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Message from the General Chair

It is an honor to write the initial words of this proceedings as General Chair of the 56th Annual Meeting
of the Association for Computational Linguistics! This is only the second time that an ACL conference
has been held in Australia — the first time was for the joint COLING/ACL conference in June of 2006
in Sydney, and I was one of its Program Chairs. For ACL 2018 we have tried to maintain the welcoming
and intimate spirit and the relaxed and genial character of the much smaller ACL conferences of the past
in spite of the ever-growing number of researchers in the field and participants in our conferences.

It is my pleasure here to express gratitude to all those without whom this conference would not exist.
My biggest thanks go to the Program Chairs Iryna Gurevych and Yusuke Miyao, as well as to Local
Chairs Tim Baldwin, Trevor Cohn and Karin Verspoor. They have done a tremendous job to manage the
submission and review process, and the local arrangement details, respectively.

I also want to thank all of the other chairs for their very hard work: Workshops Chairs Brendan O’ Connor
and Eva Maria Vecchi; Tutorials Chairs Yoav Artzi and Jacob Eisenstein; Demo Chairs Fei Liu and
Thamar Solorio; Student Research Workshop Organizers Vered Shwartz, Jeniya Tabassum and Rob
Voigt; Faculty Advisors to the Student Research Workshop Marie-Catherine de Marneffe, Wanxiang Che
and Malvina Nissim; Publications Chairs Shay Cohen, Kevin Gimpel and Wei Lu; Exhibits Coordinator
Karin Vespoor; Student Volunteer Coordinator Karin Vespoor; Conference Handbook Chairs Jey Han
Lau and Trevor Cohn; Publicity Chair Sarvnaz Karimi; Local Sponsorship Chair Cecile Paris; Webmaster
Andrew MacKinlay; and Priscilla Rasmussen, giver of advice and wisdom to all of us as ACL Business
Manager.

I also warmly thank the ACL Executive Committee for its guidance and advice on many important issues
and concerns as they arose.

I am also extremely grateful to all the sponsors for their great support to the conference.

Many thanks to the area chairs, the reviewers, the invited speakers, the authors of the various papers,
posters and presentations.

And, finally, many many thanks to all the participants who will put the final touches on making ACL
2018 an exciting, stimulating and inspiring event!

Claire Cardie
ACL 2018 General Chair
July 2018



Message from the Program Committee Co-Chairs

Welcome to the 56th Annual Meeting of the Association for Computational Linguistics 2018 — or ACL
2018 for short.

In September 2017, Program Committee Co-Chairs (PCs) posted the call for nominations of Area Chairs
(AC), Reviewers and Invited Speakers. We received 752 responses in total. Overall, out of 388 valid
nominations for area chairs, 299 unique persons were suggested; 110 persons were self-nominations.
About 70% of the 56 selected area chairs (later expanded to 61 area chairs due to the high number of
submissions) were nominated by the community. For the reviewers, we collected 936 valid nominations.
At the PhD level, 139 persons were self-nominations and 129 were nominated by others. At the
Postdoc/Ass.Prof. level, 160 were self-nominated, 112 nominated by others. At the Prof. level, 221
persons were self-nominated, 175 nominated by others.

We received 138 unique nominations for invited speakers, from which two invited speakers of the
conference were selected:

e Carolyn Penstein Rosé, Language Technologies Institute at Carnegie Mellon University, USA

e Anton van den Hengel, Australian Centre for Visual Technologies at University of Adelaide,
Australia

Our community is steadily growing: in total, 1621 submissions were received right after the submission
deadline: 1045 long, 576 short papers. 13 erroneous submissions were deleted or withdrawn in the
preliminary checks by PCs. 25 papers were rejected without review (16 long, 9 short); the reasons are
the violation of the ACL 2018 style and dual submission guidelines. 32 papers were withdrawn before
the review period started; the main reason was that the papers have been accepted as the short papers at
NAACL HLT 2018. In total, 1551 papers went into the reviewing phase: 1021 long, 530 short papers.
1610 reviewers (1473 primary and 137 secondary reviewers) were involved in the reviewing process;
each reviewer has reviewed about 3 papers on average. 3 long and 4 short papers were withdrawn during
the reviewing period, and finally 1018 long and 526 short papers were considered during the acceptance
decision phase.

The assignment of papers to areas and reviewers has been done in multiple rounds. First round: Initial
assignments of papers to areas were determined automatically with the help of the authors’ input, while
PCs went through all submissions and moved papers to other areas, considering COI and the topical
fit. PCs assigned one AC as a meta-reviewer to each paper using Toronto Paper Matching System
(TPMS) scores. Second round: ACs looked into the papers in their area, and adjusted meta-reviewer
assignments. ACs sent a report to PCs if they found any problems. Third round: PCs made the final
decision, considering the workload balance, possible COIs and the topical fit. Fourth round: ACs decided
which reviewers would review each paper, based on AC’s knowledge about the reviewers, TPMS scores,
reviewers’ bids, and COI.

We have introduced several innovations to the reviewing process. One of them is an argument-based
review form. The reviewers were asked to provide arguments for and against the paper. This has been
tremendously helpful for ACs and PCs to analyze the reviews and come up with final recommendations.
The authors were asked to respond to the con arguments during the rebuttal. In coordination with the
NAACL HLT 2018 PCs, we plan to do some analytics on anonymized reviews and rebuttal statements,
with the consent of the reviewers and authors. Our purpose is to improve the quality of the review
process. The data will be compiled into a unique corpus for NLP, and will be made available to the
research community after appropriate anonymization checks, at the earliest in 2 years after ACL 2018.
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We hope to provide data on how to review to younger researchers, and to improve the transparency of the
reviewing process in general.

The ACL 2018 conference is super-competitive: We accepted 256 out of 1018 submitted long papers and
125 out of 526 short papers, with an overall acceptance rate of 24.7%. The details of the review process
are available at the conference homepage. Criteria of acceptance were mainly:

e strengths/weaknesses raised by reviewers and their significance;
o the result of discussions and author responses;

e contribution to CL as the science of language: whether the paper advances (or contributes to) our
understanding of language in any way;

e diversity: we do not want to fill ACL with similar papers like achieving 1% improvement on a
well-known task.

We also considered the balance of paper types, topics and contributions and re-considered the acceptance
when reviewers reported any problem in preliminary checks (Appropriateness to Handling of Human
Farticipants).

Continuing the tradition, ACL 2018 will feature 20 papers which were accepted for publication in the
Transactions of the Association for Computational Linguistics (TACL). The TACL papers were split into
10 oral presentations and 10 poster presentations.

There are many people to thank for who have worked diligently to make ACL 2018 possible. All names
are listed in the Program Committee section of the Front Matter.

Since the conference size continues to grow and the organizational complexity increases, we have
introduced the role of Program Committee Co-Chair Assistants. In total, 5 senior researchers have
supported the PCs during most intensive work phases to handle the communication in a timely manner,
draft various documents and effectively prepare decisions.

Thanks to our area chairs for their hard work on recruiting reviewers, managing reviews, leading
discussions, and making recommendations.

This program certainly would not be possible without the help of the 1610 reviewers. In particular, 192
reviewers from this list were recognized by the area chairs as outstanding reviewers who have turned
in exceptionally well-written and constructive reviews and who have actively engaged themselves in the
post-rebuttal discussions.

We are also deeply indebted to the best paper selection committee which consists of 22 members. They
had to additionally review 6-8 papers according to the best paper criteria on short notice. Their time and
effort in recommending the best paper awards is much appreciated.

We also would like to thank many colleagues for generously sharing their experience in organizing
prior ACL conferences and for their advice. We are grateful for the guidance and the support of the
ACL presidents Joakim Nivre and Marti Hearst, and the ACL board. We also would like to thank the
publication co-chairs Shay Cohen, Kevin Gimpel and Wei Lu (Advisory) and the handbook chair Jey Han
Lau for putting together the proceedings and the conference handbook; and Rich Gerber from Softconf
for always being responsive to our requests. We would like to thank the ACL Business Manager Priscilla
Rasmussen for helping us to sort important things out. Finally, this conference could not have happened
without the efforts of the general chair, Claire Cardie. We thank her for the leadership and advice,
especially when matters got complicated.
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We hope you will enjoy ACL 2018 and contribute to the future success of our community!

ACL 2018 Program Committee Co-Chairs
Iryna Gurevych, TU Darmstadt, Germany
Yusuke Miyao, National Institute of Informatics, Japan
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The process for selecting best papers and honourable mentions

The Program Committee Co-Chairs (PCs) have defined a multi-step process. Area Chairs (ACs) were
asked to select a number of top papers in their areas satisfying as many as possible of the following
criteria:

e high quality
e nominated for the award by at least one primary reviewer

e bringing disruptive ground-breaking innovation as compared to the current mainstream

ACs re-read their finalists and discussed among themselves the merits of the nominee’s work with the
help of the primary reviews. ACs then submitted the papers to the PCs along with their selection
decisions. PCs balanced ACs’ nominations for diversity and representativeness among areas and the
review consistency. They prepared the papers in Softconf for best-paper reviewing and selection. There
were 52 best paper candidates.

In parallel, PCs formed the best paper selection committee (BPC) from 22 experts in the field with a
mix of expertise and backgrounds and at a good seniority level. In case of COIs, the BPC member was
excluded from the further evaluation process. BPC members reviewed 6-8 papers each and provided a
short review with respect to the best paper criteria.

Based on BPC recommendations, there were about 20 papers left in the pool. PCs then re-read those
papers and discussed their particular merits. Finally, 6 long papers and 2 short papers were selected as
honourable mentions. For the best papers, 3 long papers and 2 short papers were selected for presentation
in the closing conference session.

The selected honourable mentions and best papers emphasize the diversity of the ACL in terms of
research questions, methods, and interdisciplinarity.

Best Long Papers
o Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna
Kuncoro and Jonathan Brennan.

e Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value
of Perfect Information. Sudha Rao and Hal Daumé III.

e Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition
Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

o Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia
and Percy Liang.
e ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and

Smaranda Muresan.
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Invited Talk: Deep Neural Networks, and what they’re not very good at
Anton van den Hengel
Professor, School of Computer Science, University of Adelaide

Abstract: Deep Neural Networks have had an incredible impact in a variety of areas within machine
learning, including computer vision and natural language processing. Deep Neural Networks use implicit
representations that are very high-dimensional, however, and are thus particularly well suited to problems
that can be solved by associative recall of previous solutions. They are ill-suited to problems that require
human-interpretable representations, explicit manipulation of symbols, or reasoning. The dependency
of Deep Neural Networks on large volumes of training data, also means that they are typically only
applicable when the problem itself, and the nature of the test data, are predictable long in advance.

The application of Deep Neural Networks to Visual Question Answering has achieved results that would
have been thought impossible only a few years ago. It has also thrown a spotlight on the shortcomings
of current Deep Nets in solving problems that require explicit reasoning, the use of a knowledge base, or
the ability to learn on the fly. In this talk I will illustrate some of the steps being taken to address these
problems, and a new learning-to-learn approach that we hope will combine the power of Deep Learning
with the significant benefits of explicit-reasoning-based methods.

Bio: Anton van den Hengel is a Professor in the School of Computer Science at the University of
Adelaide, the Director of the Australian Institute for Machine Learning, and a Chief Investigator of the
Australian Centre for Robotic Vision. Prof. van den Hengel has been a CI on over $60m in external
research funding from sources including Google, Canon, BHP Billiton and the ARC, and has won a
number of awards, including the Pearcey Foundation Entrepreneur Award, the SA Science Excellence
Award for Research Collaboration, and the CVPR Best Paper prize in 2010. He has authored over
300 publications, had 8 patents commercialised, formed 2 start-ups, and has recently had a medical
technology achieve first-in-class FDA approval. Current research interests include Deep Learning, vison
and language problems, interactive image-based modelling, large-scale video surveillance, and learning
from large image databases.



Invited Talk: Who is the Bridge Between the What and the How

Carolyn Penstein Rosé
Professor, School of Computer Science, Carnegie Mellon University

Abstract: This talk reports on over a decade of research where theoretical foundations motivate
computational models that produce real world impact in online spaces. Both the earliest philosophers of
language and the most recent researchers in computational approaches to social media analysis have
acknowledged the distinction between the what of language, namely its propositional content, and
the how of language, or its form, style, or framing. What bridges between these realms are social
processes that motivate the linguistic choices that result in specific realizations of propositional content
situated within social interactions, designed to achieve social goals. These insights allow researchers
to make sense of the connection between discussion processes and outcomes from those discussions.
These findings motivate on the one hand design of computational approaches to real time monitoring of
discussion processes and on the other hand the design of interventions that support interactions in online
spaces with the goal of increasing desired outcomes, including learning, health, and wellbeing.

As an example, in this talk we probe into a specific quality of discussion referred to as Transactivity.
Transactivity is the extent to which a contribution articulates the reasoning of the speaker, that of an
interlocutor, and the relation between them. In different contexts, and within very distinct theoretical
frameworks, this construct has been associated with solidarity, influence, expertise transfer, and learning.
Within the construct of Transactivity, the cognitive and social underpinnings are inextricably linked such
that modeling the who enables prediction of the connection between the what and the how.

Bio: Dr. Carolyn Rosé is a Professor of Language Technologies and Human-Computer Interaction in the
School of Computer Science at Carnegie Mellon University. Her research program is focused on better
understanding the social and pragmatic nature of conversation, and using this understanding to build
computational systems that can improve the efficacy of conversation between people, and between people
and computers. In order to pursue these goals, she invokes approaches from computational discourse
analysis and text mining, conversational agents, and computer supported collaborative learning.
Her research group’s highly interdisciplinary work, published in 200 peer reviewed publications, is
represented in the top venues in 5 fields: namely, Language Technologies, Learning Sciences, Cognitive
Science, Educational Technology, and Human-Computer Interaction, with awards in 3 of these fields.
She serves as Past President and Inaugural Fellow of the International Society of the Learning Sciences,
Chair of the International Alliance to Advance Learning in the Digital Era, and Executive Editor of the
International Journal of Computer-Supported Collaborative Learning.
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Abstract

We reformulate the problem of encoding
a multi-scale representation of a sequence
in a language model by casting it in a
continuous learning framework. We pro-
pose a hierarchical multi-scale language
model in which short time-scale depen-
dencies are encoded in the hidden state
of a lower-level recurrent neural network
while longer time-scale dependencies are
encoded in the dynamic of the lower-level
network by having a meta-learner update
the weights of the lower-level neural net-
work in an online meta-learning fashion.
We use elastic weights consolidation as a
higher-level to prevent catastrophic forget-
ting in our continuous learning framework.

1 Introduction

Language models are a major class of natural lan-
guage processing (NLP) models whose develop-
ment has lead to major progress in many areas like
translation, speech recognition or summarization
(Schwenk, 2012; Arisoy et al., 2012; Rush et al.,
2015; Nallapati et al., 2016). Recently, the task of
language modeling has been shown to be an ad-
equate proxy for learning unsupervised represen-
tations of high-quality in tasks like text classifica-
tion (Howard and Ruder, 2018), sentiment detec-
tion (Radford et al., 2017) or word vector learning
(Peters et al., 2018).

More generally, language modeling is an exam-
ple of online/sequential prediction task, in which
a model tries to predict the next observation given
a sequence of past observations. The development
of better models for sequential prediction is be-
lieved to be beneficial for a wide range of applica-
tions like model-based planning or reinforcement
learning as these models have to encode some

1

form of memory or causal model of the world to
accurately predict a future event given past events.

One of the main issues limiting the performance
of language models (LMs) is the problem of cap-
turing long-term dependencies within a sequence.

Neural network based language models
(Hochreiter and Schmidhuber, 1997; Cho et al.,
2014) learn to implicitly store dependencies in
a vector of hidden activities (Mikolov et al.,
2010). They can be extended by attention mech-
anisms, memories or caches (Bahdanau et al.,
2014; Tran et al., 2016; Graves et al., 2014) to
capture long-range connections more explicitly.
Unfortunately, the very local context is often so
highly informative that LMs typically end up
using their memories mostly to store short term
context (Daniluk et al., 2016).

In this work, we study the possibility of com-
bining short-term representations, stored in neural
activations (hidden state), with medium-term rep-
resentations encoded in a set of dynamical weights
of the language model. Our work extends a series
of recent experiments on networks with dynami-
cally evolving weights (Ba et al., 2016; Ha et al.,
2016; Krause et al., 2017; Moniz and Krueger,
2018) which show improvements in sequential
prediction tasks. We build upon these works by
formulating the task as a hierarchical online meta-
learning task as detailed below.

The motivation behind this work stems from
two observations.

On the one hand, there is evidence from a phys-
iological point of view that time-coherent pro-
cesses like working memory can involve differing
mechanisms at differing time-scales. Biological
neural activations typically have a 10 ms coher-
ence timescale, while short-term synaptic plastic-
ity can temporarily modulate the dynamic of the
neural network it-self on timescales of 100 ms
to minutes. Longer time-scales (a few minutes
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to several hours) see long-term learning kicks in
with permanent modifications to neural excitabil-
ity (Tsodyks et al., 1998; Abbott and Regehr,
2004; Barak and Tsodyks, 2007; Ba et al., 2016).
Interestingly, these psychological observations are
paralleled, on the computational side, by a se-
ries of recent works on recurrent networks with
dynamically evolving weights that show benefits
from dynamically updating the weights of a net-
work during a sequential task (Ba et al., 2016;
Ha et al., 2016; Krause et al., 2017; Moniz and
Krueger, 2018).

In parallel to that, it has also been shown that
temporal data with multiple time-scales dependen-
cies can naturally be encoded in a hierarchical rep-
resentation where higher-level features are chang-
ing slowly to store long time-scale dependencies
and lower-level features are changing faster to
encode short time-scale dependencies and local
timing (Schmidhuber, 1992; El Hihi and Bengio,
1995; Koutnk et al., 2014; Chung et al., 2016).

As a consequence, we would like our model to
encode information in a multi-scale hierarchical
representation where

1. short time-scale dependencies can be en-
coded in fast-updated neural activations (hid-
den state),

2. medium time-scale dependencies can be en-
coded in the dynamic of the network by using
dynamic weights updated more slowly, and

3. a long time-scale memory can be encoded in
a static set of parameters of the model.

In the present work, we take as dynamic weights
the full set of weights of a RNN language model
(usually word embeddings plus recurrent, input
and output weights of each recurrent layer).

2 Dynamical Language Modeling

Given a sequence of T discrete symbols S =
(w1, ws,...,wr), the language modeling task
consists in assigning a probability to the sequence
P(S) = p(wy, ..., wr) which can be written, us-
ing the chain-rule, as

T
P(S|0)= HP(wt | we—1,...,wo,0)P(wo | 0).
t=1

(D
where 6 is a set of parameters of the language
model.

In the case of a neural-network-based lan-
guage model, the conditional probability P(w; |
Wi—1, ..., W, ) is typically parametrized using
an autoregressive neural network as

< ’wo)
2
where 6 are the parameters of the neural network.
In a dynamical language modeling framework,
the parameters 6 of the language model are not
tied over the sequence S but are allowed to evolve.
Thus, prior to computing the probability of a fu-
ture token wy, a set of parameters 6; is estimated
from the past parameters and tokens as 0; =
argmax PO | wi—1,...,wp,0;—1...6p) and the

P(wt ‘ Wt—1y--- ,’LU(),Q) = fg(wt_l, ..

updated parameters 6; are used to compute the
probability of the next token wy.

In our hierarchical neural network language
model, the updated parameters 6, are estimated by
a higher level neural network g parametrized by a
set of (static) parameters ¢:

et :g¢(wt*1a"'aw079t71"'90) (3)

2.1 Online meta-learning formulation

The function computed by the higher level net-
work g, estimating 6; from an history of parame-
ters 6, and data points w¢, can be seen as an on-
line meta-learning task in which a high-level meta-
learner network is trained to update the weights of
a low-level network from the loss of the low-level
network on a previous batch of data.

Such a meta-learner can be trained
(Andrychowicz et al., 2016) to reduce the
loss of the low-level network with the idea that it
will generalize a gradient descent rule

Or = 0i—1 — Vg, | Ly 4)
where o is a learning rate at time ¢ and Vy, _, LM
is the gradient of the loss £ of the language
model on the ¢-th dataset with respect to previous
parameters 6;_1.
Ravi and Larochelle (2016) made the observa-
tion that such a gradient descent rule bears simi-
larities with the update rule for LSTM cell-states

a=ftOc 1+t OC (5

when ¢; — 0,4y — oy and ¢; = —Vy, | Ly

We extend this analogy to the case of a multi-
scale hierarchical recurrent model illustrated on
figure 1 and composed of:
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Figure 1: A diagram of the Dynamical Language Model. The lower-level neural network f (short-term

memory) is a conventional word-level language model where wy, . .

., ws are words tokens. The medium-

level language model g is a feed-forward or recurrent neural network while the higher-level memory is
formed by a static set of consolidated pre-trained weights (see text).

1. Lower-level / short time-scale: a RNN-based
language model f encoding representations
in the activations of a hidden state,

2. Middle-level / medium time-scale: a meta-
learner g updating the set of weights of the
language model to store medium-term repre-
sentations, and

3. Higher-level / long time-scale: a static long-
term memory of the dynamic of the RNN-
based language model (see below).

The meta-learner ¢ is trained to update the
lower-level network f by computing f;, 4,2 =
9o(Or—1, LEM Vg,  LEM 65) and updating the
set of weights as

0r = fi ©01 +it © Vo,  LEM + 2,00, (6)

This hierarchical network could be seen as an ana-
log of the hierarchical recurrent neural networks
(Chung et al., 2016) where the gates f;, ¢; and z;
can be seen as controlling a set of COPY, FLUSH
and UPDATE operations:

1. COPY (f;): part of the state copied from the
previous state 0;_1,

2. UPDATE (%;): part of the state updated by the
loss gradients on the previous batch, and

3. FLUSH (z;): part of the state reset from a
static long term memory 6.

One difference with the work of (Chung et al.,
2016) is that the memory was confined to the hid-
den in the later while the memory of our hierar-
chical network is split between the weights of the
lower-level network and its hidden-state.

The meta-learner can be a feed-forward or a
RNN network. In our experiments, simple lin-
ear feed-forward networks lead to the lower per-
plexities, probably because it was easier to regu-
larize and optimize. The meta-learner implements
coordinate-sharing as described in (Andrychow-
icz et al., 2016; Ravi and Larochelle, 2016) and
takes as input the loss £ and loss-gradients
Vo, LFM over a previous batch B; (a sequence
of M tokens wy,...,wys as illustrated on fig-
ure 1). The size M of the batch adjusts the
trade-off between the noise of the loss/gradients
and updating frequency of the medium-term mem-
ory, smaller batches leading to faster updates with
higher noise.

2.2 Continual learning

The interaction between the meta-learner and the
language model implements a form of continual-
learning and the language model thus faces a
phenomenon known as catastrophic forgetting
(French, 1999). In our case, this correspond to the
lower-level network over-specializing to the lexi-
cal field of a particular topic after several updates
of the meta-learner (e.g. while processing a long
article on a specific topic).

To mitigate this effect we use a higher-level
static memory initialized using “elastic weight
consolidation” (EWC) introduced by Kirkpatrick
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Figure 2: Medium and long-term memory effects on a sample of Wikitext-2 test set with a sequence of
Wikipedia articles (letters A — H). (Left) Instantaneous perplexity gain: difference in batch perplexity
between models. Higher values means the first model has locally a lower perplexity than the second
model. (Top curve) Comparing a two-levels model (LM + meta-learner) with a one-level model (LM).
(Bottom curve) Comparing a three-levels model (LM + meta-learner + long-term memory) with a two-
levels model. (Right) Token loss difference on three batch samples indicated on the left curves. A
squared (resp. underlined) word means the first model has a lower (resp. higher) loss on that word than
the second model. We emphasize only words associated with a significant difference in loss by setting a
threshold at 10 percent of the maximum absolute loss of each sample.

et al. (2017) to reduce forgetting in multi-task re-
inforcement learning.

Casting our task in the EWC framework, we
define a task A which is the language modeling
task (prediction of next token) when no context is
stored in the weights of the lower-level network.
The solution of task A is a set of weights toward
which the model could advantageously come back
when the context stored in the weights become
irrelevant (for example when switching between
paragraphs on different topics). To obtain a set of
weights for task A, we train the lower-level net-
work (RNN) alone on the training dataset and ob-
tain a set of weights that would perform well on
average, i.e. when no specific context has been
provided by a context-dependent weight update
performed by the meta-learner.

We then define a task B which is a language
modeling task when a context has been stored in
the weights of the lower-level network by an up-
date of the meta-learner. The aim of EWC is to
learn task B while retaining some performance on
task A.

Empirical results suggest that many weights
configurations result in similar performances
(Sussmann, 1992) and there is thus likely a solu-

tion for task B close to a solution for task A. The
idea behind EWC is to learn task B while protect-
ing the performance in task A by constraining the
parameters to stay around the solution found for
task A.

This constraint is implemented as a quadratic
penalty, similarly to spring anchoring the param-
eters, hence the name elastic. The stiffness of
the springs should be greater for parameters that
most affect performance in task A. We can for-
mally write this constrain by using Bayes rule to
express the conditional log probability of the pa-
rameters when the training dataset D is split be-
tween the training dataset for task A (D 4) and the
training dataset for task B (Dp):

logp(0 | D) = logp(Dp | 0)+logp(6 | Da)—log p(Dp)

(7
The true posterior probability on task A p(6 | D4)
is intractable, so we approximate the posterior as a
Gaussian distribution with mean given by the pa-
rameters and a diagonal precision given by the di-
agonal of the Fisher information matrix F which is
equivalent to the second derivative of the loss near
a minimum and can be computed from first-order
derivatives alone.



3 Related work

Several works have been devoted to dynamically
updating the weights of neural networks during in-
ference. A few recent architectures are the Fast-
Weights of Ba et al. (2016), the Hypernetworks of
Ha et al. (2016) and the Nested LSTM of Moniz
and Krueger (2018). The weights update rules of
theses models use as inputs one or several of (i) a
previous hidden state of a RNN network or higher
level network and/or (ii) the current or previous
inputs to the network. However, these models do
not use the predictions of the network on the pre-
vious tokens (i.e. the loss and gradient of the loss
of the model) as in the present work. The archi-
tecture that is most related to the present work is
the study on dynamical evaluation of Krause et al.
(2017) in which a loss function similar to the loss
function of the present work is obtained empiri-
cally and optimized using a large hyper-parameter
search on the parameters of the SGD-like rule.

4 Experiments

4.1 Architecture and hyper-parameters

As mentioned in 2.2, a set of pre-trained weights
of the RNN language model is first obtained by
training the lower-level network f and computing
the diagonal of the Fisher matrix around the final
weights.

Then, the meta-learner g is trained in an online
meta-learning fashion on the validation dataset (al-
ternatively, a sub-set of the training dataset could
be used). A training sequence .S is split in a se-
quence of mini-batches B;, each batch B; contain-
ing M inputs tokens (Wix s, - - -, Wix p+r) and
M associated targets (Wi Ar+1s -« - s Wix M+M-+1)-
In our experiments we varied M between 5 and
20.

The meta-learner is trained as described in
(Andrychowicz et al., 2016; Li and Malik, 2016)
by minimizing the sum over the sequence of LM
losses: Leta = Y is0 EiLM . The meta-learner
is trained by truncated back-propagation through
time and is unrolled over at least 40 steps as the re-
ward from the medium-term memory is relatively
sparse (Li and Malik, 2016).

To be able to unroll the model over a suffi-
cient number of steps while using a state-of-the-
art language model with over than 30 millions pa-
rameters, we use a memory-efficient version of
back propagation through time based on gradi-

ent checkpointing as described by Grusly et al.
(2016).

4.2 Experiments

We performed a series of experiments on the
Wikitext-2 dataset (Merity et al., 2016) using an
AWD-LSTM language model (Merity et al., 2017)
and a feed-forward and RNN meta-learner.

The test perplexity are similar to perplexi-
ties obtained using dynamical evaluation (Krause
et al., 2017), reaching 46.9 with a linear feed-
forward meta-learner when starting from a one-
level language model with test perplexity of 64.8.

In our experiments, the perplexity could not
be improved by using a RNN meta-learner or a
deeper meta-learner. We hypothesis that this may
be caused by several reasons. First, storing a hid-
den state in the meta-learner might be less im-
portant in an online meta-learning setup than it
is in a standard meta-learning setup (Andrychow-
icz et al., 2016) as the target distribution of the
weights is non-stationary. Second, the size of
the hidden state cannot be increased significantly
without reducing the number of steps along which
the meta-learner is unrolled during meta-training
which may be detrimental.

Some quantitative experiments are shown on
Figure 2 using a linear feed-forward network to
illustrate the effect of the various layers in the hi-
erarchical model. The curves shows differences in
batch perplexity between model variants.

The top curve compares a one-level model (lan-
guage model) with a two-levels model (language
model + meta-learner). The meta-learner is able
to learn medium-term representations to progres-
sively reduce perplexity along articles (see e.g. ar-
ticles C and E). Right sample 1 (resp. 2) details
sentences at the begging (resp. middle) of arti-
cle E related to a warship called “Ironclad”. The
addition of the meta-learner reduces the loss on a
number of expression related to the warship like
“ironclad” or “steel armor”.

Bottom curve compares a three-levels model
(language model + meta-learner + long-term
memory) with the two-levels model. The local
loss is reduced at topics changes and beginning
of new topics (see e.g. articles B, D and F). The
right sample 3 can be contrasted with sample 1
to illustrate how the hierarchical model is able to
better recover a good parameter space following a
change in topic.
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Restricted Recurrent Neural Tensor Networks: Exploiting Word
Frequency and Compositionality

Alexandre Salle!

alex@alexsalle.com

Abstract

Increasing the capacity of recurrent neu-
ral networks (RNN) usually involves aug-
menting the size of the hidden layer, with
significant increase of computational cost.
Recurrent neural tensor networks (RNTN)
increase capacity using distinct hidden
layer weights for each word, but with
greater costs in memory usage. In this pa-
per, we introduce restricted recurrent neu-
ral tensor networks (r-RNTN) which re-
serve distinct hidden layer weights for fre-
quent vocabulary words while sharing a
single set of weights for infrequent words.
Perplexity evaluations show that for fixed
hidden layer sizes, -RNTNs improve lan-
guage model performance over RNNs us-
ing only a small fraction of the parameters
of unrestricted RNTNs. These results hold
for -RNTNs using Gated Recurrent Units
and Long Short-Term Memory.

1 Introduction

Recurrent neural networks (RNN), which com-
pute their next output conditioned on a previously
stored hidden state, are a natural solution to se-
quence modeling. Mikolov et al. (2010) applied
RNNs to word-level language modeling (we refer
to this model as s-RNN), outperforming traditional
n-gram methods. However, increasing capacity
(number of tunable parameters) by augmenting the
size H of the hidden (or recurrent) layer — to
model more complex distributions — results in a
significant increase in computational cost, which
is O(H?).

Sutskever et al. (2011) increased the perfor-
mance of a character-level language model with
a multiplicative RNN (m-RNN), the factored ap-
proximation of a recurrent neural tensor network

Aline Villavicencio'
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(RNTN), which maps each symbol to separate hid-
den layer weights (referred to as recurrence matri-
ces from hereon). Besides increasing model ca-
pacity while keeping computation constant, this
approach has another motivation: viewing the
RNN’s hidden state as being transformed by each
new symbol in the sequence, it is intuitive that dif-
ferent symbols will transform the network’s hid-
den state in different ways (Sutskever et al., 2011).
Various studies on compositionality similarly ar-
gue that some words are better modeled by matri-
ces than by vectors (Baroni and Zamparelli, 2010;
Socher et al., 2012). Unfortunately, having sepa-
rate recurrence matrices for each symbol requires
memory that is linear in the symbol vocabulary
size (|V]). This is not an issue for character-level
models, which have small vocabularies, but is pro-
hibitive for word-level models which can have vo-
cabulary size in the millions if we consider surface
forms.

In this paper, we propose the Restricted RNTN
(r-RNTN) which uses only K < |V| recurrence
matrices. Given that |V'| words must be assigned
K matrices, we map the most frequent K — 1
words to the first K — 1 matrices, and share the
K-th matrix among the remaining words. This
mapping is driven by the statistical intuition that
frequent words are more likely to appear in di-
verse contexts and so require richer modeling, and
by the greater presence of predicates and function
words among the most frequent words in standard
corpora like COCA (Davies, 2009). As a result,
adding K matrices to the s-RNN both increases
model capacity and satisfies the idea that some
words are better represented by matrices. Re-
sults show that r-RNTNs improve language model
performance over s-RNNs even for small X with
no computational overhead, and even for small
K approximate the performance of RNTNs us-
ing a fraction of the parameters. We also exper-
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iment with r-RNTNs using Gated Recurrent Units
(GRU) (Cho et al., 2014) and Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997), obtaining lower perplexity for fixed hidden
layer sizes. This paper discusses related work (§2),
and presents -RNTNs (§3) along with the evalua-
tion method (§4). We conclude with results (§5),
and suggestions for future work.

2 Related Work

We focus on related work that addresses lan-
guage modeling via RNNs, word representation,
and conditional computation.

Given a sequence of words (z1,...,z7), a lan-
guage model gives the probability P(xz:|z1. 1)
fort € [1,T]. Using a RNN, Mikolov et al. (2010)
created the s-RNN language model given by:

hy = oc(Whay + Uphi—1 +by) (1)
P(zy|z1.4-1) = x;‘FSoftmax(Woht +b,) (2)

where h; is the hidden state represented by a vec-
tor of dimension H, o(z) is the pointwise logistic
function, W}, is the H x V embedding matrix, Uy},
is the H x H recurrence matrix, W,isthe V x H
output matrix, and by, and b,, are bias terms. Com-
putation is O(H?), so increasing model capacity
by increasing H quickly becomes intractable.
The RNTN proposed by Sutskever et al. (2011)
is nearly identical to the s-RNN, but the recurrence
matrix in eq. (1) is replaced by a tensor as follows:

he=o(Whay + U h y +by)  (3)

where i(z) maps a hot-one encoded vector to
its integer representation. Thus the Uj tensor
is composed of |V/| recurrence matrices, and at
each step of sequence processing the matrix cor-
responding to the current input is used to trans-
form the hidden state. The authors also proposed
m-RNN, a factorization of the U ;L(sz) matrix into
Uindiag(vg,)U,p, to reduce the number of param-
eters, where v,, is a factor vector of the current
input x4, but like the RNTN, memory still grows
linearly with |V|. The RNTN has the property that
input symbols have both a vector representation
given by the embedding and a matrix representa-
tion given by the recurrence matrix, unlike the s-
RNN where symbols are limited to vector repre-
sentations.

The integration of both vector and matrix rep-
resentations has been discussed but with a focus

on representation learning and not sequence mod-
eling (Baroni and Zamparelli, 2010; Socher et al.,
2012). For instance, Baroni and Zamparelli (2010)
argue for nouns to be represented as vectors and
adjectives as matrices.

Irsoy and Cardie (2014) used m-RNNs for the
task of sentiment classification and obtained equal
or better performance than s-RNNs. Methods that
use conditional computation (Cho and Bengio,
2014; Bengio et al., 2015; Shazeer et al., 2017) are
similar to RNTNs and r-RNTNs, but rather than
use a static mapping, these methods train gating
functions which do the mapping. Although these
methods can potentially learn better policies than
our method, they are significantly more complex,
requiring the use of reinforcement learning (Cho
and Bengio, 2014; Bengio et al., 2015) or addi-
tional loss functions (Shazeer et al., 2017), and
more linguistically opaque (one must learn to in-
terpret the mapping performed by the gating func-
tions).

Whereas our work is concerned with updating
the network’s hidden state, Chen et al. (2015)
introduce a technique that better approximates
the output layer’s Softmax function by allocating
more parameters to frequent words.

3 Restricted Recurrent Neural Tensor
Networks

To balance expressiveness and computational cost,
we propose restricting the size of the recurrence
tensor in the RNTN such that memory does not
grow linearly with vocabulary size, while still
keeping dedicated matrix representations for a
subset of words in the vocabulary. We call these
Restricted Recurrent Neural Tensor Networks (r-
RNTN), which modify eq. (3) as follows:

he = o(Whay + U O h, g [0y 4y

where U}, is a tensor of K < |V/| matrices of size
H x H, by, is a H x K bias matrix with columns
indexed by f. The function f(w) maps each vo-
cabulary word to an integer between 1 and K.

We use the following definition for f:

fw) = min(rank(w), K) ®)

where rank(w) is the rank of word w when the
vocabulary is sorted by decreasing order of uni-
gram frequency.

This is an intuitive choice because words which
appear more often in the corpus tend to have more
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Figure 1: PTB test PPL as K varies from 1 to
10000 (100 for gated networks). At K = 100, the
r-RNTN with f mapping already closely approxi-
mates the much bigger RNTN, with little gain for
bigger K, showing that dedicated matrices should
be reserved for frequent words as hypothesized.

variable contexts, so it makes sense to dedicate a
large part of model capacity to them. A second ar-
gument is that frequent words tend to be predicates
and function words. We can imagine that predi-
cates and function words transform the meaning
of the current hidden state of the RNN through
matrix multiplication, whereas nouns, for exam-
ple, add meaning through vector addition, follow-
ing Baroni and Zamparelli (2010).

We also perform initial experiments with r-
RNTNs using LSTM and GRUs. A GRU is de-
scribed by

Ty = U(W;;.%t -+ U;;ht_l + bz> (6)
2= o(Wizy + Uihy_1 + b) (7)
hy = tanh(Wlay + Ul (re © hy_1) + b)) (8)

he =2 @hi 1+ (1—2)Ohy ©9)
and an LSTM by
fi= oWz + U h 1 +0)) (10)
it = U(Wéxt + U}iht_l -+ b%) (1 1)
op = o(Wixy + Uphi—1 + b7) (12)
Ct = tanh(W,fact + Uﬁht_l + b(}i) (13)
Ct :Z't®ét+ft®ct71 (14)
hy = oy © tanh(cy) (15)

We create -RNTN GRUs (r-GRU) by making U ,};
and bg input-specific (as done in eq. (4)). For r-
RNTN LSTMs (r-LSTM), we do the same for U},
and bj .
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4 Materials

We evaluate s-RNNs, RNTNs, and r-RNTNs by
training and measuring model perplexity (PPL) on
the Penn Treebank (PTB) corpus (Marcus et al.,
1994) using the same preprocessing as Mikolov
et al. (2011). Vocabulary size is 10000.

For an r-RNTN with H = 100, we vary the ten-
sor size K from 1, which corresponds to the s-
RNN, all the way up to 10000, which corresponds
to the unrestricted RNTN. As a simple way to eval-
uate our choice of rank-based mapping function f,
we compare it to a pseudo-random variant:

fmoa(w) = rank(w) mod K (16)

We also compare results to 1) an s-RNN with
H = 150, which has the same number of parame-
ters as an -RNTN with H = 100 and K = 100.
2) An m-RNN with H = 100 with the size of
factor vectors set to 100 to match this same num-
ber of parameters. 3) An additional r-RNTN with
H 150 is trained to show that performance
scales with H as well.

We split each sentence into 20 word sub-
sequences and run stochastic gradient descent via
backpropagation through time for 20 steps with-
out mini-batching, only reseting the RNN’s hid-
den state between sentences. Initial learning rate
(LR) is 0.1 and halved when the ratio of the valida-
tion perplexity between successive epochs is less
than 1.003, stopping training when validation im-
provement drops below this ratio for 5 consecu-
tive epochs. We use Dropout (Srivastava et al.,
2014) with p = .5 on the softmax input to reduce
overfitting. Weights are drawn from A/(0,.001);
gradients are not clipped. To validate our pro-
posed method, we also evaluate r-RNTNs using
the much larger text8' corpus with a 90MB-5MB-
SMB train-validation-test split, mapping words
which appear less than 10 times to (unk) for a to-
tal vocabulary size of 37751.

Finally, we train GRUs, LSTMs, and their r-
RNTN variants using the PTB corpus and parame-
ters similar to those used by Zaremba et al. (2014).
All networks use embeddings of size 650 and a
single hidden layer. Targeting K = 100, we set
H 244 for the r-GRU and compare with a
GRU with H = 650 which has the same num-
ber of parameters. The r-LSTM has H = 254
to match the number of parameters of an LSTM

'http://mattmahoney.net/dc/textdata.html



PTB text8 PTB

Method | H |#Params Test PPL | # Params Test PPL || Method | H |# Params Test PPL
s-RNN | 100 2M 146.7 7.6M 236.4 GRU 244 | 9.6M 92.2
r-RNTN f | 100 3M 131.2 11.4M 190.1 GRU 650 | 15.5M 90.3
RNTN |100| 103M 128.8 388M - r-GRU f | 244 | 15.5M 87.5
m-RNN | 100 3M 164.2 11.4M 895.0 LSTM | 254 10M 88.8
s-RNN | 150 3M 133.7 11.4M 207.9 LSTM |650| 16.4M 84.6
r-RNTN f | 150| 5.3M 126.4 19.8M 171.7 || r-LSTM f | 254 | 16.4M 87.1

Table 1: Comparison of validation and test set perplexity for -rRNTNs with f mapping (K = 100 for
PTB, K = 376 for text8) versus s-RNNs and m-RNN. r-RNTNs with the same H as corresponding
s-RNN:ss significantly increase model capacity and performance with no computational cost. The RNTN
was not run on text8 due to the number of parameters required.

with H = 650. The training procedure is the
same as above but with mini-batches of size 20,
35 timestep sequences without state resets, initial
LR of 1, Dropout on all non-recurrent connections,
weights drawn from U(—.05,.05), and gradients
norm-clipped to 5.

5 Results

Results are shown in fig. 1 and table 1.

Comparing the --RNTN to the baseline s-RNN
with H = 100 (fig. 1), as model capacity grows
with K, test set perplexity drops, showing that r-
RNTN is an effective way to increase model ca-
pacity with no additional computational cost. As
expected, the f mapping outperforms the baseline
fmoa mapping at smaller K. As K increases, we
see a convergence of both mappings. This may be
due to matrix sharing at large K between frequent
and infrequent words because of the modulus op-
eration in eq. (16). As infrequent words are rarely
observed, frequent words dominate the matrix up-
dates and approximate having distinct matrices, as
they would have with the f mapping.

It is remarkable that even with K as small as
100, the r-RNTN approaches the performance of
the RNTN with a small fraction of the parameters.
This reinforces our hypothesis that complex trans-
formation modeling afforded by distinct matrices
is needed for frequent words, but not so much for
infrequent words which can be well represented
by a shared matrix and a distinct vector embed-
ding. As shown in table 1, with an equal number
of parameters, the r-RNTN with f mapping out-
performs the s-RNN with a bigger hidden layer.
It appears that heuristically allocating increased
model capacity as done by the f based r-RNTN
is a better way to increase performance than sim-
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ply increasing hidden layer size, which also incurs
a computational penalty.

Although m-RNNs have been successfully em-
ployed in character-level language models with
small vocabularies, they are seldom used in word-
level models. The poor results shown in table 1
could explain why.?

For fixed hidden layer sizes, r-RNTNs yield
significant improvements to s-RNNs, GRUs, and
LSTMs, confirming the advantages of distinct rep-
resentations.

6 Conclusion and Future Work

In this paper, we proposed restricted recurrent
neural tensor networks, a model that restricts the
size of recurrent neural tensor networks by map-
ping frequent words to distinct matrices and infre-
quent words to shared matrices. r-RNTNs were
motivated by the need to increase RNN model
capacity without increasing computational costs,
while also satisfying the ideas that some words
are better modeled by matrices rather than vec-
tors (Baroni and Zamparelli, 2010; Socher et al.,
2012). We achieved both goals by pruning the size
of the recurrent neural tensor network described
by Sutskever et al. (2011) via sensible word-to-
matrix mapping. Results validated our hypothesis
that frequent words benefit from richer, dedicated
modeling as reflected in large perplexity improve-
ments for low values of K.

Interestingly, results for s-RNNs and r-GRUs
suggest that given the same number of parame-
ters, it is possible to obtain higher performance
by increasing K and reducing H. This is not the

1t should be noted that Sutskever et al. (2011) suggest
m-RNNs would be better optimized using second-order gra-

dient descent methods, whereas we employed only first-order
gradients in all models we trained to make a fair comparison.



case with -LSTMs, perhaps to due to our choice
of which of the recurrence matrices to make input-
specific. We will further investigate both of these
phenomena in future work, experimenting with
different combinations of word-specific matrices
for -GRUs and r-LSTMs (rather than only U,f} and
Uy), and combining our method with recent im-
provements to gated networks in language model-
ing (Jozefowicz et al., 2016; Merity et al., 2018;
Melis et al., 2018) which we believe are orthogo-
nal and hopefully complementary to our own.
Finally, we plan to compare frequency-based
and additional, linguistically motivated f map-
pings (for example different inflections of a verb
sharing a single matrix) with mappings learned
via conditional computing to measure how exter-
nal linguistic knowledge contrasts with knowledge
automatically inferred from training data.
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Abstract

We present a set of experiments to demon-
strate that deep recurrent neural networks
(RNNSs) learn internal representations that
capture soft hierarchical notions of syntax
from highly varied supervision. We con-
sider four syntax tasks at different depths
of the parse tree; for each word, we predict
its part of speech as well as the first (par-
ent), second (grandparent) and third level
(great-grandparent) constituent labels that
appear above it. These predictions are
made from representations produced at
different depths in networks that are pre-
trained with one of four objectives: de-
pendency parsing, semantic role labeling,
machine translation, or language model-
ing. In every case, we find a correspon-
dence between network depth and syntac-
tic depth, suggesting that a soft syntactic
hierarchy emerges. This effect is robust
across all conditions, indicating that the
models encode significant amounts of syn-
tax even in the absence of an explicit syn-
tactic training supervision.

1 Introduction

Deep recurrent neural networks (RNNs) have ef-
fectively replaced explicit syntactic features (e.g.
parts of speech, dependencies) in state-of-the-art
NLP models (He et al., 2017; Lee et al., 2017;
Klein et al., 2017). However, previous work has
shown that syntactic information (in the form of
either input features or supervision) is useful for
a wide variety of NLP tasks (Punyakanok et al.,
2005; Chiang et al., 2009), even in the neural set-
ting (Aharoni and Goldberg, 2017; Chen et al.,
2017). In this paper, we show that the internal rep-
resentations of RNNs trained on a variety of NLP
tasks encode these syntactic features without ex-
plicit supervision.
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We consider a set of feature prediction tasks
drawn from different depths of syntactic parse
trees; given a word-level representation, we at-
tempt to predict the POS tag and the parent, grand-
parent, and great-grandparent constituent labels of
that word. We evaluate how well a simple feed-
forward classifier can detect these syntax features
from the word representations produced by the
RNN layers from deep NLP models trained on the
tasks of dependency parsing, semantic role label-
ing, machine translation, and language modeling.
We also evaluate whether a similar classifier can
predict if a dependency arc exists between two
words in a sentence, given their representations.

We find that, across all four types of supervi-
sion, the representations learned by these mod-
els encode syntax beyond the explicit information
they encounter during training; this is seen in both
the word-level tasks and the dependency arc pre-
diction task. Furthermore, we also observe that
features associated with different levels of syntax
tree correlate with word representations produced
by RNNs at different depths. Largely speaking,
we see that deeper layers in each model capture
notions of syntax that are higher-level and more
abstract, in the sense that higher-level constituents
cover a larger span of the underlying sentence.

These findings suggest that models trained on
NLP tasks are able to induce syntax even when di-
rect syntactic supervision is unavailable. Further-
more, the models are able to differentiate this in-
duced syntax into a soft hierarchy across different
layers of the model, perhaps shedding some light
on why deep RNNSs are so useful for NLP.

2 Methodology

Given a model that uses multi-layered RNNs, we
collect the vector representation x. of each word i
at each hidden layer /. To determine what syntac-
tic information is stored in each word vector, we
try to predict a series of constituency-based prop-

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 14—19
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics



Training Signal Dataset RNN Layers III;II::: HIl)(llr(IlleSn
Dependency Parsing gléigzg;giizsersal ié)%rﬁl;el bidirectional 200 400
Semantic Role Labeling  CoNLL-2012 i;%ﬁzagﬁﬁgfgi‘;“;’;‘s 100 300
Machine Translation gl\gj[l;l;_}%-()Gljrman ig%r&liel bidirectional 500 500
Language Modeling CoNLL-2012 2 sets of 4 unidirectional )5 10

LSTMs with highways

Table 1: The training data, recurrent architecture, and hyperparameters of each model.

S

_— N\ T

NP ADVP VP

T | N

1 NN  NNS RB VBD

Other stock indexes also fell on Monday

Figure 1: Constituency tree with labels for the
word “Monday” for the POS (green), parent con-
stituent (blue), grandparent constituent (orange),
and great-grandparent constituent (red) tasks.

erties from the vector alone. Specifically, we pre-
dict the word’s part of speech (POS), as well as
the first (parent), second (grand-parent), and third
level (great-grandparent) constituent labels of the
given word. Figure 1 shows how these labels cor-
respond to an example constituency tree.

Our methodology follows Shi et al. (2016), who
run syntactic feature prediction experiments over
a number of different shallow machine translation
models, and Belinkov et al. 2017a; 2017b, who
use a similar process to study the morphological,
part-of-speech, and semantic features learned by
deeper machine translation encoders. We extend
upon prior work by considering training signals
for models other than machine translation, and
by applying more stratified word-level syntactic
tasks.

2.1 Experiment Setup

We predict each syntactic property with a sim-
ple feed-forward network with a single 300-
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dimensional hidden layer activated by a ReL.U:

y} = SoftMax(WoReLU(W1x})) (D)

where ¢ is the word index and [ is the layer index
within a model. To ensure that the classifiers are
not trained on the same data as the RNNs, we train
the classifier for each layer [ separately using the
development set of CoNLL-2012 and evaluate on
the test set (Pradhan et al., 2013).

In addition, we compare performance with
word-level baselines. We report the per-word ma-
jority class baseline; at the POS level, for example,
“cat” will be classified as a noun and “walks” as
a verb. This baseline outperforms the pre-trained
GloVe (Pennington et al., 2014) embeddings on
every task. We also consider a contextual base-
line, in which we concatenate each word’s embed-
ding with the average of its context’s embeddings;
however, this baseline also performed worse that
the reported one.

2.2 Analyzed Models

We consider four different forms of supervision.
Table 1 summarizes the differences in data, archi-
tecture, and hyperparameters. !

Dependency Parsing We train a four-layer ver-
sion of the Stanford dependency parser (Dozat and
Manning, 2017) on the Universal Dependencies
English Web Treebank (Silveira et al., 2014). We
ran the parser with 4 bidirectional LSTM layers
(the default is 3), yielding a UAS of 91.5 and a
weighted LAS of 82.18, consistent with the state
of the art on CoNLL 2017. Since the parser re-
ceives syntactic features as input (POS) and is
trained on an explicit syntactic signal, we expect

"While we control for some variables, we mainly rely on
existing architectures and hyperparameters that were tuned

for the original tasks, limiting the cross-model comparability
of absolute performance levels on our syntactic evaluations.
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Figure 2: Results of syntax experiments. The best performing layer for each experiment is annotated
with a star, and the per-word majority baseline for each task is shown with a dashed line.

its intermediate representations to contain a high
amount of syntactic information.

Semantic Role Labeling We use the pre-trained
DeepSRL model from (He et al., 2017), which
was trained on the training data from the CoNLL-
2012 dataset. This model is an alternating bidirec-
tional LSTM, where the model consists of eight
total layers that alternate between a forward layer
and backward layer. We concatenate the represen-
tations from each pair of directional layers in the
model for consistency with other models.

Machine Translation We train a machine trans-
lation model using OpenNMT (Klein et al., 2017)
on the WMT-14 English-German dataset. The en-
coder (which we examine in our experiments) is a
4-layer bidirectional LSTM; we use the defaults
for every other setting. The model achieves a
BLEU score of 21.37, which is in the ballpark of
other vanilla encoder-decoder attention models on
this benchmark (Bahdanau et al., 2015).
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Language Modeling We train two separate lan-
guage models on CoNLL-2012’s training set, one
going forward and another backward. Each model
is a 4-layer LSTM with highway connections,
variational dropout, and tied input-output embed-
dings. After training, we concatenate the forward
and backward representations for each layer.”

3 Constituency Label Prediction

Figure 2 shows our results (see supplementary ma-
terial for numerical results). We make several ob-
servations:

RNNs can induce syntax. Overall, each model
outperforms the baseline and its respective input
embeddings on every syntax task, indicating that
their internal representations encode some notions

>The model achieved perplexities of 50.56 (forward) and
51.24 (backward) on CoNLL-2012’s test set. Since we
are not familiar with other perplexity results on this data,
we note that retraining the architecture on Penn TreeBank
achieved 64.39 perplexity, which is comparable to other high-
performing language models.



of syntax. The only exception to this observation
is POS prediction with dependency parsing rep-
resentations; in this case the parser is provided
gold POS tags as input, and cannot improve upon
them. This result confirms the findings of Shi
et al. (2016) and Belinkov et al. (2017b), who
demonstrate that neural machine translation en-
coders learn syntax, and shows that RNNs trained
on other NLP tasks also induce syntax.

Deeper layers reflect higher-level syntax. In
11 out of 16 cases, performance improves up to
a certain layer and then declines, suggesting that
the deeper layers encode less syntactic informa-
tion that earlier ones in these cases. Strikingly, the
higher-level a syntactic task is, the deeper in the
network the peak performance occurs; for exam-
ple, in SRL we see that the parent constituent task
peaks one layer after POS, and the grand-parent
and great-grandparent tasks peak on the layer af-
ter that. One possible explanation is that each
layer leverages the shallower syntactic informa-
tion learned in the previous layer in order to con-
struct a more abstract syntactic representation. In
SRL and language modeling, it seems as though
the syntactic information is then replaced by task-
specific information (semantic roles, word proba-
bilities), perhaps making it redundant.

This observation may also explain a modeling
decision in ELMo (Peters et al., 2018), where
injecting the contextualized word representations
from a pre-trained language model was shown to
boost performance on a wide variety of NLP tasks.
ELMo represents each word using a task-specific
weighted sum of the language model’s hidden lay-
ers, i.e. rather than use only the top layer, it selects
which of the language model’s internal layers con-
tain the most relevant information for the task at
hand. Our results confirm that, in general, differ-
ent types of information manifest at different lay-
ers, suggesting that post-hoc layer selection can be
beneficial.

Language models learn some syntax. We com-
pare the performance of language model represen-
tations to those learned with dependency parsing
supervision, in order to gauge the amount of syn-
tax induced. While this comparison is not ideal
(the models were trained with slightly different
architectures and hyperparameters), it does pro-
vide evidence that the language model’s repre-
sentations encode some amount of syntax implic-
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Figure 3: Comparison between the LM and de-
pendency parser on the parent (blue), grandparent
(yellow), and great-grandparent (red) constituent
prediction tasks.

itly. Specifically, we observe in Figure 3 that the
language model and dependency parser perform
nearly identically on the three constituent predic-
tion tasks in the second layer of their respective
networks. In deeper layers the parser continues to
improve, while the language model peaks at layer
2 and drops off afterwards.

These results may be surprising given the find-
ings of Linzen et al. (2016), which found that
RNNs trained on language modeling perform be-
low baseline levels on the task of subject-verb
agreement. However, the more recent investiga-
tion by Gulordava et al. (2018) are in line with our
results. They find that language models trained
on a number of different languages assign higher
probabilities to valid long-distance dependencies
than to incorrect ones. Therefore, LMs seem able
to induce syntactic information despite being pro-
vided with no linguistic annotation.

4 Dependency Arc Prediction

We run an additional experiment that seeks to clar-
ify if the representations learned by deep NLP
models capture information about syntactic struc-
ture. Using the internal representations from a
deep RNN, we train a classifier to predict whether
two words share an dependency arc (have a parent-
child relationship) in the in the dependency parse
tree over a sentence. We find that, similarly to the
previous set of tasks, deep RNNs trained on var-
ious linguistic signals encode notions of the syn-
tactic relationships between words in a sentence.



Source Model GloVe L0 L1 L2 L3 L4
DP 0.50 0.68 0.77 0.81 0.88 0.95
SRL 0.50 058 069 076 0.79 0.74
MT 0.50 0.61 073 063 063 0.63
LM 0.50 0.62 074 078 0.80 0.73

Table 2: Results of the dependency arc prediction task. LO-L4 denote the different layers of the model.
DP refers to the RNN trained with dependency parsing supervision.

Setup We use the same pretrained deep RNNs
and feed-forward prediction network paradigm.
However, we change the input from the previous
experiments, as this task is not at the word-level,
but rather concerns the relationship between two
words; therefore, given a word pair w., w, for
which we have a dependency arc label, we input
[we; wp; we 0 wp) into the classifier.

We use the Universal Dependencies dataset for
this task, such that we train each classifier on the
development set of this dataset and evaluate on the
test set. We set up the task by generating two pairs
of examples for each word in the UD dataset: a
positive pair that consists of the word and its par-
ent in the dependency tree, and a negative pair that
matches the word with another randomly chosen
word from the sentence.

Results The results for this prediction task are
given in Table 2. We see the best performance
from the dependency parser, finding that the per-
formance for the dependency parser’s representa-
tions continue to improve in the deepest layers,
with a maximum performance of approximately
95% on the last layer. This result is unsurpris-
ing, as this closely related to the task on which
the model was explicitly trained. In the three other
models, we find peaks that occur 12 to 20 accuracy
points above the input layer’s performance. These
results support the findings from the constituency
label prediction task and show that these findings
hold up across syntactic formalisms.

Similarly to the word-level tasks, we see the
best performance from deeper layers in the mod-
els, with both SRL and LM performance peaking
on the third layer. For the LM, we find that the best
performing layer outperforms the initial layer by
18%. This is consistent with our finding in the pre-
vious set of experiments, that RNNs encode sig-
nificant amounts of syntax information even when
trained on linguistic tasks without any explicit an-
notations.

18

5 Conclusions

In this paper, we run a series of prediction tasks
on the internal representations of deep NLP mod-
els, and find these RNNs are able to induce syn-
tax without explicit linguistic supervision. We also
observe that the representations taken from deeper
layers of the RNNs perform better on higher-level
syntax tasks than those from shallower layers, sug-
gesting that these recurrent models induce a soft
hierarchy over the encoded syntax. These results
provide some insight as to why deep RNNs are
able to model NLP tasks without annotated lin-
guistic features. Further characterizing the exact
aspects of syntax which these models can capture
(and perhaps more importantly, those they cannot)
is an interesting area for future work.
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Abstract

Measuring the performance of automatic
speech recognition (ASR) systems re-
quires manually transcribed data in order
to compute the word error rate (WER),
which is often time-consuming and expen-
sive. In this paper, we propose a novel
approach to estimate WER, or e-WER,
which does not require a gold-standard
transcription of the test set. Our e-WER
framework uses a comprehensive set of
features: ASR recognised text, character
recognition results to complement recog-
nition output, and internal decoder fea-
tures. We report results for the two fea-
tures; black-box and glass-box using un-
seen 24 Arabic broadcast programs. Our
system achieves 16.9% WER root mean
squared error (RMSE) across 1,400 sen-
tences. The estimated overall WER e-
WER was 25.3% for the three hours test
set, while the actual WER was 28.5%.

1 Introduction

Automatic Speech Recognition (ASR) has made
rapid progress in recent years, primarily due to
advances in deep learning and powerful comput-
ing platforms. As a result, the quality of ASR has
improved dramatically, leading to various appli-
cations, such as speech-to-speech translation, per-
sonal assistants, and broadcast media monitoring.
Despite this progress, ASR performance is still
closely tied to how well the acoustic model (AM)
and language model (LM) training data matches
the test conditions. Thus, it is important to be able
to estimate the accuracy of an ASR system in a
particular target environment.

Word Error Rate (WER) is the standard ap-
proach to evaluate the performance of a large vo-
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cabulary continuous speech recognition (LVCSR)
system. The word sequence hypothesised by the
ASR system is aligned with a reference transcrip-
tion, and the number of errors is computed as the
sum of substitutions (.5), insertions (/), and dele-
tions (D). If there are N total words in the refer-
ence transcription, then the word error rate WER
is computed as follows:

I+D+S

WER = x 100. (1)

To obtain a reliable estimate of the WER, at
least two hours of test data are required for a
typical LVCSR system. In order to perform the
alignment, the test data needs to be manually tran-
scribed at the word level — a time-consuming and
expensive process. It is, thus, of interest to de-
velop techniques which can estimate the quality
of an automatically generated transcription with-
out requiring a gold-standard reference.

Such quality estimation techniques have been
extensively investigated for machine translation
(Specia et al., 2013), with extensions to spoken
language translation (Ng et al., 2015, 2016). Al-
though there is a long history of exploring word-
level confidence measures for speech recognition
(Evermann and Woodland, 2000; Cox and Das-
mahapatra, 2002; Jiang, 2005; Seigel et al., 2011;
Huang et al., 2013), there has been less work on
the direct estimation of speech recognition errors.

Seigel and Woodland (2014) studied the detec-
tion of deletions in ASR output using a condi-
tional random field (CRF) sequence model to de-
tect one or more deleted word regions in ASR
output. Ghannay et al. (2015) used word embed-
dings to build a confidence classifier which labeled
each word in the recognised word sequence with
an error or a correct label. Tam et al. (2014) in-
vestigated the use of a recurrent neural network
(RNN) language model (LM) with complementary
deep neural network (DNN) and Gaussian Mix-
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ture Model (GMM) acoustic models in order to
identify ASR errors, based on the assumption that
when two ASR systems disagree on an utterance
region, then it is most likely an error.

Ogawa and Hori (2015) investigated using
deep bidirectional recurrent neural networks
(DBRNNps) to detect errors in ASR results. They
explored four tasks for ASR error detection and
recognition rate estimation: confidence estima-
tion, out-of-vocabulary (OOV) word detection, er-
ror type classification, and recognition rate esti-
mation. In an extension to this work, Ogawa et al.
(2016); Ogawa and Hori (2017) investigated the
estimation of speech recognition accuracy based
on the classification of error types, in which se-
quence classification was performed by a CRF.
Each word in a hypothesised word sequence was
classified into one of three categories: correct,
substitution error, or insertion error. Their study
did not estimate the presence of deletions, and
consequently cannot estimate the WER.

Jalalvand et al. (2016) developed a tool for ASR
quality estimation, TranscRater, which is capable
of predicting WER per utterance. This approach
is based on a large set of extracted features (which
do not require internal access to the ASR sys-
tem) used to train a regression model (e.g., ex-
tremely randomised trees), and can also rank dif-
ferent transcriptions from multiple sources (Negri
et al., 2014; de Souza et al., 2015; Jalalvand and
Falavigna, 2015; Jalalvand et al., 2015a,b). Tran-
scRater provides a WER per utterance, reporting
the results as the MAE with respect to a refer-
ence transcription. This work did not report WER
estimates for complete recordings or test sets, al-
though it is possible that this could be done using
utterance length estimates.

In this paper, we build on these contributions to
develop a system to directly estimate the WER of
an ASR output hypothesis. Our contributions are:
(i) anovel approach to estimate WER per sentence
and to aggregate them to provide WER estimation
per recording or for a whole test set; (ii) an eval-
uation of our approach which compares the use of
“black-box” features (without ASR decoder infor-
mation) and “glass-box” features which use inter-
nal information from the decoder; and (iii) a re-
lease of the code and the data used for this paper
for further research’.

"https://github.com/qcri/e-wer
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2 e-WER Framework

Estimating the probability of error of each word
in a recognised word sequence has been success-
fully used to detect insertions, substitutions, and
interword deletions (Ogawa et al., 2016; Ogawa
and Hori, 2015; Ghannay et al., 2015; Jalalvand
and Falavigna, 2015; Seigel and Woodland, 2014).
However, these local estimates do not provide an
estimate of the overall pattern of error, such as the
total number of deletions in an utterance.

In our framework, we use two speech recogni-
tion systems; a word-based LVCSR system and
a grapheme-sequence based system. Following
Tam et al. (2014), we assume that when two cor-
responding ASR systems disagree on a sentence
or part of a sentence, there is a pattern of error
to be learned. Our architecture also benefits from
utterance-based LVCSR decoder features includ-
ing the total number of frames, the average log
likelihood and the duration. Intuitively, we corre-
late short sentences with less context and assume
that LM scoring will not be able to capture long
context. Therefore, e-WER is defined as follows:

ERR

e-WER = —— x 100%
N

2

Our model is required to predict two values for
each utterance: ERR and N. Given that each is
integer-valued, we decided to frame their estima-
tion as a classification task rather than a regression
problem as shown in equations 3 and 4. Each class
represents a specific word count. We limit the to-
tal number of classes to a maximum of C' in ERR,
with range from 0 to C. However, the total num-
ber of classes for N is C' — K to avoid estimating
an utterance length of zero, with a range from K
to C. If an utterance has more than C' words or
less than K words, it will thus be penalised by the
loss function,

ERR = arg max P(cj|x1, 22, ...,2n)  (3)
C]‘EC
N = argmax P(kj|z1, 2, ..., Tp) 4)

kj eC-K

Table 1 shows that fewer than 5% of the sentences
have more than 20 words, and it is very unlikely
to have an utterance with fewer than 2 words. We
trained our system with C' = 20 and K = 2. Since
our approach predicts ERR and N for each sen-
tence, it is possible to aggregate each of the two



values across the entire test set in order to estimate
the overall WER, as shown in section 3.

2.1 e-WER features

To estimate e-WER, we combine features from the
word-based LVCSR system with features from the
grapheme-based system. By running both word-
based and character-based ASR systems, we are
able to align their outputs against each other.
We split the studied features into four groups

e [: lexical features — the word sequence ex-
tracted from the LVCSR.

e G: grapheme features — character sequence
extracted from the grapheme recognition.

e N: numerical features — basic features about
the speech signal, as well as grapheme align-
ment error details.

e D: decoder features — total frame count, aver-
age log-likelihood, total acoustic model like-
lihood and total language model likelihood.

Similar to previous research in ASR quality esti-
mation, we refer to {L,G,N} as the black-box fea-
tures, and {L,G,N,D} as the glass-box features,
which are used to estimate the total number of
words N , and the total number of errors ERR in
a given sentence.

2.2 Classification Back-end

We deployed a feed-forward neural network as a
backend classifier for e-WER. The deployed net-
work in this work has two fully-connected hidden
layers (ReLU activation function), with 128 neu-
rons in the first layer and 64 neurons in the second
layer followed by a softmax layer. A minibatch
size of 32 was used, and the number of epochs was
up to 50 with an early stopping criterion.

2.3 Data

The e-WER training and development data sets are
the same as the Arabic MGB-2 development and
evaluation sets (Ali et al., 2016; Khurana and Ali,
2016), which is comprised of audio extracted from
Al-Jazeera Arabic TV programs recorded in the
last months of 2015. To test whether our approach
generalises to test sets from a different source, and
not tuned to the MGB-2 data set, we validated our
results on three hours test set collected by BBC
Monitoring during November 2016, as part of the
SUMMA project?.

http://summa-project.eu
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Train | Dev Test
Number of programs in corpus | 17 17 24
Utterances 58K 56K 1.4K
Duration (in hours) 9.9 10.2 3.2
2-20 words sentences 96% 95% 96%
Word count (N) 75K 69K 20K
ASR word count (hyp) 58K 60K 18K
WER 42.6% | 33.1% | 28.5%
Total INS 1.9K 1.8K 130
Total DEL 19.1K | 10.2K | 2.6K
Total SUB 11.1K | 10.8K | 29K
ERR count (FRR) 32.1K | 22.8K | 5.7K

Table 1: Analysis of the train, dev and test data.

MAE/Dev MAE/Test
ERR N eWER | ERR N eWER
glass-box | 1.6 1.8 13.8 1.7 1.7 123
black-box | 1.8 22 284 1.9 23 247

Table 2: MAE per sentence reported for the glass-
box and black-box features.

3 Experiments and discussions

We trained two DNN systems to estimate N and
ERR separately. We explored training both a
black-box based DNN system (without the de-
coder features) and a glass-box system using the
decoder features. Overall, four systems were
trained: two glass-box systems and two black-
box systems. We used the same hyper-parameters
across the four systems. Tables 2 and 3 present the
e-WER performance in terms of the mean absolute
error (MAE) and root mean squared error (RMSE)
per sentence for ERR, N and the estimated WER
for the dev and test sets with reference to the errors
computed using a gold-standard reference. As ex-
pected, the glass-box features help to reduce MAE
and RMSE for both ERR and N. Although the dif-
ference between the black-box estimation and the
glass-box results is not big for ERR and N, we can
see that the impact becomes substantial on the esti-
mated WER per sentence, which is almost double
the error in both MAE and RMSE per sentence.

Table 4 reports the overall performance on the
dev and on the test set. Across the 17 programs in
the MGB-2 dev data, the actual WER is 33.1%,
and the glass-box e-WER is 29.3%, while the
black-box e-WER is 30.9%. Evaluating the same
models on the 24 programs in the test data set re-
sults in an actual WER of 28.5%, while the glass-
box e-WER is 25.3%, and the black-box e-WER
is 30.3%.

Tables 2 and 3 show the glass-box features
outperformed the black-box features in predicting
both ERR and N. Furthermore, the performance



RMSE/Dev RMSE/Test
ERR N e-WER|ERR N e-WER
glassbox | 22 21 183 | 23 22 169
black-box | 24 27 361 | 26 29 350

Table 3: RMSE per sentence reported for the
glass-box and the black-box features.

Actual/estimated WER
Data | Reference | glass-box | black-box
Dev 33.1% 29.3% 30.9%
Test 28.5% 25.3% 30.3%

Table 4: Overall WER across the dev and the test
data set.

of the estimated WER per sentence in the glass-
box is substantially better than the black-box for
both development and test sets. Table 4 indicates
that the glass-box estimate is systematically lower
than the black-box estimate. To further visualise
these results, figure 1 plots the cumulative WER
and e-WER across the three hours test set. This
plot indicates that the glass-box estimate is con-
tinually lower than the black-box estimate. The
large difference during the first 30 minutes arises
owing the glass-box system is capable of better es-
timation with less data compared to the black-box
system.

We estimate N and ERR separately. There-
fore, our system is capable of estimating the WER
at different levels of granularity. We visualise
the prediction per program. In scenarios such as
media-monitoring, where the main objective is to
have a robust monitoring system for specific pro-
grams, we plot the WER across the 24 programs
in the test set, and we can see in figure 2 that
both the glass-box and black-box estimation are
following the gold-standard WER per program.
However, unlike predicting word count N or error
count ERR, we can see that the black-box, in gen-
eral, over-estimates the WER, while the glass-box
system under-estimates WER similar to figure 1.
One can argue from figure 2 that the decoder fea-
tures are not helping in programs with high WER.
We found both systems to be useful for reporting
WER per program.

4 Conclusions

This paper presents our efforts in predicting
speech recognition word error rate without requir-
ing a gold-standard reference transcription. We
presented a DNN based classifier to predict the
total number of errors per utterance and the to-
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Figure 1: Test set cumulative WER over all sen-
tences (X-axis is duration in hours and Y-axis is
WER in %).
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Figure 2: WER estimated over 24 programs on the
test data.

tal word count separately. Our approach benefits
from combining word-based and grapheme-based
ASR results for the same sentence, along with ex-
tracted decoder features. We evaluated our ap-
proach per sentences and per program. Our ex-
periments have shown that this approach is highly
promising to estimate WER per sentence and we
have aggregated the estimated results to predict
WER for complete recordings, programs or test
sets without the need for a reference transcription.
For our future work, we shall continue our investi-
gation into approaches that can estimate the word
error rate using convolutional neural networks. In
particular, we would like to explore combining the
DNN numerical features with the CNN word em-
bedding features.



References

Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui,
Hamdy Mubarak, Steve Renals, and Yifan Zhang.
2016. The MGB-2 challenge: Arabic multi-dialect
broadcast media recognition. In Proc IEEE SLT.

Stephen Cox and Srinandan Dasmahapatra. 2002.
High-level approaches to confidence estimation in
speech recognition. [EEE Transactions on Speech
and Audio processing 10(7):460-471.

José GC de Souza, Hamed Zamani, Matteo Negri,
Marco Turchi, and Daniele Falavigna. 2015. Mul-
titask learning for adaptive quality estimation of au-
tomatically transcribed utterances. In HLT-NAACL.
pages 714-724.

Gunnar Evermann and PC Woodland. 2000. Poste-
rior probability decoding, confidence estimation and
system combination. In Proc. Speech Transcription
Workshop. Baltimore, volume 27, page 78.

Sahar Ghannay, Yannick Esteve, and Nathalie Camelin.
2015. Word embeddings combination and neu-
ral networks for robustness in asr error detection.
In Signal Processing Conference (EUSIPCO), 2015
23rd European. IEEE, pages 1671-1675.

Po-Sen Huang, Kshitiz Kumar, Chaojun Liu, Yifan
Gong, and Li Deng. 2013. Predicting speech recog-
nition confidence using deep learning with word
identity and score features. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE Inter-
national Conference on. IEEE, pages 7413-7417.

Shahab Jalalvand and Daniele Falavigna. 2015.
Stacked auto-encoder for ASR error detection and
word error rate prediction. In Interspeech.

Shahab Jalalvand, Daniele Falavigna, Marco Matas-
soni, Piergiorgio Svaizer, and Maurizio Omologo.
2015a. Boosted acoustic model learning and hy-
potheses rescoring on the chime-3 task. In Au-
tomatic Speech Recognition and Understanding
(ASRU), 2015 IEEE Workshop on. IEEE, pages 409—
415.

Shahab Jalalvand, Matteo Negri, Falavigna Daniele,
and Marco Turchi. 2015b. Driving rover with
segment-based asr quality estimation. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). volume 1, pages
1095-1105.

Shahab Jalalvand, Matteo Negri, Marco Turchi,
José GC de Souza, Daniele Falavigna, and Mo-
hammed RH Qwaider. 2016. Transcrater: a tool
for automatic speech recognition quality estimation.
ACL 2016 page 43.

Hui Jiang. 2005. Confidence measures for speech
recognition: A survey. Speech Communication
45(4):455-470.

24

Sameer Khurana and Ahmed Ali. 2016. QCRI ad-
vanced transcription system (QATS) for the Arabic
Multi-Dialect Broadcast Media Recognition: MGB-
2 Challenge. In SLT.

Matteo Negri, Marco Turchi, José GC de Souza, and
Daniele Falavigna. 2014. Quality estimation for
automatic speech recognition. In COLING. pages
1813-1823.

Raymond WM Ng, Kashif Shah, Lucia Specia, and
Thomas Hain. 2015. A study on the stability and ef-
fectiveness of features in quality estimation for spo-
ken language translation. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

Raymond WM Ng, Kashif Shah, Lucia Specia, and
Thomas Hain. 2016. Groupwise learning for asr
k-best list reranking in spoken language transla-
tion. In Acoustics, Speech and Signal Processing
(ICASSP), 2016 IEEE International Conference on.
IEEE, pages 6120-6124.

Atsunori Ogawa and Takaaki Hori. 2015. Asr error de-
tection and recognition rate estimation using deep
bidirectional recurrent neural networks. In ICASSP.

Atsunori Ogawa and Takaaki Hori. 2017. Error de-
tection and accuracy estimation in automatic speech
recognition using deep bidirectional recurrent neural
networks. Speech Communication 89:70-83.

Atsunori Ogawa, Takaaki Hori, and Atsushi Nakamura.
2016. Estimating speech recognition accuracy based
on error type classification. [EEE/ACM Transac-
tions on Audio, Speech, and Language Processing
24(12):2400-2413.

Matthew Stephen Seigel and Philip C Woodland. 2014.
Detecting deletions in asr output. In /CASSP. IEEE,
pages 2302-2306.

Matthew Stephen Seigel, Philip C Woodland, et al.
2011. Combining information sources for confi-

dence estimation with crf models. In Interspeech.
pages 905-908.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst — a translation quality
estimation framework. In ACL: System Demonstra-
tions. pages 79-84.

Yik-Cheung Tam, Yun Lei, Jing Zheng, and Wen
Wang. 2014. Asr error detection using recurrent
neural network language model and complementary
asr. In ICASSP. IEEE, pages 2312-2316.



Towards Robust and Privacy-preserving Text Representations

Yitong Li Timothy Baldwin Trevor Cohn
School of Computing and Information Systems
The University of Melbourne, Australia
yitongl4@student.unimelb.edu.au
{tbaldwin, tcohn}@unimelb.edu.au

Abstract

Written text often provides sufficient clues
to identify the author, their gender, age,
and other important attributes. Conse-
quently, the authorship of training and
evaluation corpora can have unforeseen
impacts, including differing model perfor-
mance for different user groups, as well
as privacy implications. In this paper, we
propose an approach to explicitly obscure
important author characteristics at train-
ing time, such that representations learned
are invariant to these attributes. Evaluat-
ing on two tasks, we show that this leads
to increased privacy in the learned repre-
sentations, as well as more robust models
to varying evaluation conditions, includ-
ing out-of-domain corpora.

1 Introduction

Language is highly diverse, and differs accord-
ing to author, their background, and personal at-
tributes such as gender, age, education and na-
tionality. This variation can have a substantial
effect on NLP models learned from text (Hovy
et al., 2015), leading to significant variation in in-
ferences across different types of corpora, such
as the author’s native language, gender and age.
Training corpora are never truly representative,
and therefore models fit to these datasets are bi-
ased in the sense that they are much more effec-
tive for texts from certain groups of user, e.g.,
middle-aged white men, and considerably poorer
for other parts of the population (Hovy, 2015).
Moreover, models fit to language corpora often
fixate on author attributes which correlate with the
target variable, e.g., gender correlating with class
skews (Zhao et al., 2017), or translation choices
(Rabinovich et al., 2017). This signal, however,
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is rarely fundamental to the task of modelling lan-
guage, and is better considered as a confounding
influence. These auxiliary learning signals can
mean the models do not adequately capture the
core linguistic problem. In such situations, remov-
ing these confounds should give better generali-
sation, especially for out-of-domain evaluation, a
similar motivation to research in domain adapta-
tion based on selection biases over text domains
(Blitzer et al., 2007; Daumé III, 2007).

Another related problem is privacy: texts con-
vey information about their author, often inadver-
tently, and many individuals may wish to keep
this information private. Consider the case of the
AOL search data leak, in which AOL released de-
tailed search logs of many of their users in Au-
gust 2006 (Pass et al., 2006). Although they de-
identified users in the data, the log itself contained
sufficient personally identifiable information that
allowed many of these individuals to be identi-
fed (Jones et al., 2007). Other sources of user
text, such as emails, SMS messages and social me-
dia posts, would likely pose similar privacy issues.
This raises the question of how the corpora, or
models built thereupon, can be distributed without
exposing this sensitive data. This is the problem
of differential privacy, which is more typically ap-
plied to structured data, and often involves data
masking, addition or noise, or other forms of cor-
ruption, such that formal bounds can be stated in
terms of the likelihood of reconstructing the pro-
tected components of the dataset (Dwork, 2008).
This often comes at the cost of an accuracy re-
duction for models trained on the corrupted data
(Shokri and Shmatikov, 2015; Abadi et al., 2016).

Another related setting is where latent repre-
sentations of the data are shared, rather than the
text itself, which might occur when sending data
from a phone to the cloud for processing, or trust-
ing a third party with sensitive emails for NLP
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processing, such as grammar correction or trans-
lation. The transfered representations may still
contain sensitive information, however, especially
if an adversary has preliminary knowledge of the
training model, in which case they can readily re-
verse engineer the input, for example, by a GAN
attack algorithm (Hitaj et al., 2017). This is true
even when differential privacy mechanisms have
been applied.

Inspired by the above works, and recent suc-
cesses of adversarial learning (Goodfellow et al.,
2014; Ganin et al., 2016), we propose a novel ap-
proach for privacy-preserving learning of unbiased
representations.!  Specially, we employ Ganin
et al.’s approach to training deep models with ad-
versarial learning, to explicitly obscure individu-
als’ private information. Thereby the learned (hid-
den) representations of the data can be transferred
without compromising the authors’ privacy, while
still supporting high-quality NLP inference. We
evaluate on the tasks of POS-tagging and senti-
ment analysis, protecting several demographic at-
tributes — gender, age, and location — and show
empirically that doing so does not hurt accuracy,
but instead can lead to substantial gains, most no-
tably in out-of-domain evaluation. Compared to
differential privacy, we report gains rather than
loss in performance, but note that we provide only
empirical improvements in privacy, without any
formal guarantees.

2 Methodology

We consider a standard supervised learning situ-
ation, in which inputs x are used to compute a
representation h, which then forms the parameter-
isation of a generalised linear model, used to pre-
dict the target y. Training proceeds by minimising
a differentiable loss, e.g., cross entropy, between
predictions and the ground truth, in order to learn
an estimate of the model parameters, denoted 6.

Overfitting is a common problem, particular in
deep learning models with large numbers of pa-
rameters, whereby h learns to capture specifics
of the training instances which do not generalise
to unseen data. Some types of overfitting are in-
sidious, and cannot be adequately addressed with
standard techniques like dropout or regularisation.
Consider, for example, the authorship of each sen-

1Implernentation available at https://github.
com/lrank/Robust_and_Privacy_preserving_
Text_Representations.
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Figure 1: Proposed model architectures, showing
a single training instance (x;,y;) with two pro-
tected attributes, b; and b;. D indicates a discrim-
inator, and the and blue lines denote
adversarial and standard loss, respectively.

tence in the training set in a sentiment prediction
task. Knowing the author, and their general dispo-
sition, will likely provide strong clues about their
sentiment wrt any sentence. Moreover, given the
ease of authorship attribution, a powerful learning
model might learn to detect the author from their
text, and use this to predict the sentiment, rather
than basing the decision on the semantics of each
sentence. This might be the most efficient use of
model capacity if there are many sentences by this
individual in the training dataset, yet will lead to
poor generalisation to test data authored by unseen
individuals.

Moreover, this raises privacy issues when h
is known by an attacker or malicious adversary.
Traditional privacy-preserving methods, such as
added noise or masking, applied to the representa-
tion will often incur a cost in terms of a reduction
in task performance. Differential privacy methods
are unable to protect the user privacy of h under
adversarial attacks, as described in Section 1.

Therefore, we consider how to learn an un-
biased representations of the data with respect to
specific attributes which we expect to behave as
confounds in a generalisation setting. To do so, we
take inspiration from adversarial learning (Good-
fellow et al., 2014; Ganin et al., 2016). The archi-
tecture is illustrated in Figure 1.

2.1 Adversarial Learning

A key idea of adversarial learning, following
Ganin et al. (2016), is to learn a discriminator
model D jointly with learning the standard super-
vised model. Using gender as an example, a dis-
criminator will attempt to predict the gender, b, of
each instance from h, such that training involves
joint learning of both the model parameters, 0/,
and the discriminator parameters 6p. However,



the aim of learning for these components are in
opposition — we seek a h which leads to a good
predictor of the target y, while being a poor rep-
resentation for prediction of gender. This leads to
the objective (illustrated for a single training in-
stance),

0 = min max X(y(x; QM)aY)
Orm  Op

R (D
— A X(b(x;0p),b),

where X denotes the cross entropy function. The
negative sign of the second term, referred to as the
adversarial loss, can be implemented by a gradi-
ent reversal layer during backpropagation (Ganin
et al., 2016). To elaborate, training is based on
standard gradient backpropagation for learning the
main task, but for the auxiliary task, we start with
standard loss backpropagation, however gradients
are reversed in sign when they reach h. Conse-
quently the linear output components are trained
to be good predictors, but h is trained to be maxi-
mally good for the main task and maximally poor
for the auxiliary task.

Furthermore, Equation 1 can be expanded to
scenarios with several (/V) protected attributes,

0 = rg]gl {gr;zﬁ\{;l X(y(x;00m),y) 2)
N ~
— Z <)\z . X(b(X; HDi), bz)) .
=1

3 Experiments

In this section, we report experimental results
for our methods with two very different language
tasks.

3.1 POS-tagging

This first task is part-of-speech (POS) tagging,
framed as a sequence tagging problem. Recent
demographic studies have found that the author’s
gender, age and race can influence tagger perfor-
mance (Hovy and Sggaard, 2015; Jgrgensen et al.,
2016). Therefore, we use the POS tagging to
demonstrate that our model is capable of elimi-
nating this type of bias, thereby leading to more
robust models of the problem.

Model Our model is a bi-directional LSTM for
POS tag prediction (Hochreiter and Schmidhuber,
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1997), formulated as:

hi = LSTM(X“ hi—l; Qh)
h] = LSTM(x;, h}, ;6})
Vi~ Categorical(gb([hi; hﬂ ); 0)

for input sequence x;|_; with terminal hidden
states hg and h], | ; set to zero, where ¢ is a linear
transformation, and [-; -] denotes vector concatena-
tion.

For the adversarial learning, we use the train-
ing objective from Equation 2 to protect gender
and age, both of which are treated as binary val-
ues. The adversarial component is parameterised
by 1-hidden feedforward nets, applied to the final
hidden representation [h,,; hj]. For hyperparame-
ters, we fix the size of the word embeddings and
h to 300, and set all X values to 1073, A dropout
rate of 0.5 is applied to all hidden layers during
training.

Data We use the TrustPilot English POS tagged
dataset (Hovy and S@gaard, 2015), which consists
of 600 sentences, each labelled with both the sex
and age of the author, and manually POS tagged
based on the Google Universal POS tagset (Petrov
et al., 2012). For the purposes of this paper, we
follow Hovy and Sggaard’s setup, categorising
SEX into female (F) and male (M), and AGE into
over-45 (0O45) and under-35 (U35). We train the
taggers both with and without the adversarial loss,
denoted ADV and BASELINE, respectively.

For evaluation, we perform a 10-fold cross val-
idation, with a train:dev:test split using ratios of
8:1:1. We also follow the evaluation method in
Hovy and Sggaard (2015), by reporting the tag-
ging accuracy for sentences over different slices of
the data based on SEX and AGE, and the absolute
difference between the two settings.

Considering the tiny quantity of text in the
TrustPilot corpus, we use the Web English Tree-
bank (WebEng: Bies et al. (2012)), as a means
of pre-training the tagging model. WebEng was
chosen to be as similar as possible in domain to
the TrustPilot data, in that the corpus includes
unedited user generated internet content.

As a second evaluation set, we use a corpus
of African-American Vernacular English (AAVE)
from Jgrgensen et al. (2016), which is used purely
for held-out evaluation. AAVE consists of three
very heterogeneous domains: LYRICS, SUBTI-
TLES and TWEETS. Considering the substantial



SEX AGE
F M A 045 U35 A

BASELINE 90.9 91.1 0.2 914 89.9 1.5

ADV 92.2 92.1 0.1 92.3 92.0 0.3

Table 1: POS prediction accuracy [%] using the
Trustpilot test set, stratified by SEX and AGE
(higher is better), and the absolute difference (A)
within each bias group (smaller is better). The best
result is indicated in bold.

difference between this corpus and WebEng or
TrustPilot, and the lack of any domain adaptation,
we expect a substantial drop in performance when
transferring models, but also expect a larger im-
pact from bias removal using ADV training.

Results and analysis Table 1 shows the results
for the TrustPilot dataset. Observe that the dispar-
ity for the BASELINE tagger accuracy (the A col-
umn), for AGE is larger than for SEX, consistent
with the results of Hovy and Sggaard (2015). Our
ADV method leads to a sizeable reduction in the
difference in accuracy across both SEX and AGE,
showing our model is capturing the bias signal less
and more robust to the tagging task. Moreover, our
method leads to a substantial improvement in ac-
curacy across all the test cases. We speculate that
this is a consequence of the regularising effect of
the adversarial loss, leading to a better characteri-
sation of the tagging problem.

Table 2 shows the results for the AAVE held-
out domain. Note that we do not have annotations
for SEX or AGE, and thus we only report the over-
all accuracy on this dataset. Note that ADV also
significantly outperforms the BASELINE across the
three heldout domains.

Combined, these results demonstrate that our
model can learn relatively gender and age de-
biased representations, while simultaneously im-
proving the predictive performance, both for in-
domain and out-of-domain evaluation scenarios.

3.2 Sentiment Analysis

The second task we use is sentiment analysis,
which also has broad applications to the online
community, as well as privacy implications for the
authors whose text is used to train our models.
Many user attributes have been shown to be eas-
ily detectable from online review data, as used ex-
tensively in sentiment analysis results (Hovy et al.,
2015; Potthast et al., 2017). In this paper, we fo-
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LYRICS SUBTITLES TWEETS Average
BASELINE 73.7 81.4 59.9 71.7
ADV 80.5 85.8 65.4 77.0

Table 2: POS predictive accuracy [%] over the
AAVE dataset, stratified over the three domains,
alongside the macro-average accuracy. The best
result is indicated in bold.

cus on three demographic variables of gender, age,
and location.

Model Sentiment is framed as a 5-class text
classification problem, which we model using
Kim (2014)’s convolutional neural net (CNN) ar-
chitecture, in which the hidden representation is
generated by a series of convolutional filters fol-
lowed a maxpooling step, simply denote as h =
CNN(x; 05r). We follow the hyper-parameter set-
tings of Kim (2014), and initialise the model with
word2vec embeddings (Mikolov et al., 2013). We
set the \ values to 102 and apply a dropout rate
of 0.5 to h.

As the discriminator, we also use a feed-forward
model with one hidden layer, to predict the pri-
vate attribute(s). We compare models trained with
zero, one, or all three private attributes, denoted
BASELINE, ADV-*, and ADV-all, respectively.

Data We again use the TrustPilot dataset de-
rived from Hovy et al. (2015), however now we
consider the RATING score as the target variable,
not POS-tag. Each review is associated with three
further attributes: gender (SEX), age (AGE), and
location (LOC). To ensure that LOC cannot be triv-
ially predicted based on the script, we discard all
non-English reviews based on LANGID.PY (Lui
and Baldwin, 2012), by retaining only reviews
classified as English with a confidence greater than
0.9. We then subsample 10k reviews for each lo-
cation to balance the five location classes (US,
UK, Germany, Denmark, and France), which were
highly skewed in the original dataset. We use the
same binary representation of SEX and AGE as
the POS task, following the setup in Hovy et al.
(2015).

To evaluate the different models, we perform
10-fold cross validation and report test perfor-
mance in terms of the Fj score for the RATING
task, and the accuracy of each discriminator. Note
that the discriminator can be applied to test data,
where it plays the role of an adversarial attacker,
by trying to determine the private attributes of



Fi Discrim. [%]

dev tess AGE SEX LOC
Majority class 57.8  62.3 20.0
BASELINE 41.9 40.1 653 66.9 534
ADV-AGE 42.7 40.1 61.1 65.6 41.0
ADV-SEX 424  39.9 61.8 629 427
ADV-LOC 42.0 40.2 62.2 66.8 22.1
ADV-all 42.0 40.2 61.8 62.5 28.1

Table 3: Sentiment F}-score [%] over the RAT-
ING task, and accuracy [%] of all the discriminator
across three private attributes. The best score is in-
dicated in bold. The majority class with respect to
each private attribute is also reported.

users based on their hidden representation. That
is, lower discriminator performance indicates that
the representation conveys better privacy for indi-
viduals, and vice versa.

Results Table 3 shows the results of the differ-
ent models. Note that all the privacy attributes can
be easily detected in BASELINE, with results that
are substantially higher than the majority class, al-
though AGE and SEX are less well captured than
LOC. The ADV trained models all maintain the
task performance of the BASELINE method, how-
ever they clearly have a substantial effect on the
discrimination accuracy. The privacy of SEX and
LOC is substantially improved, leading to dis-
criminators with performance close to that of the
majority class (conveys little information). AGE
proves harder, although our technique leads to pri-
vacy improvements. Note that AGE appears to be
related to the other private attributes, in that pri-
vacy is improved when optimising an adversarial
loss for the other attributes (SEX and LOC).

Overall, these results show that our approach
learns hidden representations that hide much of
the personal information of users, without affect-
ing the sentiment task performance. This is a sur-
prising finding, which augurs well for the use of
deep learning as a privacy preserving mechanism
when handling text corpora.

4 Conclusion

We proposed a novel method for removing model
biases by explicitly protecting private author at-
tributes as part of model training, which we formu-
late as deep learning with adversarial learning. We
evaluate our methods with POS tagging and senti-
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ment classification, demonstrating our method re-
sults in increased privacy, while also maintaining,
or even improving, task performance, through in-
creased model robustness.
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Abstract

We propose an efficient method to gen-
erate white-box adversarial examples to
trick a character-level neural classifier. We
find that only a few manipulations are
needed to greatly decrease the accuracy.
Our method relies on an atomic flip op-
eration, which swaps one token for an-
other, based on the gradients of the one-
hot input vectors. Due to efficiency of our
method, we can perform adversarial train-
ing which makes the model more robust
to attacks at test time. With the use of a
few semantics-preserving constraints, we
demonstrate that HotFlip can be adapted
to attack a word-level classifier as well.

1 Introduction

Adversarial examples are inputs to a predictive
machine learning model that are maliciously de-
signed to cause poor performance (Goodfellow
et al., 2015). Adversarial examples expose re-
gions of the input space where the model performs
poorly, which can aid in understanding and im-
proving the model. By using these examples as
training data, adversarial training learns models
that are more robust, and may even perform bet-
ter on non-adversarial examples. Interest in under-
standing vulnerabilities of NLP systems is grow-
ing (Jia and Liang, 2017; Zhao et al., 2018; Be-
linkov and Bisk, 2018; Iyyer et al., 2018). Previous
work has focused on heuristics for creating adver-
sarial examples in the black-box setting, without
any explicit knowledge of the model parameters.
In the white-box setting, we use complete knowl-
edge of the model to develop worst-case attacks,
which can reveal much larger vulnerabilities.

We propose a white-box adversary against dif-
ferentiable text classifiers. We find that only a few
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South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mood of optimism.
57% World

South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mooP of optimism.
95% Sci/Tech

Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the opposition Conservatives.
75% World

Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the oBposition Conservatives.
94% Business

Table 1: Adversarial examples with a single character change,
which will be misclassified by a neural classifier.

manipulations are needed to greatly increase the
misclassification error. Furthermore, fast genera-
tion of adversarial examples allows feasible ad-
versarial training, which helps the model defend
against adversarial examples and improve accu-
racy on clean examples. At the core of our method
lies an atomic flip operation, which changes one
token to another by using the directional deriva-
tives of the model with respect to the one-hot vec-
tor input.
Our contributions are as follows:

1. We propose an efficient gradient-based opti-
mization method to manipulate discrete text
structure at its one-hot representation.

2. We investigate the robustness of a classifier
trained with adversarial examples, by study-
ing its resilience to attacks and its accuracy
on clean test data.

2 Related Work

Adversarial examples are powerful tools to in-
vestigate the vulnerabilities of a deep learning
model (Szegedy et al., 2014). While this line of
research has recently received a lot of attention in
the deep learning community, it has a long history
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in machine learning, going back to adversarial at-
tacks on linear spam classifiers (Dalvi et al., 2004;
Lowd and Meek, 2005). Hosseini et al. (2017)
show that simple modifications, such as adding
spaces or dots between characters, can drasti-
cally change the toxicity score from Google’s
perspective API'. Belinkov and Bisk (2018)
show that character-level machine translation sys-
tems are overly sensitive to random character ma-
nipulations, such as keyboard typos. They manipu-
late every word in a sentence with synthetic or nat-
ural noise. However, throughout our experiments,
we care about the degree of distortion in a sen-
tence, and look for stronger adversaries which can
increase the loss within a limited budget. Instead
of randomly perturbing text, we propose an effi-
cient method, which can generate adversarial text
using the gradients of the model with respect to
the input.

Adversarial training interleaves training with
generation of adversarial examples (Goodfellow
et al., 2015). Concretely, after every iteration of
training, adversarial examples are created and
added to the mini-batches. A projected gradient-
based approach to create adversarial examples by
Madry et al. (2018) has proved to be one of the
most effective defense mechanisms against adver-
sarial attacks for image classification. Miyato et
al. (2017) create adversarial examples by adding
noise to word embeddings, without creating real-
world textual adversarial examples. Our work is
the first to propose an efficient method to generate
real-world adversarial examples which can also be
used for effective adversarial training.

3 HotFlip

HotFlip is a method for generating adversarial ex-
amples with character substitutions (“flips”). Hot-
Flip also supports insertion and deletion opera-
tions by representing them as sequences of charac-
ter substitutions. It uses the gradient with respect
to a one-hot input representation to efficiently es-
timate which individual change has the highest es-
timated loss, and it uses a beam search to find a set
of manipulations that work well together to con-
fuse a classifier.

3.1 Definitions

We use J(x,y) to refer to the loss of the model
on input x with true output y. For example,

'https://www.perspectiveapi.com
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for classification, the loss would be the log-loss
over the output of the softmax unit. Let V' be
the alphabet, x be a text of length L charac-
ters, and z;; € {0,1}V] denote a one-hot vector
representing the j-th character of the i-th word.
The character sequence can be represented by
X =[(211,.. 10)5-(Tm1see Tinn)]
wherein a semicolon denotes explicit segmenta-
tion between words. The number of words is de-
noted by m, and n is the number of maximum
characters allowed for a word.

3.2 Derivatives of Operations

We represent text operations as vectors in the
input space and estimate the change in loss by
directional derivatives with respect to these op-
erations. Based on these derivatives, the adver-
sary can choose the best loss-increasing direction.
Our algorithm requires just one function evalua-
tion (forward pass) and one gradient computation
(backward pass) to estimate the best possible flip.

A flip of the j-th character of the i-th word
(a — b) can be represented by this vector:

—

=(0,.5(0,..(0,..-1,0,..,1,0)4,..0):; 0.,..)

gijb
where -1 and 1 are in the corresponding po-
sitions for the a-th and b-th characters of the
alphabet, respectively, and 1’5?) = 1. A first-order
approximation of change in loss can be obtained
from a directional derivative along this vector:

vz‘)‘z‘ij(Xv y) = va(Xa y)T ’ ﬁijb

We choose the vector with biggest increase
in loss:

o 9.J (@)
X@Tij B aﬂ’jij

)

maxV,.J (x,y)" - U;jp = Ma

ij

Using the derivatives as a surrogate loss, we sim-
ply need to find the best change by calling the
function mentioned in eq. 1, to estimate the best
character change (¢ — b). This is in contrast to
a naive loss-based approach, which has to query
the classifier for every possible change to compute
the exact loss induced by those changes. In other
words, apart from the overhead of calling the func-
tion in eq. 1, one backward pass saves the adver-
sary a large number of forward passes.



Character insertion’ at the j-th position of the
i-th word can also be treated as a character flip,
followed by more flips as characters are shifted to
the right until the end of the word.

B aJ © o.J (@
Mo e = s
n o7 ©) gy @)
cy (-
al'- ./ a(L’ ./
i =j+1 ij ij
where xg;,l,) = 1 and xz(;’,)_ , = 1. Similarly, char-

acter deletion can be written as a number of char-
acter flips as characters are shifted to the left.
Since the magnitudes of direction vectors (oper-
ations) are different, we normalize by the Ly norm
of the vector i.e., ==, where N is the number of

. V2N
total flips.

3.3 Multiple Changes

We explained how to estimate the best single
change in text to get the maximum increase in loss.
A greedy or beam search of r steps will give us an
adversarial example with a maximum of r flips, or
more concretely an adversarial example within an
Ly distance of r from the original example. Our
beam search requires only O(br) forward passes
and an equal number of backward passes, with r
being the budget and b, the beam width. We elab-
orate on this with an example: Consider the loss

function J(.), input o, and an individual change
0J(zo)
Tt

cj. We estimate the score for the change as
For a sequence of 3 changes [c1,c2,c3], we evalu-
ate the “score” as follows.

8J(xo) 8J(:v1) GJ(xg)
861 + 662 + 803

where x; and xo are the modified input after ap-
plying [c1] and [c1, co] respectively. We need b
forward and backward passes to compute deriva-
tives at each step of the path, leading to O(br)
queries. In contrast, a naive loss-based approach
requires computing the exact loss for every possi-
ble change at every stage of the beam search, lead-
ing to O(brL|V|) queries.

score([cy, co,c3]) =

4 Experiments

In principle, HotFlip could be applied to any dif-
ferentiable character-based classifier. Here, we fo-
cus on the CharCNN-LSTM architecture (Kim

For ease in exposition, we assume that the word size is at
most n-1, leaving at least one position of padding at the end.
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et al., 2016), which can be adapted for classifica-
tion via a single dense layer after the last recur-
rent hidden unit. We use the AG’s news dataset?,
which consists of 120,000 training and 7,600 test
instances from four equal-sized classes: World,
Sports, Business, and Science/Technology. The ar-
chitecture consists of a 2-layer stacked LSTM with
500 hidden units, a character embedding size of
25, and 1000 kernels of width 6 for temporal
convolutions. This classifier was able to outper-
form (Conneau et al., 2017), which has achieved
the state-of-the-art result on some benchmarks, on
AG’s news. The model is trained with SGD and
gradient clipping, and the batch size was set to 64.
We used 10% of the training data as the develop-
ment set, and trained for a maximum of 25 epochs.
We only allow character changes if the new word
does not exist in the vocabulary, to avoid changes
that are more likely to change the meaning of text.
The adversary uses a beam size of 10, and has a
budget of maximum of 10% of characters in the
document. In Figure 1, we plot the success rate
of the adversary against an acceptable confidence
score for the misclassification. That is, we con-
sider the adversary successful only if the classifier
misclassifies the instance with a given confidence
score. For this experiment, we create adversarial
examples for 10% of the test set.

We compare with a (greedy) black-box adver-
sary, which does not have access to model param-
eters, and simply queries the classifier with ran-
dom character changes. Belinkov and Bisk (2018)
define an attack, Key, in which a character is re-
placed with an adjacent character in the keyboard.
We allow a stronger black-box attacker to change a
character to any character in the alphabet, and we
call it Key*. As expected a white-box adversary
is much more damaging, and has a higher success
rate. As can be seen, the beam-search strategy is
very effective in fooling the classifier even with
an 0.9 confidence constraint, tricking the classi-
fier for more than 90% of the instances. A greedy
search is less effective especially in producing
high-confidence scores. We use a maximum of
10% of characters in the document as the budget
for the adversary, but our adversary changes an av-
erage of 4.18% of the characters to trick the clas-
sifier at confidence 0.5. The adversary picks the
flip operation around 80% of the times, and favors
delete over insert by two to one.

*https://www.di.unipi.it/"gulli/
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Figure 1: Adversary’s success as a function of confidence.

4.1 Robustness

For our adversarial training, we use only use the
flip operation, and evaluate models’ robustness
to this operation only. This is because insert and
delete manipulations are n times slower to gener-
ate, where n is the number of maximum charac-
ters allowed for a word. For these experiments, we
have no constraint on confidence score. We flip r
characters for each training sample, which was set
to 20% of the characters in text after tuning, based
on the accuracy on the development set. In addi-
tion, for faster generation of adversarial examples,
we directly apply the top r flips after the first back-
ward pass, simultaneously®.

We use the full test set for this experiment, and
we compare HotFlip adversarial training with the
white-box (supervised) adversarial training (Miy-
ato et al., 2017) that perturbs word embeddings,
which we adapt to work with character embed-
dings. Specifically, the adversarial noise per char-
acter is constrained by the Frobenius norm of the
embedding matrix composed of the sequence of
characters in the word. We also create another
baseline where instead of white-box adversarial
examples, we add black-box adversarial examples
(Key™) to the mini-batches. As shown in Table
2, our approach decreases misclassification error
and dramatically decreases the adversary’s success
rate. In particular, adversarial training on real ad-
versarial examples generated by HotFlip, is more
effective than training on pseudo-adversarial ex-
amples created by adding noise to the embeddings.

The current error of our adversarially trained
model is still beyond an acceptable rate; this is
mainly because the adversary that we use at test
time, which uses beam search, is strictly stronger
than our model’s internal adversary. This has been
observed in computer vision where strongest ad-

“The adversary at test time would still use beam search.
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Method Misc. error | Success rate
Baseline 8.27% 98.16%
Adv-tr (Miyato et al., 2017) 8.03% 87.43%
Adv-tr (black-box) 8.60% 95.63%
Adv-tr (white-box) 7.65% 69.32%

Table 2: Comparison based on misclassification error on
clean data and adversary’s success rate.

versaries are not efficient enough for adversarial
training, but can break models trained with weaker
adversaries (Carlini and Wagner, 2017).

4.2 Human Perception

Our human evaluation experiment shows that our
character-based adversarial examples rarely alter
the meaning of a sentence. We conduct an experi-
ment of annotating 600 randomly-picked instances
annotated by at least three crowd workers in Ama-
zon Mechanical Turk. This set contains 150 ex-
amples of each class of AG’s-news dataset, all of
which are correctly classified by the classifier. We
manipulate half of this set by our algorithm, which
can successfully trick the classifier to misclassify
these 300 adversarial examples. The median accu-
racy of our participants decreased by 1.78% from
87.49% on clean examples to 85.71% on adversar-
ial examples. Similar small drops in human perfor-
mance have been reported for image classification
(Papernot et al., 2016) and text comprehension (Jia
and Liang, 2017).

5 HotFlip at Word-Level

HotFlip can naturally be adapted to generate ad-
versarial examples for word-level models, by com-
puting derivatives with respect to one-hot word
vectors. After a few character changes, the mean-
ing of the text is very likely to be preserved or
inferred by the reader (Rawlinson, 1976), which
was also confirmed by our human subjects study.
By contrast, word-level adversarial manipulations
are much more likely to change the meaning of
text, which makes the use of semantics-preserving
constraints necessary. For example, changing the
word good to bad changes the sentiment of the
sentence “this was a good movie”. In fact, we ex-
pect the model to predict a different label after
such a change.

To showcase the applicability of HotFlip to a
word-level classifier, we use Kim’s CNN (2014)
trained for binary sentiment classification on the
SST dataset (Socher et al., 2013). In order to create
adversarial examples, we add constraints so that



one hour photo is an intriguing (interesting) snapshot of one man and his delusions it’s just too bad it doesn’t have

more flashes of insight.

‘enigma’ is a good (terrific) name for a movie this deliberately obtuse and unapproachable.

an intermittently pleasing (satisfying) but mostly routine effort.

an atonal estrogen opera that demonizes feminism while gifting the most sympathetic male of the piece with a nice

(wonderful) vomit bath at his wedding.

culkin exudes (infuses) none of the charm or charisma that might keep a more general audience even vaguely inter-

ested in his bratty character.

Table 3: Adversarial examples for sentiment classification. The bold words replace the words before them.

past — pas!t ‘ Alps — llps ‘ talk — taln ‘ local — loral ‘ you — yoTu ‘ ships — hips ‘ actor — actr ‘ lowered — owered

moral
Moral
coral
morals

tall
tale
tales
talent

pasturing
pasture
pastor
Task

lips

laps
legs
slips

Tutu dips act powered
Hutu hops acting empowered
Turku lips actress owed
Futurum hits acts overpowered

Table 4: Nearest neighbor words (based on cosine similarity) of word representations from CharCNN-LSTM, picked at the
output of the highway layers. A single adversarial change in the word often results in a big change in the embedding, which
would make the word more similar to other words, rather than to the original word.

the resulting sentence is likely to preserve the orig-
inal meaning; we only flip a word w; to w; only if
these constraints are satisfied:

1. The cosine similarity between the embedding
of words is bigger than a threshold (0.8).

2. The two words have the same part-of-speech.

3. We disallow replacing of stop-words, as for
many of the stop-words, it is difficult to find
cases where replacing them will still render
the sentence grammatically correct. We also
disallow changing a word to another word
with the same lexeme for the same purpose.

Table 3 shows a few adversarial examples with
only one word flip. In the second and the fourth
examples, the adversary flips a positive word (i.e.,
good, nice) with highly positive words (i.e., fer-
rific, wonderful) in an overall very negative re-
view. These examples, albeit interesting and intu-
itive, are not abundant, and thus pose less threat
to an NLP word-level model. Specifically, given
the strict set of constraints, we were able to create
only 41 examples (2% of the correctly-classified
instances of the SST test set) with one or two flips.

For a qualitative analysis of relative brittleness
of character-level models, we study the change in
word embedding as an adversarial flip, insert, or
delete operation occurs in Table 4. We use the out-
put of the highway layer as the word representa-
tion, and report the embedding for a few adver-
sarial words, for which the original word is not
among their top 5 nearest neighbors.

In a character-level model, the lookup opera-
tion to pick a word from the vocabulary is re-
placed by a character-sequence feature extractor
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which gives an embedding for any input, includ-
ing OOV words which would be mapped to an
UNK token in a word-level model. This makes the
embedding space induced in character-level rep-
resentation more dense, which makes character-
level models more likely to misbehave under small
adversarial perturbations.

6 Conclusion and Future Work

White-box attacks are among the most serious
forms of attacks an adversary can inflict on a ma-
chine learning model. We create white-box adver-
sarial examples by computing derivatives with re-
spect to a few character-edit operations (i.e., flip,
insert, delete), which can be used in a beam-search
optimization. While character-edit operations have
little impact on human understanding, we found
that character-level models are highly sensitive to
adversarial perturbations. Employing these adver-
sarial examples in adversarial training renders the
models more robust to such attacks, as well as
more robust to unseen clean data.

Contrasting and evaluating robustness of differ-
ent character-level models for different tasks is an
important future direction for adversarial NLP. In
addition, the discrete nature of text makes it a more
challenging task to understand the landscape of
adversarial examples. Research in this direction
can shed light on vulnerabilities of NLP models.
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Abstract

Generic word embeddings are trained on
large-scale generic corpora; Domain Spe-
cific (DS) word embeddings are trained
only on data from a domain of inter-
est. This paper proposes a method to
combine the breadth of generic embed-
dings with the specificity of domain spe-
cific embeddings. The resulting embed-
dings, called Domain Adapted (DA) word
embeddings, are formed by aligning cor-
responding word vectors using Canonical
Correlation Analysis (CCA) or the related
nonlinear Kernel CCA. Evaluation results
on sentiment classification tasks show that
the DA embeddings substantially outper-
form both generic and DS embeddings
when used as input features to standard
or state-of-the-art sentence encoding algo-
rithms for classification.

1 Introduction

Generic word embeddings such as Glove and
word2vec (Pennington et al., 2014; Mikolov et al.,
2013) which are pre-trained on large sets of raw
text, have demonstrated remarkable success when
used as features to a supervised learner in various
applications such as the sentiment classification of
text documents. There are, however, many appli-
cations with domain specific vocabularies and rel-
atively small amounts of data. The performance
of generic word embedding in such applications
is limited, since word embeddings pre-trained on
generic corpora do not capture domain specific se-
mantics/knowledge, while embeddings learned on
small data sets are of low quality.

A concrete example of a small-sized domain
specific corpus is the Substances User Disorders
(SUDs) data set (Quanbeck et al., 2014; Litvin
et al., 2013), which contains messages on discus-
sion forums for people with substance addictions.
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These forums are part of a mobile health inter-
vention treatment that encourages participants to
engage in sobriety-related discussions. The goal
of such treatments is to analyze content of partici-
pant’s digital media content and provide human in-
tervention via machine learning algorithms. This
data is both domain specific and limited in size.
Other examples include customer support tickets
reporting issues with taxi-cab services, product re-
views, reviews of restaurants and movies, discus-
sions by special interest groups and political sur-
veys. In general they are common in domains
where words have different sentiment from what
they would have elsewhere.

Such data sets present significant challenges for
word embedding learning algorithms. First, words
in data on specific topics have a different distribu-
tion than words from generic corpora. Hence us-
ing generic word embeddings obtained from algo-
rithms trained on a corpus such as Wikipedia, may
introduce considerable errors in performance met-
rics on specific downstream tasks such as senti-
ment classification. For example, in SUDs, discus-
sions are focused on topics related to recovery and
addiction; the sentiment behind the word ‘party’
may be very different in a dating context than in
a substance abuse context. Thus domain specific
vocabularies and word semantics may be a prob-
lem for pre-trained sentiment classification mod-
els (Blitzer et al., 2007). Second, there is insuffi-
cient data to completely retrain a new set of word
embeddings. The SUD data set consists of a few
hundred people and only a fraction of these are
active (Firth et al., 2017), (Naslund et al., 2015).
This results in a small data set of text messages
available for analysis. Furthermore, content is
generated spontaneously on a day to day basis, and
language use is informal and unstructured. Fine-
tuning the generic word embedding also leads to
noisy outputs due to the highly non-convex train-
ing objective and the small amount of data. Since
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such data sets are common, a simple and effec-
tive method to adapt word embedding approaches
is highly valuable. While existing work (Yin and
Schiitze, 2016), (?), (?), (?), (?) combines word
embeddings from different algorithms to improve
upon intrinsic tasks such as similarities, analo-
gies etc, there does not exist a concrete method to
combine multiple embeddings to perform domain
adaptation or improve on extrinsic tasks.

This paper proposes a method for obtain-
ing high quality word embeddings that capture
domain specific semantics and are suitable for
tasks on the specific domain. The new Domain
Adapted (DA) embeddings are obtained by com-
bining generic embeddings and Domain Specific
(DS) embeddings via CCA/KCCA. Generic em-
beddings are trained on large corpora and do not
capture domain specific semantics, while DS em-
beddings are obtained from the domain specific
data set via algorithms such as Latent Semantic
Analysis (LSA) or other embedding methods. The
two sets of embeddings are combined using a lin-
ear CCA (Hotelling, 1936) or a nonlinear kernel
CCA (KCCA) (Hardoon et al., 2004). They are
projected along the directions of maximum corre-
lation, and a new (DA) embedding is formed by
averaging the projections of the generic embed-
dings and DS embeddings. The DA embeddings
are then evaluated in a sentiment classification set-
ting. Empirically, it is shown that the CCA/KCCA
combined DA embeddings improve substantially
over the generic embeddings, DS embeddings and
a concatenation-SVD (concSVD) based baseline.

The remainder of this paper is organized as fol-
lows. Section 2 briefly introduces the CCA/KCCA
and details the procedure used to obtain the
DA embeddings. Section 3 describes the experi-
mental set up. Section 4 discusses the results from
sentiment classification tasks on benchmark data
sets using standard classification as well as using
a sophisticated neural network based sentence en-
coding algorithm. Section 5 concludes this work.

2 Domain Adapted Word Embeddings

Training word embeddings directly on small data
sets leads to noisy outputs while embeddings from
generic corpora fail to capture specific local mean-
ings within the domain. Here we combine DS and
generic embeddings using CCA KCCA, which
projects corresponding word vectors along the di-
rections of maximum correlation.
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Let Wpg € RIVPsIXdi pe the matrix whose
columns are the domain specific word embeddings
(obtained by, e.g., running the LSA algorithm on
the domain specific data set), where Vpg is its
vocabulary and d; is the dimension of the em-
beddings. Similarly, let W € RIV@l*492 be the
matrix of generic word embeddings (obtained by,
e.g., running the GloVe algorithm on the Com-
mon Crawl data), where Vi is the vocabulary
and ds is the dimension of the embeddings. Let
Va = VpsNVg. Let w; ps be the domain specific
embedding of the word i € V[, and w; ¢ be its
generic embedding. For one dimensional CCA, let
¢ps and ¢ be the projection directions of w; pg
and w; ¢ respectively. Then the projected values
are,

Wi, pS = Wi DS PDS
WiG = Wi G da-

(1

CCA maximizes the correlation between w; pg
and w; ¢ to obtain ¢ pgs and ¢ such that

B E[(w;,ps, Wi,a)]
— Imnax
¢ps.c \/E[ID?DS]E[U_)?G]

where p is the correlation between the projected
word embeddings and [E is the expectation over all
words ¢ € V.

The d-dimensional CCA with d > 1 can be de-
fined recursively. Suppose the first d — 1 pairs
of canonical variables are defined. Then the d*"
pair is defined by seeking vectors maximizing the
same correlation function subject to the constraint
that they be uncorrelated with the first d — 1
pairs. Equivalently, matrices of projection vec-
tors ®pg € RU*? and &5 € R“*? are ob-
tained for all vectors in W pg and W where d <
min {d;,dy}. Embeddings obtained by w; ps =
w;.ps Pps and w; ¢ = w; ¢ P are projections
along the directions of maximum correlation.

The final domain adapted embedding for word ¢
is given by W; pa = aw; ps + Sw; ¢, where the
parameters « and 3 can be obtained by solving the
following optimization,

p(¢ps, dc) 2

mlﬁn Wi, ns — (Wi ps + BWia)|l5+

)

|Wic — (aWips + Bwic)|3. (3)

Solving (3) gives a weighted combination with

a=p= %, i.e., the new vector is equal to the



average of the two projections:

Wi DA = %Wz‘,DS + %Wz‘,e- “4)

Because of its linear structure, the CCA in (2)
may not always capture the best relationships be-
tween the two matrices. To account for nonlinear-
ities, a kernel function, which implicitly maps the
data into a high dimensional feature space, can be
applied. For example, given a vector w € R%, a
kernel function K is written in the form of a fea-
ture map ¢ defined by ¢ : w = (Wy,...,Wg) —
o(w) = (e1(W),...,om(W))(d < m) such that
given w, and wy,

K(wa, wp) = (p(Wa), (W)

In kernel CCA, data is first projected onto a
high dimensional feature space before performing
CCA. In this work the kernel function used is a
Gaussian kernel, i.e.,

_ HWa—WbHQ)

K(Wm Wb) - CXp( 202

The implementation of kernel CCA follows the
standard algorithm described in several texts such
as (Hardoon et al., 2004); see reference for details.

3 Experimental Evaluation

This section evaluates DA embeddings in binary
sentiment classification tasks on four standard data
sets. Document embeddings are obtained via (i) a
standard framework, i.e document embeddings are
a weighted combination of their constituent word
embeddings and (ii) by initializing a state of the
art sentence encoding algorithm InferSent (Con-
neau et al., 2017) with word embeddings to obtain
sentence embeddings. Encoded sentences are then
classified using a Logistic Regressor.

3.1 Datasets

The following balanced and imbalanced data sets
are used for experimentation,

e Yelp: This is a balanced data set consisting of
1000 restaurant reviews obtained from Yelp.
Each review is labeled as either ‘Positive’ or
‘Negative’. There are a total of 2049 distinct
word tokens in this data set.

Data Set Embedding Avg Precision | Avg F-score Avg AUC
KCCA(Glv, LSA) 8536+ 2.8 81.894+2.8 82.57+1.3

CCA(Glv, LSA) 83.69+ 4.7 79.48+2.4 80.33+£2.9

KCCA(w2v, LSA) 8745+ 1.2 83.36+1.2 84.10+0.9

CCA(wW2v, LSA) 84.524+2.3 80.024+2.6 81.0442.1
KCCA(GIVCC, LSA) 88.11+ 3.0 85.35+£2.7 85.80-+2.4

Wpa CCA(GIVCC, LSA) 83.69+ 3.5 78.99+4.2 80.0343.7
KCCA(w2v, DSw2v) 78.09+ 1.7 76.04£1.7 76.661.5

Yelp CCA(w2v, DSw2v) 86.22+ 3.5 84.35+2.4 84.65+2.2
concSVD(Glv, LSA) 80.14+ 2.6 78.50£3.0 78.92+2.7
concSVD(w2v, LSA) 85.11+£23 83.51+2.2 83.80+2.0
concSVD(GIVCC, LSA) | 84.20+ 3.7 80.3943.7 80.83+3.9

GloVe 7713+ 42 72.32£79 74.17£5.0

W¢ GloVe-CC 82.10+ 3.5 76.74£3.4 78.17£2.7
word2vec 82.80+ 3.5 78.28£3.5 79.35+3.1

LSA 75.36%+ 5.4 71.17£4.3 72.57+4.3

Whps word2vec 73.0842.2 70.97+£2.4 71.76+2.1
KCCA(Glv, LSA) 86.30+1.9 83.00+2.9 83.39+3.2

CCA(Glv, LSA) 84.68+2.4 8227422 82.78+1.7
KCCA(w2v, LSA) 87.09+1.8 82.63+2.6 83.504+2.0

CCA(w2v, LSA) 84.80%1.5 81.42+1.9 82.12+1.3
KCCA(GIVCC, LSA) 89.73+£2.4 85.47+2.4 85.56+2.6

Wpa CCA(GIVCC, LSA) 85.67+2.3 83.83+2.3 84.214+2.1
KCCA(w2v, DSw2v) 85.68+3.2 81.23+3.2 82.204+2.9

Amazon CCA(w2v, DSw2v) 83.50+3.4 81.314+4.0 81.86+3.7
concSVD(Glv, LSA) 82.36+2.0 81.3043.5 81.5142.5
concSVD(w2v, LSA) 87.284+2.9 86.17£2.5 86.42:£2.0
concSVD(GIVCC, LSA) 84.93+1.6 77.81£2.3 79.52£1.7

GloVe 81.584+2.5 77.62+2.7 78.72+2.7

We GloVe-CC 79.91£2.7 81.6342.8 81.46+2.6
word2vec 84.55+1.9 80.5242.5 81.45+2.0

LSA 82.65+4.4 73.92+3.8 76.40£3.2

Whps word2vec 74.20£5.8 72.49+£5.0 73.11+£4.8
KCCA(Glv, LSA) 73.84+1.3 73.07£3.6 73.17£2.4

CCA(Glv, LSA) 73.35£2.0 73.00£3.2 73.06£2.0
KCCA(w2v, LSA) 82.364.4 78.95£2.7 79.66-:2.6

CCA(w2v, LSA) 80.66+4.5 75.95+4.5 77.23£3.8
KCCA(GIVCC, LSA) 54.5042.5 5442429 53.914+2.0

DA CCA(GIVCC, LSA) 54.08+2.0 53.03£3.5 54.9042.1
KCCA(w2v, DSw2v) 60.6543.5 58.95+3.2 58.9543.7

IMDB CCA(w2v, DSw2v) 58.474+2.7 57.62+3.0 58.03+£3.9
concSVD(Glv, LSA) 73.254+3.7 74.55£3.2 73.024+4.7
concSVD(w2v, LSA) 53.87+2.2 51.774+5.8 53.54%+1.9
concSVD(GIVCC, LSA) 78.28+3.2 77.67+3.7 74.55+2.9

GloVe 64.4412.6 65.18+3.5 64.6242.6

We GloVe-CC 50.53+1.8 62.39+£3.5 49.96+2.3
word2vec 78.92+3.7 74.88+£3.1 75.60£2.4

LSA 67.924+1.7 69.79+£5.3 69.714+3.8

Whps word2vec 56.87+3.6 56.04+3.1 59.53+8.9
KCCA(GIv, LSA) 32.07+1.3 39.3242.5 65.96+1.3

CCA(Glv, LSA) 32.70+1.5 35.48+4.2 62.15+2.9
KCCA(w2v, LSA) 33.45+1.3 39.81£1.0 65.92+0.6

CCA(w2v, LSA) 33.0643.2 34.02+1.1 60.91+0.9
KCCA(GIVCC, LSA) 36.38+1.2 34.71+4.8 61.36+2.6

DA CCA(GIVCC, LSA) 32.11+2.9 36.85+4.4 62.9943.1
KCCA(w2v, DSw2v) 25.59+1.2 28.2743.1 57.254+1.7
A-CHESS CCA(w2v, DSw2v) 24.88+1.4 29.1743.1 57.76+2.0
concSVD(Glv, LSA) 2727429 34.45+3.0 61.5942.3
concSVD(w2v, LSA) 29.8442.3 36.3243.3 62.94+1.1
concSVD(GIvCC, LSA) 28.09+1.9 35.06+1.4 62.13+2.6

GloVe 30.82+2.0 33.67+3.4 60.8042.3

W¢ GloVe-CC 38.13+£0.8 27.45+3.1 57.49+1.2
word2vec 32.67+2.9 31.72+1.6 59.6440.5

LSA 27.42+1.6 34.3842.3 61.56+1.9

Whs word2vec 24.4840.8 27.97+3.7 57.084+2.5

Table 1: This table shows results from the classi-
fication task using sentence embeddings obtained
from weighted averaging of word embeddings.
Metrics reported are average Precision, F-score
and AUC and the corresponding standard devia-
tions (STD). Best results are attained by KCCA
(GIvCC, LSA) and are highlighted in boldface.

e Amazon: In this balanced data set there are
1000 product reviews obtained from Ama-
zon. Each product review is labeled either
‘Positive’ or ‘Negative’. There are a total of
1865 distinct word tokens in this data set.

o IMDB: This is a balanced data set consisting
of 1000 reviews for movies on IMDB. Each
movie review is labeled either ‘Positive’ or
‘Negative’. There are a total of 3075 distinct



Data Set Embedding
GIvCC
KCCA(GIVCC, LSA)
CCA(GIVCC, LSA)
concSVD(GIVCC,LSA)
RNTN
GlvCC
KCCA(GIVCC, LSA)
CCA(GIVCC, LSA)
concSVD(GIVCC, LSA)
RNTN
GIvCC
KCCA(GIVCC, LSA)
CCA(GIVCC, LSA)
concSVD(GIVCC, LSA)
RNTN
GIvCC
KCCA(GIVCC, LSA)
CCA(GIVCC, LSA)
concSVD(GIVCC, LSA)
RNTN

Avg Precision
86.47+£1.9
91.06+0.8
86.26+1.4
85.53+2.1
83.11+1.1
87.93+2.7
90.56+2.1
87.1242.6
85.73+1.9
82.84+0.6
54.024+3.2
59.76+7.3
53.62+1.6
5275423
80.88+0.7
52.2145.1
55.37+5.5
54.34+3.6
40.41+4.2

Avg F-score
83.51£2.6
88.66+2.4
82.61%1.1
84.90+1.7

Avg AUC
83.83+£2.2
88.761+2.4
83.99+0.8
84.96+1.5

Yelp

83.24+2.8
86.74+1.9
83.78+2.1
85.17£2.6

82.41+£3.3
86.52+2.0
83.18+£2.2
85.19+£2.4

Amazon

53.01+2.0
56.46+3.4
58.75+3.7
53.5442.5

53.03+5.2
53.26+6.1
50.62+5.1
53.05+6.0

IMDB

74.2843.6
69.89+3.1
68.78+2.4
68.13+3.8

55.26+5.6
50.67+5.0
48.76+2.9
4475452

A-CHESS

Table 2: This table shows results obtained by us-
ing sentence embeddings from the InferSent en-
coder in the sentiment classification task. Met-
rics reported are average Precision, F-score and
AUC along with the corresponding standard devi-
ations (STD). Best results are obtained by KCCA
(GIvCC, LSA) and are highlighted in boldface.

word tokens in this data set.

A-CHESS: This is a proprietary data set! ob-
tained from a study involving users with al-
cohol addiction. Text data is obtained from
a discussion forum in the A-CHESS mobile
app (Quanbeck et al., 2014). There are a total
of 2500 text messages, with 8% of the mes-
sages indicative of relapse risk. Since this
data set is part of a clinical trial, an exact
text message cannot be provided as an exam-
ple. However, the following messages illus-
trate typical messages in this data set, “I've
been clean for about 7 months but even now
1 still feel like maybe I won’t make it.” Such
a message is marked as ‘threat’ by a human
moderator. On the other hand there are other
benign messages that are marked ‘not threat’
such as “30 days sober and counting, I feel
like I am getting my life back.” The aim is
to eventually automate this process since hu-
man moderation involves considerable effort
and time. This is an unbalanced data set ( 8%
of the messages are marked ‘threat’) with a
total of 3400 distinct work tokens.

The first three data sets are obtained from (Kotzias
etal., 2015).

!Center for Health Enhancement System Services at UW-
Madison
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3.2 Word embeddings and baselines:

This section briefly describes the various generic
and DS embeddings used. We also compare
against a basic DA embedding baseline in both the
standard framework and while initializing the neu-
ral network baseline.

e Generic word embeddings: Generic word
embeddings used are GloVe? from both
Wikipedia and common crawl and the
word2vec (Skip-gram) embeddings®. These
generic embeddings will be denoted as Glv,
GlvCC and w2v.

DS word embeddings: DS embeddings are
obtained via Latent Semantic Analysis (LSA)
and via retraining word2vec on the test data
sets using the implementation in gensim®.
DS embeddings via LSA are denoted by LSA
and DS embeddings via word2vec are de-

noted by DSw2v.

concatenation-SVD baseline: Generic and
DS embeddings are concatenated to form a
single embeddings matrix. SVD is performed
on this matrix and the resulting singular vec-
tors are projected onto the d largest singular
values to form resultant word embeddings.
These meta-embeddings proposed by (Yin
and Schiitze, 2016) have demonstrated con-
siderable success in intrinsic tasks such as
similarities, analogies etc.

Details about dimensions of the word embeddings
and kernel hyperparameter tuning are found in the
supplemental material.

The following neural network baselines are
used in this work,

o InferSent:This is a bidrectional LSTM based
sentence encoder (Conneau et al., 2017) that
learns sentence encodings in a supervised
fashion on a natural language inference (NLI)
data set. The aim is to use the sentence en-
coder trained on the NLI data set to learn
generic sentence encodings for use in trans-
fer learning applications.

2https://nlp.stanford.edu/projects/
glove/

Shttps://code.google.com/archive/p/
word2vec/

*nttps://radimrehurek.com/gensim/



e RNTN: The Recursive Neural Tensor Net-
work (?) baseline is a neural network based
dependency parser that performs sentiment
analysis. Since the data sets considered in our
experiments have binary sentiments we com-
pare against this baseline as well.

Note that InferSent is fine-tuned with a combi-
nation of GloVe common crawl embeddings and
DA embeddings, and concSVD. The choice of
GloVe common crawl embeddings is in keeping
with the experimental conditions of the authors of
InferSent. Since the data sets at hand do not con-
tain all the tokens required to retrain InferSent, we
replace word tokens that are common across our
test data sets and InferSent training data with the
DA embeddings and concSVD.

Since we have a combination of balanced and
unbalanced test data sets, test metrics reported are
Precision, F-score and AUC. We perform 10-fold
cross validation to determine hyperparameters and
so we report averages of the performance metrics
along with the standard deviation.

4 Results and Discussion

From Tables 1 and 2 we see that DA embed-
dings perform better than concSVD as well as
the generic and DS word embeddings, when used
in a standard classification task as well as when
used to initialize a sentence encoding algorithm.
As expected, LSA DS embeddings provide bet-
ter results than word2vec DS embeddings. Note
that on the imbalanced A-CHESS data set, on the
standard classification task, KCCA embeddings
perform better than the other baselines across all
three performance metrics. However from Table 2,
GlvCC embeddings achieve a higher average F-
score and AUC over KCCA embeddings that ob-
tain the highest precision.

While one can argue that when evaluating a
classifier, the F-score and AUC are better indi-
cators of performance, it is to be noted that A-
CHESS is highly imbalanced and precision is cal-
culated on the minor (positive) class that is of most
interest. Also note that, InferSent is retrained on
the balanced NLI data set that is much larger in
size than the A-CHESS test set. Certainly such
a training set has more instances of positive sam-
ples. Thus when using generic word embeddings
to initialize the sentence encoder, which uses the
outputs in the classification task, the overall F-
score and AUC are better.
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From our hypothesis, KCCA embeddings are
expected to perform better than the others be-
cause CCA/KCCA provides an intuitively bet-
ter technique to preserve information from both
the generic and DS embeddings. On the other
hand the concSVD based embeddings do not ex-
ploit information in both the generic and DS em-
beddings. Furthermore, in their work (Yin and
Schiitze, 2016) propose to learn an ‘ensemble’ of
meta-embeddings by learning weights to combine
different generic word embeddings via a simple
neural network. We determine the proper weight
for combination of DS and generic embeddings in
the CCA/KCCA space using the simple optimiza-
tion problem given in Equation (3).

Thus, task specific DA embeddings formed by
a proper weighted combination of DS and generic
word embeddings are expected to do better than
the concSVD embeddings and individual generic
and/or DS embeddings and this is verified empiri-
cally. Also note that the LSA DS embeddings do
better than the word2vec DS embeddings. This is
expected due to the size of the test sets and the na-
ture of the word2vec algorithm. We expect similar
observations when using GloVe DS embeddings
owing to the similarities between word2vec and
GloVe.

5 Conclusion

This paper presents a simple yet effective method
to learn Domain Adapted word embeddings that
generally outperform generic and Domain Spe-
cific word embeddings in sentiment classification
experiments on a variety of standard data sets.
CCA/KCCA based DA embeddings generally out-
perform even a concatenation based methods.
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Abstract

Semantic parsing requires training data
that is expensive and slow to collect.
We apply active learning to both tradi-
tional and “overnight” data collection ap-
proaches. We show that it is possible
to obtain good training hyperparameters
from seed data which is only a small
fraction of the full dataset. We show
that uncertainty sampling based on least
confidence score is competitive in tradi-
tional data collection but not applicable
for overnight collection. We evaluate sev-
eral active learning strategies for overnight
data collection and show that different ex-
ample selection strategies per domain per-
form best.

1 Introduction

Semantic parsing maps a natural language query
to a logical form (LF) (Zettlemoyer and Collins,
2005, 2007; Haas and Riezler, 2016; Kwiatkowksi
et al., 2010). Producing training data for seman-
tic parsing is slow and costly. Active learning is
effective in reducing costly data requirements for
many NLP tasks. In this work, we apply active
learning to deep semantic parsing and show that
we can substantially reduce the data required to
achieve state-of-the-art results.

There are two main methods for generating se-
mantic parsing training data. The traditional ap-
proach first generates the input natural language
utterances and then labels them with output LFs.
We show that active learning based on uncertainty
sampling works well for this approach.

The “overnight” annotation approach (Wang
et al., 2015) generates output LFs from a grammar,
and uses crowd workers to paraphrase these LFs
into input natural language queries. This approach
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is faster and cheaper than traditional annotation.
However, the difficulty and cost of data genera-
tion and validation are still substantial if we need a
large amount of data for the system to achieve high
accuracys; if the logical forms can express complex
combinations of semantic primitives that must be
covered; or if the target language is one with rela-
tively few crowd workers.

Applying active learning to the overnight ap-
proach is even more compelling, since the unla-
belled LFs can be generated essentially for free by
a grammar. However, conventional active learning
strategies are not compatible with the overnight
approach, since the crowd annotators produce in-
puts (utterances) rather than labels (LFs).

In order to apply active learning to deep se-
mantic parsing, we need a way of selecting hy-
perparameters without requiring the full training
dataset. For optimal performance, we should re-
run hyperparameter tuning for each active learning
round, but this is prohibitively expensive compu-
tationally. We show that hyperparameters selected
using a random subset of the data (about 20%) per-
form almost as well as those from the full set.

Our contributions are (1) a simple hyperparam-
eter selection technique for active learning ap-
plied to semantic parsing, and (2) straightforward
active learning strategies for both traditional and
overnight data collection that significantly reduce
data annotation requirements. To the best of our
knowledge we are the first to investigate active
learning for overnight data collection.

2 Related work

Sequence-to-sequence models are currently the
state-of-the-art for semantic parsing (Jia and
Liang, 2016; Dong and Lapata, 2016; Duong et al.,
2017). In this paper, we also exploit a sequence-
to-sequence model to minimise the amount of la-
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belled training data required to achieve state-of-
the-art semantic parsing results.

Active learning has been applied to a variety
of machine learning and NLP tasks (Thompson
et al., 1999; Tang et al., 2002; Chenguang Wang,
2017) employing various algorithms such as least
confidence score (Culotta and McCallum, 2005),
large margin (Settles and Craven, 2008), entropy
based sampling, density weighting method (Set-
tles, 2012), and reinforcement learning (Fang
et al., 2017). Nevertheless, there has been limited
work applying active learning for deep semantic
parsing with the exception of Iyer et al. (2017).
Different from conventional active learning, they
used crowd workers to select what data to annotate
for traditional semantic parsing data collection.

In this paper, we apply active learning for both
traditional and overnight data collection with the
focus on overnight approach. In addition, a limi-
tation of prior active learning work is that the hy-
perparameters are usually predefined in some way,
mostly from different work on the same or simi-
lar dataset, or from the authors experience (Wang
et al., 2017; Fang et al., 2017). In this paper, we
investigate how to efficiently set the hyperparam-
eters for the active learning process.

3 Base S2S Model

We base our approach on the attentional sequence-
to-sequence model (S2S) of Bahdanau et al.
(2014). This attentional model uses a bidirec-
tional recurrent neural network (RNN) to encode
a source as a sequence of vectors, which are used
by another RNN to generates output. Given the
source utterance x = [x1, T2, ...2,] and target LF
y = [y1, Y2, .--Ym], we train the model to minimize
the loss under model parameters 6.

m
loss = —Zlog P(yily1, -yi—1,2;6) (1)
i=1
Additionally, we apply the UNK replacement tech-
nique in Duong et al. (2017), keeping the original
sentence in the data.!

4 Active learning models

There is a diversity of strategies for active learn-
ing. A simple and effective active learning strat-
egy is based on least confidence score (Culotta

"We call S2S model applied to traditional data collection
and overnight data collection as forward S2S and backward

S2S respectively. The forward S2S model estimates P(y|x),
the backward S2S model estimates P(z|y).
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and McCallum, 2005). This strategy selects ut-
terance z’ to label from the unlabelled data U, as
follows:

2 = argmin|[max P(y*|z;0)]
CCEUQ: y*

where y* is the most likely output. We found
that this least confidence score works well across
datasets, even better than more complicated strate-
gies in traditional data collection (described be-
low).

4.1 Traditional data collection

In the traditional (forward) approach, we start with
the list of unlabelled utterances and an initial seed
of utterances paired with LFs. We gradually select
utterances to annotate with the aim of maximizing
the test score as early as possible. We use forward
S2S sentence loss as defined in Equation (1) as the
least confidence score measurement (i.e. select the
instance with higher loss).

The drawback of a least confidence score strat-
egy (and strategies based on other measurements
such as large margin), is that they only leverage
a single measurement to select utterances (Settles
and Craven, 2008). To combine multiple measure-
ments, we build a classifier to predict if the model
will wrongly generate the LF given the utterance,
and select those utterances for annotation. The
classifier is trained on the data generated by run-
ning 5-fold cross validation on annotated data.’
We exploit various features, including sentence
log loss, the margin between the best and second
best solutions, source sentence frequency, source
encoder last hidden state and target decoder last
hidden state (see supplementary material §A.1 for
more detail) and various classifier architectures in-
cluding logistic regression, feedforward networks
and multilayer convolutional neural networks. On
the development corpus, we observed that the least
confidence score works as well as the classifier
strategy.

4.2 Overnight data collection

In the overnight (backward) approach, we start
with the set of all unlabelled LFs (U,), and an ini-
tial randomly-selected seed of LFs paired with ut-
terances (i.e. labelled LFs L,)). The aim is to select

This classifier is complementary to the approach pro-
posed in Iyer et al. (2017) where we use this classifier instead
of user feedback.



LFs for which we should obtain utterances, max-
imizing the test score as early as possible. In the
overnight approach, we can’t use the least confi-
dence score (i.e. the forward S2S sentence loss)
directly since we can’t estimate P(y|z) because
we don’t know the utterance . We have to some-
how approximate this probability with regard to
the performance on test.

A simple strategy is just to apply the backward
S2S model and estimate P(x|y), e.g. we select LF
y' to label from the unlabelled data U, as follows:

y' = argmin[max P(z*[y; 0)]
yeUy r

Essentially, we train the S2S model to predict the
utterance given the LF. The motivation is that if
we can reconstruct the utterance from the LF then
we could possibly generate LFs from utterances.
However, this strategy ignores one important as-
pect of semantic parsing, which is that LFs are an
abstraction of utterances. One utterance is mapped
to only one LF, but one LF corresponds to many
utterances.

Since the forward S2S loss performs so well,
another strategy is to approximate the selections
made by this score. We train a linear binary clas-
sifier® to predict selections, using features which
can be computed from LFs only. We extract two
set of features from the LF model and the back-
ward S2S model. The LF model is an RNN lan-
guage model but trained on LFs (Zaremba et al.,
2014).* We extract the LF sentence log proba-
bility i.e. log P(y), feature from this model. The
backward S2S model, as mentioned above, is the
model trained to predict an utterance given a LF.
We extracted the same set of features as mentioned
in §4.1 including LF sentence log loss, margin be-
tween best and second best solutions, and LF fre-
quencies.

On the development corpus, we first run one ac-
tive learning round using forward S2S model sen-
tence loss (i.e. modelling P(y|x)) on the initial an-
notated data L,. The set of selected LFs based
on forward S2S loss will be the positive exam-
ples, and all other LFs that are not selected will
be the negative examples for training the binary
classifier. Our experiments show that the classi-
fier which uses the combination of two features
(source LF frequencies and the margin of best and

*Instead of binary classifier, it would also be possible to

train a logistic model. However, we leave this for future work.
“We use the configuration from Zaremba et al. (2014).
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second best solution) are the best predictor of what
is selected by forward S2S model log loss (i.e.
modelling P(y|x)). It is interesting to see that ab-
solute score of backward S2S model loss is not a
good indicator as it is not selected. This may be
due to the fact that utterance-LF mapping is one-
to-many and the model probability is distributed
to all valid output utterances. Hence, low proba-
bility is not necessary an indicator of bad predic-
tion. We use the linear combination of the two
features mentioned above with the weights from
the binary classifier as a means of selecting the LF
for overnight active learning on different corpora
without retraining the classifier.

5 Experiment

5.1 Datasets

We experiment with the NLMaps corpus (Haas
and Riezler, 2016) which was collected using
the traditional approach. We tokenize follow-
ing Kocisky et al. (2016). We also experiment with
the Social Network corpus from the Overnight
dataset (Wang et al., 2015) (which was collected
using the overnight approach). Social Network
was chosen as being the largest dataset available.
Since neither corpora have a separate development
set, we use 10% of the training set as development
data for early stopping. We select ATIS (Zettle-
moyer and Collins, 2007) as our development cor-
pus for all feature selection and experiments with
classifiers in §4.1 and §4.2.

For evaluation, we use full LF exact match ac-
curacy for all experiments (Kocisky et al., 2016).
Note that this is a much stricter evaluation com-
pared with running through database evaluator as
in Wang et al. (2015).

5.2 Hyperparameter tuning

Hyperparameter tuning is important for good per-
formance. We tune the base S2S model (§3)
on the development data by generating 100 con-
figurations using Adam optimizer (Kingma and
Ba, 2014) and a permutation of different source
and target RNN sizes, RNN cell types, initializer,
dropout rates and mini-batch sizes.

As mentioned, hyperparameter tuning is often
overlooked in active learning. The common ap-
proach is just to use the configuration from a sim-
ilar problem, from prior work on the same dataset,

5The exact match accuracy for Social Network is ex-
tracted from logs from (Jia and Liang, 2016).
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Figure 1: Active learning for various selection criteria. Random baseline randomly select the training
data at each round. Fw S2S is used for traditional data collection using forward S2S loss score. Bw S2S
is used for overnight data collection using backward S2S loss score. Bw classifier is used also for the
overnight approach but linearly combines several scores together as mentioned in §4.2. The scores in
parentheses measure the area under the curve. The dashed lines are the SOTA from Table 1.

NLMap Social ATIS
From ATIS 76.0 65.8 86.0
Small subset 84.2 68.9 85.7
Full data 84.2 69.1 86.0
SOTA 84.1 68.8 86.1

Table 1: The LF exact match accuracy on NLMap,
Social Network and ATIS with configurations
from ATIS, from hyperparameter tuning on small
subset of data (10% + dev) or on the full train-
ing data. The supervised SOTA for NLMap and
ATIS (Duong et al., 2017) and Social Network (Jia
and Liang, 2016) are provided for reference.’

or based on the authors own experience. How-
ever, in practice we don’t have any prior work to
copy the configuration from. Table 1 shows the
experiments with the NLMap and Social Network
corpora with configurations: 1) copied from an-
other dataset (ATIS), 2) tuned on a small subset
(10% of train data plus development data) and 3)
tuned on the full dataset. We can see that copy-
ing from a different dataset results in a subopti-
mal solution, which is expected since the different
datasets are significantly different. It is surprising
that tuning on small subset of the data performs
as well as tuning on all the data and, more impor-
tantly, it achieves similar results as the state of the
art (SOTA).
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5.3 Active Learning Results

Figure 1 shows the active learning curve for
NLMap, ATIS and Overnight (Social Network)
datasets. 10% of data is randomly selected as
initial seed data for active learning and hyperpa-
rameter tuning. We run active learning for 10
rounds, selecting 10% of the data at each round.
Round O reports the result trained on the initial
seed data and round 9 is the result on the whole
training data. For reference, we also report Fw S28
for Social Network, treating that corpus as if they
were collected using the traditional approach, and
Bw S2S/classifier for NLMap and ATIS treating
those corpora as if they were collected using the
overnight approach.

For traditional data collection (forward direc-
tion), S2S loss consistently outperforms the ran-
dom baselines on both datasets. The differences
are as high as 9% for NLMap (at round 4). Apply-
ing this strategy for ATIS, we reach SOTA results
at round 4, using only 50% of data. We also exper-
imented with the large margin baseline and classi-
fier strategies as mentioned in §4.1. The least con-
fidence strategy using S2S loss outperforms large
margin and achieves similar performance with the
more complicated classifier strategy, thus we omit
those results for brevity.

On the overnight data collection active learn-
ing (backward direction), the results are split. The
backward S2S loss performs particularly well on
the NLMap corpus, approximating the forward
S2S performance. However, it performs similar
to the random baseline in the other corpora. On
the other hand, the classifier strategy performs



well on both ATIS and Social Network but poorly
on NLMap. Using this strategy, we approximate
the SOTA for both ATIS and Social Network at
round 5 and 6 respectively (saving 40% and 30%
of data). We suspect that backward S2S loss per-
forms so well on NLMap since there is a one-to-
one mapping between utterance and LF. The num-
ber of unique LFs in the training data for NLMap,
ATIS and Overnight are 95.4%, 28.4% and 19.5%
respectively. All in all, our proposed strategies for
“overnight” active learning are nearly as good as
traditional active learning, showing in similar area
under the curve value in Figure 1.

6 Conclusion

We have discussed practical active learning for
deep semantic parsing. We have empirically
shown that it is possible to get good hyperpa-
rameters from only a small subset of annotated
data. We applied active learning for both tradi-
tional and overnight semantic parsing data collec-
tion. For traditional data collection, we show that
least confidence score based on S2S log loss per-
forms well across datasets. Applying active learn-
ing for overnight data collection is challenging,
and the best performing strategy depends on the
domain. We recommend that applications explore
both the backward S2S and classifier strategies.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. = CoRR
abs/1409.0473.

Laura Chiticariu Yunyao Li Chenguang Wang. 2017.
Active learning for black-box semantic role label-
ing with neural factors. In Proceedings of the
Twenty-Sixth International Joint Conference on Ar-
tificial Intelligence, IJCAI-17. pages 2908-2914.
https://doi.org/10.24963/ijcai.2017/405.

Aron Culotta and Andrew McCallum. 2005. Reduc-
ing labeling effort for structured prediction tasks. In
Proceedings of the 20th National Conference on Ar-
tificial Intelligence - Volume 2. pages 746-751.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 33—43.

Long Duong, Hadi Afshar, Dominique Estival, Glen
Pink, Philip Cohen, and Mark Johnson. 2017. Mul-
tilingual semantic parsing and code-switching. In

47

Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017).
Association for Computational Linguistics, pages
379-389. https://doi.org/10.18653/v1/K17-1038.

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learning
how to active learn: A deep reinforcement learning
approach. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 595-605. http://aclweb.org/anthology/D17-
1063.

Carolin Haas and Stefan Riezler. 2016. A corpus and
semantic parser for multilingual natural language
querying of openstreetmap. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 740-750.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer.
2017. Learning a neural semantic parser
from user feedback. CoRR abs/1704.08760.
http://arxiv.org/abs/1704.08760.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 12-22.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. = CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Toma$ Kocisky, Gdbor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1078—1087.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, pages 1223-1233.

Burr Settles. 2012. Active Learning. Morgan & Clay-
pool Publishers.

Burr Settles and Mark Craven. 2008. An analysis
of active learning strategies for sequence labeling
tasks. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, pages 1070-1079.



Min Tang, Xiaoqiang Luo, and Salim Roukos. 2002.
Active learning for statistical natural language pars-
ing. In Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL ’02, pages 120-127.
https://doi.org/10.3115/1073083.1073105.

Cynthia A. Thompson, Mary Elaine Califf, and
Raymond J. Mooney. 1999. Active learn-
ing for natural language parsing and informa-
tion extraction. In Proceedings of the Six-
teenth International Conference on Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML °99, pages 406—414.
http://dl.acm.org/citation.cfm?id=645528.657614.

Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and
Liang Lin. 2017. Cost-effective active learning for
deep image classification. CoRR abs/1701.03551.
http://arxiv.org/abs/1701.03551.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association for
Computational Linguistics, pages 1332-1342.

Wojciech Zaremba, Ilya Sutskever, and Oriol
Vinyals. 2014. Recurrent neural net-
work regularization. CoRR abs/1409.2329.
http://arxiv.org/abs/1409.2329.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL). pages 678-687.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured /classification with probabilistic categorial
grammars. In UAI '05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence, Ed-
inburgh, Scotland, July 26-29, 2005. pages 658—666.

48



Learning Thematic Similarity Metric Using Triplet Networks

Liat Ein Dor; Yosi Mass; Alon Halfon, Elad Venezian, Ilya Shnayderman, Ranit Aharonov and Noam Slonim

IBM Research, Haifa, Israel
{liate,yosimass,alonhal,eladv,ilyashn, ranita,noams}@il.ibm.com

Abstract

In this paper we suggest to leverage the
partition of articles into sections, in or-
der to learn thematic similarity metric be-
tween sentences. We assume that a sen-
tence is thematically closer to sentences
within its section than to sentences from
other sections. Based on this assumption,
we use Wikipedia articles to automatically
create a large dataset of weakly labeled
sentence triplets, composed of a pivot sen-
tence, one sentence from the same sec-
tion and one from another section. We
train a triplet network to embed sentences
from the same section closer. To test the
performance of the learned embeddings,
we create and release a sentence cluster-
ing benchmark. We show that the triplet
network learns useful thematic metrics,
that significantly outperform state-of-the-
art semantic similarity methods and multi-
purpose embeddings on the task of the-
matic clustering of sentences. We also
show that the learned embeddings perform
well on the task of sentence semantic sim-
ilarity prediction.

1 Introduction

Text clustering is a widely studied NLP problem,
with numerous applications including collabora-
tive filtering, document organization and index-
ing (Aggarwal and Zhai, 2012). Clustering can
be applied to texts at different levels, from sin-
gle words to full documents, and can vary with
respect to the clustering goal. In this paper, we fo-
cus on the problem of clustering sentences based
on thematic similarity, aiming to group together
sentences that discuss the same theme, as opposed

* These authors contributed equally to this work.
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to the related task of clustering sentences that rep-
resent paraphrases of the same core statement.

Thematic clustering is important for various use
cases. For example, in multi-document summa-
rization, one often extracts sentences from mul-
tiple documents that have to be organized into
meaningful sections and paragraphs. Similarly,
within the emerging field of computational argu-
mentation (Lippi and Torroni, 2016), arguments
may be found in a widespread set of articles (Levy
et al., 2017), which further require thematic orga-
nization to generate a compelling argumentative
narrative.

We approach the problem of thematic cluster-
ing by developing a dedicated sentence similar-
ity measure, targeted at a comparative task — The-
matic Distance Comparison (TDC): given a pivot
sentence, and two other sentences, the task is to
determine which of the two sentences is themati-
cally closer to the pivot. By training a deep neural
network (DNN) to perform TDC, we are able to
learn a thematic similarity measure.

Obtaining annotated data for training the DNN
is quite demanding. Hence, we exploit the natural
structure of text articles to obtain weakly-labeled
data. Specifically, our underlying assumption is
that sentences belonging to the same section are
typically more thematically related than sentences
appearing in different sections. Armed with this
observation, we use the partition of Wikipedia ar-
ticles into sections to automatically generate sen-
tence triplets, where two of the sentences are from
the same section, and one is from a different sec-
tion. This results in a sizable training set of weakly
labeled triplets, used to train a triplet neural net-
work (Hoffer and Ailon, 2015), aiming to predict
which sentence is from the same section as the
pivot in each triplet. Table 1 shows an example
of a triplet.

To test the performance of our network on the-
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matic clustering of sentences, we create a new
clustering benchmark based on Wikipedia sec-
tions. We show that our methods, combined
with existing clustering algorithms, outperform
state-of-the-art general-purpose sentence embed-
ding models in the task of reconstructing the orig-
inal section structure. Moreover, the embeddings
obtained from the triplet DNN perform well also
on standard semantic relatedness tasks. The main
contribution of this work is therefore in proposing
a new approach for learning thematic relatedness
between sentences, formulating the related TDC
task and creating a thematic clustering benchmark.
To further enhance research in these directions, we
publish the clustering benchmark on the IBM De-
bater Datasets webpage !.

2 Related Work

Deep learning via triplet networks was first in-
troduced in (Hoffer and Ailon, 2015), and has
since become a popular technique in metric learn-
ing(Zieba and Wang, 2017; Yao et al., 2016;
Zhuang et al., 2016). However, previous usages
of triplet networks were based on supervised data
and were applied mainly to computer vision ap-
plications such as face verification. Here, for the
first time, this architecture is used with weakly-
supervised data for solving an NLP related task.
In (Mueller and Thyagarajan, 2016), a supervised
approach was used to learn semantic sentence sim-
ilarity by a Siamese network, that operates on
pairs of sentences. In contrast, here the triplet
network is trained with weak supervision, aim-
ing to learn thematic relations. By learning from
triplets, rather than pairs, we provide the DNN
with a context, that is crucial for the notion of
similarity.  (Hoffer and Ailon, 2015) show that
triplet networks perform better in metric learning
than Siamese networks, probably due to this valu-
able context. Finally, (Palangi et al., 2016) used
click-through data to learn sentence similarity on
top of web search engine results. Here we propose
a different type of weak supervision, targeted at
learning thematic relatedness between sentences.

3 Data Construction

We present two weakly-supervised triplet datasets.
The first is based on sentences appearing in same
vs. different sections, and the second is based on

'http://www.research.ibm.com/haifa/
dept/vst/debating_data.shtml
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section titles. The datasets are extracted from the
Wikipedia version of May 2017.

3.1 Sentence Triplets

For generating the sentence triplet dataset, we ex-
ploit the Wikipedia partitioning into sections and
paragraphs, using OpenNLP? for sentence extrac-
tion. We then apply the following rules and fil-
ters, in order to reduce noise and to create a high-
quality dataset, ‘triplets-sen’: i) The maximal dis-
tance between the intra-section sentences is lim-
ited to three paragraphs. ii) Sentences with less
than 5, or more than 50 tokens are filtered out.
iii) The first and the "Background” sections are re-
moved due to their general nature. iv) The follow-
ing sections are removed: “External links”, ”Fur-
ther reading”, "References”, ”See also”, "Notes”,
”Citations” and ”’ Authored books”. These sections
usually list a set of items rather than discuss a spe-
cific subtopic of the article’s title. v) Only arti-
cles with at least five remaining sections are con-
sidered, to ensure focusing on articles with rich
enough content. An example of a triplet is shown
in Table 1.

1. McDonnell resigned from Martin in 1938
and founded McDonnell Aircraft Corporation in 1939
2. In 1967, McDonnell Aircraft merged with the
Douglas Aircraft Company to create McDonnell Douglas
3. Born in Denver, Colorado, McDonnell was raised in
Little Rock, Arkansas, and graduated from Little Rock
High School in 1917

Table 1: Example of a section-sen triplet from the
article ‘James Smith McDonnell’. The first two
sentences are from the section ’Career’ and the
third is from ‘Early life’

In use-cases such as multi-document summa-
rization(Goldstein et al., 2000), one often needs
to organize sentences originating from different
documents. Such sentences tend to be stand-
alone sentences, that do not contain the syntactic
cues that often exist between adjacent sentences
(e.g. co-references, discourse markers etc.). Cor-
respondingly, to focus our weakly labeled data on
sentences that are typically stand-alone in nature,
we consider only paragraph opening sentences.

An essential part of learning using triplets, is the
mining of difficult examples, that prevent quick
stagnation of the network (Hermans et al., 2017).
Since sentences in the same article essentially dis-
cuss the same topic, a deep understanding of se-

2https ://opennlp.apache.org/



mantic nuances is necessary for the network to
correctly classify the triplets. In an attempt to ob-
tain even more challenging triplets, the third sen-
tence is selected from an adjacent section. Thus,
for a pair of intra-section sentences, we create a
maximum of two triplets, where the third sentence
is randomly selected from the previous/next sec-
tion (if exists). The selection of the third sentence
from both previous and next sections is intended
to ensure the network will not pick up a signal re-
lated to the order of the sentences. In Section 5
we compare our third-sentence-selection method
to two alternatives, and examine the effect of the
selection method on the model performance.

Out of the 5.37M Wikipedia articles, 809K
yield at least one triplet. We divide these arti-
cles into three sets, training (80%), validation and
test (10% each). In terms of number of triplets,
the training set is composed of 1.78M triplets,
whereas the validation and test are composed of
220K and 223K triplets respectively.

3.2 Triplets with Section Titles

Incorporating the section titles into the training
data can potentially enhance the network per-
formance. Correspondingly, we created another
triplets data, ’triplets-titles’, where in each triplet
the first sentence in the section (the ’pivot’) is
paired with the section title®, as well as with the
title of the previous/next sections (if exists), where
the former pair is assumed to have greater the-
matic similarity. After applying the filters de-
scribed above we end up with 1.38M, 172K and
173K triplets for the training, validation and test
set respectively. An example of a triplet is shown
in Table 2.

Note, that for this variation of the triplets data,
the network is expected to find a sentence embed-
ding which is closer to the embedding of the true
section title, than to the embedding of the title of
the previous/next section. The learned representa-
tion is expected to encode information about the
themes of the different sections to which the sen-
tence can potentially belong. Thus, thematically
related sentences are expected to have similar rep-
resentations.

3We define the section title to be the article title concate-
nated to the section title. For example, the title of the sec-
tion "Pricing” in the article ”Black Market” is "Black Market
Pricing”.
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1. Bishop was appointed Minister for Ageing in 2003.
2. Julie Bishop Political career
3. Julie Bishop Early life and career

Table 2: Example of a triplet from the triplet-titles
dataset, generated from the article *Julie Bishop’.

loss function

dist(Net(x), Net(x™))

dist(Net(x), Net(x*))

Net Net Net

Figure 1: Triplet Network

3.3 Sentence Clustering Benchmark (SCB)

Our main goal is to successfully partition sen-
tences into subtopics. Unfortunately, there is still
no standard evaluation method for sentence clus-
tering, which is considered a very difficult task
for humans (Geiss, 2009). Correspondingly, we
leverage again the partition of Wikipedia articles
into sections. We assume that this partition, as
performed by the Wikipedia editors, can serve as
ground truth for the clustering of the article sen-
tences. Based on this assumption we create a
sentence clustering benchmark (SCB). SCB in-
cludes 692 articles that were not used in the train-
ing and validation sets of ’triplet-sen’ and ’triplet-
titles’. The number of sections (and correspond-
ingly clusters) per article ranges from 5 to 12. The
number of clustered sentences ranges from 17 to
1614, with an average of 67 sentences per article.

4 Model Architecture

We adopt the triplet network architecture (Hoffer
and Ailon, 2015) (Figure 1) for obtaining sentence
embeddings via metric learning as follows.
Assume a training data of sentences, arranged
into triplets (x,x™,x™), where the pair (x,xT) is
presumably more similar than the pair (x,x 7). To
train the model, each of the three sentences of
each triplet, is fed into the same network (Net),
as a sequence of word embeddings. The layer out-
puts their representations Net(x), Net(x™) and



Net(x™) respectively. Our objective is to make
the representations of x and x closer than the rep-
resentations of x and x~. Thus the next layer uses
a distance function, denoted by ’dist’, to compute
two distances

dt = dist(Net(x), Net(x™))
d™ =dist(Net(x), Net(x7))

The final layer applies softmax on (d*,d™) that re-
sults in p(d*) and p(d™). Finally, the loss function
is given by:

loss = [p(d™)] + |1 - (p(d™)|

Net is composed of a Bi-directional LSTM with
hidden size 300 and 0.8 dropout followed by an
attention (Yang et al., 2016) layer of size 200. The
input to Net are the pre-trained glove word em-
beddings of 300d trained on 840B tokens (Pen-
nington et al., 2014). For dist and the loss func-
tion we use the L1 distance, which we found to
yield better results than L2 and cosine-similarity.
The selected loss function outperformed the pop-
ular triplet loss suggested in (Schroff et al., 2015).
Finally, we use Adam optimizer with initial learn-
ing rate of 0.001. Given a sentence s, Net(s) pro-
vides a sentence embedding of dimension 600.

5 Experiments

5.1 Reconstructing Article Sections

As mentioned, our main objective task is cluster-
ing sentences into subtopics. As a preliminary
step, we first evaluate our method on the triplet-
sen test set. We compare the model trained on
triplet-sen to two well known methods. The first,
mean-vectors, is simply the mean of the GloVe
embeddings of the sentence words (Tai et al.,
2015), which is considered a strong unsupervised
baseline. The second, skip-thoughts (Ryan Kiros,
2015), is among the state-of-the-art unsupervised
models for semantic similarity, and the most pop-
ular multi-purpose embedding method. We ad-
dress two versions of skip-thoughts: one is based
on the original 4800-dimensional vectors (skip-
thoughts-cs), and the other, skip-thoughts-SICK,
is based on the similarity function learned from
the SICK semantic similarity dataset, as described
in (Ryan Kiros, 2015). The aim of assessing skip-
thoughts-SICK is to examine how well a state-of-
the-art semantic similarity function performs on
the thematic clustering task. In the case of mean-
vectors and skip-thoughts-CS, the similarity be-
tween the sentences is computed using the cosine
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similarity (CS) between the embedding vectors.
Table 3 indicates that our method, denoted by

triplet-sen, clearly outperforms the other tested

methods. Surprizingly, skip-thoughts-SICK is in-

Method accuracy
mean-vectors 0.65
skip-thoughts-CS 0.615
skip-thoughts-SICK 0.547
triplets-sen 0.74

Table 3: Results on the triplets data

ferior to skip-thoughts-CS. Note that an additional
interesting comparison is to a skip-thought ver-
sion obtained by learning a linear transformation
of the original vectors using the triplet datasets.
However, no off-the-shelf algorithm is available
for learning such transformation, and we leave this
experiment for future work.

Next we report results on the clustering bench-
mark, SCB (Section 3.3). We evaluate three
triplet-based models. Triplets-sen and triplets-
titles are the models trained on triplets-sen and
triplets-titles datasets respectively. Triplets-sen-
titles is a concatenation of the representations of
our two models. In addition we compare to mean-
vectors and skip-thoughts-CS.

The evaluation procedure is performed as fol-
lows: for each method, we first compute for the
sentences of each article, a similarity matrix, by
calculating the CS between the embedding vectors
of all pairs of sentences. We then use Iclust (Yom-
Tov and Slonim, 2009; Slonim et al., 2005) and
k-means to cluster the sentences, where the num-
ber of clusters is set to the number of sections
in SCB*. Since the clustering algorithms them-
selves are not the focus of this study, we choose
the classical, simple k-means, and one more ad-
vanced algorithm, Iclust. For the same reason,
we also set the number of clusters to the correct
number. Finally, we use standard agreement mea-
sures, MI, Adjusted MI (AMI) (Vinh et al., 2009),
Rand Index (RI) and Adjusted Rand Index (ARI)
(Rand, 1971), to quantify the agreement between
the ground truth and the clustering results.

As exhibited in Table 4, our models signifi-
cantly outperform the two other methods for both
clustering algorithms, where the best performance
is achieved by the concatenated representations
(triplets-sen-titles), suggesting the two models,

“For k-means, using L1 as the distance metric gave similar
results



triplets-sen and triplets-titles, learned complemen-
tary features. The performance of skip-thoughts-
SICK on this task (not shown) was again inferior
to skip-thoughts-CS.

As mentioned in Section 3.1, the third sentence
in triplet-sen was selected from the sections adja-
cent to the pivot section, aiming to obtain more
difficult triplets. We use the clustering task to ex-
amine the effect of the selection method on the
model performance. We compare to two alterna-
tive methods: one that chooses the third sentence
from a random section within the same article, and
another (triplets-sen-rand-art), that chooses it ran-
domly from a random different article. Results
show that the first method leads to the same perfor-
mance as our method, whereas triplets-sen-rand-
art yields inferior results (see Table 4). A possi-
ble explanation is that the within-article triplets are
difficult enough to prevent stagnation of the learn-
ing process without the need for further hardening
of the task. However, the cross-article triplets are
too easy to classify, and do not provide the net-
work with the challenge and difficulty required for
obtaining high quality representations.

iclust
Method MI AMI RI ARI
mean-vectors 0.811 | 0.222 | 0.774 | 0.154
skip-thoughts-CS 0.656 | 0.125 | 0.747 | 0.087
triplets-sen-rand-art | 0.885 | 0.266 | 0.787 | 0.192
triplets-sen 0.935 | 0.296 | 0.801 | 0.224
triplets-titles 0.904 | 0.273 | 0.799 | 0.206
triplets-sen-titles 0.945 | 0.303 | 0.803 | 0.230
kmeans
mean-vectors 0.706 | 0.153 | 0.7760 | 0.103
skip-thoughts-CS 0.624 | 0.099 | 0.745 | 0.067
triplets-sen-rand-art | 0.793 | 0.205 | 0.775 | 0.145
triplets-sen 0.873 | 0.257 | 0.791 | 0.195
triplets-titles 0.836 | 0.231 | 0.786 | 0.172
triplets-sen-titles 0.873 | 0.258 | 0.791 | 0.194

Table 4: Results on the clustering task

5.2 Semantic Relatedness

As evident from the clustering results, our mod-
els learned well to capture thematic similarity be-
tween sentences. Here we investigate the perfor-
mance of our model in the more classical task of
semantic relatedness of sentences. Specifically,
we examine the SemEval 2014 Task 1: seman-
tic relatedness SICK dataset (Marelli et al., 2014).
We adopt the experimental setup of (Ryan Kiros,
2015) and learn logistic regression classifiers on
top of the absolute difference and the component-
wise product for all sentence pairs in the train-
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ing data. The evaluation measures are Pearson r,
Spearman p, and mean square error (MSE). Ta-
ble 5 shows that like in the clustering task, best re-
sults are achieved by the concatenated embedding
triplets-sen-titles, which performs in the range be-
tween mean-vector and skip-thoughts-SICK.

Method r P MSE
mean-vectors 0.757 | 0.673 | 0.4557
skip-thoughts-SICK | 0.858 | 0.791 | 0.287
triplets-sen 0.797 | 0.704 | 0.372
triplets-titles 0.786 | 0.685 | 0.393
triplets-sen-titles 0.818 | 0.724 | 0.339

Table 5: Results on the SICK semantic relatedness
subtask.

Table 6 presents some examples of predictions
of triplets-sen-titles compared to the ground truth
and to skip-thoughts-SICK predictions. The first
pair is semantically equivalent as both methods de-
tect. In the second pair, the first sentence is a nega-
tion of the second, but from the thematic point of
view they are rather similar, thus assigned a rela-
tively high score by our model.

sentences GT | Tr | Sk
1. A sea turtle is hunting for fish 45 |42 | 45
2. A sea turtle is hunting for food
1. A sea turtle is not hunting for fish | 3.4 | 4.1 | 3.8
2. A sea turtle is hunting for fish
Table 6: Example predictions on the SICK

data. GT = groundtruth, Tr=triplets-sen, Sk=skip-
thoughts-SICK

6 Summary

In this paper we suggest a new approach for learn-
ing thematic similarity between sentences. We
exploit the Wikipedia section structure to gener-
ate a large dataset of weakly labeled triplets of
sentences with no human involvement. Using a
triplet network, we learn a high quality sentence
embeddings, tailored to reveal thematic relations
between sentences. Furthermore, we take a first
step towards exploring the versatility of these em-
beddings, by showing their good performance on
the semantic similarity task. An interesting direc-
tion for future work is further exploring this ver-
satility, by examining the performance of the em-
beddings on a variety of other NLP tasks.
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Abstract

We use dependency triples automatically
extracted from a Web-scale corpus to per-
form unsupervised semantic frame induc-
tion. We cast the frame induction problem
as a triclustering problem that is a gen-
eralization of clustering for triadic data.
Our replicable benchmarks demonstrate
that the proposed graph-based approach,
Triframes, shows state-of-the art results on
this task on a FrameNet-derived dataset
and performing on par with competitive
methods on a verb class clustering task.

1 Introduction

Recent years have seen much work on Frame Se-
mantics (Fillmore, 1982), enabled by the availabil-
ity of a large set of frame definitions, as well as
a manually annotated text corpus provided by the
FrameNet project (Baker et al., 1998). FrameNet
data enabled the development of wide-coverage
frame parsers using supervised learning (Gildea
and Jurafsky, 2002; Erk and Padd, 2006; Das et al.,
2014, inter alia), as well as its application to a
wide range of tasks, ranging from answer extrac-
tion in Question Answering (Shen and Lapata,
2007) and Textual Entailment (Burchardt et al.,
2009; Ben Aharon et al., 2010).

However, frame-semantic resources are ar-
guably expensive and time-consuming to build due
to difficulties in defining the frames, their gran-
ularity and domain, as well as the complexity of
the construction and annotation tasks requiring
expertise in the underlying knowledge. Conse-
quently, such resources exist only for a few lan-
guages (Boas, 2009) and even English is lack-
ing domain-specific frame-based resources. Pos-
sible inroads are cross-lingual semantic annota-
tion transfer (Padé and Lapata, 2009; Hartmann
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FrameNet Role Lexical Units (LU)
Perpetrator Subject kidnapper, alien, militant
FEE Verb snatch, kidnap, abduct
Victim Object son, people, soldier, child

Table 1: Example of a LU tricluster corresponding
to the “Kidnapping” frame from FrameNet.

et al., 2016) or linking FrameNet to other lexical-
semantic or ontological resources (Narayanan
et al., 2003; Tonelli and Pighin, 2009; Laparra and
Rigau, 2010; Gurevych et al., 2012, inter alia).
But while the arguably simpler task of PropBank-
based Semantic Role Labeling has been success-
fully addressed by unsupervised approaches (Lang
and Lapata, 2010; Titov and Klementiev, 2011),
fully unsupervised frame-based semantic annota-
tion exhibits far more challenges, starting with the
preliminary step of automatically inducing a set of
semantic frame definitions that would drive a sub-
sequent text annotation. In this work, we aim at
overcoming these issues by automatizing the pro-
cess of FrameNet construction through unsuper-
vised frame induction techniques.

Triclustering. In this work, we cast the frame
induction problem as a triclustering task (Zhao
and Zaki, 2005; Ignatov et al., 2015), namely
a generalization of standard clustering and bi-
clustering (Cheng and Church, 2000), aiming at
simultaneously clustering objects along three di-
mensions (cf. Table 1). First, using tricluster-
ing allows to avoid sequential nature of frame in-
duction approaches, e.g. (Kawahara et al., 2014),
where two independent clusterings are needed.
Second, benchmarking frame induction as triclus-
tering against other methods on dependency triples
allows to abstract away the evaluation of the frame
induction algorithm from other factors, e.g., the in-
put corpus or pre-processing steps, thus allowing
a fair comparison of different induction models.
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The contributions of this paper are three-fold:
(1) we are the first to apply triclustering algo-
rithms for unsupervised frame induction, (2) we
propose a new approach to triclustering, achiev-
ing state-of-the-art performance on the frame in-
duction task, (3) we propose a new method for the
evaluation of frame induction enabling straight-
forward comparison of approaches. In this paper,
we focus on the simplest setup with subject-verb-
object (SVO) triples and two roles, but our evalu-
ation framework can be extended to more roles.

In contrast to the recent approaches like the one
by Jauhar and Hovy (2017), our approach induces
semantic frames without any supervision, yet cap-
turing only two core roles: the subject and the
object of a frame triggered by verbal predicates.
Note that it is not generally correct to expect that
the SVO triples obtained by a dependency parser
are necessarily the core arguments of a predicate.
Such roles can be implicit, i.e., unexpressed in a
given context (Schenk and Chiarcos, 2016). Keep-
ing this limitation in mind, we assume that the
triples obtained from a Web-scale corpus cover
most core arguments sufficiently.

Related Work. LDA-Frames (Materna, 2012,
2013) is an approach to inducing semantic frames
using LDA (Blei et al, 2003) for generat-
ing semantic frames and their respective frame-
specific semantic roles at the same time. The
authors evaluated their approach against the
CPA corpus (Hanks and Pustejovsky, 2005).
ProFinder (Cheung et al., 2013) is another gen-
erative approach that also models both frames
and roles as latent topics. The evaluation was
performed on the in-domain information extrac-
tion task MUC-4 (Sundheim, 1992) and on the
text summarization task TAC-2010.! Modi et al.
(2012) build on top of an unsupervised semantic
role labeling model (Titov and Klementiev, 2012).
The raw text of sentences from the FrameNet data
is used for training. The FrameNet gold annota-
tions are then used to evaluate the labeling of the
obtained frames and roles, effectively clustering
instances known during induction. Kawahara et al.
(2014) harvest a huge collection of verbal predi-
cates along with their argument instances and then
apply the Chinese Restaurant Process clustering
algorithm to group predicates with similar argu-
ments. The approach was evaluated on the verb

'mttps://tac.nist.gov/2010/
Summarization
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cluster dataset of Korhonen et al. (2003).

A major issue with unsupervised frame induc-
tion task is that these and some other related ap-
proaches, e.g., (O’Connor, 2013), were all evalu-
ated in completely different incomparable settings,
and used different input corpora. In this paper, we
propose a methodology to resolve this issue.

2 The Triframes Algorithm

Our approach to frame induction relies on graph
clustering. We focused on a simple setup us-
ing two roles and the SVO triples, arguing that
it still can be useful, as frame roles are primarily
expressed by subjects and objects, giving rise to
semantic structures extracted in an unsupervised
way with high coverage.

Input Data. As the input data, we use SVO
triples extracted by a dependency parser. Ac-
cording to our statistics on the dependency-parsed
FrameNet corpus of over 150 thousand sen-
tences (Bauer et al., 2012), the SUBJ and OBJ
relationships are the two most common shortest
paths between frame evoking elements (FEEs) and
their roles, accounting for 13.5 % of instances of
a heavy-tail distribution of over 11 thousand dif-
ferent paths that occur three times or more in the
FrameNet data. While this might seem a simpli-
fication that does not cover prepositional phrases
and frames filling the roles of other frames in a
nested fashion, we argue that the overall frame
inventory can be induced on the basis of this re-
stricted set of constructions, leaving other paths
and more complex instances for further work.

The Method. Our method constructs embed-
dings for SVO triples to reduce the frame induc-
tion problem to a simpler graph clustering prob-
lem. Given the vocabulary V, a d-dimensional
word embedding model v € V' — 7 € R?, and
a set of SVO triples T' C V3 extracted from a syn-
tactically analyzed corpus, we construct the triple
similarity graph G. Clustering of G yields sets of
triples corresponding to the instances of the se-
mantic frames, thereby clustering frame-evoking
predicates and roles simultaneously.

We obtain dense representations of the triples T'
by concatenating the word vectors corresponding
to the elements of each triple by transforming a
triple t = (s,p,0) € T into the (3d)-dimensional
vector £ = §@ p'® 6. Subsequently, we use the
triple embeddings to generate the undirected graph



Algorithm 1 Triframes frame induction

Input: an embedding model v € V' — ¥ € R?,
a set of SVO triples T' C V3,
the number of nearest neighbors k£ € N,
a graph clustering algorithm CLUSTER.

Output: a set of triframes F'.

S {t—teR: teT)

B {(t,t) eT? :t e NNY(),t #t'}

: F <—(Z)

: for all C € CLUSTER(T', E) do

fs < {se€eV:(s,v,0)€C}

fo{veV:(s,v,0)eC}

fo+{o€V :(sv,0) €C}

F e FU{(fo, fur f)}

return F

R e A U S o i e

G = (T, E) by constructing the edge set E C T2,
For that, we compute £ € N nearest neighbors
of each triple vector & € R3? and establish co-
sine similarity-weighted edges between the corre-
sponding triples.

Then, we assume that the triples representing
similar contexts appear in similar roles, which
is explicitly encoded by the concatenation of the
corresponding vectors of the words constituting
the triple. We use graph clustering of G to
retrieve communities of similar triples forming
frame clusters; a clustering algorithm is a function
CLUSTER : (T, E) — Csuch that T = o C.
Finally, for each cluster C' € C, we aggregate
the subjects, the verbs, and the objects of the con-
tained triples into separate sets. As the result, each
cluster is transformed into a triframe, which is a
triple that is composed of the subjects f; C V, the
verbs f, C V, and the objects f, C V.

Our frame induction approach outputs a set of
triframes F' as presented in Algorithm 1. The
hyper-parameters of the algorithm are the number
of nearest neighbors for establishing edges (k) and
the graph clustering algorithm CLUSTER. During
the concatenation of the vectors for words forming
triples, the (|7°| x 3d)-dimensional vector space S
is created. Thus, given the triple ¢t € T', we denote
the k nearest neighbors extraction procedure of its
concatenated embedding from S as NN? () C T
We used k = 10 nearest neighbors per triple.

To cluster the nearest neighbor graph of SVO
triples G, we use the WATSET fuzzy graph cluster-
ing algorithm (Ustalov et al., 2017). It treats the
vertices T of the input graph G as the SVO triples,
induces their senses, and constructs an intermedi-
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ate sense-aware representation that is clustered us-
ing the Chinese Whispers (CW) hard clustering al-
gorithm (Biemann, 2006). We chose WATSET due
to its performance on the related synset induction
task, its fuzzy nature, and the ability to find the
number of frames automatically.

3 Evaluation

Input Corpus. In our evaluation, we use triple
frequencies from the DepCC dataset (Panchenko
et al., 2018) , which is a dependency-parsed ver-
sion of the Common Crawl corpus, and the stan-
dard 300-dimensional word embeddings model
trained on the Google News corpus (Mikolov
et al.,, 2013). All evaluated algorithms are exe-
cuted on the same set of triples, eliminating varia-
tions due to different corpora or pre-processing.

Datasets. We cast the complex multi-stage
frame induction task as a straightforward triple
clustering task. We constructed a gold stan-
dard set of triclusters, each corresponding to
a FrameNet frame, similarly to the one illus-
trated in Table 1. To construct the evaluation
dataset, we extracted frame annotations from the
over 150 thousand sentences from the FrameNet
1.7 (Baker et al., 1998). Each sentence contains
data about the frame, FEE, and its arguments,
which were used to generate triples in the form
(word; : roley, word; : FEE, wordy,: roley), where
word; ;. correspond to the roles and FEE in the
sentence. We omitted roles expressed by multi-
ple words as we use dependency parses, where one
node represents a single word only.

For the sentences where more than two roles
are present, all possible triples were generated.
Sentences with less than two roles were omit-
ted. Finally, for each frame, we selected only two
roles, which are most frequently co-occurring in
the FrameNet annotated texts. This has left us with
about 100 thousand instances for the evaluation.
For the evaluation purposes, we operate on the in-
tersection of triples from DepCC and FrameNet.
Experimenting on the full set of DepCC triples is
only possible for several methods that scale well
(WATSET, CW, k-means), but is prohibitively ex-
pensive for other methods (LDA-Frames, NOAC).

In addition to the frame induction evaluation,
where subjects, objects, and verbs are evaluated
together, we also used a dataset of polysemous
verb classes introduced in (Korhonen et al., 2003)
and employed by Kawahara et al. (2014). Statis-



Dataset # instances # unique # clusters
FrameNet Triples 99,744 94,170 383
Poly. Verb Classes 246 110 62

Table 2: Statistics of the evaluation datasets.

tics of both datasets are summarized in Table 2.
Note that the polysemous verb dataset is rather
small, whereas the FrameNet triples set is fairly
large, enabling reliable comparisons.

Evaluation Measures. Following the approach
for verb class evaluation by Kawahara et al.
(2014), we employ normalized modified purity
(mmPU) and normalized inverse purity (niPU)
as the clustering quality measures. Given the
set of the obtained clusters K and the set of
the gold clusters (G, normalized modified purity
quantifies the clustering precision as the average
of the weighted overlap g, (K; N G;) between
each cluster K; € K and the gold cluster
G; € G that maximizes the overlap with Kj:
nmPU = % lelg‘t |K;|>1
where the weighted overlap is the sum of
the weights ¢;, for each word v in ¢-th clus-
ter:  0x,; (KiNGy) =3 ck,na, Civ- Note that
nmPU counts all the singleton -clusters as
wrong.  Similarly, normalized inverse purity
(collocation) quantifies the clustering recall:
niPU = + Z‘jcjl maxi<;<|x| 0c, (Ki N G;). nmPU
and niPU are combined together as the harmonic
mean to yield the overall clustering F-score (F'1),
which we use to rank the approaches.

Our framework can be extended to evaluation
of more than two roles by generating more roles
per frame. Currently, given a set of gold triples
generated from the FrameNet, each triple ele-
ment has a role, e.g., “Victim”, “Predator”, and
“FEE”. We use fuzzy clustering evaluation mea-
sure which operates not on triples, but instead
on a set of tuples. Consider for instance a gold
triple (Freddy: Predator,kidnap: FEE, kid: Victim). It
will be converted to three pairs (Freddy, Predator),
(kidnap, FEE), (kid, Victim). Each cluster in both K
and G is transformed into a union of all constituent
typed pairs. The quality measures are finally cal-
culated between these two sets of tuples, K, and
(. Note that one can easily pull in more than two
core roles by adding to this gold standard set of tu-
ples other roles of the frame, e.g., (forest, Location).
In our experiments, we focused on two main roles
as our contribution is related to the application of
triclustering methods. However, if more advanced

max; <<|a| 0x; (Ki N Gj),
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methods of clustering are used, yielding clusters of
arbitrary modality (n-clustering), one could also
use our evaluation schema.

Baselines. We compare our method to several
available state-of-the-art baselines applicable to
our dataset of triples.

LDA-Frames by Materna (2012, 2013) is a
frame induction method based on topic model-
ing. We ran 500 iterations of the model with
the default parameters. Higher-Order Skip-Gram
(HOSG) by Cotterell et al. (2017) generalizes the
Skip-Gram model (Mikolov et al., 2013) by ex-
tending it from word-context co-occurrence ma-
trices to tensors factorized with a polyadic decom-
position. In our case, this tensor consisted of SVO
triple counts. We trained three vector arrays (for
subjects, verbs and objects) on the 108,073 SVO
triples from the FrameNet corpus, using the im-
plementation by the authors. Training was per-
formed with 5 negative samples, 300-dimensional
vectors, and 10 epochs. We constructed an em-
bedding of a triple by concatenating embeddings
for subjects, verbs, and objects, and clustered them
using k-means with the number of clusters set to
10,000 (this value provided the best performance).
NOAC (Egurnov et al., 2017) is an extension of
the Object Attribute Condition (OAC) tricluster-
ing algorithm (Ignatov et al., 2015) to numeri-
cally weighted triples. This incremental algorithm
searches for dense regions in triadic data. A mini-
mum density of 0.25 led to the best results. In the
Triadic baselines, independent word embeddings
of subject, object, and verb are concatenated and
then clustered using a hard clustering algorithm:
k-means, spectral clustering, or CW.

We tested various hyper-parameters of each of
these algorithms and report the best results overall
per clustering algorithm. Two trivial baselines are
Singletons that creates a single cluster per instance
and Whole that creates one cluster for all elements.

4 Results

We perform two experiments to evaluate our ap-
proach: (1) a frame induction experiment on the
FrameNet annotated corpus by Bauer et al. (2012);
(2) the polysemous verb clustering experiment on
the dataset by Korhonen et al. (2003). The first
is based on the newly introduced frame induction
evaluation schema (cf. Section 3). The second
one evaluates the quality of verb clusters only on
a standard dataset from prior work.



Verb Subject Object Frame
Method nmPU niPU F; | nmPU niPU F; | nmPU niPU F; | nmPU niPU F
Triframes WATSET 42.84 88.35 57.70 | 5422 8140 65.09 | 53.04 83.25 64.80| 55.19 60.81 57.87
HOSG (Cotterell et al., 2017) 4441 6843 5386 | 52.84 7453 61.83 | 5473 74.05 6294 | 5574 5045 5296
NOAC (Egurnov et al., 2017) 20.73 88.38 3358 | 57.00 80.11 66.61 | 57.32 81.13 67.18 | 44.01 6321 51.89
Triadic Spectral 49.62 2490 33.15| 50.07 41.07 45.13 | 50.50 41.82 4575 | 52.05 28.60 3691
Triadic k-Means 63.87 23.16 3399 | 63.15 3820 47.60 | 63.98 3743 4723 | 63.64 24.11 3497
LDA-Frames (Materna, 2013) | 26.11 66.92 37.56 | 17.28 83.26 28.62 | 20.80 90.33 33.81 18.80 71.17 29.75
Triframes CW 775 648  7.06 370 1407 586 | 5191 7692 6199 | 21.67 2650 23.84
Singletons 0.00 2523 0.00 0.00 25.68 0.00 0.00 20.80 0.00 | 32.34 22.15 26.29
Whole 3.62 100.0 6.98 241 9841 4.70 2.38 100.0 4.64 2.63 99.55 512

Table 3: Frame evaluation results on the triples from the FrameNet 1.7 corpus (Baker et al., 1998). The
results are sorted by the descending order of the Frame F;-score. Best results are boldfaced.

60 -

40-

N I I
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LDA-Frames

F-score

NOAC HOSG Trifr. Watset

Method

Figure 1: Fj-scores for verbs, [ subjects,
objects, [ frames corresponding to Table 3.

Frame Induction Experiment. In Table 3 and
Figure 1, the results of the experiment are pre-
sented. Triframes based on WATSET clustering
outperformed the other methods on both Verb F
and overall Frame F;. The HOSG-based cluster-
ing proved to be the most competitive baseline,
yielding decent scores according to all four mea-
sures. The NOAC approach captured the frame
grouping of slot fillers well but failed to establish
good verb clusters. Note that NOAC and HOSG
use only the graph of syntactic triples and do not
rely on pre-trained word embeddings. This sug-
gests a high complementarity of signals based on
distributional similarity and global structure of the
triple graph. Finally, the simpler 7Triadic baselines
relying on hard clustering algorithms showed low
performance, similar to that of LDA-Frames, jus-
tifying the more elaborate WATSET method.

While triples are intuitively less ambiguous than
words, still some frequent and generic triples like
(she, make, it) can act as hubs in the graph, mak-
ing it difficult to split it into semantically plausible
clusters. The poor results of the Chinese Whispers
hard clustering algorithm illustrate this. Since the
hubs are ambiguous, i.e., can belong to multiple
clusters, the use of the WATSET fuzzy clustering
algorithm that splits the hubs by disambiguating
them leads to the best results (see Table 3).

Method nmPU niPU Fi
LDA-Frames 52.60 45.84 48.98
Triframes WATSET 40.05 62.09 48.69
NOAC 37.19 64.09 47.07
HOSG 38.22 4376 40.80
Triadic Spectral 35,76 38.96 36.86
Triadic k-Means 5222 2743 3596
Triframes CW 18.05 12.72 1492
Whole 24.14  79.09 36.99
Singletons 0.00 27.21 0.00

Table 4: Evaluation results on the dataset of poly-
semous verb classes by Korhonen et al. (2003).

Verb Clustering Experiment. Table 4 presents
results on the second dataset for the best models
identified on the first dataset. The LDA-Frames
yielded the best results with our approach per-
forming comparably in terms of the F;-score. We
attribute the low performance of the Triframes
method based on CW clustering to its hard parti-
tioning output, whereas the evaluation dataset con-
tains fuzzy clusters. Different rankings also sug-
gest that frame induction cannot simply be treated
as a verb clustering and requires a separate task.

5 Conclusion

In this paper, we presented the first application
of triclustering for unsupervised frame induction.
We designed a dataset based on the FrameNet
and SVO triples to enable fair corpus-independent
evaluations of frame induction algorithms. We
tested several triclustering methods as the base-
lines and proposed a new graph-based tricluster-
ing algorithm that yields state-of-the-art results. A
promising direction for future work is using the in-
duced frames in applications, such as Information
Extraction and Question Answering.

Additional illustrations and examples of ex-
tracted frames are available in the supplementary
materials. The source code and the data are avail-
able online under a permissive license.’

https://github.com/uhh-1t/triframes
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Abstract

Identification of distinct and independent
participants (entities of interest) in a nar-
rative is an important task for many NLP
applications. This task becomes chal-
lenging because these participants are of-
ten referred to using multiple aliases. In
this paper, we propose an approach based
on linguistic knowledge for identification
of aliases mentioned using proper nouns,
pronouns or noun phrases with common
noun headword. We use Markov Logic
Network (MLN) to encode the linguis-
tic knowledge for identification of aliases.
We evaluate on four diverse history nar-
ratives of varying complexity as well as
newswire subset of ACE 2005 dataset.
Our approach performs better than the
state-of-the-art.

1 Introduction

Identifying aliases of participants in a narrative is
crucial for many NLP applications like timeline
creation, question-answering, summarization, and
information extraction. For instance, to answer
a question (in the context of Table 1) When did
Napoleon defeat the royalist rebels?, we need to
identify Napoleon and the young lieutenant as
aliases of Napoleon Bonaparte. Similarly, time-
line for Napoleon Bonaparte will be inconsis-
tent with the text, if the young lieutenant is
not identified as an alias Napoleon Bonaparte.
This will further affect any analysis of the time-
line (Bedi et al., 2017).

In the context of narrative analysis, we define —
e A participant as an entity of type PERSON
(PER), LOCATION (LOC), or ORGANIZATION
(ORG). A participant has a canonical mention,

*These authors contributed equally.
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[Napoleon Bonaparte] p; was quite [a short man] ai

just five feet three inches tall. When [he] a1

was nine years old, [his parents]p2 sent [him] a1

to [a military school in France] p3. In 1785,

[he]l o1 became [a lieutenant] ;. When the

Revolution broke out, [Napoleon] i joined [the

army of the new government] pyg. When [royalist

rebels] ps marched on [the National Convention] pg,

[a government official] p7 told [the young

lieutenant] o1 to defend [the delegates]ps.

Table 1: Example narrative excerpt with only in-
dependent participant mentions marked. For the
t-th participant, canonical mention is marked with
Pi and all its aliases are marked with Az.

which is a standardized reference to that partici-
pant (e.g., Napoleon Bonaparte). Further, it may
have several aliases, which are different mentions
referring to the same participant.

e A basic participant mention can be a sequence of
proper nouns (€.g., Napoleon Of N. Bonaparte), a
pronoun (e.g., he) or a generic NP (e.g., a short
man Of the young lieutenant).

o Independent basic mentions of a participant play
primary role in the narrative. Dependent basic
mentions play supporting role by qualifying or
elaborating independent basic mentions. For each
independent mention, we merge all its dependent
mentions to create its composite mention.

Note that our notion of dependency is syntac-
tic. A basic mention can be either dependent or
independent. A basic mention is said to be de-
pendent if its governor in the dependency parse
tree is itself a participant mention; otherwise it is
called as independent mention. An independent
mention can be a basic (if it does not have any de-
pendent mentions) or a composite mention. An in-

'NP with a common noun headword
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dependent composite mention is created by recur-
sively merging all its dependent mentions. For in-
stance, for the phrases his parents and parents
of Napoleon, following are the basic participant
mentions - his, Napoleon, and parents. In the
dependency parse trees, parents is the governor
in both cases. Hence, his and Napoleon would
be basic dependent mentions. Final independent
composite mentions his parents O parents of
Napoleon are created by merging the dependent
mentions with the independent mention parents.

In this paper, we focus on identification of in-
dependent mentions (basic as well as composite)
for any participant in a narrative. The problem
of identifying aliases of participants is challeng-
ing because even though the standard NLP toolk-
its work well to resolve the coreferences among
pronouns and named entities, we observed that
they perform poorly for generic NPs. For in-
stance, Stanford CoreNLP does not identify the
young lieutenant and Napoleon Bonaparte as
the same participant (Table 1); a task we aim to
do. This task can be considered as a sub-problem
of the standard coreference resolution (Ng, 2017).
We build upon output from any standard corefer-
ence resolution algorithm, and improve it signifi-
cantly to detect the missing aliases.

Our goal is to identify the canonical mentions of
all independent participants and their aliases. In
this paper, we propose a linguistically grounded
algorithm for alias detection. Our algorithm uti-
lizes WordNet hypernym structure for identifying
participant mentions. It encodes linguistic knowl-
edge in the form of first order logic rules and
performs inference in Markov Logic Networks
(MLN) (Richardson and Domingos, 2006) for es-
tablishing alias links among these mentions.

2 Related Work

Traditionally, alias detection restricts the focus on
aliases of named entities which occur as proper
nouns (Sapena et al., 2007; Hsiung et al., 2005)
using lexical, semantic, and social network anal-
ysis. This ignores the aliases which occur as
generic NPs. Even in the coreference resolution,
recently (Peng et al., 2015a,b) the focus has come
back to generic NP aliases by detecting mention
heads. Peng et al. (2015b) propose a notion of
Predicate Schemas to capture interaction between
entities at predicate level and instantiate them us-
ing knowledge sources like Wikipedia. These in-
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Figure 1: Input ULDG initialized with NER +
Coreference. (Note: alias edges(E,) are shown

using dotted lines; participant edges (k) are
shown using thick arrows; dependency edges (£)
are shown using thin labelled arrows.)
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Figure 2: Output ULDG after applying Algo-
rithm 1 on input ULDG in Figure 1. New E,
edges: <man, Bonaparte), (man, him), & (man,
His) are added. Newly added £, edges are high-
lighted with thick, filled arrows. Participant types
of man & school are changed to PER & ORG re-
spectively; type of France is changed to OTH.

stances of Predicate Schemas are then compiled
into constraints in an Integer Linear Programming
(ILP) based formulation to resolve coreferences.
In addition to pronouns, our approach focuses on
identification of common noun based aliases of a
participant using MLN.

MLN has been used to solve the problem
of coreference resolution (Poon and Domingos,
2008; Song et al., 2012). Our work differs from
them as we build upon output of off-the-shelf
coreference resolution system, rather than iden-
tifying aliases/coreferences from scratch. This
helps in exploiting the strengths (such as linking
pronoun mentions to their antecedents) of the ex-
isting systems and overcome the weaknesses (such
as resolving generic NP mentions) by incorporat-
ing additional linguistic knowledge.

A more general and challenging problem in-



volves resolution of bridging descriptions which
study relationships between a definite description
and its antecedent. As noted in (Vieira and Teufel,
1997; Poesio et al., 1997), bridging descriptions
consider many different types of relationships be-
tween a definite description (definite generic NP)
and its antecedent; e.g., synonymy, hyponymy,
meronymy, events, compound nouns, etc. How-
ever, in this paper we focus on identity type of re-
lationships only. Further, Vieira and Teufel (1997)
use WordNet to identify these relationship types
between definite descriptions. As described in
Phase-I of algorithm 1 (Section 3), we use Word-
Net for a completely different purpose of identi-
fying participant type.> Gardent and Kow (2003)
presented a corpus study of bridging definite de-
scriptions and their typologies. They have iden-
tified several types of bridging relations like set-
subset, event-argument etc.

3  Our Approach

Our approach has three broad phases: (I) Identifi-
cation of participants, (I[) MLN based formulation
to identify aliases, and (III) Composite mention
creation. We use a Unified Linguistic Denotation
Graph (ULDG) representation of NLP-processed
sentences in the input narrative. The ULDG uni-
fies output from various stages of NLP pipeline
such as dependency parsing, NER and coreference
resolution, e.g., Figure 1 shows a sample ULDG.
Definition: A ULDG G(V, Ey, E,, E,), corre-
sponding to a set S of n sentences, is a vertex-
labeled and edge-labeled graph. A node v € V
corresponds to a token in .S and its label is defined
as: L, = (s,t,token, POS,p,a); where s : sen-
tence index, ¢ : token index, token, POS : part-
of-speech tag of token, p denotes participant type
(p € {PER,ORG,LOC,OTHER (OTH)}) if
u is a headword of a participant mention and a
denotes canonical participant mention of corre-
sponding group of aliases. There are three types
of edges —

e By = {(u,v,dep) : directed dependency edge
labelled with dep (dependency relation), which
connects a governor (parent) token u to its depen-
dent token U}; e.g., (sent, parent, nsubj)

o 5, = {(u,v) : directed edge, which connects
headword u of a participant phrase to its each con-
stituent word U}; €.g., (Bonaparte, Napoleon)

2Further details are available in Figure A.1 and Table A.2
in the supplementary material.
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e £, = {(u,v) : undirected edge, which connects
nodes u and v which are headwords of aliases of
the same participant }; e.g., (him, Bonaparte)
Our approach has been summarized in Algo-
rithm 1. Its input is an ULDG G(V, Eq, E,,, E,)
for a set S of given sentences. We initialize V', Ey,
E, and E, using any standard dependency parser,
NER and coreference resolution techniques?.

input : G’ = ULDG for set of sentences S
output: G with updated participant and alias edges
// Phase-I: Basic participant mention
identification
foreach n € G.nodes do
if n.POS is noun An.p=OTH N
is_generic-N P_head(G,n) then
n.p =

D
checkW ordN et Hypernyms(n.token)
if n.p = OTH then continue
foreach (n,z,dep) € Eq do
L if dep € {amod, compound, det }

then E, := E, U {(n,z)}
foreach n € G.nodes do
if n.POS is pronoun A\ (3zx : (n,x) € E4 such
that x.p # OTH) then n.p := x.p

G := resolveParticipantTypeCon flict(G)

// Phase-II: MLN-based alias detection

E, := Eq U {{(u,v) : where u and v are detected as
aliases by MLN _encoded_Linguistic_Constraints()}

// Phase-III: Composite mention creation by

merging dependent participant mentions
G'(V', E') := Subgraph of G, such that
V' i={ne€eG:np#OTH}and
E' = {{u,v,dep) € Eq : dep € {appos, nmod}}
foreach n € G.nodes do
if n.p = OT H then continue
indParticipant := True
foreach (z,n, dep) € Eq do
if dep € {appos, nmod} A x.p # OTH
then indParticipant := False
if mindParticipant then continue
depParticipants := DFS(G',n)
foreach y € depParticipants do
By = Ep U{(n,y)}
foreach (y,z) € E, do
| Ep:=Ep,U{(n,)}
y.p:=OTH
Drop from E,, all outgoing edges from y

foreach clique c in subgraph (V, E,) C G do
foreach n € c.nodes do
| n.a:=earliest participant mention in c.nodes

Algorithm 1: identi fy_participants_&_aliases

Our algorithm modifies the input ULDG in-
place by updating node labels, E, and E,. Fig-
ure 1 shows an example of initialized input ULDG,
which gets transformed by our algorithm to the
output ULDG shown in Figure 2.

Phase-I: In this phase, we update participant type

3We use Stanford CoreNLP Toolkit (Manning et al., 2014)



Predicates

Description

NEType(z,y)
CopulaConnect(x,y)

become)

Conj(x,y)
Dif fVerbConnect(z,y)

LexSim(z,y)
Alias(z,y)

y 1s entity type of participant x
Participants x and y are connected through a copula verb or a “copula-like” verb in E4 (e.g.,

Participants x and y are connected by a conjunction in Fgq

Participants x and y are connected through a “differentiating” verb or a copula-like verb in
E;(e.g. tell)

Participants x and y are lexically similar, i.e. having low edit distance

Participants x and y are aliases of each other (used as a query predicate)

Hard rules

Description

Alias(z, x) ; Alias(z,y) = Alias(y, x)
Alias(z,y) A Alias(y, z) = Alias(z, z)
) A

Alias(z,y
Alias(z,y) =
Conj(z,y) = —Alias(x,y)

—Alias(y, z) = —Alias(z, z)
(NEType(z,z) < NEType(y, z))

Reflexivity and symmetry of aliases
Transitivity of aliases

If x and y are aliases, their entity types should be same
If x and y are conjuncts, then they are less likely to be aliases

Soft rules

Description

CopulaConnect(z,y) = Alias(z,y)

LexSim(z,y) = Alias(z,y)
Dif fVerbConnect(z,y) =

—Alias(z,y)

If x and y are connected though a copula or copula-like verb in
Eq4 , then they are aliases of each other

If x and y are lexically similar, then they are likely to be aliases
If x and y are subjects / objects of a “differentiating” verb, then

they are not likely to be aliases of each other

Table 2: MLN Predicates and Rules

of headword h of a generic NP if its Word-
Net hypernyms contain PER/ORG/LOC indicat-
ing synsets. We also add new FE,, edges from h
to dependent nodes of h using dependency rela-
tions compound, amod or det (de Marneffe et al.,
2014) to get corresponding mention boundaries.
The function resolve ParticipantTypeCon flict() en-
sures that participant types of all nodes in a single
clique in F, are same by giving higher priority to
NER-induced type than WordNet-induced type.
Phase-II: In this phase, we encode linguistic rules
in MLN to add new E, edges. As elaborated by
Mojica and Ng (2016), MLN gives the benefits of
(1) ability to employ soft constraints, (ii) compact
representation, and (iii) ease of specification of do-
main knowledge.

The predicates and key first-order logic rules are
described in Table 2. Here, Alias(z,y) is the only
query predicate. Others are evidence predicates,
whose observed groundings are specified using G.
As we use a combination of hard rules (i.e., rules
with infinite weight) and soft rules (i.e., rules with
finite weights), probabilistic inference in MLN is
necessary to get find most likely groundings of the
predicate- Alias(x,y). As the goal is to minimize
supervision and to avoid dependence on annotated
data, we rely on domain knowledge in the current
version to set the MLN rule weights.

Phase-III: In this phase, we extract an auxiliary
subgraph G'(V', E’) C G; where V' contains
only those nodes which correspond to headwords
of basic participant mentions and E’ contains only
those edges incident on nodes in V"’ and labeled
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with appos or nmod. We identify each independent
participant mention in G’ and merge its dependent
mentions using depth first search (DFS) on G'.

Finally, each clique in E, represents aliases of
an unique participant. We use the earliest non-
pronoun mention in text order as the canonical
mention for that clique.

4 Experimental Analysis

Datasets: We evaluate our approach on history
narratives as they are replete with challenging
cases of alias detection. We choose public nar-
ratives of varying linguistic complexity to cover
a spectrum of history: (i) famous personalities:
Napoleon (Nap) (Littel, 2008), and Mao Zedong
(Mao) (Wikipedia, 2018), (ii) a key event: Battle
of Haldighati (BoH) (Chandra, 2007), and (iii) a
major phenomenon: Fascism (Fas) (Littel, 2008).
We manually annotated these datasets for the in-
dependent participant mentions and their aliases.
For each alias group of participant mentions we
use earliest non-pronoun mention as its canonical
mention®.

We also evaluate it on the newswire subset
(ACE,,,,) of standard ACE 2005 dataset (Walker
et al., 2006). Entity mention annotations were
transformed® such that only independent entity
mentions and their aliases are used. We relied
on Nap dataset to develop intuition for designing

“The annotated datasets are released with this draft.

STransformation scripts are released as supplementary
material.



the algorithm and tuning of MLN rules. All other
datasets (ACE, BoH, Fas, and Mao) are unseen,
independent test datasets.

Baselines: B1 is a standard approach to this prob-
lem where output of NER and coreference compo-
nents of Stanford CoreNLP toolkit are combined
to detect aliases. B2 is the state-of-the-art coref-
erence resolution system based on (Peng et al.,
2015a,b). M is our proposed alias detection ap-
proach (Algorithm 1).

Evaluation: The performance of all the ap-
proaches is evaluated at two levels: all indepen-
dent participant mentions (i.e., participant detec-
tion) and their links with canonical mentions (i.e.,
participant linking). We use the standard F1 met-
ric to measure performance of participant detec-
tion. For participant linking, we evaluate (Prad-
han et al., 2014) the combined performance of par-
ticipant mention identification and alias detection
using the standard evaluation metrics, MUC (Vi-
lain et al., 1995), BCUB (Bagga and Baldwin,
1998), Entity-based CEAF (CEAFe) (Luo, 2005)
and their average.

Results: Results of the quantitative evaluation
are summarized in Table 3. We observe that the
proposed approach outperforms other baselines on
all datasets.

Dataset &  Participant ~ Canonical mentions & aliases
Approach mentions BCUB MUC CEAFe
Bl 53.1 38.3 49.4 30.3
ACE,., B2 62.9 45.0 50.2 42.5
M 70.2 52.0 56.7 50.5
Bl 60.5 494 69.4 323
Nap B2 73.9 56.4 70.2 50.1
M 86.4 74.1 79.0 63.6
Bl 61.7 39.9 56.2 36.2
BoH B2 65.6 45.0 56.9 40.8
M 73.5 50.9 66.9 46.3
Bl 56.8 40.1 59.3 31.8
Fas B2 61.6 41.0 54.6 40.3
M 70.3 55.3 64.6 51.5
Bl 60.1 474 62.4 38.1
Mao B2 49.1 29.0 419 29.8
M 78.9 64.1 73.9 60.2

Table 3: Experimental results (F; metric in %).
B1 is combined output of NER and Coreference
modules of (Manning et al., 2014). B2 is (Peng
et al., 2015a). M is proposed method.

Correct identification of generic NPs as par-
ticipant mentions, and accurate addition of alias
edges due to MLN formulation lead to improved
performance of Algorithm 1; e.g., in Table 1,
the baselines fail to detect a lieutenant as
an alias for Napoleon Bonaparte, but the pro-
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posed approach succeeds as it exploits MLN rule
CopulaConnect(z,y) = Alias(x,y). As an il-
lustration of the proposed approach, Table 4 shows
the participant mentions and their corresponding
canonical mentions for the example text in Table 1.

Sent. Participant Canonical
no. Mention Mention
1 Napoleon Bonaparte Napoleon Bonaparte
1 a short man Napoleon Bonaparte
2 he Napoleon Bonaparte
2 his parents his parents
2 him Napoleon Bonaparte
2 a military school in a military school in
France France
3 he Napoleon Bonaparte
3 a lieutenant Napoleon Bonaparte
4 Napoleon Napoleon Bonaparte
4 the army of the new the army of the new
government government
5 royalist rebels royalist rebels
5 the National Conven- the National Conven-
tion tion
5 a government official  a government official
5 the young lieutenant Napoleon Bonaparte
5 the delegates the delegates

Table 4: Output of Algorithm 1 for sentences in
Table 1

5 Conclusions

Alias detection is an important and challeng-
ing NLP problem. We proposed a linguistically
grounded approach to identify aliases of partici-
pants in a narrative. We observed that WordNet
hypernym tree helps in identification of partici-
pant aliases mentioned using generic NPs. MLN
proved to be an effective framework to encode lin-
guistic knowledge and achieve better alias detec-
tion performance. Our approach was evaluated on
history narratives which pose challenging alias de-
tection cases and demonstrated better performance
than the state-of-the-art approach. Our goal in cur-
rent paper was to improve the output by exploiting
the strengths (such as linking pronoun mentions to
their antecedents) of off-the-shelf coreference al-
gorithms and to overcome their weaknesses (such
as resolving generic noun phrase mentions). As
part of future work, we are planning to enhance
existing MLN frameworks for coreference resolu-
tion by integrating the proposed MLN predicates
and rules.
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Abstract

We present a new architecture for named
entity recognition. Our model employs
multiple independent bidirectional LSTM
units across the same input and pro-
motes diversity among them by employ-
ing an inter-model regularization term. By
distributing computation across multiple
smaller LSTMs we find a reduction in
the total number of parameters. We find
our architecture achieves state-of-the-art
performance on the CoNLL 2003 NER
dataset.

1 Introduction

The ability to reason about entities in text is an
important element of natural language understand-
ing. Named entity recognition (NER) concerns it-
self with the identification of such entities. Given
a sequence of words, the task of NER is to label
each word with its appropriate corresponding en-
tity type. Examples of entity types include Person,
Organization, and Location. A special Other en-
tity type is often added to the set of all types and
is used to label words which do not belong to any
of the other entity types.

Recently, neural network based approaches
which use no language-specific resources, apart
from unlabeled corpora for training word embed-
dings, have emerged. There has been a shift of fo-
cus from handcrafting better features to designing
better neural architectures for solving NER.

In this paper, we propose a new parallel re-
current neural network model for entity recogni-
tion. We show that rather than using a single
LSTM component, as many other recent archi-
tecture have, we instead resort to using multiple

f Now at Google DeepMind, 6 Pancras Square, London
N1C 4AG.
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smaller LSTM units. This has the benefit of reduc-
ing the total number of parameters in our model.
We present results on the CoNNL 2003 English
dataset and achieve the new state of the art results
for models without help from an outside lexicons.

1.1 Related Work

Various approaches have been proposed to
NER. Many of these approaches rely on hand-
crafted feature engineering or language-specific
or domain-specific resources (Zhou and Su, 2002;
Chieu and Ng, 2002; Florian et al., 2003; Settles,
2004; Nadeau and Sekine, 2007). While such ap-
proaches can achieve high accuracy, they may fail
to generalize to new languages, new corpora or
new types of entities to be identified. Thus, ap-
plying such techniques in new domains requires
making a heavy engineering investment.

Over time neural methods such as (Chiu and
Nichols, 2015; Ma and Hovy, 2016; Luo et al.,
2015; Lample et al., 2016) emerged. More re-
cently (Peters et al., 2017; Reimers and Gurevych,
2017; Sato et al., 2017) have set the top bench-
marks in the field.

Architecturally, our model is similar to those of
(Zhu et al., 2017, Hidasi et al., 2016) with the most
pronounced difference being that we (1) apply our
parallel RNN units across the same input (2) ex-
plore a new regularization term for promoting di-
versity across what features our paralle]l RNNs ex-
tract and (3) explicitly motivate the architecture
with a discussion about parameter complexity.

The need for a wider discussion on parameter
complexity in the deep learning community is be-
ing pushed by the need to make complex neural
models runnable in constrained environment such
as field-programmable gate arrays (FPGAs) - for
a great discussion relating to running LSTMs on
FPGAs see (Guan et al., 2017). Additionally, com-
plex models have proven difficult to use in certain

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 69—74
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domains such as embedded systems or finance due
to their slowness. Our architecture lends itself to
parallelization and attempts to tackle this problem.

2 Named Entity Recognition

Named Entity Recognition can be posited as a
standard sequence classification problem where
the dataset D = {(X;,y;)}*_, consists of exam-
ple label pairs where both the examples and the
labels are themselves sequences of word vectors
and entity types, respectively.

Specifically, an input example X;
(Xi1,--+,X;x,|) is a variable-length sequence
of word vectors x;; € R?; the example’s
corresponding label y; = (¥i1,.-,¥i|x;|) 18
a equal-length sequence of entity-type labels
¥i; € Y where Y is the set of all entity type
labels and includes a special other ‘O’-label with
which all words that are not entities are labeled.

The goal is then to learn a parametrized map-
ping fy : X — y from input words to output en-
tity labels. One of the most commonly used class
of models that handle this mapping are recurrent
neural networks.

2.1 LSTM complexity

Long short term memory (LSTM) models belong
to the family of recurrent neural network (RNN)
models. They are often used as a component of
much larger models, particularly in many NLP
tasks including NER.

Classically, an LSTM cell is defined as follows
(biases excluded for brevity):

o(Wihi1 +U;xy)

fi = o(Wihio1 +Usxy)
0oy = O'(Woht_l + UOXt)
¢; = tanh(W h; 1 +U_.xy)
¢ = O 1+i0¢
ht = 0;©® tanh(ct)
One way of measuring the complexity of a

model is through its total number of parameters.
Looking at the above, we note there are two pa-
rameter matrices, W and U, for each of the three
input gates and during cell update. If we let W €
R™™ and U € R™*"™ then the total number of pa-
rameters in the model (excluding the bias terms) is
4(nm+n?) which grows quadratically as n grows.
Thus, increases in LSTM size can substantially in-
crease the number of parameters.
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3 Parallel RNNs

To reduce the total number of parameters we split
a single LSTM into multiple equally-sized smaller
ones:

hy = LSTMy (hy 1—1, %)

where k € {1,..., K'}. This has the effect of
dividing the total number of parameters by a con-
stant factor. The final hidden state h; is then a
concatenation of the hidden states of the smaller
LSTMS:

hy = [h1g; hags s b

3.1 Promoting Diversity

To promote diversity amongst the constituent
smaller LSTMs we add a orthogonality penalty
across the smaller LSTMs. Recent research has
used similar methods but applied to single LSTMs
(Vorontsov et al., 2017).

We take the cell update recurrence parameters
W; across LSTMs (we omit the c in the subscript
for brevity; the index ¢ runs across the smaller
LSTMs) and for any pair we wish the following
to be true:

~
~

(vec(W ), vec(W))) ~ 0

To achieve this we pack the vectorized parame-
ters into a matrix:

vec( C(l))
VCC(WC(Q))

' ™))

vec(We

and apply the following regularization term to
our final loss:

A Jled’ 1% (1)

3.2 Output and Loss

The concatenated output h; is passed through
a fully connected layer with bias before being
passed through a final softmax layer:

o = softmax(Woutﬁt + bout)



To extract a predicted entity type g; at time ¢,
we select the entity type corresponding to the most
probable output:

U = argmax(oy)

The loss is defined as the sum of the softmax
cross-entropy losses along the words in the input
sequence. More precisely, we denote by yi €
0,1 a binary indicator variable indicating whether
word z; truly is an entity of type j. The loss at
time ¢ is then defined to be £; = — >, y/ log(o}).
Thus the overall loss is:

L==>" yllog(d])
T

3.3 Implementation Details

We use bidirectional LSTMs as our base recur-
rent unit and use pretrained word embeddings of
size 100. These are the same embeddings used in
(Lample et al., 2016). We concatenate to our word
embeddings character-level embeddings similar to
(Lample et al., 2016) but with a max pooling layer
instead. Unlike with the parallel LSTMs, we only
use a single character embedding LSTM.

Parameters are initialized using the method de-
scribed by Glorot and Bengio (Glorot and Ben-
gio, 2010). This approach scales the variance of
a uniform distribution with regard to the root of
the number of parameters in a layer. This approach
has been found to speed up convergence compared
to using a unit normal distribution for initializa-
tion.

Our model uses variational dropout (Gal and
Ghahramani, 2016) between the hidden states of
the parallel LSTMs. Recent work has shown this
to be very effective at training LSTMs for lan-
guage models (Merity et al., 2017). In our experi-
ments, we use p = 0.1 as our dropping probability.

We experiment with different values of the regu-
larization term parameter but settled on A = 0.01.

Although vanilla stochastic gradient descent has
been effective at training RNNs on language prob-
lems (Merity et al., 2017), we found that using the
ADAM optimizer (Kingma and Ba, 2014) to be
more effective at training our model. We experi-
mented with different values for the learning rate
«, increasing o from 1073 to as high as 5 x 1073
and still obtained good results.

Similarly, we kept a constant size for the
character-level embeddings, using a unit bidirec-
tional LSTM output size of dim(e"") 50.
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As previously discussed, we trained the net-
work parameters using stochastic gradient de-
scent (Werbos, 1990), augmented with the Adam
optimizer (Kingma and Ba, 2014).

3.4 Relation to Ensemble Methods

Our model bears some resemblance to ensemble
methods (Freund et al., 1996; Dietterich et al.,
2000), which combine multiple “weak learners”
into a single “strong learner”; One may view each
of the parallel recurrent units of our model as a
single “weak” neural network, and may consider
our architecture as a way of combining these into
a single “strong” network.

Despite the similarities, our model is very dif-
ferent from ensemble methods. First, as opposed
to many boosting algorithms (Freund et al., 1996;
Schapire and Singer, 1999; Dietterich et al., 2000)
we do not “reweigh” training instances based on
the loss incurred on them by a previous iteration.
Second, unlike ensemble methods, our model is
trained end-to-end, as a single large neural net-
work. All the subcomponents are co-trained, so
different subparts of the network may focus on
different aspects of the input. This avoids re-
dundant repeated computations across the units
(and indeed, we encourage diversity between the
units using our inter-module regularization). Fi-
nally, we note that our architecture does not sim-
ply combine the prediction of multiple classifiers;
rather, we take the final hidden layer of each of
the LSTM units (which contains more informa-
tion than merely the entity class prediction), and
combine this information using a feedforward net-
work. This allows our architecture to examine
inter-dependencies between pieces of information
computed by the various components.

4 [Experiments

We achieve state-of-the-art results on the CoONNL
2003 English NER dataset (see Table 1). Although
we do not employ additional external resources
(language specific dictionaries or gazetteers), our
model is competitive even with some of the mod-
els that do.

To gain a better understanding of the perfor-
mance of our model including how its various
components affect performance we prepared four
additional tables of runs.

Table 2 shows performance as a function of the
number of RNN units with a fixed unit size. The



Model F1
(Chieu and Ng, 2002) 88.31
(Florian et al., 2003) 88.76
(Ando and Zhang, 2005) 89.31
(Collobert et al., 2011)? 89.59
(Huang et al., 2015)* 90.10
(Chiu and Nichols, 2015)* 90.77
(Ratinov and Roth, 2009) 90.80
(Lin and Wu, 2009) 90.90
(Passos et al., 2014)H* 90.90
(Lample et al., 2016)? 90.94
(Luo et al., 2015)* 91.20
(Ma and Hovy, 2016)* 91.21
(Sato et al., 2017) 91.28
(Chiu and Nichols, 2015)** 91.62
(Peters et al., 2017)* 91.93
This paper? 91.48 +0.22

Table 1: English NER F1 score of our model on
the test set of CoNLL-2003 (English). During
training we optimize for the development set and
report test set results for our best performing de-
velopment set model. The bounded F1 results we
report (+0.22) are taken after 10 runs. For the pur-
pose of comparison, we also list F1 scores of pre-
vious top-performance systems. { marks the neu-
ral models. * marks model which use external re-
sources.

number of units is clearly a hyperparameter which
must be optimized for. We find good performance
across the board (there is no catastrophic collapse
in results) however when using 16 units we do
outperform other models substantially. Even with
very small unit sizes of 8 (Table 3) our models per-
forms relatively well without a significant degra-
dation in results. Table 4 shows and 5 show addi-
tional results for unit size and component impact
on our best performing model.

5 Conclusion

We achieve state-of-the-art results on the CoNLL
2003 English dataset and introduce a new model
motivated primarily by its ability to be easily dis-
tributable and reduce the total number of param-
eters. Further work should be done on evaluat-
ing it across different classification and sequence
classification tasks to study its performance. Ad-
ditionally, a run-time analysis show be conducted
to compare speedups if the model is parallelized
across CPU cores.
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# RNN units F
1 90.53 +£0.31
2 90.79 +£0.18
4 90.64 +0.24
8 91.09 £0.28
16 91.48 +£0.22
32 90.68 £0.18

Table 2: Performance as a function of the number
of RNN units with a fixed unit size of 64; aver-
aged across 5 runs apart from the 16 unit (average

across 10 runs).

# RNN units | Unit size Fy
1 1024 87.54
2 512 91.25
4 256 91.29
8 128 91.31
16 64 91.48 £+0.22
32 32 90.60
64 16 90.79
128 8 90.41

Table 3: Performance of our model with various
unit sizes resulting in a fixed final output size hy.
Single runs apart from 16 unit.

Unit size Fi
8 89.78
16 89.77
32 90.26
64 91.48 +0.22
128 89.28

Table 4: Performance as a function of the unit size
for our best performing model (16 biLSTM units).
Single runs apart from with size 64.

Component I
No character embeddings 90.39
No orthogonal regularization | 90.79
No Xavier initialization 91.09
No variational dropout 91.03
Mean pool instead of concat | 90.49

Table 5: Impact of various architectural decisions
on our best performing model (16 biLSTM units,
64 unit size). Single runs.
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Abstract

State-of-the-art knowledge base comple-
tion (KBC) models predict a score for ev-
ery known or unknown fact via a latent
factorization over entity and relation em-
beddings. We observe that when they
fail, they often make entity predictions
that are incompatible with the type re-
quired by the relation. In response, we
enhance each base factorization with two
type-compatibility terms between entity-
relation pairs, and combine the signals in
a novel manner. Without explicit super-
vision from a type catalog, our proposed
modification obtains up to 7% MRR gains
over base models, and new state-of-the-art
results on several datasets. Further analy-
sis reveals that our models better represent
the latent types of entities and their embed-
dings also predict supervised types better
than the embeddings learned by baseline
models.

1 Introduction

Knowledge bases (KBs) store facts in the form of
relations (r) between subject entity (s) and object
entity (o), e.g., (Obama, born-in, Hawaii). Since
KBs are typically incomplete (Bollacker et al.,
2008), the task of KB Completion (KBC) attempts
to infer new tuples from a given KB. Neural ap-
proaches to KBC, e.g., Complex (Trouillon et al.,
2016) and DistMult (Yang et al., 2015), calculate
the score f(s,r,0) of a tuple (s,,0) via a latent
factorization over entity and relation embeddings,
and use these scores to predict the validity of an
unseen tuple.

A model is evaluated over queries of the form
(s*,r*, 7). It ranks all entities o in the descend-

*Equal contribution.
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ing order of tuple scores f(s*,r*,0), and credit is
assigned based on the rank of gold entity o*. Our
preliminary analysis of DistMult (DM) and Com-
plex (CX) reveals that they make frequent errors
by ranking entities that are not compatible with
types expected as arguments of 7* high. In 19.5%
of predictions made by DM on FB15K, the top
prediction has a type different from what is ex-
pected (see Table 1 for illustrative examples).

In response, we propose a modification to
base models (DM, Complex) by explicitly mod-
eling type compatibility. Our modified func-
tion f’(s,r,0) is the product of three terms:
the original tuple score f(s,r,0), subject type-
compatibility between r and s, and object type-
compatibility between r and o. Our type-sensitive
models, TypeDM and TypeComplex, do not ex-
pect any additional type-specific supervision —
they induce all embeddings using only the origi-
nal KB.

Experiments over three datasets show that all
typed models outperform base models by signif-
icant margins, obtaining new state-of-the-art re-
sults in several cases. We perform additional anal-
yses to assess if the learned embeddings indeed
capture the type information well. We find that
embeddings from typed models can predict known
symbolic types better than base models.

Finally, we note that an older model called E
(Riedel et al.,, 2013) can be seen as modeling
type compatibilities. Moreover, previous work
has explored additive combinations of DM and E
(Garcia-Duran et al., 2015b; Toutanova and Chen,
2015). We directly compare against these mod-
els and find that, our proposal outperforms both E,
DM and their linear combinations.

We contribute open-source implementations' of
all models and experiments discussed in this paper

"https://github.com/dair-iitd/KBI
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Melbourne, Australia, July 15 - 20, 2018. (©)2018 Association for Computational Linguistics



for further research.

2 Background and Related Work

We are given an incomplete KB with entities £
and relations R. The KB also contains 7 =
{(s,r,0)}, a set of known valid tuples, each with
subject and object entities s,0 € &, and relation
r € R. Our goal is to predict the validity of any
tuple not present in 7. Popular top performing
models for this task are Complex and DM.

In Complex, each entity e (resp., relation 7)
is represented as a complex vector a, € CP
(resp., b, € CP). Tuple score fcx(s,r,0) =
R (Zfl):l asdbrdazd>, where R(z) is real part of
z, and z* is complex conjugate of z. Holographic
embeddings (Nickel et al., 2016) are algebraically
equivalent to Complex. In DM, each entity e
is represented as a vector a. € RP, each rela-
tion r as a vector b, € RL, and the tuple score
fDM(57T7 0) = <a57br>ao> = chl)zl A5qbrdod.
Earlier, Riedel et al. (2013) proposed a differ-
ent model called E: relation r is represented by
two vectors v,,w, € RP, and the tuple score
fe(s,r,0) = as - v, + a, - w,. E may be regarded
as a relation prediction model that depends purely
on type compatibility checking.

Observe that, in (as,b,,a,), b, mediates a di-
rect compatibility between s and o for relation r,
whereas, in as-v,+a,-w,, we are scoring how well
s can serve as subject and o as object of the rela-
tion r. Thus, in the second case, a. is expected to
encode the type(s) of entity e, where, by ‘type’, we
loosely mean “information that helps decide if e
can participate in a relation r, as subject or object.”
Heuristic filtering of the entities that do not match
the desired type at test time has been known to im-
prove accuracy (Toutanova et al., 2015; Krompal3
et al., 2015). Our typed models formalize this
within the embeddings and allow for discovery
of latent types without additional data. Krompal3
et al. (2015) also use heuristic typing of entities
for generating negative samples while training the
model. Our experiment finds that this approach is
not very competitive against our typed models.

3 TypeDM and TypeComplex

Representation: We start with DM as the base
model; the Complex case is identical. The first
key modification (see Figure 1) is that each entity
e is now represented by two vectors: u, € RX to
encode fype information, and a, € R” " to encode
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information. Typically, K < D’. The second,
concomitant modification is that each relation r is
now associated with three vectors: b, € R as
before, and also v,,w, € RX. v, and w, encode
the expected types for subject and object entities.

An ideal way to train type embeddings would
be to provide canonical type signatures for each
relation and entity. Unfortunately, these aspects
of realistic KBs are themselves incomplete (Nee-
lakantan and Chang, 2015; Murty et al., 2018).
Our models train all embeddings using 7 only and
don’t rely on any explicit type supervision.

DM uses (E + R)D model weights for a KB
with R relations and F entities, whereas TypeDM
uses E(D'+ K)+ R(D'+2K). To make compar-
isons fair, we set D’ and K so that the total number
of model weights (real or complex) are about the
same for base and typed models.

Figure 1: TypeDM and TypeComplex.

Prediction: DM'’s base prediction score for tu-
ple (s,7,0) is {(as,b,,a,). We apply a (sigmoid)
nonlinearity:
f(s,r,0) = o((as,b,,a,)), (1)
and then combine with two additional terms that
measure type compatibility between the subject
and the relation, and the object and the relation:
f'(s,r,0) = f(s,7,0) Cy(s,7) Cw(o,7), (2)
where Cy(e,r) is a function that measures the
compatibility between the type embedding of e for
a given argument slot of r:
Cyle,r) =o(z, - u.) 3)
If each of the three terms in Equation 2 is inter-
preted as a probability, f’(s, 7, 0) corresponds to a
simple logical AND of the three conditions.

We want f'(s,r,0) to be almost 1 for positive
instances (tuples known to be in the KG) and close
to O for negative instances (tuples not in the KG).
For a negative instance, one or more of the three
terms may be near zero. There is no guidance to
the learner on which term to drive down.



Subject s

Relation r

Gold Object o

Prediction 1

Prediction 2

Howard Leslie Shore

follows-religion

Jewism (religion)

Walk Hard (film)

21 Jump Street (film)

Spyglass Entertainment
Les Fradkin

Eugene Alden Hackman
Chief Phillips (film)

headquarter-located-in
born-in-location
studied
released-in-region

El lay (location)

New York (location)

Rural Journalism (education)
Yankee land (location)

The Real World (tv)

Federico Fellini (person)

Loudon Snowden Wainwright IIT (person)
Akira Isida (person)

Contraband (film)

Louie De palma (person)

The Bourne Legacy (film)

Presidential Medal of Freedom (award)

Table 1: Samples of top two DM predictions (having inconsistent types) on FB15K. TypeDM predicts
entities of the correct type in top positions in the corresponding examples.

Contrastive Sampling: Training data consist of
positive gold tuples (s, r,0) and negative tuples,
which are obtained by perturbing each positive tu-
ple by replacing either s or o with a randomly
sampled s’ or o/. This offers the learning algo-
rithm positive and negative instances. The models
are trained such that observed tuples have higher
scores than unobserved ones.

Loss Functions: We implement two common
loss objectives. The log-likelihood loss first com-
putes the probability of predicting a response o for
a query (s,r,7) as follows:

exp(Bf'(s,r, 0))
Zo’ exp(ﬁf,<3a r, Ol))

Because f' € [0, 1] for typed models, we scale
it with a hyper-parameter 3 > 0 (a form of in-
verse temperature) to allow Pr(o|s, r) to take val-
ues over the full range [0, 1] in loss minimization.

The sum over o’ in the denominator is sampled
based on contrastive sampling, so the left hand
side is not a formal probability (exactly as in DM).
A similar term is added for Pr(s|r,0). The log-
likelihood loss minimizes:

Pr(o|s,r) = 4

— Z <logPr(o|s,r;9)
(s,r,0)€P +logPr(s|0,7“;«9)> )

The summation is over P which is the set of all
positive facts. Following Trouillon et al. (2016),
we also implement the logistic loss

5 i o
(s,r,0)€T

(6)

Here Yj,, is 1 if the fact (s,r,0) is true and
—1 otherwise. Also, 7T is the set of all positive
facts along with the negative samples. With logis-
tic loss, model weights 6 are L2-regularized and
gradient norm is clipped at 1.

4 Experiments

Datasets: We evaluate on three standard data
sets, FB15K, FB15K-237, and YAGO3-10 (Bor-
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des et al., 2013; Toutanova et al., 2015; Dettmers
et al., 2017). We retain the exact train, dev and
test folds used in previous works. TypeDM and
TypeComplex are competitive on the WN18 data
set (Bordes et al., 2013), but we omit those results,
as WN18 has 18 very generic relations (e.g., hy-
ponym, hypernym, antonym, meronym), which do
not give enough evidence for inducing types.

Model Embedding | Number of
dimensions | parameters

E 200 3,528,200
DM+E 100+100 | 3,393,700
DM 200 3,259,200
TypeDM 180+19 3,268,459
Complex 200 6,518,400
TypeComplex 180+19 6,201,739

Table 2: Sizes were approximately balanced be-
tween base and typed models (FB15K).

Metrics: As is common, we regard test instances
(s,r,7) as atask of ranking o, with gold o* known.
We report MRR (Mean Reciprocal Rank) and the
fraction of queries where o* is recalled within
rank 1 and rank 10 (HITS). The filtered evaluation
(Garcia-Duran et al., 2015a) removes valid train
or test tuples ranking above (s,r,0") for scoring
purposes.

Hyperparameters: We run AdaGrad for up to
1000 epochs for all losses, with early stopping on
the dev fold to prevent overfitting. All the mod-
els generally converge after 300-400 epochs, ex-
cept TypeDM that exhausts 1000 epochs. E, DM,
DM+E and Complex use 200 dimensional vectors.
All except E perform best with logistic loss and
20 negative samples (obtained by randomly cor-
rupting s and ) per positive fact. This is deter-
mined by doing a hyperparameter search on a set
{10, 20, 50, 100, 200, 400}.

For typed models we first perform hyperparam-
eter search for size of type embeddings (K) such
that total entity embedding size remains 200. We
get the best results at K = 20, from among val-
ues in {10, 20, 30, 50, 80, 100, 120}. This hyper-
parameter search is done for the TypeDM model
(which is faster to train than TypeComplex) on
FB15k dataset, and the selected split is used for



FB15K FB15K237 YAGO3-10

Model MRR | HITS@1 | HITS@10 || MRR | HITS@1 | HITS@10 || MRR | HITS@1 | HITS@10
E 2340 | 17.39 35.29 21.30 | 14.51 36.38 7.87 6.22 10.00
DM+E 60.84 | 49.53 79.70 38.15| 28.06 58.02 5248 | 38.72 77.40
DM 6747 | 56.52 84.86 3721 2743 56.12 55.31 | 46.80 70.76
TypeDM 75.01 | 66.07 87.92 38.70 | 29.30 57.36 58.16 | 51.36 70.08
Complex 70.50 | 61.00 86.09 37.58 | 2697 55.98 54.86 | 46.90 69.08
TypeComplex || 75.44 | 66.32 88.51 38.93 | 29.57 57.50 58.65 | 51.62 70.42

Table 3: KBC performance for base, typed, and related formulations. Typed models outperform their

base models across all datasets.

all the typed models. To balance total model sizes
(Table 2), we choose K 19 dimensions for
Ue, v, w, and 180 dimensions for a., b,>

Typed models and E perform best with 400 neg-
ative samples per positive tuple while using log-
likelihood loss (robust to a larger number of neg-
ative facts as opposed to logistic loss, which falls
for class imbalance). FB15K and YAGO3-10 use
L2 regularization coefficient of 2.0, and it is 5.0
for FB15K-237. Note that the L2 regularization
penalty is applied to only those entities and rela-
tions that are a part of that batch update, as pro-
posed by Trouillon et al. (2016). 3 is set to 20.0 for
the typed models, and 1.0 for other models if they
use the log-likelihood loss. Entity embeddings are
unit normalized at the end of every epoch, for the
type models. Also, we find that in TypeDM scal-
ing the embeddings of the base model to unit norm
performs better than using L2 regularization.

Results: Table 3 shows that TypeDM and Type-
Complex dominate across all data sets. E by it-
self is understandably weak, and DM+E does not
lift it much. Each typed model improves upon the
corresponding base model on all measures, under-
scoring the value of type compatibility scores.® To
the best of our knowledge, the results of our typed
models are competitive with various reported re-
sults for models of similar sizes that do not use any
additional information, e.g., soft rules (Guo et al.,
2018), or textual corpora (Toutanova et al., 2015).

We also compare against the heuristic genera-

Notice that a typed model has a slightly higher number
of parameters for relation embeddings, because it needs to
maintain two type embeddings of size K, over and above b,-.
Using K = 19 reduced and brought the total number of pa-
rameters closer to that of the base model, for a fair direct
comparison. The model performance did not differ by much
when using either of the options (i.e., K = 19 or 20).

3For direct comparisons with published work, we choose
200 and 400 parameters per entity for DM and Complex re-
spectively (Complex model has two 200 dimensional embed-
dings per entity). DM and TypeDM, on increasing the di-
mensionality to 400, yield MRR scores of 69.79 and 78.91,
respectively, for FB15K.
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tion of type-sensitive negative samples (Krompal3
etal., 2015). For this experiment, we train a Com-
plex model using this heuristically generated nega-
tive set, and use standard evaluation, as in all other
models. We find that all the models reported in Ta-
ble 3 outperform this approach.

(a) (b)
- L
 J 4
B J
(©) (d)

Figure 2: Projection of vectors represent-
ing entities belonging to frequent KB types-
{people, ,  organisation, film,
sports}: a: TypeDM,u.; b: TypeDM,a.;

c: TypeComplex,u.; d: DM, ae.

S Analysis of Typed Embeddings

We perform two further analyses to assess whether
the embeddings produced by typed models indeed
capture type information better. For these exper-
iments, we try to correlate (and predict) known
symbolic types of an entity using the unsupervised
embeddings produced by the models. We take a
fine catalog of most frequent 90 freebase types
over the 14,951 entities in the FB15k dataset (Xie
et al., 2016). We exclude /common/topic as
it occurs with most entities. On an average each
entity has 12 associated types.

1. Clustering Entity/Type Embeddings: For
this experiment we subselect entities in FB15k that



Method Embed | Size H C| Type

-ding F1
TypeDM Ue 19 66.72 | 66.29 | 81.77
TypeDM a. 180 | 57.89 | 59.67 | 75.96
TypeDM Both 199 | 66.75 | 66.29 | 82.57
DM ac 200 | 51.40| 48.12 | 81.34
TypeComplex Ue 19 65.90 | 62.97 | 82.70
TypeComplex ac 180x2 | 50.76 | 48.57 | 74.75
TypeComplex | Both 379 | 66.03 | 63.09 | 84.14
Complex a. 200x2 | 51.56 | 47.20 | 81.58
DM+E Ue 19 048 | 2.05| 74.66
DM+E ac 180 | 49.62 | 47.24 | 82.72
DM+E Both 199 | 49.66 | 47.26 | 82.68
E a. 200 | 39.83 | 37.62 | 74.23

Table 4: Interpretation of embeddings wrt super-
vised types: cluster homogeneity H, completeness
C, and type prediction F1 score.

belong to one of the 5 types (people, location,
organization, film, and sports) from the freebase
dataset. These cover 84.88% of FB15K entities.
We plot the FB15K entities e using the PCA pro-
jection of u, and a. in Figure 2, color-coding their
types. We observe that u,. separates the type clus-
ters better than a., suggesting that u. vectors in-
deed collect type information. We also perform
k-means clustering of u. and a. embeddings of
these entities, as available from different models.
We report cluster homogeneity and completeness
scores (Rosenberg and Hirschberg, 2007) in Ta-
ble 4. Typed models yield superior clusters.

2. Prediction of Symbolic Types: We train a
single-layer network that inputs embeddings from
various models and predicts a set of symbolic
types from the KB. This tells us the extent to
which the embeddings capture KB type informa-
tion (that was not provided explicitly during train-
ing). Table 4 reports average macro F1 score (5-
fold cross validation). Embeddings from TypeDM
and TypeComplex are generally better predictors
than embeddings learned by Complex, DM and E.
u, € R is often better than a. € R8% or more,
for typed models. DM+E with 199 model weights
narrowly beats TypeDM with 19 weights, but re-
call that it has poorer KBC scores.

6 Conclusion and Future Work

We propose an unsupervised typing gadget, which
enhances top-of-the-line base models for KBC
(DistMult, Complex) with two type-compatibility
functions, one between r and s and another be-
tween r and o. Without explicit supervision from
any type catalog, our typed variants (with simi-
lar number of parameters as base models) substan-
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tially outperform base models, obtaining up to 7%
MRR improvements and over 10% improvements
in the correctness of the top result. To confirm that
our models capture type information better, we
correlate the embeddings learned without type su-
pervision with existing type catalogs. We find that
our embeddings indeed separate and predict types
better. In future work, combining type-sensitive
embeddings with a focus on less frequent relations
(Xie et al., 2017), more frequent entities (Dettmers
et al., 2017), or side information such as inference
rules (Guo et al., 2018; Jain and Mausam, 2016) or
textual corpora (Toutanova et al., 2015) may fur-
ther increase KBC accuracy. It may also be of in-
terest to integrate the typing approach here with
the combinations of tensor and matrix factoriza-
tion models for KBC (Jain et al., 2018).
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Abstract

We present a novel graph-based neural
network model for relation extraction. Our
model treats multiple pairs in a sentence
simultaneously and considers interactions
among them. All the entities in a sentence
are placed as nodes in a fully-connected
graph structure. The edges are represented
with position-aware contexts around the
entity pairs. In order to consider differ-
ent relation paths between two entities,
we construct up to /-length walks between
each pair. The resulting walks are merged
and iteratively used to update the edge rep-
resentations into longer walks representa-
tions. We show that the model achieves
performance comparable to the state-of-
the-art systems on the ACE 2005 dataset
without using any external tools.

1 Introduction

Relation extraction (RE) is a task of identifying
typed relations between known entity mentions
in a sentence. Most existing RE models treat
each relation in a sentence individually (Miwa
and Bansal, 2016; Nguyen and Grishman, 2015).
However, a sentence typically contains multiple
relations between entity mentions. RE models
need to consider these pairs simultaneously to
model the dependencies among them. The relation
between a pair of interest (namely “target” pair)
can be influenced by other pairs in the same sen-
tence. The example illustrated in Figure 1 explains
this phenomenon. The relation between the pair of
interest Toefting and capital, can be extracted di-
rectly from the target entities or indirectly by in-
corporating information from other related pairs
in the sentence. The person entity (PER) Toeft-
ing is directly related with teammates through the
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Toefting was convicted of assaulting a pair of workers during

PER ! PHYS
PER-SQGC:wemeerrns,  nrurenns PHYS:eeeees
Vi
a night out with national squad teammates in the capital ...
PER GPE

Figure 1: Relation examples from ACE (Auto-
matic Content Extraction) 2005 dataset (Dodding-
ton et al., 2004).

preposition with. Similarly, feammates is directly
related with the geopolitical entity (GPE) capital
through the preposition in. Toefting and capital
can be directly related through in or indirectly re-
lated through teammates. Substantially, the path
from Toefting to teammates to capital can addi-
tionally support the relation between Toefting and
capital.

Multiple relations in a sentence between entity
mentions can be represented as a graph. Neural
graph-based models have shown significant im-
provement in modelling graphs over traditional
feature-based approaches in several tasks. They
are most commonly applied on knowledge graphs
(KG) for knowledge graph completion (Jiang
et al., 2017) and the creation of knowledge graph
embeddings (Wang et al., 2017; Shi and Weninger,
2017). These models rely on paths between ex-
isting relations in order to infer new associations
between entities in KGs. However, for relation
extraction from a sentence, related pairs are not
predefined and consequently all entity pairs need
to be considered to extract relations. In addition,
state-of-the-art RE models sometimes depend on
external syntactic tools to build the shortest depen-
dency path (SDP) between two entities in a sen-
tence (Xu et al., 2015; Miwa and Bansal, 2016).
This dependence on external tools leads to domain
dependent models.

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 81-88
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics



In this study, we propose a neural relation ex-
traction model based on an entity graph, where
entity mentions constitute the nodes and directed
edges correspond to ordered pairs of entity men-
tions. The overview of the model is shown in
Figure 2. We initialize the representation of an
edge (an ordered pair of entity mentions) from the
representations of the entity mentions and their
context. The context representation is achieved
by employing an attention mechanism on context
words. We then use an iterative process to aggre-
gate up-to [-length walk representations between
two entities into a single representation, which
corresponds to the final representation of the edge.

The contributions of our model can be summa-
rized as follows:

e We propose a graph walk based neural model
that considers multiple entity pairs in relation
extraction from a sentence.

e We propose an iterative algorithm to form a
single representation for up-to /-length walks
between the entities of a pair.

e We show that our model performs compara-
bly to the state-of-the-art without the use of
external syntactic tools.

2 Proposed Walk-based Model

The goal of the RE task is given a sentence, en-
tity mentions and their semantic types, to extract
and classify all related entity pairs (target pairs) in
the sentence. The proposed model consists of five
stacked layers: embedding layer, BLSTM Layer,
edge representation layer, walk aggregation layer
and finally a classification layer.

As shown in Figure 2, the model receives word
representations and produces simultaneously a
representation for each pair in the sentence. These
representations combine the target pair, its context
words, their relative positions to the pair entities
and walks between them. During classification
they are used to predict the relation type of each
pair.

2.1 Embedding Layer

The embedding layer involves the creation of n,,,
n¢, np-dimensional vectors which are assigned to
words, semantic entity types and relative positions
to the target pairs. We map all words and seman-
tic types into real-valued vectors w and t respec-
tively. Relative positions to target entities are cre-
ated based on the position of words in the sen-
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Figure 2: Overview of the walk-based model.

tence. In the example of Figure 1, the relative po-
sition of teammates to capital is —3 and the rela-
tive position of teammates to Toefting is +16. We
embed real-valued vectors p to these positions.

2.2 Bidirectional LSTM Layer

The word representations of each sentence are
fed into a Bidirectional Long-short Term Memory
(BLSTM) layer, which encodes the context rep-
resentation for every word. The BLSTM outputs
new word-level representations h (Hochreiter and
Schmidhuber, 1997) that consider the sequence of
words.

We avoid encoding target pair-dependent infor-
mation in this BLSTM layer. This has two advan-
tages: (i) the computational cost is reduced as this
computation is repeated based on the number of
sentences instead of the number of pairs, (ii) we
can share the sequence layer among the pairs of a
sentence. The second advantage is particularly im-
portant as it enables the model to indirectly learn
hidden dependencies between the related pairs in
the same sentence.

For each word ¢ in the sentence, we con-
catenate the two representations from left-to-right
and right-to-left pass of t_>he<_LSTM into a ne-
dimensional vector, e; = [hy; hy].



2.3 [Edge Representation Layer

The output word representations of the BLSTM
are further divided into two parts: (i) target pair
representations and (ii) target pair-specific context
representations. The context of a target pair can be
expressed as all words in the sentence that are not
part of the entity mentions. We represent a related
pair as described below.

A target pair contains two entities e; and
ej. If an entity consists of N words, we cre-
ate its BLSTM representation as the average of
the BLSTM representations of the corresponding
words, e = |71‘ > icr ©i» Where I is a set with the
word indices inside entity e.

We first create a representation for each pair en-
tity and then we construct the representation for
the context of the pair. The representation of an
entity e; is the concatenation of its BLSTM repre-
sentation e;, the representation of its entity type
t; and the representation of its relative position
to entity ej, p;;. Similarly, for entity e; we use
its relative position to entity e;, pj;. Finally, the
representations of the pair entities are as follows:
vi = [e;;ti; pij] and v; = [ej;t; Pyl

The next step involves the construction of the
representation of the context for this pair. For
each context word w, of the target pair e;, e;,
we concatenate its BLSTM representation e, its
semantic type representation t, and two relative
position representations: to target entity e;, P.;
and to target entity e;, p.;. The final represen-
tation for a context word w, of a target pair is,
Vijz = €2t P2i; P2j]. For a sentence, the con-
text representations for all entity pairs can be ex-
pressed as a three-dimensional matrix C, where
rows and columns correspond to entities and the
depth corresponds to the context words.

The context words representations of each tar-
get pair are then compiled into a single represen-
tation with an attention mechanism. Following the
method proposed in Zhou et al. (2016), we calcu-
late weights for the context words of the target-
pair and compute their weighted average,

u=q' tanh(Cy),

a = softmax(u), (1)
cij=Cyal,
where q € R" ng = n. + ng + 2n, de-

notes a trainable attention vector, « is the attended
weights vector and c;; € R"? is the context rep-
resentation of the pair as resulted by the weighted
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average. This attention mechanism is independent
of the relation type. We leave relation-dependent
attention as future work.

Finally, we concatenate the representations of
the target entities and their context (¢ R™™). We
use a fully connected linear layer, Wy € R"m*"s
with ng < n,, to reduce the dimensionality of the
resulting vector. This corresponds to the represen-
tation of an edge or a one-length walk between

1) W, [Vi; Vs Cij] € R"s,

nodes ¢ and j: Vi =

2.4 Walk Aggregation Layer

Our main aim is to support the relation between
an entity pair by using chains of intermediate re-
lations between the pair entities. Thus, the goal of
this layer is to generate a single representation for
a finite number of different lengths walks between
two target entities. To achieve this, we represent
a sentence as a directed graph, where the entities
constitute the graph nodes and edges correspond to
the representation of the relation between the two
nodes. The representation of one-length walk be-
tween a target pair VS), serves as a building block
in order to create and aggregate representations for
one-to-/-length walks between the pair. The walk-
based algorithm can be seen as a two-step process:
walk construction and walk aggregation. During
the first step, two consecutive edges in the graph
are combined using a modified bilinear transfor-
mation,
)

)=o (Vi o (Wyv)). @

()

where v;77 € R™ corresponds to walks repre-
sentation of lengths one-to-A between entities e;
and e;, © represents element-wise multiplication,
o is the sigmoid non-linear function and W, €
R™>™ ig a trainable weight matrix. This equa-
tion results in walks of lengths two-to-2\.

In the walk aggregation step, we linearly com-
bine the initial walks (length one-to-)) and the ex-
tended walks (length two-to-2)),

2N _
g

M)

ij

+(1-8) > fv v

ki,

), 3)

\%

Bv

where  is a weight that indicates the importance
of the shorter walks. Overall, we create a represen-
tation for walks of length one-to-two using Equa-
tion (3) and A = 1. We then create a representation
for walks of length one-to-four by re-applying the



equation with A = 2. We repeat this process un-
til the desired maximum walk length is reached,
which is equivalent to 2\ = [.

2.5 C(lassification Layer

For the final layer of the network, we pass the re-
sulted pair representation into a fully connected
layer with a softmax function,

y = softmaX(W,«vg.) +b,), 4)
where W, € R™*" ig the weight matrix, n, is
the total number of relation types and b, is the bias
vector.

We use in total 2r4-1 classes in order to consider
both directions for every pair, i.e., left-to-right and
right-to-left. The first argument appears first in a
sentence in a left-to-right relation while the second
argument appears first in a right-to-left relation.
The additional class corresponds to non-related
pairs, namely “no relation” class. We choose the
most confident prediction for each direction and
choose the positive and most confident prediction
when the predictions contradict each other.

3 Experiments

3.1 Dataset

We evaluate the performance of our model on
ACE 2005' for the task of relation extraction.
ACE 2005 includes 7 entity types and 6 relation
types between named entities. We follow the pre-
processing described in Miwa and Bansal (2016).

3.2 Experimental Settings

We implemented our model using the Chainer li-
brary (Tokui et al., 2015).2 The model was trained
with Adam optimizer (Kingma and Ba, 2015).
We initialized the word representations with ex-
isting pre-trained embeddings with dimensionality
of 200.> Our model did not use any external tools
except these embeddings.

The forget bias of the LSTM layer was initial-
ized with a value equal to one following the work
of Jozefowicz et al. (2015). We use a batchsize of
10 sentences and fix the pair representation dimen-
sionality to 100. We use gradient clipping, dropout
on the embedding and output layers and L2 regu-
larization without regularizing the biases, to avoid

'https://catalog.ldc.upenn.edu/
1dc2006t06

https://chainer.org/
*https://github.com/tticoin/LSTM-ER
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Model P R Fl(%) |
SPTree 70.1 612 653
Baseline 72.5 533 61.4*
Nowalksl=1 719 556 627
+Walksl=2 699 584 63.6°
+Walksl=4 69.7 595 64.2°
+Walks/=8 715 553 624

Table 1: Relation extraction performance on ACE
2005 test dataset. * denotes significance at p <
0.05 compared to SPTree, ¢ denotes significance
at p < 0.05 compared to the Baseline.

overfitting. We also incorporate early stopping
with patience equal to five, to chose the number
of training epochs and parameter averaging. We
tune the model hyper-parameters on the respective
development set using the RoBO Toolkit (Klein
et al., 2017). Please refer to the supplementary
material for the values.

We extract all possible pairs in a sentence based
on the number of entities it contains. If a pair is
not found in the corpus, it is assigned the “no re-
lation” class. We report the micro precision, recall
and F1 score following Miwa and Bansal (2016)
and Nguyen and Grishman (2015).

4 Results

Table 1 illustrates the performance of our pro-
posed model in comparison with SPTree sys-
tem Miwa and Bansal (2016) on ACE 2005. We
use the same data split with SPTree to compare
with their model. We retrained their model with
gold entities in order to compare the performances
on the relation extraction task. The Baseline corre-
sponds to a model that classifies relations by using
only the representations of entities in a target pair.

As it can be observed from the table, the Base-
line model achieves the lowest F1 score between
the proposed models. By incorporating attention
we can further improve the performance by 1.3
percent point (pp). The addition of 2-length walks
further improves performance (0.9 pp). The best
results among the proposed models are achieved
for maximum 4-length walks. By using up-to
8-length walks the performance drops almost by
2 pp. We also compared our performance with
Nguyen and Grishman (2015) (CNN) using their
data split.* For the comparison, we applied our

“The authors kindly provided us with the data split.



| #Entities =1 1=2 [=4 [=8
2 712 698 729 71.0
3 70.1 675 67.8 63.5*
[4,6) 56.5 59.7 593 599
[6,12) 592 64.2% 622 60.4
[12,23) 547 593 62.3* 55.0

Table 2: Relation extraction performance (F1 %)
on ACE 2005 development set for different num-
ber of entities. * denotes significance at p < 0.05
compared to [ = 1.

best performing model (I = 4).°> The obtained per-
formance is 65.8 / 58.4 / 61.9 in terms of P/ R /
F1 (%) respectively. In comparison with the per-
formance of the CNN model, 71.5 / 53.9 / 61.3,
we observe a large improvement in recall which
results in 0.6 pp F1 increase.

We performed the Approximate Randomization
test (Noreen, 1989) on the results. The best walks
model has no statistically significant difference
with the state-of-the-art SPTree model as in Ta-
ble 1. This indicates that the proposed model can
achieve comparable performance without any ex-
ternal syntactic tools.

Finally, we show the performance of the pro-
posed model as a function of the number of enti-
ties in a sentence. Results in Table 2 reveal that
for multi-pair sentences the model performs sig-
nificantly better compared to the no-walks mod-
els, proving the effectiveness of the method. Ad-
ditionally, it is observed that for more entity pairs,
longer walks seem to be required. However, very
long walks result to reduced performance (I = 8).

5 Related Work

Traditionally, relation extraction approaches have
incorporated a large variety of hand-crafted fea-
tures to represent related entity pairs (Hermann
and Blunsom, 2013; Miwa and Sasaki, 2014,
Nguyen and Grishman, 2014; Gormley et al.,
2015). Recent models instead employ neural net-
work architectures and achieve state-of-the-art re-
sults without heavy feature engineering. Neu-
ral network techniques can be categorized into
recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs). The former is

>We kept the same parameters when we apply our model
to the this data split. We did not remove any negative exam-
ples unlike the CNN model.
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able to encode linguistic and syntactic properties
of long word sequences, making them preferable
for sequence-related tasks, e.g. natural language
generation (Goyal et al., 2016), machine transla-
tion (Sutskever et al., 2014).

State-of-the-art systems have proved to achieve
good performance on relation extraction using
RNNs (Cai et al., 2016; Miwa and Bansal, 2016;
Xu et al., 2016; Liu et al., 2015). Nevertheless,
most approaches do not take into consideration the
dependencies between relations in a single sen-
tence (dos Santos et al., 2015; Nguyen and Grish-
man, 2015) and treat each pair separately. Cur-
rent graph-based models are applied on knowl-
edge graphs for distantly supervised relation ex-
traction (Zeng et al., 2017). Graphs are defined
on semantic types in their method, whereas we
built entity-based graphs in sentences. Other ap-
proaches also treat multiple relations in a sen-
tence (Gupta et al., 2016; Miwa and Sasaki, 2014;
Li and Ji, 2014), but they fail to model long walks
between entity mentions.

6 Conclusions

We proposed a novel neural network model for
simultaneous sentence-level extraction of related
pairs. Our model exploits target and context
pair-specific representations and creates pair rep-
resentations that encode up-to [-length walks be-
tween the entities of the pair. We compared our
model with the state-of-the-art models and ob-
served comparable performance on the ACE2005
dataset without any external syntactic tools. The
characteristics of the proposed approach are sum-
marized in three factors: the encoding of depen-
dencies between relations, the ability to represent
multiple walks in the form of vectors and the in-
dependence from external tools. Future work will
aim at the construction of an end-to-end relation
extraction system as well as application to differ-
ent types of datasets.
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A Hyper-parameter Settings

We tuned our proposed model using the RoBO
toolkit (https://github.com/automl/
RoBO). Table 3 provides the selected options we
used for tuning the model.

’ Optimization Options

Optimization method | Bohamiann
Maximizer scipy
Acquisition function log_ei
Number of iterations 50
Initial points 3

Table 3: Hyper-parameters optimization options.

87

The parameters that gave the best performance
for the different models can be found in Tables 4a-

de.

Parameter Baseline
Position dimension n,, 25
Type dimension 7 15
LSTM dimension n, 100
Input layer dropout 0.3
Output layer dropout 0.03
Learning rate 0.0018
Regularization 3.2-107°
Gradient clipping 25.63
(a)
Parameter =1
Position dimension n,, 25
Type dimension 7 25
LSTM dimension n, 100
Input layer dropout 0.13
Output layer dropout 0.38
Learning rate 0.0017
Regularization 6.1-107°
Gradient clipping 30
(b
Parameter =2
Position dimension n,, 25
Type dimension 7 20
LSTM dimension n, 100
B 0.72
Input layer dropout 0.25
Output layer dropout 0.37
Learning rate 0.003
Regularization 0.0001
Gradient clipping 8.6
(©
’ Parameter =4
Position dimension n,, 25
Type dimension 7 20
LSTM dimension 1, 100
15} 0.77
Input layer dropout 0.11
Output layer dropout 0.32
Learning rate 0.002
Regularization 5.7-107°
Gradient clipping 24.4

(d




Parameter

=8

Position dimension n,,
Type dimension 7
LSTM dimension n,
B

Input layer dropout
Output layer dropout
Learning rate
Regularization
Gradient clipping

25
20

100

0.88

0.49

0.36

0.001
1.88-107°
10.5

©)]

Table 4: Best hyper-parameters settings for pro-

posed models.
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Abstract

This paper addresses the tasks of auto-
matic seed selection for bootstrapping re-
lation extraction, and noise reduction for
distantly supervised relation extraction.
We first point out that these tasks are re-
lated. Then, inspired by ranking relation
instances and patterns computed by the
HITS algorithm, and selecting cluster cen-
troids using the K-means, LSA, or NMF
method, we propose methods for selecting
the initial seeds from an existing resource,
or reducing the level of noise in the dis-
tantly labeled data. Experiments show that
our proposed methods achieve a better per-
formance than the baseline systems in both
tasks.

1 Introduction

Bootstrapping for relation extraction (RE) (Brin,
1998; Riloff et al., 1999; Agichtein and Gravano,
2000) is a class of minimally supervised meth-
ods frequently used in machine learning: initial-
ized by a small set of example instances called
seeds, to represent a particular semantic relation,
the bootstrapping system operates iteratively to ac-
quire new instances of a target relation. Selecting
“good” seeds is one of the most important steps
to reduce semantic drift, which is a typical phe-
nomenon of the bootstrapping process.

Another approach, called “distant supervision”
(DS) (Mintz et al., 2009), does not require any la-
bels on the text. The assumption of DS is that if
two entities participate in a known Freebase rela-
tion, any sentence that contains those two entities
might express that relation. However, this tech-
nique often introduces noise to the generated train-
ing data. As a result, DS is still limited by the

&9

quality of training data, and noise existing in pos-
itively labeled data may affect the performance of
supervised learning.

In this study, we propose methods that can
be applied for both automatic seed selection and
noise reduction by formulating these tasks as rank-
ing problems according to different ranking crite-
ria. Our methods are inspired by ranking instances
and patterns computed by the HITS algorithm, and
selecting cluster centroids using K-means, latent
semantic analysis, or the non-negative matrix fac-
torization method. The main contributions of this
paper are (a) an annotated dataset of 5,727 part-
whole relations!, which contains 8 subtypes for
the bootstrapping RE system; (b) methods for au-
tomatic seed selection for bootstrapping RE and
noise reduction for distant supervised RE; and (c)
experimental results showing that the proposed
models outperform baselines on two datasets.

2 Related Work

2.1 Automatic Seed Selection for
Bootstrapping RE

As manually selecting the seeds requires tremen-
dous effort, some research proposed methods to
select the seed automatically. Eisner and Karakos
(2005) used a “strapping” approach to evaluate
many candidate seeds automatically for a word
sense disambiguation task. Kozareva and Hovy
(2010) proposed a method for measuring seed
quality using a regression model and applied it to
the extraction of unary semantic relations, such
as“people” and “city”. Kiso et al. (2011) sug-
gested a HITS-based approach to ranking the
seeds, based on Komachi et al. (2008)’s analysis of
the Espresso algorithm (Pantel and Pennacchiotti,

"We release our annotated
https://github.com/pvthuy/part-whole-relations.

dataset at
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2006). Movshovitz-Attias and Cohen (2012) gen-
erated a ranking based on pointwise mutual infor-
mation (PMI) to pick up the seeds from existing
resources in the biomedical domain. Given the
seed set of a target relation, the goal of the boot-
strapping method is to find instances similar to
initial seeds by harvesting instances and patterns
iteratively over large corpora, e.g., Wikipedia or
ClueWeb.

2.2 Noise Reduction for Distantly Supervised
RE

The DS assumption is too strong and leads to
wrongly labeled data that affects performance.
Many studies focused on methods of noise re-
duction in DS. Intxaurrondo et al. (2013) filtered
out noisy mentions from the distantly supervised
dataset using their frequencies, PMI, or the sim-
ilarity between the centroids of all relation men-
tions and each individual mention. Xiang et al.
(2016) introduced ranking-based methods accord-
ing to different strategies to select effective train-
ing groups. Li et al. (2017) proposed three novel
heuristics that use lexical and syntactic informa-
tion to remove noise in the biomedical domain.
The data generated by the noise reduction process
can be used by supervised learning algorithms to
train models.

3 Problem Formulation

Let R* be the set of target relations. The goal is
to find instances, or pairs of entities, upon which
the relation holds. For each target relation r» €
R*, we assume there is a set D, of triples rep-
resenting the relation r. The triples in D, have
the form (e1,p, e2), where e; and ey denote en-
tities, and p denotes the pattern that connects the
two entities. A pair of entities (e, e2) is called
an instance. This terminology is similar to the
one used in open information extraction systems,
such as Reverb (Fader et al., 2011). For example,
in triple (Barack Obama,was born in, Honolulu),
(Barack Obama, Honolulu) is the instance, and
“was born in” is the pattern.

The two tasks we address are defined as follows:

Seed Selection for Bootstrapping RE: In au-
tomatic seed selection, a set R* of target rela-
tions and sets of instance-pattern triples D, =
{(e1,p, e2) } representing each target relation r €
R* are given as input. These triples are extracted
from existing corpus or database, e.g., WordNet.
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With these inputs, the task is to choose good seeds
from the instances appearing in D, for each r €
R*, such that they work effectively in bootstrap-
ping RE.

Noise Reduction for Distantly Supervised RE:
In noise reduction for distantly supervised RE, the
input is the target relations R* and the sets D, of
triples’> generated automatically by DS for each
relation 7 € R*. Because the data is generated
automatically by DS, D, may contain noise, i.e.,
triples (e, p, e2) for which relation r does not ac-
tually hold between e; and es. The goal of noise
reduction is to filter out these noisy triples, so that
they do not deteriorate the quality of the triple
classifier trained subsequently.

Formulation as Ranking Tasks: As we can see
from the task definitions above, both seed selec-
tion and noise reduction are the task of selecting
triples from a given collection. Indeed, the two
tasks essentially have a similar goal in terms of
the ranking-based perspective. We thus formulate
them as the task of ranking instances (in seed se-
lection) or triples (in noise reduction), given a set
of (possibly noisy) triples. In the seed selection
task, we use the k highest ranked instances as the
seeds for bootstrapping RE. Likewise, in noise re-
duction for DS, we only use the k highest ranked
triples from the DS-generated data to train a clas-
sifier. Note that the value of £ in noise reduction
may be much larger than in seed selection.

4 Approaches to Automatic Seed
Selection and Noise Reduction

In this section, we propose several methods that
can be applied for both automatic seed selec-
tion and noise reduction tasks, inspired by rank-
ing relation instances and patterns computed by
the HITS algorithm, and picking cluster cen-
troids using the K-means, latent semantic anal-
ysis (LSA), or non-negative matrix factorization
(NMF) method.

4.1 K-means-based Approach

The first method we describe is a K-means-based
approach. It is described as follows: (1) De-

% To be precise, in each triple (e1, s, e2) generated by DS,
s is not a pattern but a sentence that contains entities e; and
e>. However, we can easily convert each instance-sentence
triple (e1, s, e2) to an instance-pattern triple (e, p,ez2) by
looking for a pattern p that connects two entities in sentence
s.



Instances

Patterns

Patterns Patterns

Instances Instances

\“s\ancﬂ " Paﬁef“ " N
i

First type Second type Third type

Figure 1: Graph representations of instances and
patterns using the HITS algorithm.

termine the number k£ of instances/triples that
should be selected®. (2) Run the K-means clus-
tering algorithm to partition all instances in the in-
put triples (see Section 3) into k clusters. Each
data point is represented by the embedding vec-
tor difference between its entities; e.g., the in-
stance [ (Barack Obama, Honolulu) corre-
sponds to: vec([]) vec( “Barack Obama”) —
vec(“Honolulu™).  We use pre-trained vectors
published by Mikolov et al. (2013). (3) The in-
stance closest to the centroid is selected in each
cluster. Given that the number of clusters is &, the
same number of instances/triples will be chosen.

4.2 HITS-based Approach

Hypertext-induced topic search (HITS) (Klein-
berg, 1999), also known as the hubs-and-
authorities algorithm, is a link analysis method
for ranking web pages. In HITS, a good hub is a
page that points to many good authorities and vice
versa; a good authority is a page that is pointed to
by many good hubs. These hubs and authorities
form a bipartite graph, where we can compute the
hubness score of each node.

In our task, let A be the instance-pattern co-
occurrence matrix. We can compute the hubness
score for each instance on the bipartite graph of
instances and patterns induced by the matrix A.
Inspired by the way HITS ranks hubs and authori-
ties, our HITS-based seed selection strategy can be
explained as follows: (1) Determine the number &
of triples that should be selected.(2) Build the bi-
partite graph of instances and patterns based on the
instance-pattern co-occurrence matrix A. Figure 1
presents three possible ways of building a bipar-
tite graph. For the first type of graph, we consider

3 Depending on the task, instances or triples will be se-
lected: instances for the automatic seed selection task, and
triples for the noise reduction task. As instances are pairs
of entities which are included in triples, we can simply con-

vert between the instance and the triple, and apply a proposed
method to both tasks.
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each instance/pattern as a node in the graph. This
representation is similar to that used by Kiso et al.
(2011). In the second graph representation, pat-
terns and instances are treated as nodes and edges,
respectively. Similarly, instances and patterns are
treated as nodes and edges, respectively in the last
representation. (3) For the first and third types,
we simply retain the top-k instances with the high-
est hubness scores as the outputs (we sort the in-
stances in descending order based on their hub-
ness scores). For the second type, k instances as-
sociated with the highest scoring patterns are cho-
sen (we first sort the patterns in descending order
based on their hubness scores).

4.3 HITS- and K-means-based Approach

In the combined method of HITS and K-means
algorithms, we first rank the instances and pat-
terns based on their bipartite graph and then run
K-means to cluster instances in our annotated
dataset. However, instead of choosing the instance
nearest to the centroid, we retain the one that has
the highest HITS hubness score in each cluster.

4.4 LSA-based Approach

Latent semantic analysis (LSA) (Deerwester et al.,
1990) is also a widely used method for the au-
tomatic clustering of data along multiple dimen-
sions. Singular value decomposition (SVD) is
used to construct a low-rank approximation of
the instance-pattern co-occurrence matrix A. The
SVD projection is performed by decomposing the
matrix A € RM*N into the product of three
matrices, namely an SVD instance matrix I €
RMx*K "3 diagonal matrix of singular values S €
REXK and an SVD pattern matrix P € REXN.

A ~ISPT

Our LSA-based seed selection strategy is as
follows: (1) Specify the desired number k of
triples. (2) Use the LSA algorithm to decompose
the instance-pattern co-occurrence matrix A into
three matrices I, S, and P. We set the number of
LSA dimensions to K = k. (3) We can consider
LSA as a form of soft clustering, with each column
of the SVD instance matrix I corresponding to a
cluster. Then, we select the k instances that have
the highest absolute values from each column of 1.

4.5 NMF-based Approach

Non-negative matrix factorization (NMF) (Paatero
and Tapper, 1994; Lee and Seung, 1999) is an-



Subtype Freq
Component-Of | 643 (11.23%)
Member-Of 1,272 (22.21%)
Portion-Of 555 (9.69%)
Stuff-Of 1,082 (18.89%)
Located-In 534 (9.32%)
Contained-In 272 (4.75%)
Phase-Of 497 ( 8.68%)
Participates-In | 872 (15.23%)
TOTAL 5,727 triples

Table 1: Statistics of our part-whole dataset.

other method for approximate non-negative ma-
trix factorization. The non-negative data matrix
A € RM*N g represented by two non-negative
factors W € RM*K and H € REXN which,
when multiplied, approximately reconstruct A:

A ~WH

The non-negativity constraint is the main differ-
ence between NMF and LSA. Similarly to the
LSA-based method, we set the NMF parameter KX
to k, the desired number of instances to select. We
then select the k£ instances that have the highest
values from each column of W.

5 Experiments

5.1 Datasets and Settings

We provide an annotated dataset of part-whole re-
lations as a reliable resource for selecting seeds.
Our dataset was collected from Wikipedia and
ClueWeb, and annotated by two annotators. One
of its special characteristics is that the part-whole
relation is a collection of relations, not a single re-
lation (Iris, 1989; Winston et al., 1987).

Table 1 gives the frequencies of each sub-
type of part-whole relations. There are 5,727 in-
stances of 8 subtypes that were annotated with
the same labels by both annotators. We use
Espresso+Word2vec (Phi and Matsumoto, 2016),
which is an improved version for the origi-
nal Espresso algorithm (Pantel and Pennacchiotti,
2006).  Espresso+Word2vec outperformed the
Espresso system for harvesting part-whole rela-
tions by utilizing the Similarity Ranker, which
uses the embedded vector difference between in-
stance pairs of relations. The performance is mea-
sured with Precision@N (Manning et al., 2008),
N = 50. In total, 5,000 instances are checked by

92

Method Average P@50
K-means 0.96
HITS_Graphl 0.90
HITS_Graph2 0.85
HITS_Graph3 0.90
HITS+K-means_Graph1 0.92
HITS+K-means_Graph?2 0.85
HITS+K-means_Graph3 0.94
LSA 0.90
NMF 0.89
Random 0.75

Table 2: Performance of seed selection methods.

annotators to ascertain whether they express part-
whole relations. We vary the number % of seeds
between 5 and 50 with a step of 5 to report the
average P@50 of each seed selection method.

For the noise reduction task, we use the training
and testing set developed by (Riedel et al., 2010),
which contains 53 relation classes. This dataset
was generated by aligning Freebase relations with
the New York Times corpus. After removing noisy
triples from the dataset using the proposed meth-
ods, we use the filtered data to train two kinds of
convolutional neural networks (CNN) (the CNN
model in (Zeng et al., 2014) and the PCNN model
in (Zeng et al., 2015)) with at-least-one multi-
instance learning (ONE) used in (Zeng et al.,
2015), and the sentence-level attention (ATT) used
in (Lin et al., 2016). Finally, we report the area
under the precision-recall (AUCPR) of each noise
reduction method.

5.2 Performance on Automatic Seed
Selection Task

The performances of the seed selection methods
are presented in Table 2. For the HITS-based
and HITS+K-means-based methods, we display
the P@50 with three types of graph representation
as shown in Section 4.2. We use random seed se-
lection as the baseline for comparison. As Table 2
shows, the random method achieved a precision
of 0.75. The relation extraction system that uses
the random method has the worst average P@50
among all seed selection strategies. The HITS-
based method’s P@50s when using Graphl and
Graph3 are confirmed to be better than when us-
ing Graph2. This indicates that relying on reli-
able instances is better than reasoning over pat-
terns (recall that for the Graph2, we first choose



System Original | +HITS | +LSA | +NMF | +Ensemble
CNN+ONE 0.180 0.183 | 0.173 | 0.178 0.181
CNN+ATT 0.234 0.235 | 0.235 | 0.233 0.236
PCNN+ONE 0.231 0.234 | 0.233 | 0.234 0.235
PCNN+ATT 0.248 0.253 | 0.250 | 0.252 0.255

Table 3: Performance (AUCPR) of each noise reduction method; in bold are the best scores.

the patterns, then select the instances associated
with those patterns), as there is a possibility that a
pattern can be ambiguous, and therefore, instances
linked to that pattern can be incorrect. The K-
means-based seed selection method provides the
best average P@50 with a performance of 0.96.
The HITS+K-means-based method performs bet-
ter than using only the HITS strategy, while the
LSA-based and NMF-based methods have a com-
parable performance.

5.3 Performance on Noise Reduction Task

Table 3 presents the performance of noise re-
duction methods. Recall that the K-means-based
method achieves a high P@50 for the seed
selection method. Our assumption is that each
cluster may represent a set in which elements
have similar semantic properties. = However,
we observed that as the number of relations
is relatively high and there is no distinct def-
inition between some relations in the distantly
labeled data (e.g., the following three relations
are quite similar:  /location/country/capital,
/location/province/capital, and
/location/us_state/capital, we decided not to
perform the K-means-based method for our
noise reduction task. The performances of the
HITS-based, LSA-based, and NMF-based noise
reduction methods are presented in Table 3. We
experimentally set the portion of retained data
from the distantly labeled data to 90%, given
that the performance can be affected if too many
sentences are removed from the original data.
We also perform experiments with an ensem-
ble method that combines the HITS-based and
LSA-based strategies to merge rankings from
their outputs, with half of the triples coming from
the LSA-based method and the other half from
the HITS-based method. Table 3 indicates that
our proposed methods improved the performance
of all CNN and PCNN models. Our ensemble
method achieved the best improvements for three
out of four systems, except that the HITS-based
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method obtained the best score for CNN+ONE.

6 Conclusion

We formulated the seed selection and noise re-
duction tasks as ranking problems. In addition,
we proposed several methods, inspired by rank-
ing instances and patterns computed by the HITS
algorithm, and selecting clusters centroids using
the K-means, LSA, or NMF method. Experi-
ments demonstrated that our proposed methods
improved the baselines in both tasks.
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Abstract

LOCATEDNEAR relation is a kind of com-
monsense knowledge describing two phys-
ical objects that are typically found near
each other in real life. In this paper, we
study how to automatically extract such re-
lationship through a sentence-level relation
classifier and aggregating the scores of en-
tity pairs from a large corpus. Also, we
release two benchmark datasets for evalua-
tion and future research.

1 Introduction

Artificial intelligence systems can benefit from
incorporating commonsense knowledge as back-
ground, such as ice is cold (HASPROPERTY), chew-
ing is a sub-event of eating (HASSUBEVENT),
chair and table are typically found near each other
(LOCATEDNEAR), etc. These kinds of common-
sense facts have been used in many downstream
tasks, such as textual entailment (Dagan et al.,
2009; Bowman et al., 2015) and visual recogni-
tion tasks (Zhu et al., 2014). The commonsense
knowledge is often represented as relation triples in
commonsense knowledge bases, such as Concept-
Net (Speer and Havasi, 2012), one of the largest
commonsense knowledge graphs available today.
However, most commonsense knowledge bases are
manually curated or crowd-sourced by community
efforts and thus do not scale well.

This paper aims to automatically extract the com-
monsense LOCATEDNEAR relation between physi-
cal objects from textual corpora. LOCATEDNEAR
is defined as the relationship between two objects
typically found near each other in real life. We fo-
cus on LOCATEDNEAR relation for these reasons:

1. LOCATEDNEAR facts provide helpful prior

knowledge to object detection tasks in com-

*Both authors contributed equally.
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Figure 1: LOCATEDNEAR facts assist the detection
of vague objects: if a set of knife, fork and plate
is on the table, one may believe there is a glass
beside based on the commonsense, even though
these objects are hardly visible due to low light.

plex image scenes (Yatskar et al., 2016).

See Figure 1 for an example.

This commonsense knowledge can benefit rea-

soning related to spatial facts and physical

scenes in reading comprehension, question

answering, etc. (Li et al., 2016)

. Existing knowledge bases have very few facts
for this relation (ConceptNet 5.5 has only 49
triples of LOCATEDNEAR relation).

We propose two novel tasks in extracting Lo-
CATEDNEAR relation from textual corpora. One
is a sentence-level relation classification problem
which judges whether or not a sentence describes
two objects (mentioned in the sentence) being phys-
ically close by. The other task is to produce a
ranked list of LOCATEDNEAR facts with the given
classified results of large number of sentences. We
believe both two tasks can be used to automati-
cally populate and complete existing commonsense
knowledge bases.

Additionally, we create two benchmark datasets
for evaluating LOCATEDNEAR relation extraction

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 96—101
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics



systems on the two tasks: one is 5,000 sentences
each describing a scene of two physical objects
and with a label indicating if the two objects are
co-located in the scene; the other consists of 500
pairs of objects with human-annotated scores indi-
cating confidences that a certain pair of objects are
commonly located near in real life.!

We propose several methods to solve the tasks
including feature-based models and LSTM-based
neural architectures. The proposed neural architec-
ture compares favorably with the current state-of-
the-art method for general-purpose relation clas-
sification problem. From our relatively smaller
proposed datasets, we extract in total 2,067 new
LOCATEDNEAR triples that are not in ConceptNet.

2 Sentence-level LOCATEDNEAR
Relation Classification

Problem Statement Given a sentence s mention-
ing a pair of physical objects <e;, e;>, we call
<s,ej,e;> an instance. For each instance, the
problem is to determine whether e; and e; are
located near each other in the physical scene de-
scribed in the sentence s. For example, suppose
e; 1s “dog”, e; is “cat”, and s = “The King puts
his dog and cat on the table.”. As it is true that
the two objects are located near in this sentence, a
successful classification model is expected to label
this instance as True. However, if so = “My dog is
older than her cat.”, then the label of the instance
<82, ¢€;,e;> is False, because s just talks about a
comparison in age. In the following subsections,
we present two different kinds of baseline methods
for this binary classification task: feature-based
methods and LSTM-based neural architectures.

2.1 Feature-based Methods

Our first baseline method is an SVM classifier
based on following features commonly used in
many relation extraction models (Xu et al., 2015):
1. Bag of Words (BW): the set of words that ever
appeared in the sentence.
Bag of Path Words (BPW): the set of words
that appeared on the shortest dependency path
between objects e; and e; in the dependency
tree of the sentence s, plus the words in the
two subtrees rooted at e; and e; in the tree.
. Bag of Adverbs and Prepositions (BAP): the
existence of adverbs and prepositions in the

2.

'https://github.com/adapt-sjtu/
commonsense—-locatednear
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sentence as binary features.

. Global Features (GF): the length of the sen-
tence, the number of nouns, verbs, adverbs, ad-
jectives, determiners, prepositions and punc-
tuations in the whole sentence.

. Shortest Dependency Path features (SDP): the
same features as with GF but in dependency
parse trees of the sentence and the shortest
path between e; and e;, respectively.

. Semantic Similarity features (SS): the cosine
similarities between the pre-trained GloVe
word embeddings (Pennington et al., 2014)
of the two object words.

We evaluate linear and RBF kernels with different

parameter settings, and find the RBF kernel with

{C =100, = 1073} performs the best overall.

2.2 LSTM-based Neural Architectures

We observe that the existence of LOCATED-
NEAR relation in an instance <s,ej,eo> depends
on two major information sources: one is from the
semantic and syntactical features of sentence s and
the other is from the object pair <ej,ea>. By this
intuition, we design our LSTM-based model with
two parts, shown in lower part of Figure 2. The left
part is for encoding the syntactical and semantic
information of the sentence s, while the right part
is encoding the semantic similarity between the
pre-trained word embeddings of e; and es.

Solely relying on the original word sequence
of a sentence s has two problems: (i) the irrel-
evant words in the sentence can introduce noise
into the model; (ii) the large vocabulary of origi-
nal sentences induce too many parameters, which
may cause over-fitting. For example, given two
sentences “The king led the dog into his nice gar-
den.” and “A criminal led the dog into a poor gar-
den.”. The object pair is <dog, garden> in both
sentences. The two words “lead” and “into” are
essential for determining whether the object pair is
located near, but they are not attached with due im-
portance. Also, the semantic differences between
irrelevant words, such as “king” and “criminal”,
“beautiful” and “poor”, are not useful to the co-
location relation between the “dog” and “garden”,
and thus tend to act as noise.

To address the above issues, we propose a nor-
malized sentence representation method merging
the three most important and relevant kinds of in-
formation about each instance: lemmatized forms,
POS (Part-of-Speech) tags and dependency roles.



LocatedNear Relation Extraction
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Figure 2: Framework with a LSTM-based classifier
Level Examples needed to determine the relation between two target
Objects Eq, Eo nouns normally comes from the words which are
Lemma open, lead, into, ... close to the target nouns.
Dependency Role | open#s, open#o, into#o, ... Then, we leverage LSTM to encode the whole
POS Tag DT, PR, CC, JJ, ... sequence of the tokens of normalized representa-

Table 1: Examples of four types of tokens during
sentence normalization. (#s stands for subjects and
#o for objects)

We first replace the two nouns in the object pair as
“E;” and “E>”, and keep the lemmatized form of
the original words for all the verbs, adverbs and
prepositions, which are highly relevant to describ-
ing physical scenes. Then, we replace the subjects
and direct objects of the verbs and prepositions
(nsubj, dobj for verbs and case for preposi-
tions in dependency parse trees) with special tokens
indicating their dependency roles. For the remain-
ing words, we simply use their POS tags to replace
the originals. The four kinds of tokens are illus-
trated in Table 1. Figure 2 shows a real example
of our normalized sentence representation, where
the object pair of interest is <dog, garden>.
Apart from the normalized tokens of the original
sequence, to capture more structural information,
we also encode the distances from each token to
E; and E; respectively. Such position embeddings
(position/distance features) are proposed by (Zeng
et al., 2014) with the intuition that information
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tion plus position embedding. In the meantime,
two pretrained GloVe word embeddings (Penning-
ton et al., 2014) of the original two physical object
words are fed into a hidden dense layer.

Finally, we concatenate both outputs and then
use sigmoid activation function to obtain the fi-
nal prediction. We choose to use the popular binary
cross-entropy as our loss function, and RMSProp
as the optimizer. We apply a dropout rate (Zaremba
et al., 2014) of 0.5 in the LSTM and embedding
layer to prevent overfitting.

3 LOCATEDNEAR Relation Extraction

The upper part of Figure 2 shows the overall work-
flow of our automatic framework to mine Located-
Near relations from raw text. We first construct a
vocabulary of physical objects and generate all can-
didate instances. For each sentence in the corpus, if
a pair of physical objects e; and e; appear as nouns
in a sentence s, then we apply our sentence-level
relation classifier on this instance. The relation clas-
sifier yields a probabilistic score s indicating the
confidence of the instance in the existence of LO-
CATEDNEAR relation. Finally, all scores of the
instances from the corpus are grouped by the ob-



ject pairs and aggregated, where each object pair is
associated with a final score. These mined physi-
cal pairs with scores can easily be integrated into
existing commonsense knowledge base.

More specifically, for each object pair <e;, e;>,
we find all the m sentences in our corpus mention-
ing both objects. We classify the m instances with
the sentence-level relation classifier and obtain con-
fidence scores for each instance, then feed them
into a heuristic scoring function f to obtain the
final aggregated score for the given object pair. We
propose the following 5 choices of f considering
accumulation and threshold:

Jo=m (1)
fi= Zconf(sm €i, €;) 2
k=1
fom~ i f(sk, €, 3
2= confl(sy, i ;) 3
k=1
f3= Z 1{c0nf(sk,ei,ej)>0.5} 4)
k=1
1 m
fa= - Z Liconf(sy,ei,e;)>0.5} (5)
k=1
4 Datasets

Our proposed vocabulary of single-word physical
objects is constructed by the intersection of all
ConceptNet concepts and all entities that belong
to “physical object” class in Wikidata (Vrandecié
and Krétzsch, 2014). We manually filter out some
words that have the meaning of an abstract concept,
which results in 1,169 physical objects in total.
Afterwards, we utilize a cleaned subset of the
Project Gutenberg corpus (Lahiri, 2014), which
contains 3,036 English books written by 142 au-
thors. An assumption here is that sentences in
fictions are more likely to describe real life scenes.
We sample and investigate the density of LOCAT-
EDNEAR relations in Gutenberg with other widely
used corpora, namely Wikipedia, used by Mintz
et al. (2009) and New York Times corpus (Riedel
et al., 2010). In the English Wikipedia dump, out of
all sentences which mentions at least two physical
objects, 32.4% turn out to be positive. In the New
York Times corpus, the percentage of positive sen-
tences is only 25.1%. In contrast, that percentage in
the Gutenberg corpus is 55.1%, much higher than
the other two corpora, making it a good choice for
LOCATEDNEAR relation extraction.
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From this corpus, we identify 15,193 pairs that
co-occur in more than 10 sentences. Among these
pairs, we randomly select 500 object pairs and 10
sentences with respect to each pair for annotators
to label their commonsense LOCATEDNEAR. Each
instance is labeled by at least three annotators who
are college students and proficient with English.
The final truth labels are decided by majority vot-
ing. The Cohen’s Kappa among the three anno-
tators is 0.711 which suggests substantial agree-
ment (Landis and Koch, 1977). This dataset has
almost double the size of those most popular rela-
tions in the SemEval task (Hendrickx et al., 2010),
and the sentences in our data set tend to be longer.
We randomly choose 4,000 instances as the train-
ing set and 1,000 as the test set for evaluating the
sentence-level relation classification task. For the
second task, we further ask the annotators to label
whether each pair of objects are likely to locate
near each other in the real world. Majority votes
determine the final truth labels. The inter-annotator
agreement here is 0.703 (substantial agreement).

5 Evaluation

In this section, we first present our evaluation of
our proposed methods and the state-of-the-art gen-
eral relation classification model on the first task.
Then, we evaluate the quality of the new LOCAT-
EDNEAR triples we extracted.

5.1 Sentence-level LOCATEDNEAR Relation
Classification

We evaluate the proposed methods against the state-
of-the-art general domain relation classification
model (DRNN) (Xu et al., 2016). The results
are shown in Table 2. For feature-based SVM,
we do feature ablation on each of the 6 feature
types. For LSTM-based model, we experiment
on variants of input sequence of original sentence:
“LSTM+Word” uses the original words as the input
tokens; “LSTM+POS” uses only POS tags as the
input tokens; “LSTM+Norm” uses the tokens of
sequence after sentence normalization. Besides,
we add two naive baselines: “Random” baseline
method classifies the instances into two classes
with equal probability. “Majority” baseline method
considers all the instances to be positive.

From the results, we find that the SVM model
without the Global Features performs best, which
indicates that bag-of-word features benefit more in
shortest dependency paths than on the whole sen-



Random Majority | SVM | SVM(-BW) | SVM(-BPW) | SVM(-BAP) | SVM(-GF)

Acc. 0.500 0.551 0.584 0.577 0.556 0.563 0.605

P 0.551 0.551 0.606 0.579 0.567 0.573 0.616

R 0.500 1.000 0.702 0.675 0.681 0.811 0.751

FI 0.524 0.710 0.650 0.623 0.619 0.672 0.677

SVM(-SDP) | SVM(-SS) | DRNN | LSTM+Word | LSTM+POS | LSTM+Norm

Acc. 0.579 0.584 0.635 0.637 0.641 0.653

P 0.597 0.605 0.658 0.635 0.650 0.654

R 0.728 0.708 0.702 0.800 0.751 0.784

FI 0.656 0.652 0.679 0.708 0.697 0.713

Table 2: Performance of baselines on co-location classification task with ablation. (Acc.=Accuracy,

P=Precision, R=Recall, “-” means without certain feature)
[ f MAP P@50 P@100 P@200 P@300 ] (door, room) (boy, girl) (cup, tea)
fo 042 040 0.44 0.42 0.38 (ship, sea)  (house, garden) (arm, leg)
i 058 070 0.60 053 0.44 (fire, wood) (house, fire) (horse, saddle)
> 048 0.56 052 0.49 042 (fire, smoke) (door, hall) (door, street)
7s 059 0.63 0.63 035 0.44 (book, table) (fruit, tree) (table, chair)
fa 056 0.40 0.48 0.50 0.42

Table 3: Ranking results of scoring functions.

tence. Also, we notice that DRNN performs best
(0.658) on precision but not significantly higher
than LSTM+Norm (0.654). The experiment shows
that LSTM+Word enjoys the highest recall score,
while LSTM+Norm is the best one in terms of the
overall performance. One reason is that the normal-
ization representation reduces the vocabulary of in-
put sequences, while also preserving important syn-
tactical and semantic information. Another reason
is that the LOCATEDNEAR relation are described
in sentences decorated with prepositions/adverbs.
These words are usually descendants of the object
word in the dependency tree, outside of the shortest
dependency paths. Thus, DRNN cannot capture
the information from the words belonging to the
descendants of the two object words in the tree, but
this information is well captured by LSTM+Norm.

5.2 LOCATEDNEAR Relation Extraction

Once we have obtained the probability score for
each instance using LSTM+Norm, we can extract
LOCATEDNEAR relation using the scoring func-
tion f. We compare the performance of 5 differ-
ent heuristic choices of f, by quantitative results.
We rank 500 commonsense LOCATEDNEAR ob-
ject pairs described in Section 3. Table 3 shows
the ranking results using Mean Average Precision
(MAP) and Precision at K as the metrics. Accumu-
lative scores (f1 and f3) generally do better. Thus,
we choose f = f3 with a MAP score of 0.59 as the
scoring function.
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Table 4: Top object pairs returned by best perform-
ing scoring function f3

Qualitatively, we show 15 object pairs with some
of the highest f3 scores in Table 4. Setting a thresh-
old of 40.0 for f3, which is the minimum non-zero
f3 score for all true object pairs in the LOCATED-
NEAR object pairs data set (500 pairs), we obtain
a total of 2,067 LOCATEDNEAR relations, with a
precision of 68% by human inspection.

6 Conclusion

In this paper, we present a novel study on enrich-
ing LOCATEDNEAR relationship from textual cor-
pora. Based on our two newly-collected benchmark
datasets, we propose several methods to solve the
sentence-level relation classification problem. We
show that existing methods do not work as well on
this task and discovered that LSTM-based model
does not have significant edge over simpler feature-
based model. Whereas, our multi-level sentence
normalization turns out to be useful.

Future directions include: 1) better leveraging
distant supervision to reduce human efforts, 2)
incorporating knowledge graph embedding tech-
niques, 3) applying the LOCATEDNEAR knowledge
into downstream applications in computer vision
and natural language processing.
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Abstract

Coreference resolution aims to identify in
a text all mentions that refer to the same
real-world entity. The state-of-the-art end-
to-end neural coreference model consid-
ers all text spans in a document as po-
tential mentions and learns to link an an-
tecedent for each possible mention. In this
paper, we propose to improve the end-to-
end coreference resolution system by (1)
using a biaffine attention model to get an-
tecedent scores for each possible mention,
and (2) jointly optimizing the mention de-
tection accuracy and the mention cluster-
ing log-likelihood given the mention clus-
ter labels. Our model achieves the state-
of-the-art performance on the CoNLL-
2012 Shared Task English test set.

1 Introduction

End-to-end coreference resolution is the task of
identifying and grouping mentions in a text such
that all mentions in a cluster refer to the same en-
tity. An example is given below (Bjorkelund and
Kuhn, 2014) where mentions for two entities are
labeled in two clusters:

[Drug Emporium Inc.],; said [Gary
Wilber]p; was named CEO of [this drug-
store chain],o. [Helps succeeds his fa-
ther, Philip T. Wilber, who founded
[the company],3 and remains chairman.
Robert E. Lyons III, who headed the
[company],4’s Philadelphia region, was
appointed president and chief operating
officer, succeeding [Gary Wilber]s.

Many traditional coreference systems, either rule-
based (Haghighi and Klein, 2009; Lee et al., 2011)

*Work done during the internship at IBM Watson.
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or learning-based (Bengtson and Roth, 2008; Fer-
nandes et al., 2012; Durrett and Klein, 2013;
Bjorkelund and Kuhn, 2014), usually solve the
problem in two separate stages: (1) a mention de-
tector to propose entity mentions from the text,
and (2) a coreference resolver to cluster proposed
mentions. At both stages, they rely heavily on
complicated, fine-grained, conjoined features via
heuristics. This pipeline approach can cause cas-
cading errors, and in addition, since both stages
rely on a syntactic parser and complicated hand-
craft features, it is difficult to generalize to new
data sets and languages.

Very recently, Lee et al. (2017) proposed the
first state-of-the-art end-to-end neural coreference
resolution system. They consider all text spans
as potential mentions and therefore eliminate the
need of carefully hand-engineered mention detec-
tion systems. In addition, thanks to the represen-
tation power of pre-trained word embeddings and
deep neural networks, the model only uses a min-
imal set of hand-engineered features (speaker ID,
document genre, span distance, span width).

The core of the end-to-end neural coreference
resolver is the scoring function to compute the
mention scores for all possible spans and the an-
tecedent scores for a pair of spans. Furthermore,
one major challenge of coreference resolution is
that most mentions in the document are singleton
or non-anaphoric, i.e., not coreferent with any pre-
vious mention (Wiseman et al., 2015). Since the
data set only have annotations for mention clus-
ters, the end-to-end coreference resolution system
needs to detect mentions, detect anaphoricity, and
perform coreference linking. Therefore, research
questions still remain on good designs of the scor-
ing architecture and the learning strategy for both
mention detection and antecedent scoring given
only the gold cluster labels.

To this end, we propose to use a biaffine atten-
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Figure 1: Model architecture. We consider all text spans up to 10-word length as possible mentions. For

LT3

brevity, we only show three candidate antecedent spans (‘“Drug Emporium Inc.”, “Gary Wilber”, “was
named CEQ”) for the current span “this drugstore chain”.

tion model instead of pure feed forward networks
to compute antecedent scores. Furthermore, in-
stead of training only to maximize the marginal
likelihood of gold antecedent spans, we jointly
optimize the mention detection accuracy and the
mention clustering log-likelihood given the men-
tion cluster labels. We optimize mention detection
loss explicitly to extract mentions and also per-
form anaphoricity detection.

We evaluate our model on the CoNLL-2012 En-
glish data set and achieve new state-of-the-art per-
formances of 67.8% F1 score using a single model
and 69.2% F1 score using a 5-model ensemble.

2 Task Formulation

In end-to-end coreference resolution, the input is
a document D with T words, and the output is a
set of mention clusters each of which refers to the
same entity. A possible span is an N-gram within
a single sentence. We consider all possible spans
up to a predefined maximum width. To impose
an ordering, spans are sorted by the start position
START(¢) and then by the end position END().
For each span ¢ the system needs to assign an an-
tecedent a; from all preceding spans or a dummy
antecedent e: a; € {¢,1,...,i—1}. Ifaspanjisa
true antecedent of the span 4, then we have a; = j
and 1 < 57 < ¢—1. The dummy antecedent e repre-
sents two possibilities: (1) the span ¢ is not an en-
tity mention, or (2) the span ¢ is an entity mention
but not coreferent with any previous span. Finally,
the system groups mentions according to corefer-
ence links to form the mention clusters.

3 Model

Figure 1 illustrates our model. We adopt the
same span representation approach as in Lee et al.
(2017) using bidirectional LSTMs and a head-
finding attention. Thereafter, a feed forward net-
work produces scores for spans being entity men-
tions. For antecedent scoring, we propose a bi-
affine attention model (Dozat and Manning, 2017)
to produce distributions of possible antecedents.
Our training data only provides gold mention clus-
ter labels. To make best use of this information,
we propose to jointly optimize the mention scor-
ing and antecedent scoring in our loss function.
Span Representation Suppose the current sen-
tence of length L is [wy, we, . . ., wr], we use wy to
denote the concatenation of fixed pretrained word
embeddings and CNN character embeddings (dos
Santos and Zadrozny, 2014) for word wy. Bidi-
rectional LSTMs (Hochreiter and Schmidhuber,
1997) recurrently encode each wy:

E)t _ Lsrﬂv[forward(E>t_17 Wt)

zt _ LSTMbackward(ﬁt_H, Wt) (1)
%

h; = [hy, zt]

Then, the head-finding attention computes a score
distribution over different words in a span s;:

[ VLFFNNa(ht)
exp(ay)
END(i)

> exp(ag) )

k=START(3)
END(4)

W?ead-att — § :

t=START(4)

Sit =

SitWt



where FFNN is a feed forward network outputting
a vector.

Effective span representations encode both con-
textual information and internal structure of spans.
Therefore, we concatenate different vectors, in-
cluding a feature vector ¢(7) for the span size, to
produce the span representation s; for s;:

03]

Mention Scoring The span representation is input
to a feed forward network which measures if it is
an entity mention using a score m(i):

head-att
9 Wi

3)

Si = [hSTART(z') ) hEND(z’)

m(i) = vl FENNp(s;) 4)
Since we consider all possible spans, the num-
ber of spans is O(7?) and the number of span
pairs is O(T*). Due to computation efficiency, we
prune candidate spans during both inference and
training. We keep \T" spans with highest mention
scores.

Biaffine Attention Antecedent Scoring Consider
the current span s; and its previous spans s; (1 <
7 <1 — 1), we propose to use a biaffine attention
model to produce scores ¢(i, j):

S = FFNNanaphora(si)
éj = FFNNantecedent(Sj)7 I<j<i—1(5)

c(i,j) = 8] Uni8i + vy;8i

FFNNanaphora and FFNNpecedent reduce span rep-
resentation dimensions and only keep informa-
tion relevant to coreference decisions. Compared
with the traditional FFNN approach in Lee et al.
(2017), biaffine attention directly models both the
compatibility of s; and s; by éjT UyiS; and the prior
likelihood of s; having an antecedent by Vgiéi.
Inference The final coreference score s(i,j) for
span s; and span s; consists of three terms: (1)
if s; is a mention, (2) if s; is a mention, (3) if s;
is an antecedent for s;. Furthermore, for dummy
antecedent €, we fix the final score to be 0:

S(Zvj):{ i#e

j=¢€
During inference, the model only creates a link if
the highest antecedent score is positive.
Joint Mention Detection and Mention Cluster
During training, only mention cluster labels are
available rather than antecedent links. Therefore,
Lee et al. (2017) train the model end-to-end by

m(i) +m(j) + (i, j),

6
0 (6)
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maximizing the following marginal log-likelihood
where GOLD(3) are gold antecedents for s;:

Zj’EGOLD(i) exp(s(i, j'))
Zj:e,[),...,’i—l eXp(S(i, ]))

Ecluster(i) = log (7)

However, the initial pruning is completely ran-
dom and the mention scoring model only receives
distant supervision if we only optimize the above
mention cluster performance. This makes learning
slow and ineffective especially for mention detec-
tion. Based on this observation, we propose to di-
rectly optimize mention detection:

Laetect (1) = yilog i + (1 — y;) log(1 — 9;) (8)

where ¢; = sigmoid(m(i)), y; = 1 if and only if
s; 1s in one of the gold mention clusters. Our final
loss combines mention detection and clustering:

N N’
ﬁloss - _/\detect Z Edetect(i) - Z Ecluster(i,>

i=1 =1

where N is the number of all possible spans, N’ is
the number of unpruned spans, and Agetection CON-
trols weights of two terms.

4 Experiments

Data Set and Evaluation We evaluate our model
on the CoNLL-2012 Shared Task English data
(Pradhan et al.,, 2012) which is based on the
OntoNotes corpus (Hovy et al., 2006). It con-
tains 2,802/343/348 train/development/test docu-
ments in different genres.

We use three standard metrics: MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAF;, (Luo, 2005). We report Precision, Recall,
F1 for each metric and the average F1 as the final
CoNLL score.

Implementation Details For fair comparisons, we
follow the same hyperparameters as in Lee et al.
(2017). We consider all spans up to 10 words
and up to 250 antecedents. A = 0.4 is used
for span pruning. We use fixed concatenations
of 300-dimension GloVe (Pennington et al., 2014)
embeddings and 50-dimension embeddings from
Turian et al. (2010). Character CNNs use 8-
dimension learned embeddings and 50 kernels for
each window size in {3,4,5}. LSTMs have hidden
size 200, and each FFNN has two hidden layers
with 150 units and ReLLU (Nair and Hinton, 2010)
activations. We include (speaker ID, document



MUC B? CEAF,,
P R F1 P R F1 P R F1 Avg. F1
Our work (5-model ensemble) 82.1 736 776 73.1 620 67.1 675 59.0 629 69.2
Lee et al. (2017) (5-model ensemble) 81.2 73.6 772 723 61.7 666 652 602 62.6 68.8
" "Our work (single model) =~~~ 794 73.8 765 69.0 623 655 649 583 614 678
Lee et al. (2017) (single model) 784 734 758 686 61.8 650 627 59.0 60.8 67.2
Clark and Manning (2016a) 792 704 746 699 580 634 635 555 592 65.7
Clark and Manning (2016b) 799 693 742 71.0 56.5 63.0 638 543 587 65.3
Wiseman et al. (2016) 775 698 734 668 570 615 62.1 539 577 64.2
Wiseman et al. (2015) 76.2 693 72.6 662 558 605 594 549 57.1 63.4
Fernandes et al. (2014) 759 658 70.5 777 658 712 432 550 484 63.4
Clark and Manning (2015) 76.1 694 72,6 656 560 604 594 53.0 56.0 63.0
Martschat and Strube (2015) 76.7 68.1 722 66.1 542 59.6 59.5 523 557 62.5
Durrett and Klein (2014) 72.6 699 712 612 564 587 562 542 552 61.7
Bjorkelund and Kuhn (2014) 743 675 707 627 550 586 594 523 556 61.6
Durrett and Klein (2013) 729 659 692 636 525 575 543 544 543 60.3

Table 1: Experimental results on the CoNLL-2012 Englisth test set.

The F1 improvements are statistical

significant with p < 0.05 under the paired bootstrap resample test (Koehn, 2004) compared with Lee

et al. (2017).

Avg. F1
Our model (single) 67.8
without mention detection loss 67.5
without biaffine attention 67.4
“Leeetal. (2017) 613

Table 2: Ablation study on the development set.

genre, span distance, span width) features as 20-
dimensional learned embeddings. Word and char-
acter embeddings use 0.5 dropout. All hidden lay-
ers and feature embeddings use 0.2 dropout. The
batch size is 1 document. Based on the results
on the development set, Agetection = 0.1 works
best from {0.05,0.1,0.5,1.0}. Model is trained
with ADAM optimizer (Kingma and Ba, 2015)
and converges in around 200K updates, which is
faster than that of Lee et al. (2017).

Overall Performance In Table 1, we compare our
model with previous state-of-the-art systems. We
obtain the best results in all F1 metrics. Our single
model achieves 67.8% F1 and our 5-model ensem-
ble achieves 69.2% F1. In particular, compared
with Lee et al. (2017), our improvement mainly
results from the precision scores. This indicates
that the mention detection loss does produce bet-
ter mention scores and the biaffine attention more
effectively determines if two spans are coreferent.
Ablation Study To understand the effect of dif-
ferent proposed components, we perform ablation
study on the development set. As shown in Table
2, removing the mention detection loss term or the
biaffine attention decreases 0.3/0.4 final F1 score,
but still higher than the baseline. This shows
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3 Mention Precision for Our work
[ Mention Precision for Lee et al., 2017
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Figure 2: Mention detection subtask on develop-
ment set. We plot accuracy and frequency break-

down by span widths.

that both components have contributions and when
they work together the total gain is even higher.
Mention Detection Subtask To further under-
stand our model, we perform a mention detection
subtask where spans with mention scores higher
than O are considered as mentions. We show the
mention detection accuracy breakdown by span
widths in Figure 2. Our model indeed performs
better thanks to the mention detection loss. The
advantage is even clearer for longer spans which
consist of 5 or more words.

In addition, it is important to note that our
model can detect mentions that do not exist in
the training data. While Moosavi and Strube
(2017) observe that there is a large overlap be-
tween the gold mentions of the training and dev
(test) sets, we find that our model can correctly de-



tect 1048 mentions which are not detected by Lee
et al. (2017), consisting of 386 mentions existing
in training data and 662 mentions not existing in
training data. From those 662 mentions, some ex-
amples are (1) a suicide murder (2) Hong Kong Is-
land (3) a US Airforce jet carrying robotic under-
sea vehicles (4) the investigation into who was be-
hind the apparent suicide attack. This shows that
our mention loss helps detection by generalizing
to new mentions in test data rather than memoriz-
ing the existing mentions in training data.

5 Related Work

As summarized by Ng (2010), learning-based
coreference models can be categorized into three
types: (1) Mention-pair models train binary clas-
sifiers to determine if a pair of mentions are coref-
erent (Soon et al., 2001; Ng and Cardie, 2002;
Bengtson and Roth, 2008). (2) Mention-ranking
models explicitly rank all previous candidate men-
tions for the current mention and select a sin-
gle highest scoring antecedent for each anaphoric
mention (Denis and Baldridge, 2007b; Wiseman
etal., 2015; Clark and Manning, 2016a; Lee et al.,
2017). (3) Entity-mention models learn classifiers
to determine whether the current mention is coref-
erent with a preceding, partially-formed mention
cluster (Clark and Manning, 2015; Wiseman et al.,
2016; Clark and Manning, 2016b).

In addition, we also note latent-antecedent mod-
els (Fernandes et al., 2012; Bjorkelund and Kuhn,
2014; Martschat and Strube, 2015). Fernandes
et al. (2012) introduce coreference trees to repre-
sent mention clusters and learn to extract the max-
imum scoring tree in the graph of mentions.

Recently, several neural coreference resolution
systems have achieved impressive gains (Wiseman
et al., 2015, 2016; Clark and Manning, 2016b,a).
They utilize distributed representations of mention
pairs or mention clusters to dramatically reduce
the number of hand-crafted features. For exam-
ple, Wiseman et al. (2015) propose the first neural
coreference resolution system by training a deep
feed-forward neural network for mention ranking.
However, these models still employ the two-stage
pipeline and require a syntactic parser or a sepa-
rate designed hand-engineered mention detector.

Finally, we also note the relevant work on
joint mention detection and coreference resolu-
tion. Daumé IIl and Marcu (2005) propose to
model both mention detection and coreference of
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the Entity Detection and Tracking task simultane-
ously. Denis and Baldridge (2007a) propose to use
integer linear programming framework to model
anaphoricity and coreference as a joint task.

6 Conclusion

In this paper, we propose to use a biaffine attention
model to jointly optimize mention detection and
mention clustering in the end-to-end neural coref-
erence resolver. Our model achieves the state-of-
the-art performance on the CoNLL-2012 Shared
Task in English.
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Abstract

This paper proposes an improvement to the
existing data-driven Neural Belief Track-
ing (NBT) framework for Dialogue State
Tracking (DST). The existing NBT model
uses a hand-crafted belief state update
mechanism which involves an expensive
manual retuning step whenever the model
is deployed to a new dialogue domain. We
show that this update mechanism can be
learned jointly with the semantic decoding
and context modelling parts of the NBT
model, eliminating the last rule-based mod-
ule from this DST framework. We propose
two different statistical update mechanisms
and show that dialogue dynamics can be
modelled with a very small number of ad-
ditional model parameters. In our DST
evaluation over three languages, we show
that this model achieves competitive per-
formance and provides a robust framework
for building resource-light DST models.

1 Introduction

The problem of language understanding perme-
ates the deployment of statistical dialogue sys-
tems. These systems rely on dialogue state tracking
(DST) modules to model the user’s intent at any
point of an ongoing conversation (Young, 2010). In
turn, DST models rely on domain-specific Spoken
Language Understanding (SLU) modules to extract
turn-level user goals, which are then incorporated
into the belief state, the system’s internal probabil-
ity distribution over possible dialogue states.

The dialogue states are defined by the domain-
specific ontology: it enumerates the constraints
the users can express using a collection of slots
(e.g. price range) and their slot values (e.g. cheap,
expensive for the aforementioned slots). The be-
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lief state is used by the downstream dialogue man-
agement component to choose the next system re-
sponse (Su et al., 2016, 2017).

A large number of DST models (Wang and
Lemon, 2013; Sun et al., 2016; Liu and Perez, 2017;
Vodolén et al., 2017, inter alia) treat SLU as a sep-
arate problem: the detached SLU modules are a
dependency for such systems as they require large
amounts of annotated training data. Moreover, re-
cent research has demonstrated that systems which
treat SLU and DST as a single problem have proven
superior to those which decouple them (Williams
et al., 2016). Delexicalisation-based models, such
as the one proposed by (Henderson et al., 2014a,b)
offer unparalleled generalisation capability.

These models use exact matching to replace oc-
currences of slot names and values with generic
tags, allowing them to share parameters across all
slot values. This allows them to deal with slot val-
ues not seen during training. However, their down-
side is shifting the problem of dealing with linguis-
tic variation back to the system designers, who have
to craft semantic lexicons to specify rephrasings for
ontology values. Examples of such rephrasings are
[cheaper, affordable, cheaply] for slot-value pair
FOOD=CHEAP, or [with internet, has internet] for
HAS INTERNET=TRUE. The use of such lexicons
has a profound effect on DST performance (Mrksi¢
et al., 2016). Moreover, such lexicons introduce a
design barrier for deploying these models to large
real-world dialogue domains and other languages.

The Neural Belief Tracker (NBT) framework
(MrkSic et al., 2017a) is a recent attempt to over-
come these obstacles by using dense word em-
beddings in place of traditional n-gram features.
By making use of semantic relations embedded
in the vector spaces, the NBT achieves DST per-
formance competitive to lexicon-supplemented
delexicalisation-based models without relying on
any hand-crafted resources. Moreover, the NBT
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System Output

User Utterance

Candidate Pair(s)

... price: cheap,

| How about something fancy? |

| I’d prefer something low-priced |

price: moderate,

l

price: expensive ...

7

Context Representation: [t,]

| Utterance Representation: [r,] |

| Candidate Representation: [¢,]

gating mechanism

Context Modelling: [m,]

| —

Decision Maker: [y,]

|

\/’f

-

| Previous Belief State: [b, ] |

Belief State Updates: [b,]

Figure 1: The architecture of the fully statistical neural belief tracker. Belief state updates are not
rule-based but learned jointly with the semantic decoding and context modelling parts of the NBT model.

framework enables deployment and bootstrapping
of DST models for languages other than English
(Mrksic et al., 2017b). As shown by Vuli¢ et al.
(2017), phenomena such as morphology make DST
a substantially harder problem in linguistically
richer languages such as Italian and German.

The NBT models decompose the (per-slot) multi-
class value prediction problem into many binary
ones: they iterate through all slot values defined by
the ontology and decide which ones have just been
expressed by the user. To differentiate between
slots, they take as input the word vector of the
slot value that it is making a decision about. In
doing that, the previous belief state is discarded.
However, the previous state may contain pertinent
information for making the turn-level decision.

Contribution In this work, we show that cross-
turn dependencies can be learned automatically:
this eliminates the rule-based NBT component and
effectively yields a fully statistical dialogue state
tracker. Our competitive results on the benchmark-
ing WOZ dataset for three languages indicate that
the proposed fully statistical model: 1) is robust
with respect to the input vector space, and 2) is eas-
ily portable and applicable to different languages.

Finally, we make the code of the novel
NBT framework publicly available at:
https://github.com/nmrksic/neural-belief-tracker,
in hope of helping researchers to overcome
the initial high-cost barrier to using DST as a
real-world language understanding task.
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2 Methodology

Neural Belief Tracker: Overview The NBT
models are implemented as multi-layer neural net-
works. Their input consists of three components:
1) the list of vectors for words in the last user ut-
terance; 2) the word vectors of the slot name and
value (e.g. FOOD=INDIAN) that the model is cur-
rently making a decision about; and 3) the word
vectors which represent arguments of the preceding
system acts.! To perform belief state tracking, the
NBT model iterates over all candidate slot-value
pairs as defined by the ontology, and decides which
ones have just been expressed by the user.

The first layer of the NBT (see Figure 1) learns to
map these inputs into intermediate distributed rep-
resentations of: 1) the current utterance represen-
tation r; 2) the current candidate slot-value pair c;
and 3) the preceding system act m. These represen-
tations then interact through the context modelling
and semantic decoding downstream components,
and are finally coalesced into the decision about the
current slot value pair by the final binary decision
making module. For full details of this setup, see
the original NBT paper (Mrksi¢ et al., 2017a).

2.1 Statistical Belief State Updates

The NBT framework effectively recasts the per-slot
multi-class value prediction problem as multiple

"Following Mrksi¢ et al. (2017a), we also consider only
system requests and system confirmations, which ask the user
to specify the value of a given slot (e.g. ‘What kind of venue
are you looking for?’), or to confirm whether a certain intent is
part of their belief state (‘Are you looking for Chinese food?’).



binary ones: this enables the model to deal with
slot values unseen in the training data. It iterates
through all slot values and decides which ones have
just been expressed by the user.

In the original NBT framework (Mrksié et al.,
2017a), the model for turn-level prediction is
trained using SGD, maximising the accuracy of
turn-level slot-value predictions. These predictions
take preceding system acts into account, but not the
previous belief state. Note that these predictions
are done separately for each slot value.

Problem Definition For any given slot s € V,
let b’~! be the true belief state at time ¢ — 1 (this
is a vector of length |Vs| 4+ 2, accounting for all
slot values and two special values, dontcare and
NONE). At turn t, let the intermediate representa-
tions representing the preceding system acts and the
current user utterance be m' and r’. If the model is
currently deciding about slot value v € V5, let the
intermediate candidate slot-value representation be
c!. The NBT binary-decision making module pro-
duces an estimate y?, , = P(s,v[r*, m®). We aim
to combine this estimate with the previous belief
state estimate for the entire slot s, b St_l, so that:

bl = ¢(yi, bl ) (1)

where y! is the vector of probabilities for each of
the slot values v € V.

Previously: Rule-Based The original NBT
framework employs a convoluted programmatic
rule-based update which is hand-crafted and can-
not be optimised or learned with gradient descent
methods. For each slot value pair (s, v), its new
probability b;v is computed as follows:

b, =Ayl, +(1—A)bl}} 2)

A is a tunable coefficient which determines the
relative weight of the turn-level and previous turns’
belief state estimates, and is maximised according
to DST performance on a validation set. For slot s,
the set of its detected values at turn ¢ is then given
as follows:

Vi ={veVby, > 05} 3)

For informables (i.e., goal-tracking slots), which
unlike requestable slots require belief tracking
across turns, if V! # () the value in V! with the
highest probability is selected as the current goal.

This effectively means that the value with the
highest probabilities b';’v at turn ¢ is then chosen as
the new goal value, but only if its new probability
bg}v is greater than 0.5. If no value has probability
greater than 0.5, the predicted goal value stays the
same as the one predicted in the previous turn -
even if its probability b, , is now less than 0.5.

In the rule-based method, tuning the hyper-
parameter A adjusts how likely any predicted value
is to override previously predicted values. However,
the “belief state” produced in this manner is not a
valid probability distribution. It just predicts the
top value using an ad-hoc rule that was empirically
verified by Mrksi¢ et al. (2017a).>

This rule-based approach comes at a cost: the
NBT framework with such updates is little more
than an SLU decoder capable of modelling the pre-
ceding system acts. Its parameters do not learn to
handle the previous belief state, which is essential
for probabilistic modelling in POMDP-based dia-
logue systems (Young et al., 2010; Thomson and
Young, 2010). We now show two update mecha-
nisms that extend the NBT framework to (learn to)
perform statistical belief state updates.

1. One-Step Markovian Update To stay in line
with the NBT paradigm, the criteria for the belief
state update mechanism ¢ from Eq. (1) are: 1) it
is a differentiable function that can be backprop-
agated during NBT training; and 2) it produces a
valid probability distribution b as output. Figure 1
shows our fully statistical NBT architecture.

The first learned statistical update mechanism,
termed One-Step Markovian Update, combines the
previous belief state b, ! and the current turn-level
estimate y', using a one-step belief state update:

bé = softmazx (Wcurryé + Wpastb';*l) 4)

Weurr and W, are matrices which learn to com-
bine the two signals into a new belief state. This
variant violates the NBT design paradigm: each
row of the two matrices learns to operate over spe-
cific slot values.®> Even though turn-level NBT

>We have also experimented with a simple model conduct-
ing statistical updates which tunes the parameter A jointly
during training and produces a valid probability distribution
for the belief state at each turn t. The belief state update is
performed as follows: b% = Ay’ 4 (1— )b ™. We note that
this simplistic statistical update mechanism performs poorly in
practice, with joint goal accuracy on the English DST task in
the 0.22-0.25 interval (compare it to the results from Table 1).

3This means the model will not learn to predict or maintain
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output y may contain the right prediction, the pa-
rameters of the corresponding row in W, will
not be trained to update the belief state, since its
parameters (for the given value) will not have been
updated during training. Similarly, the same row
in Wpast will not learn to maintain the given slot
value as part of the belief state.

To overcome the data sparsity and preserve the
NBT model’s ability to deal with unseen values,
one can use the fact that there are fundamentally
only two different actions that a belief tracker needs
to perform: 1) maintain the same prediction as in
the previous turn; or 2) update the prediction given
strong indication that a new slot value has been ex-
pressed. To facilitate transfer learning, the second
update variant introduces additional constraints for
the one-step belief state update.

2. Constrained Markovian Update This vari-
ant constrains the two matrices so that each of them
contains only two different scalar values. The first
one populates the diagonal elements, and the other
one is replicated for all off-diagonal elements:

Qeyrr, if1=17

Wcurr,i,j = ’ . (5)
beyrr, Otherwise
a t ifi=7

Woastij = § ! ©)
bpast, otherwise

where the four scalar values are learned jointly with
other NBT parameters. The diagonal values learn
the relative importance of propagating the previ-
ous value (apqst), or of accepting a newly detected
value (Gcyrr). The off-diagonal elements learn how
turn-level signals (bcy,r) Or past probabilities for
other values (byqs¢) impact the predictions for the
current belief state. The parameters acting over all
slot values are in this way tied, ensuring that the
model can deal with slot values unseen in training.

3 Experimental Setup

Evaluation: Data and Metrics As in prior work
the DST evaluation is based on the Wizard-of-Oz
(WOZ) v2.0 dataset (Wen et al., 2017; Mrksié et al.,
2017a), comprising 1,200 dialogues split into train-
ing (600 dialogues), validation (200), and test data
(400). The English data were translated to German
and Italian by professional translators (Mrksic et al.,

slot values as part of the belief state if it has not encountered
these values during training.
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English WOZ 2.0
Model Variant GLOVE (DIST) PARAGRAM-SL999
Rule-Based 80.1 84.2
1. One-Step 80.8 82.1
2. Constrained 81.8 84.8

Table 1: The English DST performance (joint goal
accuracy) with standard input word vectors (§3).

2017b). In all experiments, we report the standard
DST performance measure: joint goal accuracy,
which is defined as the proportion of dialogue turns
where all the user’s search goal constraints were
correctly identified. Finally, all reported scores are
averages over 5 NBT training runs.

Training Setup We compare three belief state
update mechanisms (rule-based vs. two statis-
tical ones) fixing all other NBT components as
suggested by MrkSi¢ et al. (2017a): the better-
performing NBT-CNN variant is used, trained by
Adam (Kingma and Ba, 2015) with dropout (Sri-
vastava et al., 2014) of 0.5, gradient clipping, batch
size of 256, and 400 epochs. All model hyperpa-
rameters were tuned on the validation sets.

Word Vectors To test the model’s robustness, we
use a variety of standard word vectors from prior
work. For English, following Mrksi¢ et al. (2017a)
we use 1) distributional GLOVE vectors (Penning-
ton et al., 2014), and 2) specialised PARAGRAM-
SL999 vectors (Wieting et al., 2015), obtained by
injecting similarity constraints from the Paraphrase
Database (Pavlick et al., 2015) into GLOVE.

For Italian and German, we compare to the work
of Vuli¢ et al. (2017), who report state-of-the-art
DST scores on the Italian and German WOZ 2.0
datasets. In this experiment, we train the models us-
ing distributional skip-gram vectors with a large vo-
cabulary (labelled DIST in Table 2). Subsequently,
we compare them to models trained using word
vectors specialised using similarity constraints de-
rived from language-specific morphological rules
(labelled SPEC in Table 2).

4 Results and Discussion

Table 1 compares the two variants of the statistical
update. The Constrained Markovian Update is the
better of the two learned updates, despite using
only four parameters to model dialogue dynamics
(rather than O(V'?), V being the slot value count).
This shows that the ability to generalise to unseen



Italian German
DIST spec | DIST SPEC
Rule-Based Update 74.2 76.0 | 60.6  66.3
Learned Update 73.7 76.1 | 61.5 68.1

Table 2: DST performance on Italian and German.
Only results with the better scoring learned Con-
strained Markovian Update are reported.

slot values matters more than the ability to model
value-specific behaviour. In fact, combining the
two updates led to no performance gains over the
stand-alone Constrained Markovian update.

Table 2 investigates the portability of this model
to other languages. The statistical update shows
comparable performance to the rule-based one, out-
performing it in three out of four experiments. In
fact, our model trained using the specialised word
vectors sets the new state-of-the-art performance
for English, Italian and German WOZ 2.0 datasets.
This supports our claim that eliminating the hand-
tuned rule-based update makes the NBT model
more stable and better suited to deployment across
different dialogue domains and languages.

DST as Downstream Evaluation All of the ex-
periments show that the use of semantically spe-
cialised vectors benefits DST performance. The
scale of these gains is robust across all experiments,
regardless of language or the employed belief state
update mechanism. So far, it has been hard to use
the DST task as a proxy for measuring the correla-
tion between word vectors’ intrinsic performance
(in tasks like SimLex-999 (Hill et al., 2015)) and
their usefulness for downstream language under-
standing tasks. Having eliminated the rule-based
update from the NBT model, we make our evalua-
tion framework publicly available in hope that DST
performance can serve as a useful tool for measur-
ing the correlation between intrinsic and extrinsic
performance of word vector collections.

5 Conclusion

This paper proposed an extension to the Neural
Belief Tracking (NBT) model for Dialogue State
Tracking (DST) (Mrksi¢ et al., 2017a). In the previ-
ous NBT model, system designers have to tune the
belief state update mechanism manually whenever
the model is deployed to new dialogue domains.
On the other hand, the proposed model learns to
update the belief state automatically, relying on no
domain-specific validation sets to optimise DST

performance. Our model outperforms the exist-
ing NBT model, setting the new state-of-the-art-
performance for the Multilingual WOZ 2.0 dataset
across all three languages. We make the proposed
framework publicly available in hope of providing
a robust tool for exploring the DST task for the
wider NLP community.
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Abstract

We study the role of linguistic context in
predicting quantifiers (‘few’, ‘all’). We
collect crowdsourced data from human
participants and test various models in a
local (single-sentence) and a global con-
text (multi-sentence) condition. Models
significantly out-perform humans in the
former setting and are only slightly bet-
ter in the latter. While human perfor-
mance improves with more linguistic con-
text (especially on proportional quanti-
fiers), model performance suffers. Mod-
els are very effective in exploiting lex-
ical and morpho-syntactic patterns; hu-
mans are better at genuinely understand-
ing the meaning of the (global) context.

1 Introduction

A typical exercise used to evaluate a language
learner is the cloze deletion test (Oller, 1973). In
it, a word is removed and the learner must replace
it. This requires the ability to understand the con-
text and the vocabulary in order to identify the
correct word. Therefore, the larger the linguistic
context, the easier the test becomes. It has been
recently shown that higher-ability test takers rely
more on global information, with lower-ability test
takers focusing more on the local context, i.e. in-
formation contained in the words immediately sur-
rounding the gap (McCray and Brunfaut, 2018).
In this study, we explore the role of linguis-
tic context in predicting generalized quantifiers
(‘few’, ‘some’, ‘most’) in a cloze-test task (see
Figure 1). Both human and model performance
is evaluated in a local (single-sentence) and a
global context (multi-sentence) condition to study
the role of context and assess the cognitive plau-
sibility of the models. The reasons we are inter-
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<qnt> the island's breeding birds are endemic.

The island is one of the world's most biologically
diverse areas, with many endemic species.
<qgnt> the island's breeding birds are endemic.
Other endemic species include the red-bellied
lemur, the indri, and the aye-aye.

Target quantifier: more than half of

Figure 1: Given a target sentence s;, or s; with the
preceding and following sentence, the task is to
predict the target quantifier replaced by <gnt >.

ested in quantifiers are myriad. First, quantifiers
are of central importance in linguistic semantics
and its interface with cognitive science (Barwise
and Cooper, 1981; Peters and Westerstahl, 20006;
Szymanik, 2016). Second, the choice of quanti-
fier depends both on local context (e.g., positive
and negative quantifiers license different patterns
of anaphoric reference) and global context (the de-
gree of positivity/negativity is modulated by dis-
course specificity) (Paterson et al., 2009). Third
and more generally, the ability of predicting func-
tion words in the cloze test represents a bench-
mark test for human linguistic competence (Smith,
1971; Hill et al., 2016).

We conjecture that human performance will be
boosted by more context and that this effect will be
stronger for proportional quantifiers (e.g. ‘few’,
‘many’, ‘most’) than for logical quantifiers (e.g.
‘none’, ‘some’, ‘all’) because the former are more
dependent on discourse context (Moxey and San-
ford, 1993; Solt, 2016). In contrast, we expect
models to be very effective in exploiting the lo-
cal context (Hill et al., 2016) but to suffer with
a broader context, due to their reported inability
to handle longer sequences (Paperno et al., 2016).
Both hypotheses are confirmed. The best mod-
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els are very effective in the local context condi-
tion, where they significantly outperform humans.
Moreover, model performance declines with more
context, whereas human performance is boosted
by the higher accuracy with proportional quanti-
fiers like ‘many’ and ‘most’. Finally, we show that
best-performing models and humans make similar
errors. In particuar, they tend to confound quanti-
fiers that denote a similar ‘magnitude’ (Bass et al.,
1974; Newstead and Collis, 1987).

Our contribution is twofold. First, we present a
new task and results for training models to learn
semantically-rich function words.! Second, we
analyze the role of linguistic context in both hu-
mans and the models, with implications for cogni-
tive plausibility and future modeling work.

2 Datasets

To test our hypotheses, we need linguistic con-
texts containing quantifiers. To ensure similarity
in the syntactic environment of the quantifiers, we
focus on partitive uses: where the quantifier is fol-
lowed by the preposition ‘of’. To avoid any effect
of intensifiers like ‘very’ and ‘so’ and adverbs like
‘only’ and ‘incredibly’, we study only sentences in
which the quantifier occurs at the beginning (see
Figure 1). We experiment with a set of 9 quan-
tifiers: ‘a few’, ‘all’, ‘almost all’, ‘few’, ‘many’,
‘more than half’, ‘most’, ‘none’, ‘some’. This
set strikes the best trade-off between number of
quantifiers and their frequency in our source cor-
pus, a large collection of written English including
around 3B tokens.?

We build two datasets. One dataset— 1-Sent —
contains datapoints that only include the sentence
with the quantifier (the target sentence, s;). The
second — 3-Sent — contains datapoints that are
3-sentence long: the target sentence (s;) together
with both the preceding (s,) and following one
(sp). To directly analyze the effect of the linguis-
tic context in the task, the target sentences are ex-
actly the same in both settings. Indeed, 1-Sent is
obtained by simply extracting all target sentences
<s;> from 3-Sent (<sp, S5, 57>).

The 3—-Sent dataset is built as follows: (1) We
split our source corpus into sentences and select
those starting with a ‘quantifier of’ construction.
Around 391K sentences of this type are found. (2)

'Data and code are at: https://github.com/
sandropezzelle/fill-in-the—quant

2A concatenation of BNC, ukWaC, and a 2009-dump of
Wikipedia (Baroni et al., 2014).
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We tokenize the sentences and replace the quan-
tifier at the beginning of the sentence (the target
quantifier) with the string <qgnt >, to treat all tar-
get quantifiers as a single token. (3) We filter out
sentences longer than 50 tokens (less than 6% of
the total), yielding around 369K sentences. (4) We
select all cases for which both the preceding and
the following sentence are at most 50-tokens long.
We also ensure that the target quantifier does not
occur again in the target sentence. (5) We ensure
that each datapoint <s,, s;, s/> is unique. The dis-
tribution of target quantifiers across the resulting
309K datapoints ranges from 1152 cases (‘more
than half”) to 93801 cases (‘some’). To keep the
dataset balanced, we randomly select 1150 points
for each quantifier, resulting in a dataset of 10350
datapoints. This was split into train (80%), valida-
tion (10%), and test (10%) sets while keeping the
balancing. Then, 1-Sent is obtained by extract-
ing the target sentences <s;> from <s,, s;, s¢>.

3 Human Evaluation

3.1 Method

We ran two crowdsourced experiments, one per
condition. In both, native English speakers were
asked to pick the correct quantifier to replace
<gnt> after having carefully read and under-
stood the surrounding linguistic context. When
more than one quantifier sounds correct, partici-
pants were instructed to choose the one they think
best for the context. To make the results of the two
surveys directly comparable, the same randomly-
sampled 506 datapoints from the validation sets
are used. To avoid biasing responses, the 9 quan-
tifiers were presented in alphabetical order. The
surveys were carried out via CrowdFlower.? Each
participant was allowed to judge up to 25 points.
To assess the judgments, 50 unambiguous cases
per setting were manually selected by the native-
English author and used as a benchmark. Over-
all, we collected judgments from 205 annotators
in 1-Sent (avg. 7.4 judgments/annotator) and
from 116 in 3-Sent (avg. 13.1). Accuracy is
then computed by counting cases where at least
2 out of 3 annotators agree on the correct answer
(i.e., inter-annotator agreement > 0.67).

3.2 Linguistic Analysis

Overall, the task turns out to be easier in 3-Sent
(131/506 correctly-guessed cases; 0.258 accu-

Shttps://www.figure-eight .com/



type text quantifier
meaning <qnt> the original station buildings survive as they were used as a source of materials. . . none of

PIs <gnt> these stories have ever been substantiated. none of
contrast Q | <gnt> the population died out, but a select few with the right kind of genetic instability. .. most of

list <gnt> their major research areas are social inequality, group dynamics, social change... | some of
quantity <gnt> those polled (56%) said that they would be willing to pay for special events. .. more t. half of
support Q <gnt> you have found this to be the case - click here for some of customer comments. many of
lexicalized | <qnt> the time, the interest rate is set on the lender’s terms. .. most of
syntax <qnt> these events was serious. none of

Table 1: Cues that might help human participants to predict the correct quantifier (1-Sent).

racy) compared to 1-Sent (112/506; 0.221 acc.).
Broader linguistic context is thus generally bene-
ficial to the task. To gain a better understanding
of the results, we analyze the correctly-predicted
cases and look for linguistic cues that might be
helpful for carrying out the task. Table 1 reports
examples from 1-Sent for each of these cues.

We identify 8 main types of cues and manually
annotate the cases accordingly. (1) Meaning: the
quantifier can only be guessed by understanding
and reasoning about the context; (2) PIs: Polar-
ity Items like ‘ever’, ‘never’, ‘any’ are licensed
by specific quantifiers (Krifka, 1995); (3) Con-
trast Q: a contasting-magnitude quantifier em-
bedded in an adversative clause; (4) Support Q:
a supporting-magnitude quantifier embedded in a
coordinate or subordinate clause; (5) Quantity:
explicit quantitative information (numbers, per-
centages, fractions, etc.); (6) Lexicalized: lexi-
calized patterns like ‘most of the time’; (7) List:
the text immediately following the quantifier is a
list introduced by verbs like ‘are’ or ‘include’; (8)
Syntax: morpho-syntactic cues, e.g. agreement.

Figure 2 (left) depicts the distribution of anno-
tated cues in correctly-guessed cases of 1-Sent.
Around 44% of these cases include cues besides
meaning, suggesting that almost half of the cases
can be possibly guessed by means of lexical fac-
tors such as PIs, quantity information, etc. As seen
in Figure 2 (right), the role played by the meaning
becomes much higher in 3-Sent. Of the 74 cases
that are correctly guessed in 3—Sent, but not in
1-Sent, more than 3 out of 4 do not display cues
other than meaning. In the absence of lexical cues
at the sentence level, the surrounding context thus
plays a crucial role.

4 Models

We test several models, that we briefly describe
below. All models except FastText are im-
plemented in Keras and use ReLu as activation

116

function; they are trained for 50 epochs with cat-
egorical crossentropy, initialized with frozen 300-
d word2vec embeddings (Mikolov et al., 2013)
pretrained on GoogleNews.* A thorough ablation
study is carried out for each model to find the best
configuration of parameters.’> The best configura-
tion is chosen based on the lowest validation loss.

BoW-conc A bag-of-words (BoW) architecture
which encodes a text as the concatenation of the
embeddings for each token. This representation is
reduced by a hidden layer before softmax.

BoW-sum Same as above, but the text is en-
coded as the sum of the embeddings.

FastText Simple network for text classification
that has been shown to obtain performance compa-
rable to deep learning models (Joulin et al., 2016).
FastText represents text as a hidden variable
obtained by means of a BoW representation.

CNN Simple Convolutional Neural Network
(CNN) for text classification.® It has two con-
volutional layers (Conv1D) each followed by
MaxPooling. A dense layer precedes softmax.

LSTM Standard Long-Short Term Memory net-
work (LSTM) (Hochreiter and Schmidhuber,
1997). Variable-length sequences are padded with
zeros to be as long as the maximum sequence in
the dataset. To avoid taking into account cells
padded with zero, the ‘mask zero’ option is used.

bi-LSTM The Bidirectional LSTM (Schuster
and Paliwal, 1997) combines information from
past and future states by duplicating the first re-
current layer and then combining the two hidden
states. As above, padding and mask zero are used.

*Available here: http://bit.ly/1VxNCot

SWe experiment with all possible combinations obtained
by varying (a) optimizer: adagrad, adam, nadam; (b) hidden
layers: 64 or 128 units; (c) dropout: 0.25, 0.5, 0.75.

8 Adapted from: http://bit.ly/2sFgOEL
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Figure 2: Left: Distribution of annotated cues across correcly-guessed cases in 1-Sent (112 cases).
Right: Distribution of cues across correctly-guessed cases in 3—Sent, but not in 1-Sent (74 cases).

Att-LSTM LSTM augmented with an attention
mechanism (Raffel and Ellis, 2016). A feed-
forward neural network computes an importance
weight for each hidden state of the LSTM; the
weighted sum of the hidden states according to
those weights is then fed into the final classifier.

AttCon-LSTM LSTM augmented with an at-
tention mechanism using a learned context vec-
tor (Yang et al., 2016). LSTM states are weighted
by cosine similarity to the context vector.

5 Results

Table 2 reports the accuracy of all models and hu-
mans in both conditions. We have three main re-
sults. (1) Broader context helps humans to per-
form the task, but Aurts model performance. This
can be seen by comparing the 4-point increase of
human accuracy from 1-Sent (0.22) to 3-Sent
(0.26) with the generally worse performance of all
models (e.g. AttCon—-LSTM, from 0.34 to 0.27

1-Sent 3-Sent
val test val test
chance 0.111 0.111 | 0.111 0.111
BoW-conc 0.270 0.238 | 0.224 0.207
BoW-sum 0.308 0.290 | 0.267 0.245
fastText 0.305 0.271 | 0.297 0.245
CNN 0.310 0.304 | 0.298 0.257
LSTM 0.315 0.310 | 0.277 0.253
bi-LSTM 0.341 0.337 | 0.279 0.265
Att-LSTM 0.319 0.324 | 0.287 0.291
AttCon-LSTM | 0.343 0.319 | 0.274 0.288
| Humans | 0221 —— [ 0.258% —— |

Table 2: Accuracy of models and humans. Values
in bold are the highest in the column. *Note that
due to an imperfect balancing of data, chance level
for humans (computed as majority class) is 0.124.

in val). (2) All models are significantly better
than humans in performing the task at the sen-
tence level (1-Sent), whereas their performance
is only slightly better than humans’ in 3-Sent.
AttCon-LSTM, which is the best model in the
former setting, achieves a significantly higher ac-
curacy than humans’ (0.34 vs 0.22). By contrast,
in 3-Sent, the performance of the best model
is closer to that of humans (0.29 of Att-LSTM
vs 0.26). It can be seen that LSTMs are over-
all the best-performing architectures, with CNN
showing some potential in the handling of longer
sequences (3—-Sent). (3) As depicted in Fig-
ure 3, quantifiers that are easy/hard for humans are
not necessarily easy/hard for the models. Com-
pare ‘few’, ‘a few’, ‘more than half’, ‘some’, and
‘most’: while the first three are generally hard
for humans but predictable by the models, the last
two show the opposite pattern. Moreover, quanti-
fiers that are guessed by humans to a larger extent
in 3-Sent compared to 1-Sent, thus profiting
from the broader linguistic context, do not expe-
rience the same boost with models. Human accu-
racy improves notably for ‘few’, ‘a few’, ‘many’,
and ‘most’, while model performance on the same
quantifiers does not.

To check whether humans and the models make
similar errors, we look into the distribution of
responses in 3—-Sent (val), which is the most
comparable setting with respect to accuracy. Ta-
ble 3 reports responses by humans (top) and
AttCon—-LSTM (bottom). Human errors gener-
ally involve quantifiers that display a similar mag-
nitude as the correct one. To illustrate, ‘some’ is
chosen in place of ‘a few’, and ‘most’ in place of
either ‘almost all’ or ‘more than half’. A simi-
lar pattern is observed in the model’s predictions,



accuracy

none a few some many

more half  most

Humans-1-Sent
M Humans-3-Sent
AttConLSTM-1-Sent
M AttConLSTM-3-Sent

almost all all

Figure 3: Human vs At tCon-LSTM accuracy (val) across quantifiers, loosely ordered by magnitude.

though we note a bias toward ‘more than half’.

One last question concerns the types of linguis-
tic cues exploited by the model (see section 3.2).
We consider those cases which are correctly
guessed by both humans and AttCon-LSTM in
each setting and analyze the distribution of anno-
tated cues. Non-semantic cues turn out to account
for 41% of cases in 3—Sent and for 50% cases in
1-Sent. This analysis suggests that, compared
to humans, the model capitalizes more on lexical,
morpho-syntactic cues rather than exploiting the
meaning of the context.

6 Discussion

This study explored the role of linguistic context
in predicting quantifiers. For humans, the task be-
comes easier when a broader context is given. For
the best-performing LSTMs, broader context hurts

none 19 1 2 0 2 0 0 0 12
few 5 9 2 6 5 0 3 0 2
a few 0 0 7 17 9 0 4 0 4
some 0 0 3 14 5 0 4 0 3
many 0 1 0 3 18 0 3 0 7
more than half 0 0 0 2 2 11 10 4 2
most 0 0 0 1 7 0 23 4 8
almost all 0 1 0 3 2 1 7 2 6
all 0 0 2 1 5 0 4 3 28
none 39 15 13 10 0 20 5 3 10
Sfew 3 48 18 7 9 20 5 1 4
a few 7 13 31 18 5 15 12 8 6
some 5 18 16 17 16 19 9 5 10
many 2 18 18 15 20 17 10 6 9
more than half 2 7 2 3 10 82 2 1 6
most 8 14 14 12 12 26 15 5 9
almost all 5 9 15 10 8 37 15 6 10
all 7 12 10 15 21 13 7 4 26

Table 3: Responses by
AttCon-LSTM (bottom) in 3-Sent (val).
ues in bold are the highest in the row.

humans (top) and
Val-

performance. This pattern mirrors evidence that
predictions by these models are mainly based on
local contexts (Hill et al., 2016). Corroborating
our hypotheses, proportional quantifiers (‘few’,
‘many’, ‘most’) are predicted by humans with a
higher accuracy with a broader context, whereas
logical quantifiers (‘all’, ‘none’) do not experience
a similar boost. Interestingly, humans are almost
always able to grasp the magnitude of the miss-
ing quantifier, even when guessing the wrong one.
This finding is in line with the overlapping mean-
ing and use of these expressions (Moxey and San-
ford, 1993). It also provides indirect evidence for
an ordered mental scale of quantifiers (Holyoak
and Glass, 1978; Routh, 1994; Moxey and San-
ford, 2000). The reason why the models fail with
certain quantifiers and not others is yet not clear. It
may be that part of the disadvantage in the broader
context condition is due to engineering issues, as
suggested by an anonymous reviewer. We leave
investigating these issues to future work.
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Abstract

We ask how to practically build a model for
German named entity recognition (NER)
that performs at the state of the art for both
contemporary and historical texts, i.e., a
big-data and a small-data scenario. The two
best-performing model families are pitted
against each other (linear-chain CRFs and
BiLSTM) to observe the trade-off between
expressiveness and data requirements. Bil-
STM outperforms the CRF when large
datasets are available and performs infe-
rior for the smallest dataset. BiLSTMs
profit substantially from transfer learning,
which enables them to be trained on multi-
ple corpora, resulting in a new state-of-the-
art model for German NER on two contem-
porary German corpora (CoNLL 2003 and
GermEval 2014) and two historic corpora.

1 Introduction

Named entity recognition and classification (NER)
is a central component in many natural language
processing pipelines. High-quality NER is crucial
for applications like information extraction, ques-
tion answering, or entity linking.

Since the goal of NER is to recognize instances
of named entities in running text, it is established
practice to treat NER as a “word-by-word sequence
labeling task™ (Jurafsky and Martin, 2009). There
are two families of sequence models that constitute
promising candidates. On the one hand, linear-
chain CRFs, which form the basis for many widely
used systems (e.g., Finkel et al., 2005; Benikova
et al., 2015), profit from hand-crafted features
and can easily incorporate language- and domain-
specific knowledge from dictionaries or gazetteers.
On the other hand, bidirectional LSTMSs (BiL-
STMs, e.g., Reimers and Gurevych, 2017) identify
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informative features directly from the data, pre-
sented as word and/or character embeddings (e.g.,
Mikolov et al., 2013; Bojanowski et al., 2017).

When developing NER tools for new types of
text, one requirement is the availability of different
resources to inform features and/or embeddings.
Another one is the amount of training data: linear-
chain CRFs require only moderate amounts of train-
ing data compared to BiLSTM. To perform rep-
resentation learning, BILSTMs require consider-
ably annotated data to learn proper representations
(see, e.g., the impact of training size by Dernon-
court et al., 2016). This consideration becomes
particularly pressing when moving to “small-data”
settings such as low-resource languages, specific
domains, or historical corpora. Thus, it is an open
question, whether it is generally a better idea to
choose different model families for different set-
tings, or whether one model family can be opti-
mized to perform well across settings.

This paper investigates this question empirically
on a set of German corpora including two large,
contemporary corpora and two small historical cor-
pora. We pit linear-chain CRF- and BiLSTM-based
systems against each other and compare to state-of-
the-art models, performing three experiments. Due
to these experiments, we get the following results:
(a), the BILSTM system indeed performs best on
contemporary corpora, both within and across do-
mains; (b), the BILSTM system performs worse
than the CRF systems for the smallest historical
corpus due to lack of data; (c), by applying transfer
learning to adduce more training data, the RNN
outperform CRFs substantially for all corpora. The
final BiLSTM models form a new state of the art
for German NER and are freely available.

Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Short Papers), pages 120-125
Melbourne, Australia, July 15 - 20, 2018. (©2018 Association for Computational Linguistics



2 Model Families for NER

As mentioned above, contemporary research on
NER almost exclusively uses sequence classifica-
tion models. Our study focuses on CRFs and BiL-
STMs, the two most widely used choices.

CRF-based Systems. Linear-chain CRFs form
a family of models that are well established in se-
quence classification. They form the basis of two
widely used Named Entity recognizers.

The first one is STANFORDNER! (Finkel et al.,
2005) which provides models for various languages.
It uses a set of language-independent features, in-
cluding word and character n-grams, word shapes,
surrounding POS and lemmas. For German, these
features are complemented by distributional clus-
ters computed on a large German web corpus
(Faruqui and Padé, 2010). The ready-to-run model
is pre-trained on the German CoNLL 2003 data
(Tjong Kim Sang and De Meulder, 2003).

Benikova et al. (2015) developed GERMANER? ,
another CRF-based NER system. It was optimized
for the GermEval 2014 NER challenge and also
uses a set of standard features (word and charac-
ter n-grams, POS) supplemented by a number of
specific information sources (unsupervised parts of
speech (Biemann, 2009), distributional semantics
and topic cluster information, gazetteer lists).

BiLSTM-based Systems. Among the various
deep learning architectures applied for NER, the
best results have been achieved with bidirectional
LSTM methods combined with a top-level CRF
model (Ma and Hovy, 2016; Lample et al., 2016;
Reimers and Gurevych, 2017). In this work, we
use an implementation that solely uses word and
character embeddings.

We train the character embeddings while train-
ing the model but use pre-trained word embed-
dings. To alleviate issues with out-of-vocabulary
(OOV) words, we use both character- and subword-
based word embeddings computed with fastText
(Bojanowski et al., 2017). This method is able to
retrieve embeddings for unknown words by incor-
porating subword information.?

"http://stanford.io/2chopn3

http://github.com/tudarmstadt-1t/
GermaNER

3The source code and the best performing models are avail-
able online: http://www.ims.uni-stuttgart.de/
forschung/ressourcen/werkzeuge/german_
ner.html
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3 Datasets

For the evaluation, we use two established datasets
for NER on contemporary German and two datasets
for historical German.

Contemporary German. The first large-scale
German NER dataset was published as part of
the CoNLL 2003 shared task (CoNLL, Tjong
Kim Sang and De Meulder, 2003). It consists of
about 220k tokens (for training) of annotated news-
paper documents. The tagset handles locations
(LOC), organizations (ORG), persons (PER) and
the remaining entities as miscellaneous (MISC).
The second dataset is the GermEval 2014 shared
task dataset (GermEval, Benikova et al. (2014)),
consisting of some 450k tokens (for training) of
Wikipedia articles.* This dataset has two levels
of annotations: outer and inner span named enti-
ties. For example, the term Chicago Bulls is tagged
as organization in the outer span annotation. The
nested term Chicago is annotated as location in
the inner span annotation. However, there are only
few inner span annotations. In addition to the stan-
dard tagsets also used in the CoNLL dataset, fine
grained versions of these entities are marked with
suffixes: -deriv marks derivations of the named
entities (e.g. German actor — German is a derived
location) and -part marks compounds including
a named entity (e.g. in the word Rhineshore the
compound Rhine is location). To compare to pre-
vious state-of-the-art methods, we show results on
the official metric (a combination of the outer and
inner spans) in Section 4. As there are only few
inner span annotations, we additionally report re-
sults based on the outer spans. To be more conform
with the tagsets of the CoNLL task, we focus on
outer spans and remove the fine-grained tags in the
follow-up experiments (see Section 5 and 6).

Historical German. We further consider two
datasets based on historical texts (Neudecker,
2016)°, extracted from the Europeana collection
of historical newspapers®, a standard resource for
historical digital humanities. More specifically, our
first corpus is the collection of Tyrolean periodi-
cals and newspapers from the Dr Friedrich Temann
Library (LFT), covering around 87k tokens from

‘https://sites.google.com/site/
germeval20l4ner/

*https://github.com/KBNLresearch/
europeananp-ner/

Swww.europeana.eu/portal/de



Type Model Pr R F1 Type  Model Pr R F1
CRF  StanfordNER 80.02 62.29 70.05 CRF  StanfordNER 80.13 6543 72.04
CRF GermaNER 81.31 68.00 74.06 CRF GermaNER 82.72  71.19 76.52
RNN UKP 79.54  71.10 75.09 RNN UKP 79.90 7413 7691

- ExB 78.07 7475  76.38 - ExB 80.67 77.55 79.08
RNN BIiLSTM-WikiEmb 81.95 78.13 79.99" RNN BiLSTM-WikiEmb 83.07 80.62 81.83"
RNN  BiLSTM-EuroEmb  75.50 70.72 73.03 RNN  BiLSTM-EuroEmb  76.48 73.54 74.98

Table 1: Evaluation on GermEval data, using the = Table 2: Evaluation on the test set of GermEval

official metric (metric 1) of the GermEval 2014
task that combines inner and outer chunks.

1926. Our second corpus is a collection of Austrian
newspaper texts from the Austrian National Library
(ONB), covering some 35k tokens between 1710
and 1873. These corpora give rise to a number
of challenges: they are considerably smaller than
the contemporary corpora from above, contain a
different language variety (19th century Austrian
German), and include a high rate of OCR errors
since they were originally printed in Gothic type-
face.” We use 80% of the data for training and each
10% for development and testing.

4 Experiment 1: Contemporary German

In our first experiment, we compare the NER per-
formances on the two contemporary, large datasets.
For BiLSTM, we experiment with two options for
word embeddings. First, we use pre-trained em-
beddings computed on Wikipedia with 300 dimen-
sions and standard parameters (WikiEmb)3, which
are presumably more appropriate for contemporary
texts. Second, we compute embeddings with the
same parameters from 1.5 billion tokens of historic
German texts from Europeana (EuroEmb). These
embeddings should be more appropriate for histori-
cal texts but may suffer from sparsity.

Table 1 shows results on GermEval using the of-
ficial metric (metric 1) for the best performing sys-
tems. This measure considers both outer and inner
span annotations. Within the challenge, the ExB
(Hinig et al., 2015) ensemble classifier achieved
the best result with an F1 score of 76.38, followed
by the RNN-based method from UKP (Reimers
et al., 2014) with 75.09. GermaNER achieves high
precision, but cannot compete in terms of recall.
Our BiLSTM with Wikipedia word embeddings,
scores highest (79.99) and outperforms the shared

"We cleaned the corpora by correcting named entity labels
and tokenization. We will make these versions available.

$https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md
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2014 using the Outer Chunks evaluation schema.

Type  Model Pr R F1
CRF  StanfordNER 7418 7250 73.33
RNN  Lample et al. (2016) - - 1876
CRF  GermaNER 85.88 73.78 79.37
RNN BiLSTM-WikiEmb  87.67 78.79 82.99
RNN  BiLSTM-EuroEmb  79.92 72.14 75.83

Table 3: Evaluation on the test set of the German
CoNLL 2003 dataset.

task winner ExB significantly, based on a bootstrap
resampling test (Efron and Tibshirani, 1994). Us-
ing Europeana embeddings, the performance drops
to an F1 score of 73.03 — due to the difference in
vocabulary. As the number of inner span annota-
tions is marginal and hard to detect, we additionally
present scores considering only outer span annota-
tions in Table 2. Whereas the scores are slightly
higher, we observe the same trend as from the pre-
vious results shown in Table 1.

On the CoNLL dataset (see Table 3) GermaNER
outperforms the currently best-performing RNN-
based system (Lample et al., 2016). The BiLSTM
again yields the significantly best performance,
matching its high precision while substantially im-
proving recall. Again, lower F1 scores are achieved
using the Europeana embeddings. In sum, we find
that BiLSTM models can outperform CRF models
when there is sufficient training data to profit from
distributed representations.

5 Experiment 2: Cross-Corpus
Performance

A potential downside of BiLSTMs is that learned
models may be more text type specific, due to the
high capacity of the models. Experiment 2 evalu-
ates how well the models do when trained on one
corpus and tested on another one, including histori-
cal corpora. To level the playing field, we reduce
the detailed annotation of GermEval to the standard
five-category set (PER, LOC, ORG, MISC, OTH).

Results for these experiments are presented in



Test data

Model Train CoNLL GermEval LFT ONB
= CoNLL  72.12 48.82  39.72 4636
8 &  GermEval 6563 7209 4522 5221
§Z LFT 35.25 35.00 6726 52.77
@ ONB 34.09 33.96 4295 7242
- CoNLL  79.37 60.40  46.53 53.93
EE: GermEval 71.05 7637  48.05 54.95
g Z LFT 44.87 45.82  69.18 56.38

ONB 46.56 47.19 4841 7331
<2 CoNLL  82.99 66.51  49.28 58.79
= 5 GermEval 78.15 8293 5599 61.35
9z LFT 57.27 5338 6847 6553
[z ONB 51.42 4930 4935  70.46
<2 CoNLL  75.83 55.06 4530 54.59
= 5 GermEval 70.19 7524 5215 5943
“ g LFT 43.63 43.82 69.62 61.10
A m ONB 36.33 38.81 4648 67.29

Table 4: Evaluation (F1) for two CRF-based meth-
ods and BiLSTM trained and tested on different
corpora.

Table 4. Unsurprisingly, the best results are gained
when testing on the same dataset as the training has
been performed. GermaNER consistently outper-
forms StanfordNER again, highlighting the benefits
of knowledge engineering when using CRFs.
Interestingly, these benefits also extend to the
historical datasets for which the CRF features were
presumably not optimized: overall Fl-scores are
only a few points lower than for the contemporary
corpora, and the CRFs significantly outperform the
BiLSTM models on ONB and performs compa-
rable on the larger LFT dataset. The type of em-
beddings used by BiLSTM plays a minor role for
the historical corpora (for contemporary corpora,
Wikipedia is clearly better). In sum, we conclude
that BiILSTM models run into trouble when faced
with very small training datasets, while CRF-based
methods are more robust (Cotterell and Duh, 2017).

6 Experiment 3: Transfer Learning

If the problems of BiLSTM from the last section
are in fact due to lack of data, we might be able
to obtain an improvement by combining them. A
simple way of doing this is transfer learning (Lee
et al., 2017): we simply start training on one cor-
pus and at some point switch to another corpus.
In our scenario, we start by training on large con-
temporary “source” corpora until convergence and
then train additional 15 epochs on the “target” cor-
pus from the domain on which we evaluate. The

results in Table 5 show significant improvements
for the CoNLL dataset but performance drops for
GermEval. Combining contemporary sources with
historic target corpora yields to consistent benefits.
Performance on LFT increases from 69.62 to 74.33
and on ONB from 73.31 to 78.56. Cross-domain
classification scores are also improved consistently.
The GermEval corpus is more appropriate as a
source corpus, presumably because it is both larger
and drawn from encyclopaedic text, more varied
than newswire. We conclude that transfer learning
is beneficial for BILSTMs, especially when train-
ing data for the target domain is scarce. We applied
the same procedure to the CRFs, but did not obtain
improvements for the “target” data.

7 Data Analysis

Besides OCR errors, the lower F1 scores for the
historic data are largely due to hyphens used to
divide words for line breaks. The lowest F1 scores
are achieved for the label organization. Evaluat-
ing on the ONB dataset, we obtain an F1 score for
that label of 50.22 using GermaNER, 48.63 for the
BiLSTM using Europeana embeddings and 61.48
using transfer learning. We observe a similar effect
for the LFT dataset. Often, the annotations for the
organization category are not entirely clear. For
example, the typo “sterreichischen AuBenminis-
terlum” (should be “AuBenministerium”, Austrian
foreign ministry) is manually annotated in the data
but not detected by any of the models. However,
“tschechoslowakischen Presse” (engl. Czechoslo-
vakian press) is detected as organization by all
classifiers but is not manually annotated.

8 Related Work

BiLSTMs that combine neural network architec-
tures with CRF-based superstructures yield the
highest results on English NER datasets in a num-
ber of studies (Ma and Hovy, 2016; Lample et al.,
2016; Reimers and Gurevych, 2017; Lin et al.,
2017). However, only few systems reported results
for German NER, and restrict themselves to the
“big-data” scenarios of the CoNLL 2003 (Lample
et al., 2016; Reimers and Gurevych, 2017) and Ger-
mEval (Reimers et al., 2014; Christian Hnig, 2014)
datasets.Sutton and McCallum (2005) showed the
capability of CRFs for transfer learning by joint
decoding two separately trained sequence models.
Lee et al. (2017) apply transfer learning using a
BiLSTM for medical NER using two similar tasks
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BiLSTM-WikiEmb

BiLSTM-EuroEmb

Train Transfer CoNLL GermEval LFT ONB CoNLL GermEval LFT ONB
CoNLL GermEval  78.55 8293 55.28 6493 72.23 75.78 5198 61.74
CoNLL LFT 62.80 58.89  72.90 67.96 56.30 51.25 70.04 65.65
CoNLL ONB 62.05 57.19 5943 76.17 55.82 49.14 5419 73.68
GermEval CoNLL 84.73" 72.11 5421 65.95 78.41 63.42 52.02 59.28
GermEval LFT 67.77 69.09 74.331 7057 55.83 5771  72.03 70.36
GermEval ONB 72.15 73.18 62.52 76.06 64.05 6420 57.12 17856

Table 5: Results for different test sets when using transfer learning. | marks results statistically significantly

better than the ones reported in Table 4.

with different labels and show that only 60% of
the data of the target domain is required to achieve
good results. Crichton et al. (2017) yield improve-
ments up to 0.8% for NER in the medical domain.
Most related to our paper is the work by Ghad-
dar and Langlais (2017) which demonstrates the
impact of transfer learning of the English CoNLL
2003 dataset with Wikipedia annotations.

9 Conclusion

Our study fills an empirical gap by considering
historical datasets and performing careful compar-
isons of multiple models under exactly the same
conditions. We have investigated the relative perfor-
mance of an BiLSTM method and traditional CRFs
on German NER in big- and small-data situations,
asking whether it makes sense to consider differ-
ent model types for different setups. We found
that combining BiLSTM with a CRF as top layer,
outperform CRFs with hand-coded features consis-
tently when enough data is available. Even though
RNN s struggle with small datasets, transfer learn-
ing is a simple and effective remedy to achieve
state-of-the-art performance even for such datasets.
In sum, modern RNNs consistently yield the best
performance.In future work, we will extend the
BiLSTM to other languages using cross-lingual
embeddings (Ruder et al., 2017).
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Abstract

Software developers and testers have long
struggled with how to elicit proactive re-
sponses from their coworkers when re-
viewing code for security vulnerabilities
and errors. For a code review to be suc-
cessful, it must not only identify potential
problems but also elicit an active response
from the colleague responsible for modi-
fying the code. To understand the factors
that contribute to this outcome, we analyze
a novel dataset of more than one million
code reviews for the Google Chromium
project, from which we extract linguis-
tic features of feedback that elicited re-
sponsive actions from coworkers. Using a
manually-labeled subset of reviewer com-
ments, we trained a highly accurate clas-
sifier to identify “acted-upon” comments
(AUC = 0.85). Our results demonstrate
the utility of our dataset, the feasibility of
using NLP for this new task, and the po-
tential of NLP to improve our understand-
ing of how communications between col-
leagues can be authored to elicit positive,
proactive responses.

1 Introduction

As in many other work environments, such as hos-
pitals and law firms, employees in software devel-
opment must communicate through written feed-
back and comments to develop functional and se-
cure code. Developers elicit feedback from their
collaborators on the code that they write through
the code review process, which is an integral
part of the mature software development lifecy-
cle. Most large software development organi-
zations, including Microsoft (Lipner, 2004) and
Google (Chromium, 2017), mandate the review of
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all changes to the code base. Code reviews iden-
tify potential bugs or errors in software, but not
all of the comments made by reviewers are acted
upon by developers.

Some code reviews are taken seriously by de-
velopers and prompt significant fixes, while many
others are overlooked or dismissed. In some cases,
such as when code reviewers misunderstand the
purpose of a proposed change or identify an unim-
portant issue, it may be appropriate to ignore their
comments. At other times, however, the presenta-
tion and language of the reviewer’s feedback may
cause the problems it identifies to be overlooked.
Understanding which linguistic characteristics of
code reviews influence whether reviews are taken
seriously can aid developers in providing effective
feedback that is acted upon by their peers. In turn,
this can contribute to our general understanding of
how to provide meaningful written feedback in a
collaborative workplace setting.

With this in mind, we present a dataset of
over one million code review comments from the
Chromium project (Chromium, 2017), designed
with the goal of discovering the linguistic fea-
tures associated with actionable developer feed-
back. We describe the dataset, along with an ar-
ray of linguistic features capturing characteristics
of complexity, content, and style, extracted from
that dataset. Using a labeled subset of this large
dataset, we develop a highly accurate classifier for
identifying examples of actionable feedback that
performs better than the keyword and sentiment
features previously explored for similar tasks.

The contributions of this work are: (1) the intro-
duction of a new NLP task: identifying actionable
feedback in collaborative work conversations; (2)
a large structured dataset of automatically linguis-
tically annotated software developer conversations
for feature exploration!; (3) a smaller manually-
labeled subset of that dataset for hypothesis test-
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ing'; and (4) a demonstration of the feasibility
of using NLP for this task in the form of a high-
accuracy classifier of actionable feedback.

2 Background

A typical code review is initiated by a developer
(change-author) who wishes to have a collection
(patchset) of local changes (patches) to the source
code merged into the software product. The patch-
set is reviewed by other developers (reviewers)
who provide feedback to ensure that the change
does not negatively impact the overall quality of
the product. In response to this feedback, the
change-author can submit one or more additional
patchsets for further review. The process repeats
until the owner of the source code approves the
change. The Chromium project, which underlies
Google’s Chrome browser and Chrome OS, fol-
lows this typical code review process, requiring all
changes to the source code to be reviewed before
being accepted into the repository. Rietveld (The
Chromium Project, 2017), an open-source tool, fa-
cilitates the code review process in Chromium.
The process of providing direct assessment of
an individual’s actions or performance, known as
feedback intervention, has been widely studied in
a number of domains (Judd, 1905; Kluger and
DeNisi, 1996, 1998; Xiong et al., 2010; Xiong and
Litman, 2010), but previous work applying NLP
to the specific task of evaluating code review feed-
back is somewhat limited. Rahman et al. (2017)
examined a small set of text features (e.g., reading
ease, stop word ratio) in a small set of code review
comments but found associations between those
features and comment usefulness to be mostly in-
significant. Pletea et al. (2014) examined senti-
ment as an indicator of comment usefulness, while
Bosu et al. (2015) considered both sentiment and
the presence of pre-defined keywords in feedback.
While these studies offer insights into the lan-
guage used by developers, they are limited to sen-
timent and basic lexical attributes. In contrast, we
explore more subtle linguistic features that more
accurately characterize actionable feedback.

3 Data

Our dataset consists of written natural language
conversations among developers working to find

'https://meyersbs.github.io/chromium-
conversations/
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409
susan 2015/06/25 07:31:02

return nullptr;

william 2015/06/25 07:56:32
On 2015/06/25 07:31:02,
> return nullptr;

No, if line 398 breaks, |found| can be non-null.

susan 2015/06/25 08:04:40

On 2015/06/25 07 N
> On 2015/06/2
> > return nullptr;

> No, if line 398 breaks, |found| ca
Ops. I didn't realize it.

line 398 should “return found , instead of “break'.

william 2015/06/25 08:23:38

On 2015/06/

return found;

susan wrote:

n be non-null.

f line 98 breaks, |found| can be non-null.
idn't realize it.
398 should ‘return found', instead of ‘break’.

Done.

If the code doesn't break there, line 409 should
return nullptr, as the original comment suggests.

Figure 1: Example code review comment thread.

flaws in proposed changes to software. An ex-
ample is shown in Figure 1. We used Rietveld’s
RESTful API to retrieve, in JSON formatted doc-
uments, publicly-accessible code reviews in the
Chromium project spanning eight years (2008-
16). We processed the JSON documents and ex-
tracted reviews with their associated patchsets,
patches, and comments, saving them to a Post-
greSQL database. Of the 2,855,018 comments,
1,591,431 were posted by reviewers. We refer to
this set of comments, for which we provide val-
ues for the 9 linguistic features (described in Sec-
tion 4), as the full dataset.

With the goal of characterizing the linguistic at-
tributes of actionable feedback, we created a la-
beled dataset, which reflects the overall distri-
bution of actionable comments in the full dataset
by including 2,994 comments automatically iden-
tified as acted-upon and 800 comments manually
identified as not (known-to-be) acted-upon. We
automatically identified acted-upon comments us-
ing the Rietveld functionality that allows change-
authors to respond to feedback by clicking a link
labeled “Done”, which automatically posts a spe-
cial comment containing only the word ‘Done.’.
We consider comments by reviewers that elicit this
‘Done.” response to be acted-upon. Of the 1.5
million comments posted by reviewers, 690,881
(43%) were identified as acted-upon using the
‘Done.” metric. We independently verified a sub-
set of 700 of these comments (Cohen’s kK = 0.89)
and found that in 97% of instances when a devel-



oper posted a comment with ‘Done.’, there was an
associated code change implemented.

To identify comments that were not acted upon,
we manually inspected code review comments that
did not terminate in a ‘Done.” comment. We ran-
domly sampled a set of 2,047 such comments and
inspected the line of code associated with a com-
ment across all patchsets and the source code com-
mit associated with the code review. Comments
for which the authors could not find evidence that
the developer acted upon the feedback were la-
beled as not (known-to-be) acted-upon. Within the
sample, 800 (39.08%) were manually identified as
not (known-to-be) acted-upon.

4 Feature Extraction

We extract nine linguistic features from the re-
viewer comments (examples in Table 1) that cap-
ture structure, information content, style, and tone.
Before extracting features, we automatically re-
place all sequences of source code tokens with a
single custom token. Since comments can span
multiple sentences, we aggregate sentence-level
features at the comment level as described below
for each feature.

Syntactic complexity: Previous work (Rah-
man et al.,, 2017) attempted to measure struc-
tural complexity using readability metrics, such as
Flesch reading ease (Flesch, 1948), which approx-
imate complexity using word and sentence length.
We instead evaluate the structure of comments
by calculating YNGVE (Yngve, 1960) and FRA-
ZIER (Frazier, 1987) scores, two complimentary
approaches derived from constituent parses (as in
Roark et al. (2011); Pakhomov et al. (2011)) that
approximate the cognitive load of sentence pro-
cessing (Baddeley, 2003; Sweller and Chandler,
1991). We take the maximum over all sentences
in a comment for each of these scores.

Information content: We calculate both con-
tent density (C-DENSITY), which measures the
content of text using the ratio of open-class to
closed-class words, and propositional density (P-
DENSITY), which is the ratio of propositions to
the number of words in a text (Roark et al., 2011).
We use an approach similar to that used by Brown
et al. (2008) to detect propositions, and we aggre-
gate both scores over the sentences in a comment.

Style and tone: We explore several features
characterizing style and tone to learn whether the
way reviewers choose to communicate their feed-
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back has an influence on how their colleagues re-
spond to that feedback.

SENTIMENT: We extract the sentiment of a
code review comments using Stanford CoreNLP
(Manning et al., 2014). In contrast to previous
work (Bosu et al., 2015; Agarwal et al., 2011),
we use only three values, merging the two positive
classes and the two negative classes, and introduce
a fourth class, non-neutral, which ignores the sen-
timent polarity. The sentiment at a comment level
is the ratio of negative/neutral/positive/non-neutral
tokens to all tokens.

FORMALITY: We use the dataset provided by
Lahiri (2015) to train a logistic regression model
for estimating the formality of a sentence, with
precision and recall of 83%. We reduce the 7-
point rating scale to a binary (formal vs. infor-
mal) scale. The features used to train the model in-
cluded parts-of-speech, character n-grams, chunk-
ing tags, and other features used in predicting un-
certainty Vincze (2014). For this feature and Po-
LITENESS, we find the maximum and minimum
values over all sentences in a comment.

POLITENESS: To measure politeness, we use
a corpus of Wikipedia editor and Stack Ex-
change user conversations annotated for politeness
(Danescu-Niculescu-Mizil et al., 2013). We re-
implemented their logistic regression model with
newer programming languages and frameworks,
yielding 94% precision and 95% recall.

UNCERTAINTY: Uncertainty in natural lan-
guage has been studied by Vincze (2014) and
Farkas et al. (2010), who worked with Szarvas
et al. (2012) to compile the Szeged Uncertainty
Corpus. While Vincze (2014) trained a binary
(certain vs. uncertain) model on the corpus, we
trained a multi-label logistic regression model us-
ing the same features to predict the type of uncer-
tainty exhibited by each word in a comment.

5 Results

Using the labeled dataset described in Section 3,
we evaluated the association between each feature
and the class labels. For continuous valued fea-
tures, we used the non-parametric Mann-Whitney-
Wilcoxon to test for association and Cliff’s § to as-
sess the strength of that association. For boolean-
valued features, we used the y? test to test for
independence between the feature and class la-
bel. Our results show that acted-upon code review
comments were shorter, more polite, more formal,



Feature Example Sentence from Chromium dataset

Low: This ‘if’ can be done more elegantly with Min(x,y)

High: Please see this warning about adding things to NavigationEntry.

FRAZIER

Low: The description is a little confusing.

High: The only time we call one but not the other is in the destructor, when we don’t need to call
needsNewGenlD, but setting two fields needlessly might be a low price to pay to ensure we never
accidentally call one without the other.

YNGVE

Low: In addition to what I suggested earlier about testing for the non-existence of a third file, we could
also verify that the contents of the sync database files are not nonsense.

High: I tried patching this in locally and it doesn’t compile.

P-DENSITY

Low: Slight reordering: please put system modules first, then a blank line, then local ones
(PRESUBMIT).

High: Please check that given user_id is child user, not currently active user is child.

C-DENSITY

Low: But yeah, I'm just being an API astronaut*; I think that what I wrote up there is neat, but after
sleeping, don’t worry about it; it’s too much work to go and rewrite stuff.

High: Moving this elsewhere would also keep this module focused on handling the content settings /
heuristics for banners, which is what it was originally intended for.

FORMALITY

Low: You don’t actually manage the deopt table’s VirtualMemory, so you shouldn’t act like you do.

High: Thanks for writing this test, getting there, but I think you could do this in a more principled way.

POLITENESS

Negative: That’s not good use of inheritance.

SENTIMENT

Positive: It looks slightly magical.

Epistemic: This seems a bit fragile.

UNCERTAINTY

Conditional: Another possible option, if it does not cause user confusion, would be to automatically
select those projects in the Files view when the dialog closes.

Table 1: Example code review comments for a subset of the linguistic features.

Feature Set Precision Recal F,  AUC performance using 10x10-fold cross validation.
~ #Tokens 0793 0996 0.883 0.610 We compare these with two baseline classifiers us-
#Sentences  0.792 0.999 0.884 0.584 ing only token count and sentence count. Table 2
A 0829 0926 0872 0.849 shows the average precision, recall, Fi-measure,
~ Significant 0.805 0.953  0.871 0.805 and AUC. The classifiers trained on the linguistic
Relevant 0.802 0963 0.874 0.819

features, while performing near the baselines on
the first three measures, substantially outperform
the baselines on AUC, with all three yielding val-
ues over 0.8. Given these results and the imbal-
anced nature of the dataset, it seems that the clas-
sifiers trained on the linguistic features are able to

Table 2: Results of 10 x 10—fold cross-validation.

less uncertain, and had a lower density of proposi-
tions than those that were not acted-upon.

We then trained a classifier to identify code re-
view comments that are likely to be acted upon.
In training the classifier, we considered three sets
of linguistic features: (1) all features, (2) sig-
nificant features from association analysis, and
(3) relevant features from recursive feature elim-
ination. Through recursive feature elimination,
we found MAX POLITENESS, P-DENSITY, MIN
FORMALITY, and MAX FORMALITY to be the
four most relevant features for discriminating be-
tween acted-upon and not acted-upon comments.

We trained logistic regression classifiers with
these three sets of linguistic features, evaluating
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identify both classes of comments with high ac-
curacy, while the baseline classifiers perform only
marginally better than a majority class baseline.

6 Discussion & Future work

Overall, we find that the way in which cowork-
ers communicate feedback to each other strongly
influences whether their peers will act on their ad-
vice. Remarkably, politeness and formality, two
high-level discourse features, are among the most
effective in distinguishing acted upon feedback. It
seems that the manner in which feedback is deliv-



ered has more impact on the actions of developers
than might be expected given the practical and im-
personal nature of written code reviews. These re-
sults point to the critical importance of how feed-
back is phrased and delivered in workplace set-
tings, beyond just the content of the feedback it-
self.

In our future work, we plan to explore whether
these and other features can be incorporated into
a code review tool like Rietveld to automatically
flag feedback that is less likely to be acted upon
and to encourage more effective communication
strategies. We also plan to use our methods to an-
alyze the linguistic patterns of individual review-
ers to identify those with particularly effective or
weak communication styles.

Our work demonstrates the potential of apply-
ing NLP to the task of identifying actionable feed-
back in collaborative work scenarios and the util-
ity of our two datasets for this task. More broadly,
these results speak to the importance of training
code reviewers—and indeed all employees work-
ing in highly collaborative environments—not just
in how to do their jobs effectively but also how to
communicate their findings and feedback to their
coworkers in a way that will elicit proactive re-
sponses.
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Abstract

Humans rely on multiple sensory
modalities when examining and reasoning
over images. In this paper, we describe
a new multimodal dataset that consists
of gaze measurements and spoken
descriptions collected in parallel during
an image inspection task. The task was
performed by multiple participants on 100
general-domain images showing everyday
objects and activities. We demonstrate
the usefulness of the dataset by applying
an existing visual-linguistic data fusion
framework in order to label important
image regions with appropriate linguistic
labels.

1 Introduction

In recent years, eye tracking has become
widespread, with applications ranging from VR
to assistive communication (Padmanaban et al.,
2017; Holmgqvist et al., 2017). Gaze data, such as
fixation location and duration, can reveal crucial
information about where observers look and how
long they look at those locations. Researchers
have used gaze measurements to understand where
drivers look and to identify differences in experts’
and novices’ viewing behaviors in domain-specific
tasks (Underwood et al., 2003; Eivazi et al.,
2012). Numerous studies highlight the potential
of gaze data to shed light on how humans process
information, make decisions, and vary in observer
behaviors (Fiedler and Glockner, 2012; Guo et al.,
2014; Hayes and Henderson, 2017; Brunyé and
Gardony, 2017). Eye tracking has also long been
an important tool in psycholinguistics (Cooper,
1974; Rayner, 1998; Richardson and Dale, 2005;
Shao et al., 2013).

Co-collecting observers’ gaze information and
spoken descriptions of visual input has the
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potential to provide insight into how humans
understand what they see. There is a need for
public datasets containing both modalities. In this
paper, we present the Spoken Narratives and Gaze
dataset (SNAG), which contains gaze information
and spoken narratives co-captured from observers
as they view general domain images. We describe
the data collection procedure using a high-quality
eye-tracker, summary statistics of the multimodal
data, and the results of applying a visual-lingustic
alignment framework to automatically annotate
regions of general-domain images, inspired by
Vaidyanathan et al’s (2016) work on medical
images. Our main contributions are as follows:

1. We provide the language and vision
communities with a unique multimodal
dataset! comprised of co-captured gaze and
audio data, and transcriptions. This dataset
was collected via an image-inspection
task with 100 general-domain images and
American English speakers.

. We demonstrate the usefulness of this
general-domain  dataset by  applying
an existing visual-linguistic annotation
framework that successfully annotates image
regions by combining gaze and language
data.

2 Multimodal Data Collection

The IRB-approved data collection involved 40
university students who were native speakers
of American English (10 were later removed),
ranging in age from 18 to 25 years, viewing
and describing 100 general-domain images. We
sought out subjects who were speakers of
American English in order to ensure reliable ASR
output and a consistent vocabulary across subjects.
Subjects consented to data release. The images

"https://mvrl-clasp.github.io/SNAG/
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Figure 1: Data collection set-up. The eye tracker
is under the display. The observer wears a lapel
microphone connected to a TASCAM recorder.

were selected from MSCOCO (Microsoft Common
Objects in Context) (Lin et al., 2014), which
totals over 300,000 images representing complex
everyday scenes. The MSCOCO dataset was
created by pooling images from sources such as
Flickr and crowdsourcing them to obtain segments
and captions (not used in this work). A researcher
selected the images so that typically they depicted
an event with at least one initiator of the event
and one target of the action. Of the 100 images,
69 images clearly depict at least one event. The
MSCOCO images vary in number of objects, scale,
lighting, and resolution.

Gaze data was collected using a SensoMotoric
Instruments (Sensomotoric Instruments, 2016)
RED 250Hz eye-tracker attached under a display
(Figure 1). The reported accuracy of the RED 250
eye-tracker is 0.5 degree. It is a non-intrusive and
remote eye tracker that monitors the observer’s
gaze. Each image was presented to the observer
on a 22-inch LCD monitor (1680 x 1050 pixels)
located approximately 68 cm from the observer.
We employed a double computer set-up with
one computer used to present the image and the
other used to run the SMI software iViewX and
Experiment Center 2.3. After each stimulus, a
blank gray slide was inserted to ensure that the
gaze on the previous stimulus did not affect the
gaze on the following stimulus. The blank gray
slide was followed by a test slide with a small,
visible target at the center with an invisible trigger
area of interest. Using the test slide we could
measure the drift between the location of the target
at the center and the predicted gaze location over
time that may have occurred due to the observer’s
movements. A validation was performed every
10 images and re-calibration was applied if the
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there's a female cutting a Kate

uh she’s smiling and has sunglasses on her head

uh the cake has a picture of uh don't know who

also uh an iron man cake

and alcohol maybe champagne

uh she is wearing a black tank top

uh there are plates and other things on the table
and they seem to be in a bar or something

Figure 2: Example of multimodal data. Left: ASR
transcript of a participant’s spoken description.
Right: Gaze data for the same observer overlaid
on the image. Green circles show fixations, with
radius representing fixation duration. Green lines
connecting fixations represent saccades.

observer’s validation error was more than one
degree.

A TASCAM DR-100MKII recorder with
a lapel microphone was used to record the
spoken descriptions. To approximate the
Master-Apprentice  data  collection method
that helps in eliciting rich details (Beyer and
Holtzblatt, 1997), observers were instructed to
“describe the action in the images and tell the
experimenter what is happening.” Observers were
given a mandatory break after 50 images and
optional smaller breaks if needed to avoid fatigue.
Observers were given a package of cookies along
with a choice between entering into a raffle
to win one of two $25 gift cards or receiving
course credits. Observers were cooperative and
enthusiastic.

3 Fixations, Narratives, and Quality

The SMI software BeGaze 3.1.117 with default
parameters and a velocity-based (I-VT) algorithm
was used to detect eye-tracking events. Figure 2
shows an example of the scanpath with fixations
and saccades of an observer overlaid on an image.
Of the original 40 observers, we removed one
observer with partial data loss and nine observers
whose mean calibration and validation error was
greater than two standard deviations from the
mean in the horizontal or vertical direction. The
mean calibration accuracy (standard deviation)
for the remaining subjects was 0.67(0.25) and
0.74(0.27) degrees for the = and y directions,
respectively.  One degree would translate to
approximately 40 pixels in our set-up, therefore
our mean calibration accuracy was roughly 27
pixels. For the remainder of this work, the corpus
size is 3000 multimodal instances (100 images
x 30 participants), with 13 female and 17 male



Mean no. of word types

Figure 3: Scatter plot of mean word types vs.
tokens per image. Example images have low
(green) and high (magenta) type-token ratio.

participants.

The speech recordings for the 3000 instances
were machine-transcribed using the cloud-based
IBM Watson Speech-to-Text service, an ASR
system accessible via a Websocket connection?.
Figure 2 (left panel) shows example ASR output,
which is accurate other than the substitution of
Kate for cake. 1BM Watson reports timestamps
for each word, and those timestamps are included
in the released dataset. Additionally, all spoken
descriptions for a subset of 5 images were
manually corrected using Praat (Boersma, 2002)
in order to verify the quality of the ASR output.
We found the word error rate (WER) to be
remarkably low (5%), demonstrating the viability
of using ASR to automate the transcription of
the narratives. The ASR and manually corrected
transcriptions are included in the dataset.

A descriptive analysis of the gaze and narratives
shows that the average fixation duration across
the 30 participants was 250 milliseconds and the
average narrative duration was about 22 seconds.
The transcribed narratives were segmented into
word tokens using the default NLTK word
tokenizer. Various measures for the first-order
analysis of the narratives were then calculated.
The mean number of tokens and the average
duration of narratives together indicate that on
average observers uttered 2.5 words per second.
The mean type-token ratio was .75, suggesting
that there is substantial lexical diversity in the
narratives, which demonstrates the richness of
the dataset. Figure 3 shows a scatter plot for
the mean number of word types against the
mean number of word tokens for the 100 images

“https://www.ibm.com/watson/services/speech-to-text/
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Figure 4: RegionLabeler GUI (released with
dataset) used to acquire reference alignments.
Annotator draws borders around regions and
checks off linguistic units.

across 30 participants. The plot illustrates that
a larger number of tokens typically results in
a larger number of types. Images 23, 3, and
24, highlighted in green, have fewer mean word
tokens and types than images 35, 90, and 94,
highlighted in magenta. For this dataset, this may
be due to the number of significant objects in the
images where a significant object is defined as an
object that occupies a significantly large area of
the image. Images 23, 3, and 24 have on average
two objects while images 35, 90, and 94 have more
than two.

4 Application to Multimodal Alignment

We examine the usefulness of our general-domain
dataset on image-region annotation, adapting the
framework given by Vaidyanathan et al. (2016).

Linguistic units: We process the narratives in
order to extract nouns and adjectives, which serve
as the linguistic units. Additionally, we remove
word tokens with a frequency of 1 in order to
reduce the impact of speech errors and one-off
ASR errors.

Visual units: To encode fixations into
meaningful regions similar to Vaidyanathan et al.
(2016) we apply mean shift fixation clustering
(MSFC). We also use modified k-means and
gradient segmentation (GSEG). Modified k-means
uses the number of clusters obtained from MSFC
as the value of k instead of 4 as in the original
framework. GSEG uses color and texture with
region merging to segment an image (Ugarriza
et al., 2009). The outputs of the three clustering
methods are shown in Figure 5. The rest of
the alignment framework, including using the



Figure 5: Example region annotations.

Top-left: Reference alignments.

L%

= 3

.bnglasses
sunglasses ™4

’ camera

Y

Alignment output using:

top-right: MSFC; bottom-left: modified k-means; and bottom-right: GSEG. Correct alignments in pink.
Misalignments and labels not belonging to reference alignments in yellow.

Berkeley aligner (Liang et al., 2006), remained the
same.

Reference alignments: Both SURE and
POSSIBLE (Och and Ney, 2003) reference
alignments were prepared using RegionLabeler,
a GUI (Figure 4) to allow evaluation of the
resulting multimodal alignments. With this tool,
an annotator drew borders of image regions and
selected the associated linguistic units.

Baseline alignments: For comparison, we use
the baselines proposed by Vaidyanathan et al.
(2016):  simultaneous which assumes that the
observers utter the word corresponding to a region
at the exact moment their eyes fixate on that
region, and /-second delay which assumes that
there is a 1-second delay between a fixation and
the utterance of the word corresponding to that
region.

5 Results and Discussion

We calculated average precision, recall, and AER
for alignments and compared them against the
baselines following Och and Ney (2003).

The two baselines performed similarly. Table 1
shows that the alignment framework performs
better than either baseline. MSFC yields the
highest recall and lowest AER with an absolute
improvement of 0%, 19%, and 10% for precision,
recall and AER, over the 1-second delay baseline.
Modified k-means achieves higher precision with
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an absolute improvement of 6%, 14%, and 14%
over baseline. GSEG performed with less success.

Figure 5 visually compares reference and
obtained alignments. Most words are correctly
aligned. MSFC correctly aligns labels such as
cake and plates, yielding higher recall. It aligns
some labels such as plates to incorrect regions,
explaining the lower precision. All methods
erroneously assign labels not grounded to any
region but representing the perspective of the
photographer, such as camera, to regions in the
image, which lowers precision.

6 Related Work

There are publicly available datasets that provide
gaze data with no language data (Krafka et al.,
2016; Borji and Itti, 2015; Wilming et al,
2017) for tasks such as image saliency or
driving. Vasudevan et al. (2018b) collected a
dataset in which crowdworkers viewed objects
in bounding boxes and read aloud pre-scripted
phrases describing those objects. Although their
dataset consists of spoken language, it lacks
co-collected gaze data and uses a bounding box
to highlight an object as opposed to allowing
the observer to view the image freely. A more
recent study describes the collection of a dataset
in which crowdworkers were instructed to draw
bounding boxes around objects in videos and
provide written phrases describing these objects



MSFC Modified k-means
Precision | Recall | AER || Precision | Recall | AER
Simultaneous 0.42 0.30 | 0.65 0.49 0.17 | 0.74
1-second delay 0.43 0.31 | 0.64 0.50 0.17 | 0.74
Alignment framework 0.43 0.50 | 0.54 0.56 0.31 | 0.60

Table 1: Average alignment performance across images. MSFC provides the best recall and lowest AER,
and modified k-means the best precision. In all cases, the alignment framework yields stronger results

than either of the timing-based baselines.

(Vasudevan et al., 2018a). In a separate task,
crowdworkers were asked to view those same
videos and to gaze within the bounding boxes
for each object while face data was recorded.
The authors infer gaze using the recorded
face data. None of these datasets involves
simultaneous visual-linguistic capture of spoken
narration or precision eye-tracking equipment
during naturalistic free viewing. Ho et al. (2015)
provide a dataset that consists only of gaze and
speech time stamps during dyadic interactions.
The closest dataset to ours is the multimodal but
non-public data described by Vaidyanathan et al.
(2016).

7 Conclusions

The SNAG dataset is a unique and novel resource
that can provide insights into how humans view
and describe scenes with common objects. In
this paper, we use SNAG to demonstrate that
multimodal alignment does not depend on expert
observers or image type, with comparable results
to Vaidyanathan et al. (2016) for dermatological
images. SNAG could also serve researchers outside
NLP, including psycholinguistics. Spontaneous
speech coupled with eye-tracking data could be
useful in answering questions about how humans
produce language when engaging with visual
tasks. Parallel data streams can, for example,
help in investigating questions such as the effects
of word complexity or frequency on language
formation and production. It might also aid in
studies of syntactic constructions and argument
structure, and how they relate to visual perception.
Qualitative analysis of our transcripts indicates
that they contain some emotional information in
the form of holistic comments on the overall
affect of the images, which could be helpful
in affective visual or linguistic computing tasks.
Future work could co-collect modalities such as
facial expressions, galvanic skin response, or other
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biophysical signals with static or dynamic visual
materials.
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Abstract

Analogical reasoning is effective in cap-
turing linguistic regularities. This paper
proposes an analogical reasoning task on
Chinese. After delving into Chinese lexi-
cal knowledge, we sketch 68 implicit mor-
phological relations and 28 explicit se-
mantic relations. A big and balanced
dataset CA8 is then built for this task,
including 17813 questions. Furthermore,
we systematically explore the influences
of vector representations, context features,
and corpora on analogical reasoning. With
the experiments, CAS is proved to be a re-
liable benchmark for evaluating Chinese
word embeddings.

1 Introduction

Recently, the boom of word embedding draws our
attention to analogical reasoning on linguistic reg-
ularities. Given the word representations, anal-
ogy questions can be automatically solved via vec-
tor computation, e.g. “apples - apple + car =
cars” for morphological regularities and “king -
man + woman =~ queen” for semantic regularities
(Mikolov et al., 2013). Analogical reasoning has
become a reliable evaluation method for word em-
beddings. In addition, It can be used in inducing
morphological transformations (Soricut and Och,
2015), detecting semantic relations (Herdagdelen
and Baroni, 2009), and translating unknown words
(Langlais and Patry, 2007).

It is well known that linguistic regularities vary
a lot among different languages. For example,
Chinese is a typical analytic language which lacks
inflection. Figure 1 shows that function words and
reduplication are used to denote grammatical and
semantic information. In addition, many semantic

T Corresponding author.
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Figure 1: Examples of Chinese lexical knowledge:
(a) function words (in orange boxes) are used to
indicate the comparative and superlative degrees;
(b) reduplication yields the meaning of “every”.

relations are closely related with social and cul-
tural factors, e.g. in Chinese “shi-xian” (god of
poetry) refers to the poet Li-bai and “shi-sheng”
(saint of poetry) refers to the poet Du-fu.

However, few attempts have been made in
Chinese analogical reasoning. The only Chi-
nese analogy dataset is translated from part of
an English dataset (Chen et al., 2015) (denote as
CA_translated). Although it has been widely used
in evaluation of word embeddings (Yang and Sun,
2015; Yin et al., 2016; Su and Lee, 2017), it could
not serve as a reliable benchmark since it includes
only 134 unique Chinese words in three semantic
relations (capital, state, and family), and morpho-
logical knowledge is not even considered.

Therefore, we would like to investigate linguis-
tic regularities beneath Chinese. By modeling
them as an analogical reasoning task, we could
further examine the effects of vector offset meth-
ods in detecting Chinese morphological and se-
mantic relations. As far as we know, this is the first
study focusing on Chinese analogical reasoning.
Moreover, we release a standard benchmark for
evaluation of Chinese word embedding, together
with 36 open-source pre-trained embeddings at
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GitHub!, which could serve as a solid basis for
Chinese NLP tasks.

2 Morphological Relations

Morphology concerns the internal structure of
words. There is a common belief that Chinese is
a morphologically impoverished language since a
morpheme mostly corresponds to an orthographic
character, and it lacks apparent distinctions be-
tween roots and affixes. However, Packard (2000)
suggests that Chinese has a different morpholog-
ical system because it selects different “settings”
on parameters shared by all languages. We will
clarify this special system by mapping its morpho-
logical analogies into two processes: reduplication
and semi-affixation.

2.1 Reduplication

Reduplication means a morpheme is repeated to
form a new word, which is semantically and/or
syntactically distinct from the original morpheme,
e.g. the word “tian-tian”(day day) in Figure 1(b)
means “everyday”. By analyzing all the word cat-
egories in Chinese, we find that nouns, verbs, ad-
jectives, adverbs, and measure words have redupli-
cation abilities. Given distinct morphemes A and
B, we summarize 6 repetition patterns in Figure 2.

A-A A-A-B-B
A-yi-A eratem2 S0 A CASB W raens»( A-{-A-B
A-13i-A-qu A-B-A-B

Figure 2: Reduplication patterns of A and A-B.

Each pattern may have one or more morpho-
logical functions. Taking Pattern 1 (A—AA) as
an example, noun morphemes could form kinship
terms or yield every/each meaning. For verbs, it
signals doing something a little bit or things hap-
pen briefly. AA reduplication could also intensify

an adjective or transform it to an adverb.
e ba(dad) — ba-ba(dad)
e tian(day) — tian-tian(everyday)
e shuo(say) — shuo-shuo(say a little)
kan(look) — kan-kan(have a brief look)

da(big) — da-da(very big; greatly)

shen(deep) — shen-shén(deeply)
"https://github.com/Embedding/Chinese-Word-Vectors
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2.2 Semi-affixation

Affixation is a morphological process whereby a
bound morpheme (an affix) is attached to roots or
stems to form new language units. Chinese is a
typical isolating language that has few affixes. Liu
et al. (2001) points out that although affixes are
rare in Chinese, there are some components be-
having like affixes and can also be used as inde-
pendent lexemes. They are called semi-affixes.

To model the semi-affixation process, we un-
cover 21 semi-prefixes and 41 semi-suffixes.
These semi-suffixes can be used to denote changes
of meaning or part of speech. For example, the
semi-prefix “di-” could be added to numerals to
form ordinal numbers, and the semi-suffix “-zi” is
able to nominalize an adjective:

e yi(one) — di-yi(first)
er(two) — di-er(second)

e pang(fat) — pang-zi(a fat man)
shou(thin) — shou-zi(a thin man)

3 Semantic Relations

To investigate semantic knowledge reasoning, we
present 28 semantic relations in four aspects: ge-
ography, history, nature, and people. Among them
we inherit a few relations from English datasets,
e.g. country-capital and family members, while
the rest of them are proposed originally on the ba-
sis of our observation of Chinese lexical knowl-
edge. For example, a Chinese province may have
its own abbreviation, capital city, and representa-
tive drama, which could form rich semantic analo-
gies:

e an-hui vs zhe-jiang (province)

e wdn vs zhe (abbreviation)

hé-féi vs hdng-zhou (capital)

o hudng-méi-xi vs yue-ju (drama)

We also address novel relations that could be
used for other languages, e.g. scientists and their
findings, companies and their founders.

4 Task of Chinese Analogical Reasoning

Analogical reasoning task is to retrieve the answer
of the question “a is to b as c is to ?”. Based
on the relations discussed above, we firstly collect
word pairs for each relation. Since there are no
explicit word boundaries in Chinese, we take dic-
tionaries and word segmentation specifications as
references to confirm the inclusion of each word



Benchmark Category Type #questions | #words Relation
Capital 506 46 capital-country
CA_translated Semantic State 175 54 city-province
Family 272 34 family members
Reduplication A 2554 344 A-A, A-yi-A, A-ldi-A-qu
Morphological Reduplication AB 2535 423 A-A-B-B, A-li-A-B, A-B-A-B
Semi-prefix 2553 656 21 semi-prefixes: KX, /], 2Z, 58, 1L, etc.
CAS Semi-suffix 2535 727 41 semi-suffixes: &, 1\, =X, T, etc.
country-capital, country-currency,
Geography 3192 305 province-abbreviation, province-capital,
. province-dramma, etc.
Semantic dynasty-emperor, dynasty-capital
History 1465 177 ynasty-emperor, dynasty-capital,
title-emperor, celebrity-country
Nature 1370 450 nurqber, time, animal, plant, body,
physics, weather, reverse, color, etc.
People 1609 259 ﬁndi;lg-;cientist, work-writer,
amily members, etc.

Table 1: Comparisons of CA_translated and CA8 benchmarks. More details about the relations in CA8

can be seen in GitHub.

Window . . . Sub- Low-frequenc Context distribution Negative Vector
Iteration | Dimension q y g
(dynamic) | orato CeNSION | campling threshold smoothing (SGNS/PPMI)|  offset
5 5 300 le-5 50 0.75 5/1 3COSMUL

Table 2: Hyper-parameter details. Levy and Goldberg (2014b) unifies SGNS and PPMI in a framework,
which share the same hyper-parameter settings. We exploit 3COSMUL to solve the analogical questions

suggested by Levy and Goldberg (2014a).

pair. To avoid the imbalance problem addressed in
English benchmarks (Gladkova et al., 2016), we
set a limit of 50 word pairs at most for each rela-
tion. In this step, 1852 unique Chinese word pairs
are retrieved. We then build CAS, a big, balanced
dataset for Chinese analogical reasoning including
17813 questions. Compared with CA_translated
(Chen et al., 2015), CAS8 incorporates both mor-
phological and semantic questions, and it brings
in much more words, relation types and questions.
Table 1 shows details of the two datasets. They are
both used for evaluation in Experiments section.

S Experiments

In Chinese analogical reasoning task, we aim at in-
vestigating to what extent word vectors capture the
linguistic relations, and how it is affected by three
important factors: vector representations (sparse
and dense), context features (character, word, and
ngram), and training corpora (size and domain).
Table 2 shows the hyper-parameters used in this
work. All the text data used in our experiments (as
shown in Table 3) are preprocessed via the follow-
ing steps:

e Remove the html and xml tags from the texts
and set the encoding as utf-8. Digits and
punctuations are remained.
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e Convert traditional Chinese characters into
simplified characters with Open Chinese
Convert (OpenCC)Q.

e Conduct Chinese word segmentation with
HanLP(v_1.5.3)%.

5.1 Vector Representations

Existing vector representations fall into two types,
dense vectors and sparse vectors. SGNS (skip-
gram model with negative sampling) (Mikolov
et al., 2013) and PPMI (Positive Pointwise Mutual
Information) (Levy and Goldberg, 2014a) are re-
spectively typical methods for learning dense and
sparse word vectors. Table 4 lists the performance
of them on CA_translated and CAS8 datasets under
different configurations.

We can observe that on CA8 dataset, SGNS
representations perform better in analogical rea-
soning of morphological relations and PPMI rep-
resentations show great advantages in semantic
relations. This result is consistent with per-
formance of English dense and sparse vectors
on MSR (morphology-only), SemEval (semantic-
only), and Google (mixed) analogy datasets (Levy
and Goldberg, 2014b; Levy et al., 2015). It is

Zhttps://github.com/BY Void/OpenCC
*https://github.com/hankcs/HanLP



Corpus Size | #tokens V] Description
. Wikipedia data obtained from
Wikipedia 1.3G 223M 2129K https://dumps.wikimedia.org/
. . Chinese wikipedia data from
Baidubaike 4.1G 745M | 5422K hitps://baike.baidu.com/
People’s Daily News | 3.9G 668M 1664K News data fr(?m People’s Daily (1946-2017)
http://data.people.com.cn/
News data provided by Sogou Labs
Sogou news 3.7G 649M 1226K http://www.sogou.com/labs/
. Chinese QA data from https://www.zhihu.com/,
Zhihu QA 216G 384M 17K including 32137 questions and 3239114 answers
Combination 14.8G | 2668M | 8175K | We build this corpus by combining the above corpora

Table 3: Detailed information of the corpora. #tokens denotes the number of tokens in corpus. |V/|

denotes the vocabulary size.

CA_translated CAS8
Cap. Sta. Fam. A AB  Pre. Suf. || Mor. || Geo. His. Nat. Peo. || Sem.
word 706 966 .603 || .117 162 .181 389 || .222 || 414 345 236 223 || .327
SGNS  word+ngram | 715 977 640 [| .143 184 197 429 250 || 449 308 276 310 .368
word+char | .676 966 .548 || .358 .540 .326 .612 || 455 || .468 226 296 305 || .368
word 925 920 548 || .103 139 138 464 || .226 || .627 501 300 515 | .522
PPMI ~ word+ngram | .943 960 .658 || .102 .129 .168 .456 || .230 || .680 .535 .371 .626 || .586
word+char | 913 886 .614 || .106 .190 .173 .505 || .260 || .638 502 288 515 || .524

Table 4: Performance of word representations learned under different configurations. Baidubaike is used

as the training corpus. The top 1 results are in bold.

probably because the reasoning on morphological
relations relies more on common words in con-
text, and the training procedure of SGNS favors
frequent word pairs. Meanwhile, PPMI model
is more sensitive to infrequent and specific word
pairs, which are beneficial to semantic relations.

The above observation shows that CAS is a re-
liable benchmark for studying the effects of dense
and sparse vectors. Compared with CA_translated
and existing English analogy datasets, it offers
both morphological and semantic questions which
are also balanced across different types 4.

5.2 Context Features

To investigate the influence of context features on
analogical reasoning, we consider not only word
features, but also ngram features inspired by sta-
tistical language models, and character (Hanzi)
features based on the close relationship between
Chinese words and their composing characters .
Specifically, we use word bigrams for ngram fea-
tures, character unigrams and bigrams for charac-
ter features.

*CA_translated and SemEval datasets contain only se-
mantic questions, MSR dataset contains only morphological
questions, and in Google dataset the capital:country relation
constitutes 56.72% of all semantic questions.

>The SGNS with word and character features are im-
plemented by fasttext toolkit, the rest are implemented by
ngram2vec toolkit.

Ngrams and Chinese characters are effective
features in training word representations (Zhao
et al., 2017; Chen et al., 2015; Bojanowski et al.,
2016). However, Table 4 shows that there is
only a slight increase on CA_translated dataset
with ngram features, and the accuracies in most
cases decrease after integrating character features.
In contrast, on CA8 dataset, the introduction of
ngram and character features brings significant
and consistent improvements on almost all the cat-
egories. Furthermore, character features are espe-
cially advantageous for reasoning of morphologi-
cal relations. SGNS model integrating with char-
acter features even doubles the accuracy in mor-
phological questions.

Besides, the representations achieve surpris-
ingly high accuracies in some categories of
CA_translated, which means that there is little
room for further improvement. However it is
much harder for representation methods to achieve
high accuracies on CA8. The best configuration
only achieves 68.0%.

5.3 Corpora

We compare word representations learned upon
corpora of different sizes and domains. As shown
in Table 3, six corpora are used in the experi-
ments: Chinese Wikipedia, Baidubaike, People’s
Daily News, Sogou News, Zhihu QA, and “Com-

141



CA_translated CA8
Cap. Sta. Fam. A AB  Pre. Suf. || Mor. || Geo. His. Nat. Peo. || Sem.
Wikipedia 1.2G | 597 771 360 || .029 .018 .152 .266 || .180 339 125 147 .079 236
Baidubaike 4.3G | .706 966  .603 117 162 181 389 || 222 414 345 236 223 327
People’s Daily 4.2G| .925 989 547 || .140 .158 .213 .355 226 694 019 206 .157 455
Sogou News 4.0G | .619 .966  .496 057 .075 131 176 || .115 432067 150 .145 302
Zhihu QA 2.2G 277 491 625 || 175 199 134 251 .189 146 147 250 .189 181
Combination 15.9G| .872 .994 710 || .223 .300 .234 .518 || .321 662 293 310 307 || 467

Table 5: Performance of word representations learned upon different training corpora by SGNS with
context feature of word. The top 2 results are in bold.

bination” which is built by combining the first five
corpora together.

Table 5 shows that accuracies increase with the
growth in corpus size, e.g. Baidubaike (an online
Chinese encyclopedia) has a clear advantage over
Wikipedia. Also, the domain of a corpus plays
an important role in the experiments. We can ob-
serve that vectors trained on news data are benefi-
cial to geography relations, especially on People’s
Daily which has a focus on political news. An-
other example is Zhihu QA, an online question-
answering corpus which contains more informal
data than others. It is helpful to reduplication rela-
tions since many reduplication words appear fre-
quently in spoken language. With the largest size
and varied domains, “Combination” corpus per-
forms much better than others in both morpholog-
ical and semantic relations.

Based on the above experiments, we find that
vector representations, context features, and cor-
pora all have important influences on Chinese ana-
logical reasoning. Also, CA8 is proved to be a re-
liable benchmark for evaluation of Chinese word
embeddings.

6 Conclusion

In this paper, we investigate the linguistic regular-
ities beneath Chinese, and propose a Chinese ana-
logical reasoning task based on 68 morphological
relations and 28 semantic relations. In the experi-
ments, we apply vector offset method to this task,
and examine the effects of vector representations,
context features, and corpora. This study offers an
interesting perspective combining linguistic anal-
ysis and representation models. The benchmark
and embedding sets we release could also serve as
a solid basis for Chinese NLP tasks.
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Abstract

Metaphors are frequently used to convey
emotions. However, there is little research
on the construction of metaphor corpora
annotated with emotion for the analysis of
emotionality of metaphorical expressions.
Furthermore, most studies focus on Eng-
lish, and few in other languages, particu-
larly Sino-Tibetan languages such as Chi-
nese, for emotion analysis from metaphor-
ical texts, although there are likely to be
many differences in emotional expressions
of metaphorical usages across different
languages. We therefore construct a signif-
icant new corpus on metaphor, with 5,605
manually annotated sentences in Chinese.
We present an annotation scheme that con-
tains annotations of linguistic metaphors,
emotional categories (joy, anger, sadness,
fear, love, disgust and surprise), and inten-
sity. The annotation agreement analyses
for multiple annotators are described. We
also use the corpus to explore and analyze
the emotionality of metaphors. To the best
of our knowledge, this is the first relatively
large metaphor corpus with an annotation
of emotions in Chinese.

1 Introduction

Metaphorical expressions are frequently used in
human communication, and they occur on average
in every third sentence of natural language, ac-
cording to empirical studies (Cameron, 2003;
Steen et al, 2010; Shutova and Teufel, 2010).
Metaphor not only involves linguistic expressions,
but also involves a cognitive process of conceptu-
al knowledge (Lakoff and Johnson, 1980). Ac-
cording to Lakoff and Johnson (1980), humans

use one concept in metaphors to describe another
concept for reasoning and communication. For in-
stance, in the metaphorical utterance: “experience
is treasure,” we use “treasure” to describe “‘experi-
ence” to emphasize that “experience” can be valu-
able. To take another metaphorical instance as an
example: “he killed the engine.” “An engine” is
viewed as a living thing, and thus stopping its op-
eration is related to the act of killing. Metaphor
has been viewed as a mapping system that con-
ceptualizes one domain (target) in terms of anoth-
er (source).

Emotion, as an abstract and vague conception,
is frequently described and conceptualized by
metaphor (Goatly Musolff and Project LLE, 2007,
Kovecses, 1995, 2000). There seem to be two
main types of metaphors that evoke emotion. One
is the metaphor in which the target domain is
emotion. For example, in the instance ‘“he was
blazing at what she did,” the angry, emotional self
is conceptualized as “fire,” and so is expressed
metaphorically in terms of “blaze.” The other type
is metaphors that have emotional connotations.
For example, in “The financial crisis has eaten up
all my savings,” the target domain is finances and
the source domain, implied by the verb “eat up,”
is some sort of ravenous beast. This metaphorical
sentence thus may express senses of anger and
fear about a “financial crisis.” From the above ex-
amples, we can see that metaphorical expressions
often state or evoke emotions implicitly and indi-
rectly. Neuroimaging studies have provided evi-
dence that metaphorical language elicits more
emotional activation of the human brain than lit-
eral language in the same context (Citron and
Goldberg, 2014).
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The interaction between emotion and metaphor
has been studied from different perspectives by
scholars in many fields such as psychology (Aver-
ill, 1990; Thibodeau and Boroditsky, 2011; Fet-
terman et al., 2016), linguistics (Fainsilber and Or-
tony, 1987; Kdvecses, 2010), neuroscience (Az-iz-
Zadeh and Damasio, 2008; Malinowski and Hor-
ton, 2015; Jabbi et al, 2008) and natural lan-
guage processing (NLP) (Mohammad, Shutova
and Turney, 2016). Many approaches for senti-
ment analysis of metaphorical texts have been
proposed in the area of NLP (Smith et al., 2007;
Veale, 2012; Reyes and Rosso, 2012; Kozareva,
2013; Strzalkowski et al, 2014). In particular,
along with the rapid explosion of social media ap-
plications such as Twitter and Weibo, emotional
texts containing metaphorical expressions have
increased considerably. It seems to be very com-
mon for Internet users to use vivid and colorful
metaphorical language to express emotions on so-
cial media.

Corpora are fundamental for sound analysis of
emotionality in metaphor and for high-quality au-
tomatic emotion detection in metaphor. However,
many resources cover sentiment analysis (Alm et
al., 2005; Dong et al., 2014; Kiritchenko et al,,
2014; Mohammad et al., 2013; Strapparava and
Mihalcea, 2007; Ratnadeep et al., 2013) and met-
aphor detection (Lonneker, 2004; Martin, 2006;
Pragglejaz Group, 2007; Steen et al., 2010) sepa-
rately. Moreover, although NLP has proposed ap-
proaches for sentiment analysis of metaphor, as
mentioned above, an overwhelming majority of
studies focus on the annotation of only positive
and negative emotions rather than a range of emo-
tions. In addition, there is limited research in NLP
n languages other than English analyzing emo-
tions in metaphors. Nevertheless there are likely to
be many differences in emotional expressions of
metaphorical usages in different cultures, although
multiple languages share similar conceptual meta-
phors based on the same human cognition and
physical experience (Kdvecses, 1995).

According to the above account, we propose a
Chinese corpus with annotations of both linguistic
metaphors and emotion. Unlike the widely applied
annotation of only positive and negative, we have
annotated a range of emotions (joy, anger, sad-
ness, fear, love, disgust and surprise).Based on the
analysis of the corpus, our results indicate that a
significant proportion of Chinese metaphorical
expressions in the corpus contain emotions and

the most frequent emotion is love. We also sug-
gest potentials of the corpus contributing to auto-
matic emotion and metaphor detection as well as
further investigating mechanisms underlying emo-
tion in metaphor from the perspectives of different
cultures for future work. To the best of our
knowledge, this is the first relatively large meta-
phor corpus with an annotation of emotions in
Chinese.

2 Data Collection

With the aim of constructing a corpus in the study
of emotionality of metaphorical texts in real-world
Chinese, data collection took place in accordance
with two principles: (1) balance, and (2) relatively
abundant emotional information. Specifically, to
ensure the corpus is balanced in genre, theme, and
style, we selected data from a wide range of
sources including books, journals, movie scripts,
and networks. In addition, we focused on sources
with rich emotional information such as mi-
croblogs. Table 1 presents information on corpus
sources.

Sources Characters | Words Sentences
Books 258,9723 182,046 9,6182
Journals 52,0743 39,7065 2,1640
Scripts 168,236 108,184 11,852
Networks 124,6329 87,2210 9,5153
Total 4,525,031 1,559,505 224,827

Table 1: Information on Corpus Sources

3 Annotation Scheme

3.1 Annotation Model

We annotated metaphorical sentences with
target and source domain vocabulary, emotion
categories and intensity, metaphor categories
(verb or noun metaphor : verb or noun used met-
aphorically) ,data sources, and metaphor devices
such as 1% “like,” #FfbL “as,” etc. as “indicators”.
“Indicators” can be null, while the other varia-
bles cannot. For example, if there are some terms
without values, we need annotators to complete
them.

The text files are organized into XML docu-
ments. The annotation model is: MetaEmo-
tionModel=(Target, Source, EmotionCategory,
Intensity, MetaphorCategory, [indicator], Data-
Source).The following is an example of a sen-
tence annotation:
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<metaphor>
<ID>W2833</ID>

<Sentences>fth B | ALK /N r] 8L IR A

“He attacked my perspective on this problem”
</Sentences>
<Target>M 1. “perspective”</Target>
<Source>X i “attack”</Source>
<EmotionCategory>ND</EmotionCategory>
<EmotionIntensity>5</EmotionIntensity>
<MetaphorCategory>V</MetaphorCategory>
<Indicator> </Indicator>
<DataSource>W</DataSource>

</metaphor>

3.2 Metaphor Annotation

Metaphor category. Based on our investiga-
tion of a wide range of texts, we focused on two
main types of the most frequently appearing met-
aphorical sentences: verb metaphor, which con-
tains a verb used metaphorically (e.g., WA fiE
XU A4 “She wove a good dream in her
mind”); noun metaphor, which contains a noun
used metaphorically. Noun metaphor includes a
metaphor of “A is B” (e.g., i& & il & 1= “lan-
guage is power”) and metaphor with linguistic
makers such as “as” and “like” (e.g., B4 & LI

H1FF T “he ran away like an arrow”), which is
normally identified as “simile” from a linguistic
perspective, but as “metaphor” in this paper, be-
cause it accords with metaphor as we define it:
whenever one concept is used to describe another
concept (Lakoff and Johnson, 1980). The decision
to define both metaphors and similes as metaphors
is based on the wish to give a fuller picture of
metaphor in our study than one that does not in-
clude similes.

Literal or metaphorical. The metaphor anno-
tation is at the relational level, which nvolves
identification of metaphorical relations between
source and target domain vocabulary. However,
scholars have different opinions on the distinction
between literal and metaphorical senses. Some on-
ly consider novel expressions (e.g. il A i
IHTIATE 71 “She breathed new energy into the
office” ) as metaphorical, whereas others consid-
er conventional expressions as metaphors (e.g,fitl
Mmfa T X418 “they won the argument”),
where they are conventionalized and fixed in
form, and they are used literally by native speak-
ers, although they have the nature of metaphor

(Nunberg, 1987). In this study, following Shutova
(2017), we define metaphors as both novel and
conventional, but we exclude “dead metaphors”
(from which the literal sense has disappeared)
from conventional metaphors. That is, conven-
tional metaphors only include those for which the
literal and metaphorical senses are clearly distinc-
tive, and both are used contemporarily. This con-
sideration is based on the potential application of
our annotation for identification of metaphor,
which focuses on word sense disambiguation ra-
ther than novel or conventional identification.

3.3 Emotion Annotation

Emotion categories. Scholars define basic
emotions in numerous different ways despite re-
search that has challenged the theories of basic
emotions (Lindquist et al., 2012; De Leersnyder et
al., 2015). Confucianism claims that there are sev-
en basic human emotions (joy, anger, sadness,
fear, love, disgust, and desire) (Ma et al., 2011).

“+£1%” (Seven Emotions) is an idiomatic expres-
sion commonly used by Chinese people to de-
scribe human emotions. However, according to
our study of the collected instances in the corpus,
we found that “desire” does not appear widely and
that “surprise” does. We therefore adopted “‘sur-
prise” to replace “desire” in the Severn Emotions.
The resulting classification is very close to Ekman
(1992), with the only difference being the inclu-
sion of “love” as a basic emotion. However, based
on our study of the research and its wide appear-
ance in the corpus, “love” is listed as a basic emo-
tion in this paper.

The annotation of emotions takes place on the
sentence level. The emotion contained in each
metaphorical sentence was identified from one of
the seven categories of emotion. We also catego-

rized the intensity of emotion into one of five lev-
els: 1,3,5,7, 0or9.

3.4 Annotation Process

Annotation setup. The annotator team com-
prised seven native Chinese annotators. Annota-
tors were given standards and principles of anno-
tation and detailed instruction for potential diffi-
cult and common problems with many annotated
samples. Aside from giving them annotators de-
tailed guidelines, we gave them a formal training
lesson and a lab meeting to exchange ideas and to
discuss problems about annotation once a month
during the nine months of the annotation process.
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The guidelines changed four times, as we added
information on newly found annotation difficulties
during the project period. The annotator team
comprised seven students, who were not paid for
their work.

These seven annotators were divided to three
groups with two members for each group plus one
group with one person. Using cross-validation
methods for annotation, the two-member groups
annotated, and the one-person group participated
in the final decision when there was divergence. If
there was no divergence between the members of
the same group, the annotating work was com-
plete. Otherwise another group annotated again,
and the final group annotated if there was still di-
vergence. Finally, if the three groups could not
reach agreement on the annotation, everyone dis-
cussed and determined the annotation to ensure its
accuracy and consistency.

Quality monitoring and control (QMC).We
used a standardized operating method to achieve
high-quality annotation as follows:

(1) Entry interface. On the basis of multiple
manual checks and controlled information updat-
ing, we provided an interface that allowed us to
enter information precisely and quickly.

(2) Error correction. We used emotional lexi-
con ontology ‘asa support tool to correct human
errors. When there was divergence of emotion in
the annotation and the sentence/word, we did not
enter the annotation.

flag=Word Consistency (Memo, Wemo) SentConsiste
nCY(M emo, Semo)- (1)

If the annotation result was the same as the
word’s emotion, we set WordConsistency (M e,
Weno) to 1; otherwise, we set it to 0; SentCon-
sistency(Meny, Semo) followed the same logic. We
entered the result when the flag was 1, while it
needed checking when it was 0.

4 Annotation Agreement

Annotations of both metaphor and emotion were
based on the annotators’ intuition, which may be
very subjective. The reliability of annotations
needed to be verified, so three independent anno-
tators annotated the same 811 sentences in the

corpus to assess inter-annotator agreement.

! http:/fir.dlut.edu.cn/EmotionOntology Download

The kappa score, «, is widely adopted by com-
putational linguistics to correct for agreement on
the reliability of the annotation scheme by chance.
We use the «x statistic to measure inter-annotator
agreements (Siegel and Castellan, 1988) for emo-
tion annotation. x is calculated as below:

_ P - P(E)
- 1-PE) @

The agreement on the identification of source
and target domain words was x=0.82, which
means it is substantially reliable. Compared with
noun metaphors, for verb metaphors it is relative-
ly difficult to identify source and target words,
because they are related to the assignment of lev-
els of conventionality of metaphorical senses as
discussed in 4.1.

The agreement on the choice of emotion cate-
gory scored x=0.68. For the agreement measure
on emotion intensity, we classified emotion in-
tensity into three: {1, 3}, {5, 7}, or {9}. The re-
sulting agreement on classification of emotion
intensity was x=0.58.

5 Corpus Analysis

We annotated 4,600 sentences out of a total of
5,605 metaphorical sentences as containing emo-
tions. That is, a significant proportion of Chinese
metaphorical expressions in the corpus contain
emotions. The most frequent emotion in the cor-
pus is love. Figure 1 shows the number of sen-
tences in the corpus of each emotion category.

1800
1600
1400
1200
1000
800
600
400
200

The number of sentences

Emotion Categories

Figure 1: The number of sentences of each emo-
tion category

We also explored the interactions between emo-
tions and source (or target) words. We analyzed
every emotional category and related it to each
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source or target word; we also analyzed which
source or target vocabulary conveyed which emo-
tions most frequently. Our results indicate emo-
tions are related to some particular source or target
vocabulary. These associations frequently occur
together. For example, the emotion love is related
to the source words {i¥“sea”, £ “flower” and
FH Y% “sunshine™ etc.

Unlike the widely applied annotation of valence
(positive-neutral-negative) in sentiment analysis,
we annotated a wider range of emotions in meta-
phorical texts. The corpus proposed by Moham-
mad et al. (2016) focused on containing or not
containing emotion in metaphor. We have extend-
ed their study by providing evidence that meta-
phorical texts can convey specific emotions such
as love and joy. A simple positive/negative emo-
tion distinction does not seem very useful for any-
thing beyond evaluating product reviews. In addi-
tion, Mohammad et al. (2016) focus on verb met-
aphors, whereas we collect both verb and noun
metaphors from a variety of sources. Furthermore,
since both metaphor and emotion annotations are
very subjective, we propose a QMC method (see
above 4.4) to achieve high-quality annotation.

6 Conclusions and Future Work

With 5,605 diverse instances and 101,616 Chinese
characters of metaphor, our corpus provides an
important resource with relatively fine-grained
sorting and annotation with both metaphors and
emotion. Our study involves the Chinese lan-
guage, which is very different from English, the
focus of the vast majority of current research. This
may encourage research into emotion analysis in
other languages, particularly Sino-Tibetan lan-
guages, since there are differences in emotion be-
tween cultures (De Leersnyder, 2015).

Seven annotators spent nine months on the an-
notation. The manually annotated data is an im-
portant step towards automatic emotion analysis
and detection of metaphorical texts, as well as
metaphor detection. In addition, the application of
the corpus to machine translation will be explored
to improve the poor translation of metaphorical
expressions (Shutova et al., 2013). Furthermore,
we hope research using bilingual resources will be
conducted on the datasets we have released. This
may make contributions to some novel and inter-
esting studies of the emotionality of metaphor
from cross cultural perspectives as well as explor-
ing the related, underlying mechanism.
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Abstract

Comments of online articles provide ex-
tended views and improve user engage-
ment. Automatically making comments
thus become a valuable functionality for
online forums, intelligent chatbots, etc.
This paper proposes the new task of auto-
matic article commenting, and introduces
a large-scale Chinese dataset! with mil-
lions of real comments and a human-
annotated subset characterizing the com-
ments’ varying quality. Incorporating the
human bias of comment quality, we further
develop automatic metrics that general-
ize a broad set of popular reference-based
metrics and exhibit greatly improved cor-
relations with human evaluations.

1 Introduction

Comments of online articles and posts provide ex-
tended information and rich personal views, which
could attract reader attentions and improve inter-
actions between readers and authors (Park et al.,
2016). In contrast, posts failing to receive com-
ments can easily go unattended and buried. With
the prevalence of online posting, automatic arti-
cle commenting thus becomes a highly desirable
tool for online discussion forums and social media
platforms to increase user engagement and foster
online communities. Besides, commenting on ar-
ticles is one of the increasingly demanded skills
of intelligent chatbot (Shum et al., 2018) to enable
in-depth, content-rich conversations with humans.

Article commenting poses new challenges for
machines, as it involves multiple cognitive abil-

Work done while Lianhui interned at Tencent AI Lab

"The dataset is available on http://ai.tencent.
com/upload/PapersUploads/article_
commenting.tgz
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ities: understanding the given article, formulat-
ing opinions and arguments, and organizing natu-
ral language for expression. Compared to summa-
rization (Hovy and Lin, 1998), a comment does
not necessarily cover all salient ideas of the ar-
ticle; instead it is often desirable for a comment
to carry additional information not explicitly pre-
sented in the articles. Article commenting also dif-
fers from making product reviews (Tang et al.,
2017; Liet al., 2017), as the latter takes structured
data (e.g., product attributes) as input; while the
input of article commenting is in plain text format,
posing a much larger input space to explore.

In this paper, we propose the new task of au-
tomatic article commenting, and release a large-
scale Chinese corpus with a human-annotated sub-
set for scientific research and evaluation. We fur-
ther develop a general approach of enhancing pop-
ular automatic metrics, such as BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005), to better fit the characteristics of the new
task. In recent years, enormous efforts have been
made in different contexts that analyze one or
more aspects of online comments. For example,
Kolhatkar and Taboada (2017) identify construc-
tive news comments; Barker et al. (2016) study hu-
man summaries of online comment conversations.
The datasets used in these works are typically not
directly applicable in the context of article com-
menting, and are small in scale that is unable to
support the unique complexity of the new task.

In contrast, our dataset consists of around 200K
news articles and 4.5M human comments along
with rich meta data for article categories and
user votes of comments. Different from traditional
text generation tasks such as machine transla-
tion (Brown et al., 1990) that has a relatively small
set of gold targets, human comments on an article
live in much larger space by involving diverse top-
ics and personal views, and critically, are of vary-
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Title: 3 R 3]iPhone 8 X A & T £9 A #47

Score Criteria

Example Comments

(Apple’s iPhone 8 event is happening in Sept.)

5 Rich in content; 1843 A8 Fiphone 4 & i J& [ X k69
Content: ¥ £ 8 E X @41k % % %5 attractive; deep % T iPhone 589 1% Bl =0 ? 4o R ¥ R4
&, EHEETFOAIRE BAERH LA insights; new yet R MR TR
2, BN 8N4 R AT —4KiPhone, M F 3 relevant viewpoints (Remember a year of iPhone 5 rumors
MEAEREF L, FRTV, FOSHKMH . & followed by the announcement of the
R & A AN % % =% #iPhones : ¥ OLED % iPhone 4S? I will be highly entertained if
R A3D AR 32 34 K 89 T —KiPhone$ ; Apple does something similar.)
AiPhone 7 - iPhone 7Plusé) £ 3 . 4 Highly relevant with it &AABEM AR -
(Apple has sent out invites for its next big meaningful ideas (Could have said: Meet us at the Park.)
event on September 12th, where the company
is expected to reveal the next iPhone, along 3 Lessrelevant; applied — fR#A#F X4 F |
with updates to the Apple Watch, Apple TV, to other articles (Looking forward to this event!)
fmd i0S software. Apple is ?Xpected to . 2 Fluent/grammatical; REGXAME, CRTE!
announce three new iPhones at the event: a . ; .. )
next-generation iPhone 8 model with an OLED irrelevant (Iike the cat. it is so cute !)
display and a 3D face-scanning camera; and 1 Hard to read; Broken LOL. - - ! !'!
updated versions of the iPhone 7 and 7 Plus.) language; Only emoji (LOL... !11)

Table 1: A data example of an article (including title and content) paired with selected comments. We
also list a brief version of human judgment criteria (more details are in the supplement).

Train Dev Test
#Articles 191,502 5,000 1,610
#Cmts/Articles 27 27 27
#Upvotes/Cmt 5.9 4.9 34

Table 2: Data statistics.

ing quality in terms of readability, relevance, argu-
ment quality, informativeness, etc (Diakopoulos,
2015; Park et al., 2016). We thus ask human an-
notators to manually score a subset of over 43K
comments based on carefully designed criteria for
comment quality. The annotated scores reflect hu-
man’s cognitive bias of comment quality in the
large comment space. Incorporating the scores in
a broad set of automatic evaluation metrics, we
obtain enhanced metrics that exhibit greatly im-
proved correlations with human evaluations. We
demonstrate the use of the introduced dataset and
metrics by testing on simple retrieval and seq2seq
generation models. We leave more advanced mod-
eling of the article commenting task for future re-
search.

2 Related Work

There is a surge of interest in natural lan-
guage generation tasks, such as machine transla-
tion (Brown et al., 1990; Bahdanau et al., 2014),
dialog (Williams and Young, 2007; Shum et al.,
2018), text manipulation (Hu et al., 2017), visual
description generation (Vinyals et al., 2015; Liang
et al., 2017), and so forth. Automatic article com-
menting poses new challenges due to the large in-
put and output spaces and the open-domain nature
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of comments.

Many efforts have been devoted to studying spe-
cific attributes of reader comments, such as con-
structiveness, persuasiveness, and sentiment (Wei
et al., 2016; Kolhatkar and Taboada, 2017; Barker
et al., 2016). We introduce the new task of gen-
erating comments, and develop a dataset that is
orders-of-magnitude larger than previous related
corpus. Instead of restricting to one or few spe-
cific aspects, we focus on the general comment
quality aligned with human judgment, and pro-
vide over 27 gold references for each data instance
to enable wide-coverage evaluation. Such setting
also allows a large output space, and makes the
task challenging and valuable for text generation
research. Yao et al. (2017) explore defense ap-
proaches of spam or malicious reviews. We be-
lieve the proposed task and dataset can be poten-
tially useful for the study.

Galley et al. (2015) propose ABLEU that
weights multiple references for conversation gen-
eration evaluation. The quality weighted metrics
developed in our work can be seen as a generaliza-
tion of ABLEU to many popular reference-based
metrics (e.g., METEOR, ROUGE, and CIDEr).
Our human survey demonstrates the effectiveness
of the generalized metrics in the article comment-
ing task.

3 Article Commenting Dataset

The dataset is collected from Tencent News
(news.qq.com), one of the most popular Chinese
websites of news and opinion articles. Table 1
shows an example data instance in the dataset (For



readability we also provide the English translation
of the example). Each instance has a title and text
content of the article, a set of reader comments,
and side information (omitted in the example) in-
cluding the article category assigned by editors,
and the number of user upvotes of each comment.

We crawled a large volume of articles posted in
Apr—Aug 2017, tokenized all text with the popu-
lar python library Jieba, and filtered out short arti-
cles with less than 30 words in content and those
with less than 20 comments. The resulting corpus
is split into train/dev/test sets. The sel