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Message from the General Chair

Greetings,

Welcome to NAACL HLT 2016! This year’s conference is held in San Diego, California, where we
have assembled an exciting program of computational linguistics research.

The main program features a wide array of topics, and it includes excellent invited talks by Prof. Regina
Barzilay and Prof. Ehud Reiter. In addition, we have six tutorials on the day before the main program,
plus fifteen workshops on the following two days. Some of these workshops are back for their 10th
or 11th incarnation, while others are brand-new. In parallel, we have a live demonstration track, and a
Student Research Workshop that showcases work by the junior members of our research community.

This NAACL HLT meeting takes place only through the hard work of many people who deserve our
gratitude.

Thanks to Priscilla Rasmussen for making local arrangements, handling registration, setting up social
events, writing visa invitation letters, and solving a myriad of issues. Priscilla, your experience is a
great asset to any conference!

The NAACL HLT organizing committee took all the steps to bring you a great conference. Many
thanks to Ani Nenkova and Owen Rambow (Program Co-chairs), Mohit Bansal and Alexander M. Rush
(Tutorial Co-chairs), Radu Soricut and Adria de Gispert (Workshop Co-chairs), Jacob Andreas, Eunsol
Choi, and Angeliki Lazaridou (Student Research Workshop Co-Chairs) and their faculty advisors
Jacob Eisenstein and Nianwen Xue, Aliya Deri (Student Volunteer Coordinator), Julie Medero (Local
Sponsorship Chair), Mark Finlayson, Sravana Reddy, and John DeNero (Demonstration Co-chairs),
Adam Lopez and Margaret Mitchell (Publications Co-chairs), Jason Riesa (Website Chair), Wei Xu
(Publicity Chair), and Jonathan May (Social Media Chair).

Thanks also to the NAACL Board for providing excellent advice, and thanks to previous chairs for their
suggestions and timelines.

Sponsors of NAACL HLT 2016 include Baidu and Google (Platinum Sponsors), Amazon, Bloomberg,
eBay, Microsoft Research, and UnitedHealth Group (Gold Sponsors), Huawei (Silver Sponsors), Civis
Analytics, Facebook, @newsela, and Nuance (Bronze Sponsors), and the University of Washington
(Supporter). Thanks for your extremely valuable contributions!

Finally, thanks to the scientists, engineers, authors, and attendees who come to share and learn at this
leading venue for computational linguistics research!

Kevin Knight
Information Sciences Institute, University of Southern California
NAACL HLT 2016 General Chair
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Message from the Program Co-Chairs

Welcome to San Diego for the 15th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies!

The conference has grown remarkably in the past five years: we had 698 submissions this year, despite
our deadline right after the end-of-the-year holidays. As we worked on organizing the conference
program, we made many changes to reflect the growth of the NAACL community, the increasing
diversity of topics covered by the field, and the acceleration of the pace of the publication cycle.

We had a record short time between paper submission and author notification—Iess than two months.
We settled on such compressed timeline in order to avoid spreading the reviewing period over the winter
holidays, to ensure that papers spend only a short time under submission, and to coordinate submission
deadlines with ACL. Our incredible team of area chairs and reviewers ensured that the planned schedule
went smoothly.

As the computational linguistics field has expanded, it has become increasingly difficult to recruit a
sufficient number of knowledgeable reviewers. We decided to reach out to the largest possible pool
of computational linguists and provide convenient ways for the area chairs to control which reviewers
they end up working with: we invited all researchers actively working in the area of computational
linguistics/language processing to review for the conference. We defined “active researchers” to be
those who have published at least five papers in the last ten years in the ACL, NAACL, EMNLP, EACL
or COLING conferences. In order to be inclusive of the amazing young researchers who became active
in the field only more recently, we also included everyone who had published at least three papers in the
same venues for the last five years. This yielded a list of over 1,400 researchers that we invited to serve
as reviewers for the conference. Of these, 685 agreed and participated in the review process. This is
another record for NAACL HLT 2016, no previous NAACL has had such a large program committee.
Among these, the area chairs recognized 120 as best reviewers.

Working with the reviewers were the 42 area chairs. We asked the area chairs to work in pairs, so they
can have a back-up in case other obligations need their attention during the review period and to ensure
that all decisions about reviewer assignment and paper recommendation are discussed in detail. All
area chairs and reviewers submitted a list of keywords that describe their area of expertise (the full list
appears in the conference call for papers). The area chairs were paired based on the keyword overlap.

To match reviewers to area chairs, we used a bidding system. For bidding, each area received a list of
the 140 reviewers with best matching keyword profiles. If the area chairs did not know the work of a
potential reviewer on their bidding list, they looked him or her up on DBLP or Google Scholar before
making their final bid. Areas were assigned only reviewers for which the area chairs bid positively.
Area chairs were free as usual to recruit additional reviewers they wished to work with.

Submissions were assigned to areas by taking into account the match between the paper keywords and
the area chair keywords. Areas were capped at 40 submissions maximum (long and short combined).
As in the past, reviewers bid on papers they wanted to review. 69% of the reviews were written by
reviewers who had bid indicating that they want to review the paper; 29% of the reviews were written
by reviewers who had bid indicating they are ok with reviewing the paper. The remaining 2% of reviews



were written by reviewers who did not bid on the paper but were asked by an area chair to review it.
Three reviewers were assigned a paper that they did not want to review according to their bid. The
average reviewer load was 3 papers, which included a mix of long and short submissions. Only 43
reviewers had more than four papers to review.

Area chairs wrote meta-reviews, for use only by us, justifying their accept/reject recommendation.
In making difficult decisions, we drew on these meta-reviews, the reviews themselves, the discussion
among the reviewers, and the author response to the initial reviews.

We are happy with our changes to the review process: area chairs had control over the reviewers they
worked with, reviewers were assigned papers they wanted to review and the overall reviewing load was
low. Needless to say, there is room for further improvements. The reviewing process is crucial to the
quality of this conference; only if the community has confidence in the quality of the reviewing process
will this conference continue to be a leading conference in our field. Our goal has been to make sure
that every single submission receives a complete and fair review and decision, and to make sure that
the authors of every single submission understand why their paper was accepted or declined for the
conference. We would like to thank our 685 reviewers, and we would especially like to thank our 42
area chairs, who were patient in allowing us to pursue some of the innovative aspects of this year’s
reviewing cycle.

Eighteen of the 698 initial submissions were withdrawn by the authors or rejected without review
because of formatting violations. A total of 396 long and 284 short papers underwent review; 100 long
and 82 short papers were accepted, for an acceptance rate of 25% and 29% respectively. In addition,
ten TACL papers will be presented at the conference.

This year we decided to have shorter slots for oral presentations, in order to have more of the accepted
papers presented as talks. In the program, long papers are allotted 20-minute slots (15 min presentation
+ 5 min questions). Short papers are allotted 10-minute slots (6 min presentation + 4 min questions).

The best paper award committee consisted of NAACL general and program chairs from the last three
years. Not all past chairs could participate in the selection. The final best paper committee included
Joyce Chai, Katrin Kirchhoff, Rada Mihalcea, Kristina Toutanova, Lucy Vanderwende and Hua Wu.
They selected two best long papers and one best short paper, along with two runner-ups in each category.

Best Short Paper
Improving sentence compression by learning to predict gaze
Sigrid Klerke, Yoav Goldberg and Anders Sggaard

Short Paper, Runners Up
Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
Kyle Booten and Marti A. Hearst

A Joint Model of Orthography and Morphological Segmentation
Ryan Cotterell, Tim Vieira and Hinrich Schiitze

Best Long Papers
Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships
Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber and Hal Daumé III
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Learning to Compose Neural Networks for Question Answering
Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein

Long Paper, Runners Up
Multi-way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
Orhan Firat, Kyunghyun Cho and Yoshua Bengio

Black Holes and White Rabbits: Metaphor Ildentification with Visual Features
Ekaterina Shutova, Douwe Kiela and Jean Maillard

The conference program includes two inspiring invited talks by Regina Barzilay and Ehud Reiter. Both
push the boundaries of the field, discussing the potential for real-world impact of language technologies.

Finally we would like to thank all other people who supported us in the past year in our work for
NAACL HLT 2016. Last year’s program chairs, Anoop Sarkar and Joyce Chai shared their valuable
advice and promptly answered the many questions we had throughout the process. The NAACL board
chair for 2015 (Hal Daumé III) and 2016 (Emily Bender) were our effective link with the NAACL
board. The conference general chair, Kevin Knight, was always available to us when we needed to
consult about decisions we were making. The conference business manager, Priscilla Rasmussen,
gave us details about the venue and coordinated with us at the final stages of making the conference
schedule. The ACL treasurer, Greame Hirst, answered questions about the venue. The conference
webmaster, Jason Riesa, put content on the conference webpage as soon as we made it available to him.
The publication chairs, Meg Mitchell and Adam Lopez, answered all lingering author questions about
formatting for submission and final versions. Many talks to all of them!

We look forward to an exciting conference!

NAACL HLT 2016 Program Co-Chairs
Ani Nenkova, University of Pennsylvania
Owen Rambow, Columbia University
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Invited Talk: How can NLP help cure cancer?
Regina Barzilay

Massachusetts Institute of Technology

Abstract

Cancer inflicts a heavy toll on our society. One out of seven women will be diagnosed with breast cancer
during their lifetime, a fraction of them contributing to about 450,000 deaths annually worldwide.
Despite billions of dollars invested in cancer research, our understanding of the disease, treatment, and
prevention is still limited.

Majority of cancer research today takes place in biology and medicine. Computer science plays a minor
supporting role in this process if at all. In this talk, I hope to convince you that NLP as a field has a
chance to play a significant role in this battle. Indeed, free-form text remains the primary means by
which physicians record their observations and clinical findings. Unfortunately, this rich source of
textual information is severely underutilized by predictive models in oncology. Current models rely
primarily only on structured data.

In the first part of my talk, I will describe a number of tasks where NLP-based models can make a
difference in clinical practice. For example, these include improving models of disease progression,
preventing over-treatment, and narrowing down to the cure. This part of the talk draws on active col-
laborations with oncologists from Massachusetts General Hospital (MGH).

In the second part of the talk, I will push beyond standard tools, introducing new functionalities and
avoiding annotation-hungry training paradigms ill-suited for clinical practice. In particular, I will focus
on interpretable neural models that provide rationales underlying their predictions, and semi-supervised
methods for information extraction.

Biography

Regina Barzilay is a professor in the Department of Electrical Engineering and Computer Science and
a member of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute
of Technology. Her research interests are in natural language processing. She is a recipient of various
awards including of the NSF Career Award, the MIT Technology Review TR-35 Award, Microsoft
Faculty Fellowship and several Best Paper Awards at NAACL and ACL. She received her Ph.D. in
Computer Science from Columbia University, and spent a year as a postdoc at Cornell University.
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Invited Talk: Evaluating Natural Language Generation Systems
Ehud Reitter

University of Aberdeen and Arria NLG

Abstract

Natural Language Generation (NLG) systems have different characteristics than other NLP systems,
which effects how they are evaluated. In particular, it can be difficult to meaningfully evaluate NLG
texts by comparing them against gold- standard reference texts, because (A) there are usually many
possible texts which are acceptable to users and (B) some NLG systems produce texts which are better
(as judged by human users) than human-written corpus texts. Partially because of these reasons, the
NLG community places much more emphasis on human-based evaluations than most areas of NLP.

I will discuss the various ways in which NLG systems are evaluated, focusing on human-based evalua-
tions. These typically either measure the success of generated texts at achieving a goal (eg, measuring
how many people change their behaviour after reading behaviour-change texts produced by an NLG
system); or ask human subjects to rate various aspects of generated texts (such as readability, accuracy,
and appropriateness), often on Likert scales. I will use examples from evaluations I have carried out,
and highlight some of the lessons I have learnt, including the importance of reporting negative results,
the difference between laboratory and real-world evaluations, and the need to look at worse-case as
well as average-case performance. I hope my talk will be interesting and relevant to anyone who is
interested in the evaluation of NLP systems.

Biography

Ehud Reiter is a Professor of Computing Science at the University of Aberdeen and also Chief Scientist
of Arria NLG. He has worked on natural language generation for the past 30 years, on methodology
(including evaluation) and resources as well as algorithms, and is one of the most cited authors in NLG.
His 2000 book Building Natural Language Generation Systems is widely used as an NLG textbook.
Dr Reiter currently spends most of his time trying to commercialise NLG at Arria (one of the largest
specialist NLG companies), which grew out of a startup he cofounded in 2009.
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ing

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski and Francois Yvon

Geolocation for Twitter: Timing Matters
Mark Dredze, Miles Osborne and Prabhanjan Kambadur

Fast and Easy Short Answer Grading with High Accuracy
Md Arafat Sultan, Cristobal Salazar and Tamara Sumner

Interlocking Phrases in Phrase-based Statistical Machine Translation
Ye Kyaw Thu, Andrew Finch and Eiichiro Sumita
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Eyes Don’t Lie: Predicting Machine Translation Quality Using Eye Movement
Hassan Sajjad, Francisco Guzmaén, Nadir Durrani, Ahmed Abdelali, Houda
Bouamor, Irina Temnikova and Stephan Vogel

Making Dependency Labeling Simple, Fast and Accurate
Tianxiao Shen, Tao Lei and Regina Barzilay

Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency
Framework
Matthieu Constant, Joseph Le Roux and Nadi Tomeh

Sentiment Composition of Words with Opposing Polarities
Svetlana Kiritchenko and Saif M. Mohammad

Learning to Recognize Ancillary Information for Automatic Paraphrase Identifica-
tion
Simone Filice and Alessandro Moschitti

Learning a POS tagger for AAVE-like language
Anna Jgrgensen, Dirk Hovy and Anders Sggaard

PIC a Different Word: A Simple Model for Lexical Substitution in Context
Stephen Roller and Katrin Erk

Bootstrapping Translation Detection and Sentence Extraction from Comparable
Corpora
Kriste Krstovski and David Smith

Discriminative Reranking for Grammatical Error Correction with Statistical Ma-
chine Translation
Tomoya Mizumoto and Yuji Matsumoto

Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
Kyle Booten and Marti A. Hearst

Right-truncatable Neural Word Embeddings
Jun Suzuki and Masaaki Nagata

MAWPS: A Math Word Problem Repository
Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh
Hajishirzi

Cross-genre Event Extraction with Knowledge Enrichment
Hao Li and Heng Ji
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Emergent: a novel data-set for stance classification
William Ferreira and Andreas Vlachos

BIRA: Improved Predictive Exchange Word Clustering
Jon Dehdari, Liling Tan and Josef van Genabith

Integrating Morphological Desegmentation into Phrase-based Decoding
Mohammad Salameh, Colin Cherry and Grzegorz Kondrak

The Instantiation Discourse Relation: A Corpus Analysis of Its Properties and Im-
proved Detection
Junyi Jessy Li and Ani Nenkova

Sparse Bilingual Word Representations for Cross-lingual Lexical Entailment
Yogarshi Vyas and Marine Carpuat

Automatic Prediction of Linguistic Decline in Writings of Subjects with Degenera-
tive Dementia

Davy Weissenbacher, Travis A. Johnson, Laura Wojtulewicz, Amylou Dueck, Dona
Locke, Richard Caselli and Graciela Gonzalez

Consensus Maximization Fusion of Probabilistic Information Extractors
Miguel Rodriguez, Sean Goldberg and Daisy Zhe Wang

Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies
Barret Zoph, Ashish Vaswani, Jonathan May and Kevin Knight

Automatically Inferring Implicit Properties in Similes
Ashequl Qadir, Ellen Riloff and Marilyn A. Walker

Visual Storytelling

Ting-Hao (Kenneth) Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra,
Aishwarya Agrawal, Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, Lucy Vanderwende, Michel Galley
and Margaret Mitchell

PRIMT: A Pick-Revise Framework for Interactive Machine Translation
Shanbo Cheng, Shujian Huang, Huadong Chen, Xin-Yu Dai and Jiajun Chen

Incorporating Side Information into Recurrent Neural Network Language Models
Cong Duy Vu Hoang, Trevor Cohn and Gholamreza Haffari

Capturing Semantic Similarity for Entity Linking with Convolutional Neural Net-

works
Matthew Francis-Landau, Greg Durrett and Dan Klein
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K-Embeddings: Learning Conceptual Embeddings for Words using Context
Thuy Vu and D. Stott Parker

Learning Composition Models for Phrase Embeddings [TACL]
Mo Yu and Mark Dredze

System Demonstrations

Illinois Math Solver: Math Reasoning on the Web
Subhro Roy and Dan Roth

LingoTurk: managing crowdsourced tasks for psycholinguistics
Florian Pusse, Asad Sayeed and Vera Demberg

Sentential Paraphrasing as Black-Box Machine Translation
Courtney Napoles, Chris Callison-Burch and Matt Post

A Tag-based English Math Word Problem Solver with Understanding, Reasoning
and Explanation

Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang, Chung-Min Li, Shen-Yu
Miao and Keh-Yih Su

Cross-media Event Extraction and Recommendation

Di Lu, Clare Voss, Fangbo Tao, Xiang Ren, Rachel Guan, Rostyslav Korolov, Tong-
tao Zhang, Dongang Wang, Hongzhi Li, Taylor Cassidy, Heng Ji, Shih-fu Chang,
Jiawei Han, William Wallace, James Hendler, Mei Si and Lance Kaplan

SODA: Service Oriented Domain Adaptation Architecture for Microblog Catego-
rization

Himanshu Sharad Bhatt, Sandipan Dandapat, Peddamuthu Balaji, Shourya Roy,
Sharmistha Jat and Deepali Semwal

Lecture Translator - Speech translation framework for simultaneous lecture trans-
lation

Markus Miiller, Thai Son Nguyen, Jan Niehues, Eunah Cho, Bastian Kriiger, Thanh-
Le Ha, Kevin Kilgour, Matthias Sperber, Mohammed Mediani, Sebastian Stiiker and
Alex Waibel

Zara The Supergirl: An Empathetic Personality Recognition System
Pascale Fung, Anik Dey, Farhad Bin Siddique, Ruixi Lin, Yang Yang, Yan Wan and
Ho Yin Ricky Chan

Kathaa: A Visual Programming Framework for NLP Applications
Sharada Prasanna Mohanty, Nehal J Wani, Manish Srivastava and Dipti Misra
Sharma
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Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Ribeiro, Sameer Singh and Carlos Guestrin
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8:00-10:00

Student Workshop Posters

Effects of Communicative Pressures on Novice L2 Learners’ Use of Optional Formal
Devices
Yoav Binoun

Explicit Argument Identification for Discourse Parsing In Hindi: A Hybrid Pipeline
Rohit Jain and Dipti Sharma

Exploring Fine-Grained Emotion Detection in Tweets
Jasy Suet Yan Liew and Howard Turtle

Extraction of Bilingual Technical Terms for Chinese-Japanese Patent Translation
Wei Yang, Jinghui Yan and Yves Lepage

Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection
on Twitter
Zeerak Waseem and Dirk Hovy

Non-decreasing Sub-modular Function for Comprehensible Summarization
Litton JKurisinkel, Pruthwik Mishra, Vigneshwaran Muralidaran, Vasudeva Varma

and Dipti Misra Sharma

Phylogenetic simulations over constraint-based grammar formalisms
Andrew Lamont and Jonathan Washington

Question Answering over Knowledge Base using Weakly Supervised Memory Net-
works

Sarthak Jain

Using Related Languages to Enhance Statistical Language Models

Anna Currey, Alina Karakanta and Jon Dehdari

Bayview Lawn Beach Social
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7:30-8:45

9:00-10:15

10:15-10:45

10:45-12:15

10:45-11:05

11:05-11:25

11:25-11:45

11:45-12:05

12:05-12:15

Breakfast, Pavilion

Invited talk: "Human-based evaluations of language generation systems"
Ehud Reiter

Coffee break, Pavilion

Session 8

8A. Question Answering

A Joint Model for Answer Sentence Ranking and Answer Extraction [TACL]
Md Arafat Sultan, Vittorio Castelli, and Radu Florian

Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for
Answer Sentence Reranking
Kateryna Tymoshenko, Daniele Bonadiman and Alessandro Moschitti

Semi-supervised Question Retrieval with Gated Convolutions
Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Ty-
moshenko, Alessandro Moschitti and Lluis Marquez

Parsing Algebraic Word Problems into Equations [TACL]
Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and
Siena Dumas Ang

This is how we do it: Answer Reranking for Open-domain How Questions with

Paragraph Vectors and Minimal Feature Engineering
Dasha Bogdanova and Jennifer Foster
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10:45-11:05

11:05-11:25

11:25-11:45

11:45-12:05

12:05-12:15

10:45-11:05

11:05-11:25

11:25-11:45

11:45-12:05

12:05-12:15

12:15-1:00

8B. Multilingual Processing

Multilingual Language Processing From Bytes
Dan Gillick, Cliff Brunk, Oriol Vinyals and Amarnag Subramanya

Ten Pairs to Tag — Multilingual POS Tagging via Coarse Mapping between Embed-
dings
Yuan Zhang, David Gaddy, Regina Barzilay and Tommi Jaakkola

Part-of-Speech Tagging for Historical English
Yi Yang and Jacob Eisenstein

Statistical Modeling of Creole Genesis
Yugo Murawaki

Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text

Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush Bansal, Manish Shrivastava,
Radhika Mamidi and Dipti M. Sharma

8C. Word Embeddings II

Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders
Simon Suster, Ivan Titov and Gertjan van Noord

Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Rep-
resentation Learning
Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick

Littell, David Mortensen, Alan W Black, Lori Levin and Chris Dyer

Learning Distributed Representations of Sentences from Unlabelled Data
Felix Hill, Kyunghyun Cho and Anna Korhonen

Learning to Understand Phrases by Embedding the Dictionary [TACL]
Felix Hill, KyungHyun Cho, Anna Korhonen, and Yoshua Bengio

Retrofitting Sense-Specific Word Vectors Using Parallel Text
Allyson Ettinger, Philip Resnik and Marine Carpuat

Lunch
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1:00-2:00

2:15-3:45

2:15-2:35

2:35-2:55

2:55-3:15

3:15-3:35

3:35-3:45

2:15-2:35

2:35-2:55

2:55-3:15

3:15-3:35

NAACL business meeting, Grande Ballroom A

Session 9

9A. Argumentation and Discourse

End-to-End Argumentation Mining in Student Essays
Isaac Persing and Vincent Ng

Cross-Domain Mining of Argumentative Text through Distant Supervision
Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, Jonas K&hler and Benno

Stein

A Study of the Impact of Persuasive Argumentation in Political Debates
Amparo Elizabeth Cano-Basave and Yulan He

Lexical Coherence Graph Modeling Using Word Embeddings
Mohsen Mesgar and Michael Strube

Using Context to Predict the Purpose of Argumentative Writing Revisions

Fan Zhang and Diane Litman

9B. Misc Semantics

Automatic Generation and Scoring of Positive Interpretations from Negated State-
ments

Eduardo Blanco and Zahra Sarabi

Learning Natural Language Inference with LSTM
Shuohang Wang and Jing Jiang

Activity Modeling in Email
Ashequl Qadir, Michael Gamon, Patrick Pantel and Ahmed Hassan Awadallah

Clustering Paraphrases by Word Sense
Anne Cocos and Chris Callison-Burch
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3:35-3:45

2:15-2:35

2:35-2:55

2:55-3:15

3:15-3:35

3:35-3:45

3:45-4:15

4:15-5:45

4:15-4:35

4:35-5:05

5:05-5:35

5:35-5:45

Unsupervised Learning of Prototypical Fillers for Implicit Semantic Role Labeling
Niko Schenk and Christian Chiarcos

9C. Text Categorization

Hierarchical Attention Networks for Document Classification
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola and Eduard Hovy

Dependency Based Embeddings for Sentence Classification Tasks
Alexandros Komninos and Suresh Manandhar

Deep LSTM based Feature Mapping for Query Classification
Yangyang Shi, Kaisheng Yao, Le Tian and Daxin Jiang

Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and
Documents

Rui Zhang, Honglak Lee and Dragomir R. Radev

MGNC-CNN: A Simple Approach to Exploiting Multiple Word Embeddings for Sen-

tence Classification
Ye Zhang, Stephen Roller and Byron C. Wallace

Coffee break, Pavilion

Best paper awards

Improving sentence compression by learning to predict gaze
Sigrid Klerke, Yoav Goldberg and Anders Sggaard

Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fic-
tional Relationships

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber and Hal
Daumé III

Learning to Compose Neural Networks for Question Answering

Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein

Closing remarks
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Achieving Accurate Conclusions in Evaluation of
Automatic Machine Translation Metrics

Yvette Graham
School of Computing
Dublin City University
graham.yvette@gmail.com

Abstract

Automatic Machine Translation metrics, such
as BLEU, are widely used in empirical eval-
uation as a substitute for human assessment.
Subsequently, the performance of a given met-
ric is measured by its strength of correlation
with human judgment. When a newly pro-
posed metric achieves a stronger correlation
over that of a baseline, it is important to take
into account the uncertainty inherent in cor-
relation point estimates prior to concluding
improvements in metric performance. Con-
fidence intervals for correlations with human
judgment are rarely reported in metric eval-
uations, however, and when they have been
reported, the most suitable methods have un-
fortunately not been applied. For example,
incorrect assumptions about correlation sam-
pling distributions made in past evaluations
risk over-estimation of significant differences
in metric performance. In this paper, we pro-
vide analysis of each of the issues that may
lead to inaccuracies before providing detail of
a method that overcomes previous challenges.
Additionally, we propose a new method of
translation sampling that in contrast achieves
genuine high conclusivity in evaluation of the
relative performance of metrics.

1 Introduction

In empirical evaluation of Machine Translation
(MT), automatic metrics are widely used as a sub-
stitute for human assessment for the purpose of
measuring differences in MT system performance.
The performance of a newly proposed metric is it-
self measured by the degree to which its automatic

Qun Liu
ADAPT Research Centre
Dublin City University
gliu@computing.dcu.ie

scores for a sample of MT systems correlate with
human assessment of that same set of systems. A
main venue for evaluation of MT metrics is the an-
nual Workshop for Statistical Machine Translation
(WMT) (Bojar et al., 2015) where large-scale hu-
man evaluation takes place, primarily for the pur-
pose of ranking systems competing in the transla-
tion shared task, but additionally to use the resulting
system rankings for evaluation of automatic metrics.
Since 2014, WMT has used the Pearson correla-
tion as the official measure for evaluation of metrics
(Machacek and Bojar, 2014; Stanojevic¢ et al., 2015).
Comparison of the performance of any two metrics
involves the comparison of two Pearson correlation
point estimates computed over a sample of MT sys-
tems, therefore. Table 1 shows correlations with hu-
man assessment of each of the metrics participat-
ing in the Czech-to-English component of WMT-
14 metrics shared task, and, for example, if we wish
to compare the performance of the top-performing
metric, REDSYSSENT (Wu et al., 2014), with the
popular metric BLEU (Papineni et al., 2001), this in-
volves comparison of the correlation point estimate
of REDSYSSENT, r = 0.993, with the weaker corre-
lation point estimate of BLEU, » = 0.909, with both
computed with reference to human assessment of a
sample of 5 MT systems.

When a new metric achieves a stronger correla-
tion with human assessment over a baseline metric,
such as the increase achieved by REDSYSSENT over
BLEU, it is important to consider the uncertainty sur-
rounding the difference in correlation. Confidence
intervals are very rarely reported in metric evalua-
tions, however, and when attempts have been made,

Proceedings of NAACL-HLT 2016, pages 1-10,
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Metric T CI UCL
REDSYSSENT 0.993 4+0.018 1.011
REDSYS 0989 +0.021 1.010

NisT 0983 £0.025 1.008
DiSCOTK-PARTY 0983 £0.025 1.008
ApAC 0982 +0.026 1.008

METEOR 0980 £+0.029 1.009

TER 0976 +0.031 1.007
DiSCOTK-PARTY-TUNED 0975 £0.031 1.006
WER 0974 £0.033 1.007

CDER 0965 +0.035 1.000

TBLEU 0957 +0.040 0.997
DiscOTK-LIGHT 0954 £0.038 0.992
Upc-sTOUT 0948 +0.040 0.988
BLEU-NRC 0946 £0.044 0.990
ELEXR 0945 £0.044 0.989
LAYERED 0941 +0.045 0.986
VERTA-EQ 0938 +0.048 0.986
VERTA-W 0934 +£0.050 0.984

BLEU 0909 +0.054 0.963

PER 0.883 +£0.063 0.946

Upc-tPA 0.824  +£0.073  0.897

AMBER  0.744 4+0.095 0.839

Table 1: WMT-14 Czech-to-English metrics shared task Pear-
son correlation () point estimates for metrics with human as-
sessment (5 MT systems), reported confidence intervals (CI),

and corresponding upper confidence limits (UCL).

the most appropriate method has unfortunately not
been applied. For example, although WMT consti-
tutes a main authority on MT evaluation, and have
made the best attempt to provide confidence inter-
vals for metric correlations we could find, when
we closely examine results of WMT-14 Czech-to-
English metrics shared task, reproduced here in Ta-
ble 1, a discrepancy can be identified. For the nine
top-performing metrics participating in the shared
task, upper confidence interval limits are reported to
exceed 1.0.

Confidence intervals reported in the metrics
shared task unfortunately also risk inaccurate con-
clusions about the relative performance of metrics
for other less obvious reasons and risk conclusions
that over-estimate the presence of significant dif-
ferences. False-positives are problematic in metric
evaluations because, if a given metric is mistakenly
concluded to significantly outperform a competing
metric, it is possible that had a larger sample of MT
systems been employed in the evaluation, that the re-
verse conclusion should in fact be made. We demon-
strate how this can occur for metrics, showing that in
reality in current metric evaluation settings, it is only
possible to identify a very small number of signifi-
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Figure 1: 10k simulated BLEU scores correlating with human
assessment at » = 0.91 as in BLEU evaluation of Czech-to-
English in WMT-14.

cant differences in performance. A main cause is the
small number of MT systems employed in evalua-
tions, and we propose a new sampling technique, hy-
brid super-sampling, that overcomes previous chal-
lenges and facilities the evaluation of metrics with
reference to a practically unlimited number of MT
systems.

2 WMT-style Evaluation

Alongside the correlation sample point estimates
achieved by metrics, WMT reports confidence in-
tervals for correlations that unfortunately risk over-
estimation of significant differences in metric per-
formance, reasons for which we outline below
(Machacek and Bojar, 2013; Machacek and Bojar,
2014; Stanojevic et al., 2015).

2.1 Sampling Distribution Assumptions

As shown in Table 1, confidence intervals are re-
ported for metric correlations using + notation. The
use of the & notation implies that the sampling dis-
tribution is symmetrical. Since the sampling distri-
bution of the Pearson correlation, r, is skewed, how-
ever, this means that, for a non-zero correlation, it is
not possible for the portion of the confidence interval
that lies above the correlation sample point estimate
and the portion that lies below it to be equal. Ad-
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Figure 2: Sampling distribution of » = 0.91 and N = 5 for
correlation of BLEU with human assessment for hypothetical

“population” of MT systems in Figure 1.

ditionally, since the correlation sample statistic, 7,
cannot take on values greater than 1.0, the closer r
is to 1.0 the more extreme the skew of its sampling
distribution becomes. !

To demonstrate how the skew of the sampling dis-
tribution of r impacts on upper and lower confidence
interval limits for metrics, in Figures 1 and 2, we
simulate a possible population and sampling distri-
bution for BLEU’s correlation with human assess-
ment, » = 0.91, achieved in WMT-14 Czech-to-
English shared task, where the sample size, n, was 5
MT systems. Figure 1 depicts a hypothetical “pop-
ulation” of 10,000 MT systems and BLEU scores,
where hypothetical BLEU scores for systems corre-
spond with human assessment scores in such a way
that a correlation of 0.91 is achieved. Figure 2 de-
picts the sampling distribution for 7 yielded by re-
peatedly drawing sets of 5 systems at random from
the larger “population” of 10,000 systems, where
the negative skew can be clearly observed. Figure 2
also depicts the 95% confidence interval (CI), within
which 95% of sampled correlations lie, where the
width of the lower portion of confidence interval is
substantially wider than the upper portion, and the

'Tt should be noted that the assumption of symmetry of the
sampling distribution of 7 is not explicitly made in any WMT
report.

overly conservative confidence interval reported for
BLEU in WMT-14, where upper and lower portions
of the confidence interval are incorrectly assumed to
be equal in size.

2.2 Application of Bootstrap Resampling

A conventional approach to bootstrap resampling for
the purpose of computing confidence intervals for a
correlation sample point estimate is to create a cor-
relation coefficient pseudo-distribution by sampling
(at random with replacement) human and automatic
scores for n MT systems from the set of n systems
for which we have genuine metric and human scores.
Instead, however, reported confidence intervals are
the result of creating pseudo-distributions of human
assessment scores for systems. The method unfor-
tunately does not produce accurate confidence inter-
vals for correlation sample point estimates, as con-
fidence intervals produced in this way can unfortu-
nately only inform us about the certainty surround-
ing human assessment scores for systems rather than
the more relevant question of the certainty surround-
ing the correlation point estimates achieved by met-
rics. Confidence intervals computed in this way
are substantially narrower than confidence intervals
computed using the standard Fisher r-to-z transfor-
mation, that can also be directly applied to corre-
lations of metrics with human assessment without
application of randomized methods.

Table 22 includes reported confidence intervals of
metric correlations for English-to-Czech in WMT-
15, and those computed using the standard Fisher
r-to-z transformation, where confidence intervals of
the latter are substantially wider. An extreme ex-
ample occurs for metric DREEM, where the differ-
ence between its original reported lower confidence
interval limit and the correlation point estimate is
0.006, more than 34 times narrower than that com-
puted with the Fisher r-to-z transformation, 0.206.

2.3 Difference in Dependent Correlations

When reporting the outcome of an empirical evalua-
tion, along with sample point estimates, such as the
mean or, in the case of metrics, correlation, we only

WMT confidence intervals have been recomputed from the
published data set to remove the previously described error with
respect to the symmetry of r’s sampling distribution.



Metric r Method Low. CI(-)  Upper CI (+)
CHRF3 0.977 ‘g:ﬁ; 8822 88(1%
CHRF 0971 gi\]g 8:8(5)3 8:8(2)(3)
RATATOUILLE  0.965 ‘IZ;\};[:; 883? 88(2)431
BEER  0.962 }Yﬂg 8:8(7)2 8:8(2)2
METEORWSD 0.953 gi\}/g 8gg§ 88(3)3
LEBLEU-DEE.  0.953 gi\ﬁ; 888? 88(3)?
BS 0953 maTo 00N 0092
BLEU  0.936 ‘g:ﬁ; 8:(1)(2)2 8:82;
PER  0.908 gi\lg 8:?255; 8:8(6)3
DREEM  0.883 gi\ﬁ; 8(2)32 88(7)2

Table 2: WMT and Fisher r-to-z (Fisher) confidence intervals
(CD) for Pearson correlation, p, in WMT-15 sample of English-
to-Czech metrics (15 MT systems).

ever have access to a sample of the actual data that
would be needed to compute the corresponding true
value for the population. Confidence intervals pro-
vide a way of estimating the range of values within
which we believe with a specified degree of cer-
tainty that the corresponding true value lies. Gener-
ally speaking, they can also provide a mechanism for
drawing conclusions about significant differences in
sample statistics. If, for example, mean scores are
used to measure system performance, and the confi-
dence intervals of a pair of systems do not overlap,
a significant difference in sample means and subse-
quently system performance can be concluded.

Although confidence intervals for individual cor-
relations do provide an indication of the degree of
certainty with which we should interpret reported
correlation sample point estimates, they unfortu-
nately cannot be used in the above described way to
conclude significant differences in the performance
of metrics, however. All we can gain from confi-
dence intervals for individual correlations with re-
spect to significance differences is the following: if
the confidence interval of a correlation sample point
estimate does not include zero, then it can be con-
cluded (with a specified degree of certainty) that this
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individual correlation is significantly different from
zero. Confidence intervals for individual metric cor-
relations with human assessment do not inform us
about the certainty surrounding a difference in cor-
relation with human assessment, the relevant ques-
tion for comparing performance of competing MT
metrics.

When computing confidence intervals for a dif-
ference in correlation, it is important to consider
the nature of the data. For MT metric evaluation,
data used to compute correlation point estimates
for a given pair of metrics is dependent, as it in-
cludes three variables (Human, Metric,, Metricy),
and, for each MT system that is a member of the
sample, there is a value corresponding to each of
these three variables. Besides the two correlations
we are interested in comparing, r(Human, Metric, )
and r(Human, Metricy), there is a third correla-
tion to consider, therefore, the correlation that ex-
ists directly between the metric scores themselves,
r(Metric,, Metricy). Graham and Baldwin (2014)
provide detail of Williams test, a test of significance
of a difference in dependent correlations, suitable
for evaluation of MT metrics. Confidence intervals
are more informative than the binary conclusions
that can be inferred from p-values produced by sig-
nificance tests, however, and Zou (2007) presents
a method of constructing confidence intervals for
differences in dependent correlations also suitable
for evaluation of MT metrics. We provide an im-
plementation of Zou (2007) tailored to metric eval-
uation at https://github.com/ygraham/
MT-metric-confidence-intervals.

Table 3 includes confidence intervals for differ-
ences in dependent correlations (Zou, 2007) for the
seven top-performing German-to-English metrics in
WMT-15. Besides providing an indication of the
degree of certainty surrounding a given difference
in correlation for a pair of metrics, confidence inter-
vals that do not include zero can now be used to in-
fer a significant difference in performance for a pair
of metrics. For example, the 95% confidence inter-
val for the difference in correlation between the top-
performing metric, UPFCOBALT (r = 0.981) and
METEORWSD (r = 0.953), [0.005, 0.123], in Table
3, does not include zero and subsequently implies a
significant difference in performance.

Figure 3 depicts the contrast in conclusions for



(r =0.981) UPFCOBALT
DPMFCOMB

DPMF

UowLsT™M
RATATOUILLE

CHRF3

DPMFCOMB
(r=0.973)

[—0.023, 0.061]

DPMF
(r =0.960)

[—0.004, 0.101]
[—0.025, 0.087]

UowLsT™
(r =0.960)

[—0.013, 0.106]
[—0.032, 0.092]
[—0.070, 0.073]

RATATOUILLE
(r=0.958)

[—0.010, 0.109]
[—0.026, 0.093]
[—0.067, 0.075]
[—0.071, 0.077]

CHRF3
(r =0.956)

[—0.001, 0.114]
[—0.024, 0.101]
[—0.061, 0.079]
[—0.069, 0.084]
[—0.072, 0.082]

METEORWSD
(r=0.953)

[ 0.005,0.123]
[—0.017, 0.109]
[—0.054, 0.087]
[—0.066, 0.094]
[—0.064, 0.088]
[—0.067, 0.081]

Table 3: Pairwise 95% confidence intervals for differences in correlation for seven top-performing metrics for German-to-English

in WMT-15 (13 MT systems), confidence intervals not including zero imply a significant difference and are highlighted in bold.
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Figure 3: Conclusions of significant differences in correlation for WMT-15 German-to-English metrics (13 MT systems) drawn
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of a difference in dependent correlations not including zero, green cells imply a significant win for the metric in that row over the

metric in that column.



WMT-15 German-to-English metrics drawn from
(a) a likely interpretation of confidence intervals
originally reported in WMT, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics is used to infer a significant dif-
ference, and (b) those drawn from the non-overlap
of confidence intervals for differences in dependent
correlations with zero (Zou, 2007), highlighting the
over-estimation of significant differences in metric
performance risked by current WMT confidence in-
tervals. For example, for German-to-English with
interpretation (a) a total of 91 significant differ-
ences are implied that are not identified accord-
ing to our corresponding approach. For instance,
the non-overlap of confidence intervals of the top-
performing metric, UPFCOBALT, with those of all
but one other metrics in the original report risks
the interpretation of a significant increase in perfor-
mance for that metric with all but one other compet-
ing metrics, but with the more appropriate method
of Zou (2007), however, confidence intervals of this
metric’s difference in correlation with four of those
competing metrics in fact include zero, with no sig-
nificant difference identified. It is worth noting that
original WMT reports do not state that the confi-
dence intervals they provide should be interpreted in
the way we have done here, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics implies a significant difference, but
this is nonetheless a very likely interpretation.

3 Accurate and Conclusive Metric
Evaluations

Results of past metric evaluations have been highly
inconclusive with relatively few significant differ-
ences in performance possible to identify for met-
rics.> The lack of conclusivity in metric evaluations
is mainly caused by the small number of systems
used to evaluate metrics. For example, in the origi-
nal experiments used to justify the use of automatic
metric BLEU, reported correlations with human as-

>Due to space limitations, it was only possible to include
confidence intervals for differences in correlation for a sub-
set of German-to-English WMT-15 metrics (Figure 3). Con-
fidence intervals for the the remaining metrics and language
pairs are available at https://github.com/ygraham/
MT-metric-confidence-intervals for which very
few significant differences in performance are identified.

sessment were for a sample size of as small as 5,
comprising three automatic systems and two human
translators (Papineni et al., 2001). WMT have im-
proved on this for some language pairs at least, as in
the past four evaluations sample sizes have ranged
from 5 (Czech-to-English WMT-14) to 22 systems
(German-to-English WMT-12/WMT-13). Even at
the maximum sample size of 22 systems, however,
correlation point estimates are computed with a high
degree of uncertainty.

3.1 Hybrid Super-Sampling

In an ideal world, MT metric evaluations would em-
ploy a much larger sample of systems than those
relied upon in past evaluations, subsequently yield-
ing correlation sample point estimates that can be
relied on with more certainty. Although not imme-
diately obvious, data sets currently used to evalu-
ate MT metrics potentially contain data for a very
large number of systems. If we consider the fact
that, given the output of as little as two MT systems,
there exists a very large number of possible ways of
combining their translated segments to form a hy-
brid system, this opens up the evaluation of metrics
to a vastly larger pool of systems. For example, even
if we restrict the creation of hybrid systems to com-
binations of pairs of the n MT systems competing in
a translation shared task (as opposed to hybrids cre-
ated by sampling translations from several different
MT systems at once), the number of potential hybrid
systems is exponential in size of the test set, m:

n(n—1)/2-2™ (D

For instance, even for a language pair for which hu-
man scores are available for as few as 5 MT systems,
by super-sampling translations from every pair of
competing systems, this results in 10 x 23990 hy-
brid systems. Including all possible hybrid systems
is of course not necessary, and to make the approach
feasible, we sample a large but manageable subset
of 10,000 MT systems.

Obtaining automatic metric scores for this larger
number of MT systems is feasible for any metric that
is expected to be useful in practice, since automatic
metrics must already be highly efficient to be used
for optimizing systems. Obtaining human assess-
ment of this large set of hybrid systems may seem



CI of Difference in r CI of Difference in r

Metric r with next best metric r with next best metric
TERRORCAT 0.971 [ —0.019,0.155 ] 0.960 [ 0.028,0.030 ]
SAGANSTS 0.942 [ —0.120,0.136 ] 0.932 [ 0.006,0.011]
METEOR 0.938 [ —0.086,0.172 ] 0.923 [ 0.028,0.032]
POSF 0.919 [ —0.134,0.184 ] 0.893 [ 0.004,0.008 ]
SPEDEQO7FP 0.907 [ —0.138,0.162 ] 0.887 [ —0.001, 0.003 ]
e SPEDEOSFP 0.897 [ —0.142,0.202 ] 0.886 [ 0.004,0.007 ]
e SPEDEQ7F 0.902 [ —0.156,0.176 ] 0.880 [ 0.003,0.006 ]
e SPEDE(Q7PP 0.879 [ —0.161,0.202 ] 0.876 [ 0.007,0.007 ]
e SPEDEQO7P 0.870 [ —0.188,0.196 ] 0.869 [ 0.006,0.009 ]
o XENERRCATS 0.884 [ —0.174,0.193 ] 0.862 [ 0.011,0.015]
e AMBER 0.859 [ —0.084, 0.398 ] 0.849 [ 0.008,0.011]
o WORDBLOCKERRCATS 0.868 [ —0.183,0.220 ] 0.839 [ 0.057,0.065 ]
e SIMPBLEU 0.770 [ —-0.210,0.318 ] 0.778 [ 0.033,0.036 ]
e BLEU 0.741 - 0.744 [ 0.008,0.016 ]
o BLOCKERRCATS 0.779 [ —0.257,0.293 ] 0.731 -
12 Systems 10k Systems

Table 4: Correlations and confidence intervals of pseudo document-level metrics (averaged segment-level metrics) with human
assessment evaluated on original 12 MT systems and 10k hybrid super-sample (WMT-12 Spanish-to-English). Metrics with a
different rank order in the original sample and hybrid super-sample evaluations are marked with e and confidence intervals that do

not include zero are in bold.
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Figure 4: Human, TERRORCAT and BLEU scores for 10k super-sampled hybrid MT systems for WMT-12 Spanish-to-English.



more challenging, but the method of human evalua-
tion we employ facilitates the straight-forward com-
putation of human scores for vast numbers of sys-
tems directly from the original human evaluation of
only n systems. Graham et al. (2013) provide a hu-
man evaluation of MT that elicits adequacy assess-
ments of translations, independent of other transla-
tions on a fine-grained 100-point rating scale. After
score standardization to iron-out differences in indi-
vidual human assessor scoring strategies, the overall
human score for a MT system is simply computed as
the mean of the ratings attributed to its translations,
and this facilitates the straight-forward computation
of a human score for any hybrid system from the
original human evaluation of n systems.

To demonstrate, we replicate a previous year’s
WMT metrics shared task, constructing a hybrid
super-sample of 10,000 MT systems each with a
corresponding metric and human score. Since we
do not have access to all document-level metrics
that participated in the original shared task, we use
segment-level metric scores as pseudo document-
level metrics by taking the average of segment-level
scores of the segments that comprise the test set doc-
ument. This allows retrospective computation of au-
tomatic metric scores for the large set of 10k hy-
brid MT systems. For the purpose of comparison,
in addition to averaged segment-level metrics, we
also include document-level BLEU and an analysis
of the correlation it achieves in the context of hy-
brid super-sampling. Human evaluation scores were
computed using the mean of a minimum of 1,500
crowd-sourced human ratings per system, where
strict quality-controlling of crowd-sourced workers
was applied.

Table 4 shows correlations achieved by metrics
when evaluated on the original 12 and 10k systems,
as well as confidence intervals of the difference in
correlation achieved by each metric with that of the
next best performing metric in each case.* As ex-
pected, confidence intervals for differences in corre-
lation are substantially reduced for the larger sample
of metrics. Importantly, the change in rank order of
metrics when evaluated with reference to a sample

“It should be noted, since participating teams did not intend
segment-level metric scores to be averaged as we have done
here, correlations are for demonstrative purposes and do not re-
flect performance of participating teams.

of 10k MT systems, as opposed to 12, highlights the
risk of concluding an increase in performance from
evaluations that include only a small sample of sys-
tems.

Figure 4 plots super-sampled human and auto-
matic metric scores for BLEU providing insight into
how BLEU scores correspond with human assess-
ment. Worryingly for the range of systems with
scores below 20 BLEU points, the plot shows an
almost horizontal band of systems spread across a
wide range of quality according to human assessors
despite extremely similar BLEU scores. The top-
performing automatic metric, TERRORCAT, on the
other hand, impressively sustains its high correla-
tion with human assessment when evaluated on as
many as 10k MT systems, evidence that this metric
is indeed highly consistent with human assessment
of Spanish-to-English.

Due to space limitations, it is not possible to
include pairwise confidence intervals for all pairs
of metrics, and instead we include in Figure 5 a
heatmap of significant differences in performance,
where a significant win is inferred for the metric in
a given row over the metric in a given column if
the confidence interval of the difference in correla-
tion for that pair did not include zero. Results show
the super-sampled evaluation facilitates not only the
identification of an outright best-performing met-
ric, TERRORCAT, it also yields an almost total-order
ranking of metrics, as significant differences are pos-
sible to identify for all but one pairs of competing
metrics. Finally, we repeated the metric evaluation
with ten distinct super-samples of 10k MT systems
with all replications resulting in precisely the same
ranking of metrics as shown in Table 4.

4 Conclusion

Analysis of evaluation methodologies applied to au-
tomatic MT metrics was provided and the risk of
over-estimation of significant differences in metric
performance identified. Confidence intervals for
differences in dependent correlations were recom-
mended as appropriate for evaluation of MT met-
rics. Hybrid super-sampling was proposed, evaluat-
ing metrics with reference to a substantially larger
sample of MT systems, achieving genuinely highly
conclusive metric rankings.
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Abstract

A major benefit of tree-to-tree over tree-
to-string translation is that we can use
target-side syntax to improve reordering.
While this is relatively simple for binarized
constituency parses, the reordering prob-
lem is considerably harder for dependency
parses, in which words can have arbitrarily
many children. Previous approaches have
tackled this problem by restricting gram-
mar rules, reducing the expressive power
of the translation model.

In this paper we propose a general
model for dependency tree-to-tree reorder-
ing based on flexible non-terminals that
can compactly encode multiple insertion
positions. We explore how insertion po-
sitions can be selected even in cases where
rules do not entirely cover the children
of input sentence words. The proposed
method greatly improves the flexibility of
translation rules at the cost of only a 30%
increase in decoding time, and we demon-
strate a 1.2-1.9 BLEU improvement over
a strong tree-to-tree baseline.

1 Introduction

Translation is most commonly performed by
splitting an input sentence into manageable
parts, translating these segments, then arrang-
ing them in an appropriate order. The first two
steps have roughly the same difficulty for close
and distant language pairs, however the reorder-
ing step is considerably more challenging for lan-
guage pairs with dissimilar syntax. We need to
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be able to make linguistic generalizations, such
as learning to translate between SVO and SOV
clauses and converting post-modifying preposi-
tional and pre-modifying postpositional phrases
(Quirk et al., 2005). Such generalizations often
require syntactically motivated long-distance re-
ordering.

The first approaches to reordering were based
on linear distortion (Koehn et al., 2003), which
models the probability of swapping pairs of
phrases over some given distance. The linear
distance is the only parameter, ignoring any
contextual information, however this model has
been shown to work well for string-to-string
translation. Linear reordering was improved
with lexical distortion (Tillmann, 2004), which
characterizes reordering in terms of type (mono-
tone, swap, or discontinuous) as opposed to dis-
tance. This approach however is prone to spar-
sity problems, in particular for distant language
pairs.

In order to improve upon linear string-based
approaches, syntax-based approaches have also
been proposed. Tree-to-string translation has
been the most popular syntax-based paradigm
in recent years, which is reflected by a number
of reordering approaches considering source-only
syntax (Liu et al., 2006; Neubig, 2013). One
particularly interesting approach is to project
source dependency parses to the target side and
then learn a probability model for reordering
children using features such as source and target
head words (Quirk et al., 2005).

While tree-to-tree translation (Graehl and

Proceedings of NAACL-HLT 2016, pages 11-19,
San Diego, California, June 12-17, 2016. (©2016 Association for Computational Linguistics



Source Target Rule Extracted
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Figure 1: Examples of tree-to-tree translation rules ex-
tracted from an aligned and parsed bitext. Colored boxes

represent aligned phrases and [X] is a non-terminal.

=]
- esterda
] [road] o [vestedy
a
rE [X] _
AT magazine
\

Figure 2: Combination of translation rules, demonstrat-
ing non-terminal substitution and multiple possible inser-

tion positions for a non-matching input phrase (‘#eE’).

Knight, 2004; Cowan and Collins, 2006; Chiang,
2010) has been somewhat less popular than tree-
to-string translation, we believe there are many
benefits of considering target-side syntax. In
particular, reordering can be defined naturally
with non-terminals in the target-side grammar.
This is relatively simple when the target struc-
ture of rules is restricted to ‘well-formed’ depen-
dencies (Shen et al., 2008), however in this pa-
per we consider more general rules with flexible
non-terminal insertion positions.

2 Dependency Tree-To-Tree
Translation

Dependency tree-to-tree translation begins with
the extraction of translation rules from a bilin-
gual corpus that has been parsed and word
aligned. Figure 1 shows an example of three
rules that can be extracted from aligned and
parsed sentence pairs. In this paper we consider
rules similar to previous work on tree-to-tree de-
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pendency MT (Richardson et al., 2014).

The simplest type of rule, containing only ter-
minal symbols, can be extracted trivially from
aligned subtrees (see rules 2 and 3 in Figure 1).
Non-terminals can be added to rules (see rule
1 in Figure 1) by omitting aligned subtrees and
replacing on each side with non-terminal sym-
bols. We can naturally express phrase reorder-
ing as the source/target-side non-terminals are
aligned.

Decoding is performed by combining these
rules to form a complete translation, as shown
in Figure 2. We are able to translate part of the
sentence with non-ambiguous reordering (‘read
a magazine’), as we can insert ‘43 — a maga-
zine’ into the rule ‘[X] % #HA 7R — read [X].

We cannot however decide clearly where to
insert the rule ‘#EE — yesterday’ as there is no
matching non-terminal in the rule containing its
parent in the input sentence (‘&tA7’). We use
the term floating to describe words such as ‘yes-
terday’ in this example, i.e. for an input subtree
matched to the source side of a rule, children
of the input root that are not contained in the
source side of the rule as terminals and cannot
be inserted using fixed-position non-terminals in
the rule.

Previous work deals with this problem by ei-
ther using simple glue rules (Chiang, 2005) or
limiting rules in a way to avoid isolated float-
ing children (Shen et al., 2008). For example, it
is possible to disallow the first rule in Figure 1
when translating a sentence such as that in Fig-
ure 2 with uncovered children (in this case the
word ‘yesterday’). This method greatly reduces
the expressiveness and flexibility of translation
rules.

In our generalized model, we allow any num-
ber of terminals and non-terminals and permit
arbitrarily many floating children in each rule.
To our knowledge this is the first study to take
this more comprehensive approach.

Note that in the case of constituency-based
tree-to-tree translation it is possible to binarize
the input tree and therefore gluing floating chil-
dren becomes simpler, as we only have to choose
between pre-insertion and post-insertion. In the
dependency case it is in general much more dif-
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Figure 3: Possible insertion positions for flexible non-
terminals with target-side head ‘read’. Allowed positions
are shown in green and disallowed positions are shown
in red. We do not allow insertion position 3 because it

could allow a non-projective dependency structure.

ficult because we must order an arbitrarily large
group of children sharing a common head.

3 Flexible Non-Terminals

In this paper we propose flexible non-terminals
in order to create generalized tree-to-tree trans-
lation rules that can overcome the problems de-
scribed in the previous section. Rather than
fixed insertion positions for child nodes, we in-
stead consider multiple possible insertion posi-
tions and give features to each position. These
are stored in a compact representation allowing
for efficient decoding.

We define flexible mnon-terminals as non-
terminals with multiple possible insertion posi-
tions and associated features. During decoding
we select the most promising insertion position
for each non-terminal.

3.1 Rule Augmentation

As is standard practice in phrase-based SMT,
before translation we filter translation rules to
those relevant to the input sentence. At this
time, for each accepted rule we check the input
sentence for floating children, and flexible non-
terminals are added for each floating child.

We allow all insertion positions between the
children (along with their descendants) of the
target-side head for each floating child, includ-
ing insertion before the first child and after the
last child. We do not allow insertion positions
between deeper descendants of the head to avoid
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Figure 4: Example of translation rule with flexible non-
terminals generated from the first parallel sentence in
Figure 1. [X] has a fixed position (4) but [Y] can have
multiple positions (1, 3, 5). Each position has an as-
sociated set of features shown in curly brackets, where
0;,; is the jth feature for insertion position ¢. The first
feature (0 or 1) shows whether the insertion position is

unambiguous.

non-projective dependencies. See Figure 3 for an
example of allowed /disallowed positions.

Features are then set for each insertion po-
sition and these are used to determine the
best insertion position during decoding (see Sec-
tion 3.2). Figure 4 shows an example of the pro-
posed rule augmentation.

3.2 Features

In previous work reordering is mostly decided by
the combination of a standard distortion model
and language model to score possible insertion
positions. We instead consider the following four
features and combine them during decoding to
find the most appropriate insertion positions for
floating children. All features are real numbers
between 0 and 1.

3.2.1 Insertion Position Features

We first define a set of features to estimate
the likelihood of each insertion position for some
given non-terminal. The features for inserting
the translation f of a source phrase into the
target-side e of a rule at insertion position ¢ are
defined as follows, for surface forms (5) and POS
tags (P):

e Reordering probability:
PS(,L | f?e)’ Pp(l | f,@)



. Marginalized over target-side:

Ps(i| f), Pp(i] f)

e Marginalized over source-side:
Ps(i|e), Pp(i|e)

The probabilities P(i | X) are calculated by
counting insertions of X in each position 7 across
the whole training corpus (aligned and parsed

bitext). The exact formula is given below, for
position i (X is one of {f}, {e} or {f,e}):

count(i, X)
> count(j, X)

Instead of applying smoothing, in order to re-
duce sparsity issues we use both the full proba-
bility P(i | f,e) and also probabilities marginal-
ized over the source/target phrases. We also
consider both probabilities trained on surface
forms (S) and POS tags (P).

While traditional models use linear distance
for ¢, this is impractical for long-distance re-
ordering. Instead we restrict insertion types ¢ to
one of the following 6 types: first-pre-child, mid-
pre-child, final-pre-child, first-post-child, mid-
post-child, and final-post-child. These corre-
spond to the first (first), last (final) or central
(mid) children on the left (pre) or right (post)
side of the parent word. We found this was more
effective than using either linear distance or a
binary (pre/post) position type.

P X)= (1)

3.2.2 Relative Position Feature

We also consider a relative position, or ‘swap-
ping’ feature, inspired by the swap operation of
classic lexical distortion (Tillmann, 2004).

Let T be the children of the root word of the
target-side of a rule. We also include in T a
pseudo-token M splitting the left and right chil-
dren of the target-side root to differentiate be-
tween pre-insertion and post-insertion.

We first learn a model describing the proba-
bility of the translation of input phrase I ap-
pearing to the left (Pr(I,t)) or right (Pgr(I,t))
of word ¢ in the target-side of a translation rule.
The probabilities are calculated by counting oc-
currences of I being translated to the left /right
sides of ¢ over the aligned and parsed training
bitext.
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The relative position feature is calculated by
considering the relative position of the transla-
tion of I with all the target-side root children
T. For each insertion position 4, let T; 1, be the
t € T to the left of position ¢ and T; p the t € T
to the right of position 7. Then we have:

II Pty I] Pa(rt) (2

teTz R teT’L L

(i|I1,T)=

3.2.3 Left/Right Attachment Preference

We also set an attachment direction prefer-
ence feature for each rule, specifying whether we
prefer to insert the rule as a left child or right
child of the root of a parent rule.

The attachment preference is determined by
the position of the target-side of the rule in the
target-side of the parallel sentence from which it
was extracted. For example, in Figure 1 the rule
‘BEH — yesterday’ was extracted from a par-
allel sentence in which ‘yesterday’ was a right-
side child of its head (‘saw’), so we set the at-
tachment preference to ‘right’. In cases when
we cannot determine the attachment preference
(for example ‘read’ in the first rule in Figure 1),
because it is the sentence root), we arbitrarily
choose ‘right’.

3.2.4 Unambiguous Insertion Preference

In cases where we have a single unambiguous
insertion position for a non-terminal (e.g. [X] in
Figure 4), we set an additional binary feature
to the value 1 (otherwise 0) to specify that this
position is unambiguous. We found that a large
positive weight is almost always given to this fea-
ture, which is to be expected as we would prefer
to use fixed non-terminals if possible. We set all
features related to insertion position choice to
the maximum value (1).

3.3 Decoding

The flexible non-terminals that we are propos-
ing can lead to some interesting challenges when
it comes to decoding. A naive approach is to
expand each translation rule containing flexible
non-terminals into a set of ‘simple’ rules with
fixed non-terminals, and then apply classic de-
coding with cube-pruning.



However, this can be quite inefficient in prac-
tice. Due to the combinatorial aspect, a single
rule can expand into a very large number of sim-
ple rules. It is common for our translation rules
to have more than four flexible non-terminals,
each with more than four possible insertion posi-
tions. Such rules will already generate hundreds
of simple rules. In the most extreme cases, we
may encounter rules having more than ten flex-
ible non-terminals, leading to the generation of
many millions of simple rules. This explosion of
rules can lead to impractical decoding time and
memory usage.

It is therefore important to make use of the
compact encoding of many simple rules provided
by the concept of flexible non-terminals in the
decoding process itself. We use the decoding
approach of right-hand lattices (Cromieres and
Kurohashi, 2014), an efficient way of encoding
many simple rules. The idea is to encode the
translation rules into a lattice form, then use this
lattice to decode efficiently without the need to
expand the flexible non-terminals explicitly.

Figure 5 shows how the concept of flexible
non-terminals can be efficiently encoded into lat-
tice form. The top half shows a target-side tree
translation rule with flexible non-terminals X1,
X2, X3 and X4 allowed to be inserted at any
position that is a child of the word ‘a’, with the
constraint that X1 comes before X2 and that
X2 comes before X3. X5 is another flexible non-
terminal that will be a child of the word ‘f”. The
lower half shows a lattice compactly encoding all
the possible combinations of non-terminal posi-
tions. Each path from the top-left to the bottom
right in this lattice represents a choice for the
insertion positions of the non-terminals. For ex-
ample, the path marked with a dotted line rep-
resents the flattened sequence ‘b ¢ X1 X2 a X3
X4 d e f X5 g. The lattice form has only 48
edges, while an explicit enumeration of all com-
binations of insertion positions for the flexible
non-terminals would force the decoder to con-
sider 8Cy x 3 x 12 = 2520 edges.

The insertion position features described
above are added to the edges of the lattice. They
are combined alongside the standard set of fea-
tures, such as word penalty and language model
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Figure 5: Example showing how a rule containing many

flexible non-terminals is encoded into lattice form for de-

coding.
JA-EN | EN-JA | JA-ZH | ZH-JA
Train 3M 3M 676K 676K
Dev 1790 1790 2123 2123
Test 1812 1812 2171 2171

Table 1: Translation experiment data (number of sen-

tences).

score, using a standard log-linear model. The
weights for the reordering features are tuned to-
gether with the standard features.

4 Experiments

4.1 Data and Settings

We performed translation experiments on four
distant language pairs, Japanese-English (JA-
EN), English-Japanese (EN-JA), Japanese-
Chinese (JA-ZH) and Chinese-Japanese (ZH-
JA), from the Asian Scientific Paper Excerpt
Corpus (ASPEC)!. The data was split into
training, development and test folds as shown
in Table 1.

Our experiments were conducted using a
state-of-the-art dependency tree-to-tree frame-
work KyotoEBMT (Richardson et al., 2014).

"http://lotus.kuee.kyoto-u.ac.jp/ ASPEC/



JA-EN EN-JA JA-ZH ZH-JA

BLEU | RIBES | BLEU | RIBES | BLEU | RIBES | BLEU | RIBES

Moses 18.09 | 63.97 | 27.48 | 68.37 | 27.96 | 79.03 | 34.65 | 77.25
Baseline 19.97 | 65.10 | 28.41 | 74.78 | 28.13 | 78.00 | 33.51 | 77.86
Flexible 21.23+ | 69.94% | 30.11% | 77.111 | 29.42¢ | 80.44t | 35.37f | 81.33t
+Pref 21.661 | 70.73f | 29.901 | 76.85f | 29.48f | 80.43t | 35.571 | 81.79%
+Pref+Ins | 21.47f | 70.85% | 30.03f | 77.01f | 29.641 | 80.651 | 35.71f | 82.05%
+Pref+Ins+Rel | 21.341 | 70.69% | 29.99% | 76.931 | 29.78% | 80.511 | 35.81% | 81.95%

Table 2: Automatic evaluation of translation quality (BLEU and RIBES). Results marked with 1 are significantly

higher than the baseline system and those marked with { are significantly higher than the proposed system with no

insertion position features (‘Flexible’). Significance was calculated with bootstrapping for p < 0.05.

Experiments were performed with the default
settings by adding the proposed non-terminal
reordering features to the rules extracted with
the baseline system. We used lattice-based de-
coding (Cromiéres and Kurohashi, 2014) to sup-
port multiple non-terminal insertion positions
and default tuning using, k-best MIRA (Cherry
and Foster, 2012). Dependency parsing was
performed with: KNP (Kawahara and Kuro-
hashi, 2006) (Japanese), SKP (Shen et al., 2012)
(Chinese), NLParser (Charniak and Johnson,
2005) (English, converted to dependencies with
hand-written rules). Alignment was performed
with Nile (Riesa et al., 2011) and we used a 5-
gram language model with modified Kneser-Ney
smoothing built with KenLM (Heafield, 2011).

4.2 Evaluation

As our baseline (‘Baseline’), we used the de-
fault tree-to-tree settings and features of Ky-
otoEBMT, allowing only fixed-position non-
terminals. We dealt with floating children not
covered by any other rules by adding glue rules
similar to those in hierarchical SMT (Chiang,
2005), joining floating children to the rightmost
slots in the target-side parent. For reference,
we also show results using Moses (Koehn et al.,
2007) with default settings and distortion limit
set to 20 (‘Moses’).

The proposed system (‘Flexible’) adds flex-
ible non-terminals with multiple insertion po-
sitions, however we do not yet add the inser-
tion choice features. This means that the in-
sertion positions are in practice chosen by the
language model. Note that we do not get a
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substantial hit in performance by adding the
flexible non-terminals because of their compact
lattice representation. The systems ‘+Pref’,
‘+Pref+Ins’ and ‘+Pref+Ins+Rel’ show the re-
sults of adding insertion choice position features
(left /right preference, insertion position choice,
relative position choice).

We give translation scores measured in BLEU
(Papineni et al., 2002) and RIBES (Isozaki et
al., 2010), which is designed to reflect quality
of translation word order more effectively than
BLEU. The translation evaluation is shown in
Table 2.

5 Discussion and Error Analysis

The experimental results showed a significantly
positive improvement in terms of both BLEU
and RIBES over the baseline tree-to-tree system.
The baseline system uses fixed non-terminals
and is competitive with the most popular string-
to-string system (Moses).

The extensions of the proposed model (adding
a variety of features) also all showed signifi-
cant improvement over the baseline, and ap-
proximately half of the extended settings per-
formed significantly better than the core pro-
posed model. It is unclear however which of
the extended settings is the most effective for
all language pairs. There are a number of fac-
tors such as parse quality, corpus size and out-
of-vocabulary occurrence that could affect the
potential value of these features. Furthermore,
Japanese is strongly left-branching (head-final),
so the left/right preference distinction is likely
to be less useful than for English and Chinese,



which contain both left-branching and right-
branching structures.

Compared to the baseline, the flexible non-
terminals gave around a 1.2-1.9 BLEU improve-
ment at the cost of only a 30% increase in de-
coding time (approximately 2.04 vs. 2.66 sec-
onds per sentence). This is made possible by
the compact non-terminal representation com-
bined with lattice decoding.

5.1 Non-Terminal Matching Analysis

We found that roughly half of all our trans-
lation rules were augmented with flexible non-
terminals, with one flexible non-terminal added
This led to roughly half
of non-terminals having flexible insertion posi-
tions. The decoder chose to use ambiguous in-
sertion positions between 30%—-60% of the time
(depending on language pair), allowing for many
more new translation hypotheses than the base-
line system. For detailed results, see Table 3.

per rule on average.

5.2 Translation Examples

The following translation is an example of an im-
provement achieved by using the proposed flex-
ible non-terminals. There were multiple word
order errors in the baseline translation that im-
peded understanding, and these have all been
corrected.

o Input: BIFEAOEHODREEICLYET DR
MAEDEAEEREEZRE L .

e Reference: The pressure difference and
the flow velocity of the magnetized fluid
caused by the temperature difference be-
tween the inlet and outlet of the magnetic
field were measured.

e Baseline: We have measured the pressure
difference and flow rate of a magnetic fluid
generated by an entrance of a magnet and
an exit temperature, and the difference be-
tween.

e Proposed: The pressure difference and
the flow rate of a magnetic fluid generated
by the temperature difference between the
magnetic field inlet and exit were measured.
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There are also cases where the proposed
model decreases translation quality. In the ex-
ample below, the proposed system output was
selected by the decoder since it had a higher
language model score than the baseline output,
despite having incorrect word order. The in-
correct translation was made available by the
increased flexibility of the proposed model, and
selected because the LM feature had a higher
impact than the insertion position features.

o Input: ZOYIFITT7DREN—TI3> DR, Fi
BAv=a7IVEREITXEETEDT,

e Reference: The characteristics of R5 ver-
sion of this software, instruction manual,
and design document were summarized.

e Baseline: The R5 version of this software
features, the manual for the utilization and
design documents are summarized.

e Proposed: This software design docu-
ments of R5 version features, the manual
for the utilization and summarized.

6 Conclusion and Future Work

In this paper we have proposed flexible non-
terminals for dependency tree-to-tree transla-
tion. We plan to continue working on feature
design for insertion position choice, and in the
future would like to consider using neural net-
works for learning these features. We believe
that it is important to continue to explore ap-
proaches that exploit more general target-side
syntax, faithful to the tree-to-tree translation
paradigm.

Flexible non-terminals allow multiple inser-
tion positions to be expressed compactly and
selected with features based on both source and
target syntax. We have shown that a significant
improvement in BLEU and RIBES scores can
be gained by using the proposed model to in-
crease the generality of dependency tree-to-tree
translation rules.
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JA-EN | EN-JA | JA-ZH | ZH-JA
% rules with flexible NTs 53.2 70.4 55.7 61.2
Average flexible NTs per rule 0.973 1.11 0.977 1.05
% all NTs that are flexible 48.0 48.6 54.5 56.1
% selected NTs that are flexible 32.2 35.1 40.5 58.4

Table 3: Results of non-terminal (NT) matching analysis.
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Abstract

Active learning is a framework that makes it
possible to efficiently train statistical models
by selecting informative examples from a pool
of unlabeled data. Previous work has found
this framework effective for machine trans-
lation (MT), making it possible to train bet-
ter translation models with less effort, partic-
ularly when annotators translate short phrases
instead of full sentences. However, previous
methods for phrase-based active learning in
MT fail to consider whether the selected units
are coherent and easy for human translators
to translate, and also have problems with se-
lecting redundant phrases with similar con-
tent. In this paper, we tackle these problems
by proposing two new methods for selecting
more syntactically coherent and less redun-
dant segments in active learning for MT. Ex-
periments using both simulation and extensive
manual translation by professional translators
find the proposed method effective, achiev-
ing both greater gain of BLEU score for the
same number of translated words, and allow-
ing translators to be more confident in their
translations’.

1 Introduction

In statistical machine translation (SMT) (Brown et
al., 1993), large quantities of high-quality bilingual
data are essential to achieve high translation accu-
racy. While in many cases large corpora can be col-
lected, for example by crawling the web (Resnik and

!Code to replicate the experiments can be found at
https://github.com/akivajp/naacl2016
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Figure 1: Conventional and proposed data selection methods

Smith, 2003), in many domains or language pairs it
is still necessarily to create data by hand, either by
hiring professionals or crowdsourcing (Zaidan and
Callison-Burch, 2011). In these cases, active learn-
ing (§2), which selects which data to annotate based
on their potential benefit to the translation system,
has been shown to be effective for improving SMT
systems while keeping the required amount of an-
notation to a minimum (Eck et al., 2005; Turchi et
al., 2008; Haffari et al., 2009; Haffari and Sarkar,
2009; Ananthakrishnan et al., 2010; Bloodgood and
Callison-Burch, 2010; Gonzalez-Rubio et al., 2012;
Green et al., 2014).

Most work on active learning for SMT, and natu-
ral language tasks in general, has focused on choos-
ing which sentences to give to annotators. These

Proceedings of NAACL-HLT 2016, pages 20-29,
San Diego, California, June 12-17, 2016. (©2016 Association for Computational Linguistics



methods generally assign priority to sentences that
contain data that is potentially useful to the MT sys-
tem according to a number of criteria. For exam-
ple, there are methods to select sentences that con-
tain phrases that are frequent in monolingual data
but not in bilingual data (Eck et al., 2005), have low
confidence according to the MT system (Haffari et
al., 2009), or are predicted to be poor translations by
an MT quality estimation system (Ananthakrishnan
et al., 2010). However, while the selected sentences
may contain useful phrases, they will also generally
contain many already covered phrases that nonethe-
less cost time and money to translate.

To solve the problem of wastefulness in full-
sentence annotation for active learning, there have
been a number of methods proposed to perform
sub-sentential annotation of short phrases for nat-
ural language tasks (Settles and Craven, 2008;
Bloodgood and Callison-Burch, 2010; Tomanek and
Hahn, 2009; Sperber et al., 2014). For MT in par-
ticular, Bloodgood and Callison-Burch (2010) have
proposed a method that selects poorly covered n-
grams to show to translators, allowing them to focus
directly on poorly covered parts without including
unnecessary words (§3). Nevertheless, our experi-
ments identified two major practical problems with
this method. First, as shown in Figure 1 (a), many of
the selected phrases overlap with each other, caus-
ing translation of redundant phrases, damaging ef-
ficiency. Second, it is common to see fragments
of complex phrases such as “one of the preceding,”
which may be difficult for workers to translate into
a contiguous phrase in the target language.

In this work, we propose two methods that aim to
solve these two problems and improve the efficiency
and reliability of segment-based active learning for
SMT (§4). For the problem of overlapping phrases,
we note that by merging overlapping phrases, as
shown in Figure 1 (b), we can reduce the number of
redundant words annotated and improve training ef-
ficiency. We adopt the idea of maximal substrings
(Okanohara and Tsujii, 2009) which both encode
this idea of redundancy, and can be calculated to ar-
bitrary length in linear time using enhanced suffix
arrays. For the problem of phrase structure fragmen-
tation, we propose a simple heuristic to count only
well-formed syntactic constituents in a parse tree, as
shown in Figure 1 (c).
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To investigate the effect of our proposed meth-
ods on learning efficiency, we perform experiments
on English-French and English-Japanese translation
tasks in which we incrementally add new parallel
data, update models and evaluate translation accu-
racy. Results from both simulation experiments (§5)
and 120 hours of work by professional translators
(§6) demonstrate improved efficiency with respect to
the number of words annotated. We also found that
human translators took more time, but were more
confident in their results on segments selected by the
proposed method.

2 Active Learning for Machine Translation

In this section, we first provide an outline of the ac-
tive learning procedure to select phrases for SMT
data. In this paper, we regard a “phrase” as a
word sequence with arbitrary length, which indi-
cates that full sentences and single words both qual-
ify as phrases. In Algorithm 1, we show the general
procedure of incrementally selecting the next candi-
date for translation from the source language corpus,
requesting and collecting the translation in the target
language, and retraining the models.

Algorithm 1 Active learning for MT

1: Inmit:

2:  SrcPool « source language data including candidates for translation

3:  Translated « translated parallel data

4:  Oracle + oracle giving the correct translation for an input phrase

5: Loop Until StopCondition:

6: TM «— TrainTranslationModel(Translated)

7: NewSrc « SelectNextPhrase(SrcPool, Translated, T M)
8: NewTrg «— GetTranslation(Oracle, NewSrc)

9: Translated < Translated |J {{NewSrc, NewTrg)}

In lines 1-4, we define the datasets and initialize
them. SrcPool is a set with each sentence in source
language corpus as an element. T'ranslated indi-
cates a set with source and target language phrase
pairs. T'ranslated may be empty, but in most cases
will consist of a seed corpus upon which we would
like to improve. Oracle is an oracle (e.g. a human
translator), that we can query for a correct transla-
tion for an arbitrary input phrase.

In lines 5-9, we train models incrementally.
StopCondition in line 5 is an arbitrary timing when
to stop the loop, such as when we reach an accu-
racy goal or when we expend our translation bud-



get. In line 6, we train the translation model using
Translated, the available parallel data at this point.
We evaluate the accuracy after training the transla-
tion model for each step in the experiments. In line
7, we select the next candidate for translation using
features of SrcPool, Translated and T'M to make
the decision.

In the following sections, we discuss existing
methods (§3), and our proposed methods (§4) to im-
plement the selection criterion in line 7.

3 Selection based on n-Gram Frequency

3.1 Sentence Selection using n-Gram
Frequency

The first traditional method that we cover is a
sentence selection method. Specifically, it selects
the sentence including the most frequent uncovered
phrase with a length of up to n words in the source
language data. This method enables us to effec-
tively cover the most frequent n-gram phrases and
improve accuracy with fewer sentences than random
selection. Bloodgood and Callison-Burch (2010)
demonstrate results of a simulation showing that this
method required less than 80% of the data required
by randomly selected sentences to obtain the same
accuracy.

However, as mentioned in the introduction, the se-
lected full sentences include many phrases already
covered in the parallel data. This may cause an addi-
tional cost for words in redundant segments, a prob-
lem resolved by the phrase selection approach de-
tailed in the following section.

3.2 Phrase Selection using n-Gram Frequency

In the second baseline approach, we directly select
and translate n-gram phrases that are the most fre-
quent in the source language data but not yet cov-
ered in the translated data (Bloodgood and Callison-
Burch, 2010). This method allows for improvement
of coverage with fewer additional words than sen-
tence selection, achieving higher efficiency by re-
ducing the amount of data unnecessarily annotated.
Bloodgood and Callison-Burch (2010) showed that
by translating the phrases selected by this method
using a crowdsourcing website, it was possible to
achieve a large improvement of BLEU score, out-
performing similar sentence-based methods.

22

However, as mentioned in the introduction, this
method has several issues. First, because it uses
short phrases, it often selects phrases that are not
linguistically well-formed, potentially making them
difficult to translate concisely. Second, it also has
problems with redundancy, with no device to pre-
vent multiple overlapping phrases being selected
and translated. Finally, the previous work limits the
maximum phrase length to n = 4, precluding the
use of longer phrases. However, using a larger limit
such as n = 5 is not likely to be a fundamental solu-
tion, as it increases the number of potentially over-
lapping phrases, and also computational burden. In
the next section we cover our proposed solutions to
these problems in detail.

4 Phrase Selection based on Maximal
Phrases and Parse Trees

4.1 Phrase Selection based on Maximal
Phrases

To solve both the problem of overlapping phrases
and the problem of requiring limits on phrase length
for computational reasons, we propose a method us-
ing the idea of maximal substrings (Okanohara and
Tsujii, 2009). Maximal substrings are formally de-
fined as “a substring that is not always included in
a particular longer substring.” For example, if we
define p; as a phrase and occ(p;) as its occurrence
count in a corpus, and have the following data

p1 = “one of the preceding”, occ(p1) = 200,000

p2 = “one of the preceding claims”, occ(p2) = 200,000

p3 = “any one of the preceding claims”, oce(ps) = 190, 000
p1 = “one of the preceding” always co-occurs with

the longer p» = “one of the preceding claims” and
thus is not a maximal substring. On the other hand,
p2 does not always co-occur with p3, and thus po
will be maximal. This relationship can be defined
formally with the following semi-order relation:

p1 = p2 & Ja, B p1 = apaf A oce(pr) = oce(pz). (1)

Demonstrating this by the previous example,
p1 = apaf, a =, f = “claims” hold, meaning
p1 is a sub-sequence of py, and ps is a sub-sequence
of ps3 in a similar manner. Since p; is a sub-sequence
of pe and oce(p1) = oce(pz) = 200,000, p1 = po
holds. However, although p, is a sub sequence of ps,



because occ(p2) = 200,000 # 190,000 = occ(ps),
the relation po < ps3 does not hold. Here, we say
p has maximality if there does not exist any g other
than p itself that meets p < ¢, and we call such a
phrase a maximal phrase.

To apply this concept to active learning, our pro-
posed method limits translation data selection to
only maximal phrases. This has two advantages.
First, it reduces overlapping phrases to only the
maximal string, allowing translators to cover mul-
tiple high-frequency phrases in the translation of a
single segment. Second, maximal phrases and their
occurrence counts can be enumerated efficiently by
using enhanced suffix arrays (Kasai et al., 2001) in
linear time with respect to document length, remov-
ing the need to set arbitrary limits on the length of
strings such as n = 4 used in previous work.

However, it can be easily noticed that while in
the previous example ps is included in p3, their oc-
currence counts are close but not equivalent, and
thus both are maximal phrases. In such a case, the
naive implementation of this method can not remove
these redundant phrases, despite the fact that it is in-
tuitively preferable that the selection method com-
bines phrases if they have almost the same occur-
rence count. Thus, we also propose to use the fol-
lowing semi-order relation generalized with param-
eter \:

D1 j D2 {:}3@7ﬁ :
p1 = ap2B A X-occ(pr) < oce(p2).  (2)

where )\ takes a real numbered value from O to 1,
which we set to A = 0.5 in this research.

This removes the restriction that the two phrases
under comparison be of exactly equal counts, allow-
ing them to have only approximately the same oc-
currence count. We redefine maximality using this

*
semi-order = as semi-maximality, and call maxi-

mal phrases defined with % semi-maximal phrases
in contrast to normal maximal phrases. By using
semi-maximal phrases instead of maximal phrases,
we can remove a large number of phrases that are
included in a particular longer phrase more than half
the time, indicating that it might be preferable to
translate the longer phrase instead.
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Figure 2: Phrase counting based on parse trees

4.2 Phrase Selection based on Parse Trees

In this section, we propose a second phrase selec-
tion method based on the results from the syntac-
tic analysis of source language data. This method
first processes all the source language data with a
phrase structure parser, traverses and counts up all
the subtrees of parse trees as shown in Figure 2, and
finally selects phrases corresponding to a subtree in
frequency order.” We propose this method because
we expect the selected phrases to have syntactically
coherent meaning, potentially making human trans-
lation easier than other methods that do not use syn-
tactic information.

It should be noted that because this method counts
all subtrees, it is capable of selecting overlapping
phrases like the methods based on n-grams. There-
fore we also experiment with a method using to-
gether both subtrees and the semi-maximal phrases
proposed in Section 4.1 to select both syntactic and
non-redundant segments.

5 Simulation Experiment

5.1 Experimental Set-Up

To investigate the effects of the phrase selection
methods proposed in Section 4, we first performed
a simulation experiment in which we incrementally
retrain translation models and evaluate the accuracy
after each step of data selection. In this experi-
ment, we chose English as a source language and
French and Japanese as target languages. To sim-
ulate a realistic active learning scenario, we started
from given parallel data in the general domain and
sequentially added additional source language data
in a specific target domain. For the English-French
translation task, we adopted the Europarl corpus

The method does not distinguish between equivalent word
sequences even if they have different tree structures



Lang Pair Domain Dataset Amount
1.89M Sent.
General (Base) Train En: 47.6M Words
Fr: 49.4M Words
En-Fr 15.5M Sent.
Medical Train En: 393M Words
Fr: 418M Words
(Target) Test 1000 Sent.
Dev 500 Sent.
414k Sent.
General (Base) Train En: 6.72M Words
Ja: 9.69M Words
En-Ja 1.87M Sent.
Scientific Train En: 46.4M Words
Ja: 57.6M Words
(Target) Test 1790 Sent.
Dev 1790 Sent.

Table 1: Details of parallel data

from WMT2014% as a base parallel data source
and EMEA (Tiedemann, 2009), PatTR (Wischle
and Riezler, 2012), and Wikipedia titles, used in
the medical translation task, as the target domain
data. For the English-Japanese translation task, we
adopted the broad-coverage example sentence cor-
pus provided with the Eijiro dictionary* as general
domain data, and the ASPEC’ scientific paper ab-
stract corpus as the target domain data. For pre-
processing, we tokenized Japanese corpora using the
KyTea word segmenter (Neubig et al., 2011) and fil-
tered out the lines of length over 60 from all the
training parallel data to ensure accuracy of parsing
and alignment. We show the details of the parallel
dataset after pre-processing in Table 1.

For the machine translation framework, we used
phrase-based SMT (Koehn et al., 2003) with the
Moses toolkit (Koehn et al., 2007) as a decoder.
To efficiently re-train the models with new data,
we adopted inc-giza-pp,® a specialized version of
GIZA-++ word aligner (Och and Ney, 2003) support-
ing incremental training, and the memory-mapped
dynamic suffix array phrase tables (MMSAPT) fea-
ture of Moses (Germann, 2014) for on-memory con-
struction of phrase tables. We train 5-gram models
over the target side of all the general domain and
target domain data using KenLM (Heafield, 2011).

3http://statmt.org/wmt14/
“http://eijiro.jp

Shttp://lotus kuee kyoto-u.ac.jp/ ASPEC/
®https://github.com/akivajp/inc-giza-pp
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For the tuning of decoding parameters, since it is not
realistic to run MERT (Och, 2003) at each retrain-
ing step, we tuned the parameters to maximize the
BLEU score (Papineni et al., 2002) for the baseline
system, and re-used the parameters thereafter. We
compare the following 8 segment selection meth-
ods, including 2 random selection methods, 2 con-
ventional methods and 4 proposed methods:

sent-rand: Select sentences randomly.

4gram-rand: Select n-gram strings of length of up to 4
in random order.

sent-by-4gram-freq: Select the sentence including the
most frequent uncovered phrase with length of up
to 4 words (baseline 1, §3.1).

4gram-freq: Select the most frequent uncovered phrase
with length of up to 4 words (baseline 2, §3.2).

maxsubst-freq: Select the most frequent uncovered
maximal phrase (proposed, §4.1)

reduced-maxsubst-freq: Select the most frequent un-
covered semi-maximal phrase (proposed, §4.1)

struct-freq: Select the most frequent uncovered phrase
extracted from the subtrees (proposed, §4.2).

reduced-struct-freq: Select the most frequent uncov-
ered semi-maximal phrase extracted from the sub-
trees (proposed, §4.1 and §4.2).

To generate oracle translations, we used an SMT
system trained on all of the data in both the general
and target-domain corpora. To generate parse trees,
we used the Ckylark parser (Oda et al., 2015).

5.2 Results and Discussion

Comparison of efficiency: In Figure 3, we show
the evaluation score results by the number of addi-
tional source words up to 100k and 1M words. We
can see that in English-French translation, the ac-
curacy of the selection methods using parse trees
grows more rapidly than other methods and was sig-
nificantly better even at the point of 1M additional
words. In the case of English-Japanese translation,
the gains over 4-gram frequency are much smaller,
but the proposed methods still consistently perform
as well or better than the other methods. Besides,
in all the graphs we can see the improvement of
reduced-maxsubst-freq and reduced-struct-freq over
maxsubst-freq and struct-freq respectively, demon-
strating that avoiding selecting redundant segments
is helpful in improving efficiency.
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Figure 3: BLEU score vs. number of additional source words in each method

Length of selected phrases: Due to the differ-
ent criteria used by each method, there are also sig-
nificant differences in the features of the selected
phrases. In Table 2, we show the details of the
number of all selected phrases, words and average
phrase length until the stop condition, and at the
point of 10k additional source words. Here we see
the tendency that the selection methods based on
parse trees select shorter phrases than other meth-
ods. This is caused by the fact that longer phrases
are only counted if they cover a syntactically defined
phrases, and thus longer substrings that do not form
syntactic phrases are removed from consideration.

Phrase coverage: This difference in the features
of the selected phrases also affects how well they can
cover new incoming test data. To demonstrate this,
in Table 3 we show the 1-gram and 4-gram cover-
age of the test dataset after 10k, 100k and 1M words
have been selected. From the results, we can see that
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the reduced-struct-freq method attains the highest 1-
gram coverage, efficiently covering unknown words.
On the other hand, it is clear that methods selecting
longer phrases have an advantage for 4-gram cover-
age, and we see the highest 4-gram coverage in the
sent-by-4gram-freq method.

6 Manual Translation Experiment

6.1 Experimental Set-Up

To confirm that the results from the simulation in
the previous section carry over to actual translators,
we further performed experiments in which profes-
sional translators translated the selected segments.
This also allowed us to examine the actual amount of
time required to perform translation, and how confi-
dent the translators were in their translations.

We designed a web user interface as shown in Fig-
ure 4, and outsourced to an external organization



All Selected Phrases First 10k Words
Average Average
Lang Pair Selection Method #Phrases  #Words  Phrase Length | #Phrases  Phrase Length
sent-by-4gram-freq 10.6M 269M 25.4 310 32.1
4gram-freq 40.1M 134M 3.34 3.62k 2.76
En-Fr maxsubst-freq 62.4M 33IM 5.30 2.39% 4.17
reduced-maxsubst-freq 45.9M 246M 5.36 2.95k 3.39
struct-freq 14.1M 94.2M 6.68 4.01k 2.49
reduced-struct-freq 7.33M 41.3M 5.63 4.55k 2.20
sent-by-4gram-freq 1.28M 33.6M 26.3 560 17.8
4gram-freq 8.48M 26.0M 3.07 4.70k 2.13
En-Ja maxsubst-freq 7.29M 25.8M 3.54 4.51k 222
reduced-maxsubst-freq 6.06M 21.7M 3.58 4.76k 2.10
struct-freq 1.45M 4.85M 3.34 6.64k 1.51
reduced-struct-freq 1.10M 3.33M 3.03 6.73k 1.49
Table 2: Number of phrases and average words/phrase in each method
1-gram / 4-gram Coverage [%]
Lang Pair Selection Method No Addition 10k Words 100k Words 1M Words
sent-rand 92.93/10.60 93.73/10.71  95.94/11.30
4gram-rand 92.95/10.60 93.99/10.60 96.42/10.64
sent-by-4gram-freq 92.95/10.60  93.96/10.72  96.25/11.55
En-Fr 4gram-freq 92.72/10.60 | 92.92/10.60 94.46/10.66  96.60/11.16
maxsubst-freq 92.79/10.60  93.61/10.62  95.99/10.92
reduced-maxsubst-freq 92.92/10.60 94.38/10.66 96.55/11.13
struct-freq 93.63/10.60  96.15/10.65 97.84/11.28
reduced-struct-freq 94.02/10.60 96.38 /10.69  98.00/11.38
sent-rand 94.81/5.63 95.99/6.59 97.54/10.06
4gram-rand 94.80/5.38 96.10/5.46 97.67/5.98
sent-by-4gram-freq 95.10/5.84 96.28 /7.23 97.64 /11.39
En-Ja 4gram-freq 94.36/5.38 95.64/5.97 96.87/17.14 97.97/10.43
maxsubst-freq 95.59/5.96 96.83/7.07 97.91/10.20
reduced-maxsubst-freq 95.73 / 6.00 96.97/7.19 98.00/10.57
struct-freq 96.60/5.44 97.80/5.79 98.58/7.02
reduced-struct-freq 96.64 / 5.44 97.84/5.80 98.61/7.14

Table 3: Effect on coverage in each selection method (rounded off to the second decimal place). Bold face indicates the highest

coverage for each number of additional words.

é Phrase to be translated:

The morphologies using scanning electron
microscopy ( SEM ) were studied .

Translation input form:

| EBERE T (SEM)

Confidence level:
@ 3: sure about the translation
(O 2: not so sure about the translation
(O 1:not sure at all

- J/

Figure 4: Example of the human translation interface

that had three professional translators translate the
shown phrases. As is standard when hiring transla-
tors, we paid a fixed price per word translated for
all of the methods. Because showing only the can-
didate phrase out of context could cause difficulty
in translation, we follow Bloodgood and Callison-
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Burch (2010) in showing a sentence including the
selected phrase,” highlighting the phrase, and re-
questing that the translator translate the highlighted
part. We also requested that every worker select
from 3 levels indicating how confident they were
of their translation. In the background, the time re-
quired to complete the translation is measured from
when the new phrase is shown until when the trans-
lation is submitted.

The methods selected for comparative evaluation
are sentence selection based on 4-gram frequency
(sent-by-4gram-freq) and phrase selection based on
4-gram frequency (4gram-freq) as baseline meth-
ods, and the phrase selection based on both parse
trees and semi-maximality (reduced-struct-freq) as

"Specifically, we selected the shortest sentence including the
phrase in the source corpus.
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Figure 5: Transition of BLEU score vs. additional source words (left) and vs. cumulative working duration (right)

the proposed method. For each method we col-
lected translations of 10k source words, alternating
between segments selected by each method to pre-
vent bias.

We used the same dataset as the English-Japanese
translation task and the same tools in the simula-
tion experiment (Section 5). However, for training
target language models, we interpolated one trained
with the base data and a second trained with col-
lected data by using SRILM (Stolcke, 2002) because
the hand-made data set was too small to train a full
language model using only this data. We tuned the
interpolation coefficient such that it maximizes the
perplexity for the tuning dataset.

6.2 Results and Discussion

Efficiency results: Figure 5 shows the evalua-
tion scores of SMT systems trained using varying
amounts of collected phrases. In the left graph, we
see the proposed method based on parse trees and
phrase semi-maximality rapidly improves BLEU
score, and requires fewer additional words than the
conventional methods. Because the cost paid for
translation often is decided by the number of words,
this indicates that the proposed method has better
cost performance in these situations. The right graph
shows improvement by the amount of translation
time. These results here are different, showing the
4-gram-freq baseline slightly superior. As discussed
in Table 3, the methods based on parse trees select
more uncovered 1-grams, namely unknown words,
and specifically the proposed method selected more
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. Average
Selection Methods T(?tal Working Confidence Level
Time [Hours]
(3 Levels)
sent-by-4gram-freq 25.22 2.689
4gram-freq 32.70 2.601
reduced-struct-freq 59.97 2.771

Table 4: Total working time and average confidence level

technical terms that took a longer time to translate.

Working time and confidence: We show the
total time to collect the translations of 10k source
words and average confidence level for each method
in Table 4. The total working time for the proposed
method is nearly double that of other methods, as
seen in the right graph of Figure 5. On the other
hand, the segments selected by the proposed method
were given the highest confidence level, receiving
the maximum value of 3 for about 79% of phrase
pairs, indicating that the generated parallel data is of
high quality. To some extent, this corroborates our
hypothesis that the more syntactic phrases selected
by the proposed method are easier to translate.

We can also examine the tendency of working
time for segments of different lengths in Table 5. In-
terestingly, single words consistently have a longer
average translation time than phrases of length 2-4,
likely because they tend to be technical terms that re-
quire looking up in a dictionary. We show the aver-
age confidence levels corresponding to phrase length
in Table 6. The confidence level of single words
in the proposed method is lower than in the base-
line method, likely because the baseline selected
a smaller amount of single words, and those se-



Average Working Time [Seconds]
2 3 4 5+
Selection Method Word Word Word Word  Word
Phrase Phrase Phrase Phrase
sent-by-4gram-freq - - - - 160.64
4gram-freq 30.14 2476  21.77 21.12 -
reduced-struct-freq | 35.61 25.23 21.72  28.13 22.82

Table 5: Average working time of manual translation corre-

sponding to phrase length

Average Confidence Level (3 Levels)
2 3 4 5+
Selection Method Word Word Word  Word Word
Phrase Phrase Phrase Phrase
sent-by-4gram-freq - - - - 2.689
4gram-freq 2.885 2585 2422 2300 -
reduced-struct-freq | 2.802 2.796  2.778  2.708 2.737

Table 6: Average confidence level of manual translation corre-

sponding to phrase length

lected were less likely to be technical terms. On the
other hand, we can confirm that the confidence level
for longer phrases in the baseline method decreases
drastically, while it is stably high in our method,
confirming the effectiveness of selecting syntacti-
cally coherent phrases.

Translation accuracy by confidence level: Fi-
nally, we show the accuracy of the SMT system
trained by all the collected data in each method in
Table 7. To utilize the confidence level annota-
tion, we tested SMT systems trained by phrase pairs
with confidence levels higher than 2 or 3. From the
results, the accuracy of every method is improved
when phrases pairs with confidence level 1 were fil-
tered out. In contrast, the accuracy is conversely
degraded if we use only phrase pairs with confi-
dence level 3. The translation accuracy of 9.37%
BLEU with the base SMT system without additional
data became 10.72% after adding phrase pairs hav-
ing confidence level 2 or higher, allowing for a rela-
tively large gain of 1.35 BLEU points.

7 Conclusion and Future Work

In this paper, we proposed a new method for active
learning in machine translation that selects syntactic,
non-redundant phrases using parse trees and semi-
maximal phrases. We first performed simulation ex-
periments and obtained improvements in translation
accuracy with fewer additional words. Further man-

28

BLEU Score [%]
Selection Methods | Confidence Confidence  Confidence
1+ (All) 2+ 3
sent-by-4gram-freq 9.88 9.92 9.85
4gram-freq 10.48 10.54 10.36
reduced-struct-freq 10.70 10.72 10.67

Table 7: BLEU score when training on phrases with a certain

confidence level

ual translation experiments also demonstrated that
our method allows for greater improvements in ac-
curacy and translator confidence.

However, there are still a number of avenues for
improvement. Particularly, as the proposed method
selected segments that took more time to translate
due to technical terms, the combination with meth-
ods to harvest unknown words (Daumé III and Ja-
garlamudi, 2011) or optimize the selected segments
based on the time required (Sperber et al., 2014) is
potentially useful. In addition, softer syntactic con-
straints that allow annotation of phrases with vari-
ables (Chiang, 2007) such as “one of the preceding
X are another interesting avenue of future work.
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Abstract

We build a multi-source machine translation
model and train it to maximize the probabil-
ity of a target English string given French and
German sources. Using the neural encoder-
decoder framework, we explore several com-
bination methods and report up to +4.8 Bleu
increases on top of a very strong attention-
based neural translation model.

1 Introduction

Kay (2000) points out that if a document is trans-
lated once, it is likely to be translated again and
again into other languages. This gives rise to an in-
teresting idea: a human does the first translation by
hand, then turns the rest over to machine translation
(MT). The translation system now has two strings
as input, which can reduce ambiguity via “triangu-
lation” (Kay’s term). For example, the normally
ambiguous English word “bank” may be more eas-
ily translated into French in the presence of a sec-
ond, German input string containing the word “Flus-
sufer” (river bank).

Och and Ney (2001) describe such a multi-source
MT system. They first train separate bilingual MT
systems F'—FE, G—FE, etc. At runtime, they sep-
arately translate input strings f and g into candi-
date target strings e; and eg, then select the best one
of the two. A typical selection factor is the prod-
uct of the system scores. Schwartz (2008) revisits
such factors in the context of log-linear models and
Bleu score, while Max et al. (2010) re-rank F'—F
n-best lists using n-gram precision with respect to
(G—F translations. Callison-Burch (2002) exploits
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hypothesis selection in multi-source MT to expand
available corpora, via co-training.

Others use system combination techniques to
merge hypotheses at the word level, creating the
ability to synthesize new translations outside those
proposed by the single-source translators. These
methods include confusion networks (Matusov et
al., 2006; Schroeder et al., 2009), source-side string
combination (Schroeder et al., 2009), and median
strings (Gonzélez-Rubio and Casacuberta, 2010).

The above work all relies on base MT systems
trained on bilingual data, using traditional meth-
ods. This follows early work in sentence align-
ment (Gale and Church, 1993) and word alignment
(Simard, 1999), which exploited trilingual text, but
did not build trilingual models. Previous authors
possibly considered a three-dimensional translation
table t(e| f, g) to be prohibitive.

In this paper, by contrast, we train a P(e|f, g)
model directly on trilingual data, and we use that
model to decode an (f, g) pair simultaneously. We
view this as a kind of multi-tape transduction (Elgot
and Mezei, 1965; Kaplan and Kay, 1994; Deri and
Knight, 2015) with two input tapes and one output
tape. Our contributions are as follows:

e We train a P(e|f,g) model directly on trilin-
gual data, and we use it to decode a new source
string pair (f, g) into target string e.

e We show positive Bleu improvements over
strong single-source baselines.

e We show that improvements are best when the
two source languages are more distant from
each other.

We are able to achieve these results using
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Figure 1: The encoder-decoder framework for neural machine
translation (NMT) (Sutskever et al., 2014). Here, a source sen-
tence C B A (presented in reverse order as A B C) is translated
into a target sentence W X Y Z. At each step, an evolving real-
valued vector summarizes the state of the encoder (white) and

decoder (gray).

the framework of neural encoder-decoder models,
where multi-target MT (Dong et al., 2015) and
multi-source, cross-modal mappings have been ex-
plored (Luong et al., 2015a).

2  Multi-Source Neural MT

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castano and Casacuberta,
1997; Sutskever et al., 2014; Bahdanau et al., 2014;
Luong et al., 2015b), we use a recurrent neural net-
work (encoder) to convert a source sentence into a
dense, fixed-length vector. We then use another re-
current network (decoder) to convert that vector in a
target sentence.!

In this paper, we use a four-layer encoder-decoder
system (Figure 1) with long short-term memory
(LSTM) units (Hochreiter and Schmidhuber, 1997)
trained for maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). For our baseline single-source MT system we
use two different models, one of which implements
the local attention plus feed-input model from Lu-
ong et al. (2015b).

Figure 2 shows our approach to multi-source MT.
Each source language has its own encoder. The
question is how to combine the hidden states and cell
states from each encoder, to pass on to the decoder.
Black combiner blocks implement a function whose
input is two hidden states (h; and hs) and two cell
states (c; and c2), and whose output is a single hid-

"We follow previous authors in presenting the source sen-
tence to the encoder in reverse order.
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den state h and cell state c. We propose two combi-
nation methods.

2.1 Basic Combination Method

The Basic method works by concatenating the two
hidden states from the source encoders, applying a
linear transformation W, (size 2000 x 1000), then
sending its output through a tanh non-linearity. This
operation is represented by the equation:

h = tanh (W [ha; ha)) (1)

W, and all other weights in the network are learned
from example string triples drawn from a trilingual
training corpus.

The new cell state is simply the sum of the two
cell states from the encoders.

c=c+c2 (2)

We also attempted to concatenate cell states and ap-
ply a linear transformation, but training diverges due
to large cell values.

2.2 Child-Sum Method

Our second combination method is inspired by the
Child-Sum Tree-LSTMs of Tai et al. (2015). Here,
we use an LSTM variant to combine the two hidden
states and cells. The standard LSTM input, output,
and new cell value are all calculated. Then cell states
from each encoder get their own forget gates. The
final cell state and hidden state are calculated as in a
normal LSTM. More precisely:

i = sigmoid (W{hy + Wihs) 3)
f = sigmoid (W/ h;) 4)

0 = sigmoid (W{hy + Wih,) (5)
w = tanh (W' + Wy'hs) (6)

c=ifQuf+ fiOc+ f2Oc (N
h = oy ® tanh(cy) )

This method employs eight new matrices (the
W’s in the above equations), each of size
1000 x 1000. The ® symbol represents an elemen-
twise multiplication. In equation 3, ¢ represents the
input gate of a typical LSTM cell. In equation 4,
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Figure 2: Multi-source encoder-decoder model for MT. We have two source sentences (C B A and K J I) in different languages.

Each language has its own encoder; it passes its final hidden and cell state to a set of combiners (in black). The output of a combiner

is a hidden state and cell state of the same dimension.

there are two forget gates indexed by the subscript ¢
that serve as the forget gates for each of the incom-
ing cells for each of the encoders. In equation 5, o
represents the output gate of a normal LSTM. 4, f,
o, and w are all size-1000 vectors.

2.3 Multi-Source Attention

Our single-source attention model is modeled off the
local-p attention model with feed input from Luong
et al. (2015b), where hidden states from the top de-
coder layer can look back at the top hidden states
from the encoder. The top decoder hidden state is
combined with a weighted sum of the encoder hid-
den states, to make a better hidden state vector (ﬁt),
which is passed to the softmax output layer. With
input-feeding, the hidden state from the attention
model is sent down to the bottom decoder layer at
the next time step.

The local-p attention model from Luong et al.
(2015b) works as follows. First, a position to look at
in the source encoder is predicted by equation 9:

pr=2S5- sigmoid(vgtanh(tht)) ®

S is the source sentence length, and v, and W), are
learned parameters, with v, being a vector of di-
mension 1000, and W), being a matrix of dimension
1000 x 1000.

After p; is computed, a window of size 2D + 1 is
looked at in the top layer of the source encoder cen-
tered around p; (D = 10). For each hidden state in
this window, we compute an alignment score a(s),
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between 0 and 1. This alignment score is computed
by equations 10, 11 and 12:

. —(S—Pt)2
ar(s) = align(he, ho)exp(—5 57)  (10)
) exp(score(hy, hs))
lign(hy, he) = 1
align(he, hs) Yo exp(score(hy, hy)) (n
score(hy, hs) = hI Wyh, (12)

In equation 10, o is set to be D/2 and s is the
source index for that hidden state. W, is a learnable
parameter of dimension 1000 x 1000.

Once all of the alignments are calculated, c; is cre-
ated by taking a weighted sum of all source hidden
states multiplied by their alignment weight.

The final hidden state sent to the softmax layer is
given by:

13)

We modify this attention model to look at both
source encoders simultaneously. We create a context
vector from each source encoder named ¢} and c?
instead of the just ¢; in the single-source attention
model:

}Zt = tanh (Wc[ht; Ct])

hy = tcmh(Wc[ht;Ctl%C?D (14

In our multi-source attention model we now have
two p; variables, one for each source encoder. We



French | English | German Target = English
Word tokens 66.2m 59.4m 57.0m Source Method Ppl | BLEU
Word types 424,832 | 381,062 | 865,806 French — 10.3 21.0
Segment pairs 2,378,112 German — 159 17.3
Ave. segment 27.8 25.0 24.0 French+German | Basic 8.7 23.2
length (tokens) French+German | Child-Sum | 9.0 | 225
Figure 3: Trilingual corpus statistics. French+French | Child-Sum | 10.9 20.7
French Attention 8.1 25.2
also have two separate sets of alignments and there- | French+German | B-Attent. 5.7 30.0
fore now have two ¢; values denoted by c; and ¢7 as | French+German | CS-Attent. | 6.0 29.6

mentioned above. We also have distinct W, v,, and
W, parameters for each encoder.

3 Experiments

We use English, French, and German data from a
subset of the WMT 2014 dataset (Bojar et al., 2014).
Figure 3 shows statistics for our training set. For de-
velopment, we use the 3000 sentences supplied by
WMT. For testing, we use a 1503-line trilingual sub-
set of the WMT test set.

For the single-source models, we follow the train-
ing procedure used in Luong et al. (2015b), but with
15 epochs and halving the learning rate every full
epoch after the 10th epoch. We also re-scale the
normalized gradient when norm > 5. For training,
we use a minibatch size of 128, a hidden state size
of 1000, and dropout as in Zaremba et al. (2014).
The dropout rate is 0.2, the initial parameter range
is [-0.1, +0.1], and the learning rate is 1.0. For the
normal and multi-source attention models, we ad-
just these parameters to 0.3, [-0.08, +0.08], and 0.7,
respectively, to adjust for overfitting.

Figure 4 shows our results for target English,
with source languages French and German. We see
that the Basic combination method yields a +4.8
Bleu improvement over the strongest single-source,
attention-based system. It also improves Bleu by
+2.2 over the non-attention baseline. The Child-
Sum method gives improvements of +4.4 and +1.4.
We confirm that two copies of the same French input
yields no BLEU improvement. Figure 5 shows the
action of the multi-attention model during decoding.

When our source languages are English and
French (Figure 6), we observe smaller BLEU gains
(up to +1.1). This is evidence that the more distinct
the source languages, the better they disambiguate
each other.

33

Figure 4: Multi-source MT for target English, with source lan-
guages French and German. Ppl reports test-set perplexity as
the system predicts English tokens. BLEU is scored using the
multi-bleu.perl script from Moses. For our evaluation we use a

single reference and they are case sensitive.

Source 1: UNK Aspekte sind ebenfalls wichtig .

Target:  UNK aspects are important, tQo .

Source 2: Les aspects UNK sont également importants .
Figure 5: Action of the multi-attention model as the neural

decoder generates target English from French/German sources

(test set). Lines show strengths of a:(s).

4 Conclusion

We describe a multi-source neural MT system that
gets up to +4.8 Bleu gains over a very strong
attention-based, single-source baseline. We ob-
tain this result through a novel encoder-vector com-
bination method and a novel multi-attention sys-
tem. We release the code for these experiments at
www.github.com/isi-nlp/Zoph_RNN.

Target = German
Source Method Ppl | BLEU
French — 12.3 10.6
English — 9.6 13.4
French+English | Basic 9.1 14.5
French+English | Child-Sum | 9.5 14.4
English Attention 7.3 17.6
French+English | B-Attent. 6.9 18.6
French+English | CS-Attent. | 7.1 18.2

Figure 6: Multi-source MT results for target German, with

source languages French and English.
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Abstract

Many languages use honorifics to express po-
liteness, social distance, or the relative so-
cial status between the speaker and their ad-
dressee(s). In machine translation from a lan-
guage without honorifics such as English, it
is difficult to predict the appropriate honorific,
but users may want to control the level of po-
liteness in the output. In this paper, we per-
form a pilot study to control honorifics in neu-
ral machine translation (NMT) via side con-
straints, focusing on English—German. We
show that by marking up the (English) source
side of the training data with a feature that en-
codes the use of honorifics on the (German)
target side, we can control the honorifics pro-
duced at test time. Experiments show that
the choice of honorifics has a big impact on
translation quality as measured by BLEU, and
oracle experiments show that substantial im-
provements are possible by constraining the
translation to the desired level of politeness.

1 Introduction

Many languages use honorifics to express polite-
ness, social distance, or the relative social status be-
tween the speaker and their addressee(s). A wide-
spread instance is the grammatical T-V distinction
(Brown and Gilman, 1960), distinguishing between
the familiar (Latin Tu) and the polite (Latin Vos)
second person pronoun. In machine translation from
a language without honorifics such as English, it
is difficult to predict the appropriate honorific, but
users may want to control the level of politeness in
the output.

The research presented in this publication was conducted in
cooperation with Samsung Electronics Polska sp. z 0.0. - Sam-
sung R&D Institute Poland.
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We propose a simple and effective method for in-
cluding target-side T-V annotation in the training of
a neural machine translation (NMT) system, which
allows us to control the level of politeness at test
time through what we call side constraints. It can be
applied for translation between languages where the
T-V distinction is missing from the source, or where
the distribution differs. For instance, both Swedish
and French make the T-V distinction, but reciprocal
use of T pronouns is more widespread in Swedish
than in French (Schiipbach et al., 2006). Hence, the
Swedish form is not a reliable signal for the appro-
priate form in the French translation (or vice-versa).

Our basic approach of using side constraints to
control target-side features that may be missing from
the source, or are unreliable because of a cate-
gory mismatch, is not limited to the T-V distinc-
tion, but could be applied to various linguistic fea-
tures. This includes grammatical features such as
tense and the number/gender of discourse partici-
pants, and more generally, features such as dialect
and register choice.

This paper has the following contributions:

» we describe rules to automatically annotate the
T-V distinction in German text.

* we describe how to use target-side T-V anno-
tation in NMT training to control the level of
politeness at test time via side constraints.

* we perform oracle experiments to demonstrate
the impact of controlling politeness in NMT.

2 Background: Neural Machine
Translation

Attentional neural machine translation (Bahdanau
et al.,, 2015) is the current state of the art for

Proceedings of NAACL-HLT 2016, pages 35-40,
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English—German (Jean et al., 2015b; Luong and
Manning, 2015). We follow the neural machine
translation architecture by Bahdanau et al. (2015),
which we will briefly summarize here. However, our
approach is not specific to this architecture.

The neural machine translation system is imple-
mented as an attentional encoder-decoder network.
The encoder is a bidirectional neural network with
gated recurrent units (Cho et al., 2014) that reads
an input sequence * = (x1, ..., Z;,) and calculates
a forward sequence of hidden states (h-{, ...,l?m),
and a backward sequence (h<_1, ey f;b) The hidden
states h_; and hi are concatenated to obtain the an-
notation vector h;.

The decoder is a recurrent neural network that
predicts a target sequence y = (y1,...,Yn). Each
word y; is predicted based on a recurrent hidden
state s;, the previously predicted word y;_1, and a
context vector ¢;. ¢; is computed as a weighted sum
of the annotations h;. The weight of each annota-
tion h; is computed through an alignment model ;;,
which models the probability that y; is aligned to x;.
The alignment model is a single-layer feedforward
neural network that is learned jointly with the rest of
the network through backpropagation.

A detailed description can be found in (Bahdanau
etal., 2015). Training is performed on a parallel cor-
pus with stochastic gradient descent. For translation,
a beam search with small beam size is employed.

3 NMT with Side Constraints

We are interested in machine translation for lan-
guage pairs where politeness is not grammatically
marked in the source text, but should be predicted in
the target text. The basic idea is to provide the neu-
ral network with additional input features that mark
side constraints such as politeness.

At training time, the correct feature is extracted
from the sentence pair as described in the following
section. At test time, we assume that the side con-
straint is provided by a user who selects the desired
level of politeness of the translation.

We add side constraints as special tokens at the
end of the source text, for instance <7> or <V>.
The attentional encoder-decoder framework is then
able to learn to pay attention to the side constraints.
One could envision alternative architectures to in-
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corporate side constraints, e.g. directly connecting
them to all decoder hidden states, bypassing the
attention model, or connecting them to the output
layer (Mikolov and Zweig, 2012). Our approach is
simple and applicable to a wide range of NMT ar-
chitectures and our experiments suggest that the in-
corporation of the side constraint as an extra source
token is very effective.

4 Automatic Training Set Annotation

Our approach relies on annotating politeness in the
training set to obtain the politeness feature which we
discussed previously. We choose a sentence-level
annotation because a target-side honorific may have
no word-level correspondence in the source. We will
discuss the annotation of German as an example,
but our method could be applied to other languages,
such as Japanese (Nariyama et al., 2005).

German has distinct pronoun forms for informal
and polite address, as shown in Table 1. A further
difference between informal and polite speech are
imperative verbs, and the original imperative forms
are considered informal. The polite alternative is to
use 3rd person plural forms with subject in position
2:

* Ruf mich zuriick. (informal)
(Call me back.)

* Rufen Sie mich zuriick. (polite)
(Call you me back.)

We automatically annotate politeness on a sen-
tence level with rules based on a morphosyntactic
annotation by ParZu (Sennrich et al., 2013). Sen-
tences containing imperative verbs are labelled in-
formal. Sentences containing an informal or polite
pronoun from Table 1 are labelled with the corre-
sponding class.

Some pronouns are ambiguous. Polite pronouns
are distinguished from (neutral) 3rd person plural
forms by their capitalization, and are ambiguous in
sentence-initial position. In sentence-initial posi-
tion, we consider them polite pronouns if the English
source side contains the pronoun you(r). For Ihr and
ihr, we use the morphological annotation by ParZu
to distinguish between the informal 2nd person plu-
ral nominative, the (neutral) 3rd person singular da-
tive, and the possessive; for possessive pronouns, we



category informal polite
sg. pl. sg./pl.
nominative du ihr Sie
genitive deiner euer Threr
dative dir euch Thnen
accusative dich euch Sie
possessive (base form) | dein euer Ihr

Table 1: German address pronouns.

distinguish between polite forms and (neutral) 3rd
person forms by their capitalization.

If a sentence matches rules for both classes, we
label it as informal — we found that our lowest-
precision rule is the annotation of sentence-initial
Sie. All sentences without a match are considered
neutral.

5 Evaluation

Our empirical research questions are as follows:

* can we control the production of honorifics in
neural machine translation via side constraints?

* how important is the T-V distinction for trans-
lation quality (as measured by BLEU)?

5.1 Data and Methods

We perform English—German experiments on
OpenSubtitles (Tiedemann, 2012)!, a parallel cor-
pus of movie subtitles. Machine translation is com-
monly used in the professional translation of movie
subtitles in a post-editing workflow, and politeness
is considered an open problem for subtitle transla-
tion (Etchegoyhen et al., 2014). We use OpenSub-
titles2012 as training corpus, and random samples
from OpenSubtitles2013 for testing. The training
corpus consists of of 5.58 million sentence pairs, out
of which we label 0.48 million sentence pairs as po-
lite, and 1.09 million as informal.

We train an attentional encoder-decoder NMT
system using Groundhog? (Bahdanau et al., 2015;
Jean et al., 2015a). We follow the settings and train-
ing procedure described by Sennrich et al. (2015),
using BPE to represent the texts with a fixed vocab-
ulary of subword units (vocabulary size 90000).

'nttp://www.opensubtitles.org
2github.com/sebastien-j/LV_groundhog
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The training set is annotated as described in sec-
tion 4, and the source side is marked with the po-
liteness feature as described in section 3. Note that
there are only two values for the politeness feature,