Computational Linguistics — Reykjavik 1989

been previously derived from the texts in the data base to be searched. If the
search question was in natural language, the presence of interrelations between
key words can also be checked. A measure for when a graph is ‘satisfactorily
similar’ to the information derived from the search question must be defined.
Next, one selected graph at a time will be shown on the screen and the user can
choose if she/he wants to have the full text. In doubtful cases it may be possible
to get one or more of the expansions in order to get a broader basis for decisions.
The search can also be carried out in such a way that graphs that are judged as
relevant can be used for deriving new, conjoined graphs.

If these ideas can be developed to work well, the practical usefulness of the
content graphs is clear, but among the most thrilling questions are why the
method works when it works, and why it doesn’t work when it doesn’t. This is
as yet far from clear.

References

Black, E., 1988. Grammar Development for Speech Recognition. Proc. from ELS Con-
ference on Computational Linguistics, IBM Norway.

Church, K. W., 1988. A Stochastic Parts Program and Noun Phrase Parser for Unre-
stricted Text. ACL Second Conference on Applied Natural Language Processing,
Austin, Texas.

DeRose, S. J., 1988. Grammatical Category Disambiguation by Statistical Optimiza-
tion. Computational Linguistics, 14(1):31-39.

Fjeldvig, T. & Golden, A., 1984. Automatisk rotlemmatisering — et lingvistisk hjelpe-
middel for tekstséking. CompLex no. 9/84. Universitetsforlaget, Oslo.

Garside, R. & Leech, F., 1987. The UCREL probabilistic parsing system. In Garside,
R. et al. The Computational Analysis of English. Longman, London.

Kaillgren, G., 1984a. HP-systemet som genvig vid syntaktisk markning av texter. In
Svenskans beskrivning 14, p. 39-45. Lunds universitet.

Killgren, G., 1984b. HP — A Heuristic Finite State Parser Based on Morphology.
In Sagvall-Hein, Anna (ed.) De nordiska datalingvistikdagarna 1983, p. 155-162.
Uppsala universitet.

Killgren, G. 1984c. Automatisk excerpering av substantiv ur 16pande text. Ett mojligt
hjalpmedel vid automatisk indexering? IRI-rapport 1984:1. Institutet for Ratts-
informatik, Stockholms universitet.

Kaillgren, G. 1985. A Pattern Matching Parser. In Togeby, Ole (ed.) Papers from the
Eighth Scandinavian Conference of Linguistics. Copenhagen University.

Killgren, G., 1987. What Good is Syntactic Information in the Lexicon of a Syntac-
tic Parser? In Nordiske Datalingvistikdage 1987, Lambda, 7. Copenhagen, Han-
delshgjskolen.

Killgren, G. 1988. Automatic Abstracting of Content in Text, Nordic Journal of Lin-
guistics, Vol. 11(1-2): 89-110.

Phillips, M., 1985. Aspects of Text Structure. North-Holland, Amsterdam.

Prochaska, B., 1988. Automatisk uppritning av grafer. Examination paper, Royal In-
stitute of Technology, Stockholm.



Gunnel Killgren: Automatic Indezing 73

Salton, G. & McGill, M. J., 1983. Introduction to Modern Information Retrieval.
McGraw-Hill, New York.

Sinclair, J. McH. et al., 1970. English Lexical Studies: Report to OSTI on Project
C/LP/08, Dept of English, University of Birmingham.

A The Captivating Kiwifruit

Thirty years ago, growing up in New Zealand, I often sliced into a brown berry that
looked like a duck’s egg in a bristly hair skirt. Repulsive? Not really, for I knew a
secret: The berry’s odd appearance disguised an equally exotic interior, a sunburst of
neat white streaks radiating from a creamcolored core, past tiny black seeds and into
shimmering green flesh (above). Sweet-tart in taste, it seemed a succulent blend of
strawberry, banana, melon, and pineapple flavors. Delicious! I loved the kiwifruit.

I still do, and today this peculiar product of a woody vine is captivating palates outside
New Zealand at an extraordinary pace. In 1986 more than a billion kiwifruit, once
called Chinese gooseberries, were tucked into trays and shipped to at least 30 nations.
Thousands of acres are newly planted each year in a dozen or more countries, including
the United States, France, Japan, and Italy, the leading producers after New Zealand.

This universal success has uniquely New Zealand roots. The kiwifruit’s conversion to
a commercial crop occurred in New Zealand, and its name—coined in the 1950s as a
marketing tactic—conjures up both that likable country and its whimsical, flightless
native bird, renowned for oversize eggs and hairlike brown feathers. Moreover, exports
of the fuzzy, four-ounce berry are increasingly important to New Zealand’s economy
and the creator of more millionaires than anything else in my homeland’s history.

The only fruit with such bright green flesh, the kiwifruit is one of just a handful of
food plants domesticated within the past thousand years. Originating in the Yangtze
Valley, it has long been a favorite of the Chinese, glorified in poetry as early as the
eight century. Chinese peasants still gather the wild fruit for sale in rural markets.

The transformation of a small, hard, and wild Chinese berry into fleshier, tastier ki-
wifruit began about 1904, when a traveler returned from a China visit with seeds for
Alexander Allison, a nurseryman on New Zealand’s North Island. In the following three
decades he and other gardeners developed superior kiwifruit vines through careful se-
lection, pruning, and grafting. Most of these early fanciers were as much interested in
the vine’s showy white blossoms and attractive fan-shaped leaves as in its berries.

Kiwifruit farming got its commercial start in the 1930s, most successfully at Te Puke
on the North Island’s east coast. The late James MacLoughlin became the father of
the modern kiwifruit—and ultimately a millionaire—by chance.

After he lost his job as a shipping clerk during the Great Depression, Jim’s wife’s aunt
invited them to stay on her lemon orchard at Te Puke. “Later the bottom fell out of
the lemon market,” he told me, “but a neighbor sold the kiwifruit from a single plant
for five pounds (then worth about $20 U.S.). To me that was a lot of money, so I risked
putting in half an acre of them.”

Luckily for MacLoughlin, the warm, wet climate and volcanic soil at Te Puke favored his
vines. Neighbors soon launched their own commercial orchards, which further expanded
during World War II when GIs stationed in New Zealand developed a taste for kiwifruit.

Then chance intervened again. In 1952 an English fruit importer ordered a shipment
of New Zealand lemons. “To fill spare space in the ship, we included ten cases of



74 Computational Linguistics — Reykjavitk 1989

kiwifruit,” Jim MacLoughlin explained. “A dock strike delayed the ship five weeks and
the lemons arrived rotten, but the kiwifruit were in perfect shape.” They sold well, and
New Zealanders suddenly realized that they’d opened a world market.

B Swedish Texts

Text 1

Rudi och Renate hyr en liten stuga ovanfér sj6n, fast de har visst aldrig rad att betala
den. Dér finns ett rum och kok.

Nar Malin och jag kommer dit, sdtter vi oss pa golvet och jag tar av mig skorna ocksa,
jag vill vara som hon. Rudi spelar Mozart pad en grammofon, som han linat hem “pa
prov”. Det ar alldeles fér dyrt att képa egna grammofoner.

Solen skiner rakt in i kéket. Rudi visar sina bilder, Malin roker pipa och ler sa gott nar
hon ser tavlorna och Rudi pratar s& mycket att jag slipper.

(Géran Tunstréom: Prastungen)

Text 2

Metropolen Oslo far en ny profil

Inte pa 100 ar har si manga och omfattande byggprojekt paborjats i Oslo. Nar de ar
klara kommer den norska huvudstaden att f4 en ny profil och nya méjligheter. Under
tiden lider Osloborna.

Nordens hogsta hotell, en kongresshall med plats for 10 000 askadare och Europas
lingsta gagata under tak ar nigra av de projekt som redan ar i full gang.

Det har skett en snabb utveckling de senaste aren. Oslo blir alltmer en metropol.
Vad giller nattliv och restauranger kan staden konkurrera med bade Stockholm och
Képenhamn. Den sista sammanrikningen visade 90 nattklubbar och kafeer som héll
6ppet mellan tva och fyra pa natten.

Aker Brygge med sin kombination av butiker, restauranger, teater och kontor i lickra
omgivningar vid hamnen har blivit nidgot som Osloborna stolt visar upp for tillresande.
En biarande tanke har varit att 6ppna staden mot fjorden igen. Biltrafiken ska laggas
sa mycket som mojligt i tunnlar.

(DN 1987-12-05)

Text 31

Om batterier och batteribyte

L3t inte ett kvartsur som stannat bli liggande. Batteriet kan bérja licka och skada din
klocka.
Vagar man di byta batteri sjalv?

Négra fa klockor har ett sirskilt batterifack med lock, se bruksanvisningen. Da ar det
mojligt att sjilv byta batteri, men eftersom det kan vara svart att fi locket tattslutande
igen efter bytet, ar det klokt att 4nda anlita fackmannen.



Gunnel Kallgren: Automatic Indexing 75

Det dr ocksa viktigt att du far rdtt sorts batteri och inte ett som &r avsett for fotoar-
tiklar eller hérapparater. D& giller inte garantin som de flesta tillverkare av urbatterier
ger.

P4 de flesta klockor maiste boetten 6ppnas vid batteribyte. D4 fordras specialverktyg
och stor forsiktighet for att inte elektroniken ska ta skada. Och det ar viktigt att boetten
sluter ordentligt titt efter batteribytet.

Det ar ett arbete du ska 6verlata till en fackman.

C Conceptual Graphs of the Swedish Texts

Text 1
sagh—{misn]
o ——fer—
Text2

lrestnurang}- A{EEEEF
E-S

oslo

=
o




76 Computational Linguistics — Reykjavik 1989

Text3

Iklock} 44{:E?da

1
A

'
]
g

batteri €&

B}

Department of Linguistics
Stockholm University
S-106 91 Stockholm
Sweden



GREGERS KocH

Computational Man-Machine
Interaction in Simple Natural Language

Abstract

For a wide variety of semantic theories we shall present a common
method of calculating the semantic representation when starting from the
input text and a grammar covering the syntactic description of the text. It
appears that the so-called data-flow trees play a huge and central role in
this kind of analysis and translation into a semantic representation. The
method here seems particularly well fit for the analysis of natural language
queries to database systems. The considerations here are rather tentative
and reflect research in progress.

Introduction

This paper investigates methods and tools for developing a specific kind of model
of human language learning capability, by presenting a performative simulation
model (here termed a computational logico-semantic induction system [16, 18]).

The same methods and tools may be applied for the purpose of implementing
a wide variety of computational systems including certain kinds of rule-based
expert systems and certain kinds of modern grammars (in particular the so-
called unification grammars) [17].

The advantage of logico-semantic induction is its applicability in the context
of constructing natural language interfaces as well as a variety of other user-
friendly types of interfaces to expert systems and other computer systems.

We are studying the problem of constructing language acquisition models
from specific data. That is, we could be claimed to be modelling an extremely
advanced type of information processing systems, viz. human beings in the role
of acquiring language capabilities. However, we are modelling the performative
aspects only. No claim whatsoever is made as to the possible descriptive power
of the resulting models from a psychological point of view (so we might call it
purely antropomorphic information technology).

The focus of this paper is on logico-semantic induction which is a method for
the systematic pattern identification and extraction in linguistic data sequences,

77



78 Computational Linguistics — Reykjavik 1989

in particular at a semantic and a combined syntactic and logical level of inter-
pretation. It provides a means for the automated analysis of verbal protocols,
and it constitutes a method for the automated construction of a logico-semantic
parser.

Logico-Semantic Induction and its automated variant Computational Log-
ico-Semantic Induction designate a completely new method from the area of
logic programming and natural language processing. In contrast to the majority
of other inductive approaches the method here does not deal with induction in
a space of possible assertions but instead with induction in a space of possible
logico-semantic representations. Here is given a short introduction to the con-
cepts. A more comprehensive discussion by this author may be found elsewhere.

The particular kind of inductive inference that we have in mind may be illus-
trated by means of a diagram. Along the first axis we shall map all the possible
assertions or utterances (in some suitable encoding), and along the second axis
we shall map all possible representations within the framework of a particular
representational notation (and similarly in a suitable encoding). A semantic the-
ory will then occur in the shape of a mapping from the axis of utterances into
the axis of representations (as long as we presuppose unambiguity, otherwise it
will be generalised to a relation).

For example, we might from the following facts

crow number 1 is black
crow number 2 is black
crow number 3 is black
etc.

make the attempt to induce the following more general assertion: [2]
all crows are black.

The type of induction advocated here is of a different kind: From the following
conventions

text E1 has the logico-semantic representation F1
text E2 has the logico-semantic representation F2
text E3 has the logico-semantic representation F3
etc.

we should like to find a (possibly very limited) linguistic universe L and a (logi-
cal) program P such that for each text e in L its corresponding logico-semantic
representation f is the result (output) of executing the program P with the given
e as input. Here the example texts E1, E2, E3 etc. are all included in the linguistic
universe L.

Computational Logico-Semantic Induction may be considered a generalisa-
tion of the old concept grammatical inference that may be characterised as a
kind of computational syntactic induction [11).

The possibility of automation is discussed in considerable detail. The imple-
mentation of computational semantic induction has to do with the construction



Gregers Koch: Man-Machine Interaction 79

of a kind of blackbox to accept a traditional syntactic description of a linguistic
universe. Besides the blackbox must accept as input a finite set of pairs <ey,fy >
where ey is a text from the linguistic universe, and fy is the intended semantic
representation corresponding to the input ey. For instance, the fy may be in the
form of a logical formula or a logical code. Output from the blackbox should be a
program that translates linguistic input e into logical output f where especially
the input ey gives the output fy. Here is required a complete match with the
given examples.

Some possible principles for such a blackbox are discussed. These principles
are clarified by application to a few small sample texts. We conclude that this new
concept of computational logico-semantic induction is extraordinarily promising.

This paper contains a brief discussion and sketches a solution. A more com-
prehensive discussion is in preparation [13, 14, 16).

Here we are concerned exclusively with parsing or textual analysis. Analogous
considerations can be made concerning textual synthesis or generation.

This work on computational logico-semantic induction was performed under
heavy influence by some of the leading approaches within logic grammars like
those of A. Colmerauer [3, 4], V. Dahl [7, 8, 9], F. Pereira [23, 24, 25], P. Saint-
Dizier [27, 28], and M. McCord [21, 22).

It may really be seen as an attempt to unify some rather diverging tendencies
in the philosophy of language, namely Creswell’s lambda-calculatoric theory [5,
6] and some montagovian ones [19, 10], and on the other hand, the first order
logical theories from logic grammars [12, 16]). The contribution here seems to
support any of these theories.

As an example we may investigate the following English sentence

(1) Mary believes that Peter loved a woman

Within the limits of a modestly extended first order predicate calculus we
may assign to the sentence the following two interpretations or logico-semantic
representations, respectively:

(2) 3y[woman(y) & believe(pres,mary,love(past,peter,y))]

(3) believe(pres,mary,Jy[woman(y) & love(past,peter,y)])

An absolutely central problem of semantics (here called the logico-semantic
problem) is to assign to each input text from the appropriate linguistic universe
one or several formalized semantic representations. As formalizations we will
here consider only logical formulae belonging to some particular logical calculus
(like definite clauses or Horn clauses, first order predicate logic, some extended
first order predicate logics, the lambda calculi, and Montague's intensional logic
[19)).

The principles of implementation are quite clear and fairly well developed,
as may be seen by studying the example below (another example may be found
in [16]). But as far as an actual implementation is concerned, we are working on
it albeit in a rather slow pace (due to lack of resources).



80 Computational Linguistics — Reykjavik 1989

A Small Example

Now time is probably ripe to investigate the example mentioned above. This may
be seen as a further development of the ideas discussed in [16]. If the syntactic
description is the following little grammar

(4) Sent — Np Vp
Np — Det Noun | Prop
Vp — Tv Np | Vp-s that S

(in the last production rule we have used a categorial grammar notation) then we
may look for a representative, also called an exhaustive text. Such an exhaustive
sample text may be the following:

Mary believes that Peter loved a woman

Within the chosen semantic representational notation (a predicate calculus of
arbitrary high order, PC,) we may prefer to use a kind of generalised quantifiers
for representing some (two) possible interpretations of the sample text in the
following way:

(5) a(y,woman(y),believe(pres,mary,love(past,peter,y)))
(6) believe(pres,mary,a(y,woman(y),love(past,peter,y)))

The two interpretations deviate by one having as a presupposition the exis-
tence of such a female and the other not having that presupposition. Montague
grammars like PTQ would obtain the same distinction.

If we choose to consider the first formula (5) to be the intended represen-
tation, the method here will lead in a mechanical fashion to the logic program
shown below (7), written in the form of a logic grammar.

The program constitutes just a syntactical description augmented with at-
tributes or decorations as may be seen by ignoring the functional arguments
(then quite simply the grammar of (4) occurs).

Let us see what happens more precisely in our method. The intended resulting
formula (5) should be represented as a tree structure like that in figure 1. Then
the following steps should be performed:

Step 1: Enumerate the boxes in the intended result structure. (In our example
this means that the boxes will get the numbers from 1 to 7, as in figure

1).

Step 2: Construct the syntactic structure (by performing parsing or syntactic
analysis).

Step 3: Create a match between the result structure and the syntactic struc-
ture. More precisely, make a connection from a numbered box in the
result structure to the lexical category in the syntax structure to which
the word (lexical or syncategorematic) belongs. This is an indication of
the vertex in the syntax tree where that fraction of the result structure



Gregers Koch: Man-Machine Interaction

81

2
a
/
y 3 4
woman(y) believe
5 6
pres
mary love
past 7
peter
Figure 1:
1
§¢( )
Np ¢ ) Vp( )
I 5 l 4 | i
Prop ( ) Vp-s ( ) that  S( )
Np( ) Vp ( )
; 3
Prop ( ) Tv
pres | past
Mary believes that Peter loved a

Figure 2:

woman



82 Computational Linguistics — Reykjavik 1989

ast
P loved

Mary believes that Peter wornan

Figure 3:

having the relevant word as its top vertex, is being constructed as the
result attribute of the vertex.

Step 4: Construct the flow from the so-called focus variables (form a new vari-
able for each Np phrase, as in figure 2).

Step 5: Construct the flow in the lexical rules.

Step 6: Connect each pair of numbers corresponding to an edge in the result
structure (here the tree structure should be respected, as in figure 3
where the following pairs are connected: 7-6, 54, 64, 3-2, 4-2, 2-1).

Step 7: Check the consistency concerning arity and local flow.

In our example the augmented syntactic structure will be like figure 3.

The resulting logic grammar will be the following:

(7) S(V,W,U) — Np(X,Y,Z),Vp(X,W,V,U)
Np(X,Y,Z) — Prop(X)
Np(X,Z,W) — D(X,Y,Z,W),N(X,Y)
Vp(Y,X1,Y1,V) — Vp-s(X,Y,Z,W),[that],S(W,Z,V)
Vp(Y,W,V,U) — Tv(X,Y,Z,W),Np(Z,V,U)
D(X,Y,Z,a(X,Y,Z)) — [a]
D(X,Y,Z,every(X,Y,Z)) — [every]



Gregers Koch: Man-Machine Interaction 83

Concluding Remarks and Perspectives

As to which representation languages are acceptable with respect to this method,
there seems to be a high degree of freedom so that we seem to be near the im-
plementation of a general information theoretical or computer science paradigm
like this:

Anyway, there exists a requirement that a kind of homomorphy property,
a kind of compositionality should be available in the relationship between in-
put and output. One or another variant of Frege’s principle of compositionality
should be obtained:

To the extent that our rules are of the form

Po(G(¥1,--5¥n))—=P1(¥1)se-sPn(¥n)

we know about the semantic representation function Sem that
Sem(Py)=G(Sem(P,),...,Sem(P,))
where P0=P1 “Ps -.- P,

provided that Py is the fragment of the input text belonging to the syntax
category py for all ke{0,1,..,n}.

And this property is precisely one way of expressing Fregean compositionality.

One perspective of this approach is that it allows a generalisation into what
we tend to call computational logico-semantic abstraction [18]. In this context
it is profitable to make use of certain results from the modern computer science
disciplines of logic programming, attribute grammars, and denotational semantic
theories.

Another perspective concerns automated learning. Computational logico-
semantic induction has the property that the system will be able to improve
its linguistic performance (i.e., handling new information of a semantic nature)
by adoption from a single occurrence of a grammatical rule. That must be effec-
tive automated learning par excellence!

So, besides concluding that the method of logico-semantic induction is not
only new but also promising we are able to discuss Al-problems related to in-
ductive learning from the following perspective: inductive reasoning as a way of
managing linguistic information in logical systems. Hence in this case it is not
really a question of empirical information, and of course its relationship to Al
is always arguable (what is the precise content of AI?), but a surprisingly high
degree of automated learning is actually obtainable.



84 Computational Linguistics — Reykjavik 1989

References

[1] J.W. Bresnan [ed.]. 1982. The Mental Representation of Grammatical Relations.
MIT Press.

[2] E. Charniak & D. McDermott. 1985. Introduction to Artificial Intelligence. Addison-
Wesley.

[3] A. Colmerauer. 1978. Metamorphosis Grammars. L. Bolc [ed.]. Natural Language
Communication with Computers. 133—-189. Lecture Notes in Computer Science
No. 63.

[4] A. Colmerauer. 1982. An Interesting Subset of Natural Language. K.L. Clark &
S.-A. Tarnlund [eds.]. Logic Programming. Academic Press.

[5] M.J. Cresswell. 1973. Logics and Languages. Methuen.

[6] M.J. Cresswell. 1985. Structured Meanings, the Semantics of Propositional Attitudes.
MIT Press.

[7] V. Dahl. 1979. Logical Design of Deductive Natural Language Consultable Data
Bases. Proc. Fifth International Conference on Very Large Data Bases. Rio de
Janeiro, Brazil.

[8] V. Dahl. 1979. Quantification in a Three-Valued Logic for Natural Language Ques-
tion-Answering Systems. Proc. IJCAIL Tokyo, Japan.

[9] V. Dahl & M. McCord. 1983. Treating Coordination in Logic Grammars. Am. Journ.
Comp. Ling.

[10] D.R. Dowty, R.E. Wall & S. Peters. 1981. Introduction to Montague Semantics. D.
Reidel.

(11] J.J. Horning. 1969. A Study of Grammatical Inference. Technical Report No. CS
139. Computer Science Department, Stanford University.

[12] G. Koch. 1985. Who is a Fallible Greek in Logic Grammars. 54-77 in [15].

[13] G. Koch. 1986. Relating Definite Clause Grammars and Montague Grammars.
Institute of Computer Science, Technical University of Denmark. 20 pages.

[14] G. Koch. 1986. The Application of Prolog for the Translation into a Semantic
Representation. Proc. Nordic Seminar on Machine Translation. EUROTRA-DK,
Copenhagen. 175-189.

[15] G. Koch [ed.]. 1985. Fifth Generation Programming vol. 1: Logic Programming in
Natural Language Analysis. Proceedings of Workshop in Copenhagen. Dec. 1984.
DIKU report 85/2.

[16] G. Koch. 1987. Automating the Semantic Component. Information Processing Let-
ters 24. 299-305.

[17] G. Koch. 1987. LFG og Prolog. Institute for Applied and Mathematical Linguistics,
Copenhagen University.

[18] G. Koch. [Forthcoming]. A Technical Perspective on Ezpert Systems, Modern
Grammars, Semantic Abstraction, and their Implementations. Proc. Fifth Sym-
posyum on Empirical Foundations of Information and Software Science, Risg,
Denmark, Nov. 1987.

[19] R. Montague. 1974. The Proper Trealment of Quantification in Ordinary English.
In 20].

[20] R. Montague. 1974. Formal Philosophy. Yale University Press.



Gregers Koch: Man-Machine Interaction 85

21] M. McCord. 1982. Using Slots and Modifiers in Logic Grammars for Natural Lan-
g
guage. Artificial Intelligence. 18,3:327-367.

[22] M. McCord. 1987. Natural Language Processing in Prolog. A. Walker [ed.]. Know!-
edge Systems and Prolog. Addison-Wesley.

[23] F.C.N. Pereira. 1983. Logic for Natural Language Analysis. SRI International.
Technical Note 275.

[24] F.C.N. Pereira & D.H.D. Warren. 1983. Parsing as Deduction. SRI Technical Re-
port 293. Stanford Research Institute.

[25] F. Pereira & D. Warren. 1980. Definite Clause Grammars for Language Analysis
— A Survey of the Formalism and a Comparison with Augmented Transition
Networks. Artificial Intelligence. 13,3:231-278.

[26] U. Reyle & W. Frey. 1983. A Prolog Implementation of Lezical-Functional Gram-
mar. Proc. IJCAI, International Joint Conference on Artificial Intelligence. 693—
695.

[27] P. Saint-Dizier. 1985. On Syntaz and Semantics of Modifiers in Natural Language
Sentences. In [15].

(28] P. Saint-Dizier. 1986. An Approach to Natural Language Semantics in Logic Pro-
gramming. The Journal of Logic Programming. 3(4):329-356.

Institute of Datalogy
University of Copenhagen
DK 2100 @

Copenhagen, Denmark



JORDAN ZLATEV

Criteria for Computational Models
of Morphology:

The Two-Level Model
as an NLP Framework

Abstract

Computational models of morphology are best seen not as morphologi-
cal models but rather as natural language processing frameworks which can
express descriptions in the style of one morphological model or the other,
and even go further, but without necessarily being bound by “purely”
theoretical considerations. Criteria for their adequacy can be derived by
treating them (together with the linguistic descriptions that are expressed
in their formalisms) as NLP systems, for which a number of goals can be
stated, among which are sufficient coverage, efficiency, augmentability and
flexibility. The two-level model (TWOL) of Kimmo Koskenniemi is the
main object of attention in this article and examples of its applicability to
Bulgarian morphology are presented.

1 Introduction

The criteria for what a “morphological model” should be able to account for,
and the manner in which this should be done, have risen high during the past
few years in accordance with the situation in the neighbouring linguistic “levels”
of syntax and semantics. Apart from the traditional requirements for linguistic
felicity (“capturing the generalizations”), rigour, and simplicity, opinions are
being expressed that a morphological model should be general, (understood as
universal), ezplanatory and even psychologically real. Now far from doubting the
plausibility of these requirements, I feel that they tend to place the models of
human language provided by the field of computational linguistics in a rather
unfavourable light. This is especially relevant for computational morphology,
which only during this decade seems to have “stepped out from the cradle”, as
for example Lars Borin (p.c.) has implied. And instead of being blindly critical
and sceptical towards its potentials, (which “linguists proper” often tend to be

86



Jordan Zlatev: Two-level Model as an NLP Framework 87

towards computational linguistics in general, as a form of self-defence), isn’t it
best to watch its first steps carefully, with a helpful hand where it can be lent?

If in the previous paragraph I have suggested the picture of computational
morphology, and more concretely of it’s best known representative, the two-
level model, (first presented in (Koskenniemi 1983) and most often abbreviated
TWOL), as a clumsy, stumbling baby, then I have gone too far in my manner
of expression. Nothing can be further from the truth considering the enormous
amount of attention and subsequent work that Koskenniemi’s dissertation un-
leashed. Hardly a conference can go by—including this one—without a few con-
tributions pointing out TWOL’s achievements—or deficiencies, and in the best
case offering improvements or alternatives, e.g. (Sproat and Brunson 1987, Bear
1988, Kataja and Koskenniemi 1988, Calder 1989). But even these can without
doubt fall at the hand of the theoretical linguist who will not fail to see the
inadequacy of Bear’s reintroducing the notion of “negative rule features”, or
of Calder’s “string equations”. As the last author himself carefully states: “...
one may justifiably have reservations about introducing string equations into
ling:.’~tic descriptions.” (Calder 1989:62).

In this paper I wish to propose what I think is a more “constructive” view
of the aims of computational morphology, which is also more or less applicable
to the field of (computational) natural language processing in general. I will
argue that there are a number of properties, which can help us compare, evalu-
ate and develop models in a more short-term perspective so that one need not
necessarily be overwhelmed by the “theoretical argument” from the beginning.
In my opinion a computational model that finds the best combination of these
properties, has also the best chances of being theoretically significant as well,
though this is a somewhat controversial matter. A viewpoint that is at least less
controvercial is that the goals of computational and theoretical linguistics differ.
Shieber (1987), for example, has claimed that these differences, especially con-
cerning “restrictiveness”, are so essential that from a computational perspective
one is more interested in what the linguistic theories say than how they say it
and that it is meaningful to try to separate theories (“how”) from their analyses
(“what”) and concentrate on the latter in computational models.

I would like to continue on this line of thought with one substantial difference:
while Shieber discusses models in their property of being “computer tools for
linguistics”, I regard them as potential candidates for becoming language theories
on their own. This difference is illustrated in the choice of model to exemplify the
issues under discussion: in Shieber’s case this is the formalism of PATR-II, while
I will use the two-level model. I will be presupposing at least some previous
knowledge of it.

2 Computational Models as NLP Frameworks

I believe that one could say that the aims of computational and theoretical
linguistics eventually converge, namely to gain a better understanding of the
nature of human language and of its user. Still they differ in their methods.



88 Computational Linguistics — Reykjavik 1989

Computational linguistics (partly because of utilitarian reasons) is much more
inclined to use the trial-and-error approach, starting with a fragment and then
augmenting it; taking some categories for granted, (phonemes, for example) as
“working hypotheses”, if they facilitate the overall work of the system. This is so
because the short-term goal of computational linguistics is the construction of a
natural language processing system, no matter if it does or does not model human
language processing at a sufficiently theoretical level. On the other hand it is
theoretical linguistics that should stand for the “conceptual insights”, the new
ideas and the quest for linguistic universals. Of course, the closer the connection
between computational and theoretical linguistics, the better, but at least to
begin with, this is not a necessity.

What I'm aiming at is to say that computational and theoretical models
should not be considered on a par. A computational model is both less and
more than a theoretical one. Less, because it is the backbone of a system and
thus is subjected to the limitations I mentioned above, i.e. working hypotheses,
fragments etc. More, because if it is flexible enough it could permit several
theoretical models to be implemented (simulated) within it. So the question
whether TWOL is a morphological model or not, is not all that relevant. As to
whether it is “general” and in what sense, I will come to that later. Right now
an important (in my opinion) question arises, namely:

If at least the short term aims of computational and theoretical linguistics
split, then what are to be the criteria for, let us say “evaluating”, computa-
tional models (theories, formalisms—the terminology varies) for morphology in
particular, and natural language in general? There is no simple answer to this
question. As a half year’s survey of the relevant literature, reported in (Zlatev et
al. 1989) and (Sagvall-Hein et al. 1989), has managed to convince us—opinions
differ. We came to believe that in order to come to more abstract things such
as desiderata, requirements etc. for the models, one should start with something
more concrete. The key lies in what I mentioned above was one of the first aims
of computational linguistics, and definitely the first of its more practically ori-
ented sub-branch, Natural Language Processing (NLP): the creation of an NLP
system.

Now what kind of animal is that? This need hardly be defined for “insiders”,
but for someone unfamiliar with the jargon in the field, it should be enough to
say that an NLP system can be regarded as a unity of (at least) the following
elements: (1) an implementable formalism, (2) a processing mechanism, and (3)
linguistic knowledge expressed in the formalism. (1) and (2) together make up
the computational model or—using a term more neutral to the computation-
al/theoretical dichotomy which I myself introduced—an NLP framework. (3) is
the language description. The three are as I said interdependent, but to different
degrees in different systems.



Jordan Zlatev: Two-level Model as an NLP Framework 89

3 Viewing TWOL as an NLP Framework

The main advantage in viewing computational models of natural language and
of morphology in particular as NLP frameworks comes from the fact that it is
possible to formulate relatively clearly what goals NLP systems should aim at.
Then one could continue “bottom-up” to state “criteria” on how the models
should be shaped in order to correspond to these goals. Consequently these are
criteria of a practical nature which are not “theoretically bound” to begin with.
Most interestingly, however, they have implications which are highly compatible
with linguistically motivated considerations. I will come to this in the last section.

A computational model such as TWOL may be seen as providing the frame-
work for an NLP system. It still remains to be “filled” with the concrete linguistic
knowledge. Now the first question that arises is: how much knowledge can be
expressed in the framework? The first goal for an NLP system is that this knowl-
edge is sufficient for current purposes, or alternatively formulated, that it has
sufficient coverage.

3.1 Sufficient Coverage

If a description of a certain fragment of one or several languages can be made
so that the system “works” as intended with respect to this fragment, then the
framework can be regarded as expressive enough in relation to this fragment.
Thus one may say that an NLP framework is weakly complete (in Shieber’s
terminology) if and only if it provides a system with the linguistic coverage
necessary for the given purposes.

TWOL has been applied to substantial fragments of the inflectional morphol-
ogy of a number of languages ranging from Finnish (1983) to Japanese (Alam
1983) and Old Church Slavonic (Lindstedt 1986). Now while this implies that
the TWOL-framework is general in the sense that it has a potentially large
coverage, it does not mean that TWOL is “general” in the sense that it can be
applied to all of the world’s languages and their morphology - inflectional and
derivational (where this distinction exists), i.e. that it is a universal morpholog-
ical model. It is rather a matter of degree: TWOL is “better” than most other
models because it has been applied to larger fragments of single languages, e.g.
“an (almost) full description (of all the forms of all inflectional types)” (Kosken-
niemi 1983:125) and because it has been applied to more languages. But then,
what more is needed? The fact that the morphology of for example Kubachi (cf.
Johannessen, this volume) yields difficulties, doesn’t make TWOL a less suitable
framework for the description of, let’s say, Bulgarian inflection. This only means
that the morphologies of the two languages are different—the opposite would be
surprising. However, if one by a “general” framework means one that can provide
adequate descriptions for all language types: agglutinating, isolating, inflecting,
etc. then more is to be desired. This falls, in my opinion, not under the goal of
coverage but of flexibility, which will be discussed further on.

Let us be more concrete. In (Zlatev 1988) I have given what I think is a
complete description of Bulgarian nominal inflection in terms of the original



90 Computational Linguistics — Reykjavik 1989

TWOL, i.e. as presented in (Koskenniemi 1983). Bulgarian morphology is very
well developed and poses some non-trivial problems for any linguistic descrip-
tion, computational or not, such as extensive allomorphy and morphophonemic
alternations within the stems. TWOL has proved quite satisfactory in describing
both, with its finite-state lexicon and two-level rules, respectively. The demon-
strative pronouns, however, dispay an “irregular” internal inflection, which in the
original (Pascal) format of the lexicon gives no other opportunity for description
than the following, which is far from elegant,

t o-a—ov-Q/P "PRON DEM IDENT"

with ‘t’ as the “invariant stem” (I have sticked to the principle: “One entry per
Stem” so as to avoid masking some problematical areas through listing) and
the continuation class o-a-ov-e/P which is the name of a mini-lexicon with the
following content:

LEXICON o-a-ov-e/P ozi "MASC SING";
azi # "FEM SING";
ova # "NEUTR SING";
ezi # "PLUR"

If this had been the regular pattern for inflection in Bulgarian, then a possible
computational description in the form of a system of intersecting lexicons—as
those presented in (Kataja and Koskenniemi 1988) for the non-concatenative
morphology of Semitic languages—would have been necessary (and probably
sufficient). However, since the number of mini-lexicons of the kind shown above
is 5 altogether and all other types fall neatly into the finite-state pattern, a
compromise seems to be the best solution: I consider TWOL expressive enough,
i.e. sufficient for current purposes, and decide to leave the description at that.

What if I decide to treat derivational morphology as well? Five classes of
Bulgarian pro-forms seem to be readily describable as a derivational pattern
which is something of the sort:

INTERROGATIVE | + to = RELATIVE

I
I
INDEFINITE =1nA + | kakyv
NEGATIVE =ni + | koga
GENERALIZING = vsA + | kak
| :
A B o

That is, the interrogative pro-forms (B), act as the “base”, which together
with the appropriate “prefix”, build respectively indefinite, negative and general-
izing pro-forms (A), and with the “suffix” ‘to’ (which is actually the postponed
definite article for nouns and adjectives of neuter gender)—relative pro-forms
(C). However, if we try to express this simple pattern in a finite-state lexicon
then we will also derive ungrammatical word-forms such as *nAkakto, *nikakyvto
etc., i.e. overgeneration. The reason is that if a finite-state mechanism allows



Jordan Zlatev: Two-level Model as an NLP Framework 91

AB and BC, then it must also allow ABC, which in this case we want to forbid.
Similar problems with the English prefix un-, are discussed in (Karttunen and
Wittenburg 1983).

Now does this mean that we have found a point where TWOL is not sufficient
in terms of coverage and an argument that it is inapplicable to Bulgarian as well
as possibly the derivational morphology of most languages?

To some extent—yes. For practical purposes we may double the entries of
type B in the lexicon, so that we have B’ and then connect the mini-lexicons, to
get AB and B’C (for example). But this is a kind of “solution” that would lead
us back to where we started, and it is in some sense even worse than listing the
different word-forms—it is absurd that we should have to go all this way only to
start duplicating entries. (Here I'm not concerned with matters of efficiency—but
these are of course more than relevant as well.)

There are, however, two other much better ways out. One would be to replace
the finite-state lexicon component with a phrase-structure one, which further-
more can use a feature-matching (unification) mechanism which would guarantee
that only the grammatical forms are generated. For example the problem I men-
tioned above can be resolved the following way:

(1) PROCIND) --> nA + PRO(CINT)
PRO(NEG) --> ni + PRO(INT)
PRO(GEN) --> vsA + PRO(CINT)
PRO(REL) --> PRO(INT) + to

An alternative—without increasing the expressive power of the formalism—
is to use the model’s two-level rules in order to block out ungrammaticalities.
In the case above one must use at least two “diacritic characters”, let us say,
@ and # (which must be clearly defined as bearers of morphological features
and have nothing to do with phonology) and associate them with the entries
of type A and C, respectively. Then a rule can be stated which would prevent
their co-occurrence, (the operator /<= means “is disallowed” and what follows
is the context which characterises all Bulgarian interrogatives, followed by the
“relative sign”):

(2) ¢ /<= _kVC (V) (C #

Both (1) and (2) should have the same effect, and which one would be preferred
is largely a matter of how they influence the goals to be discussed below, namely
efficiency and augmentability.

3.2 Efficiency

Efficiency is something that concerns not only NLP systems for practical purpos-
es, but theoretical ones as well, since all interesting applications of computational
techniques to natural languages involve fragments that go beyond vocabularies
of several hundred words and a predetermined number of sentences.



92 Computational Linguistics — Reykjavik 1989

It is not hard to believe that it is just this criterion that has been the main
reason for TWOL'’s popularity rather than its linguistic characteristics. The re-
strictiveness of the formalism gives the opport