
NAACL HLT 2016

The 2016 Conference of the
North American Chapter of the

Association for Computational Linguistics:
Human Language Technologies

Proceedings of the Conference

June 12-17, 2016
San Diego, California, USA

Platinum

Gold

Silver

Bronze

Supporter

ii

c©2016 The Association for Computational Linguistics

Logo design by Mark Klingsporn

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-941643-91-4

iii

Message from the General Chair

Greetings,

Welcome to NAACL HLT 2016! This year’s conference is held in San Diego, California, where we
have assembled an exciting program of computational linguistics research.

The main program features a wide array of topics, and it includes excellent invited talks by Prof. Regina
Barzilay and Prof. Ehud Reiter. In addition, we have six tutorials on the day before the main program,
plus fifteen workshops on the following two days. Some of these workshops are back for their 10th
or 11th incarnation, while others are brand-new. In parallel, we have a live demonstration track, and a
Student Research Workshop that showcases work by the junior members of our research community.

This NAACL HLT meeting takes place only through the hard work of many people who deserve our
gratitude.

Thanks to Priscilla Rasmussen for making local arrangements, handling registration, setting up social
events, writing visa invitation letters, and solving a myriad of issues. Priscilla, your experience is a
great asset to any conference!

The NAACL HLT organizing committee took all the steps to bring you a great conference. Many
thanks to Ani Nenkova and Owen Rambow (Program Co-chairs), Mohit Bansal and Alexander M. Rush
(Tutorial Co-chairs), Radu Soricut and Adrià de Gispert (Workshop Co-chairs), Jacob Andreas, Eunsol
Choi, and Angeliki Lazaridou (Student Research Workshop Co-Chairs) and their faculty advisors
Jacob Eisenstein and Nianwen Xue, Aliya Deri (Student Volunteer Coordinator), Julie Medero (Local
Sponsorship Chair), Mark Finlayson, Sravana Reddy, and John DeNero (Demonstration Co-chairs),
Adam Lopez and Margaret Mitchell (Publications Co-chairs), Jason Riesa (Website Chair), Wei Xu
(Publicity Chair), and Jonathan May (Social Media Chair).

Thanks also to the NAACL Board for providing excellent advice, and thanks to previous chairs for their
suggestions and timelines.

Sponsors of NAACL HLT 2016 include Baidu and Google (Platinum Sponsors), Amazon, Bloomberg,
eBay, Microsoft Research, and UnitedHealth Group (Gold Sponsors), Huawei (Silver Sponsors), Civis
Analytics, Facebook, @newsela, and Nuance (Bronze Sponsors), and the University of Washington
(Supporter). Thanks for your extremely valuable contributions!

Finally, thanks to the scientists, engineers, authors, and attendees who come to share and learn at this
leading venue for computational linguistics research!

Kevin Knight
Information Sciences Institute, University of Southern California
NAACL HLT 2016 General Chair

iv

Message from the Program Co-Chairs

Welcome to San Diego for the 15th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies!

The conference has grown remarkably in the past five years: we had 698 submissions this year, despite
our deadline right after the end-of-the-year holidays. As we worked on organizing the conference
program, we made many changes to reflect the growth of the NAACL community, the increasing
diversity of topics covered by the field, and the acceleration of the pace of the publication cycle.

We had a record short time between paper submission and author notification—less than two months.
We settled on such compressed timeline in order to avoid spreading the reviewing period over the winter
holidays, to ensure that papers spend only a short time under submission, and to coordinate submission
deadlines with ACL. Our incredible team of area chairs and reviewers ensured that the planned schedule
went smoothly.

As the computational linguistics field has expanded, it has become increasingly difficult to recruit a
sufficient number of knowledgeable reviewers. We decided to reach out to the largest possible pool
of computational linguists and provide convenient ways for the area chairs to control which reviewers
they end up working with: we invited all researchers actively working in the area of computational
linguistics/language processing to review for the conference. We defined “active researchers” to be
those who have published at least five papers in the last ten years in the ACL, NAACL, EMNLP, EACL
or COLING conferences. In order to be inclusive of the amazing young researchers who became active
in the field only more recently, we also included everyone who had published at least three papers in the
same venues for the last five years. This yielded a list of over 1,400 researchers that we invited to serve
as reviewers for the conference. Of these, 685 agreed and participated in the review process. This is
another record for NAACL HLT 2016, no previous NAACL has had such a large program committee.
Among these, the area chairs recognized 120 as best reviewers.

Working with the reviewers were the 42 area chairs. We asked the area chairs to work in pairs, so they
can have a back-up in case other obligations need their attention during the review period and to ensure
that all decisions about reviewer assignment and paper recommendation are discussed in detail. All
area chairs and reviewers submitted a list of keywords that describe their area of expertise (the full list
appears in the conference call for papers). The area chairs were paired based on the keyword overlap.

To match reviewers to area chairs, we used a bidding system. For bidding, each area received a list of
the 140 reviewers with best matching keyword profiles. If the area chairs did not know the work of a
potential reviewer on their bidding list, they looked him or her up on DBLP or Google Scholar before
making their final bid. Areas were assigned only reviewers for which the area chairs bid positively.
Area chairs were free as usual to recruit additional reviewers they wished to work with.

Submissions were assigned to areas by taking into account the match between the paper keywords and
the area chair keywords. Areas were capped at 40 submissions maximum (long and short combined).
As in the past, reviewers bid on papers they wanted to review. 69% of the reviews were written by
reviewers who had bid indicating that they want to review the paper; 29% of the reviews were written
by reviewers who had bid indicating they are ok with reviewing the paper. The remaining 2% of reviews

v

were written by reviewers who did not bid on the paper but were asked by an area chair to review it.
Three reviewers were assigned a paper that they did not want to review according to their bid. The
average reviewer load was 3 papers, which included a mix of long and short submissions. Only 43
reviewers had more than four papers to review.

Area chairs wrote meta-reviews, for use only by us, justifying their accept/reject recommendation.
In making difficult decisions, we drew on these meta-reviews, the reviews themselves, the discussion
among the reviewers, and the author response to the initial reviews.

We are happy with our changes to the review process: area chairs had control over the reviewers they
worked with, reviewers were assigned papers they wanted to review and the overall reviewing load was
low. Needless to say, there is room for further improvements. The reviewing process is crucial to the
quality of this conference; only if the community has confidence in the quality of the reviewing process
will this conference continue to be a leading conference in our field. Our goal has been to make sure
that every single submission receives a complete and fair review and decision, and to make sure that
the authors of every single submission understand why their paper was accepted or declined for the
conference. We would like to thank our 685 reviewers, and we would especially like to thank our 42
area chairs, who were patient in allowing us to pursue some of the innovative aspects of this year’s
reviewing cycle.

Eighteen of the 698 initial submissions were withdrawn by the authors or rejected without review
because of formatting violations. A total of 396 long and 284 short papers underwent review; 100 long
and 82 short papers were accepted, for an acceptance rate of 25% and 29% respectively. In addition,
ten TACL papers will be presented at the conference.

This year we decided to have shorter slots for oral presentations, in order to have more of the accepted
papers presented as talks. In the program, long papers are allotted 20-minute slots (15 min presentation
+ 5 min questions). Short papers are allotted 10-minute slots (6 min presentation + 4 min questions).

The best paper award committee consisted of NAACL general and program chairs from the last three
years. Not all past chairs could participate in the selection. The final best paper committee included
Joyce Chai, Katrin Kirchhoff, Rada Mihalcea, Kristina Toutanova, Lucy Vanderwende and Hua Wu.
They selected two best long papers and one best short paper, along with two runner-ups in each category.

Best Short Paper
Improving sentence compression by learning to predict gaze
Sigrid Klerke, Yoav Goldberg and Anders Søgaard

Short Paper, Runners Up
Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
Kyle Booten and Marti A. Hearst

A Joint Model of Orthography and Morphological Segmentation
Ryan Cotterell, Tim Vieira and Hinrich Schütze

Best Long Papers
Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships
Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber and Hal Daumé III

vi

Learning to Compose Neural Networks for Question Answering
Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein

Long Paper, Runners Up
Multi-way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
Orhan Firat, Kyunghyun Cho and Yoshua Bengio

Black Holes and White Rabbits: Metaphor Identification with Visual Features
Ekaterina Shutova, Douwe Kiela and Jean Maillard

The conference program includes two inspiring invited talks by Regina Barzilay and Ehud Reiter. Both
push the boundaries of the field, discussing the potential for real-world impact of language technologies.

Finally we would like to thank all other people who supported us in the past year in our work for
NAACL HLT 2016. Last year’s program chairs, Anoop Sarkar and Joyce Chai shared their valuable
advice and promptly answered the many questions we had throughout the process. The NAACL board
chair for 2015 (Hal Daumé III) and 2016 (Emily Bender) were our effective link with the NAACL
board. The conference general chair, Kevin Knight, was always available to us when we needed to
consult about decisions we were making. The conference business manager, Priscilla Rasmussen,
gave us details about the venue and coordinated with us at the final stages of making the conference
schedule. The ACL treasurer, Greame Hirst, answered questions about the venue. The conference
webmaster, Jason Riesa, put content on the conference webpage as soon as we made it available to him.
The publication chairs, Meg Mitchell and Adam Lopez, answered all lingering author questions about
formatting for submission and final versions. Many talks to all of them!

We look forward to an exciting conference!

NAACL HLT 2016 Program Co-Chairs
Ani Nenkova, University of Pennsylvania
Owen Rambow, Columbia University

vii

Organizing Committee

General Chair
Kevin Knight, USC Information Sciences Institute

Program Co-chairs
Ani Nenkova, University of Pennsylvania
Owen Rambow, Columbia University

Workshop Co-chairs
Radu Soricut, Google
Adrià de Gispert, SDL

Local Sponsorship Chair
Julie Medero, Harvey Mudd College

Tutorial Co-chairs
Mohit Bansal, TTI Chicago
Alexander M. Rush, Harvard University

Demonstration Co-chairs
Mark Finlayson, Florida International University
Sravana Reddy, Wellesley College
John DeNero, University of California, Berkeley

Publication Co-chairs
Adam Lopez, University of Edinburgh
Margaret Mitchell, Microsoft Research

Local Arrangements Chair
Priscilla Rasmussen, ACL Business Manager

Student Research Workshop Co-chairs
Student Co-chairs

Jacob Andreas, University of California, Berkeley
Eunsol Choi, University of Washington
Angeliki Lazaridou, University of Trento

Faculty Advisors
Jacob Eisenstein, Georgia Tech
Nianwen Xue, Brandeis University

Publicity Chair
Wei Xu, University of Pennsylvania

Social Media Chair
Jonathan May, USC Information Sciences Institute

ix

Website Chair
Jason Riesa, Google

Student Volunteer Coordinator
Aliya Deri, USC Information Sciences Institute

x

Program Committee

Program Co-chairs
Ani Nenkova, University of Pennsylvania
Owen Rambow, Columbia University

Area Chairs
Mohit Bansal, TTI-Chicago
Regina Barzilay, MIT
Eduardo Blanco, University of North Texas
Asli Celikyilmaz, Microsoft
Cristian Danescu-Niculescu-Mizil, Cornell University
Markus Dreyer, Amazon
Chris Dyer, Carnegie Mellon University
Jacob Eisenstein, Georgia Institute of Technology
Micha Elsner, The Ohio State University
Eric Fosler-Lussier, The Ohio State University
Alexander Fraser, University of Munich
Michel Galley, Microsoft Research
Kevin Gimpel, Toyota Technological Institute at Chicago
Dilek Hakkani-Tür, Microsoft Research
Helen Hastie, Heriot-Watt University
Yulan He, Aston University
Dirk Hovy, University of Copenhagen
Heng Ji, Rensselaer Polytechnic Institute
Jing Jiang, Singapore Management University
Annie Louis, University of Essex
Chin-Yew Lin, Microsoft Research
Daniel Marcu, Information Sciences Institute, University of Southern California
Margaret Mitchell, Microsoft Research
Alessandro Moschitti, Qatar Computing Research Institute, HBKU
Hwee Tou Ng, National University of Singapore
Viet-An Nguyen, Facebook
Mari Ostendorf, University of Washington
Marius Pasca, Google
Slav Petrov, Google
Dan Roth, University of Illinois
Alexander Rush, Harvard University
Kenji Sagae, KITT.AI
Giorgio Satta, University of Padua
Hinrich Schuetze, LMU Munich
William Schuler, the Ohio State University
Mihai Surdeanu, University of Arizona
Kristina Toutanova, Microsoft Research
Byron Wallace, University of Texas at Austin

xi

Xiaojun Wan, Peking University
Furu Wei, Microsoft Research
Dekai Wu, Hong Kong University of Science and Technology
Fei Xia, University of Washington

xii

Reviewers

Omri Abend, Amjad Abu-Jbara, Apoorv Agarwal, Eneko Agirre, Željko Agić, Ahmet Aker, Yaser
Al-Onaizan, Nikolaos Aletras, Enrique Alfonseca, Alexandre Allauzen, Silvio Amir, Waleed Ammar,
Sophia Ananiadou, Daniel Andrade, Jacob Andreas, Nicholas Andrews, Ion Androutsopoulos, Gabor
Angeli, Emilia Apostolova, Yoav Artzi, Masayuki Asahara, Nicholas Asher, Necip Fazil Ayan.

Tyler Baldwin, Miguel Ballesteros, David Bamman, Rafael E. Banchs, Ritwik Banerjee, Srinivas Ban-
galore, Denilson Barbosa, Marco Baroni, Alberto Barrón-Cedeño, Roberto Basili, Daniel Bauer, Beata
Beigman Klebanov, Charley Beller, Emily M. Bender, Taylor Berg-Kirkpatrick, Raffaella Bernardi,
Steven Bethard, Klinton Bicknell, Chris Biemann, Ann Bies, Or Biran, Alexandra Birch, Arianna
Bisazza, Yonatan Bisk, Prakhar Biyani, Graeme Blackwood, Eduardo Blanco, Bernd Bohnet, Ondřej
Bojar, Gemma Boleda, Danushka Bollegala, Kalina Bontcheva, Johan Bos, Florian Boudin, Fethi
Bougares, David Bracewell, Fabienne Braune, Ted Briscoe, Chris Brockett, Julian Brooke, Paul Buite-
laar, David Burkett, Jill Burstein, Benjamin Börschinger.

Aoife Cahill, Chris Callison-Burch, José Camacho-Collados, Marie Candito, Yunbo Cao, Ziqiang Cao,
Fabienne Cap, Cornelia Caragea, John Carroll, Francisco Casacuberta, Taylor Cassidy, Vittorio Castelli,
Daniel Cer, Joyce Chai, Yllias Chali, Nathanael Chambers, Kai-Wei Chang, Ming-Wei Chang, Angel
Chang, Wanxiang Che, Chen Chen, Bin Chen, Boxing Chen, Yun-Nung Chen, Hsin-Hsi Chen, Xinchi
Chen, Zhiyuan Chen, Qingcai Chen, Yubo Chen, Wenliang Chen, Colin Cherry, Jackie Chi Kit Che-
ung, David Chiang, Hai Leong Chieu, Laura Chiticariu, Do Kook Choe, Yejin Choi, Jinho D. Choi,
Sumit Chopra, Christos Christodoulopoulos, Grzegorz Chrupała, Jason Chuang, Tagyoung Chung,
Ken Church, Philipp Cimiano, Alina Maria Ciobanu, Jonathan Clark, Martin Cmejrek, Shay B. Co-
hen, Trevor Cohn, Nigel Collier, Matthieu Constant, Paul Cook, Marta R. Costa-jussà, Ryan Cotterell,
Benoit Crabbé, Danilo Croce, Heriberto Cuayahuitl.

Jennifer D’Souza, Giovanni Da San Martino, Daniel Dahlmeier, Cristian Danescu-Niculescu-Mizil,
Falavigna Daniele, Kareem Darwish, Dipanjan Das, Pradeep Dasigi, Hal Daumé III, Johannes Daxen-
berger, Adrià de Gispert, Eric De La Clergerie, Marie-Catherine de Marneffe, Gerard de Melo, Luciano
Del Corro, Vera Demberg, John DeNero, Lingjia Deng, Li Deng, Pascal Denis, Tejaswini Deoskar,
José G. C. de Souza, Nina Dethlefs, Jacob Devlin, Barbara Di Eugenio, Mona Diab, Liviu P. Dinu,
Georgiana Dinu, Jesse Dodge, Li Dong, Daxiang Dong, Doug Downey, Gabriel Doyle, Mark Dras, Lan
Du, Nan Duan, Kevin Duh, Long Duong, Nadir Durrani, Greg Durrett, Marc Dymetman.

Judith Eckle-Kohler, Steffen Eger, Vladimir Eidelman, Jason Eisner, Michael Elhadad, Desmond El-
liott, Ramy Eskander.

James Fan, Hao Fang, Stefano Faralli, Richárd Farkas, Manaal Faruqui, Marcello Federico, Minwei
Feng, Yansong Feng, Francis Ferraro, Olivier Ferret, Simone Filice, Katja Filippova, Radu Florian,
Mikel Forcada, George Foster, James Foulds, Lea Frermann, Annemarie Friedrich, Akinori Fujino,
Fumiyo Fukumoto.

Robert Gaizauskas, Kuzman Ganchev, Debasis Ganguly, Jianfeng Gao, Claire Gardent, Matt Gardner,
Dan Garrette, Guillermo Garrido, Milica Gasic, Tao Ge, Dmitriy Genzel, Ulrich Germann, Daniel
Gildea, Lee Giles, Alfio Gliozzo, Yoav Goldberg, Dan Goldwasser, Isao Goto, Pawan Goyal, Yvette
Graham, Edouard Grave, Weiwei Guo, Yufan Guo, Jiang Guo, Hongyu Guo, Iryna Gurevych, Francisco

xiii

Guzmàn, Carlos Gómez-Rodríguez.

Barry Haddow, Matthias Hagen, Udo Hahn, John Hale, David Hall, Keith Hall, Xianpei Han, Sanda
Harabagiu, Christian Hardmeier, Kazi Saidul Hasan, Sadid A. Hasan, Mohammed Hasanuzzaman,
Hany Hassan, Hua He, He He, Yifan He, Zhongjun He, Kenneth Heafield, Michael Heilman, Karl
Moritz Hermann, Ulf Hermjakob, Felix Hieber, Ryuichiro Higashinaka, Erhard Hinrichs, Tsutomu Hi-
rao, Kai Hong, Yu Hong, Mark Hopkins, Yufang Hou, Yuening Hu, Ruihong Huang, Hen-Hsen Huang,
Songfang Huang, Minlie Huang, Xuanjing Huang, Shujian Huang, Fei Huang, Hongzhao Huang, Mans
Hulden, Rebecca Hwa, Seung-won Hwang.

Ryu Iida, Kenji Imamura, Abe Ittycheriah, Mohit Iyyer.

Minwoo Jeong, Rahul Jha, Yangfeng Ji, Donghong Ji, Wenbin Jiang, Hui Jiang, Anders Johannsen,
Richard Johansson, Gareth Jones, Mahesh Joshi, Shafiq Joty, Dan Jurafsky, David Jurgens.

Nobuhiro Kaji, Min-Yen Kan, Dimitri Kartsaklis, David Kauchak, Daisuke Kawahara, Anna Kazant-
seva, Simon Keizer, Frank Keller, Casey Kennington, Mitesh M. Khapra, Douwe Kiela, Seokhwan Kim,
Young-Bum Kim, Katrin Kirchhoff, Svetlana Kiritchenko, Dietrich Klakow, Alexandre Klementiev,
Julien Kloetzer, Kevin Knight, Hayato Kobayashi, Philipp Koehn, Varada Kolhatkar, Mamoru Komachi,
Grzegorz Kondrak, Lingpeng Kong, Fang Kong, Ioannis Konstas, Valia Kordoni, Anna Korhonen, Yan-
nis Korkontzelos, Zornitsa Kozareva, Mikhail Kozhevnikov, Emiel Krahmer, Jayant Krishnamurthy,
Marco Kuhlmann, Roland Kuhn, Shankar Kumar, Jonathan K. Kummerfeld, Sadao Kurohashi.

Siwei Lai, Wai Lam, Vasileios Lampos, Phillippe Langlais, Ni Lao, Mirella Lapata, Jey Han Lau, An-
geliki Lazaridou, Joseph Le Roux, Kenton Lee, John Lee, Young-Suk Lee, Tao Lei, Johannes Leveling,
Tomer Levinboim, Rivka Levitan, Omer Levy, Mike Lewis, Peifeng Li, Xiaoli Li, Junhui Li, Hang Li,
Sheng Li, Yanran Li, Binyang Li, Chen Li, Fangtao Li, Junyi Jessy Li, Jiwei Li, Peng Li, Chin-Yew Lin,
Chu-Cheng Lin, Wang Ling, Diane Litman, Marina Litvak, Bing Liu, Yang Liu, Shujie Liu, Kang Liu,
Ting Liu, Qun Liu, Chi-kiu Lo, Adam Lopez, Wei Lu, Michal Lukasik, Xiaoqiang Luo, Minh-Thang
Luong.

Yanjun Ma, Xuezhe Ma, Ji Ma, Wolfgang Macherey, Klaus Macherey, Nitin Madnani, Wolfgang Maier,
Andreas Maletti, Suresh Manandhar, Christopher D. Manning, David Mareček, Benjamin Marie, Katja
Markert, André F. T. Martins, Yuval Marton, Shigeki Matsubara, Mausam, Jonathan May, Diana Mc-
Carthy, David McClosky, Ryan McDonald, Kathy McKeown, Yashar Mehdad, Oren Melamud, Arul
Menezes, Fandong Meng, Haitao Mi, Rada Mihalcea, Timothy Miller, Bonan Min, Einat Minkov, Mar-
garet Mitchell, Prasenjit Mitra, Makoto Miwa, Daichi Mochihashi, Behrang Mohit, Christof Monz,
Raymond Mooney, Shinsuke Mori, Véronique Moriceau, Emmanuel Morin, Hajime Morita, Lili Mou,
Arjun Mukherjee, Philippe Muller, Dragos Munteanu, Yugo Murawaki, Brian Murphy.

Masaaki Nagata, Ajay Nagesh, Iftekhar Naim, Ndapandula Nakashole, Preslav Nakov, Karthik Narasimhan,
Shashi Narayan, Alexis Nasr, Roberto Navigli, Mark-Jan Nederhof, Arvind Neelakantan, Matteo Ne-
gri, Graham Neubig, Vincent Ng, Raymond W. M. Ng, Jun-Ping Ng, Dominick Ng, Dong Nguyen,
Thien Huu Nguyen, Garrett Nicolai, Massimo Nicosia, Vlad Niculae, Jian-Yun Nie, Hitoshi Nishikawa,
Joakim Nivre, Hiroshi Noji, Joel Nothman.

Timothy O’Donnell, Stephan Oepen, Kemal Oflazer, Jong-Hoon Oh, Kiyonori Ohtake, Naoaki Okazaki,
Manabu Okumura, Noam Ordan, Vicente Ordonez, Miles Osborne, Myle Ott, Cecilia Ovesdotter Alm.

xiv

Martha Palmer, Siddharth Patwardhan, Michael J. Paul, Adam Pauls, Ellie Pavlick, Gerald Penn, Marco
Pennacchiotti, Nghia The Pham, Daniele Pighin, Mohammad Taher Pilehvar, Barbara Plank, Tamara
Polajnar, Simone Paolo Ponzetto, Andrei Popescu-Belis, Matt Post, Christopher Potts, Vinodkumar
Prabhakaran, Daniel Preoţiuc-Pietro, Emily Prud’hommeaux, Matthew Purver.

Ashequl Qadir, Behrang QasemiZadeh, Longhua Qian, Xian Qian, Lu Qin, Chris Quirk.

Will Radford, Preethi Raghavan, Altaf Rahman, Rohan Ramanath, Vivek Kumar Rangarajan Sridhar,
Ari Rappoport, Mohammad Sadegh Rasooli, Marta Recasens, Sravana Reddy, Roi Reichart, Sebastian
Riedel, Martin Riedl, Jason Riesa, Verena Rieser, Stefan Riezler, German Rigau, Michael Riley, Ellen
Riloff, Eric Ringger, Alan Ritter, Brian Roark, Stephen Roller, Sophie Rosset, Paolo Rosso, Michael
Roth, Benjamin Roth, Johann Roturier, Alla Rozovskaya, Josef Ruppenhofer.

Kugatsu Sadamitsu, Markus Saers, Kenji Sagae, Horacio Saggion, Benoît Sagot, Hassan Sajjad, Bahar
Salehi, Avneesh Saluja, Ruhi Sarikaya, Anoop Sarkar, Ryohei Sasano, Asad Sayeed, Christian Scheible,
Helmut Schmid, Sabine Schulte im Walde, Roy Schwartz, Wolfgang Seeker, Nina Seemann, Satoshi
Sekine, Rico Sennrich, Hendra Setiawan, Izhak Shafran, Shuming Shi, Hiroyuki Shindo, Eyal Shnarch,
Ekaterina Shutova, Maryam Siahbani, Carina Silberer, Khe Chai Sim, Yanchuan Sim, Khalil Sima’an,
Sameer Singh, Noam Slonim, Jan Šnajder Thamar Solorio, Hyun-Je Song, Xuan Song, Radu Soricut,
Aitor Soroa, Lucia Specia, Caroline Sporleder, Richard Sproat, Vivek Srikumar, Asher Stern, Mark
Stevenson, Veselin Stoyanov, Carlo Strapparava, Karl Stratos, Tomek Strzalkowski, Jinsong Su, Keh-
Yih Su, Amarnag Subramanya, Xu Sun, Yoshimi Suzuki, Jun Suzuki, Hisami Suzuki, Stan Szpakowicz,
Anders Søgaard.

Hiroya Takamura, David Talbot, Partha Talukdar, Akihiro Tamura, Chenhao Tan, Xavier Tannier, Joel
Tetreault, Kapil Thadani, Stefan Thater, Sam Thomson, Jörg Tiedemann, Ivan Titov, Tomoki Toda,
Marc Tomlinson, Sara Tonelli, Kentaro Torisawa, Isabel Trancoso, Reut Tsarfaty, Yoshimasa Tsuruoka,
Yulia Tsvetkov, Zhaopeng Tu, Marco Turchi, Ferhan Ture, Oscar Täckström.

Kiyotaka Uchimoto, Raghavendra Udupa, Lyle Ungar, Masao Utiyama.

Tim Van de Cruys, Lonneke van der Plas, Benjamin Van Durme, Marten van Schijndel, Lucy Vander-
wende, Ashish Vaswani, Sriram Venkatapathy, David Vilar, Martin Villalba, Veronika Vincze, Andreas
Vlachos, Svitlana Volkova, Clare Voss, Ivan Vulić.

Henning Wachsmuth, Marilyn Walker, Tong Wang, Xiaolin Wang, Baoxun Wang, Yiou Wang, Zhiguo
Wang, Zhongqing Wang, William Yang Wang, Chang Wang, Hongning Wang, Leo Wanner, Taro
Watanabe, Andy Way, Wouter Weerkamp, Zhongyu Wei, Gerhard Weikum, David Weir, Michael
White, Michael Wiegand, Theresa Wilson, Shuly Wintner, Guillaume Wisniewski, Travis Wolfe, Kam-
Fai Wong, Jian Wu, Hua Wu, Joern Wuebker.

Rui Xia, Bing Xiang, Min Xiao, Xinyan Xiao, Tong Xiao, Shasha Xie, Deyi Xiong, Ruifeng Xu,
Wenduan Xu.

Ichiro Yamada, Elif Yamangil, Bishan Yang, Diyi Yang, Yaqin Yang, Min Yang, Wen-tau Yih, Wenpeng
Yin, Dani Yogatama, Naoki Yoshinaga, Dianhai Yu, Liang-Chih Yu, Dian Yu, Mo Yu, François Yvon.

Roberto Zamparelli, Fabio Massimo Zanzotto, Klaus Zechner, Daojian Zeng, Xiaodong Zeng, Richard
Zens, Torsten Zesch, Luke Zettlemoyer, Feifei Zhai, Jiajun Zhang, Wei Zhang, Min Zhang, Dongdong

xv

Zhang, Jianwen Zhang, Congle Zhang, Yongfeng Zhang, Dongyan Zhao, Bing Zhao, Yaqian Zhou,
Muhua Zhu, Imed Zitouni, Chengqing Zong, Bowei Zou, Diarmuid Ó Séaghdha, Gözde Özbal.

xvi

Best Reviewers

Yaser Al-Onaizan, Enrique Alfonseca, Daniel Andrade, Jacob Andreas, Ion Androutsopoulos, Gabor
Angeli.

David Bamman, Ritmiek Banerjee, Emily Bender, Taylor Berg-Kirkpatrick, Chris Biemann, Arianna
Bisazza, Graeme Blackwood, Gemma Boleda, Florian Boudin.

Jose Camacho-Collados, Marie Candito, Taylor Cassidy, Colin Cherry, Christos Christodopoulos, Alina
Maria Ciobanu, Jon Clark, Trevor Cohn, Danilo Croce.

Hal Daumé III, Marie-Catherine de Marneffe, Jose G. C. de Souza, John DeNero, Jacob Devlin, Doug
Downey, Gabe Doyle, Mark Dras, Greg Durrett.

Steffen Eger, Jason Eisner, Michael Elhadad.

Francis Ferraro, Mikel Forcada, James Foulds.

Matt Gardner, Dan Garrette, Yvette Graham, Dmitriy Genzel.

Barry Haddow, Matthias Hagen, David Hall, Mohammed Hasanuzzaman, Kai Hong.

Mohit Iyyer.

Yangfeng Ji, Anders Johannsen, Mahesh Joshi, Dan Jurafsky.

Dimitri Karsaklis, Daisuke Kawahara, Alexandre Klementiev, Grzegorz Kondrak, Ioannis Konstas,
Yannis Korkontzelos, Roland Kuhn, Shankar Kumar, Jonathan K. Kummerfeld.

Tomer Levinboim, Rivka Levitan, Omer Levy, Junyi Jessy Li.

Klaus Macherey, Wolfgang Macherey, Wolfgang Maier, Andreas Maletti, Christopher D. Manning,
Diana McCarthy, David McClosky, Lili Mou, Philippe Muller, Dragos Munteanu, Yugo Murawaki.

Masaki Nagaata, Ajay Nagesh, Mark-Jan Nederhof, Dominick Ng, Vincent Ng, Vlad Niculae, Jian-Yin
Nie, Joel Nothman.

Stephan Oepen, Myle Ott.

Adam Pauls, Daniele Pighin, Andrei Popescu Belis, Matt Post, Vinod Prabhakaran, Matt Purver.

Ashequl Qadir.

Rohan Ramanath, Jason Riesa, Verena Rieser, Eric Ringger, Brian Roark, Stephen Roller, Sophie Ros-
set.

Wolfgang Seeker, Thamar Solorio, Vivek Kumar Rangarajan Sridhar, Vivek Srikumar, Jun Suzuki.

Akihiro Tamura, Joel Tetreault, Kapil Thadani, Ivan Titov, Marco Turchi.

Raghavendra Udupa.

xvii

Clare Voss, Ivan Vulic.

Henning Wachsmuth, Marilyn Walker, Taro Watanabe, Wouter Weerkamp, Michael Wiegand.

Min Yang.

xviii

Invited Talk: How can NLP help cure cancer?
Regina Barzilay

Massachusetts Institute of Technology

Abstract

Cancer inflicts a heavy toll on our society. One out of seven women will be diagnosed with breast cancer
during their lifetime, a fraction of them contributing to about 450,000 deaths annually worldwide.
Despite billions of dollars invested in cancer research, our understanding of the disease, treatment, and
prevention is still limited.

Majority of cancer research today takes place in biology and medicine. Computer science plays a minor
supporting role in this process if at all. In this talk, I hope to convince you that NLP as a field has a
chance to play a significant role in this battle. Indeed, free-form text remains the primary means by
which physicians record their observations and clinical findings. Unfortunately, this rich source of
textual information is severely underutilized by predictive models in oncology. Current models rely
primarily only on structured data.

In the first part of my talk, I will describe a number of tasks where NLP-based models can make a
difference in clinical practice. For example, these include improving models of disease progression,
preventing over-treatment, and narrowing down to the cure. This part of the talk draws on active col-
laborations with oncologists from Massachusetts General Hospital (MGH).

In the second part of the talk, I will push beyond standard tools, introducing new functionalities and
avoiding annotation-hungry training paradigms ill-suited for clinical practice. In particular, I will focus
on interpretable neural models that provide rationales underlying their predictions, and semi-supervised
methods for information extraction.

Biography

Regina Barzilay is a professor in the Department of Electrical Engineering and Computer Science and
a member of the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute
of Technology. Her research interests are in natural language processing. She is a recipient of various
awards including of the NSF Career Award, the MIT Technology Review TR-35 Award, Microsoft
Faculty Fellowship and several Best Paper Awards at NAACL and ACL. She received her Ph.D. in
Computer Science from Columbia University, and spent a year as a postdoc at Cornell University.

xix

Invited Talk: Evaluating Natural Language Generation Systems
Ehud Reitter

University of Aberdeen and Arria NLG

Abstract

Natural Language Generation (NLG) systems have different characteristics than other NLP systems,
which effects how they are evaluated. In particular, it can be difficult to meaningfully evaluate NLG
texts by comparing them against gold- standard reference texts, because (A) there are usually many
possible texts which are acceptable to users and (B) some NLG systems produce texts which are better
(as judged by human users) than human-written corpus texts. Partially because of these reasons, the
NLG community places much more emphasis on human-based evaluations than most areas of NLP.

I will discuss the various ways in which NLG systems are evaluated, focusing on human-based evalua-
tions. These typically either measure the success of generated texts at achieving a goal (eg, measuring
how many people change their behaviour after reading behaviour-change texts produced by an NLG
system); or ask human subjects to rate various aspects of generated texts (such as readability, accuracy,
and appropriateness), often on Likert scales. I will use examples from evaluations I have carried out,
and highlight some of the lessons I have learnt, including the importance of reporting negative results,
the difference between laboratory and real-world evaluations, and the need to look at worse-case as
well as average-case performance. I hope my talk will be interesting and relevant to anyone who is
interested in the evaluation of NLP systems.

Biography

Ehud Reiter is a Professor of Computing Science at the University of Aberdeen and also Chief Scientist
of Arria NLG. He has worked on natural language generation for the past 30 years, on methodology
(including evaluation) and resources as well as algorithms, and is one of the most cited authors in NLG.
His 2000 book Building Natural Language Generation Systems is widely used as an NLG textbook.
Dr Reiter currently spends most of his time trying to commercialise NLG at Arria (one of the largest
specialist NLG companies), which grew out of a startup he cofounded in 2009.

xx

Table of Contents

Achieving Accurate Conclusions in Evaluation of Automatic Machine Translation Metrics
Yvette Graham and Qun Liu . 1

Flexible Non-Terminals for Dependency Tree-to-Tree Reordering
John Richardson, Fabien Cromierès, Toshiaki Nakazawa and Sadao Kurohashi 11

Selecting Syntactic, Non-redundant Segments in Active Learning for Machine Translation
Akiva Miura, Graham Neubig, Michael Paul and Satoshi Nakamura . 20

Multi-Source Neural Translation
Barret Zoph and Kevin Knight . 30

Controlling Politeness in Neural Machine Translation via Side Constraints
Rico Sennrich, Barry Haddow and Alexandra Birch . 35

An Empirical Evaluation of Noise Contrastive Estimation for the Neural Network Joint Model of Trans-
lation

Colin Cherry . 41

Neural Network-Based Abstract Generation for Opinions and Arguments
Lu Wang and Wang Ling . 47

A Low-Rank Approximation Approach to Learning Joint Embeddings of News Stories and Images for
Timeline Summarization

William Yang Wang, Yashar Mehdad, Dragomir R. Radev and Amanda Stent 58

Entity-balanced Gaussian pLSA for Automated Comparison
Danish Contractor, Parag Singla and Mausam . 69

Automatic Summarization of Student Course Feedback
Wencan Luo, Fei Liu, Zitao Liu and Diane Litman . 80

Knowledge-Guided Linguistic Rewrites for Inference Rule Verification
Prachi Jain and Mausam. .86

Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
Sumit Chopra, Michael Auli and Alexander M. Rush . 93

Integer Linear Programming for Discourse Parsing
Jérémy Perret, Stergos Afantenos, Nicholas Asher and Mathieu Morey . 99

A Diversity-Promoting Objective Function for Neural Conversation Models
Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao and Bill Dolan . 110

xxi

Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona, Pei-Hao Su, David

Vandyke and Steve Young . 120

A Long Short-Term Memory Framework for Predicting Humor in Dialogues
Dario Bertero and Pascale Fung . 130

Conversational Flow in Oxford-style Debates
Justine Zhang, Ravi Kumar, Sujith Ravi and Cristian Danescu-Niculescu-Mizil 136

Counter-fitting Word Vectors to Linguistic Constraints
Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M. Rojas-Barahona,

Pei-Hao Su, David Vandyke, Tsung-Hsien Wen and Steve Young . 142

Grounded Semantic Role Labeling
Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming Xiong, Song-Chun Zhu and Joyce Y. Chai

149

Black Holes and White Rabbits: Metaphor Identification with Visual Features
Ekaterina Shutova, Douwe Kiela and Jean Maillard . 160

Bridge Correlational Neural Networks for Multilingual Multimodal Representation Learning
Janarthanan Rajendran, Mitesh M. Khapra, Sarath Chandar and Balaraman Ravindran 171

Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings
Spandana Gella, Mirella Lapata and Frank Keller . 182

Stating the Obvious: Extracting Visual Common Sense Knowledge
Mark Yatskar, Vicente Ordonez and Ali Farhadi . 193

Recurrent Neural Network Grammars
Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros and Noah A. Smith . 199

Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks
Wenduan Xu, Michael Auli and Stephen Clark . 210

LSTM CCG Parsing
Mike Lewis, Kenton Lee and Luke Zettlemoyer . 221

Supertagging With LSTMs
Ashish Vaswani, Yonatan Bisk, Kenji Sagae and Ryan Musa . 232

An Empirical Study of Automatic Chinese Word Segmentation for Spoken Language Understanding and
Named Entity Recognition

Wencan Luo and Fan Yang . 238

Name Tagging for Low-resource Incident Languages based on Expectation-driven Learning
Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish Vaswani, Heng Ji, Kevin Knight and Daniel

Marcu . 249

xxii

Neural Architectures for Named Entity Recognition
Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami and Chris Dyer

260

Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Jinho D. Choi . 271

Drop-out Conditional Random Fields for Twitter with Huge Mined Gazetteer
Eunsuk Yang, Young-Bum Kim, Ruhi Sarikaya and Yu-Seop Kim . 282

Joint Extraction of Events and Entities within a Document Context
Bishan Yang and Tom M. Mitchell . 289

Joint Event Extraction via Recurrent Neural Networks
Thien Huu Nguyen, Kyunghyun Cho and Ralph Grishman . 300

Top-down Tree Long Short-Term Memory Networks
Xingxing Zhang, Liang Lu and Mirella Lapata . 310

Recurrent Memory Networks for Language Modeling
Ke Tran, Arianna Bisazza and Christof Monz . 321

A Latent Variable Recurrent Neural Network for Discourse-Driven Language Models
Yangfeng Ji, Gholamreza Haffari and Jacob Eisenstein . 332

Questioning Arbitrariness in Language: a Data-Driven Study of Conventional Iconicity
Ekaterina Abramova and Raquel Fernández . 343

Distinguishing Literal and Non-Literal Usage of German Particle Verbs
Maximilian Köper and Sabine Schulte im Walde .353

Phrasal Substitution of Idiomatic Expressions
Changsheng Liu and Rebecca Hwa . 363

Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural
Networks

Yangtuo Peng and Hui Jiang . 374

Grammatical error correction using neural machine translation
Zheng Yuan and Ted Briscoe . 380

Multimodal Semantic Learning from Child-Directed Input
Angeliki Lazaridou, Grzegorz Chrupała, Raquel Fernández and Marco Baroni 387

Recurrent Support Vector Machines For Slot Tagging In Spoken Language Understanding
Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-Cheng Pan and Mei-Yuh Hwang 393

Expectation-Regulated Neural Model for Event Mention Extraction
Ching-Yun Chang, Zhiyang Teng and Yue Zhang . 400

xxiii

Agreement on Target-bidirectional Neural Machine Translation
Lemao Liu, Masao Utiyama, Andrew Finch and Eiichiro Sumita . 411

Psycholinguistic Features for Deceptive Role Detection in Werewolf
Codruta Girlea, Roxana Girju and Eyal Amir . 417

Individual Variation in the Choice of Referential Form
Thiago Castro Ferreira, Emiel Krahmer and Sander Wubben . 423

Joint Learning Templates and Slots for Event Schema Induction
Lei Sha, Sujian Li, Baobao Chang and Zhifang Sui . 428

Inferring Psycholinguistic Properties of Words
Gustavo Paetzold and Lucia Specia . 435

Intra-Topic Variability Normalization based on Linear Projection for Topic Classification
Quan Liu, Wu Guo, Zhen-Hua Ling, Hui Jiang and Yu Hu . 441

Shift-Reduce CCG Parsing using Neural Network Models
Bharat Ram Ambati, Tejaswini Deoskar and Mark Steedman . 447

Online Multilingual Topic Models with Multi-Level Hyperpriors
Kriste Krstovski, David Smith and Michael J. Kurtz .454

STransE: a novel embedding model of entities and relationships in knowledge bases
Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu and Mark Johnson . 460

An Unsupervised Model of Orthographic Variation for Historical Document Transcription
Dan Garrette and Hannah Alpert-Abrams . 467

Bidirectional RNN for Medical Event Detection in Electronic Health Records
Abhyuday N Jagannatha and Hong Yu . 473

The Sensitivity of Topic Coherence Evaluation to Topic Cardinality
Jey Han Lau and Timothy Baldwin . 483

Transition-Based Syntactic Linearization with Lookahead Features
Ratish Puduppully, Yue Zhang and Manish Shrivastava . 488

A Recurrent Neural Networks Approach for Estimating the Quality of Machine Translation Output
Hyun Kim and Jong-Hyeok Lee. .494

Symmetric Patterns and Coordinations: Fast and Enhanced Representations of Verbs and Adjectives
Roy Schwartz, Roi Reichart and Ari Rappoport . 499

Breaking the Closed World Assumption in Text Classification
Geli Fei and Bing Liu . 506

Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks
Ji Young Lee and Franck Dernoncourt . 515

xxiv

Improved Neural Network-based Multi-label Classification with Better Initialization Leveraging Label
Co-occurrence

Gakuto Kurata, Bing Xiang and Bowen Zhou . 521

Learning Distributed Word Representations For Bidirectional LSTM Recurrent Neural Network
Peilu Wang, Yao Qian, Frank K. Soong, Lei He and Hai Zhao . 527

Combining Recurrent and Convolutional Neural Networks for Relation Classification
Ngoc Thang Vu, Heike Adel, Pankaj Gupta and Hinrich Schütze . 534

Building Chinese Affective Resources in Valence-Arousal Dimensions
Liang-Chih Yu, Lung-Hao Lee, Shuai Hao, Jin Wang, Yunchao He, Jun Hu, K. Robert Lai and

Xuejie Zhang . 540

Improving event prediction by representing script participants
Simon Ahrendt and Vera Demberg . 546

Structured Prediction with Output Embeddings for Semantic Image Annotation
Ariadna Quattoni, Arnau Ramisa, Pranava Swaroop Madhyastha, Edgar Simo-Serra and Francesc

Moreno-Noguer . 552

Large-scale Multitask Learning for Machine Translation Quality Estimation
Kashif Shah and Lucia Specia . 558

Conversational Markers of Constructive Discussions
Vlad Niculae and Cristian Danescu-Niculescu-Mizil . 568

Vision and Feature Norms: Improving automatic feature norm learning through cross-modal maps
Luana Bulat, Douwe Kiela and Stephen Clark . 579

Cross-lingual Wikification Using Multilingual Embeddings
Chen-Tse Tsai and Dan Roth . 589

Deconstructing Complex Search Tasks: a Bayesian Nonparametric Approach for Extracting Sub-tasks
Rishabh Mehrotra, Prasanta Bhattacharya and Emine Yilmaz . 599

Probabilistic Models for Learning a Semantic Parser Lexicon
Jayant Krishnamurthy .606

Unsupervised Compound Splitting With Distributional Semantics Rivals Supervised Methods
Martin Riedl and Chris Biemann . 617

Weighting Finite-State Transductions With Neural Context
Pushpendre Rastogi, Ryan Cotterell and Jason Eisner . 623

Morphological Inflection Generation Using Character Sequence to Sequence Learning
Manaal Faruqui, Yulia Tsvetkov, Graham Neubig and Chris Dyer . 634

xxv

Towards Unsupervised and Language-independent Compound Splitting using Inflectional Morpholog-
ical Transformations

Patrick Ziering and Lonneke van der Plas . 644

Phonological Pun-derstanding
Aaron Jaech, Rik Koncel-Kedziorski and Mari Ostendorf . 654

A Joint Model of Orthography and Morphological Segmentation
Ryan Cotterell, Tim Vieira and Hinrich Schütze . 664

Syntactic Parsing of Web Queries with Question Intent
Yuval Pinter, Roi Reichart and Idan Szpektor . 670

Visualizing and Understanding Neural Models in NLP
Jiwei Li, Xinlei Chen, Eduard Hovy and Dan Jurafsky . 681

Bilingual Word Embeddings from Parallel and Non-parallel Corpora for Cross-Language Text Classi-
fication

Aditya Mogadala and Achim Rettinger . 692

Joint Learning with Global Inference for Comment Classification in Community Question Answering
Shafiq Joty, Lluís Màrquez and Preslav Nakov . 703

Weak Semi-Markov CRFs for Noun Phrase Chunking in Informal Text
Aldrian Obaja Muis and Wei Lu . 714

What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment
Hongyuan Mei, Mohit Bansal and Matthew R. Walter . 720

Generation from Abstract Meaning Representation using Tree Transducers
Jeffrey Flanigan, Chris Dyer, Noah A. Smith and Jaime Carbonell . 731

A Corpus and Semantic Parser for Multilingual Natural Language Querying of OpenStreetMap
Carolin Haas and Stefan Riezler . 740

Natural Language Communication with Robots
Yonatan Bisk, Deniz Yuret and Daniel Marcu . 751

Inter-document Contextual Language model
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari . 762

Ultradense Word Embeddings by Orthogonal Transformation
Sascha Rothe, Sebastian Ebert and Hinrich Schütze . 767

Separating Actor-View from Speaker-View Opinion Expressions using Linguistic Features
Michael Wiegand, Marc Schulder and Josef Ruppenhofer .778

Clustering for Simultaneous Extraction of Aspects and Features from Reviews
Lu Chen, Justin Martineau, Doreen Cheng and Amit Sheth . 789

xxvi

Opinion Holder and Target Extraction on Opinion Compounds – A Linguistic Approach
Michael Wiegand, Christine Bocionek and Josef Ruppenhofer . 800

Capturing Reliable Fine-Grained Sentiment Associations by Crowdsourcing and Best–Worst Scaling
Svetlana Kiritchenko and Saif M. Mohammad . 811

Mapping Verbs in Different Languages to Knowledge Base Relations using Web Text as Interlingua
Derry Tanti Wijaya and Tom M. Mitchell . 818

Comparing Convolutional Neural Networks to Traditional Models for Slot Filling
Heike Adel, Benjamin Roth and Hinrich Schütze . 828

A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories
Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Van-

derwende, Pushmeet Kohli and James Allen . 839

Dynamic Entity Representation with Max-pooling Improves Machine Reading
Sosuke Kobayashi, Ran Tian, Naoaki Okazaki and Kentaro Inui . 850

Speed-Constrained Tuning for Statistical Machine Translation Using Bayesian Optimization
Daniel Beck, Adrià de Gispert, Gonzalo Iglesias, Aurelien Waite and Bill Byrne 856

Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
Orhan Firat, Kyunghyun Cho and Yoshua Bengio . 866

Incorporating Structural Alignment Biases into an Attentional Neural Translation Model
Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris Dyer and Gholam-

reza Haffari .876

Multilingual Relation Extraction using Compositional Universal Schema
Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth and Andrew McCallum 886

Effective Crowd Annotation for Relation Extraction
Angli Liu, Stephen Soderland, Jonathan Bragg, Christopher H. Lin, Xiao Ling and Daniel S. Weld

897

A Translation-Based Knowledge Graph Embedding Preserving Logical Property of Relations
Hee-Geun Yoon, Hyun-Je Song, Seong-Bae Park and Se-Young Park . 907

DAG-Structured Long Short-Term Memory for Semantic Compositionality
Xiaodan Zhu, Parinaz Sobhani and Hongyu Guo . 917

Bayesian Supervised Domain Adaptation for Short Text Similarity
Md Arafat Sultan, Jordan Boyd-Graber and Tamara Sumner . 927

Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement
Hua He and Jimmy Lin . 937

An Attentional Model for Speech Translation Without Transcription
Long Duong, Antonios Anastasopoulos, David Chiang, Steven Bird and Trevor Cohn 949

xxvii

Information Density and Quality Estimation Features as Translationese Indicators for Human Transla-
tion Classification

Raphael Rubino, Ekaterina Lapshinova-Koltunski and Josef van Genabith 960

Interpretese vs. Translationese: The Uniqueness of Human Strategies in Simultaneous Interpretation
He He, Jordan Boyd-Graber and Hal Daumé III . 971

LSTM Neural Reordering Feature for Statistical Machine Translation
Yiming Cui, Shijin Wang and Jianfeng Li . 977

A Novel Approach to Dropped Pronoun Translation
Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang Li, Andy Way and Qun Liu 983

Learning Global Features for Coreference Resolution
Sam Wiseman, Alexander M. Rush and Stuart M. Shieber . 994

Search Space Pruning: A Simple Solution for Better Coreference Resolvers
Nafise Sadat Moosavi and Michael Strube . 1005

Unsupervised Ranking Model for Entity Coreference Resolution
Xuezhe Ma, Zhengzhong Liu and Eduard Hovy . 1012

Embedding Lexical Features via Low-Rank Tensors
Mo Yu, Mark Dredze, Raman Arora and Matthew R. Gormley . 1019

The Role of Context Types and Dimensionality in Learning Word Embeddings
Oren Melamud, David McClosky, Siddharth Patwardhan and Mohit Bansal 1030

Improve Chinese Word Embeddings by Exploiting Internal Structure
Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li and Huanhuan Chen 1041

Assessing Relative Sentence Complexity using an Incremental CCG Parser
Bharat Ram Ambati, Siva Reddy and Mark Steedman . 1051

Frustratingly Easy Cross-Lingual Transfer for Transition-Based Dependency Parsing
Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski and François Yvon 1058

Geolocation for Twitter: Timing Matters
Mark Dredze, Miles Osborne and Prabhanjan Kambadur . 1064

Fast and Easy Short Answer Grading with High Accuracy
Md Arafat Sultan, Cristobal Salazar and Tamara Sumner . 1070

Interlocking Phrases in Phrase-based Statistical Machine Translation
Ye Kyaw Thu, Andrew Finch and Eiichiro Sumita . 1076

Eyes Don’t Lie: Predicting Machine Translation Quality Using Eye Movement
Hassan Sajjad, Francisco Guzmán, Nadir Durrani, Ahmed Abdelali, Houda Bouamor, Irina Tem-

nikova and Stephan Vogel . 1082

xxviii

Making Dependency Labeling Simple, Fast and Accurate
Tianxiao Shen, Tao Lei and Regina Barzilay . 1089

Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency Framework
Matthieu Constant, Joseph Le Roux and Nadi Tomeh . 1095

Sentiment Composition of Words with Opposing Polarities
Svetlana Kiritchenko and Saif M. Mohammad. .1102

Learning to Recognize Ancillary Information for Automatic Paraphrase Identification
Simone Filice and Alessandro Moschitti . 1109

Learning a POS tagger for AAVE-like language
Anna Jørgensen, Dirk Hovy and Anders Søgaard . 1115

PIC a Different Word: A Simple Model for Lexical Substitution in Context
Stephen Roller and Katrin Erk . 1121

Bootstrapping Translation Detection and Sentence Extraction from Comparable Corpora
Kriste Krstovski and David Smith . 1127

Discriminative Reranking for Grammatical Error Correction with Statistical Machine Translation
Tomoya Mizumoto and Yuji Matsumoto . 1133

Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
Kyle Booten and Marti A. Hearst . 1139

Right-truncatable Neural Word Embeddings
Jun Suzuki and Masaaki Nagata . 1145

MAWPS: A Math Word Problem Repository
Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh Hajishirzi . 1152

Cross-genre Event Extraction with Knowledge Enrichment
Hao Li and Heng Ji . 1158

Emergent: a novel data-set for stance classification
William Ferreira and Andreas Vlachos . 1163

BIRA: Improved Predictive Exchange Word Clustering
Jon Dehdari, Liling Tan and Josef van Genabith . 1169

Integrating Morphological Desegmentation into Phrase-based Decoding
Mohammad Salameh, Colin Cherry and Grzegorz Kondrak . 1175

The Instantiation Discourse Relation: A Corpus Analysis of Its Properties and Improved Detection
Junyi Jessy Li and Ani Nenkova . 1181

Sparse Bilingual Word Representations for Cross-lingual Lexical Entailment
Yogarshi Vyas and Marine Carpuat .1187

xxix

Automatic Prediction of Linguistic Decline in Writings of Subjects with Degenerative Dementia
Davy Weissenbacher, Travis A. Johnson, Laura Wojtulewicz, Amylou Dueck, Dona Locke, Richard

Caselli and Graciela Gonzalez . 1198

Consensus Maximization Fusion of Probabilistic Information Extractors
Miguel Rodríguez, Sean Goldberg and Daisy Zhe Wang . 1208

Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies
Barret Zoph, Ashish Vaswani, Jonathan May and Kevin Knight . 1217

Automatically Inferring Implicit Properties in Similes
Ashequl Qadir, Ellen Riloff and Marilyn A. Walker . 1223

Visual Storytelling
Ting-Hao (Kenneth) Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra, Aishwarya Agrawal,

Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra, C. Lawrence Zitnick, Devi
Parikh, Lucy Vanderwende, Michel Galley and Margaret Mitchell .1233

PRIMT: A Pick-Revise Framework for Interactive Machine Translation
Shanbo Cheng, Shujian Huang, Huadong Chen, Xin-Yu Dai and Jiajun Chen 1240

Incorporating Side Information into Recurrent Neural Network Language Models
Cong Duy Vu Hoang, Trevor Cohn and Gholamreza Haffari . 1250

Capturing Semantic Similarity for Entity Linking with Convolutional Neural Networks
Matthew Francis-Landau, Greg Durrett and Dan Klein . 1256

K-Embeddings: Learning Conceptual Embeddings for Words using Context
Thuy Vu and D. Stott Parker . 1262

Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for Answer Sentence
Reranking

Kateryna Tymoshenko, Daniele Bonadiman and Alessandro Moschitti . 1268

Semi-supervised Question Retrieval with Gated Convolutions
Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Tymoshenko, Alessandro

Moschitti and Lluís Màrquez . 1279

This is how we do it: Answer Reranking for Open-domain How Questions with Paragraph Vectors and
Minimal Feature Engineering

Dasha Bogdanova and Jennifer Foster . 1290

Multilingual Language Processing From Bytes
Dan Gillick, Cliff Brunk, Oriol Vinyals and Amarnag Subramanya . 1296

Ten Pairs to Tag – Multilingual POS Tagging via Coarse Mapping between Embeddings
Yuan Zhang, David Gaddy, Regina Barzilay and Tommi Jaakkola . 1307

Part-of-Speech Tagging for Historical English
Yi Yang and Jacob Eisenstein . 1318

xxx

Statistical Modeling of Creole Genesis
Yugo Murawaki . 1329

Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text
Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush Bansal, Manish Shrivastava, Radhika

Mamidi and Dipti M. Sharma . 1340

Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders
Simon Šuster, Ivan Titov and Gertjan van Noord .1346

Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Representation Learning
Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick Littell, David

Mortensen, Alan W Black, Lori Levin and Chris Dyer . 1357

Learning Distributed Representations of Sentences from Unlabelled Data
Felix Hill, Kyunghyun Cho and Anna Korhonen . 1367

Retrofitting Sense-Specific Word Vectors Using Parallel Text
Allyson Ettinger, Philip Resnik and Marine Carpuat . 1378

End-to-End Argumentation Mining in Student Essays
Isaac Persing and Vincent Ng . 1384

Cross-Domain Mining of Argumentative Text through Distant Supervision
Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, Jonas Köhler and Benno Stein . . . 1395

A Study of the Impact of Persuasive Argumentation in Political Debates
Amparo Elizabeth Cano-Basave and Yulan He . 1405

Lexical Coherence Graph Modeling Using Word Embeddings
Mohsen Mesgar and Michael Strube . 1414

Using Context to Predict the Purpose of Argumentative Writing Revisions
Fan Zhang and Diane Litman . 1424

Automatic Generation and Scoring of Positive Interpretations from Negated Statements
Eduardo Blanco and Zahra Sarabi . 1431

Learning Natural Language Inference with LSTM
Shuohang Wang and Jing Jiang . 1442

Activity Modeling in Email
Ashequl Qadir, Michael Gamon, Patrick Pantel and Ahmed Hassan Awadallah 1452

Clustering Paraphrases by Word Sense
Anne Cocos and Chris Callison-Burch . 1463

Unsupervised Learning of Prototypical Fillers for Implicit Semantic Role Labeling
Niko Schenk and Christian Chiarcos . 1473

xxxi

Hierarchical Attention Networks for Document Classification
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola and Eduard Hovy 1480

Dependency Based Embeddings for Sentence Classification Tasks
Alexandros Komninos and Suresh Manandhar . 1490

Deep LSTM based Feature Mapping for Query Classification
Yangyang Shi, Kaisheng Yao, Le Tian and Daxin Jiang . 1501

Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents
Rui Zhang, Honglak Lee and Dragomir R. Radev . 1512

MGNC-CNN: A Simple Approach to Exploiting Multiple Word Embeddings for Sentence Classification
Ye Zhang, Stephen Roller and Byron C. Wallace . 1522

Improving sentence compression by learning to predict gaze
Sigrid Klerke, Yoav Goldberg and Anders Søgaard . 1528

Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships
Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber and Hal Daumé III . . 1534

Learning to Compose Neural Networks for Question Answering
Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein . 1545

xxxii

Conference Program

Sunday, June 12, 2016

18:00–21:00 Welcome reception, Pavilion

Monday, June 13, 2016

7:30–8:45 Breakfast, Pavilion

9:00–9:15 Welcome, Grande Ballroom
Kevin Knight, Ani Nenkova, Owen Rambow

9:15–10:30 Invited talk: "How can NLP help cure cancer?"
Regina Barzilay

10:30–11:00 Coffee break, Pavilion

11:00–12:30 Session 1

1A. Machine translation

11:00–11:20 Achieving Accurate Conclusions in Evaluation of Automatic Machine Translation
Metrics
Yvette Graham and Qun Liu

11:20–11:40 Flexible Non-Terminals for Dependency Tree-to-Tree Reordering
John Richardson, Fabien Cromierès, Toshiaki Nakazawa and Sadao Kurohashi

11:40–12:00 Selecting Syntactic, Non-redundant Segments in Active Learning for Machine
Translation
Akiva Miura, Graham Neubig, Michael Paul and Satoshi Nakamura

12:00–12:10 Multi-Source Neural Translation
Barret Zoph and Kevin Knight

12:10–12:20 Controlling Politeness in Neural Machine Translation via Side Constraints
Rico Sennrich, Barry Haddow and Alexandra Birch

xxxiii

Monday, June 13, 2016 (continued)

12:20–12:30 An Empirical Evaluation of Noise Contrastive Estimation for the Neural Network
Joint Model of Translation
Colin Cherry

1B. Summarization

11:00–11:20 Neural Network-Based Abstract Generation for Opinions and Arguments
Lu Wang and Wang Ling

11:20–11:40 A Low-Rank Approximation Approach to Learning Joint Embeddings of News Sto-
ries and Images for Timeline Summarization
William Yang Wang, Yashar Mehdad, Dragomir R. Radev and Amanda Stent

11:40–12:00 Entity-balanced Gaussian pLSA for Automated Comparison
Danish Contractor, Parag Singla and Mausam

12:00–12:10 Automatic Summarization of Student Course Feedback
Wencan Luo, Fei Liu, Zitao Liu and Diane Litman

12:10–12:20 Knowledge-Guided Linguistic Rewrites for Inference Rule Verification
Prachi Jain and Mausam

12:20–12:30 Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
Sumit Chopra, Michael Auli and Alexander M. Rush

1C. Dialog

11:00–11:20 Integer Linear Programming for Discourse Parsing
Jérémy Perret, Stergos Afantenos, Nicholas Asher and Mathieu Morey

11:20–11:40 A Diversity-Promoting Objective Function for Neural Conversation Models
Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao and Bill Dolan

11:40–12:00 Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona, Pei-Hao
Su, David Vandyke and Steve Young

12:00–12:10 A Long Short-Term Memory Framework for Predicting Humor in Dialogues
Dario Bertero and Pascale Fung

xxxiv

Monday, June 13, 2016 (continued)

12:10–12:20 Conversational Flow in Oxford-style Debates
Justine Zhang, Ravi Kumar, Sujith Ravi and Cristian Danescu-Niculescu-Mizil

12:20–12:30 Counter-fitting Word Vectors to Linguistic Constraints
Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašić, Lina M.
Rojas-Barahona, Pei-Hao Su, David Vandyke, Tsung-Hsien Wen and Steve Young

12:30–2:00 Lunch break

2:00–3:30 Session 2

2A. Language and Vision

2:00–2:20 Grounded Semantic Role Labeling
Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming Xiong, Song-Chun Zhu and
Joyce Y. Chai

2:20–2:40 Black Holes and White Rabbits: Metaphor Identification with Visual Features
Ekaterina Shutova, Douwe Kiela and Jean Maillard

2:40–3:00 Bridge Correlational Neural Networks for Multilingual Multimodal Representation
Learning
Janarthanan Rajendran, Mitesh M. Khapra, Sarath Chandar and Balaraman Ravin-
dran

3:00–3:20 Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embed-
dings
Spandana Gella, Mirella Lapata and Frank Keller

3:20–3:30 Stating the Obvious: Extracting Visual Common Sense Knowledge
Mark Yatskar, Vicente Ordonez and Ali Farhadi

xxxv

Monday, June 13, 2016 (continued)

2B. Parsing

2:00–2:20 Efficient Structured Inference for Transition-Based Parsing with Neural Networks
and Error States [TACL]
Ashish Vaswani and Kenji Sagae

2:20–2:40 Recurrent Neural Network Grammars
Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros and Noah A. Smith

2:40–3:00 Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Net-
works
Wenduan Xu, Michael Auli and Stephen Clark

3:00–3:20 LSTM CCG Parsing
Mike Lewis, Kenton Lee and Luke Zettlemoyer

3:20–3:30 Supertagging With LSTMs
Ashish Vaswani, Yonatan Bisk, Kenji Sagae and Ryan Musa

2C. Named Entity Recognition

2:00–2:20 An Empirical Study of Automatic Chinese Word Segmentation for Spoken Language
Understanding and Named Entity Recognition
Wencan Luo and Fan Yang

2:20–2:40 Name Tagging for Low-resource Incident Languages based on Expectation-driven
Learning
Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish Vaswani, Heng Ji, Kevin
Knight and Daniel Marcu

2:40–3:00 Neural Architectures for Named Entity Recognition
Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami
and Chris Dyer

3:00–3:20 Dynamic Feature Induction: The Last Gist to the State-of-the-Art
Jinho D. Choi

3:20–3:30 Drop-out Conditional Random Fields for Twitter with Huge Mined Gazetteer
Eunsuk Yang, Young-Bum Kim, Ruhi Sarikaya and Yu-Seop Kim

3:30–4:00 Coffee break, Pavilion

xxxvi

Monday, June 13, 2016 (continued)

4:00–5:00 Session 3

3A. Event detection

4:00–4:20 Joint Extraction of Events and Entities within a Document Context
Bishan Yang and Tom M. Mitchell

4:20–4:40 A Hierarchical Distance-dependent Bayesian Model for Event Coreference Resolu-
tion [TACL]
Bishan Yang, Claire Cardie, and Peter Frazier

4:40–5:00 Joint Event Extraction via Recurrent Neural Networks
Thien Huu Nguyen, Kyunghyun Cho and Ralph Grishman

3B. Language Models

4:00–4:20 Top-down Tree Long Short-Term Memory Networks
Xingxing Zhang, Liang Lu and Mirella Lapata

4:20–4:40 Recurrent Memory Networks for Language Modeling
Ke Tran, Arianna Bisazza and Christof Monz

4:40–5:00 A Latent Variable Recurrent Neural Network for Discourse-Driven Language Mod-
els
Yangfeng Ji, Gholamreza Haffari and Jacob Eisenstein

xxxvii

Monday, June 13, 2016 (continued)

3C. Non Literal Language

4:00–4:20 Questioning Arbitrariness in Language: a Data-Driven Study of Conventional
Iconicity
Ekaterina Abramova and Raquel Fernández

4:20–4:40 Distinguishing Literal and Non-Literal Usage of German Particle Verbs
Maximilian Köper and Sabine Schulte im Walde

4:40–5:00 Phrasal Substitution of Idiomatic Expressions
Changsheng Liu and Rebecca Hwa

5:00–5:15 Break

5:15–6:00 One Minute Madness

6:00–8:00 Posters and Dinner

Posters

Leverage Financial News to Predict Stock Price Movements Using Word Embed-
dings and Deep Neural Networks
Yangtuo Peng and Hui Jiang

Grammatical error correction using neural machine translation
Zheng Yuan and Ted Briscoe

Multimodal Semantic Learning from Child-Directed Input
Angeliki Lazaridou, Grzegorz Chrupała, Raquel Fernández and Marco Baroni

Recurrent Support Vector Machines For Slot Tagging In Spoken Language Under-
standing
Yangyang Shi, Kaisheng Yao, Hu Chen, Dong Yu, Yi-Cheng Pan and Mei-Yuh
Hwang

Expectation-Regulated Neural Model for Event Mention Extraction
Ching-Yun Chang, Zhiyang Teng and Yue Zhang

xxxviii

Monday, June 13, 2016 (continued)

Agreement on Target-bidirectional Neural Machine Translation
Lemao Liu, Masao Utiyama, Andrew Finch and Eiichiro Sumita

Psycholinguistic Features for Deceptive Role Detection in Werewolf
Codruta Girlea, Roxana Girju and Eyal Amir

Individual Variation in the Choice of Referential Form
Thiago Castro Ferreira, Emiel Krahmer and Sander Wubben

Joint Learning Templates and Slots for Event Schema Induction
Lei Sha, Sujian Li, Baobao Chang and Zhifang Sui

Inferring Psycholinguistic Properties of Words
Gustavo Paetzold and Lucia Specia

Intra-Topic Variability Normalization based on Linear Projection for Topic Classi-
fication
Quan Liu, Wu Guo, Zhen-Hua Ling, Hui Jiang and Yu Hu

Shift-Reduce CCG Parsing using Neural Network Models
Bharat Ram Ambati, Tejaswini Deoskar and Mark Steedman

Online Multilingual Topic Models with Multi-Level Hyperpriors
Kriste Krstovski, David Smith and Michael J. Kurtz

STransE: a novel embedding model of entities and relationships in knowledge bases
Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu and Mark Johnson

An Unsupervised Model of Orthographic Variation for Historical Document Tran-
scription
Dan Garrette and Hannah Alpert-Abrams

Bidirectional RNN for Medical Event Detection in Electronic Health Records
Abhyuday N Jagannatha and Hong Yu

The Sensitivity of Topic Coherence Evaluation to Topic Cardinality
Jey Han Lau and Timothy Baldwin

Transition-Based Syntactic Linearization with Lookahead Features
Ratish Puduppully, Yue Zhang and Manish Shrivastava

xxxix

Monday, June 13, 2016 (continued)

A Recurrent Neural Networks Approach for Estimating the Quality of Machine
Translation Output
Hyun Kim and Jong-Hyeok Lee

Symmetric Patterns and Coordinations: Fast and Enhanced Representations of
Verbs and Adjectives
Roy Schwartz, Roi Reichart and Ari Rappoport

Breaking the Closed World Assumption in Text Classification
Geli Fei and Bing Liu

Sequential Short-Text Classification with Recurrent and Convolutional Neural Net-
works
Ji Young Lee and Franck Dernoncourt

Improved Neural Network-based Multi-label Classification with Better Initializa-
tion Leveraging Label Co-occurrence
Gakuto Kurata, Bing Xiang and Bowen Zhou

Learning Distributed Word Representations For Bidirectional LSTM Recurrent Neu-
ral Network
Peilu Wang, Yao Qian, Frank K. Soong, Lei He and Hai Zhao

Combining Recurrent and Convolutional Neural Networks for Relation Classifica-
tion
Ngoc Thang Vu, Heike Adel, Pankaj Gupta and Hinrich Schütze

Building Chinese Affective Resources in Valence-Arousal Dimensions
Liang-Chih Yu, Lung-Hao Lee, Shuai Hao, Jin Wang, Yunchao He, Jun Hu, K.
Robert Lai and Xuejie Zhang

Improving event prediction by representing script participants
Simon Ahrendt and Vera Demberg

Structured Prediction with Output Embeddings for Semantic Image Annotation
Ariadna Quattoni, Arnau Ramisa, Pranava Swaroop Madhyastha, Edgar Simo-Serra
and Francesc Moreno-Noguer

Large-scale Multitask Learning for Machine Translation Quality Estimation
Kashif Shah and Lucia Specia

Conversational Markers of Constructive Discussions
Vlad Niculae and Cristian Danescu-Niculescu-Mizil

Vision and Feature Norms: Improving automatic feature norm learning through
cross-modal maps
Luana Bulat, Douwe Kiela and Stephen Clarkxl

Monday, June 13, 2016 (continued)

Cross-lingual Wikification Using Multilingual Embeddings
Chen-Tse Tsai and Dan Roth

Deconstructing Complex Search Tasks: a Bayesian Nonparametric Approach for
Extracting Sub-tasks
Rishabh Mehrotra, Prasanta Bhattacharya and Emine Yilmaz

6:00–8:00 System Demonstrations

rstWeb - A Browser-based Annotation Interface for Rhetorical Structure Theory and
Discourse Relations
Amir Zeldes

Instant Feedback for Increasing the Presence of Solutions in Peer Reviews
Huy Nguyen, Wenting Xiong and Diane Litman

Farasa: A Fast and Furious Segmenter for Arabic
Ahmed Abdelali, Kareem Darwish, Nadir Durrani and Hamdy Mubarak

iAppraise: A Manual Machine Translation Evaluation Environment Supporting
Eye-tracking
Ahmed Abdelali, Nadir Durrani and Francisco Guzmán

Linguistica 5: Unsupervised Learning of Linguistic Structure
Jackson Lee and John Goldsmith

TransRead: Designing a Bilingual Reading Experience with Machine Translation
Technologies
François Yvon, Yong Xu, Marianna Apidianaki, Clément Pillias and Pierre Cubaud

New Dimensions in Testimony Demonstration
Ron Artstein, Alesia Gainer, Kallirroi Georgila, Anton Leuski, Ari Shapiro and
David Traum

ArgRewrite: A Web-based Revision Assistant for Argumentative Writings
Fan Zhang, Rebecca Hwa, Diane Litman and Homa B. Hashemi

Scaling Up Word Clustering
Jon Dehdari, Liling Tan and Josef van Genabith

Task Completion Platform
A self-serve multi-domain goal oriented dialogue platform: Paul Crook, Alex
Marin, Vipul Agarwal, Khushboo Aggarwal, Tasos Anastasakos, Ravi Bikkula,
Daniel Boies, Asli Celikyilmaz, Senthilkumar Chandramohan, Zhaleh Feizollahi,
Roman Holenstein, Minwoo Jeong, Omar Khan, Young-Bum Kim, Elizabeth
Krawczyk, Xiaohu Liu, Danko Panic, Vasiliy Radostev, Nikhil Ramesh, Jean-
Phillipe Robichaud, Alexandre Rochette, Logan Stromberg and Ruhi Sarikaya

xli

Monday, June 13, 2016 (continued)

Student Workshop Posters

An End-to-end Approach to Learning Semantic Frames with Feedforward Neural
Network
Yukun Feng, Yipei Xu and Dong Yu

Analogy-based detection of morphological and semantic relations with word em-
beddings
what works and what doesn’t: Anna Gladkova, Aleksandr Drozd and Satoshi Mat-
suoka

Argument Identification in Chinese Editorials
Marisa Chow

Automatic tagging and retrieval of E-Commerce products based on visual features
Vasu Sharma and Harish Karnick

Combining syntactic patterns and Wikipedia’s hierarchy of hyperlinks to extract
relations: The case of meronymy extraction
Debela Tesfaye Gemechu, Michael Zock and Solomon Teferra

Cross-Lingual Question Answering Using Profile HMM & Unified Semantic Space
Amir Pouran Ben Veyseh

Data-driven Paraphrasing and Stylistic Harmonization
Gerold Hintz

Detecting "Smart" Spammers on Social Network
A Topic Model Approach: Linqing Liu, Yao Lu, Ye Luo, Renxian Zhang, Laurent
Itti and Jianwei Lu

Developing language technology tools and resources for a resource-poor language:
Sindhi
Raveesh Motlani

xlii

Tuesday, June 14, 2016

7:30–8:45 Breakfast, Pavilion

9:00–10:30 Session 4

4A. Semantic Parsing

9:00–9:20 Transforming Dependency Structures to Logical Forms for Semantic Parsing
[TACL]
Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das,
Mark Steedman, and Mirella Lapata

9:20–9:40 Imitation Learning of Agenda-based Semantic Parsers [TACL]
Jonathan Berant and Percy Liang

9:40–10:00 Probabilistic Models for Learning a Semantic Parser Lexicon
Jayant Krishnamurthy

10:00–10:20 Semantic Parsing of Ambiguous Input through Paraphrasing and Verification
[TACL]
Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura

10:20–10:30 Unsupervised Compound Splitting With Distributional Semantics Rivals Supervised
Methods
Martin Riedl and Chris Biemann

4B. Morphology and Phonology

9:00–9:20 Weighting Finite-State Transductions With Neural Context
Pushpendre Rastogi, Ryan Cotterell and Jason Eisner

9:20–9:40 Morphological Inflection Generation Using Character Sequence to Sequence
Learning
Manaal Faruqui, Yulia Tsvetkov, Graham Neubig and Chris Dyer

9:40–10:00 Towards Unsupervised and Language-independent Compound Splitting using In-
flectional Morphological Transformations
Patrick Ziering and Lonneke van der Plas

10:00–10:20 Phonological Pun-derstanding
Aaron Jaech, Rik Koncel-Kedziorski and Mari Ostendorf

xliii

Tuesday, June 14, 2016 (continued)

10:20–10:30 A Joint Model of Orthography and Morphological Segmentation
Ryan Cotterell, Tim Vieira and Hinrich Schütze

4C. Various

9:00–9:20 Syntactic Parsing of Web Queries with Question Intent
Yuval Pinter, Roi Reichart and Idan Szpektor

9:20–9:40 Visualizing and Understanding Neural Models in NLP
Jiwei Li, Xinlei Chen, Eduard Hovy and Dan Jurafsky

9:40–10:00 Bilingual Word Embeddings from Parallel and Non-parallel Corpora for Cross-
Language Text Classification
Aditya Mogadala and Achim Rettinger

10:00–10:20 Joint Learning with Global Inference for Comment Classification in Community
Question Answering
Shafiq Joty, Lluís Màrquez and Preslav Nakov

10:20–10:30 Weak Semi-Markov CRFs for Noun Phrase Chunking in Informal Text
Aldrian Obaja Muis and Wei Lu

10:30–11:00 Coffee break, Pavilion

11:00–12:30 Session 5

xliv

Tuesday, June 14, 2016 (continued)

5A. Generation

11:00–11:20 What to talk about and how? Selective Generation using LSTMs with Coarse-to-
Fine Alignment
Hongyuan Mei, Mohit Bansal and Matthew R. Walter

11:20–11:40 Generation from Abstract Meaning Representation using Tree Transducers
Jeffrey Flanigan, Chris Dyer, Noah A. Smith and Jaime Carbonell

11:40–12:00 A Corpus and Semantic Parser for Multilingual Natural Language Querying of
OpenStreetMap
Carolin Haas and Stefan Riezler

12:00–12:20 Natural Language Communication with Robots
Yonatan Bisk, Deniz Yuret and Daniel Marcu

12:20–12:30 Inter-document Contextual Language model
Quan Hung Tran, Ingrid Zukerman and Gholamreza Haffari

5B. Sentiment

11:00–11:20 Ultradense Word Embeddings by Orthogonal Transformation
Sascha Rothe, Sebastian Ebert and Hinrich Schütze

11:20–11:40 Separating Actor-View from Speaker-View Opinion Expressions using Linguistic
Features
Michael Wiegand, Marc Schulder and Josef Ruppenhofer

11:40–12:00 Clustering for Simultaneous Extraction of Aspects and Features from Reviews
Lu Chen, Justin Martineau, Doreen Cheng and Amit Sheth

12:00–12:20 Opinion Holder and Target Extraction on Opinion Compounds – A Linguistic Ap-
proach
Michael Wiegand, Christine Bocionek and Josef Ruppenhofer

12:20–12:30 Capturing Reliable Fine-Grained Sentiment Associations by Crowdsourcing and
Best–Worst Scaling
Svetlana Kiritchenko and Saif M. Mohammad

xlv

Tuesday, June 14, 2016 (continued)

5C. Knowledge Acquisition

11:00–11:20 Concept Grounding to Multiple Knowledge Bases via Indirect Supervision [TACL]
Chen-Tse Tsai and Dan Roth

11:20–11:40 Mapping Verbs in Different Languages to Knowledge Base Relations using Web Text
as Interlingua
Derry Tanti Wijaya and Tom M. Mitchell

11:40–12:00 Comparing Convolutional Neural Networks to Traditional Models for Slot Filling
Heike Adel, Benjamin Roth and Hinrich Schütze

12:00–12:20 A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories
Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Ba-
tra, Lucy Vanderwende, Pushmeet Kohli and James Allen

12:20–12:30 Dynamic Entity Representation with Max-pooling Improves Machine Reading
Sosuke Kobayashi, Ran Tian, Naoaki Okazaki and Kentaro Inui

12:30–1:15 Lunch

1:15–2:15 Panel Discussion: How Will Deep Learning Change Computational Linguistics?

2:30–3:30 Session 6

xlvi

Tuesday, June 14, 2016 (continued)

6A. Machine Translation II

2:30–2:50 Speed-Constrained Tuning for Statistical Machine Translation Using Bayesian Op-
timization
Daniel Beck, Adrià de Gispert, Gonzalo Iglesias, Aurelien Waite and Bill Byrne

2:50–3:10 Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mech-
anism
Orhan Firat, Kyunghyun Cho and Yoshua Bengio

3:10–3:30 Incorporating Structural Alignment Biases into an Attentional Neural Translation
Model
Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova, Kaisheng Yao, Chris Dyer
and Gholamreza Haffari

6B. Relation Extraction

2:30–2:50 Multilingual Relation Extraction using Compositional Universal Schema
Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth and Andrew Mc-
Callum

2:50–3:10 Effective Crowd Annotation for Relation Extraction
Angli Liu, Stephen Soderland, Jonathan Bragg, Christopher H. Lin, Xiao Ling and
Daniel S. Weld

3:10–3:30 A Translation-Based Knowledge Graph Embedding Preserving Logical Property of
Relations
Hee-Geun Yoon, Hyun-Je Song, Seong-Bae Park and Se-Young Park

6C. Semantic Similarity

2:30–2:50 DAG-Structured Long Short-Term Memory for Semantic Compositionality
Xiaodan Zhu, Parinaz Sobhani and Hongyu Guo

2:50–3:10 Bayesian Supervised Domain Adaptation for Short Text Similarity
Md Arafat Sultan, Jordan Boyd-Graber and Tamara Sumner

3:10–3:30 Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Sim-
ilarity Measurement
Hua He and Jimmy Lin

3:30–4:00 Break

xlvii

Tuesday, June 14, 2016 (continued)

4:00–5:00 Session 7

7A. Machine Translation III

4:00–4:20 An Attentional Model for Speech Translation Without Transcription
Long Duong, Antonios Anastasopoulos, David Chiang, Steven Bird and Trevor
Cohn

4:20–4:40 Information Density and Quality Estimation Features as Translationese Indicators
for Human Translation Classification
Raphael Rubino, Ekaterina Lapshinova-Koltunski and Josef van Genabith

4:40–4:50 Interpretese vs. Translationese: The Uniqueness of Human Strategies in Simultane-
ous Interpretation
He He, Jordan Boyd-Graber and Hal Daumé III

4:50–5:00 LSTM Neural Reordering Feature for Statistical Machine Translation
Yiming Cui, Shijin Wang and Jianfeng Li

7B. Anaphora Resolution

4:00–4:20 A Novel Approach to Dropped Pronoun Translation
Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang Li, Andy Way and Qun Liu

4:20–4:40 Learning Global Features for Coreference Resolution
Sam Wiseman, Alexander M. Rush and Stuart M. Shieber

4:40–4:50 Search Space Pruning: A Simple Solution for Better Coreference Resolvers
Nafise Sadat Moosavi and Michael Strube

4:50–5:00 Unsupervised Ranking Model for Entity Coreference Resolution
Xuezhe Ma, Zhengzhong Liu and Eduard Hovy

xlviii

Tuesday, June 14, 2016 (continued)

7C. Word Embeddings I

4:00–4:20 Embedding Lexical Features via Low-Rank Tensors
Mo Yu, Mark Dredze, Raman Arora and Matthew R. Gormley

4:20–4:40 The Role of Context Types and Dimensionality in Learning Word Embeddings
Oren Melamud, David McClosky, Siddharth Patwardhan and Mohit Bansal

4:40–5:00 Improve Chinese Word Embeddings by Exploiting Internal Structure
Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li and Huanhuan Chen

5:00–5:15 Break

5:15–6:00 One-Minute Madness

6:00–8:00 Posters, Demos, and Snacks

Posters

Assessing Relative Sentence Complexity using an Incremental CCG Parser
Bharat Ram Ambati, Siva Reddy and Mark Steedman

Frustratingly Easy Cross-Lingual Transfer for Transition-Based Dependency Pars-
ing
Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski and François Yvon

Geolocation for Twitter: Timing Matters
Mark Dredze, Miles Osborne and Prabhanjan Kambadur

Fast and Easy Short Answer Grading with High Accuracy
Md Arafat Sultan, Cristobal Salazar and Tamara Sumner

Interlocking Phrases in Phrase-based Statistical Machine Translation
Ye Kyaw Thu, Andrew Finch and Eiichiro Sumita

xlix

Tuesday, June 14, 2016 (continued)

Eyes Don’t Lie: Predicting Machine Translation Quality Using Eye Movement
Hassan Sajjad, Francisco Guzmán, Nadir Durrani, Ahmed Abdelali, Houda
Bouamor, Irina Temnikova and Stephan Vogel

Making Dependency Labeling Simple, Fast and Accurate
Tianxiao Shen, Tao Lei and Regina Barzilay

Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency
Framework
Matthieu Constant, Joseph Le Roux and Nadi Tomeh

Sentiment Composition of Words with Opposing Polarities
Svetlana Kiritchenko and Saif M. Mohammad

Learning to Recognize Ancillary Information for Automatic Paraphrase Identifica-
tion
Simone Filice and Alessandro Moschitti

Learning a POS tagger for AAVE-like language
Anna Jørgensen, Dirk Hovy and Anders Søgaard

PIC a Different Word: A Simple Model for Lexical Substitution in Context
Stephen Roller and Katrin Erk

Bootstrapping Translation Detection and Sentence Extraction from Comparable
Corpora
Kriste Krstovski and David Smith

Discriminative Reranking for Grammatical Error Correction with Statistical Ma-
chine Translation
Tomoya Mizumoto and Yuji Matsumoto

Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
Kyle Booten and Marti A. Hearst

Right-truncatable Neural Word Embeddings
Jun Suzuki and Masaaki Nagata

MAWPS: A Math Word Problem Repository
Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman and Hannaneh
Hajishirzi

Cross-genre Event Extraction with Knowledge Enrichment
Hao Li and Heng Ji

l

Tuesday, June 14, 2016 (continued)

Emergent: a novel data-set for stance classification
William Ferreira and Andreas Vlachos

BIRA: Improved Predictive Exchange Word Clustering
Jon Dehdari, Liling Tan and Josef van Genabith

Integrating Morphological Desegmentation into Phrase-based Decoding
Mohammad Salameh, Colin Cherry and Grzegorz Kondrak

The Instantiation Discourse Relation: A Corpus Analysis of Its Properties and Im-
proved Detection
Junyi Jessy Li and Ani Nenkova

Sparse Bilingual Word Representations for Cross-lingual Lexical Entailment
Yogarshi Vyas and Marine Carpuat

Automatic Prediction of Linguistic Decline in Writings of Subjects with Degenera-
tive Dementia
Davy Weissenbacher, Travis A. Johnson, Laura Wojtulewicz, Amylou Dueck, Dona
Locke, Richard Caselli and Graciela Gonzalez

Consensus Maximization Fusion of Probabilistic Information Extractors
Miguel Rodríguez, Sean Goldberg and Daisy Zhe Wang

Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies
Barret Zoph, Ashish Vaswani, Jonathan May and Kevin Knight

Automatically Inferring Implicit Properties in Similes
Ashequl Qadir, Ellen Riloff and Marilyn A. Walker

Visual Storytelling
Ting-Hao (Kenneth) Huang, Francis Ferraro, Nasrin Mostafazadeh, Ishan Misra,
Aishwarya Agrawal, Jacob Devlin, Ross Girshick, Xiaodong He, Pushmeet Kohli,
Dhruv Batra, C. Lawrence Zitnick, Devi Parikh, Lucy Vanderwende, Michel Galley
and Margaret Mitchell

PRIMT: A Pick-Revise Framework for Interactive Machine Translation
Shanbo Cheng, Shujian Huang, Huadong Chen, Xin-Yu Dai and Jiajun Chen

Incorporating Side Information into Recurrent Neural Network Language Models
Cong Duy Vu Hoang, Trevor Cohn and Gholamreza Haffari

Capturing Semantic Similarity for Entity Linking with Convolutional Neural Net-
works
Matthew Francis-Landau, Greg Durrett and Dan Klein

li

Tuesday, June 14, 2016 (continued)

K-Embeddings: Learning Conceptual Embeddings for Words using Context
Thuy Vu and D. Stott Parker

Learning Composition Models for Phrase Embeddings [TACL]
Mo Yu and Mark Dredze

System Demonstrations

Illinois Math Solver: Math Reasoning on the Web
Subhro Roy and Dan Roth

LingoTurk: managing crowdsourced tasks for psycholinguistics
Florian Pusse, Asad Sayeed and Vera Demberg

Sentential Paraphrasing as Black-Box Machine Translation
Courtney Napoles, Chris Callison-Burch and Matt Post

A Tag-based English Math Word Problem Solver with Understanding, Reasoning
and Explanation
Chao-Chun Liang, Kuang-Yi Hsu, Chien-Tsung Huang, Chung-Min Li, Shen-Yu
Miao and Keh-Yih Su

Cross-media Event Extraction and Recommendation
Di Lu, Clare Voss, Fangbo Tao, Xiang Ren, Rachel Guan, Rostyslav Korolov, Tong-
tao Zhang, Dongang Wang, Hongzhi Li, Taylor Cassidy, Heng Ji, Shih-fu Chang,
Jiawei Han, William Wallace, James Hendler, Mei Si and Lance Kaplan

SODA: Service Oriented Domain Adaptation Architecture for Microblog Catego-
rization
Himanshu Sharad Bhatt, Sandipan Dandapat, Peddamuthu Balaji, Shourya Roy,
Sharmistha Jat and Deepali Semwal

Lecture Translator - Speech translation framework for simultaneous lecture trans-
lation
Markus Müller, Thai Son Nguyen, Jan Niehues, Eunah Cho, Bastian Krüger, Thanh-
Le Ha, Kevin Kilgour, Matthias Sperber, Mohammed Mediani, Sebastian Stüker and
Alex Waibel

Zara The Supergirl: An Empathetic Personality Recognition System
Pascale Fung, Anik Dey, Farhad Bin Siddique, Ruixi Lin, Yang Yang, Yan Wan and
Ho Yin Ricky Chan

Kathaa: A Visual Programming Framework for NLP Applications
Sharada Prasanna Mohanty, Nehal J Wani, Manish Srivastava and Dipti Misra
Sharma

Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Ribeiro, Sameer Singh and Carlos Guestrin

lii

Tuesday, June 14, 2016 (continued)

Student Workshop Posters

Effects of Communicative Pressures on Novice L2 Learners’ Use of Optional Formal
Devices
Yoav Binoun

Explicit Argument Identification for Discourse Parsing In Hindi: A Hybrid Pipeline
Rohit Jain and Dipti Sharma

Exploring Fine-Grained Emotion Detection in Tweets
Jasy Suet Yan Liew and Howard Turtle

Extraction of Bilingual Technical Terms for Chinese-Japanese Patent Translation
Wei Yang, Jinghui Yan and Yves Lepage

Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection
on Twitter
Zeerak Waseem and Dirk Hovy

Non-decreasing Sub-modular Function for Comprehensible Summarization
Litton JKurisinkel, Pruthwik Mishra, Vigneshwaran Muralidaran, Vasudeva Varma
and Dipti Misra Sharma

Phylogenetic simulations over constraint-based grammar formalisms
Andrew Lamont and Jonathan Washington

Question Answering over Knowledge Base using Weakly Supervised Memory Net-
works
Sarthak Jain

Using Related Languages to Enhance Statistical Language Models
Anna Currey, Alina Karakanta and Jon Dehdari

8:00–10:00 Bayview Lawn Beach Social

liii

Wednesday, June 15, 2016

7:30–8:45 Breakfast, Pavilion

9:00–10:15 Invited talk: "Human-based evaluations of language generation systems"
Ehud Reiter

10:15–10:45 Coffee break, Pavilion

10:45–12:15 Session 8

8A. Question Answering

10:45–11:05 A Joint Model for Answer Sentence Ranking and Answer Extraction [TACL]
Md Arafat Sultan, Vittorio Castelli, and Radu Florian

11:05–11:25 Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for
Answer Sentence Reranking
Kateryna Tymoshenko, Daniele Bonadiman and Alessandro Moschitti

11:25–11:45 Semi-supervised Question Retrieval with Gated Convolutions
Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Ty-
moshenko, Alessandro Moschitti and Lluís Màrquez

11:45–12:05 Parsing Algebraic Word Problems into Equations [TACL]
Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and
Siena Dumas Ang

12:05–12:15 This is how we do it: Answer Reranking for Open-domain How Questions with
Paragraph Vectors and Minimal Feature Engineering
Dasha Bogdanova and Jennifer Foster

liv

Wednesday, June 15, 2016 (continued)

8B. Multilingual Processing

10:45–11:05 Multilingual Language Processing From Bytes
Dan Gillick, Cliff Brunk, Oriol Vinyals and Amarnag Subramanya

11:05–11:25 Ten Pairs to Tag – Multilingual POS Tagging via Coarse Mapping between Embed-
dings
Yuan Zhang, David Gaddy, Regina Barzilay and Tommi Jaakkola

11:25–11:45 Part-of-Speech Tagging for Historical English
Yi Yang and Jacob Eisenstein

11:45–12:05 Statistical Modeling of Creole Genesis
Yugo Murawaki

12:05–12:15 Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text
Arnav Sharma, Sakshi Gupta, Raveesh Motlani, Piyush Bansal, Manish Shrivastava,
Radhika Mamidi and Dipti M. Sharma

8C. Word Embeddings II

10:45–11:05 Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders
Simon Šuster, Ivan Titov and Gertjan van Noord

11:05–11:25 Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Rep-
resentation Learning
Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui, Guillaume Lample, Patrick
Littell, David Mortensen, Alan W Black, Lori Levin and Chris Dyer

11:25–11:45 Learning Distributed Representations of Sentences from Unlabelled Data
Felix Hill, Kyunghyun Cho and Anna Korhonen

11:45–12:05 Learning to Understand Phrases by Embedding the Dictionary [TACL]
Felix Hill, KyungHyun Cho, Anna Korhonen, and Yoshua Bengio

12:05–12:15 Retrofitting Sense-Specific Word Vectors Using Parallel Text
Allyson Ettinger, Philip Resnik and Marine Carpuat

12:15–1:00 Lunch

lv

Wednesday, June 15, 2016 (continued)

1:00–2:00 NAACL business meeting, Grande Ballroom A

2:15–3:45 Session 9

9A. Argumentation and Discourse

2:15–2:35 End-to-End Argumentation Mining in Student Essays
Isaac Persing and Vincent Ng

2:35–2:55 Cross-Domain Mining of Argumentative Text through Distant Supervision
Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, Jonas Köhler and Benno
Stein

2:55–3:15 A Study of the Impact of Persuasive Argumentation in Political Debates
Amparo Elizabeth Cano-Basave and Yulan He

3:15–3:35 Lexical Coherence Graph Modeling Using Word Embeddings
Mohsen Mesgar and Michael Strube

3:35–3:45 Using Context to Predict the Purpose of Argumentative Writing Revisions
Fan Zhang and Diane Litman

9B. Misc Semantics

2:15–2:35 Automatic Generation and Scoring of Positive Interpretations from Negated State-
ments
Eduardo Blanco and Zahra Sarabi

2:35–2:55 Learning Natural Language Inference with LSTM
Shuohang Wang and Jing Jiang

2:55–3:15 Activity Modeling in Email
Ashequl Qadir, Michael Gamon, Patrick Pantel and Ahmed Hassan Awadallah

3:15–3:35 Clustering Paraphrases by Word Sense
Anne Cocos and Chris Callison-Burch

lvi

Wednesday, June 15, 2016 (continued)

3:35–3:45 Unsupervised Learning of Prototypical Fillers for Implicit Semantic Role Labeling
Niko Schenk and Christian Chiarcos

9C. Text Categorization

2:15–2:35 Hierarchical Attention Networks for Document Classification
Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola and Eduard Hovy

2:35–2:55 Dependency Based Embeddings for Sentence Classification Tasks
Alexandros Komninos and Suresh Manandhar

2:55–3:15 Deep LSTM based Feature Mapping for Query Classification
Yangyang Shi, Kaisheng Yao, Le Tian and Daxin Jiang

3:15–3:35 Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and
Documents
Rui Zhang, Honglak Lee and Dragomir R. Radev

3:35–3:45 MGNC-CNN: A Simple Approach to Exploiting Multiple Word Embeddings for Sen-
tence Classification
Ye Zhang, Stephen Roller and Byron C. Wallace

3:45–4:15 Coffee break, Pavilion

4:15–5:45 Best paper awards

4:15–4:35 Improving sentence compression by learning to predict gaze
Sigrid Klerke, Yoav Goldberg and Anders Søgaard

4:35–5:05 Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fic-
tional Relationships
Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber and Hal
Daumé III

5:05–5:35 Learning to Compose Neural Networks for Question Answering
Jacob Andreas, Marcus Rohrbach, Trevor Darrell and Dan Klein

5:35–5:45 Closing remarks

lvii

Wednesday, June 15, 2016 (continued)

lviii

Proceedings of NAACL-HLT 2016, pages 1–10,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Achieving Accurate Conclusions in Evaluation of
Automatic Machine Translation Metrics

Yvette Graham
School of Computing

Dublin City University
graham.yvette@gmail.com

Qun Liu
ADAPT Research Centre
Dublin City University

qliu@computing.dcu.ie

Abstract

Automatic Machine Translation metrics, such
as BLEU, are widely used in empirical eval-
uation as a substitute for human assessment.
Subsequently, the performance of a given met-
ric is measured by its strength of correlation
with human judgment. When a newly pro-
posed metric achieves a stronger correlation
over that of a baseline, it is important to take
into account the uncertainty inherent in cor-
relation point estimates prior to concluding
improvements in metric performance. Con-
fidence intervals for correlations with human
judgment are rarely reported in metric eval-
uations, however, and when they have been
reported, the most suitable methods have un-
fortunately not been applied. For example,
incorrect assumptions about correlation sam-
pling distributions made in past evaluations
risk over-estimation of significant differences
in metric performance. In this paper, we pro-
vide analysis of each of the issues that may
lead to inaccuracies before providing detail of
a method that overcomes previous challenges.
Additionally, we propose a new method of
translation sampling that in contrast achieves
genuine high conclusivity in evaluation of the
relative performance of metrics.

1 Introduction

In empirical evaluation of Machine Translation
(MT), automatic metrics are widely used as a sub-
stitute for human assessment for the purpose of
measuring differences in MT system performance.
The performance of a newly proposed metric is it-
self measured by the degree to which its automatic

scores for a sample of MT systems correlate with
human assessment of that same set of systems. A
main venue for evaluation of MT metrics is the an-
nual Workshop for Statistical Machine Translation
(WMT) (Bojar et al., 2015) where large-scale hu-
man evaluation takes place, primarily for the pur-
pose of ranking systems competing in the transla-
tion shared task, but additionally to use the resulting
system rankings for evaluation of automatic metrics.
Since 2014, WMT has used the Pearson correla-
tion as the official measure for evaluation of metrics
(Macháček and Bojar, 2014; Stanojević et al., 2015).
Comparison of the performance of any two metrics
involves the comparison of two Pearson correlation
point estimates computed over a sample of MT sys-
tems, therefore. Table 1 shows correlations with hu-
man assessment of each of the metrics participat-
ing in the Czech-to-English component of WMT-
14 metrics shared task, and, for example, if we wish
to compare the performance of the top-performing
metric, REDSYSSENT (Wu et al., 2014), with the
popular metric BLEU (Papineni et al., 2001), this in-
volves comparison of the correlation point estimate
of REDSYSSENT, r = 0.993, with the weaker corre-
lation point estimate of BLEU, r = 0.909, with both
computed with reference to human assessment of a
sample of 5 MT systems.

When a new metric achieves a stronger correla-
tion with human assessment over a baseline metric,
such as the increase achieved by REDSYSSENT over
BLEU, it is important to consider the uncertainty sur-
rounding the difference in correlation. Confidence
intervals are very rarely reported in metric evalua-
tions, however, and when attempts have been made,

1

Metric r CI UCL

REDSYSSENT 0.993 ± 0.018 1.011
REDSYS 0.989 ± 0.021 1.010

NIST 0.983 ± 0.025 1.008
DISCOTK-PARTY 0.983 ± 0.025 1.008

APAC 0.982 ± 0.026 1.008
METEOR 0.980 ± 0.029 1.009

TER 0.976 ± 0.031 1.007
DISCOTK-PARTY-TUNED 0.975 ± 0.031 1.006

WER 0.974 ± 0.033 1.007
CDER 0.965 ± 0.035 1.000

TBLEU 0.957 ± 0.040 0.997
DISCOTK-LIGHT 0.954 ± 0.038 0.992

UPC-STOUT 0.948 ± 0.040 0.988
BLEU-NRC 0.946 ± 0.044 0.990

ELEXR 0.945 ± 0.044 0.989
LAYERED 0.941 ± 0.045 0.986

VERTA-EQ 0.938 ± 0.048 0.986
VERTA-W 0.934 ± 0.050 0.984

BLEU 0.909 ± 0.054 0.963
PER 0.883 ± 0.063 0.946

UPC-IPA 0.824 ± 0.073 0.897
AMBER 0.744 ± 0.095 0.839

Table 1: WMT-14 Czech-to-English metrics shared task Pear-

son correlation (r) point estimates for metrics with human as-

sessment (5 MT systems), reported confidence intervals (CI),

and corresponding upper confidence limits (UCL).

the most appropriate method has unfortunately not
been applied. For example, although WMT consti-
tutes a main authority on MT evaluation, and have
made the best attempt to provide confidence inter-
vals for metric correlations we could find, when
we closely examine results of WMT-14 Czech-to-
English metrics shared task, reproduced here in Ta-
ble 1, a discrepancy can be identified. For the nine
top-performing metrics participating in the shared
task, upper confidence interval limits are reported to
exceed 1.0.

Confidence intervals reported in the metrics
shared task unfortunately also risk inaccurate con-
clusions about the relative performance of metrics
for other less obvious reasons and risk conclusions
that over-estimate the presence of significant dif-
ferences. False-positives are problematic in metric
evaluations because, if a given metric is mistakenly
concluded to significantly outperform a competing
metric, it is possible that had a larger sample of MT
systems been employed in the evaluation, that the re-
verse conclusion should in fact be made. We demon-
strate how this can occur for metrics, showing that in
reality in current metric evaluation settings, it is only
possible to identify a very small number of signifi-

−2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Standardized Human

H
yp

ot
he

tic
al

 B
LE

U

Figure 1: 10k simulated BLEU scores correlating with human

assessment at r = 0.91 as in BLEU evaluation of Czech-to-

English in WMT-14.

cant differences in performance. A main cause is the
small number of MT systems employed in evalua-
tions, and we propose a new sampling technique, hy-
brid super-sampling, that overcomes previous chal-
lenges and facilities the evaluation of metrics with
reference to a practically unlimited number of MT
systems.

2 WMT-style Evaluation

Alongside the correlation sample point estimates
achieved by metrics, WMT reports confidence in-
tervals for correlations that unfortunately risk over-
estimation of significant differences in metric per-
formance, reasons for which we outline below
(Macháček and Bojar, 2013; Macháček and Bojar,
2014; Stanojević et al., 2015).

2.1 Sampling Distribution Assumptions

As shown in Table 1, confidence intervals are re-
ported for metric correlations using ± notation. The
use of the ± notation implies that the sampling dis-
tribution is symmetrical. Since the sampling distri-
bution of the Pearson correlation, r, is skewed, how-
ever, this means that, for a non-zero correlation, it is
not possible for the portion of the confidence interval
that lies above the correlation sample point estimate
and the portion that lies below it to be equal. Ad-

2

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8
10

r

S
am

pl
in

g
D

is
t.

D
en

si
ty

r = 0.91
95% CI
WMT 95% CI

Figure 2: Sampling distribution of r = 0.91 and N = 5 for

correlation of BLEU with human assessment for hypothetical

“population” of MT systems in Figure 1.

ditionally, since the correlation sample statistic, r,
cannot take on values greater than 1.0, the closer r
is to 1.0 the more extreme the skew of its sampling
distribution becomes.1

To demonstrate how the skew of the sampling dis-
tribution of r impacts on upper and lower confidence
interval limits for metrics, in Figures 1 and 2, we
simulate a possible population and sampling distri-
bution for BLEU’s correlation with human assess-
ment, r = 0.91, achieved in WMT-14 Czech-to-
English shared task, where the sample size, n, was 5
MT systems. Figure 1 depicts a hypothetical “pop-
ulation” of 10,000 MT systems and BLEU scores,
where hypothetical BLEU scores for systems corre-
spond with human assessment scores in such a way
that a correlation of 0.91 is achieved. Figure 2 de-
picts the sampling distribution for r yielded by re-
peatedly drawing sets of 5 systems at random from
the larger “population” of 10,000 systems, where
the negative skew can be clearly observed. Figure 2
also depicts the 95% confidence interval (CI), within
which 95% of sampled correlations lie, where the
width of the lower portion of confidence interval is
substantially wider than the upper portion, and the

1It should be noted that the assumption of symmetry of the
sampling distribution of r is not explicitly made in any WMT
report.

overly conservative confidence interval reported for
BLEU in WMT-14, where upper and lower portions
of the confidence interval are incorrectly assumed to
be equal in size.

2.2 Application of Bootstrap Resampling
A conventional approach to bootstrap resampling for
the purpose of computing confidence intervals for a
correlation sample point estimate is to create a cor-
relation coefficient pseudo-distribution by sampling
(at random with replacement) human and automatic
scores for n MT systems from the set of n systems
for which we have genuine metric and human scores.
Instead, however, reported confidence intervals are
the result of creating pseudo-distributions of human
assessment scores for systems. The method unfor-
tunately does not produce accurate confidence inter-
vals for correlation sample point estimates, as con-
fidence intervals produced in this way can unfortu-
nately only inform us about the certainty surround-
ing human assessment scores for systems rather than
the more relevant question of the certainty surround-
ing the correlation point estimates achieved by met-
rics. Confidence intervals computed in this way
are substantially narrower than confidence intervals
computed using the standard Fisher r-to-z transfor-
mation, that can also be directly applied to corre-
lations of metrics with human assessment without
application of randomized methods.

Table 22 includes reported confidence intervals of
metric correlations for English-to-Czech in WMT-
15, and those computed using the standard Fisher
r-to-z transformation, where confidence intervals of
the latter are substantially wider. An extreme ex-
ample occurs for metric DREEM, where the differ-
ence between its original reported lower confidence
interval limit and the correlation point estimate is
0.006, more than 34 times narrower than that com-
puted with the Fisher r-to-z transformation, 0.206.

2.3 Difference in Dependent Correlations
When reporting the outcome of an empirical evalua-
tion, along with sample point estimates, such as the
mean or, in the case of metrics, correlation, we only

2WMT confidence intervals have been recomputed from the
published data set to remove the previously described error with
respect to the symmetry of r’s sampling distribution.

3

Metric r Method Low. CI (-) Upper CI (+)

CHRF3 0.977 WMT 0.003 0.002
Fisher 0.046 0.015

CHRF 0.971 WMT 0.003 0.003
Fisher 0.059 0.020

RATATOUILLE 0.965 WMT 0.003 0.003
Fisher 0.071 0.024

BEER 0.962 WMT 0.004 0.003
Fisher 0.076 0.026

METEORWSD 0.953 WMT 0.004 0.003
Fisher 0.093 0.032

LEBLEU-DEF. 0.953 WMT 0.004 0.003
Fisher 0.091 0.031

BS 0.953 WMT 0.004 0.003
Fisher 0.032 0.092

BLEU 0.936 WMT 0.005 0.004
Fisher 0.123 0.043

PER 0.908 WMT 0.005 0.004
Fisher 0.168 0.062

DREEM 0.883 WMT 0.006 0.006
Fisher 0.206 0.078

Table 2: WMT and Fisher r-to-z (Fisher) confidence intervals

(CI) for Pearson correlation, ρ, in WMT-15 sample of English-

to-Czech metrics (15 MT systems).

ever have access to a sample of the actual data that
would be needed to compute the corresponding true
value for the population. Confidence intervals pro-
vide a way of estimating the range of values within
which we believe with a specified degree of cer-
tainty that the corresponding true value lies. Gener-
ally speaking, they can also provide a mechanism for
drawing conclusions about significant differences in
sample statistics. If, for example, mean scores are
used to measure system performance, and the confi-
dence intervals of a pair of systems do not overlap,
a significant difference in sample means and subse-
quently system performance can be concluded.

Although confidence intervals for individual cor-
relations do provide an indication of the degree of
certainty with which we should interpret reported
correlation sample point estimates, they unfortu-
nately cannot be used in the above described way to
conclude significant differences in the performance
of metrics, however. All we can gain from confi-
dence intervals for individual correlations with re-
spect to significance differences is the following: if
the confidence interval of a correlation sample point
estimate does not include zero, then it can be con-
cluded (with a specified degree of certainty) that this

individual correlation is significantly different from
zero. Confidence intervals for individual metric cor-
relations with human assessment do not inform us
about the certainty surrounding a difference in cor-
relation with human assessment, the relevant ques-
tion for comparing performance of competing MT
metrics.

When computing confidence intervals for a dif-
ference in correlation, it is important to consider
the nature of the data. For MT metric evaluation,
data used to compute correlation point estimates
for a given pair of metrics is dependent, as it in-
cludes three variables (Human, Metrica, Metricb),
and, for each MT system that is a member of the
sample, there is a value corresponding to each of
these three variables. Besides the two correlations
we are interested in comparing, r(Human, Metrica)
and r(Human, Metricb), there is a third correla-
tion to consider, therefore, the correlation that ex-
ists directly between the metric scores themselves,
r(Metrica, Metricb). Graham and Baldwin (2014)
provide detail of Williams test, a test of significance
of a difference in dependent correlations, suitable
for evaluation of MT metrics. Confidence intervals
are more informative than the binary conclusions
that can be inferred from p-values produced by sig-
nificance tests, however, and Zou (2007) presents
a method of constructing confidence intervals for
differences in dependent correlations also suitable
for evaluation of MT metrics. We provide an im-
plementation of Zou (2007) tailored to metric eval-
uation at https://github.com/ygraham/
MT-metric-confidence-intervals.

Table 3 includes confidence intervals for differ-
ences in dependent correlations (Zou, 2007) for the
seven top-performing German-to-English metrics in
WMT-15. Besides providing an indication of the
degree of certainty surrounding a given difference
in correlation for a pair of metrics, confidence inter-
vals that do not include zero can now be used to in-
fer a significant difference in performance for a pair
of metrics. For example, the 95% confidence inter-
val for the difference in correlation between the top-
performing metric, UPFCOBALT (r = 0.981) and
METEORWSD (r = 0.953), [0.005, 0.123], in Table
3, does not include zero and subsequently implies a
significant difference in performance.

Figure 3 depicts the contrast in conclusions for

4

DPMFCOMB DPMF UOWLSTM RATATOUILLE CHRF3 METEORWSD
(r = 0.973) (r = 0.960) (r = 0.960) (r = 0.958) (r = 0.956) (r = 0.953)

(r = 0.981) UPFCOBALT [−0.023, 0.061] [−0.004, 0.101] [−0.013, 0.106] [−0.010, 0.109] [−0.001, 0.114] [0.005, 0.123]
DPMFCOMB - [−0.025, 0.087] [−0.032, 0.092] [−0.026, 0.093] [−0.024, 0.101] [−0.017, 0.109]

DPMF - - [−0.070, 0.073] [−0.067, 0.075] [−0.061, 0.079] [−0.054, 0.087]
UOWLSTM - - - [−0.071, 0.077] [−0.069, 0.084] [−0.066, 0.094]

RATATOUILLE - - - - [−0.072, 0.082] [−0.064, 0.088]
CHRF3 - - - - - [−0.067, 0.081]

Table 3: Pairwise 95% confidence intervals for differences in correlation for seven top-performing metrics for German-to-English

in WMT-15 (13 MT systems), confidence intervals not including zero imply a significant difference and are highlighted in bold.

(a) Individual Correlations (b) Difference in Dependent
WMT-15 Correlations

up
f.c

ob
al

t
D

P
M

F
co

m
b

D
P

M
F

U
oW

.L
S

T
M

R
AT

AT
O

U
IL

LE
ch

rF
3

M
E

T
E

O
R

.W
S

D
B

E
E

R
_T

re
ep

el
B

E
E

R
V

E
R

Ta
.7

0A
de

q3
0F

lu
ch

rF
V

E
R

Ta
.W

Le
B

LE
U

.o
pt

im
iz

ed
Le

B
LE

U
.d

ef
au

lt
V

E
R

Ta
.E

Q
N

IS
T

C
D

E
R

T
E

R
D

re
em

W
E

R
B

S
B

LE
U

P
E

R

PER
BLEU
BS
WER
Dreem
TER
CDER
NIST
VERTa−EQ
LeBLEU−default
LeBLEU−optimized
VERTa−W
chrF
VERTa−70Adeq30Flu
BEER
BEER_Treepel
METEOR−WSD
chrF3
RATATOUILLE
UoW−LSTM
DPMF
DPMFcomb
upf−cobalt

up
f.c

ob
al

t
D

P
M

F
co

m
b

D
P

M
F

U
oW

.L
S

T
M

R
AT

AT
O

U
IL

LE
ch

rF
3

M
E

T
E

O
R

.W
S

D
B

E
E

R
_T

re
ep

el
B

E
E

R
V

E
R

Ta
.7

0A
de

q3
0F

lu
ch

rF
V

E
R

Ta
.W

Le
B

LE
U

.o
pt

im
iz

ed
Le

B
LE

U
.d

ef
au

lt
V

E
R

Ta
.E

Q
N

IS
T

C
D

E
R

T
E

R
D

re
em

W
E

R
B

S
B

LE
U

P
E

R

PER
BLEU
BS
WER
Dreem
TER
CDER
NIST
VERTa−EQ
LeBLEU−default
LeBLEU−optimized
VERTa−W
chrF
VERTa−70Adeq30Flu
BEER
BEER_Treepel
METEOR−WSD
chrF3
RATATOUILLE
UoW−LSTM
DPMF
DPMFcomb
upf−cobalt

Figure 3: Conclusions of significant differences in correlation for WMT-15 German-to-English metrics (13 MT systems) drawn

from the (a) non-overlap of individual correlation confidence intervals originally reported in WMT and from (b) confidence intervals

of a difference in dependent correlations not including zero, green cells imply a significant win for the metric in that row over the

metric in that column.

5

WMT-15 German-to-English metrics drawn from
(a) a likely interpretation of confidence intervals
originally reported in WMT, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics is used to infer a significant dif-
ference, and (b) those drawn from the non-overlap
of confidence intervals for differences in dependent
correlations with zero (Zou, 2007), highlighting the
over-estimation of significant differences in metric
performance risked by current WMT confidence in-
tervals. For example, for German-to-English with
interpretation (a) a total of 91 significant differ-
ences are implied that are not identified accord-
ing to our corresponding approach. For instance,
the non-overlap of confidence intervals of the top-
performing metric, UPFCOBALT, with those of all
but one other metrics in the original report risks
the interpretation of a significant increase in perfor-
mance for that metric with all but one other compet-
ing metrics, but with the more appropriate method
of Zou (2007), however, confidence intervals of this
metric’s difference in correlation with four of those
competing metrics in fact include zero, with no sig-
nificant difference identified. It is worth noting that
original WMT reports do not state that the confi-
dence intervals they provide should be interpreted in
the way we have done here, where the non-overlap
of individual correlation confidence intervals of a
pair of metrics implies a significant difference, but
this is nonetheless a very likely interpretation.

3 Accurate and Conclusive Metric
Evaluations

Results of past metric evaluations have been highly
inconclusive with relatively few significant differ-
ences in performance possible to identify for met-
rics.3 The lack of conclusivity in metric evaluations
is mainly caused by the small number of systems
used to evaluate metrics. For example, in the origi-
nal experiments used to justify the use of automatic
metric BLEU, reported correlations with human as-

3Due to space limitations, it was only possible to include
confidence intervals for differences in correlation for a sub-
set of German-to-English WMT-15 metrics (Figure 3). Con-
fidence intervals for the the remaining metrics and language
pairs are available at https://github.com/ygraham/
MT-metric-confidence-intervals for which very
few significant differences in performance are identified.

sessment were for a sample size of as small as 5,
comprising three automatic systems and two human
translators (Papineni et al., 2001). WMT have im-
proved on this for some language pairs at least, as in
the past four evaluations sample sizes have ranged
from 5 (Czech-to-English WMT-14) to 22 systems
(German-to-English WMT-12/WMT-13). Even at
the maximum sample size of 22 systems, however,
correlation point estimates are computed with a high
degree of uncertainty.

3.1 Hybrid Super-Sampling

In an ideal world, MT metric evaluations would em-
ploy a much larger sample of systems than those
relied upon in past evaluations, subsequently yield-
ing correlation sample point estimates that can be
relied on with more certainty. Although not imme-
diately obvious, data sets currently used to evalu-
ate MT metrics potentially contain data for a very
large number of systems. If we consider the fact
that, given the output of as little as two MT systems,
there exists a very large number of possible ways of
combining their translated segments to form a hy-
brid system, this opens up the evaluation of metrics
to a vastly larger pool of systems. For example, even
if we restrict the creation of hybrid systems to com-
binations of pairs of the nMT systems competing in
a translation shared task (as opposed to hybrids cre-
ated by sampling translations from several different
MT systems at once), the number of potential hybrid
systems is exponential in size of the test set, m:

n(n− 1)/2 · 2m (1)

For instance, even for a language pair for which hu-
man scores are available for as few as 5 MT systems,
by super-sampling translations from every pair of
competing systems, this results in 10 x 23,000 hy-
brid systems. Including all possible hybrid systems
is of course not necessary, and to make the approach
feasible, we sample a large but manageable subset
of 10,000 MT systems.

Obtaining automatic metric scores for this larger
number of MT systems is feasible for any metric that
is expected to be useful in practice, since automatic
metrics must already be highly efficient to be used
for optimizing systems. Obtaining human assess-
ment of this large set of hybrid systems may seem

6

CI of Difference in r CI of Difference in r
Metric r with next best metric r with next best metric

TERRORCAT 0.971 [−0.019 , 0.155] 0.960 [0.028 , 0.030]
SAGANSTS 0.942 [−0.120 , 0.136] 0.932 [0.006 , 0.011]

METEOR 0.938 [−0.086 , 0.172] 0.923 [0.028 , 0.032]
POSF 0.919 [−0.134 , 0.184] 0.893 [0.004 , 0.008]

SPEDE07FP 0.907 [−0.138 , 0.162] 0.887 [−0.001 , 0.003]
• SPEDE08FP 0.897 [−0.142 , 0.202] 0.886 [0.004 , 0.007]
• SPEDE07F 0.902 [−0.156 , 0.176] 0.880 [0.003 , 0.006]
• SPEDE07PP 0.879 [−0.161 , 0.202] 0.876 [0.007 , 0.007]
• SPEDE07P 0.870 [−0.188 , 0.196] 0.869 [0.006 , 0.009]

• XENERRCATS 0.884 [−0.174 , 0.193] 0.862 [0.011 , 0.015]
• AMBER 0.859 [−0.084 , 0.398] 0.849 [0.008 , 0.011]

• WORDBLOCKERRCATS 0.868 [−0.183 , 0.220] 0.839 [0.057 , 0.065]
• SIMPBLEU 0.770 [−0.210 , 0.318] 0.778 [0.033 , 0.036]

• BLEU 0.741 - 0.744 [0.008 , 0.016]
• BLOCKERRCATS 0.779 [−0.257 , 0.293] 0.731 -

12 Systems 10k Systems

Table 4: Correlations and confidence intervals of pseudo document-level metrics (averaged segment-level metrics) with human

assessment evaluated on original 12 MT systems and 10k hybrid super-sample (WMT-12 Spanish-to-English). Metrics with a

different rank order in the original sample and hybrid super-sample evaluations are marked with • and confidence intervals that do

not include zero are in bold.

−0.4 −0.2 0.0 0.2

20
25

30

Standardized Human

B
LE

U

−0.4 −0.2 0.0 0.2

0.
45

0.
50

0.
55

Standardized Human

Te
rr

or
C

at

Figure 4: Human, TERRORCAT and BLEU scores for 10k super-sampled hybrid MT systems for WMT-12 Spanish-to-English.

7

more challenging, but the method of human evalua-
tion we employ facilitates the straight-forward com-
putation of human scores for vast numbers of sys-
tems directly from the original human evaluation of
only n systems. Graham et al. (2013) provide a hu-
man evaluation of MT that elicits adequacy assess-
ments of translations, independent of other transla-
tions on a fine-grained 100-point rating scale. After
score standardization to iron-out differences in indi-
vidual human assessor scoring strategies, the overall
human score for a MT system is simply computed as
the mean of the ratings attributed to its translations,
and this facilitates the straight-forward computation
of a human score for any hybrid system from the
original human evaluation of n systems.

To demonstrate, we replicate a previous year’s
WMT metrics shared task, constructing a hybrid
super-sample of 10,000 MT systems each with a
corresponding metric and human score. Since we
do not have access to all document-level metrics
that participated in the original shared task, we use
segment-level metric scores as pseudo document-
level metrics by taking the average of segment-level
scores of the segments that comprise the test set doc-
ument. This allows retrospective computation of au-
tomatic metric scores for the large set of 10k hy-
brid MT systems. For the purpose of comparison,
in addition to averaged segment-level metrics, we
also include document-level BLEU and an analysis
of the correlation it achieves in the context of hy-
brid super-sampling. Human evaluation scores were
computed using the mean of a minimum of 1,500
crowd-sourced human ratings per system, where
strict quality-controlling of crowd-sourced workers
was applied.

Table 4 shows correlations achieved by metrics
when evaluated on the original 12 and 10k systems,
as well as confidence intervals of the difference in
correlation achieved by each metric with that of the
next best performing metric in each case.4 As ex-
pected, confidence intervals for differences in corre-
lation are substantially reduced for the larger sample
of metrics. Importantly, the change in rank order of
metrics when evaluated with reference to a sample

4It should be noted, since participating teams did not intend
segment-level metric scores to be averaged as we have done
here, correlations are for demonstrative purposes and do not re-
flect performance of participating teams.

of 10k MT systems, as opposed to 12, highlights the
risk of concluding an increase in performance from
evaluations that include only a small sample of sys-
tems.

Figure 4 plots super-sampled human and auto-
matic metric scores for BLEU providing insight into
how BLEU scores correspond with human assess-
ment. Worryingly for the range of systems with
scores below 20 BLEU points, the plot shows an
almost horizontal band of systems spread across a
wide range of quality according to human assessors
despite extremely similar BLEU scores. The top-
performing automatic metric, TERRORCAT, on the
other hand, impressively sustains its high correla-
tion with human assessment when evaluated on as
many as 10k MT systems, evidence that this metric
is indeed highly consistent with human assessment
of Spanish-to-English.

Due to space limitations, it is not possible to
include pairwise confidence intervals for all pairs
of metrics, and instead we include in Figure 5 a
heatmap of significant differences in performance,
where a significant win is inferred for the metric in
a given row over the metric in a given column if
the confidence interval of the difference in correla-
tion for that pair did not include zero. Results show
the super-sampled evaluation facilitates not only the
identification of an outright best-performing met-
ric, TERRORCAT, it also yields an almost total-order
ranking of metrics, as significant differences are pos-
sible to identify for all but one pairs of competing
metrics. Finally, we repeated the metric evaluation
with ten distinct super-samples of 10k MT systems
with all replications resulting in precisely the same
ranking of metrics as shown in Table 4.

4 Conclusion

Analysis of evaluation methodologies applied to au-
tomatic MT metrics was provided and the risk of
over-estimation of significant differences in metric
performance identified. Confidence intervals for
differences in dependent correlations were recom-
mended as appropriate for evaluation of MT met-
rics. Hybrid super-sampling was proposed, evaluat-
ing metrics with reference to a substantially larger
sample of MT systems, achieving genuinely highly
conclusive metric rankings.

8

Original (12 Systems) Super-Sample (10k Systems)

Te
rr

or
C

at
S

A
G

A
N

_S
T

S
M

et
eo

r
po

sF
sp

ed
e0

7_
fP

sp
ed

e0
7_

f
sp

ed
e0

8_
fP

X
E

nE
rr

C
at

s
sp

ed
e0

7_
pP

sp
ed

e0
7_

p
W

or
dB

lo
ck

E
rr

C
at

s
A

M
B

E
R

B
lo

ck
E

rr
C

at
s

S
IM

P
B

LE
U

B
LE

U
BLEU
SIMPBLEU
BlockErrCats
AMBER
WordBlockErrCats
spede07_p
spede07_pP
XEnErrCats
spede08_fP
spede07_f
spede07_fP
posF
Meteor
SAGAN_STS
TerrorCat

Te
rr

or
C

at
S

A
G

A
N

_S
T

S
M

et
eo

r
po

sF
sp

ed
e0

7_
fP

sp
ed

e0
8_

fP
sp

ed
e0

7_
f

sp
ed

e0
7_

pP
sp

ed
e0

7_
p

X
E

nE
rr

C
at

s
A

M
B

E
R

W
or

dB
lo

ck
E

rr
C

at
s

S
IM

P
B

LE
U

B
LE

U
B

lo
ck

E
rr

C
at

s

BlockErrCats
BLEU
SIMPBLEU
WordBlockErrCats
AMBER
XEnErrCats
spede07_p
spede07_pP
spede07_f
spede08_fP
spede07_fP
posF
Meteor
SAGAN_STS
TerrorCat

Figure 5: Pairwise conclusions for pseudo document-level metrics (averaged segment-level metrics) from WMT-12 Spanish-to-

English metrics shared task, where a green cell indicates a significant win for the metric in a given row over the metric in the

corresponding column.

Acknowledgments

We wish to thank the anonymous reviewers and
Ondřej Bojar for valued feedback and WMT or-
ganisers for provision of data sets. This project
has received funding from the European Union
Horizon 2020 research and innovation programme
under grant agreement 645452 (QT21) and the
ADAPT Centre for Digital Content Technology
(www.adaptcentre.ie) at Dublin City Uni-
versity funded under the SFI Research Centres Pro-
gramme (Grant 13/RC/2106) co-funded under the
European Regional Development Fund.

References

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 Workshop
on Statistical Machine Translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Yvette Graham and Timothy Baldwin. 2014. Testing for
significance of increased correlation with human judg-

ment. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
172–176, Doha, Qatar. Association for Computational
Linguistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop &
Interoperability with Discourse, pages 33–41, Sofia,
Bulgaria. Association for Computational Linguistics.

Matouš Macháček and Ondřej Bojar. 2013. Results of
the WMT13 metrics shared task. In Proceedings of the
Eighth Workshop on Statistical Machine Translation,
pages 45–51, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Matouš Macháček and Ondřej Bojar. 2014. Results of
the WMT14 metrics shared task. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 293–301, Baltimore, Maryland, USA, June. As-
sociation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: A method for automatic
evaluation of machine translation. Technical Report
RC22176 (W0109-022), IBM Research, Thomas J.
Watson Research Center.

Miloš Stanojević, Amir Kamran, Philipp Koehn, and
Ondřej Bojar. 2015. Results of the WMT15 metrics
shared task. In Proceedings of the Tenth Workshop on

9

Statistical Machine Translation, pages 256–273, Lis-
bon, Portugal, September. Association for Computa-
tional Linguistics.

Xiaofeng Wu, Hui Yu, and Qun Liu. 2014. RED, the
DCU-CASICT submission of metrics tasks. In Pro-
ceedings of the Ninth Workshop on Statistical Ma-
chine Translation, pages 420–425, Baltimore, Mary-
land, USA, June. Association for Computational Lin-
guistics.

Guang Yong Zou. 2007. Toward using confidence inter-
vals to compare correlations. Psychological Methods,
12(4):399 – 413.

10

Proceedings of NAACL-HLT 2016, pages 11–19,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Flexible Non-Terminals for Dependency Tree-to-Tree Reordering

John Richardson†, Fabien Cromières‡, Toshiaki Nakazawa‡ and Sadao Kurohashi†
†Graduate School of Informatics, Kyoto University, Kyoto 606-8501

‡Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012
john@nlp.ist.i.kyoto-u.ac.jp, {fabien, nakazawa}@pa.jst.jp,

kuro@i.kyoto-u.ac.jp

Abstract

A major benefit of tree-to-tree over tree-
to-string translation is that we can use
target-side syntax to improve reordering.
While this is relatively simple for binarized
constituency parses, the reordering prob-
lem is considerably harder for dependency
parses, in which words can have arbitrarily
many children. Previous approaches have
tackled this problem by restricting gram-
mar rules, reducing the expressive power
of the translation model.
In this paper we propose a general
model for dependency tree-to-tree reorder-
ing based on flexible non-terminals that
can compactly encode multiple insertion
positions. We explore how insertion po-
sitions can be selected even in cases where
rules do not entirely cover the children
of input sentence words. The proposed
method greatly improves the flexibility of
translation rules at the cost of only a 30%
increase in decoding time, and we demon-
strate a 1.2–1.9 BLEU improvement over
a strong tree-to-tree baseline.

1 Introduction
Translation is most commonly performed by
splitting an input sentence into manageable
parts, translating these segments, then arrang-
ing them in an appropriate order. The first two
steps have roughly the same difficulty for close
and distant language pairs, however the reorder-
ing step is considerably more challenging for lan-
guage pairs with dissimilar syntax. We need to

be able to make linguistic generalizations, such
as learning to translate between SVO and SOV
clauses and converting post-modifying preposi-
tional and pre-modifying postpositional phrases
(Quirk et al., 2005). Such generalizations often
require syntactically motivated long-distance re-
ordering.

The first approaches to reordering were based
on linear distortion (Koehn et al., 2003), which
models the probability of swapping pairs of
phrases over some given distance. The linear
distance is the only parameter, ignoring any
contextual information, however this model has
been shown to work well for string-to-string
translation. Linear reordering was improved
with lexical distortion (Tillmann, 2004), which
characterizes reordering in terms of type (mono-
tone, swap, or discontinuous) as opposed to dis-
tance. This approach however is prone to spar-
sity problems, in particular for distant language
pairs.

In order to improve upon linear string-based
approaches, syntax-based approaches have also
been proposed. Tree-to-string translation has
been the most popular syntax-based paradigm
in recent years, which is reflected by a number
of reordering approaches considering source-only
syntax (Liu et al., 2006; Neubig, 2013). One
particularly interesting approach is to project
source dependency parses to the target side and
then learn a probability model for reordering
children using features such as source and target
head words (Quirk et al., 2005).

While tree-to-tree translation (Graehl and

11

Figure 1: Examples of tree-to-tree translation rules ex-
tracted from an aligned and parsed bitext. Colored boxes
represent aligned phrases and [X] is a non-terminal.

Figure 2: Combination of translation rules, demonstrat-
ing non-terminal substitution and multiple possible inser-
tion positions for a non-matching input phrase (‘昨日’).

Knight, 2004; Cowan and Collins, 2006; Chiang,
2010) has been somewhat less popular than tree-
to-string translation, we believe there are many
benefits of considering target-side syntax. In
particular, reordering can be defined naturally
with non-terminals in the target-side grammar.
This is relatively simple when the target struc-
ture of rules is restricted to ‘well-formed’ depen-
dencies (Shen et al., 2008), however in this pa-
per we consider more general rules with flexible
non-terminal insertion positions.

2 Dependency Tree-To-Tree
Translation

Dependency tree-to-tree translation begins with
the extraction of translation rules from a bilin-
gual corpus that has been parsed and word
aligned. Figure 1 shows an example of three
rules that can be extracted from aligned and
parsed sentence pairs. In this paper we consider
rules similar to previous work on tree-to-tree de-

pendency MT (Richardson et al., 2014).
The simplest type of rule, containing only ter-

minal symbols, can be extracted trivially from
aligned subtrees (see rules 2 and 3 in Figure 1).
Non-terminals can be added to rules (see rule
1 in Figure 1) by omitting aligned subtrees and
replacing on each side with non-terminal sym-
bols. We can naturally express phrase reorder-
ing as the source/target-side non-terminals are
aligned.

Decoding is performed by combining these
rules to form a complete translation, as shown
in Figure 2. We are able to translate part of the
sentence with non-ambiguous reordering (‘read
a magazine’), as we can insert ‘雑誌 → a maga-
zine’ into the rule ‘[X] を 読んだ → read [X]’.

We cannot however decide clearly where to
insert the rule ‘昨日 → yesterday’ as there is no
matching non-terminal in the rule containing its
parent in the input sentence (‘読んだ’). We use
the term floating to describe words such as ‘yes-
terday’ in this example, i.e. for an input subtree
matched to the source side of a rule, children
of the input root that are not contained in the
source side of the rule as terminals and cannot
be inserted using fixed-position non-terminals in
the rule.

Previous work deals with this problem by ei-
ther using simple glue rules (Chiang, 2005) or
limiting rules in a way to avoid isolated float-
ing children (Shen et al., 2008). For example, it
is possible to disallow the first rule in Figure 1
when translating a sentence such as that in Fig-
ure 2 with uncovered children (in this case the
word ‘yesterday’). This method greatly reduces
the expressiveness and flexibility of translation
rules.

In our generalized model, we allow any num-
ber of terminals and non-terminals and permit
arbitrarily many floating children in each rule.
To our knowledge this is the first study to take
this more comprehensive approach.

Note that in the case of constituency-based
tree-to-tree translation it is possible to binarize
the input tree and therefore gluing floating chil-
dren becomes simpler, as we only have to choose
between pre-insertion and post-insertion. In the
dependency case it is in general much more dif-

12

Figure 3: Possible insertion positions for flexible non-
terminals with target-side head ‘read’. Allowed positions
are shown in green and disallowed positions are shown
in red. We do not allow insertion position 3 because it
could allow a non-projective dependency structure.

ficult because we must order an arbitrarily large
group of children sharing a common head.

3 Flexible Non-Terminals

In this paper we propose flexible non-terminals
in order to create generalized tree-to-tree trans-
lation rules that can overcome the problems de-
scribed in the previous section. Rather than
fixed insertion positions for child nodes, we in-
stead consider multiple possible insertion posi-
tions and give features to each position. These
are stored in a compact representation allowing
for efficient decoding.

We define flexible non-terminals as non-
terminals with multiple possible insertion posi-
tions and associated features. During decoding
we select the most promising insertion position
for each non-terminal.

3.1 Rule Augmentation
As is standard practice in phrase-based SMT,
before translation we filter translation rules to
those relevant to the input sentence. At this
time, for each accepted rule we check the input
sentence for floating children, and flexible non-
terminals are added for each floating child.

We allow all insertion positions between the
children (along with their descendants) of the
target-side head for each floating child, includ-
ing insertion before the first child and after the
last child. We do not allow insertion positions
between deeper descendants of the head to avoid

Figure 4: Example of translation rule with flexible non-
terminals generated from the first parallel sentence in
Figure 1. [X] has a fixed position (4) but [Y] can have
multiple positions (1, 3, 5). Each position has an as-
sociated set of features shown in curly brackets, where
θi,j is the jth feature for insertion position i. The first
feature (0 or 1) shows whether the insertion position is
unambiguous.

non-projective dependencies. See Figure 3 for an
example of allowed/disallowed positions.

Features are then set for each insertion po-
sition and these are used to determine the
best insertion position during decoding (see Sec-
tion 3.2). Figure 4 shows an example of the pro-
posed rule augmentation.

3.2 Features
In previous work reordering is mostly decided by
the combination of a standard distortion model
and language model to score possible insertion
positions. We instead consider the following four
features and combine them during decoding to
find the most appropriate insertion positions for
floating children. All features are real numbers
between 0 and 1.

3.2.1 Insertion Position Features
We first define a set of features to estimate

the likelihood of each insertion position for some
given non-terminal. The features for inserting
the translation f of a source phrase into the
target-side e of a rule at insertion position i are
defined as follows, for surface forms (S) and POS
tags (P):

• Reordering probability:
PS(i | f, e), PP (i | f, e)

13

• Marginalized over target-side:
PS(i | f), PP (i | f)

• Marginalized over source-side:
PS(i | e), PP (i | e)

The probabilities P (i | X) are calculated by
counting insertions of X in each position i across
the whole training corpus (aligned and parsed
bitext). The exact formula is given below, for
position i (X is one of {f}, {e} or {f, e}):

P (i | X) =
count(i,X)∑
j count(j, X)

(1)

Instead of applying smoothing, in order to re-
duce sparsity issues we use both the full proba-
bility P (i | f, e) and also probabilities marginal-
ized over the source/target phrases. We also
consider both probabilities trained on surface
forms (S) and POS tags (P).

While traditional models use linear distance
for i, this is impractical for long-distance re-
ordering. Instead we restrict insertion types i to
one of the following 6 types: first-pre-child, mid-
pre-child, final-pre-child, first-post-child, mid-
post-child, and final-post-child. These corre-
spond to the first (first), last (final) or central
(mid) children on the left (pre) or right (post)
side of the parent word. We found this was more
effective than using either linear distance or a
binary (pre/post) position type.

3.2.2 Relative Position Feature
We also consider a relative position, or ‘swap-

ping’ feature, inspired by the swap operation of
classic lexical distortion (Tillmann, 2004).

Let T be the children of the root word of the
target-side of a rule. We also include in T a
pseudo-token M splitting the left and right chil-
dren of the target-side root to differentiate be-
tween pre-insertion and post-insertion.

We first learn a model describing the proba-
bility of the translation of input phrase I ap-
pearing to the left (PL(I, t)) or right (PR(I, t))
of word t in the target-side of a translation rule.
The probabilities are calculated by counting oc-
currences of I being translated to the left/right
sides of t over the aligned and parsed training
bitext.

The relative position feature is calculated by
considering the relative position of the transla-
tion of I with all the target-side root children
T . For each insertion position i, let Ti,L be the
t ∈ T to the left of position i and Ti,R the t ∈ T
to the right of position i. Then we have:

P (i | I, T) =
∏

t∈Ti,R

PL(I, t)
∏

t∈Ti,L

PR(I, t) (2)

3.2.3 Left/Right Attachment Preference
We also set an attachment direction prefer-

ence feature for each rule, specifying whether we
prefer to insert the rule as a left child or right
child of the root of a parent rule.

The attachment preference is determined by
the position of the target-side of the rule in the
target-side of the parallel sentence from which it
was extracted. For example, in Figure 1 the rule
‘昨日 → yesterday’ was extracted from a par-
allel sentence in which ‘yesterday’ was a right-
side child of its head (‘saw’), so we set the at-
tachment preference to ‘right’. In cases when
we cannot determine the attachment preference
(for example ‘read’ in the first rule in Figure 1),
because it is the sentence root), we arbitrarily
choose ‘right’.

3.2.4 Unambiguous Insertion Preference
In cases where we have a single unambiguous

insertion position for a non-terminal (e.g. [X] in
Figure 4), we set an additional binary feature
to the value 1 (otherwise 0) to specify that this
position is unambiguous. We found that a large
positive weight is almost always given to this fea-
ture, which is to be expected as we would prefer
to use fixed non-terminals if possible. We set all
features related to insertion position choice to
the maximum value (1).

3.3 Decoding
The flexible non-terminals that we are propos-
ing can lead to some interesting challenges when
it comes to decoding. A naive approach is to
expand each translation rule containing flexible
non-terminals into a set of ‘simple’ rules with
fixed non-terminals, and then apply classic de-
coding with cube-pruning.

14

However, this can be quite inefficient in prac-
tice. Due to the combinatorial aspect, a single
rule can expand into a very large number of sim-
ple rules. It is common for our translation rules
to have more than four flexible non-terminals,
each with more than four possible insertion posi-
tions. Such rules will already generate hundreds
of simple rules. In the most extreme cases, we
may encounter rules having more than ten flex-
ible non-terminals, leading to the generation of
many millions of simple rules. This explosion of
rules can lead to impractical decoding time and
memory usage.

It is therefore important to make use of the
compact encoding of many simple rules provided
by the concept of flexible non-terminals in the
decoding process itself. We use the decoding
approach of right-hand lattices (Cromières and
Kurohashi, 2014), an efficient way of encoding
many simple rules. The idea is to encode the
translation rules into a lattice form, then use this
lattice to decode efficiently without the need to
expand the flexible non-terminals explicitly.

Figure 5 shows how the concept of flexible
non-terminals can be efficiently encoded into lat-
tice form. The top half shows a target-side tree
translation rule with flexible non-terminals X1,
X2, X3 and X4 allowed to be inserted at any
position that is a child of the word ‘a’, with the
constraint that X1 comes before X2 and that
X2 comes before X3. X5 is another flexible non-
terminal that will be a child of the word ‘f’. The
lower half shows a lattice compactly encoding all
the possible combinations of non-terminal posi-
tions. Each path from the top-left to the bottom
right in this lattice represents a choice for the
insertion positions of the non-terminals. For ex-
ample, the path marked with a dotted line rep-
resents the flattened sequence ‘b c X1 X2 a X3
X4 d e f X5 g’. The lattice form has only 48
edges, while an explicit enumeration of all com-
binations of insertion positions for the flexible
non-terminals would force the decoder to con-
sider 8C4 × 3× 12 = 2520 edges.

The insertion position features described
above are added to the edges of the lattice. They
are combined alongside the standard set of fea-
tures, such as word penalty and language model

Figure 5: Example showing how a rule containing many
flexible non-terminals is encoded into lattice form for de-
coding.

JA–EN EN–JA JA–ZH ZH–JA
Train 3M 3M 676K 676K
Dev 1790 1790 2123 2123
Test 1812 1812 2171 2171

Table 1: Translation experiment data (number of sen-
tences).

score, using a standard log-linear model. The
weights for the reordering features are tuned to-
gether with the standard features.

4 Experiments

4.1 Data and Settings
We performed translation experiments on four
distant language pairs, Japanese–English (JA–
EN), English–Japanese (EN–JA), Japanese–
Chinese (JA–ZH) and Chinese–Japanese (ZH–
JA), from the Asian Scientific Paper Excerpt
Corpus (ASPEC)1. The data was split into
training, development and test folds as shown
in Table 1.

Our experiments were conducted using a
state-of-the-art dependency tree-to-tree frame-
work KyotoEBMT (Richardson et al., 2014).

1http://lotus.kuee.kyoto-u.ac.jp/ASPEC/

15

JA–EN EN–JA JA–ZH ZH–JA
BLEU RIBES BLEU RIBES BLEU RIBES BLEU RIBES

Moses 18.09 63.97 27.48 68.37 27.96 79.03 34.65 77.25
Baseline 19.97 65.10 28.41 74.78 28.13 78.00 33.51 77.86
Flexible 21.23† 69.94† 30.11† 77.11† 29.42† 80.44† 35.37† 81.33†
+Pref 21.66‡ 70.73‡ 29.90† 76.85† 29.48† 80.43† 35.57‡ 81.79‡

+Pref+Ins 21.47‡ 70.85‡ 30.03† 77.01† 29.64† 80.65† 35.71‡ 82.05‡
+Pref+Ins+Rel 21.34† 70.69‡ 29.99† 76.93† 29.78‡ 80.51† 35.81‡ 81.95‡

Table 2: Automatic evaluation of translation quality (BLEU and RIBES). Results marked with † are significantly
higher than the baseline system and those marked with ‡ are significantly higher than the proposed system with no
insertion position features (‘Flexible’). Significance was calculated with bootstrapping for p < 0.05.

Experiments were performed with the default
settings by adding the proposed non-terminal
reordering features to the rules extracted with
the baseline system. We used lattice-based de-
coding (Cromières and Kurohashi, 2014) to sup-
port multiple non-terminal insertion positions
and default tuning using, k-best MIRA (Cherry
and Foster, 2012). Dependency parsing was
performed with: KNP (Kawahara and Kuro-
hashi, 2006) (Japanese), SKP (Shen et al., 2012)
(Chinese), NLParser (Charniak and Johnson,
2005) (English, converted to dependencies with
hand-written rules). Alignment was performed
with Nile (Riesa et al., 2011) and we used a 5-
gram language model with modified Kneser-Ney
smoothing built with KenLM (Heafield, 2011).

4.2 Evaluation
As our baseline (‘Baseline’), we used the de-
fault tree-to-tree settings and features of Ky-
otoEBMT, allowing only fixed-position non-
terminals. We dealt with floating children not
covered by any other rules by adding glue rules
similar to those in hierarchical SMT (Chiang,
2005), joining floating children to the rightmost
slots in the target-side parent. For reference,
we also show results using Moses (Koehn et al.,
2007) with default settings and distortion limit
set to 20 (‘Moses’).

The proposed system (‘Flexible’) adds flex-
ible non-terminals with multiple insertion po-
sitions, however we do not yet add the inser-
tion choice features. This means that the in-
sertion positions are in practice chosen by the
language model. Note that we do not get a

substantial hit in performance by adding the
flexible non-terminals because of their compact
lattice representation. The systems ‘+Pref’,
‘+Pref+Ins’ and ‘+Pref+Ins+Rel’ show the re-
sults of adding insertion choice position features
(left/right preference, insertion position choice,
relative position choice).

We give translation scores measured in BLEU
(Papineni et al., 2002) and RIBES (Isozaki et
al., 2010), which is designed to reflect quality
of translation word order more effectively than
BLEU. The translation evaluation is shown in
Table 2.

5 Discussion and Error Analysis
The experimental results showed a significantly
positive improvement in terms of both BLEU
and RIBES over the baseline tree-to-tree system.
The baseline system uses fixed non-terminals
and is competitive with the most popular string-
to-string system (Moses).

The extensions of the proposed model (adding
a variety of features) also all showed signifi-
cant improvement over the baseline, and ap-
proximately half of the extended settings per-
formed significantly better than the core pro-
posed model. It is unclear however which of
the extended settings is the most effective for
all language pairs. There are a number of fac-
tors such as parse quality, corpus size and out-
of-vocabulary occurrence that could affect the
potential value of these features. Furthermore,
Japanese is strongly left-branching (head-final),
so the left/right preference distinction is likely
to be less useful than for English and Chinese,

16

which contain both left-branching and right-
branching structures.

Compared to the baseline, the flexible non-
terminals gave around a 1.2–1.9 BLEU improve-
ment at the cost of only a 30% increase in de-
coding time (approximately 2.04 vs. 2.66 sec-
onds per sentence). This is made possible by
the compact non-terminal representation com-
bined with lattice decoding.

5.1 Non-Terminal Matching Analysis
We found that roughly half of all our trans-
lation rules were augmented with flexible non-
terminals, with one flexible non-terminal added
per rule on average. This led to roughly half
of non-terminals having flexible insertion posi-
tions. The decoder chose to use ambiguous in-
sertion positions between 30%–60% of the time
(depending on language pair), allowing for many
more new translation hypotheses than the base-
line system. For detailed results, see Table 3.

5.2 Translation Examples
The following translation is an example of an im-
provement achieved by using the proposed flex-
ible non-terminals. There were multiple word
order errors in the baseline translation that im-
peded understanding, and these have all been
corrected.

• Input: 磁場入口と出口の温度差により生ずる磁性
流体の圧力差と流速を測定した。

• Reference: The pressure difference and
the flow velocity of the magnetized fluid
caused by the temperature difference be-
tween the inlet and outlet of the magnetic
field were measured.

• Baseline: We have measured the pressure
difference and flow rate of a magnetic fluid
generated by an entrance of a magnet and
an exit temperature, and the difference be-
tween.

• Proposed: The pressure difference and
the flow rate of a magnetic fluid generated
by the temperature difference between the
magnetic field inlet and exit were measured.

There are also cases where the proposed
model decreases translation quality. In the ex-
ample below, the proposed system output was
selected by the decoder since it had a higher
language model score than the baseline output,
despite having incorrect word order. The in-
correct translation was made available by the
increased flexibility of the proposed model, and
selected because the LM feature had a higher
impact than the insertion position features.

• Input: このソフトウエアのＲ５バージョンの特徴，利
用マニュアルと設計文書をまとめた。

• Reference: The characteristics of R5 ver-
sion of this software, instruction manual,
and design document were summarized.

• Baseline: The R5 version of this software
features, the manual for the utilization and
design documents are summarized.

• Proposed: This software design docu-
ments of R5 version features, the manual
for the utilization and summarized.

6 Conclusion and Future Work
In this paper we have proposed flexible non-
terminals for dependency tree-to-tree transla-
tion. We plan to continue working on feature
design for insertion position choice, and in the
future would like to consider using neural net-
works for learning these features. We believe
that it is important to continue to explore ap-
proaches that exploit more general target-side
syntax, faithful to the tree-to-tree translation
paradigm.

Flexible non-terminals allow multiple inser-
tion positions to be expressed compactly and
selected with features based on both source and
target syntax. We have shown that a significant
improvement in BLEU and RIBES scores can
be gained by using the proposed model to in-
crease the generality of dependency tree-to-tree
translation rules.

Acknowledgments
We would like to thank the anonymous reviewers
for their feedback.

17

JA–EN EN–JA JA–ZH ZH–JA
% rules with flexible NTs 53.2 70.4 55.7 61.2

Average flexible NTs per rule 0.973 1.11 0.977 1.05
% all NTs that are flexible 48.0 48.6 54.5 56.1

% selected NTs that are flexible 32.2 35.1 40.5 58.4

Table 3: Results of non-terminal (NT) matching analysis.

References
Eugene Charniak and Mark Johnson. 2005. Coarse-

to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual
Meeting on Association for Computational Lin-
guistics, ACL ’05, pages 173–180. Association for
Computational Linguistics.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, pages 427–436, Montréal, Canada, June. As-
sociation for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL’05),
pages 263–270.

David Chiang. 2010. Learning to translate with
source and target syntax. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1443–1452, Uppsala,
Sweden, July. Association for Computational Lin-
guistics.

Brooke Cowan and Michael Collins. 2006. A dis-
criminative model for tree-to-tree translation. In
EMNLP, pages 232–241.

Fabien Cromières and Sadao Kurohashi. 2014.
Translation rules with right-hand side lattices.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 577–588, Doha, Qatar, October.
Association for Computational Linguistics.

Jonathan Graehl and Kevin Knight. 2004. Train-
ing tree transducers. In HLT-NAACL 2004:
Main Proceedings, pages 105–112, Boston, Mas-
sachusetts, USA, May 2 - May 7. Association for
Computational Linguistics.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Transla-
tion.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Kat-
suhito Sudoh, and Hajime Tsukada. 2010. Auto-
matic evaluation of translation quality for distant
language pairs. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing, pages 944–952, Cambridge, MA, Oc-
tober. Association for Computational Linguistics.

Daisuke Kawahara and Sadao Kurohashi. 2006. A
fully-lexicalized probabilistic model for Japanese
syntactic and case structure analysis. In Pro-
ceedings of the Main Conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics, HLT-NAACL ’06, pages 176–183. As-
sociation for Computational Linguistics.

P. Koehn, F.J. Och, and D. Marcu. 2003. Statis-
tical Phrase-Based Translation. In NAACL ’03:
Proceedings of the 2003 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics on Human Language Technol-
ogy, pages 48–54, Morristown, NJ. Association for
Computational Linguistics, Association for Com-
putational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine
translation. In Proceedings of the 45th Annual
Meeting of the ACL on Interactive Poster and
Demonstration Sessions, ACL ’07, pages 177–180,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-to-
string alignment template for statistical machine
translation. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics
and 44th Annual Meeting of the Association for
Computational Linguistics, pages 609–616, Syd-
ney, Australia, July. Association for Computa-
tional Linguistics.

Graham Neubig. 2013. Travatar: A forest-to-string
machine translation engine based on tree trans-
ducers. In ACL (Conference System Demonstra-

18

tions), pages 91–96. The Association for Compu-
tational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: A method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, pages 311–
318. Association for Computational Linguistics.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005.
Dependency treelet translation: Syntactically in-
formed phrasal SMT. In Proceedings of the 43rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pages 271–279.

John Richardson, Fabien Cromières, Toshiaki
Nakazawa, and Sadao Kurohashi. 2014. Ky-
otoEBMT: An example-based dependency-to-
dependency translation framework. In Proceed-
ings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstra-
tions, pages 79–84, Baltimore, Maryland, June.
Association for Computational Linguistics.

Jason Riesa, Ann Irvine, and Daniel Marcu. 2011.
Feature-rich language-independent syntax-based
alignment for statistical machine translation. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP
’11, pages 497–507. Association for Computational
Linguistics.

Libin Shen, Jinxi Xu, and Ralph M Weischedel.
2008. A new string-to-dependency machine trans-
lation algorithm with a target dependency lan-
guage model. In Association for Computational
Linguistics.

Mo Shen, Daisuke Kawahara, and Sadao Kurohashi.
2012. A reranking approach for dependency pars-
ing with variable-sized subtree features. In Pro-
ceedings of the 26th Pacific Asia Conference on
Language, Information, and Computation, pages
308–317, Bali, Indonesia, November. Faculty of
Computer Science, Universitas Indonesia.

Christoph Tillmann. 2004. A unigram orienta-
tion model for statistical machine translation. In
Proceedings of HLT-NAACL 2004: Short Papers,
pages 101–104, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

19

Proceedings of NAACL-HLT 2016, pages 20–29,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Selecting Syntactic, Non-redundant Segments
in Active Learning for Machine Translation

Akiva Miura†, Graham Neubig†, Michael Paul‡, Satoshi Nakamura†
† Nara Institute of Science and Technology, Japan

‡ ATR-Trek Co. Ltd., Japan
miura.akiba.lr9@is.naist.jp neubig@is.naist.jp
michael.paul@atr-trek.co.jp s-nakamura@is.naist.jp

Abstract

Active learning is a framework that makes it
possible to efficiently train statistical models
by selecting informative examples from a pool
of unlabeled data. Previous work has found
this framework effective for machine trans-
lation (MT), making it possible to train bet-
ter translation models with less effort, partic-
ularly when annotators translate short phrases
instead of full sentences. However, previous
methods for phrase-based active learning in
MT fail to consider whether the selected units
are coherent and easy for human translators
to translate, and also have problems with se-
lecting redundant phrases with similar con-
tent. In this paper, we tackle these problems
by proposing two new methods for selecting
more syntactically coherent and less redun-
dant segments in active learning for MT. Ex-
periments using both simulation and extensive
manual translation by professional translators
find the proposed method effective, achiev-
ing both greater gain of BLEU score for the
same number of translated words, and allow-
ing translators to be more confident in their
translations1.

1 Introduction

In statistical machine translation (SMT) (Brown et
al., 1993), large quantities of high-quality bilingual
data are essential to achieve high translation accu-
racy. While in many cases large corpora can be col-
lected, for example by crawling the web (Resnik and

1Code to replicate the experiments can be found at
https://github.com/akivajp/naacl2016

any one of the preceding claims�

(a) Conventional n-gram selection method (n = 4)

any one of the preceding claims�

(b) Proposed maximal phrase selection method

any one of the preceding claims�

DT	 CD	 IN	 DT	 NNS	JJ	

NP	

PP	

NP	

NP	

(c) Proposed parse subtree selection method

Figure 1: Conventional and proposed data selection methods

Smith, 2003), in many domains or language pairs it
is still necessarily to create data by hand, either by
hiring professionals or crowdsourcing (Zaidan and
Callison-Burch, 2011). In these cases, active learn-
ing (§2), which selects which data to annotate based
on their potential benefit to the translation system,
has been shown to be effective for improving SMT
systems while keeping the required amount of an-
notation to a minimum (Eck et al., 2005; Turchi et
al., 2008; Haffari et al., 2009; Haffari and Sarkar,
2009; Ananthakrishnan et al., 2010; Bloodgood and
Callison-Burch, 2010; González-Rubio et al., 2012;
Green et al., 2014).

Most work on active learning for SMT, and natu-
ral language tasks in general, has focused on choos-
ing which sentences to give to annotators. These

20

methods generally assign priority to sentences that
contain data that is potentially useful to the MT sys-
tem according to a number of criteria. For exam-
ple, there are methods to select sentences that con-
tain phrases that are frequent in monolingual data
but not in bilingual data (Eck et al., 2005), have low
confidence according to the MT system (Haffari et
al., 2009), or are predicted to be poor translations by
an MT quality estimation system (Ananthakrishnan
et al., 2010). However, while the selected sentences
may contain useful phrases, they will also generally
contain many already covered phrases that nonethe-
less cost time and money to translate.

To solve the problem of wastefulness in full-
sentence annotation for active learning, there have
been a number of methods proposed to perform
sub-sentential annotation of short phrases for nat-
ural language tasks (Settles and Craven, 2008;
Bloodgood and Callison-Burch, 2010; Tomanek and
Hahn, 2009; Sperber et al., 2014). For MT in par-
ticular, Bloodgood and Callison-Burch (2010) have
proposed a method that selects poorly covered n-
grams to show to translators, allowing them to focus
directly on poorly covered parts without including
unnecessary words (§3). Nevertheless, our experi-
ments identified two major practical problems with
this method. First, as shown in Figure 1 (a), many of
the selected phrases overlap with each other, caus-
ing translation of redundant phrases, damaging ef-
ficiency. Second, it is common to see fragments
of complex phrases such as “one of the preceding,”
which may be difficult for workers to translate into
a contiguous phrase in the target language.

In this work, we propose two methods that aim to
solve these two problems and improve the efficiency
and reliability of segment-based active learning for
SMT (§4). For the problem of overlapping phrases,
we note that by merging overlapping phrases, as
shown in Figure 1 (b), we can reduce the number of
redundant words annotated and improve training ef-
ficiency. We adopt the idea of maximal substrings
(Okanohara and Tsujii, 2009) which both encode
this idea of redundancy, and can be calculated to ar-
bitrary length in linear time using enhanced suffix
arrays. For the problem of phrase structure fragmen-
tation, we propose a simple heuristic to count only
well-formed syntactic constituents in a parse tree, as
shown in Figure 1 (c).

To investigate the effect of our proposed meth-
ods on learning efficiency, we perform experiments
on English-French and English-Japanese translation
tasks in which we incrementally add new parallel
data, update models and evaluate translation accu-
racy. Results from both simulation experiments (§5)
and 120 hours of work by professional translators
(§6) demonstrate improved efficiency with respect to
the number of words annotated. We also found that
human translators took more time, but were more
confident in their results on segments selected by the
proposed method.

2 Active Learning for Machine Translation

In this section, we first provide an outline of the ac-
tive learning procedure to select phrases for SMT
data. In this paper, we regard a “phrase” as a
word sequence with arbitrary length, which indi-
cates that full sentences and single words both qual-
ify as phrases. In Algorithm 1, we show the general
procedure of incrementally selecting the next candi-
date for translation from the source language corpus,
requesting and collecting the translation in the target
language, and retraining the models.

Algorithm 1 Active learning for MT
1: Init:

2: SrcPool← source language data including candidates for translation

3: Translated← translated parallel data

4: Oracle← oracle giving the correct translation for an input phrase

5: Loop Until StopCondition:

6: TM ← TrainTranslationModel(Translated)

7: NewSrc← SelectNextPhrase(SrcPool, Translated, TM)

8: NewTrg ← GetTranslation(Oracle, NewSrc)

9: Translated← Translated
∪ {⟨NewSrc, NewTrg⟩}

In lines 1-4, we define the datasets and initialize
them. SrcPool is a set with each sentence in source
language corpus as an element. Translated indi-
cates a set with source and target language phrase
pairs. Translated may be empty, but in most cases
will consist of a seed corpus upon which we would
like to improve. Oracle is an oracle (e.g. a human
translator), that we can query for a correct transla-
tion for an arbitrary input phrase.

In lines 5-9, we train models incrementally.
StopCondition in line 5 is an arbitrary timing when
to stop the loop, such as when we reach an accu-
racy goal or when we expend our translation bud-

21

get. In line 6, we train the translation model using
Translated, the available parallel data at this point.
We evaluate the accuracy after training the transla-
tion model for each step in the experiments. In line
7, we select the next candidate for translation using
features of SrcPool, Translated and TM to make
the decision.

In the following sections, we discuss existing
methods (§3), and our proposed methods (§4) to im-
plement the selection criterion in line 7.

3 Selection based on n-Gram Frequency

3.1 Sentence Selection using n-Gram
Frequency

The first traditional method that we cover is a
sentence selection method. Specifically, it selects
the sentence including the most frequent uncovered
phrase with a length of up to n words in the source
language data. This method enables us to effec-
tively cover the most frequent n-gram phrases and
improve accuracy with fewer sentences than random
selection. Bloodgood and Callison-Burch (2010)
demonstrate results of a simulation showing that this
method required less than 80% of the data required
by randomly selected sentences to obtain the same
accuracy.

However, as mentioned in the introduction, the se-
lected full sentences include many phrases already
covered in the parallel data. This may cause an addi-
tional cost for words in redundant segments, a prob-
lem resolved by the phrase selection approach de-
tailed in the following section.

3.2 Phrase Selection using n-Gram Frequency

In the second baseline approach, we directly select
and translate n-gram phrases that are the most fre-
quent in the source language data but not yet cov-
ered in the translated data (Bloodgood and Callison-
Burch, 2010). This method allows for improvement
of coverage with fewer additional words than sen-
tence selection, achieving higher efficiency by re-
ducing the amount of data unnecessarily annotated.
Bloodgood and Callison-Burch (2010) showed that
by translating the phrases selected by this method
using a crowdsourcing website, it was possible to
achieve a large improvement of BLEU score, out-
performing similar sentence-based methods.

However, as mentioned in the introduction, this
method has several issues. First, because it uses
short phrases, it often selects phrases that are not
linguistically well-formed, potentially making them
difficult to translate concisely. Second, it also has
problems with redundancy, with no device to pre-
vent multiple overlapping phrases being selected
and translated. Finally, the previous work limits the
maximum phrase length to n = 4, precluding the
use of longer phrases. However, using a larger limit
such as n = 5 is not likely to be a fundamental solu-
tion, as it increases the number of potentially over-
lapping phrases, and also computational burden. In
the next section we cover our proposed solutions to
these problems in detail.

4 Phrase Selection based on Maximal
Phrases and Parse Trees

4.1 Phrase Selection based on Maximal
Phrases

To solve both the problem of overlapping phrases
and the problem of requiring limits on phrase length
for computational reasons, we propose a method us-
ing the idea of maximal substrings (Okanohara and
Tsujii, 2009). Maximal substrings are formally de-
fined as “a substring that is not always included in
a particular longer substring.” For example, if we
define pi as a phrase and occ(pi) as its occurrence
count in a corpus, and have the following data

p1 = “one of the preceding”, occ(p1) = 200, 000

p2 = “one of the preceding claims”, occ(p2) = 200, 000

p3 = “any one of the preceding claims”, occ(p3) = 190, 000

p1 = “one of the preceding” always co-occurs with
the longer p2 = “one of the preceding claims” and
thus is not a maximal substring. On the other hand,
p2 does not always co-occur with p3, and thus p2

will be maximal. This relationship can be defined
formally with the following semi-order relation:

p1 ⪯ p2 ⇔ ∃α, β : p1 = αp2β ∧ occ(p1) = occ(p2). (1)

Demonstrating this by the previous example,
p1 = αp2β, α = “”, β = “claims” hold, meaning
p1 is a sub-sequence of p2, and p2 is a sub-sequence
of p3 in a similar manner. Since p1 is a sub-sequence
of p2 and occ(p1) = occ(p2) = 200, 000, p1 ⪯ p2

holds. However, although p2 is a sub sequence of p3,

22

because occ(p2) = 200, 000 ̸= 190, 000 = occ(p3),
the relation p2 ⪯ p3 does not hold. Here, we say
p has maximality if there does not exist any q other
than p itself that meets p ⪯ q, and we call such a
phrase a maximal phrase.

To apply this concept to active learning, our pro-
posed method limits translation data selection to
only maximal phrases. This has two advantages.
First, it reduces overlapping phrases to only the
maximal string, allowing translators to cover mul-
tiple high-frequency phrases in the translation of a
single segment. Second, maximal phrases and their
occurrence counts can be enumerated efficiently by
using enhanced suffix arrays (Kasai et al., 2001) in
linear time with respect to document length, remov-
ing the need to set arbitrary limits on the length of
strings such as n = 4 used in previous work.

However, it can be easily noticed that while in
the previous example p2 is included in p3, their oc-
currence counts are close but not equivalent, and
thus both are maximal phrases. In such a case, the
naı̈ve implementation of this method can not remove
these redundant phrases, despite the fact that it is in-
tuitively preferable that the selection method com-
bines phrases if they have almost the same occur-
rence count. Thus, we also propose to use the fol-
lowing semi-order relation generalized with param-
eter λ:

p1

∗⪯ p2 ⇔∃α, β :
p1 = αp2β ∧ λ · occ(p1) < occ(p2). (2)

where λ takes a real numbered value from 0 to 1,
which we set to λ = 0.5 in this research.

This removes the restriction that the two phrases
under comparison be of exactly equal counts, allow-
ing them to have only approximately the same oc-
currence count. We redefine maximality using this

semi-order
∗⪯ as semi-maximality, and call maxi-

mal phrases defined with
∗⪯ semi-maximal phrases

in contrast to normal maximal phrases. By using
semi-maximal phrases instead of maximal phrases,
we can remove a large number of phrases that are
included in a particular longer phrase more than half
the time, indicating that it might be preferable to
translate the longer phrase instead.

two methods are proposed�

CD	
 NNS	
 VBP	

VP	

NP	

S	

VBN	

VP	

(a) “are proposed” is counted

are proposed and discussed�

VBZ	
 VBN	
 CC	
 VBN	

VP	

VP	

VP	

VP	

(b) “are proposed” is not counted

Figure 2: Phrase counting based on parse trees

4.2 Phrase Selection based on Parse Trees

In this section, we propose a second phrase selec-
tion method based on the results from the syntac-
tic analysis of source language data. This method
first processes all the source language data with a
phrase structure parser, traverses and counts up all
the subtrees of parse trees as shown in Figure 2, and
finally selects phrases corresponding to a subtree in
frequency order.2 We propose this method because
we expect the selected phrases to have syntactically
coherent meaning, potentially making human trans-
lation easier than other methods that do not use syn-
tactic information.

It should be noted that because this method counts
all subtrees, it is capable of selecting overlapping
phrases like the methods based on n-grams. There-
fore we also experiment with a method using to-
gether both subtrees and the semi-maximal phrases
proposed in Section 4.1 to select both syntactic and
non-redundant segments.

5 Simulation Experiment

5.1 Experimental Set-Up

To investigate the effects of the phrase selection
methods proposed in Section 4, we first performed
a simulation experiment in which we incrementally
retrain translation models and evaluate the accuracy
after each step of data selection. In this experi-
ment, we chose English as a source language and
French and Japanese as target languages. To sim-
ulate a realistic active learning scenario, we started
from given parallel data in the general domain and
sequentially added additional source language data
in a specific target domain. For the English-French
translation task, we adopted the Europarl corpus

2The method does not distinguish between equivalent word
sequences even if they have different tree structures

23

Lang Pair Domain Dataset Amount

En-Fr

1.89M Sent.
General (Base) Train En: 47.6M Words

Fr: 49.4M Words
15.5M Sent.

Medical Train En: 393M Words
Fr: 418M Words

(Target) Test 1000 Sent.
Dev 500 Sent.

En-Ja

414k Sent.
General (Base) Train En: 6.72M Words

Ja: 9.69M Words
1.87M Sent.

Scientific Train En: 46.4M Words
Ja: 57.6M Words

(Target) Test 1790 Sent.
Dev 1790 Sent.

Table 1: Details of parallel data

from WMT20143 as a base parallel data source
and EMEA (Tiedemann, 2009), PatTR (Wäschle
and Riezler, 2012), and Wikipedia titles, used in
the medical translation task, as the target domain
data. For the English-Japanese translation task, we
adopted the broad-coverage example sentence cor-
pus provided with the Eijiro dictionary4 as general
domain data, and the ASPEC5 scientific paper ab-
stract corpus as the target domain data. For pre-
processing, we tokenized Japanese corpora using the
KyTea word segmenter (Neubig et al., 2011) and fil-
tered out the lines of length over 60 from all the
training parallel data to ensure accuracy of parsing
and alignment. We show the details of the parallel
dataset after pre-processing in Table 1.

For the machine translation framework, we used
phrase-based SMT (Koehn et al., 2003) with the
Moses toolkit (Koehn et al., 2007) as a decoder.
To efficiently re-train the models with new data,
we adopted inc-giza-pp,6 a specialized version of
GIZA++ word aligner (Och and Ney, 2003) support-
ing incremental training, and the memory-mapped
dynamic suffix array phrase tables (MMSAPT) fea-
ture of Moses (Germann, 2014) for on-memory con-
struction of phrase tables. We train 5-gram models
over the target side of all the general domain and
target domain data using KenLM (Heafield, 2011).

3http://statmt.org/wmt14/
4http://eijiro.jp
5http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
6https://github.com/akivajp/inc-giza-pp

For the tuning of decoding parameters, since it is not
realistic to run MERT (Och, 2003) at each retrain-
ing step, we tuned the parameters to maximize the
BLEU score (Papineni et al., 2002) for the baseline
system, and re-used the parameters thereafter. We
compare the following 8 segment selection meth-
ods, including 2 random selection methods, 2 con-
ventional methods and 4 proposed methods:

sent-rand: Select sentences randomly.
4gram-rand: Select n-gram strings of length of up to 4

in random order.
sent-by-4gram-freq: Select the sentence including the

most frequent uncovered phrase with length of up
to 4 words (baseline 1, §3.1).

4gram-freq: Select the most frequent uncovered phrase
with length of up to 4 words (baseline 2, §3.2).

maxsubst-freq: Select the most frequent uncovered
maximal phrase (proposed, §4.1)

reduced-maxsubst-freq: Select the most frequent un-
covered semi-maximal phrase (proposed, §4.1)

struct-freq: Select the most frequent uncovered phrase
extracted from the subtrees (proposed, §4.2).

reduced-struct-freq: Select the most frequent uncov-
ered semi-maximal phrase extracted from the sub-
trees (proposed, §4.1 and §4.2).

To generate oracle translations, we used an SMT
system trained on all of the data in both the general
and target-domain corpora. To generate parse trees,
we used the Ckylark parser (Oda et al., 2015).

5.2 Results and Discussion

Comparison of efficiency: In Figure 3, we show
the evaluation score results by the number of addi-
tional source words up to 100k and 1M words. We
can see that in English-French translation, the ac-
curacy of the selection methods using parse trees
grows more rapidly than other methods and was sig-
nificantly better even at the point of 1M additional
words. In the case of English-Japanese translation,
the gains over 4-gram frequency are much smaller,
but the proposed methods still consistently perform
as well or better than the other methods. Besides,
in all the graphs we can see the improvement of
reduced-maxsubst-freq and reduced-struct-freq over
maxsubst-freq and struct-freq respectively, demon-
strating that avoiding selecting redundant segments
is helpful in improving efficiency.

24

0k 20k 40k 60k 80k 100k25

26

27

28

29

30

BL
EU

 S
co

re
 [%

]

sent-rand
4gram-rand
sent-by-4gram-freq
4gram-freq
maxsubst-freq
reduced-maxsubst-freq
struct-freq
reduced-struct-freq
(Oracle Score = 30.28)

100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
#Additional Lines [Source Words]

BLEU Score vs. #Additional Words (En−Fr)

0k 20k 40k 60k 80k 100k
10

12

14

16

18

20

22

BL
EU

 S
co

re
 [%

]

sent-rand
4gram-rand
sent-by-4gram-freq
4gram-freq
maxsubst-freq
reduced-maxsubst-freq
struct-freq
reduced-struct-freq
(Oracle Score = 21.59)

100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k
#Additional Lines [Source Words]

BLEU Score vs. #Additional Words (En−Ja)

Figure 3: BLEU score vs. number of additional source words in each method

Length of selected phrases: Due to the differ-
ent criteria used by each method, there are also sig-
nificant differences in the features of the selected
phrases. In Table 2, we show the details of the
number of all selected phrases, words and average
phrase length until the stop condition, and at the
point of 10k additional source words. Here we see
the tendency that the selection methods based on
parse trees select shorter phrases than other meth-
ods. This is caused by the fact that longer phrases
are only counted if they cover a syntactically defined
phrases, and thus longer substrings that do not form
syntactic phrases are removed from consideration.

Phrase coverage: This difference in the features
of the selected phrases also affects how well they can
cover new incoming test data. To demonstrate this,
in Table 3 we show the 1-gram and 4-gram cover-
age of the test dataset after 10k, 100k and 1M words
have been selected. From the results, we can see that

the reduced-struct-freq method attains the highest 1-
gram coverage, efficiently covering unknown words.
On the other hand, it is clear that methods selecting
longer phrases have an advantage for 4-gram cover-
age, and we see the highest 4-gram coverage in the
sent-by-4gram-freq method.

6 Manual Translation Experiment

6.1 Experimental Set-Up

To confirm that the results from the simulation in
the previous section carry over to actual translators,
we further performed experiments in which profes-
sional translators translated the selected segments.
This also allowed us to examine the actual amount of
time required to perform translation, and how confi-
dent the translators were in their translations.

We designed a web user interface as shown in Fig-
ure 4, and outsourced to an external organization

25

All Selected Phrases First 10k Words
Average Average

Lang Pair Selection Method #Phrases #Words Phrase Length #Phrases Phrase Length
sent-by-4gram-freq 10.6M 269M 25.4 310 32.1

4gram-freq 40.1M 134M 3.34 3.62k 2.76
En-Fr maxsubst-freq 62.4M 331M 5.30 2.39k 4.17

reduced-maxsubst-freq 45.9M 246M 5.36 2.95k 3.39
struct-freq 14.1M 94.2M 6.68 4.01k 2.49

reduced-struct-freq 7.33M 41.3M 5.63 4.55k 2.20
sent-by-4gram-freq 1.28M 33.6M 26.3 560 17.8

4gram-freq 8.48M 26.0M 3.07 4.70k 2.13
En-Ja maxsubst-freq 7.29M 25.8M 3.54 4.51k 2.22

reduced-maxsubst-freq 6.06M 21.7M 3.58 4.76k 2.10
struct-freq 1.45M 4.85M 3.34 6.64k 1.51

reduced-struct-freq 1.10M 3.33M 3.03 6.73k 1.49

Table 2: Number of phrases and average words/phrase in each method

1-gram / 4-gram Coverage [%]
Lang Pair Selection Method No Addition 10k Words 100k Words 1M Words

sent-rand 92.93 / 10.60 93.73 / 10.71 95.94 / 11.30
4gram-rand 92.95 / 10.60 93.99 / 10.60 96.42 / 10.64

sent-by-4gram-freq 92.95 / 10.60 93.96 / 10.72 96.25 / 11.55
En-Fr 4gram-freq 92.72 / 10.60 92.92 / 10.60 94.46 / 10.66 96.60 / 11.16

maxsubst-freq 92.79 / 10.60 93.61 / 10.62 95.99 / 10.92
reduced-maxsubst-freq 92.92 / 10.60 94.38 / 10.66 96.55 / 11.13

struct-freq 93.63 / 10.60 96.15 / 10.65 97.84 / 11.28
reduced-struct-freq 94.02 / 10.60 96.38 / 10.69 98.00 / 11.38

sent-rand 94.81 / 5.63 95.99 / 6.59 97.54 / 10.06
4gram-rand 94.80 / 5.38 96.10 / 5.46 97.67 / 5.98

sent-by-4gram-freq 95.10 / 5.84 96.28 / 7.23 97.64 / 11.39
En-Ja 4gram-freq 94.36 / 5.38 95.64 / 5.97 96.87 / 7.14 97.97 / 10.43

maxsubst-freq 95.59 / 5.96 96.83 / 7.07 97.91 / 10.20
reduced-maxsubst-freq 95.73 / 6.00 96.97 / 7.19 98.00/10.57

struct-freq 96.60 / 5.44 97.80 / 5.79 98.58 / 7.02
reduced-struct-freq 96.64 / 5.44 97.84 / 5.80 98.61 / 7.14

Table 3: Effect on coverage in each selection method (rounded off to the second decimal place). Bold face indicates the highest

coverage for each number of additional words.

Phrase to be translated:�

3: sure about the translation�

Translation input form:�

 ⾛査型電⼦顕微鏡 (SEM)�

Confidence level:�

2: not so sure about the translation�
1: not sure at all�

The morphologies using scanning electron
microscopy (SEM) were studied .�

Figure 4: Example of the human translation interface

that had three professional translators translate the
shown phrases. As is standard when hiring transla-
tors, we paid a fixed price per word translated for
all of the methods. Because showing only the can-
didate phrase out of context could cause difficulty
in translation, we follow Bloodgood and Callison-

Burch (2010) in showing a sentence including the
selected phrase,7 highlighting the phrase, and re-
questing that the translator translate the highlighted
part. We also requested that every worker select
from 3 levels indicating how confident they were
of their translation. In the background, the time re-
quired to complete the translation is measured from
when the new phrase is shown until when the trans-
lation is submitted.

The methods selected for comparative evaluation
are sentence selection based on 4-gram frequency
(sent-by-4gram-freq) and phrase selection based on
4-gram frequency (4gram-freq) as baseline meth-
ods, and the phrase selection based on both parse
trees and semi-maximality (reduced-struct-freq) as

7Specifically, we selected the shortest sentence including the
phrase in the source corpus.

26

0k 2k 4k 6k 8k 10k
#Additional Words [Source Words]

9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8
BL

EU
 S

co
re

 [%
]

BLEU Score vs. #Additional Words (En-Ja)
sent-by-4gram-freq
4gram-freq
reduced-struct-freq

0 10 20 30 40 50 60
Cumulative Duration [Hours]

9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

BL
EU

 S
co

re
 [%

]

BLEU Score vs. Cumulative Duration (En-Ja)
sent-by-4gram-freq
4gram-freq
reduced-struct-freq

Figure 5: Transition of BLEU score vs. additional source words (left) and vs. cumulative working duration (right)

the proposed method. For each method we col-
lected translations of 10k source words, alternating
between segments selected by each method to pre-
vent bias.

We used the same dataset as the English-Japanese
translation task and the same tools in the simula-
tion experiment (Section 5). However, for training
target language models, we interpolated one trained
with the base data and a second trained with col-
lected data by using SRILM (Stolcke, 2002) because
the hand-made data set was too small to train a full
language model using only this data. We tuned the
interpolation coefficient such that it maximizes the
perplexity for the tuning dataset.

6.2 Results and Discussion

Efficiency results: Figure 5 shows the evalua-
tion scores of SMT systems trained using varying
amounts of collected phrases. In the left graph, we
see the proposed method based on parse trees and
phrase semi-maximality rapidly improves BLEU
score, and requires fewer additional words than the
conventional methods. Because the cost paid for
translation often is decided by the number of words,
this indicates that the proposed method has better
cost performance in these situations. The right graph
shows improvement by the amount of translation
time. These results here are different, showing the
4-gram-freq baseline slightly superior. As discussed
in Table 3, the methods based on parse trees select
more uncovered 1-grams, namely unknown words,
and specifically the proposed method selected more

Selection Methods Total Working
Time [Hours]

Average
Confidence Level

(3 Levels)
sent-by-4gram-freq 25.22 2.689

4gram-freq 32.70 2.601
reduced-struct-freq 59.97 2.771

Table 4: Total working time and average confidence level

technical terms that took a longer time to translate.
Working time and confidence: We show the

total time to collect the translations of 10k source
words and average confidence level for each method
in Table 4. The total working time for the proposed
method is nearly double that of other methods, as
seen in the right graph of Figure 5. On the other
hand, the segments selected by the proposed method
were given the highest confidence level, receiving
the maximum value of 3 for about 79% of phrase
pairs, indicating that the generated parallel data is of
high quality. To some extent, this corroborates our
hypothesis that the more syntactic phrases selected
by the proposed method are easier to translate.

We can also examine the tendency of working
time for segments of different lengths in Table 5. In-
terestingly, single words consistently have a longer
average translation time than phrases of length 2-4,
likely because they tend to be technical terms that re-
quire looking up in a dictionary. We show the aver-
age confidence levels corresponding to phrase length
in Table 6. The confidence level of single words
in the proposed method is lower than in the base-
line method, likely because the baseline selected
a smaller amount of single words, and those se-

27

Average Working Time [Seconds]

Selection Method
1

Word

2
Word
Phrase

3
Word
Phrase

4
Word
Phrase

5+
Word
Phrase

sent-by-4gram-freq - - - - 160.64
4gram-freq 30.14 24.76 21.77 21.12 -

reduced-struct-freq 35.61 25.23 21.72 28.13 22.82

Table 5: Average working time of manual translation corre-

sponding to phrase length

Average Confidence Level (3 Levels)

Selection Method
1

Word

2
Word
Phrase

3
Word
Phrase

4
Word
Phrase

5+
Word
Phrase

sent-by-4gram-freq - - - - 2.689
4gram-freq 2.885 2.585 2.422 2.300 -

reduced-struct-freq 2.802 2.796 2.778 2.708 2.737

Table 6: Average confidence level of manual translation corre-

sponding to phrase length

lected were less likely to be technical terms. On the
other hand, we can confirm that the confidence level
for longer phrases in the baseline method decreases
drastically, while it is stably high in our method,
confirming the effectiveness of selecting syntacti-
cally coherent phrases.

Translation accuracy by confidence level: Fi-
nally, we show the accuracy of the SMT system
trained by all the collected data in each method in
Table 7. To utilize the confidence level annota-
tion, we tested SMT systems trained by phrase pairs
with confidence levels higher than 2 or 3. From the
results, the accuracy of every method is improved
when phrases pairs with confidence level 1 were fil-
tered out. In contrast, the accuracy is conversely
degraded if we use only phrase pairs with confi-
dence level 3. The translation accuracy of 9.37%
BLEU with the base SMT system without additional
data became 10.72% after adding phrase pairs hav-
ing confidence level 2 or higher, allowing for a rela-
tively large gain of 1.35 BLEU points.

7 Conclusion and Future Work

In this paper, we proposed a new method for active
learning in machine translation that selects syntactic,
non-redundant phrases using parse trees and semi-
maximal phrases. We first performed simulation ex-
periments and obtained improvements in translation
accuracy with fewer additional words. Further man-

BLEU Score [%]
Selection Methods Confidence Confidence Confidence

1+ (All) 2+ 3
sent-by-4gram-freq 9.88 9.92 9.85

4gram-freq 10.48 10.54 10.36
reduced-struct-freq 10.70 10.72 10.67

Table 7: BLEU score when training on phrases with a certain

confidence level

ual translation experiments also demonstrated that
our method allows for greater improvements in ac-
curacy and translator confidence.

However, there are still a number of avenues for
improvement. Particularly, as the proposed method
selected segments that took more time to translate
due to technical terms, the combination with meth-
ods to harvest unknown words (Daumé III and Ja-
garlamudi, 2011) or optimize the selected segments
based on the time required (Sperber et al., 2014) is
potentially useful. In addition, softer syntactic con-
straints that allow annotation of phrases with vari-
ables (Chiang, 2007) such as “one of the preceding
X” are another interesting avenue of future work.

Acknowledgments

The authors thank anonymous reviewers for helpful
suggestions. This research was supported by ATR-
Trek Co. Ltd. The manual translation work was sup-
ported by BAOBAB Inc.

References
Sankaranarayanan Ananthakrishnan, Rohit Prasad, David

Stallard, and Prem Natarajan. 2010. A Semi-
Supervised Batch-Mode Active Learning Strategy for
Improved Statistical Machine Translation. In Proc.
CoNLL, pages 126–134, July.

Michael Bloodgood and Chris Callison-Burch. 2010.
Bucking the Trend: Large-Scale Cost-Focused Active
Learning for Statistical Machine Translation. In Proc.
ACL, pages 854–864, July.

Peter F. Brown, Vincent J.Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19:263–312.

David Chiang. 2007. Hierarchical phrase-based transla-
tion. 33(2):201–228.

Hal Daumé III and Jagadeesh Jagarlamudi. 2011. Do-
main adaptation for machine translation by mining un-
seen words. In Proc. ACL, pages 407–412.

28

Matthias Eck, Stephan Vogel, and Alex Waibel. 2005.
Low Cost Portability for Statistical Machine Transla-
tion based in N-gram Frequency and TF-IDF. In Proc.
IWSLT, pages 61–67.

Ulrich Germann. 2014. Dynamic phrase tables for
machine translation in an interactive post-editing sce-
nario. In Proc. AMTA 2014 Workshop on Interactive
and Adaptive Machine Translation, pages 20–31.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and Fran-
cisco Casacuberta. 2012. Active learning for interac-
tive machine translation. In Proc. EACL, pages 245–
254, April.

Spence Green, Sida I. Wang, Jason Chuang, Jeffrey
Heer, Sebastian Schuster, and Christopher D. Man-
ning. 2014. Human Effort and Machine Learnabil-
ity in Computer Aided Translation. In Proc. EMNLP,
pages 1225–1236, October.

Gholamreza Haffari and Anoop Sarkar. 2009. Active
Learning for Multilingual Statistical Machine Transla-
tion. In Proc. ACL, pages 181–189, August.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active Learning for Statistical Phrase-based
Machine Translation. In Proc. ACL, pages 415–423,
June.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proc, WMT, July.

Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo
Arikawa, and Kunsoo Park. 2001. Linear-Time
Longest-Common-Prefix Computation in Suffix Ar-
rays and Its Applications. In Proc. CPM, pages 181–
192.

Phillip Koehn, Franz Josef Och, and Daniel Marcu. 2003.
Statistical Phrase-Based Translation. In Proc. NAACL,
pages 48–54.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. pages
177–180.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust, Adaptable
Japanese Morphological Analysis. In Proc. ACL,
pages 529–533.

Franz Josef Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum Error Rate Training in
Statistical Machine Translation. In Proc. ACL, pages
160–167.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Ckylark: A More

Robust PCFG-LA Parser. In Proc. NAACL, pages 41–
45, June.

Daisuke Okanohara and Jun’ichi Tsujii. 2009. Text Cate-
gorization with All Substring Features. In Proc. SDM,
pages 838–846.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proc. ACL, pages
311–318, July.

Philip Resnik and Noah A Smith. 2003. The web
as a parallel corpus. Computational Linguistics,
29(3):349–380.

Burr Settles and Mark Craven. 2008. An Analysis of Ac-
tive Learning Strategies for Sequence Labeling Tasks.
In Proc. EMNLP, pages 1070–1079, October.

Matthias Sperber, Mirjam Simantzik, Graham Neubig,
Satoshi Nakamura, and Alex Waibel. 2014. Segmen-
tation for Efficient Supervised Language Annotation
with an Explicit Cost-Utility Tradeoff. TACL, 2:169–
180.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Proc. ICSLP, pages 901–904.

Jörg Tiedemann. 2009. News from OPUS-A collection
of multilingual parallel corpora with tools and inter-
faces. In Proc. RANLP, volume 5, pages 237–248.

Katrin Tomanek and Udo Hahn. 2009. Semi-Supervised
Active Learning for Sequence Labeling. In Proc. ACL,
pages 1039–1047, August.

Marco Turchi, Tijl De Bie, and Nello Cristianini. 2008.
Learning performance of a machine translation sys-
tem: a statistical and computational analysis. In Proc.
WMT, pages 35–43, June.

Katharina Wäschle and Stefan Riezler. 2012. An-
alyzing Parallelism and Domain Similarities in the
MAREC Patent Corpus. Multidisciplinary Informa-
tion Retrieval, pages 12–27.

Omar F Zaidan and Chris Callison-Burch. 2011. Crowd-
sourcing translation: Professional quality from non-
professionals. In Proc. ACL, pages 1220–1229.

29

Proceedings of NAACL-HLT 2016, pages 30–34,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multi-Source Neural Translation

Barret Zoph and Kevin Knight
Information Sciences Institute

Department of Computer Science
University of Southern California
{zoph,knight}@isi.edu

Abstract

We build a multi-source machine translation
model and train it to maximize the probabil-
ity of a target English string given French and
German sources. Using the neural encoder-
decoder framework, we explore several com-
bination methods and report up to +4.8 Bleu
increases on top of a very strong attention-
based neural translation model.

1 Introduction

Kay (2000) points out that if a document is trans-
lated once, it is likely to be translated again and
again into other languages. This gives rise to an in-
teresting idea: a human does the first translation by
hand, then turns the rest over to machine translation
(MT). The translation system now has two strings
as input, which can reduce ambiguity via “triangu-
lation” (Kay’s term). For example, the normally
ambiguous English word “bank” may be more eas-
ily translated into French in the presence of a sec-
ond, German input string containing the word “Flus-
sufer” (river bank).

Och and Ney (2001) describe such a multi-source
MT system. They first train separate bilingual MT
systems F→E, G→E, etc. At runtime, they sep-
arately translate input strings f and g into candi-
date target strings e1 and e2, then select the best one
of the two. A typical selection factor is the prod-
uct of the system scores. Schwartz (2008) revisits
such factors in the context of log-linear models and
Bleu score, while Max et al. (2010) re-rank F→E
n-best lists using n-gram precision with respect to
G→E translations. Callison-Burch (2002) exploits

hypothesis selection in multi-source MT to expand
available corpora, via co-training.

Others use system combination techniques to
merge hypotheses at the word level, creating the
ability to synthesize new translations outside those
proposed by the single-source translators. These
methods include confusion networks (Matusov et
al., 2006; Schroeder et al., 2009), source-side string
combination (Schroeder et al., 2009), and median
strings (González-Rubio and Casacuberta, 2010).

The above work all relies on base MT systems
trained on bilingual data, using traditional meth-
ods. This follows early work in sentence align-
ment (Gale and Church, 1993) and word alignment
(Simard, 1999), which exploited trilingual text, but
did not build trilingual models. Previous authors
possibly considered a three-dimensional translation
table t(e|f, g) to be prohibitive.

In this paper, by contrast, we train a P(e|f, g)
model directly on trilingual data, and we use that
model to decode an (f, g) pair simultaneously. We
view this as a kind of multi-tape transduction (Elgot
and Mezei, 1965; Kaplan and Kay, 1994; Deri and
Knight, 2015) with two input tapes and one output
tape. Our contributions are as follows:
• We train a P(e|f, g) model directly on trilin-

gual data, and we use it to decode a new source
string pair (f, g) into target string e.
• We show positive Bleu improvements over

strong single-source baselines.
• We show that improvements are best when the

two source languages are more distant from
each other.

We are able to achieve these results using

30

A B C <EOS> W X Y Z

<EOS> Z Y X W

Figure 1: The encoder-decoder framework for neural machine

translation (NMT) (Sutskever et al., 2014). Here, a source sen-

tence C B A (presented in reverse order as A B C) is translated

into a target sentence W X Y Z. At each step, an evolving real-

valued vector summarizes the state of the encoder (white) and

decoder (gray).

the framework of neural encoder-decoder models,
where multi-target MT (Dong et al., 2015) and
multi-source, cross-modal mappings have been ex-
plored (Luong et al., 2015a).

2 Multi-Source Neural MT

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castaño and Casacuberta,
1997; Sutskever et al., 2014; Bahdanau et al., 2014;
Luong et al., 2015b), we use a recurrent neural net-
work (encoder) to convert a source sentence into a
dense, fixed-length vector. We then use another re-
current network (decoder) to convert that vector in a
target sentence.1

In this paper, we use a four-layer encoder-decoder
system (Figure 1) with long short-term memory
(LSTM) units (Hochreiter and Schmidhuber, 1997)
trained for maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). For our baseline single-source MT system we
use two different models, one of which implements
the local attention plus feed-input model from Lu-
ong et al. (2015b).

Figure 2 shows our approach to multi-source MT.
Each source language has its own encoder. The
question is how to combine the hidden states and cell
states from each encoder, to pass on to the decoder.
Black combiner blocks implement a function whose
input is two hidden states (h1 and h2) and two cell
states (c1 and c2), and whose output is a single hid-

1We follow previous authors in presenting the source sen-
tence to the encoder in reverse order.

den state h and cell state c. We propose two combi-
nation methods.

2.1 Basic Combination Method
The Basic method works by concatenating the two
hidden states from the source encoders, applying a
linear transformation Wc (size 2000 x 1000), then
sending its output through a tanh non-linearity. This
operation is represented by the equation:

h = tanh
(
Wc[h1;h2]

)
(1)

Wc and all other weights in the network are learned
from example string triples drawn from a trilingual
training corpus.

The new cell state is simply the sum of the two
cell states from the encoders.

c = c1 + c2 (2)

We also attempted to concatenate cell states and ap-
ply a linear transformation, but training diverges due
to large cell values.

2.2 Child-Sum Method
Our second combination method is inspired by the
Child-Sum Tree-LSTMs of Tai et al. (2015). Here,
we use an LSTM variant to combine the two hidden
states and cells. The standard LSTM input, output,
and new cell value are all calculated. Then cell states
from each encoder get their own forget gates. The
final cell state and hidden state are calculated as in a
normal LSTM. More precisely:

i = sigmoid
(
W i

1h1 +W i
2h2

)
(3)

f = sigmoid
(
W f
i hi

)
(4)

o = sigmoid
(
W o

1h1 +W o
2h2

)
(5)

u = tanh
(
W u

1 h1 +W u
2 h2

)
(6)

c = if � uf + f1 � c1 + f2 � c2 (7)

h = of � tanh(cf) (8)

This method employs eight new matrices (the
W ’s in the above equations), each of size
1000 x 1000. The � symbol represents an elemen-
twise multiplication. In equation 3, i represents the
input gate of a typical LSTM cell. In equation 4,

31

A B C <EOS> W X Y Z

<EOS> Z Y X W

A B C

<EOS> W X Y Z

<EOS> Z Y X W

I J K

Figure 2: Multi-source encoder-decoder model for MT. We have two source sentences (C B A and K J I) in different languages.

Each language has its own encoder; it passes its final hidden and cell state to a set of combiners (in black). The output of a combiner

is a hidden state and cell state of the same dimension.

there are two forget gates indexed by the subscript i
that serve as the forget gates for each of the incom-
ing cells for each of the encoders. In equation 5, o
represents the output gate of a normal LSTM. i, f ,
o, and u are all size-1000 vectors.

2.3 Multi-Source Attention

Our single-source attention model is modeled off the
local-p attention model with feed input from Luong
et al. (2015b), where hidden states from the top de-
coder layer can look back at the top hidden states
from the encoder. The top decoder hidden state is
combined with a weighted sum of the encoder hid-
den states, to make a better hidden state vector (h̃t),
which is passed to the softmax output layer. With
input-feeding, the hidden state from the attention
model is sent down to the bottom decoder layer at
the next time step.

The local-p attention model from Luong et al.
(2015b) works as follows. First, a position to look at
in the source encoder is predicted by equation 9:

pt = S · sigmoid(vTp tanh(Wpht)) (9)

S is the source sentence length, and vp and Wp are
learned parameters, with vp being a vector of di-
mension 1000, and Wp being a matrix of dimension
1000 x 1000.

After pt is computed, a window of size 2D + 1 is
looked at in the top layer of the source encoder cen-
tered around pt (D = 10). For each hidden state in
this window, we compute an alignment score at(s),

between 0 and 1. This alignment score is computed
by equations 10, 11 and 12:

at(s) = align(ht, hs)exp
(−(s− pt)2

2σ2

)
(10)

align(ht, hs) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))

(11)

score(ht, hs) = hTt Wahs (12)

In equation 10, σ is set to be D/2 and s is the
source index for that hidden state. Wa is a learnable
parameter of dimension 1000 x 1000.

Once all of the alignments are calculated, ct is cre-
ated by taking a weighted sum of all source hidden
states multiplied by their alignment weight.

The final hidden state sent to the softmax layer is
given by:

h̃t = tanh
(
Wc[ht; ct]

)
(13)

We modify this attention model to look at both
source encoders simultaneously. We create a context
vector from each source encoder named c1t and c2t
instead of the just ct in the single-source attention
model:

h̃t = tanh
(
Wc[ht; c1t ; c

2
t]
)

(14)

In our multi-source attention model we now have
two pt variables, one for each source encoder. We

32

French English German
Word tokens 66.2m 59.4m 57.0m
Word types 424,832 381,062 865,806
Segment pairs 2,378,112
Ave. segment 27.8 25.0 24.0
length (tokens)

Figure 3: Trilingual corpus statistics.

also have two separate sets of alignments and there-
fore now have two ct values denoted by c1t and c2t as
mentioned above. We also have distinct Wa, vp, and
Wp parameters for each encoder.

3 Experiments

We use English, French, and German data from a
subset of the WMT 2014 dataset (Bojar et al., 2014).
Figure 3 shows statistics for our training set. For de-
velopment, we use the 3000 sentences supplied by
WMT. For testing, we use a 1503-line trilingual sub-
set of the WMT test set.

For the single-source models, we follow the train-
ing procedure used in Luong et al. (2015b), but with
15 epochs and halving the learning rate every full
epoch after the 10th epoch. We also re-scale the
normalized gradient when norm > 5. For training,
we use a minibatch size of 128, a hidden state size
of 1000, and dropout as in Zaremba et al. (2014).
The dropout rate is 0.2, the initial parameter range
is [-0.1, +0.1], and the learning rate is 1.0. For the
normal and multi-source attention models, we ad-
just these parameters to 0.3, [-0.08, +0.08], and 0.7,
respectively, to adjust for overfitting.

Figure 4 shows our results for target English,
with source languages French and German. We see
that the Basic combination method yields a +4.8
Bleu improvement over the strongest single-source,
attention-based system. It also improves Bleu by
+2.2 over the non-attention baseline. The Child-
Sum method gives improvements of +4.4 and +1.4.
We confirm that two copies of the same French input
yields no BLEU improvement. Figure 5 shows the
action of the multi-attention model during decoding.

When our source languages are English and
French (Figure 6), we observe smaller BLEU gains
(up to +1.1). This is evidence that the more distinct
the source languages, the better they disambiguate
each other.

Target = English
Source Method Ppl BLEU
French — 10.3 21.0
German — 15.9 17.3
French+German Basic 8.7 23.2
French+German Child-Sum 9.0 22.5
French+French Child-Sum 10.9 20.7
French Attention 8.1 25.2
French+German B-Attent. 5.7 30.0
French+German CS-Attent. 6.0 29.6

Figure 4: Multi-source MT for target English, with source lan-

guages French and German. Ppl reports test-set perplexity as

the system predicts English tokens. BLEU is scored using the

multi-bleu.perl script from Moses. For our evaluation we use a

single reference and they are case sensitive.

Source 1: UNK Aspekte sind ebenfalls wichtig .

Target: UNK aspects are important , too .

Source 2: Les aspects UNK sont également importants .

Figure 5: Action of the multi-attention model as the neural

decoder generates target English from French/German sources

(test set). Lines show strengths of at(s).

4 Conclusion

We describe a multi-source neural MT system that
gets up to +4.8 Bleu gains over a very strong
attention-based, single-source baseline. We ob-
tain this result through a novel encoder-vector com-
bination method and a novel multi-attention sys-
tem. We release the code for these experiments at
www.github.com/isi-nlp/Zoph RNN.

Target = German
Source Method Ppl BLEU
French — 12.3 10.6
English — 9.6 13.4
French+English Basic 9.1 14.5
French+English Child-Sum 9.5 14.4
English Attention 7.3 17.6
French+English B-Attent. 6.9 18.6
French+English CS-Attent. 7.1 18.2

Figure 6: Multi-source MT results for target German, with

source languages French and English.

33

5 Acknowledgments

This work was carried out with funding from
DARPA (HR0011-15-C-0115) and ARL/ARO
(W911NF-10-1-0533).

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural ma-

chine translation by jointly learning to align and trans-
late. In Proc. ICLR.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn,
C. Monz, M. Post, and L. Specia, editors. 2014. Proc.
of the Ninth Workshop on Statistical Machine Transla-
tion. Association for Computational Linguistics.

C. Callison-Burch. 2002. Co-training for statistical ma-
chine translation. Master’s thesis, School of Informat-
ics, University of Edinburgh.

M. A. Castaño and F. Casacuberta. 1997. A con-
nectionist approach to machine translation. In EU-
ROSPEECH.

A. Deri and K. Knight. 2015. How to make a Frenemy:
Multitape FSTs for portmanteau generation. In Proc.
NAACL.

D. Dong, H. Wu, W. he, D. Yu, and H. Wang. 2015.
Multi-task learning for multiple language translation.
In Proc. ACL.

C. Elgot and J. Mezei. 1965. On relations defined by
generalized finite automata. IBM Journal of Research
and Development, 9(1):47–68.

W. A Gale and K. W Church. 1993. A program for align-
ing sentences in bilingual corpora. Computational lin-
guistics, 19(1):75–102.

J. González-Rubio and F. Casacuberta. 2010. On the use
of median string for multi-source translation. In Proc.
ICPR.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8).

R. Kaplan and M. Kay. 1994. Regular models of
phonological rule systems. Computational Linguis-
tics, 20(3):331–378.

M. Kay. 2000. Triangulation in translation. Keynote at
MT 2000 Conference, University of Exeter.

M. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and
L. Kaiser. 2015a. Multi-task sequence to sequence
learning. In arXiv. http://arxiv.org/abs/1511.06114.

M. Luong, H. Pham, and C. Manning. 2015b. Effective
approaches to attention-based neural machine transla-
tion. In Proc. EMNLP.

E. Matusov, N. Ueffing, and H. Ney. 2006. Computing
consensus translation from multiple machine transla-
tion systems using enhanced hypotheses alignment. In
Proc. EACL.

A. Max, J. Crego, and F. Yvon. 2010. Contrastive lexical
evaluation of machine translation. In Proc. LREC.

R. Neco and M. Forcada. 1997. Asynchronous transla-
tions with recurrent neural nets. In International Conf.
on Neural Networks, volume 4, pages 2535–2540.

F. J. Och and H. Ney. 2001. Statistical multi-source
translation. In Proc. MT Summit.

J. Schroeder, T. Cohn, and P. Koehn. 2009. Word lattices
for multi-source translation. In Proc. EACL.

L. Schwartz. 2008. Multi-source translation methods.
Proc. AMTA.

M. Simard. 1999. Text-translation alignment: Three lan-
guages are better than two. In Proc. EMNLP/VLC.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS.

K. S. Tai, R. Socher, and C. Manning. 2015. Im-
proved semantic representations from tree-structured
long short-term memory networks. In Proc. ACL.

P. J. Werbos. 1990. Backpropagation through time: what
it does and how to do it. Proc. IEEE, 78(10):1550–
1560.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014.
Recurrent neural network regularization. CoRR,
abs/1409.2329.

34

Proceedings of NAACL-HLT 2016, pages 35–40,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Controlling Politeness in Neural Machine Translation via Side Constraints

Rico Sennrich and Barry Haddow and Alexandra Birch
School of Informatics, University of Edinburgh

{rico.sennrich,a.birch}@ed.ac.uk, bhaddow@inf.ed.ac.uk

Abstract

Many languages use honorifics to express po-
liteness, social distance, or the relative so-
cial status between the speaker and their ad-
dressee(s). In machine translation from a lan-
guage without honorifics such as English, it
is difficult to predict the appropriate honorific,
but users may want to control the level of po-
liteness in the output. In this paper, we per-
form a pilot study to control honorifics in neu-
ral machine translation (NMT) via side con-
straints, focusing on English→German. We
show that by marking up the (English) source
side of the training data with a feature that en-
codes the use of honorifics on the (German)
target side, we can control the honorifics pro-
duced at test time. Experiments show that
the choice of honorifics has a big impact on
translation quality as measured by BLEU, and
oracle experiments show that substantial im-
provements are possible by constraining the
translation to the desired level of politeness.

1 Introduction

Many languages use honorifics to express polite-
ness, social distance, or the relative social status be-
tween the speaker and their addressee(s). A wide-
spread instance is the grammatical T-V distinction
(Brown and Gilman, 1960), distinguishing between
the familiar (Latin Tu) and the polite (Latin Vos)
second person pronoun. In machine translation from
a language without honorifics such as English, it
is difficult to predict the appropriate honorific, but
users may want to control the level of politeness in
the output.

The research presented in this publication was conducted in
cooperation with Samsung Electronics Polska sp. z o.o. - Sam-
sung R&D Institute Poland.

We propose a simple and effective method for in-
cluding target-side T-V annotation in the training of
a neural machine translation (NMT) system, which
allows us to control the level of politeness at test
time through what we call side constraints. It can be
applied for translation between languages where the
T-V distinction is missing from the source, or where
the distribution differs. For instance, both Swedish
and French make the T-V distinction, but reciprocal
use of T pronouns is more widespread in Swedish
than in French (Schüpbach et al., 2006). Hence, the
Swedish form is not a reliable signal for the appro-
priate form in the French translation (or vice-versa).

Our basic approach of using side constraints to
control target-side features that may be missing from
the source, or are unreliable because of a cate-
gory mismatch, is not limited to the T-V distinc-
tion, but could be applied to various linguistic fea-
tures. This includes grammatical features such as
tense and the number/gender of discourse partici-
pants, and more generally, features such as dialect
and register choice.

This paper has the following contributions:

• we describe rules to automatically annotate the
T-V distinction in German text.

• we describe how to use target-side T-V anno-
tation in NMT training to control the level of
politeness at test time via side constraints.

• we perform oracle experiments to demonstrate
the impact of controlling politeness in NMT.

2 Background: Neural Machine
Translation

Attentional neural machine translation (Bahdanau
et al., 2015) is the current state of the art for

35

English→German (Jean et al., 2015b; Luong and
Manning, 2015). We follow the neural machine
translation architecture by Bahdanau et al. (2015),
which we will briefly summarize here. However, our
approach is not specific to this architecture.

The neural machine translation system is imple-
mented as an attentional encoder-decoder network.
The encoder is a bidirectional neural network with
gated recurrent units (Cho et al., 2014) that reads
an input sequence x = (x1, ..., xm) and calculates
a forward sequence of hidden states (

−→
h1, ...,

−→
hm),

and a backward sequence (
←−
h1, ...,

←−
hm). The hidden

states
−→
hj and

←−
hj are concatenated to obtain the an-

notation vector hj .
The decoder is a recurrent neural network that

predicts a target sequence y = (y1, ..., yn). Each
word yi is predicted based on a recurrent hidden
state si, the previously predicted word yi−1, and a
context vector ci. ci is computed as a weighted sum
of the annotations hj . The weight of each annota-
tion hj is computed through an alignment model αij ,
which models the probability that yi is aligned to xj .
The alignment model is a single-layer feedforward
neural network that is learned jointly with the rest of
the network through backpropagation.

A detailed description can be found in (Bahdanau
et al., 2015). Training is performed on a parallel cor-
pus with stochastic gradient descent. For translation,
a beam search with small beam size is employed.

3 NMT with Side Constraints

We are interested in machine translation for lan-
guage pairs where politeness is not grammatically
marked in the source text, but should be predicted in
the target text. The basic idea is to provide the neu-
ral network with additional input features that mark
side constraints such as politeness.

At training time, the correct feature is extracted
from the sentence pair as described in the following
section. At test time, we assume that the side con-
straint is provided by a user who selects the desired
level of politeness of the translation.

We add side constraints as special tokens at the
end of the source text, for instance <T> or <V>.
The attentional encoder-decoder framework is then
able to learn to pay attention to the side constraints.
One could envision alternative architectures to in-

corporate side constraints, e.g. directly connecting
them to all decoder hidden states, bypassing the
attention model, or connecting them to the output
layer (Mikolov and Zweig, 2012). Our approach is
simple and applicable to a wide range of NMT ar-
chitectures and our experiments suggest that the in-
corporation of the side constraint as an extra source
token is very effective.

4 Automatic Training Set Annotation

Our approach relies on annotating politeness in the
training set to obtain the politeness feature which we
discussed previously. We choose a sentence-level
annotation because a target-side honorific may have
no word-level correspondence in the source. We will
discuss the annotation of German as an example,
but our method could be applied to other languages,
such as Japanese (Nariyama et al., 2005).

German has distinct pronoun forms for informal
and polite address, as shown in Table 1. A further
difference between informal and polite speech are
imperative verbs, and the original imperative forms
are considered informal. The polite alternative is to
use 3rd person plural forms with subject in position
2:

• Ruf mich zurück. (informal)
(Call me back.)

• Rufen Sie mich zurück. (polite)
(Call you me back.)

We automatically annotate politeness on a sen-
tence level with rules based on a morphosyntactic
annotation by ParZu (Sennrich et al., 2013). Sen-
tences containing imperative verbs are labelled in-
formal. Sentences containing an informal or polite
pronoun from Table 1 are labelled with the corre-
sponding class.

Some pronouns are ambiguous. Polite pronouns
are distinguished from (neutral) 3rd person plural
forms by their capitalization, and are ambiguous in
sentence-initial position. In sentence-initial posi-
tion, we consider them polite pronouns if the English
source side contains the pronoun you(r). For Ihr and
ihr, we use the morphological annotation by ParZu
to distinguish between the informal 2nd person plu-
ral nominative, the (neutral) 3rd person singular da-
tive, and the possessive; for possessive pronouns, we

36

category informal polite
sg. pl. sg./pl.

nominative du ihr Sie
genitive deiner euer Ihrer
dative dir euch Ihnen
accusative dich euch Sie
possessive (base form) dein euer Ihr

Table 1: German address pronouns.

distinguish between polite forms and (neutral) 3rd
person forms by their capitalization.

If a sentence matches rules for both classes, we
label it as informal – we found that our lowest-
precision rule is the annotation of sentence-initial
Sie. All sentences without a match are considered
neutral.

5 Evaluation

Our empirical research questions are as follows:

• can we control the production of honorifics in
neural machine translation via side constraints?

• how important is the T-V distinction for trans-
lation quality (as measured by BLEU)?

5.1 Data and Methods

We perform English→German experiments on
OpenSubtitles (Tiedemann, 2012)1, a parallel cor-
pus of movie subtitles. Machine translation is com-
monly used in the professional translation of movie
subtitles in a post-editing workflow, and politeness
is considered an open problem for subtitle transla-
tion (Etchegoyhen et al., 2014). We use OpenSub-
titles2012 as training corpus, and random samples
from OpenSubtitles2013 for testing. The training
corpus consists of of 5.58 million sentence pairs, out
of which we label 0.48 million sentence pairs as po-
lite, and 1.09 million as informal.

We train an attentional encoder-decoder NMT
system using Groundhog2 (Bahdanau et al., 2015;
Jean et al., 2015a). We follow the settings and train-
ing procedure described by Sennrich et al. (2015),
using BPE to represent the texts with a fixed vocab-
ulary of subword units (vocabulary size 90000).

1http://www.opensubtitles.org
2github.com/sebastien-j/LV_groundhog

The training set is annotated as described in sec-
tion 4, and the source side is marked with the po-
liteness feature as described in section 3. Note that
there are only two values for the politeness feature,
and neutral sentences are left unmarked. This is to
allow users to select a politeness level for the whole
document, without having to predict which transla-
tions should contain an address pronoun. Instead,
we want the NMT model to ignore side constraints
when they are irrelevant.

To ensure that the NMT model does not overly
rely on the side constraints, and that performance
does not degrade when no side constraint is provided
at test time, only a subset of the labelled training in-
stances are marked with a politeness feature at train-
ing time. We set the probability that a labelled train-
ing instance is marked, α, to 0.5 in our experiments.
To ensure that the NMT model learns to ignore side
constraints when they are irrelevant, and does not
overproduce address pronouns when side constraints
are active, we also mark neutral sentences with a
random politeness feature with probability α. Keep-
ing the mark-up probability α constant for all sen-
tences in the training set prevents the introduction
of unwanted biases. We re-mark the training set for
each epoch of training. In preliminary experiments,
we found no degradation in baseline performance
when politeness features were included in this way
during training.

The model is trained for approximately 9 epochs
(7 days). At test time, all results are obtained with
the same model, and the only variable is the side
constraint used to control the production of hon-
orifics. We test translation without side constraint,
and translations that are constrained to be polite or
informal. In an oracle experiment, we use the po-
liteness label of the reference to determine the side
constraint. This simulates a setting in which a user
controls the desired politeness.

5.2 Results

Our first test set is a random sample of 2000 sen-
tences from OpenSubtitles2013 where the English
source contains a 2nd person pronoun. Results are
shown in Table 2. Side constraints very effectively
control whether the NMT system produces polite
or informal output. Translations constrained to be
polite are overwhelmingly labelled polite or neutral

37

side constraint output label BLEUneutral polite informal
(reference) 429 524 1047 -
none 178 351 1471 20.7
polite 208 1728 64 17.9
informal 141 28 1831 20.2
oracle 161 567 1272 23.9

Table 2: Politeness and translation quality on test set of 2000

sentences from OpenSubtitles2013 that contain second person

pronoun you(r(s(elf))) in English source text.

source Give me the telephone!
reference Gib mir das Telefon! [T]
none Gib mir das Telefon! [T]
polite Geben Sie mir das Telefon! [V]
informal Gib mir das Telefon! [T]
source Are you kidding?
reference Das ist doch ein Witz! [N]

(this is a joke!)
none Machst du Witze? [T]
polite Machen Sie Witze? [V]
informal Machst du Witze? [T]
source You foolish boy.
reference Du dummer Junge. [T]
none Du dummer Junge. [T]
polite Du dummer Junge. [T]
informal Du dummer Junge. [T]

Table 3: Translation examples with different side constraints.

Translations marked as neutral [N], informal [T] or polite [V].

by our automatic target-side annotation (96%), and
analogously, translations constrained to be informal
are almost exclusively informal or neutral (98%).

We also see that BLEU is strongly affected by the
choice. An oracle experiment in which the side con-
straint of every sentence is informed by the reference
obtains an improvement of 3.2 BLEU over the base-
line (20.7→23.9).

We note that the reference has a higher propor-
tion of German sentences labelled neutral than the
NMT systems. A close inspection shows that this is
due to sentence alignment errors in OpenSubtitles,
free translations as shown in Table 3, and sentences
where you is generic and translated by the imper-
sonal pronoun man in the reference.

The side constraints are only soft constraints, and
are occasionally overridden by the NMT system.
These cases tend to be sentences where the source
text provides strong politeness clues, like the sen-

side constraint output label BLEUneutral polite informal
(reference) 1406 189 405 -
none 1385 125 490 22.6
polite 1386 576 38 21.7
informal 1365 11 624 22.5
oracle 1374 185 441 24.0

Table 4: Politeness and translation quality on test set of 2000

random sentences from OpenSubtitles2013.

tence You foolish boy. Neither the address boy nor
the attribute foolish are likely in polite speech, and
the sentence is translated with a T pronoun, regard-
less of the side constraint.

While Table 2 only contains sentences with an
address pronoun in the source text, Table 4 repre-
sents a random sample. There are fewer address
pronouns in the random sample, and thus more neu-
tral sentences, but side constraints remain effective.
This experiment also shows that we do not over-
produce address pronouns when side constraints are
provided, which validates our strategy of includ-
ing side constraints with a constant probability α at
training time.

The automatic evaluation with BLEU indicates
that the T-V distinction is relevant for translation.
We expect that the actual relevance for humans de-
pends on the task. For gisting, we expect the T-V
distinction to have little effect on comprehensibility.
For professional translation that uses MT with post-
editing, producing the desired honorifics is likely to
improve post-editing speed and satisfaction. In an
evaluation of MT for subtitle translation, Etchegoy-
hen et al. (2014) highlight the production of the ap-
propriate T-V form as “a limitation of MT technol-
ogy” that was “often frustrat[ing]” to post-editors.

6 Related Work

Faruqui and Pado (2012) have used a bilingual
English–German corpus to automatically annotate
the T-V distinction, and train a classifier to predict
the address from monolingual English text. Ap-
plying a source-side classifier is potential future
work, although we note that the baseline encoder–
decoder NMT system already has some disam-
biguating power. Our T-V classification is more
comprehensive, including more pronoun forms and
imperative verbs.

38

Previous research on neural language models has
proposed including various types of extra infor-
mation, such as topic, genre or document context
(Mikolov and Zweig, 2012; Aransa et al., 2015; Ji
et al., 2015; Wang and Cho, 2015). Our method
is somewhat similar, with the main novel idea be-
ing that we can target specific phenomena, such as
honorifics, via an automatic annotation of the target
side of a parallel corpus. On the modelling side, our
method is slightly different in that we pass the extra
information to the encoder of an encoder–decoder
network, rather than the (decoder) hidden layer or
output layer. We found this to be very effective,
but trying different architectures is potential future
work.

In rule-based machine translation, user options to
control the level of politeness have been proposed
in the 90s (Mima et al., 1997), and were adopted
by commercial systems (SYSTRAN, 2004, 26). To
our knowledge, controlling the level of politeness
has not been explicitly addressed in statistical ma-
chine translation. While one could use data selec-
tion or weighting to control the honorifics produced
by SMT, NMT allows us to very elegantly support
multiple levels of politeness with a single model.

7 Conclusion

Machine translation should not only produce seman-
tically accurate translations, but should also consider
pragmatic aspects, such as producing socially appro-
priate forms of address. We show that by annotating
the T-V distinction in the target text, and integrating
the annotation as an additional input during train-
ing of a neural translation model, we can apply side
constraints at test time to control the production of
honorifics in NMT.

We currently assume that the desired level of po-
liteness is specified by the user. Future work could
aim to automatically predict it from the English
source text based on textual features such as titles
and names, or meta-textual information about the
discourse participants.

While this paper focuses on controlling polite-
ness, side constraints could be applied to a wide
range of phenomena. It is a general problem in
translation that, depending on the language pair, the
translator needs to specify features in the target text

that cannot be predicted from the source text. Apart
from from the T-V distinction, this includes gram-
matical features such as clusivity, tense, and gender
and number of the discourse participants, and more
generally, features such as the desired dialect (e.g.
when translating into Arabic) and text register. Side
constraints can be applied to control these features.
All that is required is that the feature can be anno-
tated reliably, either using target-side information or
metatextual information, at training time.

Acknowledgments

The research presented in this publication was con-
ducted in cooperation with Samsung Electronics
Polska sp. z o.o. - Samsung R&D Institute Poland.
This project has received funding from the European
Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement 644402 (HimL).

References
Walid Aransa, Holger Schwenk, and Loïc Barrault. 2015.

Improving Continuous Space Language Models using
Auxiliary Features. In Proceedings of the 12th Inter-
national Workshop on Spoken Language Translation,
pages 151–158, Da Nang, Vietnam.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR).

Roger Brown and A. Gilman. 1960. The pronouns of
power and solidarity. In T. Sebeok, editor, Style in
Language. The M.I.T. Press, Cambridge, MA.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning Phrase Repre-
sentations using RNN Encoder–Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar.
Association for Computational Linguistics.

Thierry Etchegoyhen, Lindsay Bywood, Mark Fishel,
Panayota Georgakopoulou, Jie Jiang, Gerard Van
Loenhout, Arantza Del Pozo, Mirjam Sepesy Maucec,
Anja Turner, and Martin Volk. 2014. Machine Trans-
lation for Subtitling: A Large-Scale Evaluation. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
Reykjavik, Iceland. European Language Resources
Association (ELRA).

39

Manaal Faruqui and Sebastian Pado. 2012. Towards a
model of formal and informal address in English. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 623–633, Avignon, France. Association for
Computational Linguistics.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015a. On Using Very Large Target
Vocabulary for Neural Machine Translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1–10, Beijing,
China. Association for Computational Linguistics.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015b. Montreal
Neural Machine Translation Systems for WMT’15 . In
Proceedings of the Tenth Workshop on Statistical Ma-
chine Translation, pages 134–140, Lisbon, Portugal.
Association for Computational Linguistics.

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer,
and Jacob Eisenstein. 2015. Document Context Lan-
guage Models. ArXiv e-prints, November.

Minh-Thang Luong and Christopher D. Manning. 2015.
Stanford Neural Machine Translation Systems for
Spoken Language Domains. In Proceedings of the
International Workshop on Spoken Language Trans-
lation 2015, Da Nang, Vietnam.

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In 2012 IEEE Spoken Language Technology Workshop
(SLT), pages 234–239, Miami, FL, USA.

Hideki Mima, Osamu Furuse, and Hitoshi Iida. 1997.
Improving Performance of Transfer-driven Machine
Translation with Extra-linguistic Information from
Context, Situation and Environment. In Proceedings
of the Fifteenth International Joint Conference on Ar-
tifical Intelligence - Volume 2, IJCAI’97, pages 983–
988, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Shigeko Nariyama, Hiromi Nakaiwa, and Melanie Siegel.
2005. Annotating Honorifics Denoting Social Rank-
ing of Referents. In Proceedings of the 6th Interna-
tional Workshop on Linguistically Interpreted Corpora
(LINC-2005).

Doris Schüpbach, John Hajek, Jane Warren, Michael
Clyne, Heinz-L. Kretzenbacher, and Catrin Norrby.
2006. A cross-linguistic comparison of address pro-
noun use in four European languages: Intralingual and
interlingual dimensions . In Annual Meeting of the
Australian Linguistic Society, Brisbane, Australia.

Rico Sennrich, Martin Volk, and Gerold Schneider. 2013.
Exploiting Synergies Between Open Resources for

German Dependency Parsing, POS-tagging, and Mor-
phological Analysis. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Lan-
guage Processing 2013, pages 601–609, Hissar, Bul-
garia.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural Machine Translation of Rare Words with
Subword Units. CoRR, abs/1508.07909.

SYSTRAN, 2004. SYSTRAN 5.0 User Guide.
Jörg Tiedemann. 2012. Parallel Data, Tools and Inter-

faces in OPUS. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’12), Istanbul, Turkey.

Tian Wang and Kyunghyun Cho. 2015. Larger-Context
Language Modelling. ArXiv e-prints, November.

40

Proceedings of NAACL-HLT 2016, pages 41–46,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

An Empirical Evaluation of Noise Contrastive Estimation
for the Neural Network Joint Model of Translation

Colin Cherry
National Research Council Canada

Colin.Cherry@nrc-cnrc.gc.ca

Abstract

The neural network joint model of transla-
tion or NNJM (Devlin et al., 2014) combines
source and target context to produce a power-
ful translation feature. However, its softmax
layer necessitates a sum over the entire output
vocabulary, which results in very slow max-
imum likelihood (MLE) training. This has
led some groups to train using Noise Con-
trastive Estimation (NCE), which side-steps
this sum. We carry out the first direct compar-
ison of MLE and NCE training objectives for
the NNJM, showing that NCE is significantly
outperformed by MLE on large-scale Arabic-
English and Chinese-English translation tasks.
We also show that this drop can be avoided
by using a recently proposed translation noise
distribution.

1 Introduction

The Neural Network Joint Model of Translation,
or NNJM (Devlin et al., 2014), is a strong feature
for statistical machine translation. The NNJM uses
both target and source tokens as context for a feed-
forward neural network language model (LM). Un-
fortunately, its softmax layer requires a sum over the
entire output vocabulary, which slows the calcula-
tion of LM probabilities and the maximum likeli-
hood estimation (MLE) of model parameters.

Devlin et al. (2014) address this problem at run-
time only with a self-normalized MLE objective.
Others advocate the use of Noise Contrastive Esti-
mation (NCE) to train NNJMs and similar mono-
lingual LMs (Mnih and Teh, 2012; Vaswani et al.,
2013; Baltescu and Blunsom, 2015; Zhang et al.,

2015). NCE avoids the sum over the output vo-
cabulary at both train- and run-time by wrapping
the NNJM inside a classifier that attempts to sep-
arate real data from sampled noise, greatly im-
proving training speed. The training efficiency of
NCE is well-documented, and will not be evaluated
here. However, the experimental evidence that NCE
matches MLE in terms of resulting model quality is
all on monolingual language modeling tasks (Mnih
and Teh, 2012). Since cross-lingual contexts pro-
vide substantially stronger signals than monolingual
ones, there is reason to suspect these results may not
carry over to NNJMs.

To our knowledge there is no published work that
directly compares MLE and NCE in the context of
an NNJM; this paper fills that gap as its primary con-
tribution. We measure model likelihood and trans-
lation quality in large-scale Arabic-to-English and
Chinese-to-English translation tasks. We also test a
recently-proposed translation noise distribution for
NCE (Zhang et al., 2015), along with a mixture of
noise distributions. Finally, we test a widely known,
but apparently undocumented, technique for domain
adaptation of NNJMs, demonstrating its utility, as
well as its impact on the MLE-NCE comparison.

2 Methods

The NNJM adds a bilingual context window to the
machinery of feed-forward neural network language
models, or NNLMs (Bengio et al., 2003). An
NNLM calculates the probability p(ei|ei−1

i−n+1) of a
word ei given its n − 1 preceding words, while an
NNJM assumes access to a source sentence F and an
aligned source index ai that points to the most influ-

41

ential source word for the next translation choice. It
calculates p(ei|ei−1

i−n+1, f
ai+m
ai−m), which accounts for

2m + 1 words of source context, centered around
fai . The two models differ only in their definition of
the conditioning context, which we will generalize
with the variable ci = ei−1

i−n+1, f
ai+m
ai−m . When unam-

biguous, we drop the subscript i from e and c.
The feed-forward neural network that powers

both models takes a context sequence c as input to
its network, which includes an embedding layer, one
or more hidden layers, and a top-level softmax layer
that assigns probabilities to each word in the vocabu-
lary V . Let sc(e) represent the unnormalized neural
network score for the word e. The softmax layer first
calculates Zc =

∑
e′∈V exp sc(e′), which allows it

to then normalize the score into a log probability
log p(e|c) = sc(e) − logZc. Given a training set of
word-context pairs, MLE training of NNJMs mini-
mizes the negative log likelihood

∑
e,c− log p(e|c).

The problem with this objective is that calculat-
ing Zc requires a sum over the entire vocabulary,
which is very expensive. This problem has received
much recent study, but Devlin et al. (2014) pro-
posed a novel solution for their NNJM, which we
refer to as self-normalization. Assume we are will-
ing to incur the cost of calculating Zc during train-
ing, which might be mitigated by special-purpose
hardware such as graphical processing units (GPUs).
One can modify the MLE objective to encourage
logZc to be small, so that the term can be safely
dropped at run-time:∑

e,c

[
− log p(e|c) + α (logZc)

2
]

where α trades self-normalization against model
likelihood. Devlin et al. (2014) have shown that self-
normalization has minimal impact on model quality
and a tremendous impact on run-time efficiency.

2.1 Noise Contrastive Estimation
Introduced by Gutmann and Hyvärinen (2010) and
first applied to language modeling by Mnih and Teh
(2012), NCE allows one to train self-normalized
models without calculating Z. It does so by defin-
ing a noise distribution q over words in V , which
is typically a unigram noise distribution qu. It
samples k noise words êk1 for each training word
e, and wraps the NNJM inside a binary classifier

that attempts to separate true data from noise. Let
D be a binary variable that is 1 for true data and
0 for noise. We know the joint noise probability
p(D = 0, e|c) = k

k+1q(e), and we can approximate
the joint data probability using our neural network
p(D = 1, e|c) ≈ 1

k+1p(e|c) ≈ 1
k+1 exp sc(e). Note

that the final approximation dropsZc from the calcu-
lation, improving efficiency and forcing the model to
self-normalize. With these two terms in place, and
a few manipulations of conditional probability, the
NCE training objective can be given as:

−
∑
e,c

log p(D = 1|e, c) +
k∑
j=1

log p(D = 0|êj , c)


which measures the probability that data is recog-
nized as data, and noise is recognized as noise.

Note that q ignores the context c. Previous work
on monolingual language modeling indicates that a
unigram proposal distribution is sufficient for NCE
training (Mnih and Teh, 2012). But for bilingual
NNJMs, Zhang et al. (2015) have shown that it is
beneficial to have q condition on source context. Re-
call that ci = ei−1

i−n+1, f
ai+m
ai−m . We experiment with

a translation noise distribution qt(ê|fai). We esti-
mate qt by relative frequency from our training cor-
pus, which implicitly provides us with one ei, fai

pair for each training point ei, ci. Conditioning on
fai drastically reduces the entropy of the noise dis-
tribution, focusing training on the task of differenti-
ating between likely translation candidates.

As our experiments will show, under NCE with
translation noise, the NNJM no longer provides
meaningful scores for the entire vocabulary. There-
fore, we also experiment with a novel mixture noise
distribution: qm(ê|fai) = 0.5qu(ê) + 0.5qt(ê|fai).

3 Implementation details

We implement our NNJM and all candidate train-
ing objectives described above in a shared codebase
in Theano (Bergstra et al., 2010). To ensure a fair
comparison between MLE and NCE, the various
systems share code for model structures and algo-
rithms, differing only in their training objectives. A
GeForce GTX TITAN GPU enables efficient MLE
training. Following Devlin et al. (2014), all NNJMs
use 3 tokens for target context, a source context win-
dow with m = 5, and a 192-node embedding layer.

42

We deviate from their configuration by using a sin-
gle 512-node hidden layer, motivated by our inter-
nal development experiments. All NCE variants use
k = 100 noise samples.

NNJM training data is pre-processed to limit vo-
cabularies to 16K types for source or target inputs,
and 32K types for target outputs. We build 400
deterministic word clusters for each corpus using
mkcls (Och, 1999). Any word not among the 16K /
32K most frequent words is replaced with its cluster.

We train our models with mini-batch stochastic
gradient descent, with a batch size of 128 words,
and an initial learning rate of 0.3. We check our
training objective on the development set every 20K
batches, and if it fails to improve for two consec-
utive checks, the learning rate is halved. Training
stops after 5 consecutive failed checks or after 60
checks. As NCE may take longer to converge than
MLE, we occasionally let NCE models train to 90
checks, but this never resulted in improved perfor-
mance. Finally, after training finishes on the com-
plete training data, we use that model to initialize a
second training run, on a smaller in-domain training
set known to better match the test conditions.1 This
in-domain pass uses a lower initial learning rate of
0.03.

Our translation system is a multi-stack phrase-
based decoder that is quite similar to Moses (Koehn
et al., 2007). Its features include standard phrase
table probabilities, KN-smoothed language mod-
els including a 6-gram model trained on the En-
glish Gigaword and a 4-gram model trained on the
target side of the parallel training data, domain-
adapted phrase tables and language models (Fos-
ter and Kuhn, 2007), a hierarchical lexicalized re-
ordering model (Galley and Manning, 2008), and
sparse features drawn from Hopkins and May (2011)
and Cherry (2013). It is tuned with a batch-lattice
variant of hope-fear MIRA (Chiang et al., 2008;
Cherry and Foster, 2012).

4 Experiments

We test two translation scenarios drawn from the
recent BOLT evaluations: Arabic-to-English and
Chinese-to-English. The vital statistics for our cor-
pora are given in Table 1. The training set mixes

1Recommended by Jacob Devlin, personal communication.

Lang. Train In-dom Dev Test1 Test2
Arabic 38.6M 1.8M 72K 38K 40K
Chinese 29.2M 1.9M 77K 38K 36K

Table 1: Corpus sizes in terms of number of target tokens. Dev

and Test sets have 3 references for Arabic and 5 for Chinese.

NIST data with BOLT-specific informal genres. The
development and test sets are focused specifically
on the web-forum genre, as is the in-domain sub-
set of the training data (In-dom). The Arabic was
segmented with MADA-ARZ (Habash et al., 2013),
while the Chinese was segmented with a lexicon-
based approach. All data was word-aligned with
IBM-4 in GIZA++ (Och and Ney, 2003), with grow-
diag-final-and symmetrization (Koehn et al., 2003).

4.1 Comparing Training Objectives
Our main experiment is designed to answer two
questions: (1) does training NNJMs with NCE im-
pact translation quality? and (2) can any reduction
be mitigated through alternate noise distributions?
To this end, we train four NNJMs.

• MLE: Maximum likelihood training with self-
normalization α = 0.1
• NCE-U: NCE with unigram noise
• NCE-T: NCE with translation noise
• NCE-M: NCE with mixture noise

and compare their performance to that of a system
with no NNJM. Each NNJM was trained as de-
scribed in Section 3, varying only the learning ob-
jective.2 To measure intrinsic NNJM quality, we
report average negative log likelihoods (NLL) and
average | logZ|, both calculated on Dev. Lower
NLL scores indicate better prediction accuracy,
while lower | logZ| values indicate more effec-
tive self-normalization. We also provide average
BLEU scores and standard deviations for Test1 and
Test2, each calculated over 5 random tuning repli-
cations. Statistical significance is calculated with
MultEval (Clark et al., 2011).

Our results are shown in Table 2. By comparing
MLE to no NNJM, we can confirm that the NNJM
is a very effective translation feature, showing large

2The only exception was the Arabic NCE-M system, which
showed some instability during optimization, leading us to re-
duce its initial learning rate to 0.2.

43

Arabic-English Chinese-English
Method NLL | logZ| test1 std test2 std NLL | logZ| test1 std test2 std
No NNJM – – 39.2 0.1 39.9 0.1 – – 31.6 0.2 27.8 0.1
MLE 1.76 0.50 41.7 0.1 42.0 0.1 2.35 0.49 32.9 0.0 29.1 0.0
NCE-U 1.85 0.42 40.9 0.2 41.5 0.1 2.54 0.42 32.2 0.1 28.3 0.1
NCE-T 3.87 2.36 41.6 0.1 42.4 0.2 3.93 1.70 32.7 0.1 28.7 0.2
NCE-M 1.85 0.30 41.4 0.1 42.1 0.1 2.40 0.30 32.6 0.1 28.8 0.1

Table 2: Comparing various NNJM training objectives on two translation scenarios. BLEU results that are statistically better than

NCE-U are underlined (p ≤ 0.05). Those statistically equivalent to or better than MLE are in bold (p ≤ 0.05).

BLEU improvements on all tests. By comparing
MLE to NCE-U, we can see that NCE training does
reduce translation quality. NCE-U outperforms hav-
ing no NNJM, but lags behind MLE considerably,
resulting in significantly worse performance on all
tests. This is mitigated with translation noise: NCE-
T and NCE-M both perform significantly better than
NCE-U. Furthermore, in 3 out of 4 tests, NCE-T
matches or exceeds the performance of MLE. The
one Arabic-to-English case where NCE-T exceeds
the performance of MLE is particularly intriguing,
and warrants further study.

Though NCE-T performs very well as a trans-
lation feature, it is relatively lousy as a language
model, with abnormally large values for both NLL
and | logZ|. This indicates that NCE-T is only good
at predicting the next word from a pool of reasonable
translation candidates. Scores for words drawn from
the larger vocabulary are less accurate. However,
the BLEU results for NCE-T show that this does not
matter for translation performance. If model like-
lihoods over the complete vocabulary are needed,
one can repair these estimates by mixing in uni-
gram noise, as shown by NCE-M, which achieves
the same or better likelihoods than NCE-U, with
comparable BLEU scores to those of NCE-T.

Devlin et al. (2014) suggest that one drawback of
NCE with respect to self-normalized MLE is NCE’s
lack of an α hyper-parameter to control the objec-
tive’s emphasis on self-normalization. However, the
| logZ| values for NCE-U are only slightly lower
than those of MLE, and are larger than those of the
superior NCE-M. This suggests that we could not
have improved NCE-U’s performance by adjusting
its emphasis on self-normalization.

General Adapted
Method BLEU ∆ BLEU ∆
No NNJM 39.6 -1.4 39.6 -2.2
MLE 41.0 — 41.8 —
NCE-U 40.7 -0.3 41.2 -0.6
NCE-T 41.0 0.0 42.0 +0.2
NCE-M 40.9 -0.1 41.7 -0.1

Table 3: Comparing NNJM training objectives with and with-

out a domain adaptation step for Arabic-to-English task.

4.2 Impact of the Domain Adaptation Pass

We began this project with the hypothesis that NCE
may harm NNJM performance. But NCE-U per-
formed worse than we expected. In particular, the
differences between NCE-U and NCE-T are larger
than those reported by Zhang et al. (2015). This led
us to investigate the domain adaptation pass, which
was used in our experiments but not those of Zhang
et al. This step refines the model with a second train-
ing pass on an in-domain subset of the training data.
We repeated our comparison for Arabic without do-
main adaptation, reporting BLEU averaged over two
test sets and across 5 tuning replications. We also re-
port each system’s BLEU differential ∆ with respect
to MLE. The results are shown under General in Ta-
ble 3, while Adapted summarizes our results from
Table 2 in the same format.

The domain adaptation step magnifies the differ-
ences between training objectives, perhaps because
it increases performance over-all. The spread be-
tween the worst and best NNJM is only 0.3 BLEU
under General, while it is 0.8 BLEU under Adapted.
Therefore, groups training unadapted models may
not see as large drops from NCE-U as we have re-
ported above. Note that we experimented with sev-
eral configurations that account specifically for this

44

domain-adaptation pass (noise distributions based
on general versus in-domain corpora, alternate stop-
ping criteria), so that NCE-U would be presented
in the most positive possible light. Perhaps most
importantly, Table 3 shows that the domain adapta-
tion pass is quite effective, producing large improve-
ments for all NNJMs.

4.3 Impact on Speed

MLE and NCE both produce self-normalized mod-
els, so they both have the same impact on decoding
speed. With the optimizations described by Devlin
et al. (2014), the impact of any single-hidden-layer
NNJM is negligible.

For training, the main benefit of NCE is that it
reduces the cost of the network’s output layer, re-
placing a term that was linear in the vocabulary
size with one that is linear in the sample size. In
our experiments, this is a reduction from 32K to
100. The actual benefit from this reduction is highly
implementation- and architecture-dependent. It is
difficult to get a substantial speedup from NCE us-
ing Theano on GPU hardware, as both reward dense
matrix operations, and NCE demands sparse vector
operations (Jean et al., 2015). Therefore, our deci-
sion to implement all methods in a shared codebase,
which ensured a fair comparison of model quality,
also prevented us from providing a meaningful eval-
uation of training speed, as the code and architec-
ture were implicitly optimized to favour the most de-
manding method (MLE). Fortunately, there is ample
evidence that NCE can provide large improvements
to per-batch training speeds for NNLMs, ranging
from a 2× speed-up for 20K-word vocabularies on
a GPU (Chen et al., 2015) to more than 10× for
70K-word vocabularies on a CPU (Vaswani et al.,
2013). Meanwhile, our experiments show that 1.2M
batches are sufficient for MLE, NCE-T and NCE-M
to achieve very high quality; that is, none of these
methods made use of early stopping during their
main training pass. This indicates that per-batch
speed is the most important factor when comparing
the training times of these NNJMs.

5 Conclusions

We have shown that NCE training with a unigram
noise distribution does reduce NNJM performance

with respect to MLE training, both in terms of model
likelihoods and downstream translation quality. This
performance drop can be avoided if NCE uses a
translation-aware noise distribution. We have em-
phasized the importance of a domain-specific train-
ing pass, and we have shown that this pass magni-
fies the differences between the various NNJM train-
ing objectives. In a few cases, NCE with transla-
tion noise actually outperformed MLE. This sug-
gests that there is value in only considering plausi-
ble translation candidates during training. It would
be interesting to explore methods to improve MLE
with this intuition.

Acknowledgments

Thanks to George Foster, Eric Joanis, Roland Kuhn
and the anonymous reviewers for their valuable
comments on an earlier draft.

References

Paul Baltescu and Phil Blunsom. 2015. Pragmatic neural
language modelling in machine translation. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL (HLT-NAACL), pages 820–829,
Denver, Colorado, May–June.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
3:1137–1155.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June.

X Chen, X Liu, MJF Gales, and PC Woodland. 2015.
Recurrent neural network language model training
with noise contrastive estimation for speech recogni-
tion. In ICASSP.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL (HLT-NAACL), pages 427–436,
Montréal, Canada, June.

Colin Cherry. 2013. Improved reordering for phrase-
based translation using sparse features. In Proceed-
ings of the Human Language Technology Conference
of the NAACL (HLT-NAACL), pages 22–31, Atlanta,
Georgia, June.

45

David Chiang, Yuval Marton, and Philip Resnik. 2008.
Online large-margin training of syntactic and struc-
tural translation features. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 224–233.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
176–181.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for sta-
tistical machine translation. In Proceedings of the
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 1370–1380, Balti-
more, Maryland, June.

George Foster and Roland Kuhn. 2007. Mixture-model
adaptation for SMT. In Proceedings of the Workshop
on Statistical Machine Translation, pages 128–135.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 848–856, Honolulu, Hawaii.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models. In International Con-
ference on Artificial Intelligence and Statistics, pages
297–304.

Nizar Habash, Ryan Roth, Owen Rambow, Ramy Eskan-
der, and Nadi Tomeh. 2013. Morphological analysis
and disambiguation for dialectal arabic. In Proceed-
ings of the Human Language Technology Conference
of the NAACL (HLT-NAACL), pages 426–432, Atlanta,
Georgia, June.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1352–1362.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target
vocabulary for neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1–10, Beijing,
China, July.

Philipp Koehn, Franz Joesef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the Human Language Technology Conference
of the NAACL (HLT-NAACL), pages 127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 177–180, Prague,
Czech Republic, June.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Con-
ference on Machine Learning, pages 1751–1758.

Franz Joesef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–52.

Franz Josef Och. 1999. An efficient method for deter-
mining bilingual word classes. In Proceedings of the
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL).

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale neu-
ral language models improves translation. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1387–
1392, Seattle, Washington, USA, October.

Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham
Neubig, and Satoshi Nakamura. 2015. A binarized
neural network joint model for machine translation.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
2094–2099, Lisbon, Portugal, September.

46

Proceedings of NAACL-HLT 2016, pages 47–57,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Neural Network-Based Abstract Generation for Opinions and Arguments

Lu Wang
College of Computer and Information Science

Northeastern University
Boston, MA 02115

luwang@ccs.neu.edu

Wang Ling
Google DeepMind
London, N1 0AE

lingwang@google.com

Abstract

We study the problem of generating abstrac-
tive summaries for opinionated text. We pro-
pose an attention-based neural network model
that is able to absorb information from multi-
ple text units to construct informative, concise,
and fluent summaries. An importance-based
sampling method is designed to allow the en-
coder to integrate information from an impor-
tant subset of input. Automatic evaluation in-
dicates that our system outperforms state-of-
the-art abstractive and extractive summariza-
tion systems on two newly collected datasets
of movie reviews and arguments. Our system
summaries are also rated as more informative
and grammatical in human evaluation.

1 Introduction

Collecting opinions from others is an integral part
of our daily activities. Discovering what other peo-
ple think can help us navigate through different as-
pects of life, ranging from making decisions on reg-
ular tasks to judging fundamental societal issues and
forming personal ideology. To efficiently absorb the
massive amount of opinionated information, there is
a pressing need for automated systems that can gen-
erate concise and fluent opinion summary about an
entity or a topic. In spite of substantial researches
in opinion summarization, the most prominent ap-
proaches mainly rely on extractive summarization
methods, where phrases or sentences from the origi-
nal documents are selected for inclusion in the sum-
mary (Hu and Liu, 2004; Lerman et al., 2009). One
of the problems that extractive methods suffer from

Movie: The Martian
Reviews:
- One the smartest, sweetest, and most satisfyingly suspenseful
sci-fi films in years.
- ...an intimate sci-fi epic that is smart, spectacular and stirring.
- The Martian is a thrilling, human and moving sci-fi picture
that is easily the most emotionally engaging film Ridley Scott
has made...
- It’s pretty sunny and often funny, a space oddity for a director
not known for pictures with a sense of humor.
- The Martian highlights the book’s best qualities, tones down
its worst, and adds its own style...
Opinion Consensus (Summary): Smart, thrilling, and sur-
prisingly funny, The Martian offers a faithful adaptation of
the bestselling book that brings out the best in leading man
Matt Damon and director Ridley Scott.
Topic: This House supports the death penalty.
Arguments:
- The state has a responsibility to protect the lives of innocent
citizens, and enacting the death penalty may save lives by re-
ducing the rate of violent crime.
- While the prospect of life in prison may be frightening, surely
death is a more daunting prospect.
- A 1985 study by Stephen K. Layson at the University of North
Carolina showed that a single execution deters 18 murders.
- Reducing the wait time on death row prior to execution can
dramatically increase its deterrent effect in the United States.
Claim (Summary): The death penalty deters crime.

Figure 1: Examples for an opinion consensus of pro-
fessional reviews (critics) about movie “The Martian” from
www.rottentomatoes.com, and a claim about “death
penalty” supported by arguments from idebate.org. Con-
tent with similar meaning is highlighted in the same color.

is that they unavoidably include secondary or redun-
dant information. On the contrary, abstractive sum-
marization methods, which are able to generate text
beyond the original input, can produce more coher-
ent and concise summaries.

In this paper, we present an attention-based neu-
ral network model for generating abstractive sum-
maries of opinionated text. Our system takes as in-
put a set of text units containing opinions about the
same topic (e.g. reviews for a movie, or arguments

47

for a controversial social issue), and then outputs a
one-sentence abstractive summary that describes the
opinion consensus of the input.

Specifically, we investigate our abstract genera-
tion model on two types of opinionated text: movie
reviews and arguments on controversial topics. Ex-
amples are displayed in Figure 1. The first exam-
ple contains a set of professional reviews (or crit-
ics) about movie “The Martian” and an opinion con-
sensus written by an editor. It would be more use-
ful to automatically generate fluent opinion consen-
sus rather than simply extracting features (e.g. plot,
music, etc) and opinion phrases as done in previous
summarization work (Zhuang et al., 2006; Li et al.,
2010). The second example lists a set of arguments
on “death penalty”, where each argument supports
the central claim “death penalty deters crime”. Ar-
guments, as a special type of opinionated text, con-
tain reasons to persuade or inform people on certain
issues. Given a set of arguments on the same topic,
we aim at investigating the capability of our abstract
generation system for the novel task of claim gener-
ation.

Existing abstract generation systems for opinion-
ated text mostly take an approach that first identi-
fies salient phrases, and then merges them into sen-
tences (Bing et al., 2015; Ganesan et al., 2010).
Those systems are not capable of generating new
words, and the output summary may suffer from
ungrammatical structure. Another line of work re-
quires a large amount of human input to enforce
summary quality. For example, Gerani et al. (2014)
utilize a set of templates constructed by human,
which are filled by extracted phrases to generate
grammatical sentences that serve different discourse
functions.

To address the challenges above, we propose to
use an attention-based abstract generation model —
a data-driven approach trained to generate informa-
tive, concise, and fluent opinion summaries. Our
method is based on the recently proposed frame-
work of neural encoder-decoder models (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014a),
which translates a sentence in a source language
into a target language. Different from previous
work, our summarization system is designed to sup-
port multiple input text units. An attention-based
model (Bahdanau et al., 2014) is deployed to al-

low the encoder to automatically search for salient
information within context. Furthermore, we pro-
pose an importance-based sampling method so that
the encoder can integrate information from an im-
portant subset of input text. The importance score
of a text unit is estimated from a novel regression
model with pairwise preference-based regularizer.
With importance-based sampling, our model can be
trained within manageable time, and is still able to
learn from diversified input.

We demonstrate the effectiveness of our model on
two newly collected datasets for movie reviews and
arguments. Automatic evaluation by BLEU (Pap-
ineni et al., 2002) indicates that our system outper-
forms the state-of-the-art extract-based and abstract-
based methods on both tasks. For example, we
achieved a BLEU score of 24.88 on Rotten Toma-
toes movie reviews, compared to 19.72 by an ab-
stractive opinion summarization system from Gane-
san et al. (2010). ROUGE evaluation (Lin and Hovy,
2003) also indicates that our system summaries have
reasonable information coverage. Human judges
further rated our summaries to be more informative
and grammatical than compared systems.

2 Data Collection

We collected two datasets for movie reviews
and arguments on controversial topics with gold-
standard abstracts.1 Rotten Tomatoes (www.
rottentomatoes.com) is a movie review web-
site that aggregates both professional critics and
user-generated reviews (henceforth RottenToma-
toes). For each movie, a one-sentence critic con-
sensus is constructed by an editor to summarize the
opinions in professional critics. We crawled 246,164
critics and their opinion consensus for 3,731 movies
(i.e. around 66 reviews per movie on average). We
select 2,458 movies for training, 536 movies for val-
idation and 737 movies for testing. The opinion con-
sensus is treated as the gold-standard summary.

We also collect an argumentation dataset from
idebate.org (henceforth Idebate), which is a
Wikipedia-style website for gathering pro and con
arguments on controversial issues. The arguments
under each debate (or topic) are organized into dif-

1The datasets can be downloaded from http://www.
ccs.neu.edu/home/luwang/.

48

ferent “for” and “against” points. Each point con-
tains a one-sentence central claim constructed by the
editors to summarize the corresponding arguments,
and is treated as the gold-standard. For instance, on
a debate about “death penalty”, one claim is “the
death penalty deters crime” with an argument “en-
acting the death penalty may save lives by reducing
the rate of violent crime” (Figure 1). We crawled
676 debates with 2,259 claims. We treat each sen-
tence as an argument, which results in 17,359 argu-
ments in total. 450 debates are used for training, 67
debates for validation, and 150 debates for testing.

3 The Neural Network-Based Abstract
Generation Model

In this section, we first define our problem in Sec-
tion 3.1, followed by model description. In gen-
eral, we utilize a Long Short-Term Memory network
for generating abstracts (Section 3.2) from a latent
representation computed by an attention-based en-
coder (Section 3.3). The encoder is designed to
search for relevant information from input to bet-
ter inform the abstract generation process. We also
discuss an importance-based sampling method to al-
low encoder to integrate information from an impor-
tant subset of input (Sections 3.4 and 3.5). Post-
processing (Section 3.6) is conducted to re-rank the
generations and pick the best one as the final sum-
mary.

3.1 Problem Formulation

In summarization, the goal is to generate a summary
y, composed by the sequence of words y1, ..., |y|.
Unlike previous neural encoder-decoder approaches
which decode from only one input, our input con-
sists of an arbitrary number of reviews or arguments
(henceforth text units wherever there is no ambigu-
ity), denoted as x = {x1, ..., xM}. Each text unit xk

is composed by a sequence of words xk1, ..., x
k
|xk|.

Each word takes the form of a representation vector,
which is initialized randomly or by pre-trained em-
beddings (Mikolov et al., 2013), and updated during
training. The summarization task is defined as find-
ing ŷ, which is the most likely sequence of words
ŷ1, ..., ŷN such that:

ŷ = argmaxy logP (y|x) (1)

where logP (y|x) denotes the conditional log-
likelihood of the output sequence y, given the input
text units x. In the next sections, we describe the
attention model used to model logP (y|x).
3.2 Decoder

Similar as previous work (Sutskever et al., 2014b;
Bahdanau et al., 2014), we decompose logP (y|x)
into a sequence of word-level predictions:

logP (y|x) =
∑

j=1,...,|y|
logP (yj |y1, ..., yj−1, x) (2)

where each word yj is predicted conditional on the
previously generated y1, ..., yj−1 and input x. The
probability is estimated by standard word softmax:

p(yj |y1, ..., yj−1, x) = softmax(hj) (3)

hj is the Recurrent Neural Networks (RNNs) state
variable at timestamp j, which is modeled as:

hj = g(yj−1,hj−1, s) (4)

Here g is a recurrent update function for generating
the new state hj from the representation of previ-
ously generated word yj−1 (obtained from a word
lookup table), the previous state hj−1, and the input
text representation s (see Section 3.3).

In this work, we implement g using a Long Short-
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997), which has been shown to be ef-
fective at capturing long range dependencies. Here
we summarize the update rules for LSTM cells, and
refer readers to the original work (Hochreiter and
Schmidhuber, 1997) for more details. Given an ar-
bitrary input vector uj at timestamp j − 1 and the
previous state hj−1, a typical LSTM defines the fol-
lowing update rules:

ij = σ(Wiuuj + Wihhj−1 + Wiccj−1 + bi)
fj = σ(Wfuuj + Wfhhj−1 + Wfccj−1 + bf)
cj = fj � cj−1 + ij � tanh(Wcuuj + Wchhj−1 + bc)
oj = σ(Wouuj + Wohhj−1 + Woccj + bo)
hj = oj � tanh(cj)

(5)

σ is component-wise logistic sigmoid function, and
� denotes Hadamard product. Projection matrices

49

W∗∗ and biases b∗ are parameters to be learned dur-
ing training.

Long range dependencies are captured by the cell
memory cj , which is updated linearly to avoid the
vanishing gradient problem. It is accomplished by
predicting two vectors ij and fj , which determine
what to keep and what to forget from the current
timestamp. Vector oj then decides on what infor-
mation from the new cell memory cj can be passed
to the new state hj . Finally, the model concatenates
the representation of previous output word yj−1 and
the input representation s (see Section 3.3) as uj ,
which serves as the input at each timestamp.

3.3 Encoder
The representation of input text units s is computed
using an attention model (Bahdanau et al., 2014).
Given a single text unit x1, ..., x|x| and the previous
state hj, the model generates s as a weighted sum:∑

i=1,...,|x|
aibi (6)

where ai is the attention coefficient obtained for
word xi, and bi is the context dependent repre-
sentation of xi. In our work, we construct bi by
building a bidirectional LSTM over the whole in-
put sequence x1, ..., x|x| and then combining the for-
ward and backward states. Formally, we use the
LSTM formulation from Eq. 5 to generate the for-
ward states hf1 , ...,h

f
|x| by setting uj = xj (the pro-

jection word xj using a word lookup table). Like-
wise, the backward states hb|x|, ...,h

b
1 are generated

using a backward LSTM by feeding the input in the
reverse order, that is, uj = x|x|−j+1. The coeffi-
cients ai are computed with a softmax over all input:

ai = softmax(v(bi,hj−1)) (7)

where function v computes the affinity of each
word xi and the current output context hj−1 —
how likely the input word is to be used to gener-
ate the next word in summary. We set v(bi,hj−1) =
Ws · tanh(Wcgbi +Whghj−1), where W∗ and W∗∗
are parameters to be learned.

3.4 Attention Over Multiple Inputs
A key distinction between our model and ex-
isting sequence-to-sequence models (Sutskever
et al., 2014b; Bahdanau et al., 2014) is that

our input consists of multiple separate text
units. Given an input of N text units, i.e.
{xk1, ..., xk|xk|}Nk=1, a simple extension would be
to concatenate them into one sequence as z =
x1

1, ..., x
1
|x1|, SEG, x2

1, ..., x
2
|x2|, SEG, xN1 , ..., x

N
|xN |,

where SEG is a special token that delimits inputs.
However, there are two problems with this ap-

proach. Firstly, the model is sensitive to the order
of text units. Moreover, z may contain thousands of
words. This will become a bottleneck for our model
with a training time of O(N |z|), since attention co-
efficients must be computed for all input words to
generate each output word.

We address these two problems by sub-sampling
from the input. The intuition is that even though the
number of input text units is large, many of them
are redundant or contain secondary information. As
our task is to emphasize the main points made in the
input, some of them can be removed without los-
ing too much information. Therefore, we define an
importance score f(xk) ∈ [0, 1] for each document
xk (see Section 3.5). During training, K candidates
are sampled from a multinomial distribution which
is constructed by normalizing f(xk) for input text
units. Notice that the training process goes over the
training set multiple times, and our model is still
able to learn from more than K text units. For test-
ing, top-K candidates with the highest importance
scores are collapsed in descending order into z.

3.5 Importance Estimation

We now describe the importance estimation model,
which outputs importance scores for text units. In
general, we start with a ridge regression model,
and add a regularizer to enforce the separation of
summary-worthy text units from others.

Given a cluster of text units {x1, ..., xM} and their
summary y, we compute the number of overlapping
content words between each text unit and summary
y as its gold-standard importance score. The scores
are uniformly normalized to [0, 1]. Each text unit xk

is represented as an d−dimensional feature vector
rk ∈ Rd, with label lk. Text units in the training data
are thus denoted with a feature matrix R̃ and a label
vector L̃. We aim at learning f(xk) = rk ·w by mini-
mizing ||R̃w − L̃||22 + β · ||w||22. This is a standard
formulation for ridge regression, and we use fea-

50

tures in Table 1. Furthermore, pairwise preference
constraints have been utilized for learning ranking
models (Joachims, 2002). We then consider adding
a pairwise preference-based regularizing constraint
to incorporate a bias towards summary-worthy text
units: λ ·∑T ∑xp,xq∈T ,lp>0,lq=0 ||(rp− rq) ·w−1||22,
where T is a cluster of text units to be summa-
rized. Term (rp − rq) · w enforces the separation
of summary-worthy text from the others. We further
construct R̃′ to contain all the pairwise differences
(rp − rq). L̃′ is a vector of the same size as R̃′ with
each element as 1. The objective function becomes:

J(w) = ||R̃w−L̃||22 +λ · ||R̃′w−L̃′||22 +β · ||w||22 (8)

λ, β are tuned on development set. With β̃ = β · Id
and λ̃ = λ · I|R′|, closed-form solution for ŵ is:

ŵ = (R̃TR̃ + R̃′Tλ̃R̃′+ β̃)−1(R̃TL̃ + R̃′Tλ̃L̃′) (9)

- num of words - category in General Inquirer
- unigram (Stone et al., 1966)
- num of POS tags - num of positive/negative/neutral
- num of named entities words (General Inquirer,
- centroidness (Radev, 2001) MPQA (Wilson et al., 2005))
- avg/max TF-IDF scores

Table 1: Features used for text unit importance estimation.

3.6 Post-processing

For testing phase, we re-rank the n-best summaries
according to their cosine similarity with the input
text units. The one with the highest similarity is in-
cluded in the final summary. Uses of more sophis-
ticated re-ranking methods (Charniak and Johnson,
2005; Konstas and Lapata, 2012) will be investi-
gated in future work.

4 Experimental Setup

Data Pre-processing. We pre-process the datasets
with Stanford CoreNLP (Manning et al., 2014) for
tokenization and extracting POS tags and depen-
dency relations. For RottenTomatoes dataset, we re-
place movie titles with a generic label in training,
and substitute it with the movie name if there is any
generic label generated in testing.

Pre-trained Embeddings and Features. The size
of word representation is set to 300, both for in-
put and output words. These can be initialized
randomly or using pre-trained embeddings learned
from Google news (Mikolov et al., 2013). We also
extend our model with additional features described
in Table 2. Discrete features, such as POS tags, are
mapped into word representation via lookup tables.
For continuous features (e.g TF-IDF scores), they
are attached to word vectors as additional values.

- part of a named entity? - category in General Inquirer
- capitalized? - sentiment polarity
- POS tag (General Inquirer, MPQA)
- dependency relation - TF-IDF score

Table 2: Token-level features used for abstract generation.

Hyper-parameters and Stop Criterion. The
LSTMs (Equation 5) for the decoder and encoders
are defined with states and cells of 150 dimensions.
The attention of each input word and state pair is
computed by being projected into a vector of 100
dimensions (Equation 6).

Training is performed via Adagrad (Duchi et al.,
2011). It terminates when performance does not im-
prove on the development set. We use BLEU (up to
4-grams) (Papineni et al., 2002) as evaluation met-
ric, which computes the precision of n-grams in gen-
erated summaries with gold-standard abstracts as the
reference. Finally, the importance-based sampling
rate (K) is set to 5 for experiments in Sections 5.2
and 5.3.

Decoding is performed by beam search with a
beam size of 20, i.e. we keep 20 most probable out-
put sequences in stack at each step. Outputs with
end of sentence token are also considered for
re-ranking. Decoding stops when every beam in
stack generates the end of sentence token.

5 Results

5.1 Importance Estimation Evaluation

We first evaluate the importance estimation compo-
nent described in Section 3.5. We compare with
Support Vector Regression (SVR) (Smola and Vap-
nik, 1997) and two baselines: (1) a length baseline
that ranks text units based on their length, and (2)
a centroid baseline that ranks text units according

51

to their centroidness, which is computed as the co-
sine similarity between a text unit and centroid of the
cluster to be summarized (Erkan and Radev, 2004).

Figure 2: Evaluation of importance estimation by mean re-
ciprocal rank (MRR), and normalized discounted cumulative
gain at top 3 and 5 returned results (NDCG@3 and NDCG@5).
Our regression model with pairwise preference-based regular-
izer uniformly outperforms baseline systems on both datasets.

We evaluate using mean reciprocal rank (MRR),
and normalized discounted cumulative gain at top 3
and 5 returned results (NDCG@3). Text units are
considered relevant if they have at least one overlap-
ping content word with the gold-standard summary.
From Figure 2, we can see that our importance es-
timation model produces uniformly better ranking
performance on both datasets.

5.2 Automatic Summary Evaluation

For automatic summary evaluation, we consider
three popular metrics. ROUGE (Lin and Hovy,
2003) is employed to evaluate n-grams recall of
the summaries with gold-standard abstracts as ref-
erence. ROUGE-SU4 (measures unigram and skip-
bigrams separated by up to four words) is reported.
We also utilize BLEU, a precision-based metric,
which has been used to evaluate various language
generation systems (Chiang, 2005; Angeli et al.,
2010; Karpathy and Fei-Fei, 2014). We further
consider METEOR (Denkowski and Lavie, 2014).
As a recall-oriented metric, it calculates similarity
between generations and references by considering
synonyms and paraphrases.

For comparisons, we first compare with an ab-
stractive summarization method presented in Gane-
san et al. (2010) on the RottenTomatoes dataset.
Ganesan et al. (2010) utilize a graph-based algo-
rithm to remove repetitive information, and merge
opinionated expressions based on syntactic struc-

tures of product reviews.2 For both datasets, we con-
sider two extractive summarization approaches: (1)
LEXRANK (Erkan and Radev, 2004) is an unsuper-
vised method that computes text centrality based on
PageRank algorithm; (2) Sipos et al. (2012) propose
a supervised SUBMODULAR summarization model
which is trained with Support Vector Machines. In
addition, LONGEST sentence is picked up as a base-
line.

Four variations of our system are tested. One uses
randomly initialized word embeddings. The rest of
them use pre-trained word embeddings, additional
features in Table 2, and their combination. For all
systems, we generate a one-sentence summary.

Results are displayed in Table 3. Our system with
pre-trained word embeddings and additional fea-
tures achieves the best BLEU scores on both datasets
(in boldface) with statistical significance (two-tailed
Wilcoxon signed rank test, p < 0.05). Notice that
our system summaries are conciser (i.e. shorter on
average), which lead to higher scores on precision
based-metrics, e.g. BLEU, and lower scores on
recall-based metrics, e.g. METEOR and ROUGE.
On RottenTomatoes dataset, where summaries gen-
erated by different systems are similar in length, our
system still outperforms other methods in METEOR
and ROUGE in addition to their significantly bet-
ter BLEU scores. This is not true on Idebate, since
the length of summaries by extract-based systems is
significantly longer. But the BLEU scores of our
system are considerably higher. Among our four
systems, models with pre-trained word embeddings
in general achieve better scores. Though additional
features do not always improve the performance, we
find that they help our systems converge faster.

5.3 Human Evaluation on Summary Quality

For human evaluation, we consider three aspects: in-
formativeness that indicates how much salient infor-
mation is contained in the summary, grammaticality
that measures whether a summary is grammatical,
and compactness that denotes whether a summary
contains unnecessary information. Each aspect is
rated on a 1 to 5 scale (5 is the best). The judges are

2We do not run this model on Idebate because it relies on
high redundancy to detect repetitive expressions, which is not
observed on Idebate.

52

RottenTomatoes Idebate
Length BLEU METEOR ROUGE Length BLEU METEOR ROUGE

Extract-Based Systems
LONGEST 47.9 8.25 8.43 6.43 44.0 6.36 10.22 12.65
LEXRANK 16.7 19.93 5.59 3.98 26.5 13.39 9.33 10.58
SUBMODULAR 16.8 17.22 4.89 3.01 23.2 15.09 10.76 13.67
Abstract-Based Systems
OPINOSIS 22.0 19.72 6.07 4.90 – – – –
OUR SYSTEMS
words 15.7 19.88 6.07 5.05 14.4 22.55∗ 7.38 8.37
words (pre-trained) 15.8 23.22∗ 6.51 5.70 13.9 23.93∗ 7.42 9.09
words + features 17.5 19.73 6.43 5.53 13.5 23.65∗ 7.33 7.79
words (pre-trained) + features 14.2 24.88∗ 6.00 4.96 13.0 25.84∗ 7.56 8.81

Table 3: Automatic evaluation results by BLEU, METEOR, and ROUGE SU-4 scores (multiplied by 100) for abstract generation
systems. The average lengths for human written summaries are 11.5 and 24.6 for RottenTomatoes and Idebate. The best performing
system for each column is highlighted in boldface, where our system with pre-trained word embeddings and additional features
achieves the best BLEU scores on both datasets. Our systems that are statistically significantly better than the comparisons are
highlighted with ∗ (two-tailed Wilcoxon signed rank test, p < 0.05). Our system also has the best METEOR and ROUGE scores
(in italics) on RottenTomatoes dataset among learning-based systems.

Info Gram Comp Avg Rank Best%
LEXRANK 3.4 4.5 4.3 2.7 11.5%
OPINOSIS 2.8 3.1 3.3 3.5 5.0%
OUR SYSTEM 3.6 4.8 4.2 2.3 18.0%
HUMAN ABSTRACT 4.2 4.8 4.5 1.5 65.5%

Table 4: Human evaluation results for abstract generation sys-
tems. Inter-rater agreement for overall ranking is 0.71 by Krip-
pendorff’s α. Informativeness (Info), grammaticality (Gram),
and Compactness (Comp) are rated on a 1 to 5 scale, with 5
as the best. Our system achieves the best informativeness and
grammaticality scores among the three learning-based systems.
Our summaries are ranked as the best in 18% of the evaluations,
and are also ranked higher than compared systems on average.

also asked to give a ranking on all summary varia-
tions according to their overall quality.

We randomly sampled 40 movies from Rotten-
Tomatoes test set, each of which was evaluated by
5 distinct human judges. We hired 10 proficient En-
glish speakers for evaluation. Three system sum-
maries (LexRank, Opinosis, and our system) and
human-written abstract along with 20 representative
reviews were displayed for each movie. Reviews
with the highest gold-standard importance scores
were selected.

Results are reported in Table 4. As it can be
seen, our system outperforms the abstract-based sys-
tem OPINOSIS in all aspects, and also achieves bet-
ter informativeness and grammaticality scores than
LEXRANK, which extracts sentences in their origi-
nal form. Our system summaries are ranked as the
best in 18% of the evaluations, and has an average
ranking of 2.3, which is higher than both OPINOSIS

and LEXRANK on average. An inter-rater agree-
ment of Krippendorff’s α of 0.71 is achieved for

overall ranking. This implies that our attention-
based abstract generation model can produce sum-
maries of better quality than existing summarization
systems. We also find that our system summaries are
constructed in a style closer to human abstracts than
others. Sample summaries are displayed in Figure 3.

5.4 Sampling Effect

We further investigate whether taking inputs sam-
pled from distributions estimated by importance
scores trains models with better performance than
the ones learned from fixed input or uniformly-
sampled input. Recall that we sample K text units
based on their importance scores (Importance-Based
Sampling). Here we consider two other setups: one
is sampling K text units uniformly from the in-
put (Uniform Sampling), another is picking K text
units with the highest scores (Top K). We try vari-
ous K values. Results in Figure 4 demonstrates that
Importance-Based Sampling can produce compara-
ble BLEU scores to Top K methods, while both of
them outperform Uniform Sampling. For METEOR
score, Importance-Based Sampling uniformly out-
performs the other two methods3.

5.5 Further Discussion

Finally, we discuss some other observations and po-
tential improvements. First, applying the re-ranking
component after the model generates n-best ab-
stracts leads to better performance. Preliminary ex-
periments show that simply picking the top-1 gener-

3We observe similar results on the Idebate dataset

53

Movie: The Neverending Story
Reviews: (1) Here is a little adventure that fed on our uncul-
tivated need to think, and wonder... (2) Magical storytelling
targeted at children still fascinates. (3)...the art direction in-
volved a lot of imagination.
Human: A magical journey about the power of a young boy’s
imagination to save a dying fantasy land, The Neverending
Story remains a much-loved kids adventure.
LexRank: It pokes along at times and lapses occasionally into
dark moments of preachy philosophy, but this is still a charm-
ing, amusing and harmless film for kids.
Opinosis: The Neverending Story is a silly fantasy movie that
often shows its age .
Our System: The Neverending Story is an entertaining chil-
dren’s adventure, with heart and imagination to spare.
Movie: Joe Strummer: The Future is Unwritten
Reviews: (1) The late punk rock legend Joe Strummer is
rendered fully human in Julian Temple’s engrossing and all-
encompassing portrait. (2) The movie fascinates not so much
because of Strummer... but because of the way Temple or-
ganized and edited the film. (3) One of the most compelling
documentary portraits of a musician yet made.
Human: Displaying Joe Strummer warts and all, The Fu-
ture is Unwritten succeeds as both an engrossing documen-
tary and a comprehensive examination of one of music’s most
legendary figures.
LexRank: Joe Strummer: The Future Is Unwritten is a film
for fans – really big fans .
Opinosis: Joe Strummer: The Future Is Unwritten is for fans
– really big fans .
Our System: Fascinating and insightful, Joe Strummer: The
Future Is Unwritten is a thoroughly engrossing documentary.
Topic: This House would detain terror suspects without trial.
Arguments: (1) Governments must have powers to protect
their citizens against threats to the life of the nation.(2) Every-
one would recognise that rules that are applied in peacetime
may not be appropriate during wartime.
Human: Governments must have powers to protect citizens
from harm.
LexRank: This is not merely to directly protect citizens from
political violence, but also because political violence handi-
caps the process of reconstruction in nation-building efforts.
Our System: Governments have the obligation to protect cit-
izens from harmful substances.
Topic: This House would replace Christmas with a festival for
everyone.
Arguments: (1) Christmas celebrations in the Western
world... do not respect the rights of those who are not reli-
gious. (2) States should instead be sponsoring and celebrating
events that everyone can join in equally, regardless of religion,
race or class.
Human: States should respect the freedom from religion, as
well as the freedom of religion.
LexRank: For school children who do not share the majority-
Christian faith, Christmas celebrations require either their par-
ticipation when they do not want to, through coercion, or their
non-participation and therefore isolation whilst everyone else
celebrations their inclusiveness.
Our System: People have a right to freedom of religion.

Figure 3: Sample summaries generated by different systems
on movie reviews and arguments. We only show a subset of
reviews and arguments due to limited space.

Figure 4: Sampling effect on RottenTomatoes.

ations produces inferior results than re-ranking them
with simple heuristics. This suggests that the current
models are oblivious to some task specific issues,
such as informativeness. Post-processing is needed
to make better use of the summary candidates. For
example, future work can study other sophisticated
re-ranking algorithms (Charniak and Johnson, 2005;
Konstas and Lapata, 2012).

Furthermore, we also look at the difficult cases
where our summaries are evaluated to have lower in-
formativeness. They are often much shorter than the
gold-standard human abstracts, thus the information
coverage is limited. In other cases, some generations
contain incorrect information on domain-dependent
facts, e.g. named entities, numbers, etc. For in-
stance, a summary “a poignant coming-of-age tale
marked by a breakout lead performance from Cate
Shortland” is generated for movie “Lore”. This sum-
mary contains “Cate Shortland” which is the direc-
tor of the movie instead of actor. It would require
semantic features to handle this issue, which has yet
to be attempted.

6 Related Work

Our work belongs to the area of opinion summa-
rization. Constructing fluent natural language opin-
ion summaries has mainly considered product re-
views (Hu and Liu, 2004; Lerman et al., 2009), com-
munity question answering (Wang et al., 2014), and
editorials (Paul et al., 2010). Extractive summariza-
tion approaches are employed to identify summary-
worthy sentences. For example, Hu and Liu (2004)
first identify the frequent product features and then
attach extracted opinion sentences to the corre-
sponding feature. Our model instead utilizes ab-
stract generation techniques to construct natural lan-
guage summaries. As far as we know, we are also

54

the first to study claim generation for arguments.
Recently, there has been a growing interest in

generating abstractive summaries for news arti-
cles (Bing et al., 2015), spoken meetings (Wang
and Cardie, 2013), and product reviews (Ganesan et
al., 2010; Di Fabbrizio et al., 2014; Gerani et al.,
2014). Most approaches are based on phrase extrac-
tion, from which an algorithm concatenates them
into sentences (Bing et al., 2015; Ganesan et al.,
2010). Nevertheless, the output summaries are not
guaranteed to be grammatical. Gerani et al. (2014)
then design a set of manually-constructed realization
templates for producing grammatical sentences that
serve different discourse functions. Our approach
does not require any human-annotated rules, and can
be applied in various domains.

Our task is closely related to recent advances in
neural machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014a). Based on the
sequence-to-sequence paradigm, RNNs-based mod-
els have been investigated for compression (Filip-
pova et al., 2015) and summarization (Filippova et
al., 2015; Rush et al., 2015; Hermann et al., 2015)
at sentence-level. Built on the attention-based trans-
lation model in Bahdanau et al. (2014), Rush et al.
(2015) study the problem of constructing abstract for
a single sentence. Our task differs from the mod-
els presented above in that our model carries out ab-
stractive decoding from multiple sentences instead
of a single sentence.

7 Conclusion

In this work, we presented a neural approach to
generate abstractive summaries for opinionated text.
We employed an attention-based method that finds
salient information from different input text units to
generate an informative and concise summary. To
cope with the large number of input text, we de-
ploy an importance-based sampling mechanism for
model training. Experiments showed that our sys-
tem obtained state-of-the-art results using both au-
tomatic evaluation and human evaluation.

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach to
generation. In Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing,
pages 502–512. Association for Computational Lin-
guistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo,
and Rebecca Passonneau. 2015. Abstractive multi-
document summarization via phrase selection and
merging. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1587–1597, Beijing, China, July. Association
for Computational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and maxent discriminative rerank-
ing. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 173–180, Stroudsburg, PA, USA. Association
for Computational Linguistics.

David Chiang. 2005. A hierarchical phrase-based model
for statistical machine translation. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 263–270. Association for
Computational Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the EACL 2014
Workshop on Statistical Machine Translation.

Giuseppe Di Fabbrizio, Amanda J Stent, and Robert
Gaizauskas. 2014. A hybrid approach to multi-
document summarization of opinions in reviews.
INLG 2014, page 54.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159, July.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. J. Artif. Int. Res., 22(1):457–479, Decem-
ber.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 360–368,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: a graph-based approach to abstractive
summarization of highly redundant opinions. In Pro-
ceedings of the 23rd international conference on com-

55

putational linguistics, pages 340–348. Association for
Computational Linguistics.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini, Ray-
mond T. Ng, and Bita Nejat. 2014. Abstractive sum-
marization of product reviews using discourse struc-
ture. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1602–1613, Doha, Qatar, October.
Association for Computational Linguistics.

Karl Moritz Hermann, Tomás Kociský, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. CoRR, abs/1506.03340.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780, November.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’04, pages
168–177, New York, NY, USA. ACM.

Thorsten Joachims. 2002. Optimizing search engines us-
ing clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’02, pages
133–142, New York, NY, USA. ACM.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In EMNLP, pages
1700–1709. ACL.

Andrej Karpathy and Li Fei-Fei. 2014. Deep visual-
semantic alignments for generating image descrip-
tions. arXiv preprint arXiv:1412.2306.

Ioannis Konstas and Mirella Lapata. 2012. Concept-to-
text generation via discriminative reranking. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 369–378, Jeju Island, Korea, July. As-
sociation for Computational Linguistics.

Kevin Lerman, Sasha Blair-Goldensohn, and Ryan Mc-
Donald. 2009. Sentiment summarization: Evaluating
and learning user preferences. In Proceedings of the
12th Conference of the European Chapter of the As-
sociation for Computational Linguistics, EACL ’09,
pages 514–522, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan Zhu,
Ying-Ju Xia, Shu Zhang, and Hao Yu. 2010.
Structure-aware review mining and summarization. In
Proceedings of the 23rd International Conference on
Computational Linguistics, COLING ’10, pages 653–
661, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic evalu-
ation of summaries using n-gram co-occurrence statis-
tics. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Com-
putational Linguistics on Human Language Technol-
ogy - Volume 1, pages 71–78.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 55–60, Baltimore, Maryland.
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computa-
tional Linguistics.

Michael J. Paul, ChengXiang Zhai, and Roxana Girju.
2010. Summarizing contrastive viewpoints in opinion-
ated text. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’10, pages 66–76, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Dragomir R. Radev. 2001. Experiments in single and
multidocument summarization using mead. In In First
Document Understanding Conference.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 379–389, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin learning of submod-
ular summarization models. In Proceedings of the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, EACL ’12,
pages 224–233, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Alex Smola and Vladimir Vapnik. 1997. Support vector
regression machines. Advances in neural information
processing systems, 9:155–161.

Philip J. Stone, Dexter C. Dunphy, Marshall S. Smith,
and Daniel M. Ogilvie. 1966. The General Inquirer:
A Computer Approach to Content Analysis. MIT
Press, Cambridge, MA.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014a.
Sequence to sequence learning with neural networks.

56

In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 3104–3112.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014b.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Lu Wang and Claire Cardie. 2013. Domain-independent
abstract generation for focused meeting summariza-
tion. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 1395–1405, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Lu Wang, Hema Raghavan, Claire Cardie, and Vittorio
Castelli. 2014. Query-focused opinion summarization
for user-generated content. In Proceedings of COL-
ING 2014, the 25th International Conference on Com-
putational Linguistics: Technical Papers, pages 1660–
1669, Dublin, Ireland, August. Dublin City University
and Association for Computational Linguistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie
review mining and summarization. In Proceedings of
the 15th ACM International Conference on Informa-
tion and Knowledge Management, CIKM ’06, pages
43–50, New York, NY, USA. ACM.

57

Proceedings of NAACL-HLT 2016, pages 58–68,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Low-Rank Approximation Approach to Learning
Joint Embeddings of News Stories and Images for Timeline Summarization

William Yang Wang1∗, Yashar Mehdad3, Dragomir R. Radev2, Amanda Stent4
1School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA

2Department of EECS, University of Michigan, Ann Arbor, MI 48109, USA
3Yahoo, Sunnyvale, CA 94089, USA and 4New York, NY 10036, USA

yww@cs.cmu.edu, {ymehdad,stent}@yahoo-inc.com, radev@umich.edu

Abstract

A key challenge for timeline summarization is
to generate a concise, yet complete storyline
from large collections of news stories. Pre-
vious studies in extractive timeline generation
are limited in two ways: first, most prior work
focuses on fully-observable ranking models or
clustering models with hand-designed features
that may not generalize well. Second, most
summarization corpora are text-only, which
means that text is the sole source of infor-
mation considered in timeline summarization,
and thus, the rich visual content from news
images is ignored. To solve these issues, we
leverage the success of matrix factorization
techniques from recommender systems, and
cast the problem as a sentence recommenda-
tion task, using a representation learning ap-
proach. To augment text-only corpora, for
each candidate sentence in a news article, we
take advantage of top-ranked relevant images
from the Web and model the image using a
convolutional neural network architecture. Fi-
nally, we propose a scalable low-rank approx-
imation approach for learning joint embed-
dings of news stories and images. In experi-
ments, we compare our model to various com-
petitive baselines, and demonstrate the state-
of-the-art performance of the proposed text-
based and multimodal approaches.

1 Introduction

Timeline summarization is the task of organizing
crucial milestones of a news story in a temporal or-
der, e.g. (Kedzie et al., 2014; Lin et al., 2012). A

∗This work was performed when William Wang and
Dragomir Radev were visiting Yahoo NYC.

timeline example for the 2010 British Oil spill gen-
erated by our system is shown in Figure 1. The
task is challenging, because the input often includes
a large number of news articles as the story is de-
veloping each day, but only a small portion of the
key information is needed for timeline generation.
In addition to the conciseness requirement, timeline
summarization also has to be complete—all key in-
formation, in whatever form, must be presented in
the final summary.

To distill key insights from news reports, prior
work in summarization often relies on feature en-
gineering, and uses clustering techniques (Radev et
al., 2004b) to select important events to be included
in the final summary. While this approach is un-
supervised, the process of feature engineering is al-
ways expensive, and the number of clusters is not
easy to estimate. To present a complete summary,
researchers from the natural language processing
(NLP) community often solely rely on the textual
information, while studies in the computer vision
(CV) community rely solely on the image and video
information. However, even though news images are
abundantly available together with news stories, ap-
proaches that jointly learn textual and visual repre-
sentations for summarization are not common.

In this paper, we take a more radical approach to
timeline summarization. We formulate the problem
as a sentence recommendation task—instead of rec-
ommending items to users as in a recommender sys-
tem, we recommend important sentences to a time-
line. Our approach does not require feature engi-
neering: by using a matrix factorization framework,
we are essentially performing representation learn-

58

Figure 1: A timeline example for the BP oil spill generated by our proposed method. Note that we use
Yahoo! Image Search to obtain the top-ranked image for each candidate sentence.

ing to model the continuous representation of sen-
tences and words. Since most previous timeline
summarization work (and therefore, corpora) only
focuses on textual information, we also provide a
novel web-based approach for harvesting news im-
ages: we query Yahoo! image search with sen-
tences from news articles, and extract visual cues
using a 15-layer convolutional neural network ar-
chitecture. By unifying text and images in the low-
rank approximation framework, our approach learns
a joint embedding of news story texts and images
in a principled manner. In empirical evaluations,
we conduct experiments on two publicly available
datasets, and demonstrate the efficiency and effec-
tiveness of our approach. By comparing to various

baselines, we show that our approach is highly scal-
able and achieves state-of-the-art performance. Our
main contributions are three-fold:

• We propose a novel matrix factorization ap-
proach for extractive summarization, leverag-
ing the success of collaborative filtering;

• We are among the first to consider representa-
tion learning of a joint embedding for text and
images in timeline summarization;

• Our model significantly outperforms various
competitive baselines on two publicly available
datasets.

59

2 Related Work

Supervised learning is widely used in summariza-
tion. For example, the seminal study by Kupiec et
al. (1995) used a Naive Bayes classifier for selecting
sentences. Recently, Wang et al. (2015) proposed
a regression method that uses a joint loss function,
combining news articles and comments. Addition-
ally, unsupervised techniques such as language mod-
eling (Allan et al., 2001) have been used for tem-
poral summarization. In recent years, ranking and
graph-based methods (Radev et al., 2004b; Erkan
and Radev, 2004; Mihalcea and Tarau, 2004; Fader
et al., 2007; Hassan et al., 2008; Mei et al., 2010;
Yan et al., 2011b; Yan et al., 2011a; Zhao et al.,
2013; Ng et al., 2014; Zhou et al., 2014; Glavaš
and Šnajder, 2014; Tran et al., 2015; Dehghani and
Asadpour, 2015) have also proved popular for ex-
tractive timeline summarization, often in an unsu-
pervised setting. Dynamic programming (Kiernan
and Terzi, 2009) and greedy algorithms (Althoff et
al., 2015) have also been considered for construct-
ing summaries over time.

Our work aligns with recent studies on latent
variable models for multi-document summarization
and storyline clustering. Conroy et al. (2001) were
among the first to consider latent variable models,
even though it is difficult to incorporate features
and high-dimensional latent states in a HMM-based
model. Ahmed et al. (2011) proposed a hierarchi-
cal nonparametric model that integrates a Recurrent
Chinese Restaurant Process with Latent Dirichlet
Allocation to cluster words over time. The main
issues with this approach are that it does not gen-
erate human-readable sentences, and that scaling
nonparametric Bayesian models is often challeng-
ing. Similarly, Huang and Huang (2013) introduced
a joint mixture-event-aspect model using a genera-
tive method. Navarro-Colorado and Saquete (2015)
combined temporal information with topic model-
ing, and obtained the best performance in the cross-
document event ordering task of SemEval 2015.

There has been prior work (Wang et al., 2008;
Lee et al., 2009) using matrix factorization to per-
form sentence clustering. A key distinction between
our work and this previous work is that our method
requires no additional sentence selection steps after
sentence clustering, so we avoid error cascades.

Zhu and Chen (2007) were among the first to
consider multimodal timeline summarization, but
they focus on visualization, and do not make use
of images. Wang et al. (2012) investigated multi-
modal timeline summarization by considering co-
sine similarity among various feature vectors, and
then using a graph based algorithm to select salient
topics. In the computer vision community, Kim
and Xing (2014) made use of community web pho-
tos, and generate storyline graphs for image recom-
mendation. Interestingly, Kim et al. (2014) com-
bined images and videos for storyline reconstruc-
tion. However, none of the above studies combine
textual and visual information for timeline summa-
rization.

3 Our Approach

We now describe the technical details of our low-
rank approximation approach. First, we motivate
our approach. Next, we explain how we formulate
the timeline summarization task as a matrix factor-
ization problem. Then, we introduce a scalable ap-
proach for learning low-dimensional embeddings of
news stories and images.

3.1 Motivation

We formulate timeline summarization as a low-rank
matrix completion task because of the following
considerations:

• Simplicity In the past decade, a significant
amount of work on summarization has focused
on designing various lexical, syntactic and se-
mantic features. In contrast to prior work,
we make use of low-rank approximation tech-
niques to learn representations directly from
data. This way, our model does not require
strong domain knowledge or lots of feature en-
gineering, and it is easy for developers to de-
ploy the system in real-world applications.

• Scalability A major reason that recommender
systems and collaborative filtering techniques
have been very successful in industrial applica-
tions is that matrix completion techniques are
relatively sophisticated, and are known to scale
up to large recommendation datasets with more
than 100 million ratings (Bennett and Lanning,

60

Haywood	
 s)ll	
 receives	
 	

salary	
 as	
 the	
 CEO	
 of	
 BP.	

Some	
 es)mates	
 are	
 around	
 	

40,000	
 barrels	
 a	
 day.	

	

   ������	

Dudley	
 replaced	
 Haywood	
 	

as	
 the	
 new	
 CEO	
 of	
 BP.	

ROUGE	

0.2	

0	

Words	

Dudley	

1	

Haywood	

1	

Barrels	
 	
 	
 ���	
 	
 	
 BP	
 	
 	
 	
 	
 	
 Largest	

1	

1	

0.3	
 1	

Events	

receives(Haywood,	
 salary)	

1	

Time	

���	
 	
 Replaced(Dudley,	
 Haywood)	

0.8	

2010/04	
 	
 ���	
 	
 	
 2010/05	

1	

1	

0.7	

Implicit	
 Word	
 RelaNons	
 Implicit	
 Event	
 RelaNons	
 Impl.	
 Time	
 RelaNons	

Implicit	
 Text-­‐Vision	
 RelaNons	

The	
 size	
 of	
 the	
 oil	
 spill	
 	

was	
 one	
 of	
 the	
 largest.	
 0.8	
 1	
 1	

Input	
 images:	
 224	
 x	
 224	
 RGB	
 conv3-­‐64	
 	
 	
 conv3-­‐64	
 	
 	
 maxpool	
 	
 	
 conv3-­‐128	
 	
 	
 conv3-­‐128	
 	
 	
 maxpool	
 	
 	
 conv3-­‐256	
 	
 	
 conv3-­‐256	
 	
 	
 conv3-­‐256	
 	
 	
 maxpool	
 	
 	
 conv3-­‐512	
 	
 	
 conv3-­‐512	
 	
 	
 conv3-­‐512	
 	
 	
 maxpool	
 	
 	
 conv3-­‐512	
 	
 	
 conv3-­‐512	
 	
 	
 conv3-­‐512	
 	
 	
 maxpool	
 	
 	
 fc-­‐4096	
 	
 	
 fc-­‐4096	

	

Vision	

2.8	
 2.0	

1.9	

2.8	

0.2	

Implicit	
 Vision	
 RelaNons	

1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ��� 4096	

Figure 2: Our low-rank approximation framework for learning joint embedding of news stories and images
for timeline summarization.

2007). Therefore, we believe that our approach
is practical for processing large datasets in this
summarization task.

• Joint Multimodal Modeling A key challenge
of supervised learning approaches for summa-
rization is to select informative sentences. In
this work, we make use of multimodality to se-
lect important sentences.

3.2 Problem Formulation

Since the Netflix competition (Bell and Koren,
2007), collaborative filtering techniques with latent
factor models have had huge success in recom-
mender systems. These latent factors, often in the
form of low-rank embeddings, capture not only ex-
plicit information but also implicit context from the
input data. In this work, we propose a novel matrix
factorization framework to “recommend” key sen-
tences to a timeline. Figure 2 shows an overview of
the framework.

More specifically, we formulate this task as a ma-
trix completion problem. Given a news corpus, we
assume that there are m total sentences, which are
the rows in the matrix. The first column is the met-
ric section, where we use ROUGE (Lin, 2004) as
the metric to pre-compute a sentence importance

score between a candidate sentence and a human-
generated summary. During training, we use these
scores to tune model parameters, and during testing,
we predict the sentence importance scores given the
features in other columns. That is, we learn the em-
bedding of important sentences.

The second set of columns is the text feature sec-
tion. In our experiments, this includes word obser-
vations, subject-verb-object (SVO) events, and the
publication date of the document from which the
candidate sentence is extracted. In our preprocess-
ing step, we run the Stanford part-of-speech tag-
ger (Toutanova et al., 2003) and MaltParser (Nivre
et al., 2006) to generate SVO events based on de-
pendency parses. Additional features can easily be
incorporated into this framework; we leave the con-
sideration of additional features for future work.

Finally, for each sentence, we use an image search
engine to retrieve a top-ranked relevant image, and
then we use a convolutional neural network (CNN)
architecture to extract visual features in an unsu-
pervised fashion. We use a CNN model from Si-
monyan and Zisserman (2015), which is trained on
the ImageNet Challenge 2014 dataset (Russakovsky
et al., 2014). In our work, we keep the 16 convo-
lutional layers and max-pool operations. To extract

61

neural network features, we remove the final fully-
connected-1000 layer and the softmax function, re-
sulting in 4096 features for each image.

The total number of columns in the input matrix
is n. Our matrix M now encodes preferences for a
sentence, together with its lexical, event, and tempo-
ral attributes, and visual features for an image highly
relevant to the sentence. Here we use i to index the
i-th sentence and j to index the j-th column. We
scale the columns by the standard deviation.

3.3 Low-Rank Approximation
Following prior work (Koren et al., 2009), we are
interested in learning two low-rank matrices P ∈
Rk×m and Q ∈ Rk×n. The intuitition is that P is
the embedding of all candidate sentences, and Q is
the embedding of textual and visual features, as well
as the sentence importance score, event, and tempo-
ral features. Here k is the number of latent dimen-
sions, and we would like to approximate M(i,j) '
~pi
T ~qj , where ~pi is the latent embedding vector for

the i-th sentence and ~qj is the latent embedding vec-
tor for the j-th column. We seek to approximate the
matrix M by these two low-rank matrices P and Q.
We can then formulate the optimization problem for
this task:

min
P,Q

∑
(i,j)∈M

(M(i,j)− ~piT ~qj)2 +λP ||~pi||2 +λQ||~qj ||2

here, λP and λQ are regularization coefficients to
prevent the model from overfitting. To solve this op-
timization problem efficiently, a popular approach
is stochastic gradient descent (SGD) (Koren et al.,
2009). In contrast to traditional methods that require
time-consuming gradient computation, SGD takes
only a small number of random samples to com-
pute the gradient. SGD is also natural to online al-
gorithms in real-time streaming applications, where
instead of retraining the model with all the data, pa-
rameters might be updated incrementally when new
data comes in. Once we have selected a random
sample M(i,j), we can simplify the objective func-
tion:

(M(i,j) − ~pi
T ~qj)2 + λP (~piT ~pi) + λQ(~qjT ~qj)

Now, we can calculate the sub-gradients of the two
latent vectors ~pi and ~qj to derive the following vari-

able update rules:

~pi ← ~pi + δ(`(i,j)qj − λP ~pi) (1)

~qj ← ~qj + δ(`(i,j)pi − λQ~qj) (2)

Here, δ is the learning rate, whereas `(i,j) is the loss
function that estimates how well the model approxi-
mates the ground truth:

`(i, j) = M(i,j) − ~pi
T ~qj

The low-rank approximation here is accomplished
by reconstructing the M matrix with the two low-
rank matrices P and Q, and we use the row and col-
umn regularizers to prevent the model from overfit-
ting to the training data.

SGD-based optimization for matrix factorization
can also be easily parallelized. For example, HOG-
WILD! (Recht et al., 2011) is a lock-free paralleliza-
tion approach for SGD. In contrast to synchronous
approaches where idle threads have to wait for busy
threads to sync up parameters, HOGWILD! is an
asynchronous method: it assumes that because text
features are sparse, there is no need to perform syn-
chronization of the threads. In reality, although this
approach might not work for speech or image re-
lated tasks, it performs well in various text based
tasks. In this work, we follow a recently proposed
approach called fast parallel stochastic gradient de-
scent (FPSG) (Chin et al., 2015), which is partly in-
spired by HOGWILD!.

3.4 Joint Modeling of Mixed Effects
Matrix factorization is a relatively complex method
for modeling latent factors. So, an important ques-
tion to ask is: in the context of timeline summa-
rization, what is this matrix factorization framework
modeling?

From equation (1), we can see that the latent sen-
tence vector ~pi will be updated whenever we en-
counter a M(i,·) sample (e.g., all the word, event,
time, and visual features for this particular sentence)
in a full pass over the training data. An interesting
aspect about matrix factorization is that, in addition
to using the previous row embedding ~pi to update the
variables in equation (1), the column embedding ~qj
will also be used. Similarly, when updating the la-
tent column embedding ~qj in equation (2), the pass
will visit all samples that have non-zero items in that

62

column, while making use of the ~pi vector. Essen-
tially, in timeline summarization, this approach is
modeling the mixed effects of sentence importance,
lexical features, events, temporal information, and
visual factors. For example, if we are predicting
the ROUGE score of a new sentence at testing, the
model will take the explicit sentence-level features
into account, together with the learned latent embed-
ding of ROUGE, which is recursively influenced by
other metrics and features during training.

Our approach shares similarities with some recent
advances in word embedding techniques. For ex-
ample, word2vec uses the continuous bag-of-words
(CBOW) and SkipGram algorithms (Mikolov et al.,
2013) to learn continuous representations of words
from large collections of text and relational data. A
recent study (Levy and Goldberg, 2014) shows that
the technique behind word2vec is very similar to im-
plicit matrix factorization. In our work, we consider
multiple sources of information to learn the joint
embedding in a unified matrix factorization frame-
work. In addition to word information, we also con-
sider event and temporal cues.

3.5 The Matrix Factorization Based Timeline
Summarization

We outline our matrix factorization based timeline
summarization method in Algorithm 1. Since this is
a supervised learning approach, we assume the cor-
pus includes a collection of news documents S, as
well as human-written summaries H for each day of
the story. We also assume the publication date of
each news document is known (or computable).

During training, we traverse each sentence in this
corpus, and compute a sentence importance score
(Ii) by comparing the sentence to the human gen-
erated summary for that day using ROUGE (Lin,
2004). If a human summary is not given for that
day, Ii will be zero. We also extract subject-verb-
object event representations, using the Stanford part-
of-speech tagger (Toutanova et al., 2003) and Malt-
Parser (Nivre et al., 2006). We use the publication
date of the news document as the publication date
of the sentence. Visual features are extracted using
a very deep CNN (Simonyan and Zisserman, 2015).
Finally, we merge these vectors into a joint vector
to represent a row in our matrix factorization frame-
work. Then, we perform stochastic gradient descent

Algorithm 1 A Matrix Factorization Based Time-
line Summarization Algorithm

1: Input: news documents S, human summaries H for
each day t.

2: procedure TRAINING(Str, H)
3: for each training sentence Str

i in Str do
4: Ii← ComputeImportanceScores(Str

i ,Ht)
5: ~Ei← ExtractSVOEvents(Str

i)
6: ~Di ← ExtractPublicationDate(Str

i)
7: ~Vi← ExtractVisualFeatures(V tr

i)
8: ~Mi ←MergeVectors(Ii, ~Ei, ~Di, ~Vi)
9: end for

10: for each epoch e do
11: for each cell i, j in M do
12: ~pi

(e) ← ~pi
(e) + δ(`(i,j)q

(e)
j − λP ~pi

(e))

13: ~qj
(e) ← ~qj

(e) + δ(`(i,j)p
(e)
i − λQ ~qj

(e))
14: end for
15: end for
16: end procedure
17: procedure TESTING(Ste)
18: for each test sentence Ste

i in Ste do
19: ~Ei ← ExtractSVOEvents(Ste

i)
20: ~Di ← ExtractPublicationDate(Ste

i)
21: ~Vi← ExtractVisualFeatures(Ste

i)
22: ~Mi ←MergeVectors(~Ei, ~Di, ~Vi)
23: Ii ← PredictROUGE(~Mi, P,Q)
24: end for
25: for each day t in Ste do
26: Hte← SelectTopSentences(Ste

t ,~It)
27: end for
28: end procedure

training to learn the hidden low-rank embeddings of
sentences and features P and Q using the update
rules outlined earlier.

During testing, we still extract events and publi-
cation dates, and the PredictROUGE function esti-
mates the sentence importance score Ii, using the
trained latent low-rank matrices P and Q. To be
more specific, we extract the text, vision, event, and
publication date features for a candidate sentence i.
Then, given these features, we update the embed-
dings for this sentence, and make the prediction by
taking the dot product of this i-th column of P (i.e.,
~pi) and the ROUGE column of Q (i.e., ~q1). This pre-
dicted scalar value Ii indicates the likelihood of the
sentence being included in the final timeline sum-
mary. Finally, we go through the predicted results of
each sentence in the timeline in temporal order, and

63

include the top-ranked sentences with the highest
sentence importance scores. It is natural to scale this
method from daily summaries to weekly or monthly
summaries.

4 Experiments

In this section, we investigate the empirical perfor-
mance of the proposed method, comparing to vari-
ous baselines. We first discuss our experimental set-
tings, including our primary dataset and baselines.
Then, we discuss our evaluation results. We demon-
strate the robustness of our approach by varying the
latent dimensions of the low-rank matrices. Next,
we show additional experiments on a headline-based
timeline summarization dataset. Finally, we provide
a qualitative analysis of the output of our system.

4.1 Comparative Evaluation on the 17
Timelines Dataset

We use the 17 timelines dataset which has been
used in several prior studies (Tran et al., 2013b;
Tran et al., 2013a). It includes 17 timelines from
9 topics1 from major news agencies such as CNN,
BBC, and NBC News. Only English documents are
included. The dataset contains 4,650 news docu-
ments. We use Yahoo! Image Search to retrieve
the top-ranked image for each sentence.2 We follow
exactly the same topic-based cross-validation setup
that was used in prior work (Tran et al., 2013b): we
train on eight topics, test on the remaining topic,
and repeat the process eight times. The number of
training iterations was set to 20; the k was set to
200 for the text only model, and 300 for the joint
text/image model; and the vocabulary is 10K words
for all systems. The common summarization metrics
ROUGE-1, ROUGE-2, and ROUGE-S are used to
evaluate the quality of the machine-generated time-
lines. We consider the following baselines:

1The nine topics are the BP oil spill, Egyptian protests, Fi-
nancial crisis, H1N1, Haiti earthquake, Iraq War, Libya War,
Michael Jackson death, and Syrian crisis.

2We are not aware of any publicly available dataset for time-
line summarization that includes both text and images. Most of
these datasets are text-only, not including the original article file
or links to accompanying images. We adopted this Web-based
corpus enhancement technique as a proximity for news images.
Our low-rank approximation technique can be applied to the
original news images in the same way.

(a) ROUGE:0 (b) ROUGE:.009.

Figure 3: Examples of retrieved Web images. The
left image was retrieved by using a non-informative
sentence: “The latest five minute news bulletin from
BBC World Service”. The right image was retrieved
using a crucial sentence with a non-zero ROUGE
score vs. a human summary, “Case study : Gulf of
Mexico oil spill and BP On 20 April 2010 a deepwa-
ter oil well exploded in the Gulf of Mexico”.

• Random: summary sentences are randomly se-
lected from the corpus.

• MEAD: a feature-rich, classic multi-document
summarization system (Radev et al., 2004a)
that uses centroid-based summarization tech-
niques.

• Chieu et al. (Chieu and Lee, 2004): a multi-
document summarization system that uses
TFIDF scores to indicate the “popularity” of a
sentence compared to other sentences.

• ETS (Yan et al., 2011b): a state-of-the-art un-
supervised timeline summarization system.

• Tran et al. (Tran et al., 2013b): another
state-of-the-art timeline summarization system
based on learning to rank techniques, and for
which results on the 17 Timelines dataset have
been previously reported.

• Regression: a part of a state-of-the-art extrac-
tive summarization method (Wang et al., 2015)
that formulates the sentence extraction task as a
supervised regression problem. We use a state-
of-the-art regression implementation in Vowpal
Wabbit3.

We report results for our system and the baselines
on the 17 timelines dataset in Table 1. We see that
the random baseline clearly performs worse than the
other methods. Even though Chieu et al. (2004)

3https://github.com/JohnLangford/vowpal wabbit

64

Methods ROUGE-1 ROUGE-2 ROUGE-S
Random 0.128 0.021 0.026
Chieu et al. 0.202 0.037 0.041
MEAD 0.208 0.049 0.039
ETS 0.207 0.047 0.042
Tran et al. 0.230 0.053 0.050
Regression 0.303 0.078 0.081
Our approach
Text 0.312 0.089 0.112
Text+Vision 0.331 0.091 0.115

Table 1: Comparing the timeline summarization per-
formance to various baselines on the 17 Timelines
dataset. The best-performing results are highlighted
in bold.

and MEAD (Radev et al., 2004a) are not specifi-
cally designed for the timeline summarization task,
they perform relatively well against the ETS sys-
tem for timeline summarization (Yan et al., 2011b).
Tran et al. (2013b) was previously the state-of-the-
art method on the 17 timelines dataset. The ROUGE
regression method is shown as a strong supervised
baseline. Our matrix factorization approach outper-
forms all of these methods, achieving the best re-
sults in all three ROUGE metrics. We also see that
there is an extra boost in the performance when con-
sidering visual features for timeline summarization.
Figure 3 shows an example of the retrieved images
we used. In general, images retrieved by using more
important sentences (measured by ROUGE) include
objects, as well a more vivid and detailed scene.

4.2 Comparative Evaluation Results for
Headline Based Timeline Summarization

To evaluate the robustness of our approach, we show
the performance of our method on the recently re-
leased crisis dataset (Tran et al., 2015). The main
difference between the crisis dataset and the 17 time-
lines dataset is that here we focus on a headline
based timeline summarization task, rather than us-
ing sentences from the news documents. The crisis
dataset includes four topics: Egypt revolution, Libya
war, Syria war, and Yemen crisis. There are a total
of 15,534 news documents in the dataset, and each
topic has around 4K documents. There are 25 man-
ually created timelines for these topics, collected
from major news agencies such as BBC, CNN, and
Reuters. We perform standard cross-validation on

Methods ROUGE-1 ROUGE-2 ROUGE-S
Regression 0.207 0.045 0.039
Our approach
Text 0.211 0.046 0.040
Text+Vision 0.232 0.052 0.044

Table 3: Comparing the timeline summarization per-
formance to the state-of-the-art supervised sentence
regression approach on the crisis dataset. The best-
performing results are highlighted in bold.

this dataset: we train on three topics, and test on the
other. Here k is set to 300, and the vocabulary is
10K words for all systems. Table 3 shows the per-
formance of our system. Our system is significantly
better than the strong supervised regression baseline.
When considering joint learning of text and vision,
we see that there is a further improvement.

4.3 Headline Based Timeline Summarization:
A Qualitative Analysis

In this section, we perform a qualitative analysis of
the output of our system for the headline based time-
line summarization task. We train the system on
three topics, and show a sample of the output on
the Syria war. Table 2 shows a subset of the time-
line for the Syria war generated by our system. We
see that most of the daily summaries are relevant to
the topic, except the one generated on 2011-11-24.
When evaluating the quality, we notice that most of
them are of high quality: after the initial hypothesis
of the Syria war on 2011-11-18, the following daily
summaries concern the world’s response to the cri-
sis. We show that most of the relevant summaries
are also providing specific information, with an ex-
ception on 2011-12-02. We suspect that this is be-
cause this headline contains three keywords “syria”,
“civil”, “war”, and also the key date information:
the model was trained partly on the Libya war time-
line, and therefore many features and parameters
were activated in the matrix factorization framework
to give a high recommendation in this testing sce-
nario. In contrast, when evaluating the output of the
joint text and vision system, we see that this error is
eliminated: the selected sentence on 2011-12-02 is
“Eleven killed after weekly prayers in Syria on eve
of Arab League deadline”.

65

Date Summary Relevant? Good?
2011-11-18 Syria is heading inexorably for a civil war and an appalling bloodbath X X
2011-11-19 David Ignatius Sorting out the rebel forces in Syria X X
2011-11-20 Syria committed crimes against humanity, U.N. panel finds X X
2011-11-21 Iraq joins Syria civil war warnings X X
2011-11-22 The Path to a Civil War in Syria X X
2011-11-23 Report Iran, Hezbollah setting up militias to prepare for post-Assad Syria X X
2011-11-24 Q&A Syria’s daring actress Features Al Jazeera English × ×
2011-11-25 Syria conflict How residents of Aleppo struggle for survival X X
2011-11-27 Syrian jets bomb rebel areas near Damascus as troops battle X X
2011-11-28 Is the Regional Showdown in Syria Rekindling Iraqs Civil War? X X
2011-11-29 Syria Crisis Army Drops Leaflets Over Damascus X X
2011-11-30 Russia says West’s Syria push “path to civil war” X X
2011-12-01 UN extends Syria war crimes investigation despite opposition from China X X
2011-12-02 Un syria civil war 12 2 2011 X ×
2011-12-03 Israel says fires into Syria after Golan attack on troops X X

Table 2: A timeline example for Syria war generated by our text-only system.

5 Conclusions

In this paper, we introduce a low-rank approxima-
tion based approach for learning joint embeddings of
news stories and images for timeline summarization.
We leverage the success of matrix factorization tech-
niques in recommender systems, and cast the multi-
document extractive summarization task as a sen-
tence recommendation problem. For each sentence
in the corpus, we compute its similarity to a human-
generated abstract, and extract lexical, event, and
temporal features. We use a convolutional neural
architecture to extract vision features. We demon-
strate the effectiveness of this joint learning method
by comparison with several strong baselines on the
17 timelines dataset and a headline based timeline
summarization dataset. We show that image fea-
tures improve the performance of our model signif-
icantly. This further motivates investment in joint
multimodal learning for NLP tasks.

Acknowledgments

The authors would like to thank Kapil Thadani and
the anonymous reviewers for their thoughtful com-
ments.

References
Amr Ahmed, Qirong Ho, Choon H Teo, Jacob Eisenstein,

Eric Xing, and Alex Smola. 2011. Online inference
for the infinite topic-cluster model: Storylines from
streaming text. In Proceedings of AISTATS.

James Allan, Rahul Gupta, and Vikas Khandelwal. 2001.
Temporal summaries of new topics. In Proceedings of
SIGIR.

Tim Althoff, Xin Luna Dong, Kevin Murphy, Safa Alai,
Van Dang, and Wei Zhang. 2015. TimeMachine:
Timeline generation for knowledge-base entities. In
Proceedings of KDD.

Robert Bell and Yehuda Koren. 2007. Lessons from the
Netflix prize challenge. ACM SIGKDD Explorations
Newsletter, 9(2).

James Bennett and Stan Lanning. 2007. The Netflix
prize. In Proceedings of the KDD Cup and Workshop.

Hai Leong Chieu and Yoong Keok Lee. 2004. Query
based event extraction along a timeline. In Proceed-
ings of SIGIR.

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-
Jen Lin. 2015. A fast parallel stochastic gradient
method for matrix factorization in shared memory sys-
tems. ACM Transactions on Intelligent Systems and
Technology, 6(1).

James Conroy, Judith Schlesinger, Diane O’Leary, and
Mary Okurowski. 2001. Using HMM and logistic re-
gression to generate extract summaries for DUC. In
Proceedings of DUC.

Nazanin Dehghani and Masoud Asadpour. 2015. Graph-
based method for summarized storyline generation in
Twitter. arXiv preprint arXiv:1504.07361.

Günes Erkan and Dragomir Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text sum-
marization. Journal of Artificial Intelligence Re-
search, 22(1).

Anthony Fader, Dragomir Radev, Michael Crespin, Burt
Monroe, Kevin Quinn, and Michael Colaresi. 2007.
Mavenrank: Identifying influential members of the

66

US senate using lexical centrality. In Proceedings of
EMNLP-CoNLL.

Goran Glavaš and Jan Šnajder. 2014. Event graphs for
information retrieval and multi-document summariza-
tion. Expert Systems with Applications, 41(15).

Ahmed Hassan, Anthony Fader, Michael Crespin, Kevin
Quinn, Burt Monroe, Michael Colaresi, and Dragomir
Radev. 2008. Tracking the dynamic evolution of par-
ticipant salience in a discussion. In Proceedings of
COLING.

Lifu Huang and Lian’en Huang. 2013. Optimized
event storyline generation based on mixture-event-
aspect model. In Proceedings of EMNLP.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz.
2014. Summarizing disasters over time. In Proceed-
ings of the Bloomberg Workshop on Social Good at
KDD.

Jerry Kiernan and Evimaria Terzi. 2009. Constructing
comprehensive summaries of large event sequences.
ACM Transactions on Knowledge Discovery from
Data, 3(4).

Gunhee Kim and Eric Xing. 2014. Reconstructing story-
line graphs for image recommendation from web com-
munity photos. In Proceedings of CVPR.

Gunhee Kim, Leonid Sigal, and Eric P Xing. 2014. Joint
summarization of large-scale collections of web im-
ages and videos for storyline reconstruction. In Pro-
ceedings of CVPR.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix factorization techniques for recommender sys-
tems. Computer, 8.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings of
SIGIR.

Ju-Hong Lee, Sun Park, Chan-Min Ahn, and Daeho Kim.
2009. Automatic generic document summarization
based on non-negative matrix factorization. Informa-
tion Processing & Management, 45(1).

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. In Proceed-
ings of NIPS.

Chen Lin, Chun Lin, Jingxuan Li, Dingding Wang, Yang
Chen, and Tao Li. 2012. Generating event storylines
from microblogs. In Proceedings of CIKM.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proceedings of the ACL
workshop “Text summarization branches out”.

Qiaozhu Mei, Jian Guo, and Dragomir Radev. 2010. Di-
vrank: the interplay of prestige and diversity in infor-
mation networks. In Proceedings of KDD.

Rada Mihalcea and Paul Tarau. 2004. TextRank: Bring-
ing order into texts. In Proceedings of EMNLP.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Borja Navarro-Colorado and Estela Saquete. 2015.
GPLSIUA: Combining temporal information and topic
modeling for cross-document event ordering. In Pro-
ceedings of SemEval.

Jun-Ping Ng, Yan Chen, Min-Yen Kan, and Zhoujun
Li. 2014. Exploiting timelines to enhance multi-
document summarization. In Proceedings of the ACL.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
Parser: A data-driven parser-generator for dependency
parsing. In Proceedings of LREC.

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam, Danyu
Liu, Jahna Otterbacher, Hong Qi, Horacio Saggion,
Simone Teufel, Michael Topper, Adam Winkel,
and Zhu Zhang. 2004a. MEAD – a platform for
multidocument multilingual text summarization. In
Proceedings of LREC.

Dragomir R Radev, Hongyan Jing, Małgorzata Styś, and
Daniel Tam. 2004b. Centroid-based summarization of
multiple documents. Information Processing & Man-
agement.

Benjamin Recht, Christopher Re, Stephen Wright, and
Feng Niu. 2011. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Proceed-
ings of NIPS.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2014. Imagenet large
scale visual recognition challenge. International Jour-
nal of Computer Vision, 115(3).

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In Proceedings of ICLR.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of NAACL-HLT.

Giang Binh Tran, Mohammad Alrifai, and Dat
Quoc Nguyen. 2013a. Predicting relevant news events
for timeline summaries. In Proceedings of WWW.

Giang Binh Tran, Tuan A Tran, Nam-Khanh Tran, Mo-
hammad Alrifai, and Nattiya Kanhabua. 2013b.
Leveraging learning to rank in an optimization frame-
work for timeline summarization. In Proceedings of
the SIGIR Workshop on Time-Aware Information Ac-
cess.

Giang Tran, Mohammad Alrifai, and Eelco Herder. 2015.
Timeline summarization from relevant headlines. In
Proceedings of ECIR.

67

Dingding Wang, Tao Li, Shenghuo Zhu, and Chris Ding.
2008. Multi-document summarization via sentence-
level semantic analysis and symmetric matrix factor-
ization. In Proceedings of SIGIR.

Dingding Wang, Tao Li, and Mitsunori Ogihara. 2012.
Generating pictorial storylines via minimum-weight
connected dominating set approximation in multi-view
graphs. In Proceedings of AAAI.

Lu Wang, Claire Cardie, and Galen Marchetti. 2015.
Socially-informed timeline generation for complex
events. In Proceedings of NAACL-HLT.

Rui Yan, Liang Kong, Congrui Huang, Xiaojun Wan, Xi-
aoming Li, and Yan Zhang. 2011a. Timeline gener-
ation through evolutionary trans-temporal summariza-
tion. In Proceedings of EMNLP.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011b. Evolution-
ary timeline summarization: a balanced optimization
framework via iterative substitution. In Proceedings
of SIGIR.

Xin Wayne Zhao, Yanwei Guo, Rui Yan, Yulan He, and
Xiaoming Li. 2013. Timeline generation with social
attention. In Proceedings of SIGIR.

Wubai Zhou, Chao Shen, Tao Li, Shu-Ching Chen, and
Ning Xie. 2014. Generating textual storyline to im-
prove situation awareness in disaster management. In
Proceedings of the IEEE International Conference on
Information Reuse and Integration.

Weizhong Zhu and Chaomei Chen. 2007. Storylines: Vi-
sual exploration and analysis in latent semantic spaces.
Computers & Graphics, 31(3).

68

Proceedings of NAACL-HLT 2016, pages 69–79,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Entity-balanced Gaussian pLSA for Automated Comparison

Danish Contractor∗
IIT Delhi & IBM Research

New Delhi, India
dcontrac@in.ibm.com

Mausam and Parag Singla
IIT Delhi

New Delhi, India
{mausam,parags}@cse.iitd.ac.in

Abstract
Community created content (e.g., product de-
scriptions, reviews) typically discusses one
entity at a time and it can be hard as well
as time consuming for a user to compare
two or more entities. In response, we de-
fine a novel task of automatically generating
entity comparisons from text. Our output is
a table that semantically clusters descriptive
phrases about entities. Our clustering algo-
rithm is a Gaussian extension of probabilis-
tic latent semantic analysis (pLSA), in which
each phrase is represented in word vector em-
bedding space. In addition, our algorithm at-
tempts to balance information about entities in
each cluster to generate meaningful compar-
ison tables, where possible. We test our sys-
tem’s effectiveness on two domains, travel ar-
ticles and movie reviews, and find that entity-
balanced clusters are strongly preferred by
users.

1 Introduction

The proliferation of Web 2.0 has enabled ready ac-
cess to large amounts of community created content,
such as status messages, blogs, wikis, and reviews.
These form an important source of knowledge in
our day to day decision making, such as deciding
which restaurant to try, or which movie to watch,
or which city to visit etc. Unfortunately, such con-
tent typically focuses on one real world entity at
a time, whereas, a user deciding between alterna-
tives is most interested in a comparative analysis of
strengths and weaknesses of each.

∗This work was carried out as part of PhD research at IIT
Delhi. The author is also a regular employee at IBM Research.

There have been some recent attempts to create
comparisons using expert knowledge, but generat-
ing such comparisons manually does not scale –
even pairwise comparisons are quadratic in the num-
ber of entities. Few automated comparisons for spe-
cific products with pre-defined attributes (e.g., lap-
tops, cameras) exist; they are typically powered by
existing structured knowledge bases. To the best of
our knowledge, prior work on automatically gener-
ating comparisons for arbitrary domains from un-
structured text, does not exist.

We define a novel task of generating entity com-
parisons from textual corpora in which each docu-
ment describes one entity at a time. For broad appli-
cability, we do not restrict ourselves to a pre-defined
ontology; instead, we use textual phrases that de-
scribe entities as our unit of information. We call
these descriptive phrases – they encompass general
attribute-value phrases, opinion phrases, and other
descriptions of the facets of an entity. We gener-
ate entity comparisons in a tabular form where the
phrases are organized semantically, thus, allowing
for direct comparisons. Figure 1 shows a sample city
comparison generated by our system for tourism.

Our comparison generation algorithm extracts de-
scriptive phrases per entity and clusters them into
semantic groups. We perform clustering via a topic
model, where phrases from an entity are combined
into one document. The topics identify prominent
facets of the entities. Unfortunately, since the num-
ber of entities being compared is usually small, just
statistical co-occurrence of words and phrases is not
sufficient to identify good topics. In response, we
use vector embeddings of descriptive phrases and

69

employ a Gaussian extension of probabilistic latent
semantic analysis (pLSA) over these vectors.

We also modify Gaussian pLSA to additionally
incorporate an entity-balance term, preferring topics
in which phrases from the entities are represented in
a proportionate measure. The balance term trades off
the discovery of unique facets for each entity with
that of common facets. This enables direct compari-
son between entities leading to an overall improved
comparison table. Since the balance term is only a
preference (not a constraint), it still allows the al-
gorithm to exhibit clusters which may be sparsely
represented (or not represented at all) in one of the
entities.

We demonstrate the usefulness of our ideas on
two domains – tourism and movies. Based on user
experiments, we find that the entity-balanced model
outputs much better comparisons as compared to an
entity-oblivious model such as GMM. In summary,
our paper makes the following contributions:
• We define a novel task of generating entity

comparisons from a corpus that describes en-
tities individually.

• We present the first system to output such
a comparison. Our system runs Gaussian
pLSA over the vector embeddings of extracted
phrases, and preferentially tries to balance the
entities in each topic.

• Human subject evaluations using Amazon
Mechanical Turk (AMT) demonstrate that
AMT workers overwhelmingly prefer compar-
isons generated using entity-balanced Gaussian
pLSA compared to entity-oblivious clustering.

2 Related Work

Recently, the internet has seen a growth in websites
offering comparisons for different entities. Prod-
uct websites such as eBay maintain comparisons
for products. Google also outputs pre-built compar-
isons between common entities when queried with
the word “vs.” between them. Both of these output
purely structured attribute-value information and are
unable to compare along more qualitative and de-
scriptive dimensions such as ease of living or qual-
ity of nightlife when comparing cities, for exam-
ple. Other websites such as WikiVS1 contain user-

1http://www.wikivs.com/wiki/Main Page

Cluster Granada (Spain) New York City (U.S.)Labels

art,
moorish architecture contemporary art
religious art modern american art

arch. fine art medieval art
beautiful architecture egyptian art

palace,
brick-walled courtyard
lovely courtyard area

courtyard nasrid royal palace
alhambra palace

museum,
alhambra museum fine art museums
archaeological museum guggenheim museum

finest world heritage site islamic art collection
splendid arabic shops metropolitan museum

gardens,
partal gardens flushing meadows park
palace gardens central park

park pleasant gardens renowned gardens
moorish style gardens natl. recreational area

Figure 1: Sample comparison (abridged) between Granada and

New York generated by our system. A quick look reveals that

that both cities have a nice set of museums and gardens to visit,

while palaces and courtyards are only in Granada. Granada’s

art and architecture are more ornamental, whereas New York’s

might be more contemporary.

contributed comparisons that have been categorized
based on the nature of the entities being compared.
These are manually curated and therefore do not
scale to the quadratic number of entity pairs.

Perhaps the most closely related work to ours is
the field of contrastive opinion mining and summa-
rization (Kim et al., 2011; Liu and Zhang, 2012).
Examples include extraction of contrastive senti-
ments on a product (Lerman and McDonald, 2009)
and summarization of opinionated political articles
(Paul et al., 2010). Contrastive opinion mining ex-
tracts contrasting view points about a single entity
or event instead of comparing multiple ones. A re-
cent preliminary study extends this for comparing
reviews of two products (Sipos and Joachims, 2013).
It uses a supervised method for learning sentence
alignments per product-type, and does not organize
various opinions for an entity via clustering.

Other related work includes comparative text
mining tasks where document collections are ana-
lyzed to extract shared topics or themes (Zhai et al.,
2004). Since such methods only identify latent top-
ics for the full document collection, they can’t be
directly used for a specific comparison task.

Since our system is a combination of IE and clus-
tering, we briefly describe related approaches for
these subtasks.

Information Extraction: Our work is related to

70

the vast literature in information extraction, in par-
ticular Open IE (Banko et al., 2007). Our use of
POS patterns for extracting domain-specific descrip-
tive phrases is similar in spirit to ReVerb’s pat-
terns for relation extraction (Etzioni et al., 2011) and
adjective-noun bigrams for fine grained attribute ex-
traction (Huang et al., 2012; Yatani et al., 2011).
Adapting the literature on entity set expansion (Pan-
tel et al., 2009; Voorhees, 1994; Natsev et al., 2007),
our system expands seed nouns for broader cover-
age. We use Wordnet and distributional similarity-
based approaches for this (Curran, 2003; Voorhees,
1994).

Clustering: Our entity-balanced clustering algo-
rithm is related but different from previous work
on balanced clustering. Prior work (Banerjee and
Ghosh, 2006; Yuepeng et al., 2011) has focused on
generating different clusters to be equi-sized. Other
work (Zhu et al., 2010; Ganganath et al., 2014) en-
forces size constraints on clusters. Our idea of bal-
ance, on the other hand, is targeted towards a better
comparison and prefers that entities are well repre-
sented (balanced) in each cluster.

3 Task & System Description

Our motivation is to concisely compare two or more
entities to aid a user’s decision making. We make
several choices in our task definition to help with this
goal. First, we decide to output comparisons using a
succinct tabular representation (see Figure 1). It has
higher information density compared to, say, writing
a natural language comparison summary.

Second, our unit of information is a descriptive
phrase. We define it as any short phrase that de-
scribes an entity – these include attribute-value pairs
(e.g., “Greek art”), opinion phrases (e.g., “spectacu-
lar views”), as well as other descriptions (e.g., “old-
est church of Europe”).

Third, for better readability, our table must or-
ganize the information coherently along various as-
pects relevant for a comparison. We achieve this by
grouping related descriptive phrases. The choice of
aspects should be dependent on the specific entities
being compared, e.g., the facet of “beaches” may
split into “water activities” and “beach types” for
Jamaica v.s. Hawaii, but not for San Francisco v.s.
Bombay.

Moreover, comparisons are meant to highlight
both the similarities and the differences between en-
tities. We therefore need to trade-off the discovery
of unique facets of an entity with those which are
common to the entities being compared. Thus, while
clusters that balance the entities are preferable, it is
also acceptable to have clusters where one of the en-
tities is sparsely represented (or not represented at
all). This would happen in situations where that en-
tity does not express a particular aspect and other
entities do. Comparisons must trade off semantic co-
herence of facets with entity-balance in each facet.

Last, but not the least, since the comparisons are
targeted to aiding user’s decision making, under-
standing her intent is important. As an example, the
user may be interested in city-comparison for the
purpose of tourism, or for choosing a city to live in.
Descriptive phrases for the former could be related
to sightseeing, shopping, etc., but for the latter they
may cover aspects such as living expenses, trans-
portation, and pollution. We accommodate this ne-
cessity by allowing minimal human supervision for
specifying user intent. This supervision can come in
forms such as an intent-relevant seed noun list, or
topic-level annotation following unsupervised topic
modeling, etc. This supervision further guides de-
scriptive phrase extraction.

System Architecture: Our system consists of a
pipeline of information extraction, clustering, clus-
ter labeling and phrase ordering. IE extracts descrip-
tive phrases relevant to user-intent and we develop a
new clustering algorithm that produces better com-
parisons by balancing the entities in each cluster. We
identify cluster labels based on the most frequent
words in a cluster. We order phrases within a clus-
ter based on the distance from the centroid. We now
describe our IE and clustering techniques in detail.

3.1 Information Extraction

Our IE pipeline works in two steps. We first extract
descriptive phrases via POS patterns and then fil-
ter out the non-topical phrases. For filtering, first we
create a seed list of relevant nouns via minimal hu-
man supervision, which are then expanded by item-
set expansion. Descriptive phrases with a noun in the
expanded list are retained, and rest are filtered.

Preliminary analysis on a devset revealed that

71

a large fraction of descriptive phrases are noun
phrases (NPs). We first extract all NP chunks from
the collection and, additionally, using POS tags, ex-
tract any adjective-noun bigrams that are part of a
bigger NP chunk, or missed due to chunking errors.
This forms the initial set of descriptive phrases.

Filtering for User Intent:
These descriptive phrases include those that are

not relevant for user intent such as “excellent
schools” for tourism. We filter these phrases by
matching them to a list of intent-specific nouns. This
list is created by first curating a seed list and then ex-
panding it using item-set expansion. We employ two
methods to obtain a seed list for specifying user in-
tent: (1) a list of user-specified seed nouns, and (2) a
labeling of LDA topics based on top words in each
topic.

In the first approach we get the seed nouns di-
rectly from the domain expert. Our system sup-
ports the process by identifying frequent nouns and
showing those to the annotator to annotate. For our
tourism system, an author spent about three hours to
produce a list of 100 seed nouns.

Since this process requires significant effort per
user intent, we also investigate a semi-automatic ap-
proach in which we run Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) on the whole phrase list.
We then show the top 20 words in each topic and
ask the annotator to provide only topic-level annota-
tions. We treat the top 15 words from each positively
labeled topic to be in the seed set. Since the number
of topics is usually not that large, this significantly
reduces the time required for annotation. E.g., we
ran LDA with 20 topics and it took about 10 mins.
for an author to annotate them. However, the seed
nouns are noisier due to noise in LDA.

Seed List Expansion: Finally, we use ideas from
item-set expansion to expand the seed list for im-
proved coverage. We implement two approaches for
this step. In the first method (WN) we use Wordnet
(Miller, 1995) to include words that are a direct hop
away from the seed nouns. In the second approach
(WV), we use word-vector embeddings (Collobert
et al., 2011) and include top 10 neighbors of each
seed in our expanded list. The expansions capture
near-synonyms and topically related words.

IE Experiments: We now present comparisons of

Method Prec. Recall F1
All nouns 0.53 0.67 0.59
Seed Nouns only (Manual) 0.77 0.32 0.44
Seed (Manual) + WN 0.71 0.35 0.46
Seed (Manual) + WV 0.70 0.40 0.49
Seed Nouns only (LDA) 0.74 0.19 0.30
Seed (LDA) + WN 0.74 0.20 0.31
Seed (LDA) + WV 0.74 0.26 0.38

Table 1: Quality of extracted descriptive phrases on a devset

various IE methods on a small development set. We
selected seven WikiTravel2 articles (each article is
on one city) and manually annotated an exhaustive
set of descriptive phrases. This forms our devset for
IE comparisons.

We chose various parameters in our IE systems so
that our precision never drops below 0.70. For exam-
ple, we used K=15 for choosing the top words from
LDA into seed list. We use this target precision, be-
cause we believe that for any human-facing system
the precision needs to be high for it to be considered
acceptable by people.

Table 1 compares the performance of the various
IE methods. Not surprisingly, we find that manual
seed lists obtain a much higher recall as compared to
LDA seeds, at approximately the same level of pre-
cision. Both Wordnet and word-vector improve the
recall substantially, though vectors are more effec-
tive. The recall of all nouns is only 0.67 because a
large number of descriptive phrases were larger n-
grams (not just adjective-noun bigrams) and were
missed due to chunking errors.

3.2 Building Clusters for Comparison

Our next task is to construct meaningful compar-
isons using these phrases. A useful comparison of
entities should organize the available information in
a way that is easy to comprehend by the user. To-
wards this goal, we group the related descriptive
phrases across a number of clusters. But simply hav-
ing a good clustering of descriptive phrases may not
be enough. We would like to have a clustering that
explicitly captures the individual characteristics of
each of the entities as well as makes the relative
strengths and weaknesses of each entity apparent.
For example, Figure 2 (Right) shows three different
clusterings of phrases from two cities; phrases from
each city are in a different color. Here, the third clus-

2www.wikitravel.com

72

x

z

e

x

z q

m

|E|

|z|

(i) (ii)

f

S

q

m

S
|E|

|z|

|E|

white sand beaches
beach resorts
secluded beaches

sandy beaches

beach volleyball

wind surfing
scuba diving

fast moving rivers
strong currents

serene lakes
fresh water lake

(a) Entity Oblivious Clusters
(GMM)

Cluster 1 Cluster 2

white sand beaches
beach resorts
secluded beaches

sandy beaches

beach volleyball

wind surfing
scuba diving

paddle boats
water activities

fast moving rivers
strong currents

serene lakes
fresh water lake

jet skiing
fishing spot

(b) Entity Aware Clusters
(G-pLSA)

Beach Related
clusters Lake/River Related

cluster

paddle boats
water activities

jet skiing
fishing spot

white sand beaches
beach resorts
secluded beaches

sandy beaches

beach volleyball

wind surfing
scuba diving

fast moving rivers
strong currents

serene lakes
fresh water lake

(c) Entity Balanced clusters
(EB G-pLSA)

Water body
clustersWater activity

related cluster

paddle boats
water activities

jet skiing
fishing spot

|Xj|
|Xj|

Figure 2: Left: Plate Notation of (i) Standard Gaussian Mixture Model (ii) Gaussian pLSA (and entity balanced Gaussian pLSA)

Right: Three alternative clusterings (a), (b), (c) for descriptive phrases from two cities – each color is a different city. We prefer

clusters shown in (c) as they balance information from both entities

tering is most appropriate for comparison, because
not only is it a good clustering of descriptive phrases
from each city considered separately, but the clusters
produced also have entity-balance, i.e., the clusters
produced have a good balance of both cities; both of
these are key elements of comparison.

We first observe that a topic model such as Prob-
abilistic Latent Semantic Analysis (pLSA) is a good
fit to our clustering problem. In pLSA documents
are characterized as mixtures of topics and topics as
distributions over words. For our problem, we could
combine all phrases for an entity into one document,
and run pLSA to identify a coherent set of topics,
which can then be used as clusters. Such a model
will allow different entities to express topics in dif-
ferent proportions.

We note that LDA, which is a strict generaliza-
tion of pLSA3, is, in general, not a good fit for our
task. LDA typically uses a sparse Dirichlet prior on
document-topic distribution, which would not be ap-
propriate since for comparison we would like to rep-
resent each entity in as many topics as possible.

Unfortunately, a direct application of pLSA may
not yield good results. This is because typically the
number of entities being compared (i.e., the number
of documents in pLSA) is very small (often 2), there-
fore, there isn’t enough statistical regularity to find
good coherent topics. The alternative proposition of
learning topics on the whole corpus isn’t very ap-
pealing either, since that will learn global topics and
not the topics particularly meaningful for the current
comparison at hand.

3LDA with uniform Dirichlet prior is equivalent to pLSA

In response, we exploit the availability of pre-
trained word vectors as a source of background se-
mantic knowledge for every phrase, and generalize
the pLSA model to Gaussian pLSA (G-pLSA). We
construct a vector representation for each descriptive
phrase by averaging the word-vectors of individual
words in a phrase (Mikolov et al., 2013)4. Thus, this
model is pLSA with each topic-word distribution
represented as a Gaussian distribution over descrip-
tive phrases in the embedding space. This model
is also similar to the recently introduced Gaussian
LDA model (Das et al., 2015), but without LDA’s
Dirichlet priors as discussed above.

Gaussian pLSA has several advantages for our
task. First, it can meaningfully learn topics only for
the entities being compared, instead of needing to
learn a global topic model over the whole corpus.
Second, due to additional context from word vec-
tors, the topics are expected to be much more coher-
ent compared to traditional topic models for cases
when the underlying corpus is small, as in our case.
Finally, in our model the vectors are generated from
a Gaussian distribution and that helps capture the
theme of the cluster directly by enabling a centroid
computation in the embedding space. This is espe-
cially useful for identifying and ranking important
descriptive phrases per cluster while generating the
comparison table.

Let x(i)
j , z

(i)
j denote the values of the ith phrase

and the corresponding cluster (topic) id, respec-
tively, for the jth entity ej . Then, the log-likelihood

4We use the pre-trained 300 dimension vectors available at
http://code.google.com/p/word2vec/

73

L(Θ) of the observed data can be written as:

|E|∑
j=1

|Xj |∑
i=1

log
[|Z|∑
z
(i)
j =1

P (x
(i)
j |z(i)

j ; Θ) ·P (z
(i)
j |ej ; Θ) ·P (ej ; Θ)

]
(1)

Here, |Xj | and |Z| are the total number of phrases
and clusters5 respectively, for a given entity ej and,
|E| is the total number of entities being considered
for comparison. Θ denotes the vector of all the pa-
rameters. We optimize the expression L(Θ) using
EM and estimate the parameters of the model. As
can be seen, the clusters are shared across entities,
and the phrases generated are independent of the en-
tity given, a cluster and the entities themselves are
free to exhibit clusters in different proportions.

We also note just as pLSA can be seen as a nat-
ural extension of mixture of unigrams (Blei et al.,
2003), Gaussian pLSA is an extension from the
Gaussian Mixture Model (GMM) which is entity-
oblivious. GMM generates each phrase independent
of the entity it came from and hence, distributes en-
tity phrases arbitrarily across clusters. We use GMM
as a baseline for our experiments. Figure 2 (left) il-
lustrates the two models in plate notation.
Entity-Balanced Gaussian pLSA: Vanilla Gaus-
sian pLSA may not always lead to a good clustering
for comparison since the expression above does not
involve any term to balance the entity-information in
clusters, as motivated earlier. Thus, we incorporate a
regularizer term to have a good balance (proportion)
of entities in each cluster (see Figure 2 (right) (c))
resulting in our final model for comparison called
Entity-Balanced Gaussian pLSA (EB G-pLSA). The
plate notation for EB G-pLSA is identical to G-
pLSA.

Our regularizer is a function of the KL-divergence
between multinomial distributions for every pair
of entities. KL-divergence KL(P ||Q) between two
discrete distributions P (x) and Q(x) is defined as∑

l P (xl)log
(
P (xl)
Q(xl)

)
. Its an asymmetric measure

of similarity and is equal to 0 when the two dis-
tributions are identical (and greater than 0 oth-
erwise). Symmetric KL-divergence is defined as
Sym-KL(P,Q) = KL(P ||Q) +KL(Q||P).

Let Pθj (z|ej) and Pθk(z|ek) denote the multi-

5Note that number of clusters for all entities will be the same
i.e |Zj | = Z for all j

nomial distributions for generating the cluster id z
given the entities ej and ek, respectively. Here, θj
and θk denote the respective multinomial parame-
ters. We add a regularizer term to the log-likelihood
minimizing the sum of symmetric KL-divergence
between the distributions Pθj (z|ej) and Pθk(z|ek)
for every pair of entities ej and ek. Adding this reg-
ularizer requires the multinomial distributions to be
similar to each other, thereby preferring balanced
clusters over unbalanced ones. Our regularized av-
erage log-likelihood can be written as:

Lavgreg (Θ) =
1

|M |L(Θ)−α ·
 |E|∑
j,k=1|j<k

Sym-KL(Pθj , Pθk)


(2)

L(Θ) is the total log-likelihood as defined in the pre-
vious equation. M =

∑|E|
j=1 |Xj | and |E| is the to-

tal number of entities being compared. α is a con-
stant controlling the weight of the regularizer. Note
that we add the regularizer term to the average log-
likelihood (instead of the total log-likelihood) in or-
der to have the same regularizer value for compar-
isons having varying number of data points (descrip-
tive phrases). This is important to obtain a single
value of α which would work well across different
entity comparisons. In our experiments, α was tuned
using held-out data and was found to be robust to
small perturbations.

We use standard EM to optimize the regularized
log-likelihood. Since the regularizer does not have
any hidden variables, E-step is identical to the one
for the unregularized case. During M -step, the val-
ues maximizing the mean parameters µz and the φ
parameter can be obtained analytically. There is no
closed form solution for the parameters θj , θk. We
perform gradient descent to optimize these parame-
ters during the M -step. In our experiments, we did
not estimate the co-variance matrices Σz and kept
them fixed as a diagonal matrix with the diagonal
entry (variance) being 0.1. We did not learn the co-
variance matrices as that would have increased the
number of parameters substantially, and thus, had
the danger of over fitting. The small value of the
variance chosen was to ensure less overlap between
different clusters.
Clustering Experiments We conducted preliminary
experiments to compare the performance of GMM
(vanilla Gaussian mixture modeling using word vec-

74

GMM G-pLSA EB G-pLSA
f-measure 0.42 0.43 0.44
pairwise accuracy 0.66 0.65 0.76

Table 2: Comparing clustering methods on development set

tors) with G-pLSA and EB G-pLSA on a develop-
ment set consisting of 5 random city pairs. The de-
scriptive phrases were constructed using the auto-
mated seed list as described in IE Section. We manu-
ally created the gold standard clusterings. The num-
ber of clusters was set to the number in the gold set
for each of the city pairs.

We used f-measure and pairwise accuracy to eval-
uate the deviation from the gold standard for the
clusterings produced by each of the algorithms. Ta-
ble 2 shows the results. EB G-pLSA performs better
than the other two algorithms on both the metrics,
and especially on pairwise accuracy. Performance of
G-pLSA is very similar to GMM.

4 Human Subject Evaluations

In order to evaluate the usefulness of our system we
conducted extensive experiments on Amazon Me-
chanical Turk (AMT). Our experiments answer the
following questions. (1) Are comparisons generated
using our clustering methods G-pLSA and EB G-
pLSA preferred by users against the entity oblivi-
ous baseline of GMM? (2) Are our system-generated
comparison tables helpful to people for the task of
entity comparison?
Datasets & System Settings: We experiment6 on
two datasets – tourism and movies. For tourism,
we downloaded a collection of 16,785 travel arti-
cles from WikiTravel. The website contains arti-
cles that have been collaboratively written by Web
users. Each article describes a city or a larger geo-
graphic area that is of interest to tourists. In addition,
all articles contain sections7 describing different as-
pects of a city from a tourism point of view (e.g.,
places to see, transportation, shopping and eating).
For our proof of concept, we performed IE only on
the ‘places to see’ sections.

For Movies dataset, we used the Amazon review
data set (Leskovec and Krevl, 2014). It has over 7.9
million reviews for 250,000 movies. We combined
all the reviews for a movie, thus, generating a large

6Code and data available on request
7http://wikitravel.org/en/Wikitravel:Article templates/Sections

review document per movie. This dataset is much
noisier compared to WikiTravel due to presence of
slang, incorrect grammar, sarcasm, etc. In addition,
users also tend to compare and contrast while re-
viewing movies so there are even references to other
movies. As a result, the descriptive phrases extracted
were much more noisy.

For the time consuming manual seed list setting
of our IE system, we only use the tourism dataset.
For movies, we generate seeds using annotation over
LDA topics only. For all systems we use word-
vectors to expand the seed list.

For each table, we generated k clusters where k
was determined using a heuristic8 (Mardia et al.,
1980), and we displayed at most 30 phrases per clus-
ter. We did not display any cluster that had less than
4 phrases.

4.1 Evaluation of Clustering Algorithms

In order to examine whether clustering using EB
G-pLSA indeed produces best comparison tables,
we conducted a human evaluation task on Amazon
Mechanical Turk (AMT) where users of our sys-
tem were asked to indicate their preference between
two comparison tables. Since we have three systems
we performed this pairwise study thrice. In each
study, two comparison tables were generated from
different systems. For each entity-pair we asked four
workers each to select which comparison table they
preferred. The order of the tables was randomized to
remove any biasing effect. We paid $0.3 for each ta-
ble comparison. Table 3 reports the results for both
domains where descriptive phrases were generated
using LDA+WV.

On 30 city-pairs in the Tourism domain, work-
ers preferred the comparison tables generated using
EB G-pLSA 53% of the time and GMM was pre-
ferred only 13% (the rest were ties). It is worth-
while to note that whereas in 20% of the compar-
isons, EB G-pLSA had a clear 4-0 margin, there was
no such comparison where all the workers preferred
the GMM model. We also requested users to provide
the reasons for their preferences. While most users
specified a non-informative reason such as “like it
better”, some users gave specific reasons such as
“subdivides the parts I find useful into more specific

8No. of clusters = square root of half the number of phrases

75

Domain Total pairs EB G-pLSA Win GMM Win EB G-pLSA Win G-pLSA Win G-pLSA Win GMM Win

4-0 3-1 1-3 0-4 4-0 3-1 1-3 0-4 4-0 3-1 1-3 0-4

Tourism 30 20% 33% 13% 0% 13% 30% 30% 0% 17% 27% 13% 3%
Movies 20 20% 35% 10% 0% 5% 35% 15% 5% 5% 45% 15% 5%

Table 3: User preference win-loss statistics for different clustering methods on both city and movie comparison task using the same

IE system. Both EB G-pLSA and G-pLSA significantly outperform the baseline GMM model. EB G-pLSA has some edge over the

G-pLSA model. Note: Ties have not been shown in the table.

categories” and “easy to understand and more spe-
cific points of comparison”. Our results also show
that G-pLSA is a distinct improvement over GMM
(44% vs. 16%). EB G-pLSA had a marginal edge
over G-pLSA (43% vs. 30%).

On movies domain, we report results on 20
movie-pairs and we again found an overwhelming
preference for the system using EB G-pLSA for
clustering. 55% of the time, the output of EB G-
pLSA was preferred over GMM’s 10%. Other com-
parisons between G-pLSA and GMM, and between
our G-pLSA and EB G-pLSA systems also fol-
low trends similar to tourism domain. The perfor-
mance of EB G-pLSA is statistically significantly
better than GMM for both the tourism and the movie
datasets, with p values being less than 0.00004 and
0.002, respectively, using a one-sided students t-test.
This strong preference suggests that the clustering
induced by incorporating entity balance in the clus-
ters produces much better comparison tables.

4.2 Value of Comparison Tables

The goal of our experiments in this section was to
assess whether our comparison tables add value to
some realistic task and to understand the overall
usefulness of our system. To our knowledge there
are no other automated systems comparing cities
for tourism (or movies), hence we could not eval-
uate our system against existing approaches. There-
fore, we decided to evaluate the benefit of the out-
put generated by our system (i.e., comparison tables)
against reading the original WikiTravel articles. For
fairness we only use the ‘places to see’ sections from
WikiTravel, since that was the raw text used in gen-
erating comparison tables in the first place.

Since the comparisons are generated automati-
cally, people may not find them understandable, or
there may be missing valuable information. We test
this in a human subject evaluation. We adapt the

evaluation methodology developed recently for con-
trasting multiple ways of presenting information and
testing the overall learning of the subjects (Shahaf
et al., 2012; Christensen et al., 2014). The evalua-
tion is divided into two parts. In the first part the
workers are given a limited time to read the informa-
tion provided (articles or comparison tables) for an
entity-pair. They are then asked to write a short 150-
300 word summary contrasting different aspects of
the two entities. Each user writes two summaries,
one based on articles and the other based on our ta-
ble. Our study pairs two users such that if user1 read
the articles for city pair 1 and the table for city pair
2, their partner user will see the reverse. The work-
ers were additionally asked which knowledge source
they preferred and why.

Making a worker create summaries using both in-
formation sources helps reduce the effect of worker
comprehension and skill in the evaluation of our
task, as each worker contributes to summaries cre-
ated using our system as well as the baseline. In or-
der to reduce the effects of any sequence bias, half
the mechanical turk workers were first shown the
output of our system followed by the articles and the
other half (partners) were shown content the other
way around.

In the second part of this experiment we directly
compare the knowledge acquisition of these work-
ers. In particular, we ask a different set of work-
ers to evaluate the summaries created by the part-
nered workers. In each task, a worker has to compare
two summaries for the same entity-pair, one created
using tables by one worker and other created us-
ing articles by their partner. Each summary pair was
shown to four different users and each of them was
asked to select the summary they preferred for com-
paring and contrasting the entities. Since we perform
this experiment on Tourism data, the MTurk task de-
scriptions explained that the intent of the compari-

76

son is tourism and their summaries or preferences
must be from that perspective.

4.2.1 Results
We performed this evaluation on twenty city

pairs using both our information extraction methods
i.e. Manual+WV expansion (referred as TABLE-
M) and LDA+WV expansion (referred as TABLE-
LDA) along with the EB G-pLSA method for clus-
tering. The city pairs were chosen such that the
cities are related but not too similar, and the workers
would likely not have thought of the specific com-
parisons before.

We found that in the first part where workers were
given 10 minutes to create the summaries, they on
average asked for 30% more time to create the sum-
maries when information was presented as article.
This supports our belief that our system-generated
tables successfully reduce information overload. It
also suggests that the structure added by the system
(clusters) was useful for the comparison task and re-
duced workers’ cognitive load.

We now present the results for the second part
of the study in which workers evaluated the com-
parison summaries written by the workers in the
first part. Within 20 city-pairs, summaries for 5 city
pairs (25%) generated based on TABLE-M were
preferred and 5 (25%) generated based on original
articles were chosen. The workers were indifferent
in 10 of the city pairs (both summaries got two votes
each). This shows that despite having a very high
compression ratio, workers still managed to create
summaries that were comparable in quality to those
created by reading original documents. We repeated
the same study using TABLE-LDA and found that
summaries for 8 city pairs (40%) generated based
on TABLE-LDA were preferred and 5 (25%) gen-
erated based on original articles were chosen. The
workers were indifferent in 6 of the city pairs (both
summaries got two votes each).

We did not repeat this experiment using the
Movies data set as the source articles were concate-
nated reviews with no structure and it would not be
surprising that users prefer our system. In summary,
we find that both our systems convey adequate and
useful information in the comparisons and the sum-
maries generated by users using our systems were
found to be as good as the ones created by users

reading the full articles.

5 Conclusions

We define a novel task of automatically generating
tabular entity comparisons from unstructured text.
We also implement the first system for this task that
first extracts descriptive phrases from text and then
clusters them to generate comparison tables. Our
clustering algorithm is a Gaussian extension of p-
LSA, where the descriptive phrases are represented
using embeddings in the word vector space. In or-
der to have a better comparison between entities,
we incorporate a balance term which prefers clus-
ters where entities are proportionately represented.

We perform extensive human-subject evaluations
for our systems over Amazon Mechanical Turk
(AMT) on two datasets – tourism and movies. We
find that AMT workers overwhelmingly prefer EB
G-pLSA based comparisons over GMM-based. We
also assess the value of our generated comparisons
over reading the original articles. We find that while
both sets of workers learned as much, the workers
viewing tables asked for less additional time to nar-
rate a comparison in words. Overall, we believe that
comparison tables add value for users deciding be-
tween multiple entities. In the future we wish to per-
form joint extraction and clustering instead of our
current pipelined approach.

Acknowledgments

We would like to thank the users of our system:
Bhadra Mani, Dinesh Khandelwal, Eshita Sharma,
Kuntal Dey, Leela Muthana, Noira Khan, Samuel
Kumar, Seher Contractor and Prachi Jain, and the
anonymous Amazon mechnical turk workers for
their evaluation and insights. We would also like to
thank Ankit Anand, Happy Mittal and anonymous
reviewers for their suggestions on improving the
paper. The work was supported by IBM Research,
Google language understanding and knowledge dis-
covery focused research grants to Mausam, a KISTI
grant and a Bloomberg grant also to Mausam. We
would also like to acknowledge the IBM Research
India PhD program that enables the first author to
pursue the PhD at IIT Delhi.

77

References
Arindam Banerjee and Joydeep Ghosh. 2006. Scalable

clustering algorithms with balancing constraints. Data
Min. Knowl. Discov., 13(3):365–395, November.

Michele Banko, Michael J Cafarella, Stephen Soderland,
Matt Broadhead, and Oren Etzioni. 2007. Open infor-
mation extraction from the web. In IN IJCAI, pages
2670–2676.

David M. Blei, Andrew Y. Ng, Michael I. Jordan, and
John Lafferty. 2003. Latent dirichlet allocation. Jour-
nal of Machine Learning Research, 3:2003.

Janara Christensen, Stephen Soderland, Gagan Bansal,
and Mausam. 2014. Hierarchical summarization:
Scaling up multi-document summarization. In Pro-
ceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2014, June
22-27, 2014, Baltimore, MD, USA, Volume 1: Long Pa-
pers, pages 902–912.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

James Richard Curran. 2003. From Distributional to Se-
mantic Similarity. Ph.D. thesis, Institute for Commu-
nicating and Collaborative Systems School of Infor-
matics University of Edinburgh.

Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015.
Gaussian lda for topic models with word embeddings.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 795–804,
Beijing, China, July. Association for Computational
Linguistics.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam. 2011. Open In-
formation Extraction: the Second Generation. In In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), Barcelona, Spain, July.

N. Ganganath, Chi-Tsun Cheng, and C.K. Tse. 2014.
Data clustering with cluster size constraints using a
modified k-means algorithm. In Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (Cy-
berC), 2014 International Conference on, pages 158–
161, Oct.

Jeff Huang, Oren Etzioni, Luke Zettlemoyer, Kevin
Clark, and Christian Lee. 2012. Revminer: An extrac-
tive interface for navigating reviews on a smartphone.
In Proceedings of the 25th Annual ACM Symposium
on User Interface Software and Technology, UIST ’12,
pages 3–12, New York, NY, USA. ACM.

Hyun Duk Kim, Kavita Ganesan, Parikshit Sondhi, and
ChengXiang Zhai. 2011. Comprehensive review of
opinion summarization.

Kevin Lerman and Ryan McDonald. 2009. Con-
trastive summarization: An experiment with consumer
reviews. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, Companion Volume: Short Papers,
NAACL-Short ’09, pages 113–116, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets:
Stanford large network dataset collection. http://
snap.stanford.edu/data, June.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. pages 415–463.

K. V. Mardia, J. T. Kent, and J. M. Bibby. 1980. Multi-
variate Analysis (Probability and Mathematical Statis-
tics). Academic Press, 1 edition.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed representations of
words and phrases and their compositionality. CoRR,
abs/1310.4546.

George A. Miller. 1995. Wordnet: A lexical database for
english. Commun. ACM, 38(11):39–41, November.

Apostol (Paul) Natsev, Alexander Haubold, Jelena Tešić,
Lexing Xie, and Rong Yan. 2007. Semantic concept-
based query expansion and re-ranking for multime-
dia retrieval. In Proceedings of the 15th International
Conference on Multimedia, MULTIMEDIA ’07, pages
991–1000, New York, NY, USA. ACM.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale
distributional similarity and entity set expansion. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2
- Volume 2, EMNLP ’09, pages 938–947, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Michael J. Paul, ChengXiang Zhai, and Roxana Girju.
2010. Summarizing contrastive viewpoints in opin-
ionated text. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP ’10, pages 66–76, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. 2012.
Trains of thought: Generating information maps. In
International World Wide Web Conference (WWW).

Ruben Sipos and Thorsten Joachims. 2013. Generat-
ing comparative summaries from reviews. In 22nd
ACM International Conference on Information and
Knowledge Management, CIKM’13, San Francisco,
CA, USA, October 27 - November 1, 2013, pages
1853–1856.

EllenM. Voorhees. 1994. Query expansion using lexical-
semantic relations. In BruceW. Croft and C.J. Rijsber-
gen, editors, SIGIR ?94, pages 61–69. Springer Lon-
don.

78

Koji Yatani, Michael Novati, Andrew Trusty, and Khai N.
Truong. 2011. Review spotlight: A user interface for
summarizing user-generated reviews using adjective-
noun word pairs. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI
’11, pages 1541–1550, New York, NY, USA. ACM.

Sun Yuepeng, Liu Min, and Wu Cheng. 2011. A
modified k-means algorithm for clustering problem
with balancing constraints. In Proceedings of the
2011 Third International Conference on Measuring
Technology and Mechatronics Automation - Volume
01, ICMTMA ’11, pages 127–130, Washington, DC,
USA. IEEE Computer Society.

ChengXiang Zhai, Atulya Velivelli, and Bei Yu. 2004.
A cross-collection mixture model for comparative text
mining. In Proceedings of the Tenth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’04, pages 743–748, New York,
NY, USA. ACM.

Shunzhi Zhu, Dingding Wang, and Tao Li. 2010. Data
clustering with size constraints. Knowledge-Based
Systems, 23(8):883 – 889.

79

Proceedings of NAACL-HLT 2016, pages 80–85,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Automatic Summarization of Student Course Feedback

Wencan Luo† Fei Liu‡ Zitao Liu† Diane Litman†
†University of Pittsburgh, Pittsburgh, PA 15260
‡University of Central Florida, Orlando, FL 32716

{wencan, ztliu, litman}@cs.pitt.edu feiliu@cs.ucf.edu

Abstract

Student course feedback is generated daily in
both classrooms and online course discussion
forums. Traditionally, instructors manually
analyze these responses in a costly manner. In
this work, we propose a new approach to sum-
marizing student course feedback based on
the integer linear programming (ILP) frame-
work. Our approach allows different student
responses to share co-occurrence statistics and
alleviates sparsity issues. Experimental results
on a student feedback corpus show that our
approach outperforms a range of baselines in
terms of both ROUGE scores and human eval-
uation.

1 Introduction

Instructors love to solicit feedback from students.
Rich information from student responses can reveal
complex teaching problems, help teachers adjust
their teaching strategies, and create more effective
teaching and learning experiences. Text-based stu-
dent feedback is often manually analyzed by teach-
ing evaluation centers in a costly manner. Albeit
useful, the approach does not scale well. It is there-
fore desirable to automatically summarize the stu-
dent feedback produced in online and offline envi-
ronments. In this work, student responses are col-
lected from an introductory materials science and
engineering course, taught in a classroom setting.
Students are presented with prompts after each lec-
ture and asked to provide feedback. These prompts
solicit “reflective feedback” (Boud et al., 2013) from
the students. An example is presented in Table 1.

Prompt
Describe what you found most interesting in today’s class

Student Responses
S1: The main topics of this course seem interesting and

correspond with my major (Chemical engineering)
S2: I found the group activity most interesting
S3: Process that make materials
S4: I found the properties of bike elements to be most

interesting
S5: How materials are manufactured
S6: Finding out what we will learn in this class was

interesting to me
S7: The activity with the bicycle parts
S8: “part of a bike” activity
... (rest omitted, 53 responses in total.)

Reference Summary
- group activity of analyzing bicycle’s parts
- materials processing
- the main topic of this course

Table 1: Example student responses and a reference summary

created by the teaching assistant. ‘S1’–‘S8’ are student IDs.

In this work, we aim to summarize the student re-
sponses. This is formulated as an extractive sum-
marization task, where a set of representative sen-
tences are extracted from student responses to form
a textual summary. One of the challenges of sum-
marizing student feedback is its lexical variety. For
example, in Table 1, “bike elements” (S4) and “bi-
cycle parts” (S7), “the main topics of this course”
(S1) and “what we will learn in this class” (S6) are
different expressions that communicate the same or
similar meanings. In fact, we observe 97% of the bi-
grams appear only once or twice in the student feed-
back corpus (§4), whereas in a typical news dataset
(DUC 2004), it is about 80%. To tackle this chal-
lenge, we propose a new approach to summarizing

80

student feedback, which extends the standard ILP
framework by approximating the co-occurrence ma-
trix using a low-rank alternative. The resulting sys-
tem allows sentences authored by different students
to share co-occurrence statistics. For example, “The
activity with the bicycle parts” (S7) will be allowed
to partially contain “bike elements” (S4) although
the latter did not appear in the sentence. Experi-
ments show that our approach produces better re-
sults on the student feedback summarization task in
terms of both ROUGE scores and human evaluation.

2 ILP Formulation

Let D be a set of student responses that consist ofM
sentences in total. Let yj ∈ {0, 1}, j = {1, · · · ,M}
indicate if a sentence j is selected (yj = 1) or not
(yj = 0) in the summary. Similarly, let N be the
number of unique concepts in D. zi ∈ {0, 1},
i = {1, · · · , N} indicate the appearance of concepts
in the summary. Each concept i is assigned a weight
of wi, often measured by the number of sentences or
documents that contain the concept. The ILP-based
summarization approach (Gillick and Favre, 2009)
searches for an optimal assignment to the sentence
and concept variables so that the selected summary
sentences maximize coverage of important concepts.
The relationship between concepts and sentences is
captured by a co-occurrence matrix A ∈ RN×M ,
where Aij = 1 indicates the i-th concept appears in
the j-th sentence, and Aij = 0 otherwise. In the lit-
erature, bigrams are frequently used as a surrogate
for concepts (Gillick et al., 2008; Berg-Kirkpatrick
et al., 2011). We follow the convention and use ‘con-
cept’ and ‘bigram’ interchangeably in the paper.

max
y,z

∑N
i=1wizi (1)

s.t.
∑M

j=1Aij yj ≥ zi (2)

Aij yj ≤ zi (3)∑M
j=1 ljyj ≤ L (4)

yj ∈ {0, 1}, zi ∈ {0, 1} (5)

Two sets of linear constraints are specified to en-
sure the ILP validity: (1) a concept is selected if and
only if at least one sentence carrying it has been se-
lected (Eq. 2), and (2) all concepts in a sentence will

be selected if that sentence is selected (Eq. 3). Fi-
nally, the selected summary sentences are allowed
to contain a total of L words or less (Eq. 4).

3 Our Approach

Because of the lexical diversity in student responses,
we suspect the co-occurrence matrix A may not es-
tablish a faithful correspondence between sentences
and concepts. A concept may be conveyed using
multiple bigram expressions; however, the current
co-occurrence matrix only captures a binary rela-
tionship between sentences and bigrams. For exam-
ple, we ought to give partial credit to “bicycle parts”
(S7) given that a similar expression “bike elements”
(S4) appears in the sentence. Domain-specific syn-
onyms may be captured as well. For example, the
sentence “I tried to follow along but I couldn’t grasp
the concepts” is expected to partially contain the
concept “understand the”, although the latter did not
appear in the sentence.

The existing matrixA is highly sparse. Only 2.7%
of the entries are non-zero in our dataset (§4). We
therefore propose to impute the co-occurrence ma-
trix by filling in missing values. This is accom-
plished by approximating the original co-occurrence
matrix using a low-rank matrix. The low-rankness
encourages similar concepts to be shared across sen-
tences. The data imputation process makes two no-
table changes to the existing ILP framework. First,
it extends the domain of Aij from binary to a con-
tinuous scale [0, 1] (Eq. 2), which offers a better
sentence-level semantic representation. The binary
concept variables (zi) are also relaxed to continuous
domain [0, 1] (Eq. 5), which allows the concepts to
be “partially” included in the summary.

Concretely, given the co-occurrence matrix A ∈
RN×M , we aim to find a low-rank matrix B ∈
RN×M whose values are close to A at the observed
positions. Our objective function is

min
B∈RN×M

1
2

∑
(i,j)∈Ω

(Aij −Bij)2 + λ ‖B‖∗ , (6)

where Ω represents the set of observed value po-
sitions. ‖B‖∗ denotes the trace norm of B, i.e.,
‖B‖∗ =

∑r
i=1 σi, where r is the rank of B and σi

are the singular values. By defining the following

81

projection operator PΩ,

[PΩ(B)]ij =
{
Bij (i, j) ∈ Ω
0 (i, j) /∈ Ω

(7)

our objective function (Eq. 6) can be succinctly rep-
resented as

min
B∈RN×M

1
2
‖PΩ(A)− PΩ(B)‖2F + λ‖B‖∗, (8)

where ‖ · ‖F denotes the Frobenius norm.
Following (Mazumder et al., 2010), we optimize

Eq. 8 using the proximal gradient descent algorithm.
The update rule is

B(k+1) = proxλρk

(
B(k) +ρk

(
PΩ(A)−PΩ(B)

))
, (9)

where ρk is the step size at iteration k and
the proximal function proxt(B) is defined as
the singular value soft-thresholding operator,
proxt(B) = U · diag((σi − t)+) · V >, where
B = Udiag(σ1, · · · , σr)V > is the singular value
decomposition (SVD) of B and (x)+ = max(x, 0).

Since the gradient of 1
2‖PΩ(A)−PΩ(B)‖2F is Lip-

schitz continuous with L = 1 (L is the Lipschitz
continuous constant), we follow (Mazumder et al.,
2010) to choose fixed step size ρk = 1, which has a
provable convergence rate ofO(1/k), where k is the
number of iterations.

4 Dataset

Our dataset is collected from an introductory mate-
rials science and engineering class taught in a ma-
jor U.S. university. The class has 25 lectures and
enrolled 53 undergrad students. The students are
asked to provide feedback after each lecture based
on three prompts: 1) “describe what you found most
interesting in today’s class,” 2) “describe what was
confusing or needed more detail,” and 3) “describe
what you learned about how you learn.” These open-
ended prompts are carefully designed to encourage
students to self-reflect, allowing them to “recapture
experience, think about it and evaluate it” (Boud et
al., 2013). The average response length is 10±8.3
words. If we concatenate all the responses to each
lecture and prompt into a “pseudo-document”, the
document contains 378 words on average.

The reference summaries are created by a teach-
ing assistant. She is allowed to create abstract sum-
maries using her own words in addition to select-
ing phrases directly from the responses. Because
summary annotation is costly and recruiting anno-
tators with proper background is nontrivial, 12 out
of the 25 lectures are annotated with reference sum-
maries. There is one gold-standard summary per
lecture and question prompt, yielding 36 document-
summary pairs1. On average, a reference summary
contains 30 words, corresponding to 7.9% of the to-
tal words in student responses. 43.5% of the bigrams
in human summaries appear in the responses.

5 Experiments

Our proposed approach is compared against a range
of baselines. They are 1) MEAD (Radev et al.,
2004), a centroid-based summarization system that
scores sentences based on length, centroid, and
position; 2) LEXRANK (Erkan and Radev, 2004),
a graph-based summarization approach based on
eigenvector centrality; 3) SUMBASIC (Vanderwende
et al., 2007), an approach that assumes words oc-
curring frequently in a document cluster have a
higher chance of being included in the summary;
4) BASELINE-ILP (Berg-Kirkpatrick et al., 2011), a
baseline ILP framework without data imputation.

For the ILP based approaches, we use bigrams
as concepts (bigrams consisting of only stopwords
are removed2) and sentence frequency as concept
weights. We use all the sentences in 25 lectures
to construct the concept-sentence co-occurrence ma-
trix and perform data imputation. It allows us to
leverage the co-occurrence statistics both within and
across lectures. For the soft-impute algorithm, we
perform grid search (on a scale of [0, 5] with step-
size 0.5) to tune the hyper-parameter λ. To make the
most use of annotated lectures, we split them into
three folds. In each one, we tune λ on two folds and
test it on the other fold. Finally, we report the av-
eraged results. In all experiments, summary length
is set to be 30 words or less, corresponding to the

1This data set is publicly available at http://www.
coursemirror.com/download/dataset.

2Bigrams with one stopword are not removed because 1)
they are informative (“a bike”, “the activity”, “how materials’);
2) such bigrams appear in multiple sentences and are thus help-
ful for matrix imputation.

82

ROUGE-1 ROUGE-2 ROUGE-SU4 Human
System R (%) P (%) F (%) R (%) P (%) F (%) R (%) P (%) F (%) Preference
MEAD 26.4 23.3 21.8 6.7 7.6 6.3 8.8 8.0 5.4 24.8%
LEXRANK 30.0 27.6 25.7 8.1 8.3 7.6 9.6 9.6 6.6 —
SUMBASIC 36.6 31.4 30.4 8.2 8.1 7.5 13.9 11.0 8.7 —
ILP BASELINE 35.5 31.8 29.8 11.1 10.7 9.9 12.9 11.5 8.2 69.6%
OUR APPROACH 38.0 34.6 32.2 12.7 12.9 11.4 15.5 14.4 10.1 89.6%

Table 2: Summarization results evaluated by ROUGE (%) and human judges. Shaded area indicates that the performance difference

with OUR APPROACH is statistically significant (p < 0.05) using a two-tailed paired t-test on the 36 document-summary pairs.

average number of words in human summaries.
In Table 2, we present summarization results eval-

uated by ROUGE (Lin, 2004) and human judges.
ROUGE is a standard evaluation metric that com-
pares system and reference summaries based on n-
gram overlaps. Our proposed approach outperforms
all the baselines based on three standard ROUGE
metrics.3 When examining the imputed sentence-
concept co-occurrence matrix, we notice some in-
teresting examples that indicate the effectiveness of
the proposed approach, shown in Table 3.

Because ROUGE cannot thoroughly capture the
semantic similarity between system and reference
summaries, we further perform human evaluation.
For each lecture and prompt, we present the prompt,
a pair of system outputs in a random order, and the
human summary to five Amazon turkers. The turk-
ers are asked to indicate their preference for system
A or B based on the semantic resemblance to the
human summary on a 5-Likert scale (‘Strongly pre-
ferred A’, ‘Slightly preferred A’, ‘No preference’,
‘Slightly preferred B’, ‘Strongly preferred B’). They
are rewarded $0.08 per task. We use two strategies
to control the quality of the human evaluation. First,
we require the turkers to have a Human Intelligence
Task (HIT) approval rate of 90% or above. Sec-
ond, we insert some quality checkpoints by asking
the turkers to compare two summaries of same text
content but different sentence orders. Turkers who
did not pass these tests are filtered out. Due to bud-
get constraints, we conduct pairwise comparisons
for three systems. The total number of comparisons

3F-scores are slightly lower than P/R because of the averag-
ing effect and can be illustrated in one example. Suppose we
have P1=0.1, R1=0.4, F1=0.16 and P2=0.4, R2=0.1, F2=0.16.
Then the macro-averaged P/R/F-scores are: P=0.25, R=0.25,
F=0.16. In this case, the F-score is lower than both P and R.

Sentence Assoc. Bigrams

the printing needs to better so it can
the graph

be easier to read
graphs make it easier to understand

hard to
concepts
the naming system for the 2 phase

phase diagram
regions
I tried to follow along but I couldn’t

understand the
grasp the concepts
no problems except for the specific

strain curvesequations used to determine properties
from the stress - strain graph

Table 3: Associated bigrams do not appear in the sentence, but

after Matrix Imputation, they yield a decent correlation (cell

value greater than 0.9) with the corresponding sentence.

is 3 system-system pairs × 12 lectures × 3 prompts
× 5 turkers = 540 total pairs. We calculate the per-
centage of “wins” (strong or slight preference) for
each system among all comparisons with its coun-
terparts. Results are reported in the last column of
Table 2. OUR APPROACH is preferred significantly
more often than the other two systems4. Regarding
the inter-annotator agreement, we find 74.3% of the
individual judgements agree with the majority votes
when using a 3-point Likert scale (‘preferred A’, ‘no
preference’, ‘preferred B’).

Table 4 presents example system outputs. This
offers intuitive understanding to our proposed ap-
proach.

4For the significance test, we convert a preference to a score
ranging from -2 to 2 (‘2’ means ‘Strongly preferred’ to a system
and ‘-2’ means ‘Strongly preferred’ to the counterpart system),
and use a two-tailed paired t-test with p < 0.05 to compare the
scores.

83

Prompt
Describe what you found most interesting in today’s class

Reference Summary
- unit cell direction drawing and indexing
- real world examples
- importance of cell direction on materials properties

System Summary (ILP BASELINE)
- drawing and indexing unit cell direction
- it was interesting to understand how to find apf and
fd from last weeks class

- south pole explorers died due to properties of tin

System Summary (OUR APPROACH)
- crystal structure directions
- surprisingly i found nothing interesting today .
- unit cell indexing
- vectors in unit cells
- unit cell drawing and indexing
- the importance of cell direction on material properties

Table 4: Example reference and system summaries.

6 Related Work

Our previous work (Luo and Litman, 2015) pro-
poses to summarize student responses by extract-
ing phrases rather than sentences in order to meet
the need of aggregating and displaying student re-
sponses in a mobile application (Luo et al., 2015;
Fan et al., 2015). It adopts a clustering paradigm
to address the lexical variety issue. In this work, we
leverage matrix imputation to solve this problem and
summarize student response at a sentence level.

The integer linear programming framework has
demonstrated substantial success on summarizing
news documents (Gillick et al., 2008; Gillick et al.,
2009; Woodsend and Lapata, 2012; Li et al., 2013).
Previous studies try to improve this line of work
by generating better estimates of concept weights.
Galanis et al. (2012) proposed a support vector re-
gression model to estimate bigram frequency in the
summary. Berg-Kirkpatrick et al. (2011) explored
a supervised approach to learn parameters using a
cost-augmentative SVM. Different from the above
approaches, we focus on the co-occurrence matrix
instead of concept weights, which is another impor-
tant component of the ILP framework.

Most summarization work focuses on summariz-
ing news documents, as driven by the DUC/TAC
conferences. Notable systems include maximal
marginal relevance (Carbonell and Goldstein, 1998),

submodular functions (Lin and Bilmes, 2010),
jointly extract and compress sentences (Zajic et al.,
2007), optimize content selection and surface real-
ization (Woodsend and Lapata, 2012), minimize re-
construction error (He et al., 2012), and dual decom-
position (Almeida and Martins, 2013). Albeit the
encouraging performance of our proposed approach
on summarizing student responses, when applied to
the DUC 2004 dataset (Hong et al., 2014) and eval-
uated using ROUGE we observe only comparable or
marginal improvement over the ILP baseline. How-
ever, this is not surprising since the lexical variety is
low (20% of bigrams appear more than twice com-
pared to 3% of bigrams appear more than twice in
student responses) and thus less data sparsity, so the
DUC data cannot benefit much from imputation.

7 Conclusion

We make the first effort to summarize student feed-
back using an integer linear programming frame-
work with data imputation. Our approach allows
sentences to share co-occurrence statistics and alle-
viates sparsity issue. Our experiments show that the
proposed approach performs competitively against a
range of baselines and shows promise for future au-
tomation of student feedback analysis.

In the future, we may take advantage of the
high quality student responses (Luo and Litman,
2016) and explore helpfulness-guided summariza-
tion (Xiong and Litman, 2014) to improve the sum-
marization performance. We will also investigate
whether the proposed approach benefits other in-
formal text such as product reviews, social media
discussions or spontaneous speech conversations, in
which we expect the same sparsity issue occurs and
the language expression is diverse.

Acknowledgments

This research is supported by an internal grant from
the Learning Research and Development Center at
the University of Pittsburgh. We thank Muhsin
Menekse for providing the data set. We thank
Jingtao Wang, Fan Zhang, Huy Nguyen and Zahra
Rahimi for valuable suggestions about the proposed
summarization algorithm. We also thank anony-
mous reviewers for insightful comments and sugges-
tions.

84

References
Miguel B. Almeida and Andre F. T. Martins. 2013. Fast

and robust compressive summarization with dual de-
composition and multi-task learning. In Proceedings
of ACL.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of ACL.

David Boud, Rosemary Keogh, David Walker, et al.
2013. Reflection: Turning experience into learning.
Routledge.

Jaime Carbonell and Jade Goldstein. 1998. The use
of mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, SIGIR ’98, pages 335–336.

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based lexical centrality as salience in text sum-
marization. Journal Artificial Intelligence Research,
22(1).

Xiangmin Fan, Wencan Luo, Muhsin Menekse, Diane
Litman, and Jingtao Wang. 2015. CourseMIRROR:
Enhancing large classroom instructor-student interac-
tions via mobile interfaces and natural language pro-
cessing. In Works-In-Progress of ACM Conference on
Human Factors in Computing Systems. ACM.

Dimitrios Galanis, Gerasimos Lampouras, and Ion An-
droutsopoulos. 2012. Extractive multi-document
summarization with integer linear programming and
support vector regression. In Proceedings of COLING.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of NAACL.

Dan Gillick, Benoit Favre, and Dilek Hakkani-Tur. 2008.
The icsi summarization system at tac 2008. In Pro-
ceedings of TAC.

Dan Gillick, Benoit Favre, Dilek Hakkani-Tur, Berndt
Bohnet, Yang Liu, and Shasha Xie. 2009. The
ICSI/UTD summarization system at TAC 2009. In
Proceedings of TAC.

Zhanying He, Chun Chen, Jiajun Bu, Can Wang, Lijun
Zhang, Deng Cai, and Xiaofei He. 2012. Document
summarization based on data reconstruction. In Pro-
ceedings of AAAI.

Kai Hong, John Conroy, Benoit Favre, Alex Kulesza,
Hui Lin, and Ani Nenkova. 2014. A repository of
state of the art and competitive baseline summaries for
generic news summarization. In Nicoletta Calzolari,
Khalid Choukri, Thierry Declerck, Hrafn Loftsson,
Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis, editors, Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages

1608–1616, Reykjavik, Iceland, May. European Lan-
guage Resources Association (ELRA). ACL Anthol-
ogy Identifier: L14-1070.

Chen Li, Xian Qian, and Yang Liu. 2013. Using super-
vised bigram-based ILP for extractive summarization.
In Proceedings of ACL.

Hui Lin and Jeff Bilmes. 2010. Multi-document sum-
marization via budgeted maximization of submodular
functions. In Proceedings of NAACL.

Chin-Yew Lin. 2004. ROUGE: a package for automatic
evaluation of summaries. In Proceedings of the Work-
shop on Text Summarization Branches Out.

Wencan Luo and Diane Litman. 2015. Summarizing stu-
dent responses to reflection prompts. In Proceedings
of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1955–1960, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Wencan Luo and Diane Litman. 2016. Determining
the quality of a student reflective response. In Pro-
ceedings 29th International FLAIRS Conference, Key
Largo, FL, May.

Wencan Luo, Xiangmin Fan, Muhsin Menekse, Jing-
tao Wang, , and Diane Litman. 2015. Enhanc-
ing instructor-student and student-student interactions
with mobile interfaces and summarization. In Pro-
ceedings of NAACL (Demo).

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani.
2010. Spectral regularization algorithms for learning
large incomplete matrices. Journal of Machine Learn-
ing Research.

Dragomir R. Radev, Hongyan Jing, Małgorzata Styś, and
Daniel Tam. 2004. Centroid-based summarization
of multiple documents. Information Processing and
Management, 40(6):919–938.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and
Ani Nenkova. 2007. Beyond SumBasic: Task-
focused summarization with sentence simplification
and lexical expansion. Information Processing and
Management, 43(6):1606–1618.

Kristian Woodsend and Mirella Lapata. 2012. Multiple
aspect summarization using integer linear program-
ming. In Proceedings of EMNLP.

Wenting Xiong and Diane Litman. 2014. Empirical
analysis of exploiting review helpfulness for extractive
summarization of online reviews. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
1985–1995, Dublin, Ireland, August. Dublin City Uni-
versity and Association for Computational Linguistics.

David Zajic, Bonnie J. Dorr, Jimmy Lin, and Richard
Schwartz. 2007. Multi-candidate reduction: Sen-
tence compression as a tool for document summariza-
tion tasks. Information Processing and Management.

85

Proceedings of NAACL-HLT 2016, pages 86–92,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Knowledge-Guided Linguistic Rewrites for Inference Rule Verification

Prachi Jain and Mausam
Indian Institute of Technology, Delhi

New Delhi, India
{csz148211,mausam}@cse.iitd.ac.in

Abstract

A corpus of inference rules between a pair
of relation phrases is typically generated us-
ing the statistical overlap of argument-pairs
associated with the relations (e.g., PATTY,
CLEAN). We investigate knowledge-guided
linguistic rewrites as a secondary source of ev-
idence and find that they can vastly improve
the quality of inference rule corpora, obtaining
27 to 33 point precision improvement while
retaining substantial recall. The facts inferred
using cleaned inference rules are 29-32 points
more accurate.

1 Introduction

The visions of machine reading (Etzioni, 2007) and
deep language understanding (Dorr, 2012) empha-
size the ability to draw inferences from text to dis-
cover implicit information that may not be explic-
itly stated (Schubert, 2002). This has natural appli-
cations to textual entailment (Dagan et al., 2013),
KB completion (Socher et al., 2013), and effective
querying over Knowledge Bases (KBs).

One popular approach for fact inference is to
use a set of inference rules along with proba-
bilistic models such as Markov Logic Networks
(Schoenmackers et al., 2008) or Bayesian Logic Pro-
grams (Raghavan et al., 2012) to produce human-
interpretable proof chains. While scalable (Niu
et al., 2011; Domingos and Webb, 2012), this is
bound by the coverage and quality of the back-
ground knowledge – the set of inference rules that
enable the inference (Clark et al., 2014).

Antecedent Consequent Y/N?
(X, make a note of, Y) (X, write down, Y) Y
(X, offer wide range of, Y) (X, offer variety of, Y) Y
(X, make full use of, Y) (Y, be used by, X) Y
(X, be wounded in, Y) (X, be killed in, Y) N
(X, be director of, Y) (X, be vice president of, Y) N
(X, be a student at, Y) (X, be enrolled at, Y) N

Figure 1: Sample rules verified (Y) and filtered (N) by our

method. Rules #4, #5 were correctly and #6 wrongly filtered.

The paper focuses on generating a high preci-
sion subset of inference rules over Open Informa-
tion Extraction (OpenIE) (Etzioni et al., 2011) rela-
tion phrases (see Fig 1). OpenIE systems generate a
schema-free KB where entities and relations are rep-
resented via normalized but not disambiguated tex-
tual strings. Such OpenIE KBs scale to the Web.

Most existing large-scale corpora of inference
rules are generated using distributional similarity,
like argument-pair overlap (Schoenmackers et al.,
2010; Berant et al., 2012), but often eschew any lin-
guistic or compositional insights. Our early analysis
revealed that such inference rules have very low pre-
cision, not enough to be useful for many real tasks.
For human-facing applications (such as IE-based de-
mos), high precision is critical. Inference rules have
a multiplicative impact, since one poor rule could
potentially generate many bad KB facts.
Contributions: We investigate the hypothesis that
“knowledge-guided linguistic rewrites can provide
independent verification for statistically-generated
Open IE inference rules.” Our system KGLR’s
rewrites exploit the compositional structure of Open
IE relation phrases alongside knowledge in re-
sources like Wordnet and thesaurus. KGLR inde-
pendently verifies rules from existing inference rule

86

corpora (Berant et al., 2012; Pavlick et al., 2015)
and can be seen as additional annotation on exis-
ting inference rules. The verified rules are 27 to
33 points more accurate than the original corpora
and still retain a substantial recall. The precision
of inferred knowledge also has a precision boost
of over 29 points. We release our KGLR imple-
mentation, its annotations on two popular rule cor-
pora along with gold set used for evaluation and the
annotation guidelines for further use (available at
https://github.com/dair-iitd/kglr.git).

2 Related work

Methods for inference over text include random
walks over knowledge graphs (Lao et al., 2011),
matrix completion (Riedel et al., 2013), deep neu-
ral networks (Socher et al., 2013; Rocktäschel et
al., 2015a), natural logic inference (MacCartney
and Manning, 2007) and graphical models (Schoen-
mackers et al., 2008; Raghavan et al., 2012). Most
of these need (or benefit from) a background knowl-
edge of inference rules, including matrix completion
(Rocktäschel et al., 2015b).

Inference rules are predominantly generated via
extended distributional similarity – two phrases hav-
ing a high degree of argument overlap are simi-
lar, and thus candidates for a unidirectional or a
bidirectional inference rule. Methods vary on the
base representation, e.g., KB relations (Galárraga
et al., 2013; Grycner et al., 2015), Open IE rela-
tion phrases (Schoenmackers et al., 2010), syntactic-
ontological-lexical (SOL) patterns (Nakashole et al.,
2012), and dependency paths (Lin and Pantel, 2001).
An enhancement is global transitivity (TNCF algo-
rithm) for improving recall (Berant et al., 2012). The
highest precision setting of TNCF (λ = 0.1) was
released as a corpus (informally called CLEAN) of
Open IE inference rules.1

Distributional similarity approaches have two
fundamental limitations. First, they miss obvious
commonsense facts, e.g., 〈(X, married, Y) → (X,
knows, Y)〉 – text will rarely say that a couple know
each other. Second, they are consistently affected by
statistical noise and end up generating a wide variety
of inaccurate rules (see rules #4, and #5 in Figure 1).

1http://u.cs.biu.ac.il/˜nlp/resources/downloads/predicative-
entailment-rules-learned-using-local-and-global-algorithms

Our early experiments with CLEAN revealed its pre-
cision to be about 0.49, not enough to be useful in
practice, especially for human-facing applications.

Similar to our paper, some past works have used
alternative sources of knowledge. Weisman et al.
(2012) study inference between verbs (e.g., 〈startle
→ surprise〉), but they get low (0.4) precision.
Wordnet corpus to generate inference rules for nat-
ural logic (Angeli and Manning, 2014) improved
noun-based inference. But, they recognize relation
entailments as a key missing piece. Recently, nat-
ural logic semantics is added to a paraphrase cor-
pus (PPDB2.0). Many of their features, e.g., lexi-
cal/orthographic, multilingual translation based, are
complimentary to our method.

We test our KGLR algorithm on CLEAN and en-
tailment/paraphrase subset of PPDB2.0 (which we
call PPDBe).

3 Knowledge-Guided Linguistic Rewrites
(KGLR)

Given a rule 〈(X, r1, Y)→ (X, r2, Y)〉 or 〈(X, r1, Y)
→ (Y, r2, X)〉 we present KGLR, a series of rewrites
of relation phrase r1 to prove r2 (examples in Fig 1).
The last two rewrites deal with reversal of argument
order in r2; others are for the first case.

Thesaurus Synonyms: Thesauri typically provide an
expansive set of potential synonyms, encompass-
ing near-synonyms and contextually synonymous
words. Thesaurus synonyms are not that helpful for
generating inference rules (or else we will generate
rules like 〈produce → percolate〉). However, they
are excellent in rule verification as they provide evi-
dence independent from statistical overlap metrics.

We allow any word/phrase w1 in r1 to be replaced
by any word/phrase w2 from its thesaurus synsets
as long as (1) w2 has same part-of-speech as w1 and
(2) w2 is seen in r2 at the same distance from left
of the phrase as w1 in phrase r1, but ignoring words
dropped due to other rules whose details follows
next. To define a thesaurus synset, we tagw1 with its
POS and look for all thesaurus synsets of that POS
containing w1. We allow this rewrite if PMI(w1, w2)
> λ (=-2.5 based on a devset). We calculate PMI as
log (#w1 occurs in synsets of w2+#w2 occurs in synsets of w1)

(# of synsets of w1×# of synsets of w2) .
Some words can be both synonyms and antonyms
in different situations. For example, thesaurus lists

87

‘bad’ as both a synonym and antonym of ‘good’.
We don’t allow such antonyms in these rewrites.

Thesarus synonyms can verify 〈offer a vast range
of→ provide a wide range of〉, since offer-provide,
and vast-wide are thesaurus synonyms. We use Ro-
get’s 21st Century Thesaurus in KGLR implementa-
tion.
Negating rules: We reject rules where r2 explicitly
negates r1 or vice versa. We reject a rule if r2 is
same as r1 if we drop ‘not’ from one of them. For
example, the rule 〈be the president of→ be not the
president of〉, will be rejected.
Wordnet Hypernyms: We replace word/phrase w in
r1 by its Wordnet hypernym if it is in r2. We prove
〈be highlight of → be component of〉, as Wordnet
lists ‘component’ as a hypernym of ‘highlight’.
Dropping Modifiers: We drop any adjective, ad-
verb, superlatives or comparatives (e.g., ‘more’,
‘most’) from r1. This lets us verify 〈be most im-
portant part of→ be part of〉.
Gerund-Infinitive Equivalence: We convert infini-
tive constructions into gerunds and vice versa. For
example, 〈starts to drink↔ starts drinking〉.
Deverbal Nouns: We use Wordnet’s derivationally
related forms to compute a verb-noun pair list. We
allow back and forth conversions from “be noun of”
to related verb. So, we verify 〈be cause of→ cause〉.
Light Verbs and Serial Verbs: If a light verb precede
a word with derivationally related noun sense, we
delete it. Similarly, if a serial verb precede a word
with derivationally related verb sense, we delete
it. We identify light verbs via the verbs that fre-
quently precede a 〈(a|an) (verb|deverbal noun)〉 pair
in Wikipedia. Serial verbs are identified as the verbs
that frequently precede another verb in Wikipedia.
Thus we can convert 〈take a look at→ look at〉.
Preposition Synonyms: We manually create a list of
preposition near-synonyms such as into-to, in-at, at-
near. We replace a preposition by its near-synonym.
This proves 〈translated into→ translated to〉.
Be-Words & Determiners: We drop be-words (‘is’,
‘was’, ‘be’, etc.) and determiners from r1 and r2.
Active-Passive: We allow (X, verb, Y) to be rewrit-
ten as (Y, be verb by, X).
Redundant Prepositions: We find that often prepo-
sitions other than ‘by’ can be alternatively used

with passive forms of some verbs. Moreover, some
prepositions can be redundantly used in active forms
too. For example, 〈(X, absorb, Y)↔ (Y, be absorbed
in, X)〉, or similarly, 〈(X, attack, Y) ↔ (X, attack
on, Y)〉. To create such a list of verb-preposition
pairs, we simply trust the argument-overlap statis-
tics. Statistics here does not make that many errors
since the base verb in both relations is the same.

3.1 Implementation

KGLR allows repeated application of these rewrites
to modify r1 and r2. If it achieves r1 = r2 it ver-
ifies the inference rule. For tractable implementa-
tion KGLR uses a depth first search approach where
a search node maintains both r1 and r2. Search
does not allow rewrites that introduce any new lexi-
cal (lemmatized) entries not in original words(r1) ∪
words(r2). If it can’t apply any rewrite to get a new
node, it returns failure.

Many rules are proved by a sequence of rewrites.
E.g., to prove 〈(X, be a major cause of, Y)→ (Y, be
caused by, X)〉, the proof proceeds as: (X, be a ma-
jor cause of, Y)→ (X, be major cause of, Y)→ (X,
be cause of, Y) → (X, cause, Y) → (Y, be caused
by, X) by dropping determiner, dropping adjective,
deverbal noun, and active-passive transformation re-
spectively. Similarly, 〈(X, helps to protect, Y)→ (X,
look after, Y)〉 follows from gerund-infinitive con-
version (helps protect), dropping support from serial
verbs (protect), and thesaurus synonym (look after).

4 Experiments

KGLR verifies a subset of rules from CLEAN and
PPDBe to produce, VCLEAN and VPPDBe. Our ex-
periments answer these research questions: (1) What
is the precision and size of the verified subsets com-
pared to original corpora?, (2) How does additional
knowledge generated after performing inference us-
ing these rules compare with each other? and (3)
Which rewrites are critical to KGLR performance?

Comparison of CLEAN and VCLEAN: The orig-
inal CLEAN corpus has about 102K rules. KGLR

verifies about 36K rules and filter 66K rules out. To
estimate the precisions of CLEAN and VCLEAN we
independently sampled a random subset of 200 in-
ference rules from each and asked two annotators
(graduate level NLP students) to label the rules as

88

correct or incorrect. Rules were mixed together and
the annotators were blind to the system that gen-
erated a rule. Our initial annotation guideline was
similar to that of textual entailment – label a rule
as correct if the consequent can usually be inferred
given the antecedent, for most naturally occurring
argument-pairs for the antecedent.

Our annotators faced one issue with the guide-
line – some inference rules were valid if (X,Y) were
bound to specific types, but not for others. For exam-
ple, 〈(X, be born in, Y)→ (Y, be birthplace of, X)〉 is
valid if Y is a location, not if Y is a year. Even seem-
ingly correct inference rules, e.g., 〈(X, is the father
of, Y)→ (Y, is the child of, X)〉, can make unusual
incorrect inferences: (Gandhi, is the father of, India)
does not imply (India, is the child of, Gandhi). Un-
fortunately, these corpora don’t associate argument-
type information with their inference rules.

To mitigate this we refined the annotation guide-
lines to accept inference rules as correct as long
as they are valid for some type-pair. The inter-
annotator agreement with this modification was 94%
(κ = 0.88). On the subset of the tags where the two
annotators agreed we find the precision of CLEAN

to be 48.9%, whereas VCLEAN was evaluated to be
82.5% precise – much more useful for real-world
applications. Multiplying the precision with their
sizes, we find the effective yield2 of CLEAN to be
50K compared to 30K for VCLEAN. Overall, we
find that VCLEAN obtains a 33 point precision im-
provement with an effective yield of about 60%.

Error Analysis: Most of VCLEAN errors are due
to erroneous (or unusual) thesaurus synonyms. For
missed recall, we analyzed CLEAN’s sample missed
by VCLEAN. We find that only about 13% of those
are world knowledge rules (e.g., rule #6 in Figure
1). Other missed recall is because of some missing
rewrites, missing thesaurus synonyms, spelling mis-
takes. These can potentially be captured by using
other resources and adding rewrite rules.

Comparison of PPDBe and VPPDBe: Unlike
CLEAN, PPDB2.0 associates a confidence value for
each rule, which can be varied to obtain different
levels of precision and yield. We control for yield so
that we can compare precisions directly.

We operate on PPDBe subset that has an Open IE-

2Yield is proportional to recall

like relation phrase on both sides; this was identified
by matching to ReVerb syntactic patterns (Etzioni et
al., 2011). This subset is of size 402K. KGLR on
this produces 85K verified rules (VPPDBe). We find
the threshold for confidence values in PPDBe that
achieves the same yield (confidence > 0.342).

We perform annotation on PPDBe(0.342) and
VPPDBe using same annotation guidelines as before.
The inter-annotator agreement was 91% (κ = 0.82).
On the subset of the tags where the two annotators
agreed we find the precision of PPDBe to be low –
44.2%, whereas VPPDBe was evaluated to be 71.4%
precise. We notice that about 4 in 5 PPDB rela-
tion phrases are of length 1 or 2 (whereas 50% of
CLEAN relation phrases are of length ≥ 3). This
contributes to a slightly lower precision of VPPDBe,
as most rules are proved by thesaurus synonymy and
the power of KGLR to handle compositionality of
longer relation phrases does not get exploited.

Comparison of Inferred Facts: A typical use
case of inference rules is in generating new facts
by applying inference rules to a KB. We indepen-
dently apply VCLEAN’s, CLEAN’s, PPDBe’s and
VPPDBe’s inference rules on a public corpus of 4.2
million ReVerb triples.3 Since ReVerb itself has sig-
nificant extraction errors (our estimate is 20% er-
rors) and our goal is to evaluate the quality of in-
ference, we restrict this evaluation to only the subset
of accurate ReVerb extractions.

VCLEAN and CLEAN facts: We sampled about
200 facts inferred by VCLEAN rules and CLEAN

rules each (applied over accurate ReVerb extrac-
tions) and gave the original sentence as well as
inferred facts to two annotators. We obtained a
high inter-annotator agreement of 96.3%(κ = 0.92)
and we discarded disagreements from final analysis.
Overall, facts inferred by CLEAN achieved a preci-
sion of about 49.1% and those inferred by VCLEAN

obtained a 81.6% precision. The estimated yields of
fact corpora (precision×size) are 7 and 4.5 million
for CLEAN and VCLEAN respectively. This yield
estimate does not include the initial 4.2 million facts.

PPDBe and VPPDBe facts: As done previously,
we sampled 200 facts inferred by PPDBe and
VPPDBe rules, which were annotated by two anno-
tators. We obtained a good inter annotator agree-

3Available at http://reverb.cs.washington.edu

89

System CLEAN VCLEAN
Size 102,565 36,229
Rule Precision 48.9% 82.5%
Rule Yield 50,154 29,889
Fact Precision 49.1% 81.6%
Fact Yield 7 million 4.5 million
System PPDBe(0.342) VPPDBe
Size 85,272 85,261
Rule Precision 44.2% 71.4%
Fact Precision 22.16% 51.30%
Fact Yield 41 million 35 million

Figure 2: The precision and yield of inference rules after KGLR

validation, and that of KB generated by inference using these

rule-sets. Comparison with PPDBe is yield-controlled.

ment of 90.0%(κ = 0.8) and we discarded disagree-
ments from final analysis. Overall, facts inferred by
PPDBe achieved a really poor precision - 22.2% and
those inferred by VPPDBe obtained an improvement
of about 29 points (51.3% precision). Short relation
phrases (mostly of length 1 or 2, which forms 80%
of PPDBe) contribute to low precision of VPPDBe.
Example low precision VPPDBe rules include 〈 (X,
be, Y) → (X, obtain, Y)〉, 〈 (X, include, Y) → (X,
come, Y)〉, which were inaccurately verified due to
thesaurus errors. The estimated yields of fact cor-
pora are 41 million and 35 million for PPDBe and
VPPDBe respectively.
Ablation Study of KGLR rewrites: We evaluate
the efficacy of different rewrites in KGLR by per-
forming an ablation study (see Table 3). We ran
KGLR by turning off one rewrite on a sample of 600
CLEAN rules (our development set) and calculating
its precision and recall. The ablation study high-
lights that most rewrites add some value to the per-
formance of KGLR, however Antonyms and Drop-
ping modifiers are particularly important for preci-
sion and Active-Passive and Redundant Preposition
add substantial recall.

5 Discussion

KGLR’s value is in precision-sensitive tasks such as
a human-facing demo, or downstream NLP applica-
tion (like question answering) where error multipli-
cation is highly undesirable. Along with high preci-
sion, it still obtains acceptably good yield.

Our annotators observe the importance of type-
restriction of arguments for inference rules (similar
to rules in (Schoenmackers et al., 2010)). Type an-

System Precision Recall
KGLR (all rules) 85.4% 62.0%
w/o Negating Rules 85.4% 62.0%
w/o Antonyms 84.2% 62.0%
w/o Wordnet Hypernyms 86.1% 59.3%
w/o Dropping Modifiers 84.9% 59.6%
w/o Gerund-Infinitive Equivalence 85.2% 61.0%
w/o Light and Serial Verbs 85.0% 59.9%
w/o Deverbal Nouns 85.4% 62.0%
w/o Preposition Synonyms 86.9% 56.9%
w/o Active-Passive 85.0% 54.5%
w/o Redundant Prepositions 86.1% 61.6%

Figure 3: Ablation study of rule verification using KGLR

rewrites on our devset of 600 CLEAN rules

notation of existing inference rule corpora is an im-
portant step for obtaining high precision and clarity.

Inference rules are typically of two types – lin-
guistic/synonym rewrites, which are captured by our
work, and world knowledge rules (see rule #6 in Fig
1), which are not. We were surprised to estimate
that about 87% of CLEAN, which is a statistically-
generated corpus, is just linguistic rewrites! Ob-
taining world knowledge or common-sense rules at
high precision and scale continues to be the key NLP
challenge in this area.

6 Conclusions

We present Knowledge-guided Linguistic Rewrites
(KGLR) which exploits the compositionality of rela-
tion phrases, guided by existing knowledge sources,
such as Wordnet and thesaurus to identify a high pre-
cision subset of an inference rule corpus. Validated
CLEAN has a high precision of 83% (vs 49%) at a
yield of 60%. Validated PPDBe has a precision of
71% (vs 44%) at same yield. The precision of in-
ferred facts has about 29-32 pt precision gain. We
expect KGLR to be effective for precision-sensitive
applications of inference. The complete code and
data has been released for the research community.

Acknowledgments: We thank Ashwini Vaidya and
the anonymous reviewers for their helpful sugges-
tions and feedback. We thank Abhishek, Aditya,
Ankit, Jatin, Kabir, and Shikhar for helping with
the data annotation. This work was supported by
Google language understanding and knowledge dis-
covery focused research grants to Mausam, a KISTI
grant and a Bloomberg grant also to Mausam. Prachi
was supported by a TCS fellowship.

90

References
Gabor Angeli and Christopher D Manning. 2014. Nat-

uralli: Natural logic inference for common sense rea-
soning. In Empirical Methods in Natural Language
Processing (EMNLP).

Jonathan Berant, Ido Dagan, Meni Adler, and Jacob
Goldberger. 2012. Efficient tree-based approxima-
tion for entailment graph learning. In The 50th Annual
Meeting of the Association for Computational Linguis-
tics, Proceedings of the System Demonstrations, July
10, 2012, Jeju Island, Korea.

Peter Clark, Niranjan Balasubramanian, Sumithra Bhak-
thavatsalam, Kevin Humphreys, Jesse Kinkead,
Ashish Sabharwal, and Oyvind Tafjord. 2014. Auto-
matic construction of inference-supporting knowledge
bases.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Pedro M. Domingos and William Austin Webb. 2012.
A tractable first-order probabilistic logic. In Proceed-
ings of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, July 22-26, 2012, Toronto, Ontario,
Canada.

Bonnie Dorr. 2012. Language programs at Darpa.
AKBC-WEKEX 2012 Invited Talk.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam. 2011. Open infor-
mation extraction: The second generation. In IJCAI,
volume 11, pages 3–10.

Oren Etzioni. 2007. Machine reading of web text. In
Proceedings of the 4th International Conference on
Knowledge Capture (K-CAP 2007), October 28-31,
2007, Whistler, BC, Canada, pages 1–4.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose,
and Fabian Suchanek. 2013. Amie: association
rule mining under incomplete evidence in ontological
knowledge bases. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pages 413–422.
International World Wide Web Conferences Steering
Committee.

Adam Grycner, Gerhard Weikum, Jay Pujara, James
Foulds, and Lise Getoor. 2015. Relly: Inferring
hypernym relationships between relational phrases.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
971–981, Lisbon, Portugal, September. Association
for Computational Linguistics.

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing,
pages 529–539. Association for Computational Lin-
guistics.

Dekang Lin and Patrick Pantel. 2001. Dirt@ sbt@ dis-
covery of inference rules from text. In Proceedings
of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 323–
328. ACM.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 193–200. Association for
Computational Linguistics.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: a taxonomy of relational
patterns with semantic types. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1135–1145. Associa-
tion for Computational Linguistics.

Feng Niu, Christopher Ré, AnHai Doan, and Jude W.
Shavlik. 2011. Tuffy: Scaling up statistical inference
in markov logic networks using an RDBMS. PVLDB,
4(6):373–384.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. Adding semantics to data-driven para-
phrasing. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics (ACL
2015).

Sindhu Raghavan, Raymond J. Mooney, and Hyeonseo
Ku. 2012. Learning to ”read between the lines” using
bayesian logic programs. pages 349–358, July.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In
Human Language Technologies: Conference of the
North American Chapter of the Association of Com-
putational Linguistics, Proceedings, June 9-14, 2013,
Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA,
pages 74–84.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomás Kociský, and Phil Blunsom. 2015a.
Reasoning about entailment with neural attention.
CoRR, abs/1509.06664.

Tim Rocktäschel, Sameer Singh, and Sebastian Riedel.
2015b. Injecting Logical Background Knowledge into
Embeddings for Relation Extraction. In Annual Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics (NAACL).

Stefan Schoenmackers, Oren Etzioni, and Daniel S Weld.
2008. Scaling textual inference to the web. In Pro-
ceedings of the Conference on Empirical Methods in

91

Natural Language Processing, pages 79–88. Associa-
tion for Computational Linguistics.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and
Jesse Davis. 2010. Learning first-order horn clauses
from web text. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1088–1098. AssociaFrition for Compu-
tational Linguistics.

Lenhart Schubert. 2002. Can we derive general world
knowledge from texts? In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 94–97. Morgan Kaufmann
Publishers Inc.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems,
pages 926–934.

Hila Weisman, Jonathan Berant, Idan Szpektor, and
Ido Dagan. 2012. Learning verb inference rules
from linguistically-motivated evidence. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, EMNLP-CoNLL
2012, pages 194–204.

92

Proceedings of NAACL-HLT 2016, pages 93–98,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Abstractive Sentence Summarization
with Attentive Recurrent Neural Networks

Sumit Chopra
Facebook AI Research
spchopra@fb.com

Michael Auli
Facebook AI Research

michaelauli@fb.com

Alexander M. Rush
Harvard SEAS

srush@seas.harvard.edu

Abstract

Abstractive Sentence Summarization gener-
ates a shorter version of a given sentence while
attempting to preserve its meaning. We intro-
duce a conditional recurrent neural network
(RNN) which generates a summary of an in-
put sentence. The conditioning is provided by
a novel convolutional attention-based encoder
which ensures that the decoder focuses on the
appropriate input words at each step of genera-
tion. Our model relies only on learned features
and is easy to train in an end-to-end fashion on
large data sets. Our experiments show that the
model significantly outperforms the recently
proposed state-of-the-art method on the Giga-
word corpus while performing competitively
on the DUC-2004 shared task.

1 Introduction

Generating a condensed version of a passage while
preserving its meaning is known as text summariza-
tion. Tackling this task is an important step to-
wards natural language understanding. Summariza-
tion systems can be broadly classified into two cat-
egories. Extractive models generate summaries by
cropping important segments from the original text
and putting them together to form a coherent sum-
mary. Abstractive models generate summaries from
scratch without being constrained to reuse phrases
from the original text.

In this paper we propose a novel recurrent neu-
ral network for the problem of abstractive sentence
summarization. Inspired by the recently proposed
architectures for machine translation (Bahdanau et

al., 2014), our model consists of a conditional recur-
rent neural network, which acts as a decoder to gen-
erate the summary of an input sentence, much like
a standard recurrent language model. In addition, at
every time step the decoder also takes a condition-
ing input which is the output of an encoder module.
Depending on the current state of the RNN, the en-
coder computes scores over the words in the input
sentence. These scores can be interpreted as a soft
alignment over the input text, informing the decoder
which part of the input sentence it should focus on
to generate the next word. Both the decoder and en-
coder are jointly trained on a data set consisting of
sentence-summary pairs. Our model can be seen as
an extension of the recently proposed model for the
same problem by Rush et al. (2015). While they use
a feed-forward neural language model for genera-
tion, we use a recurrent neural network. Further-
more, our encoder is more sophisticated, in that it
explicitly encodes the position information of the in-
put words. Lastly, our encoder uses a convolutional
network to encode input words. These extensions
result in improved performance.

The main contribution of this paper is a novel
convolutional attention-based conditional recurrent
neural network model for the problem of abstractive
sentence summarization. Empirically we show that
our model beats the state-of-the-art systems of Rush
et al. (2015) on multiple data sets. Particularly no-
table is the fact that even with a simple generation
module, which does not use any extractive feature
tuning, our model manages to significantly outper-
form their ABS+ system on the Gigaword data set
and is comparable on the DUC-2004 task.

93

2 Previous Work

While there is a large body of work for generat-
ing extractive summaries of sentences (Jing, 2000;
Knight and Marcu, 2002; McDonald, 2006; Clarke
and Lapata, 2008; Filippova and Altun, 2013; Fil-
ippova et al., 2015), there has been much less re-
search on abstractive summarization. A count-based
noisy-channel machine translation model was pro-
posed for the problem in Banko et al. (2000). The
task of abstractive sentence summarization was later
formalized around the DUC-2003 and DUC-2004
competitions (Over et al., 2007), where the TOP-
IARY system (Zajic et al., 2004) was the state-of-
the-art. More recently Cohn and Lapata (2008)
and later Woodsend et al. (2010) proposed systems
which made heavy use of the syntactic features of
the sentence-summary pairs. Later, along the lines
of Banko et al. (2000), MOSES was used directly as
a method for text simplification by Wubben et al.
(2012). Other works which have recently been pro-
posed for the problem of sentence summarization in-
clude (Galanis and Androutsopoulos, 2010; Napoles
et al., 2011; Cohn and Lapata, 2013). Very recently
Rush et al. (2015) proposed a neural attention model
for this problem using a new data set for training and
showing state-of-the-art performance on the DUC
tasks. Our model can be seen as an extension of
their model.

3 Attentive Recurrent Architecture

Let x denote the input sentence consisting of a
sequence of M words x = [x1, . . . , xM], where
each word xi is part of vocabulary V , of size
|V| = V . Our task is to generate a target sequence
y = [y1, . . . , yN], of N words, where N < M ,
such that the meaning of x is preserved: y =
argmaxy P (y|x), where y is a random variable de-
noting a sequence of N words.

Typically the conditional probability is mod-
eled by a parametric function with parameters θ:
P (y|x) = P (y|x; θ). Training involves finding the
θ which maximizes the conditional probability of
sentence-summary pairs in the training corpus. If
the model is trained to generate the next word of the
summary, given the previous words, then the above
conditional can be factorized into a product of indi-

vidual conditional probabilities:

P (y|x; θ) =
N∏
t=1

p(yt|{y1, . . . , yt−1},x; θ). (1)

In this work we model this conditional probabil-
ity using an RNN Encoder-Decoder architecture, in-
spired by Cho et al. (2014) and subsequently ex-
tended in Bahdanau et al. (2014). We call our model
RAS (Recurrent Attentive Summarizer).

3.1 Recurrent Decoder
The above conditional is modeled using an RNN:

P (yt|{y1, . . . , yt−1},x; θ) = Pt = gθ1(ht, ct),

where ht is the hidden state of the RNN:

ht = gθ1(yt−1, ht−1, ct).

Here ct is the output of the encoder module (detailed
in §3.2). It can be seen as a context vector which is
computed as a function of the current state ht−1 and
the input sequence x.

Our Elman RNN takes the following form (El-
man, 1990):

ht = σ(W1yt−1 +W2ht−1 +W3ct)
Pt = ρ(W4ht +W5ct),

where σ is the sigmoid function and ρ is the soft-
max, defined as: ρ(ot) = eot/

∑
j e

oj and Wi

(i = 1, . . . , 5) are matrices of learnable parameters
of sizes W{1,2,3} ∈ Rd×d and W{4,5} ∈ Rd×V .

The LSTM decoder is defined as (Hochreiter and
Schmidhuber, 1997):

it = σ(W1yt−1 +W2ht−1 +W3ct)
i′t = tanh(W4yt−1 +W5ht−1 +W6ct)
ft = σ(W7yt−1 +W8ht−1 +W9ct)
ot = σ(W10yt−1 +W11ht−1 +W12ct)
mt = mt−1 � ft + it � i′t
ht = mt � ot
Pt = ρ(W13ht +W14ct).

Operator � refers to component-wise multiplica-
tion, and Wi (i = 1, . . . , 14) are matrices of learn-
able parameters of sizes W{1,...,12} ∈ Rd×d, and
W{13,14} ∈ Rd×V .

94

3.2 Attentive Encoder

We now give the details of the encoder which com-
putes the context vector ct for every time step t of
the decoder above. With a slight overload of nota-
tion, for an input sentence x we denote by xi the d
dimensional learnable embedding of the i-th word
(xi ∈ Rd). In addition the position i of the word
xi is also associated with a learnable embedding li
of size d (li ∈ Rd). Then the full embedding for
i-th word in x is given by ai = xi + li. Let us
denote by Bk ∈ Rq×d a learnable weight matrix
which is used to convolve over the full embeddings
of consecutive words. Let there be d such matrices
(k ∈ {1, . . . , d}). The output of convolution is given
by:

zik =
q/2∑

h=−q/2
ai+h · bkq/2+h, (2)

where bkj is the j-th column of the matrix Bk. Thus
the d dimensional aggregate embedding vector zi is
defined as zi = [zi1, . . . , zid]. Note that each word
xi in the input sequence is associated with one ag-
gregate embedding vector zi. The vectors zi can be
seen as a representation of the word which captures
the position in which it occurs in the sentence and
also the context in which it appears in the sentence.
In our experiments the width q of the convolution
matrix Bk was set to 5. To account for words at the
boundaries of x we first pad the sequence on both
sides with dummy words before computing the ag-
gregate vectors zi’s.

Given these aggregate vectors of words, we com-
pute the context vector ct (the encoder output) as:

ct =
M∑
j=1

αj,t−1xj , (3)

where the weights αj,t−1 are computed as

αj,t−1 =
exp(zj · ht−1)∑M
i=1 exp(zi · ht−1)

. (4)

3.3 Training and Generation

Given a training corpus S = {(xi,yi)}Si=1 of S
sentence-summary pairs, the above model can be
trained end-to-end using stochastic gradient descent

by minimizing the negative conditional log likeli-
hood of the training data with respect to θ:

L = −
S∑
i=1

N∑
t=1

logP (yit|{yi1, . . . , yit−1},xi; θ),
(5)

where the parameters θ constitute the parameters of
the decoder and the encoder.

Once the parametric model is trained we generate
a summary for a new sentence x through a word-
based beam search such that P (y|x) is maximized,
argmaxP (yt|{y1, . . . , yt−1},x). The search is pa-
rameterized by the number of paths k that are pur-
sued at each time step.

4 Experimental Setup

4.1 Datasets and Evaluation
Our models are trained on the annotated version of
the Gigaword corpus (Graff et al., 2003; Napoles
et al., 2012) and we use only the annotations for
tokenization and sentence separation while discard-
ing other annotations such as tags and parses. We
pair the first sentence of each article with its head-
line to form sentence-summary pairs. The data
is pre-processed in the same way as Rush et al.
(2015) and we use the same splits for training, val-
idation, and testing. For Gigaword we report re-
sults on the same randomly held-out test set of 2000
sentence-summary pairs as (Rush et al., 2015).1

We also evaluate our models on the DUC-2004
evaluation data set comprising 500 pairs (Over et
al., 2007). Our evaluation is based on three vari-
ants of ROUGE (Lin, 2004), namely, ROUGE-1
(unigrams), ROUGE-2 (bigrams), and ROUGE-L
(longest-common substring).

4.2 Architectural Choices
We implemented our models in the Torch library
(http://torch.ch/)2. To optimize our loss (Equa-
tion 5) we used stochastic gradient descent with
mini-batches of size 32. During training we mea-
sure the perplexity of the summaries in the valida-
tion set and adjust our hyper-parameters, such as the
learning rate, based on this number.

1We remove pairs with empty titles resulting in slightly dif-
ferent accuracy compared to Rush et al. (2015) for their sys-
tems.

2Our code can found at www://github.com/facebook/namas

95

Model Perplexity

Bag-of-Words 43.6
Convolutional (TDNN) 35.9
Attention-based (ABS) 27.1
RAS-Elman 18.9
RAS-LSTM 20.3

Table 1: Perplexity on the Gigaword validation set. Bag-of-

words, Convolutional (TDNN) and ABS are the different en-

coders of Rush et. al., 2015.

For the decoder we experimented with both the
Elman RNN and the Long-Short Term Memory
(LSTM) architecture (as discussed in § 3.1). We
chose hyper-parameters based on a grid search and
picked the one which gave the best perplexity on the
validation set. In particular we searched over the
number of hidden units H of the recurrent layer, the
learning rate η, the learning rate annealing schedule
γ (the factor by which to decrease η if the valida-
tion perplexity increases), and the gradient clipping
threshold κ. Our final Elman architecture (RAS-
Elman) uses a single layer with H = 512, η = 0.5,
γ = 2, and κ = 10. The LSTM model (RAS-
LSTM) also has a single layer with H = 512,
η = 0.1, γ = 2, and κ = 10.

5 Results

On the Gigaword corpus we evaluate our models in
terms of perplexity on a held-out set. We then pick
the model with best perplexity on the held-out set
and use it to compute the F1-score of ROUGE-1,
ROUGE-2, and ROUGE-L on the test sets, all of
which we report. For the DUC corpus however,
inline with the standard, we report the recall-only
ROUGE. As baseline we use the state-of-the-art
attention-based system (ABS) of Rush et al. (2015)
which relies on a feed-forward network decoder.
Additionally, we compare to an enhanced version
of their system (ABS+), which relies on a range of
separate extractive summarization features that are
added as log-linear features in a secondary learning
step with minimum error rate training (Och, 2003).

Table 1 shows that both our RAS-Elman and
RAS-LSTM models achieve lower perplexity than

RG-1 RG-2 RG-L

ABS 29.55 11.32 26.42
ABS+ 29.76 11.88 26.96
RAS-Elman (k = 1) 33.10 14.45 30.25
RAS-Elman (k = 10) 33.78 15.97 31.15
RAS-LSTM (k = 1) 31.71 13.63 29.31
RAS-LSTM (k = 10) 32.55 14.70 30.03

Luong-NMT 33.10 14.45 30.71

Table 2: F1 ROUGE scores on the Gigaword test set. ABS and

ABS+ are the systems of Rush et al. 2015. k refers to the size

of the beam for generation; k = 1 implies greedy generation.

RG refers to ROUGE. Rush et al. (2015) previously reported

ROUGE recall, while as we use the more balanced F-measure.

RG-1 RG-2 RG-L

ABS 26.55 7.06 22.05
ABS+ 28.18 8.49 23.81
RAS-Elman (k = 1) 29.13 7.62 23.92
RAS-Elman (k = 10) 28.97 8.26 24.06
RAS-LSTM (k = 1) 26.90 6.57 22.12
RAS-LSTM (k = 10) 27.41 7.69 23.06

Luong-NMT 28.55 8.79 24.43

Table 3: ROUGE results (recall-only) on the DUC-2004 test

sets. ABS and ABS+ are the systems of Rush et al. 2015. k

refers to the size of the beam for generation; k = 1 implies

greedy generation. RG refers to ROUGE.

ABS as well as other models reported in Rush et al.
(2015). The RAS-LSTM performs slightly worse
than RAS-Elman, most likely due to over-fitting.
We attribute this to the relatively simple nature of
this task which can be framed as English-to-English
translation with few long-term dependencies. The
ROUGE results (Table 2) show that our models com-
fortably outperform both ABS and ABS+ by a wide
margin on all metrics. This is even the case when we
rely only on very fast greedy search (k = 1), while
as ABS uses a much wider beam of size k = 50; the
stronger ABS+ system also uses additional extrac-
tive features which our model does not. These fea-
tures cause ABS+ to copy 92% of words from the
input into the summary, whereas our model copies
only 74% of the words leading to more abstractive
summaries. On DUC-2004 we report recall ROUGE
as is customary on this dataset. The results (Ta-
ble 3) show that our models are better than ABS+.
However the improvements are smaller than for Gi-

96

gaword which is likely due to two reasons: First,
tokenization of DUC-2004 differs slightly from our
training corpus. Second, headlines in Gigaword are
much shorter than in DUC-2004.

For the sake of completeness we also compare
our models to the recently proposed standard Neu-
ral Machine Translation (NMT) systems. In par-
ticular, we compare to a smaller re-implementation
of the attentive stacked LSTM encoder-decoder of
Luong et al. (2015). Our implementation uses
two-layer LSTMs for the encoder-decoder with 500
hidden units in each layer. Tables 2 and 3 report
ROUGE scores on the two data sets. From the tables
we observe that the proposed RAS-Elman model is
able to match the performance of the NMT model
of Luong at al. (2015). This is noteworthy be-
cause RAS-Elman is significantly simpler than the
NMT model at multiple levels. First, the encoder
used by RAS-Elman is extremely light-weight (at-
tention over the convolutional representation of the
input words), compared to Luong’s (a 2 hidden layer
LSTM). Second, the decoder used by RAS-Elman is
a single layer standard (Elman) RNN as opposed to
a multi-layer LSTM. In an independent work, Nalla-
pati et. al (2016) also trained a collection of standard
NMT models and report numbers in the same ball-
park as RAS-Elman on both datasets.

In order to better understand which component
of the proposed architecture is responsible for the
improvements, we trained the recurrent model with
Rush et. al., (2015)’s ABS encoder on a subset of the
Gigaword dataset. The ABS encoder, which does
not have the position features, achieves a final vali-
dation perplexity of 38 compared to 29 for the pro-
posed encoder, which uses position features as well
as context information. This clearly shows the bene-
fits of using the position feature in the proposed en-
coder.

Finally in Figure 1 we highlight anecdotal exam-
ples of summaries produced by the RAS-Elman sys-
tem on the Gigaword dataset. The first two examples
highlight typical improvements in the RAS model
over ABS+. Generally the model produces more flu-
ent summaries and is better able to capture the main
actors of the input. For instance in Sentence 1, RAS-
Elman correctly distinguishes the actions of “pepe”
from “ferreira”, and in Sentence 2 it identifies the
correct role of the “think tank”. The final two ex-

I(1): brazilian defender pepe is out for the rest of the season with
a knee injury , his porto coach jesualdo ferreira said saturday .
G: football : pepe out for season
A+: ferreira out for rest of season with knee injury
R: brazilian defender pepe out for rest of season with knee injury

I(2): economic growth in toronto will suffer this year because
of sars , a think tank said friday as health authorities insisted the
illness was under control in canada ’s largest city .
G: sars toll on toronto economy estimated at c$ # billion
A+: think tank under control in canada ’s largest city
R: think tank says economic growth in toronto will suffer this year

I(3): colin l. powell said nothing – a silence that spoke volumes
to many in the white house on thursday morning .
G: in meeting with former officials bush defends iraq policy
A+: colin powell speaks volumes about silence in white house
R: powell speaks volumes on the white house

I(4): an international terror suspect who had been under a con-
troversial loose form of house arrest is on the run , british home
secretary john reid said tuesday .
G: international terror suspect slips net in britain
A+: reid under house arrest terror suspect on the run
R: international terror suspect under house arrest

Figure 1: Example sentence summaries produced on Gi-
gaword. I is the input, G is the true headline, A is ABS+,
and R is RAS-ELMAN.

amples highlight typical mistakes of the models. In
Sentence 3 both models take literally the figurative
use of the idiom “a silence that spoke volumes,” and
produce fluent but nonsensical summaries. In Sen-
tence 4 the RAS model mistakes the content of a
relative clause for the main verb, leading to a sum-
mary with the opposite meaning of the input. These
difficult cases are somewhat rare in the Gigaword,
but they highlight future challenges for obtaining
human-level sentence summary.

6 Conclusion

We extend the state-of-the-art model for abstrac-
tive sentence summarization (Rush et al., 2015)
to a recurrent neural network architecture. Our
model is a simplified version of the encoder-decoder
framework for machine translation (Bahdanau et al.,
2014). The model is trained on the Gigaword corpus
to generate headlines based on the first line of each
news article. We comfortably outperform the previ-
ous state-of-the-art on both Gigaword data and the
DUC-2004 challenge even though our model does
not rely on additional extractive features.

97

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Michele Banko, Vibhu O Mittal, and Michael J Witbrock.
2000. Headline generation based on statistical trans-
lation. In Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics, pages
318–325. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation. In Proceedings of EMNLP 2014,
pages 1724–1734.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research, pages 399–429.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings of
the 22nd International Conference on Computational
Linguistics-Volume 1, pages 137–144. Association for
Computational Linguistics.

Trevor Cohn and Mirella Lapata. 2013. An abstrac-
tive approach to sentence compression. ACM Transac-
tions on Intelligent Systems and Technology (TIST’13),
4,3(41).

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Katja Filippova and Yasemin Altun. 2013. Overcoming
the lack of parallel data in sentence compression. In
EMNLP, pages 1481–1491.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
EMNLP.

Dimitrios Galanis and Ion Androutsopoulos. 2010. An
extractive supervised two-stage method for sentence
compression. In Proceedings of NAACL-HLT 2010.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consortium,
Philadelphia.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–1780.

H Jing. 2000. Sentence reduction for automatic text sum-
marization. In ANLP-00, pages 703–711.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139(1):91–107.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text Summarization

Branches Out: Proceedings of the ACL-04 Workshop,
pages 74–81.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

R McDonald. 2006. Discriminative sentence compres-
sion with soft syntactic evidence. In EACL-06, pages
297–304.

Ramesh Nallapati, Bing Xiang, and Zhou Bowen. 2016.
Sequence-to-sequence rnns for text summarization. In
http://arxiv.org/abs/1602.06023.

Courtney Napoles, Chris Callison-Burch, Juri Ganitke-
vitch, and Benjamin Van Durme. 2011. Paraphratic
sentence compression with a character-based metric:
Tightening without deletion. In Proceedings of the
Workshop on Monolingual Text-To-Text Generation
(MTTG’11).

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge
Base Construction and Web-scale Knowledge Extrac-
tion, pages 95–100. Association for Computational
Linguistics.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 160–167. Associa-
tion for Computational Linguistics.

Paul Over, Hoa Dang, and Donna Harman. 2007. Duc
in context. Information Processing & Management,
43(6):1506–1520.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP.

Kristian Woodsend, Yansong Feng, and Mirella Lapata.
2010. Generation with quasi-synchronous grammar.
In Proceedings of the 2010 conference on empirical
methods in natural language processing, pages 513–
523. Association for Computational Linguistics.

Sander Wubben, Antal Van Den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 1015–1024.
Association for Computational Linguistics.

David Zajic, Bonnie Dorr, and Richard Schwartz. 2004.
Bbn/umd at duc-2004: Topiary. In Proceedings of the
HLT-NAACL 2004 Document Understanding Work-
shop, Boston, pages 112–119.

98

Proceedings of NAACL-HLT 2016, pages 99–109,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Integer Linear Programming for Discourse Parsing

Jérémy Perret Stergos Afantenos Nicholas Asher Mathieu Morey
IRIT, Université de Toulouse & CNRS

118 Route de Narbonne, 31062 Toulouse, France
{firstname.lastname@irit.fr}

Abstract

In this paper we present the first, to the best
of our knowledge, discourse parser that is able
to predict non-tree DAG structures. We use
Integer Linear Programming (ILP) to encode
both the objective function and the constraints
as global decoding over local scores. Our un-
derlying data come from multi-party chat dia-
logues, which require the prediction of DAGs.
We use the dependency parsing paradigm, as
has been done in the past (Muller et al., 2012;
Li et al., 2014; Afantenos et al., 2015), but
we use the underlying formal framework of
SDRT and exploit SDRT’s notions of left and
right distributive relations. We achieve an F-
measure of 0.531 for fully labeled structures
which beats the previous state of the art.

1 Introduction

Multi-party dialogue parsing, in which complete
discourse structures for multi-party dialogue or its
close cousin, multi-party chat, are automatically
constructed, is still in its infancy. Nevertheless,
these are now very common forms of communica-
tion on the Web. Dialogue appears also importantly
different from monologue. Afantenos et al. (2015)
point out that forcing discourse structures to be trees
will perforce miss 9% of the links in their corpus,
because a significant number of discourse structures
in the corpus are not trees. Although Afantenos et
al. (2015) is the only prior paper we know of that
studies dialogue parsing on multi-party dialogue,
and that work relied on methods adapted to treelike
structures, we think the area of multi-party dialogue

and non-treelike discourse structures is ripe for in-
vestigation and potentially important for other gen-
res like the discourse analysis of fora (Wang et al.,
2011, for example). This paper proposes a method
based on constraints using Integer Linear Program-
ming decoding over local probability distributions to
investigate both treelike and non-treelike, full dis-
course structures for multi-party dialogue. We show
that our method outperforms that of Afantenos et al.
(2015) on the corpus they developed.

Discourse parsing involves at least three main
steps: the segmentation of a text into elementary
discourse units (EDUs), the basic building blocks
for discourse structures, the attachment of EDUs to-
gether into connected structures for texts, and finally
the labelling of the links between discourse units
with discourse relations. Much current work in dis-
course parsing focuses on the labelling of discourse
relations, using data from the Penn Discourse Tree-
bank (PDTB) (Prasad et al., 2008). This work has
availed itself of increasingly sophisticated features
of the semantics of the units to be related (Braud and
Denis, 2015); but as the PDTB does not provide full
discourse structures for texts, it is not relevant to our
concerns here. Rhetorical Structure Theory (RST)
(Mann and Thompson, 1987; Mann and Thompson,
1988; Taboada and Mann, 2006) does take into ac-
count the global structure of the document, and the
RST Discourse Tree Bank Carlson et al. (2003) has
texts annotated according to RST with full discourse
structures. This has guided most work in recent dis-
course parsing of multi-sentence text (Subba and Di
Eugenio, 2009; Hernault et al., 2010; duVerle and
Prendinger, 2009; Joty et al., 2013; Joty et al., 2015).

99

But RST requires that discourse structures be projec-
tive trees.

While projective trees are arguably a contender
for representing the discourse structure of mono-
logue text, multi-party chat dialogues exhibit cross-
ing dependencies. This rules out using a theory
like RST as a basis either for an annotation model
or as a guide to learning discourse structure (Afan-
tenos et al., 2015). Several subgroups of interlocu-
tors can momentarily form and carry on a discussion
amongst themselves, forming thus multiple concur-
rent discussion threads. Furthermore, participants
of one thread may reply or comment to something
said to another thread. One might conclude from
the presence of multiple threads in dialogue that we
should use non-projective trees to guide discourse
parsing. But non-projective trees cannot always re-
flect the structure of a discourse either, as Asher
and Lascarides (2003) argue on theoretical grounds.
Afantenos et al. (2015) provide examples in which
a question or a comment by speaker S that is ad-
dressed to all the engaged parties in the conversa-
tion receives an answer from all the other partic-
ipants, all of which are then acknowledged by S
with a simple OK or No worries, thus creating an
intuitive, “lozenge” like structure, in which the ac-
knowledgment has several incoming links represent-
ing discourse dependencies.

A final, important organizing element of the dis-
course structure for text and dialogue is the presence
of clusters of EDUs that can act together as an argu-
ment to other discourse relations. This means that
subgraphs of the entire discourse graph act as ele-
ments or nodes in the full discourse structure. These
subgraphs are complex discourse units or CDUs.1

Here is an example from the Settlers corpus:

(1) gotwoodforsheep: [Do you have a sheep?]a
Thomas: [I do,]b [if you give me clay]c
Thomas: [or wood.]d

Thomas’s response to gotwoodforsheep spans two
turns in the corpus. More interestingly, the response
is a conditional “yes” in which EDUs (c) and (d)
jointly specify the antecedent of the discourse rela-
tion that links both to the EDU I do.

1CDUs are a feature of SDRT as we explain below. They are
also a feature of RST on some interpretations of the Satellite-
Nucleus feature.

CDUs have been claimed to be an important or-
ganizing principle of discourse structure and impor-
tant for the analysis of anaphora and ellipsis for over
20 years (Asher, 1993). Yet the computational com-
munity has ignored them; when they are present in
annotated corpora, they have been eliminated. This
attitude is understandable, because CDUs, as they
stand, are not representable as trees in any straight-
forward way. But given that our method can produce
non-treelike graphs, we take a first step towards the
prediction of CDUs as part of discourse structure by
encoding them in a hypergraph-like framework. In
particular, we will transform our corpus by distribut-
ing relations on CDUs over all their constituents as
we describe in section 3.

Our paper is organized as follows. The data that
we have used are described in more detail in the fol-
lowing section, while the underlying linguistic the-
ory that we are using is described in section 3. In
section 4 we present in detail the model that we
have used, in particular the ILP decoder and the con-
straints and objective function it exploits. We report
our results in section 5. Section 6 provides the re-
lated work while section 7 concludes this paper.

2 Input data

For our experiments we used a corpus collected
from chats involving an online version of the game
The Settlers of Catan described in (Afantenos et al.,
2012; Afantenos et al., 2015). Settlers is a multi-
party, win-lose game in which players use resources
such as wood and sheep to build roads and settle-
ments. Players take turns directing the bargaining.
This is the only discourse annotated corpus of multi-
agent dialogue of which we are aware, and it was one
in which apparently non-treelike structures were al-
ready noted and also contains CDUs. Such a chat
corpus is also useful to study because it approxi-
mates spoken dialogue in several ways—sentence
fragments, non-standard orthography and occasional
lack of syntax—without the inconvenience of tran-
scribing speech. The corpus consists of 39 games
annotated for discourse structure in the style of
SDRT. Each game consists of several dialogues, and
each dialogue represents a single bargaining session
directed by a particular player or perhaps several
connected sessions. Each dialogue is treated as hav-

100

Total Training Testing

Dialogues 1091 968 123
Turns 9160 8166 994
EDUs 10677 9545 1132
CDUs 1284 1132 152

Relation instances

No distribution 10191 9127 1064
Partial dist. 11734 10507 1227
Full dist. 13675 12210 1465

Table 1: Dataset overview

ing its own discourse structure. About 10% of the
corpus was held out for evaluation purposes while
the rest was used for training. The dialogues in
the corpus are mostly short with each speaker’s turn
containing typically only one, two or three EDUs,
though the longest has 156 EDUs and 119 turns.
Most of the discourse connections or relation in-
stances in the corpus thus occur between speaker
turns. Statistics on the number of dialogues, EDUs
and relations contained in each sub-corpus can be
found in table 1. Note that the number of relation
instances in the corpus depends on how CDUs are
translated, which we’ll explain in the next section.
The corpus has approximately the same number of
EDUs and relations as the RST corpus (Carlson et
al., 2003).

3 Linguistic Foundations

Segmented Discourse Representation Theory.
We give a few details here on one discourse theory
in which non-treelike discourse structures are coun-
tenanced and that underlies the annotations of the
corpus we used. That theory is SDRT. In SDRT, a
discourse structure, or SDRS, consists of a set of Dis-
course Units (DUs) and as Discourse Relations link-
ing those units. DUs are distinguished into EDUs
and CDUs. We identify EDUs here with phrases
or sentences describing a state or an event; CDUs
are SDRSs. Formally an SDRS for a given text seg-
mented in EDUsD = {e1, . . . , en}, where ei are the
EDUs ofD, is a tuple (V,E1, E2, `) where V is a set
of nodes or discourse units including {e1, . . . , en},
E1 ⊆ V × V a set of edges representing discourse
relations, E2 ⊆ V × V a set of edges that rep-

resents parthood in the sense that if (x, y) ∈ E2,
then the unit x is an element of the CDU y; finally
` : E1 → Relations is a labelling function that as-
signs an edge in E1 its discourse relation type.

From SDRT Structures to Dependency Struc-
tures. Predicting full SDRSs (V,E1, E2, `) with
E2 6= ∅ has been to date impossible, because no re-
liable method has been identified in the literature for
calculating edges in E2. Instead, most approaches
(Muller et al., 2012; Afantenos et al., 2015, for ex-
ample) simplify the underlying structures by a head
replacement strategy (HR) that removes nodes rep-
resenting CDUs from the original hypergraphs and
replacing any incoming or outgoing edges on these
nodes on the heads of those CDUs, forming thus de-
pendency structures and not hypergraphs. A simi-
lar approach has also been followed by Hirao et al.
(2013) and Li et al. (2014) in the context of RST to
deal with multi-nuclear relations.

Transforming SDRSs using HR does not come
without its problems. The decision to attach all in-
coming and outgoing links to a CDU to its head is
one with little theoretical or semantic justification.
The semantic effects of attaching an EDU to a CDU
are not at all the same as attaching an EDU to the
head of the CDU. For example, suppose we have a
simple discourse with the following EDUs marked
by brackets and discourse connectors in bold :

(2) [The French economy continues to suffer]a
because [high labor costs remain high]b and
[investor confidence remains low]c.

The correct SDRS for (2) is one in which both b and
c together explain why the French economy contin-
ues to suffer. That is, b and c form a CDU and give
rise to the following graph:

a b c
EXPLANATION CONTINUATION

HR on (2) produces a graph whose strictly com-
positional interpretation would be false—b alone ex-
plains why the French economy continues to suf-
fer. Alternatively an interpretation of the proposed
translation an SDRS with CDUs would introduce
spurious ambiguities: either b alone or b and c to-
gether provide the explanation. To make matters
worse, given the semantics of discourse relations

101

in SDRT (Asher and Lascarides, 2003), some rela-
tions have a semantics that implies that a relation
between a CDU and some other discourse unit can
be distributed over the discourse units that make up
the CDU. But not all relations are distributive in
this sense. For example, we could complicate (2)
slightly:

(3) [The French economy continues to suffer]a
and [the Italian economy remains in the
doldrums]b because of [persistent high la-
bor costs]c and [lack of investor confidence
in both countries]d.

In (3), the SDRS graph would be:

a b c d
EXPLANATIONCONTINUATION CONTINUATION

However, this SDRS entails that a is explained by
[c, d] and that b is explained by [c, d]. That is, EX-
PLANATION “distributes” to the left but not to the
right. Once again, the HR translation from SDRSs
into dependency structures described above would
get the intuitive meaning of this example wrong or
introduce spurious ambiguities.

Given the above observations, we decided to take
into account the formal semantics of the discourse
relations before replacing CDUs. More precisely,
we distinguish between left distributive and right
distributive relations. In a nutshell, we examined
the temporal and modal semantics of relations and
classified them as to whether they were distribu-
tive with respect to their left or to their right argu-
ment; left distributive relations are those for which
the source CDU node should be distributed while
right distributive relations are those for which the
target CDU node should be distributed. A relation
can be both left and right distributive. Left distribu-
tive relations include ACKNOWLEDGEMENT, EX-
PLANATION, COMMENT, CONTINUATION, NAR-
RATION, CONTRAST, PARALLEL, BACKGROUND,
while right distributive relations include RESULT,
CONTINUATION, NARRATION, COMMENT, CON-
TRAST, PARALLEL, BACKGROUND, ELABORA-
TION. In Figure 1 we show an example of how rela-
tions distribute between EDU/CDU, CDU/EDU and
CDU/CDU.

ei

ej1 . . . ejn

=⇒
ei

ej1 . . . ejn

(a)

ei1 . . . ein

ej

=⇒
ei1 . . . ein

ej

(b)

ei1 . . . ein

ej1 . . . ejn

=⇒
ei1 . . . ein

ej1 . . . ejn

(c)

Figure 1: Distributing relations: (a) right distribution from an

EDU to a CDU, (b) left distribution from a CDU to an EDU,

(c) from a CDU to a CDU. We assume that all relations are

both right and left distributive.

4 Underlying Model

Decoding over local scores. When we apply ei-
ther a full or partial distributional (partial distribu-
tion takes into account which relations distribute in
which direction) translation to the SDRSs in our cor-
pus, we get dependency graphs that are not trees as
input to our algorithms. We now approximate full
SDRS graphs (V,E1, E2, `) with graphs that dis-
tribute outE2—that is, graphs of the form (V,E1, `)
or more simply (V,E, `). It is important to note that
those graphs are not in general trees but rather Di-
rected Acyclic Graphs (DAGs). We now proceed to
detail how we learn such structures.

Ideally, what one wants is to learn a function
h : XEn 7→ YG where XEn is the domain of in-
stances representing a collection of EDUs for each
dialogue and YG is the set of all possible SDRT
graphs. However, given the complexity of this task
and the fact that it would require an amount of train-
ing data that we currently lack in the community, we
aim at the more modest goal of learning a function
h : XE2 7→ YR where the domain of instances XE2

represents parameters for a pair of EDUs and YR
represents the set of SDRT relations.

An important drawback of this approach is that
there are no formal guarantees that the predicted
structures will be well-formed. They could for ex-

102

ample contain cycles although they should be DAGs.
Most approaches have circumvented this problem
by using global decoding over local scores and by
imposing specific constraints upon decoding. But,
those constraints were mostly limited to the pro-
duction of maximum spanning trees, and not full
DAGs. We perform global decoding as well but use
Integer Linear Programming (ILP) with an objective
function and constraints that allow non-tree DAGs.
We use a regularized maximum entropy (shortened
MaxEnt) model (Berger et al., 1996) to get the local
scores, both for attachment and labelling.

ILP for Global Decoding. ILP essentially in-
volves an objective function that needs to be maxi-
mized under specific constraints. Our goal is to build
the directed graph G = 〈V,E,R〉 with R being a
function that provides labels for the edges inE. Ver-
tices (EDUs) are referred by their position in textual
order, indexed from 1. The m labels are referred by
their index in alphabetical order, starting from 1. Let
n = |V |.

The local model provides us with two real-valued
functions:

sa : {1, . . . , n}2 7→ [0, 1]

sr : {1, . . . , n}2 × {1, . . . ,m} 7→ [0, 1]
sa(i, j) gives the score of attachment for a pair of
EDUs (i, j); sr(i, j, k) gives the score for the at-
tached pair of EDUs (i, j) linked with the relation
type k. We define the n2 binary variables aij and
mn2 binary variables rijk:

aij = 1 ≡ (i, j) ∈ V
rijk = 1 ≡ R(i, j) = k

The objective function that we want to maximize is
n∑
i=1

n∑
j=1

(
aijsa(i, j) +

m∑
k=1

rijksr(i, j, k)

)
which gives us a score and a ranking for all candi-
date structures.

Our objective function is subject to several con-
straints. Because we have left the domain of trees
well-explored by syntactic analysis and their compu-
tational implementations, we must design new con-
straints on discourse graphs, which we have devel-
oped from looking at our corpus while also being
guided by theoretical principles. Some of these con-
straints come from SDRT, the underlying theory of

the annotations. In SDRT discourse graphs should
be DAGs with a unique root or source vertex, i.e.
one that has no incoming edges. They should also
be weakly connected; i.e. every discourse unit in it
is connected to some other discourse unit. We imple-
mented connectedness and the unique root property
as constraints in ILP by using the following equa-
tions.

n∑
i=1

hi = 1

∀j 1 ≤ nhj +
n∑
i=1

aij ≤ n

where hi is a set of auxiliary variables indexed on
{1, . . . , n}. The above constraint presupposes that
our graphs are acyclic.

Implementing acyclicity is facilitated by another
constraint that we call the turn constraint. This con-
straint is also theoretically motivated. The graphs
in our training corpus are reactive in the sense
that speakers’ contributions are reactions and attach
anaphorically to prior contributions of other speak-
ers. This means that edges between the contribu-
tions of different speakers are always oriented in one
direction. A turn by one speaker can’t be anaphori-
cally and rhetorically dependent on a turn by another
speaker that comes after it. Once made explicit, this
constraint has an obvious rationale: people do not
know what another speaker will subsequently say
and thus they cannot create an anaphoric or rhetor-
ical dependency on this unknown future act. This
is not the case within a single speaker turn though;
people can know what they will say several EDUs
ahead so they can make such kinds of future directed
dependencies. ILP allows us to encode this con-
straint as follows. We indexed turns from different
speakers in textual order from 1 to nt, while consec-
utive turns from the same speaker were assigned the
same index. Let t(i) be the turn index of EDU i, and
T (k) the set of all EDUs belonging to turn k. The
following constraint forbids backward links between
EDUs from distinct turns:

∀i, j (i > j) ∧ (t(i) 6= t(j)) =⇒ aij = 0
The observation concerning the turn constraint is

also useful for the model that provides local scores.
We used it for attachment and relation labelling dur-
ing training and testing.

103

Given the turn constraint we only need to ensure
acyclicity of the same speaker turn subgraphs. We
introduce an auxiliary set of integer variables, (cki),
indexed on {1, . . . , nt} × {1, . . . , n} in order to ex-
press this constraint:

∀k, i 1 ≤ cki ≤ |T (k)|
∀k, i, j such that t(i) = t(j) = k

ckj ≤ cki − 1 + n(1− aij)
Another interesting observation concerns the den-

sity of the graph. The objective function being addi-
tive on positive terms, every extra edge improves the
global score of the graph, which leads to an almost-
complete graph unless the edge count is constrained.
So we imposed an upper limit δ ∈ [1, n] represent-
ing the density of the graphs:

n∑
i=1

n∑
j=1

aij ≤ δ(n− 1)

δ ∈ [1, n] since we need to have at least n− 1 edges
for the graph to be connected and at maximum we
can have n(n − 1) edges if the graph is complete
without loops. δ being a hyper-parameter, we esti-
mated it on a development corpus representing 20%
of our total corpus.2

The development corpus also shows that graph
density decreases as the number of vertices grow. A
high δ entails a too large number of edges in longer
dialogues. We compensate for this effect by using an
additive cap η ≥ 0 on the edge count, also estimated
on the development corpus:3

n∑
i=1

n∑
j=1

aij ≤ n− 1 + η

Another empirical observation concerning the
corpus was that the number of outgoing edges from
any EDU had an upper bound eo � n. We set that
as an ILP constraint:4

∀i
n∑
j=1

aij ≤ eo

These observations don’t have a semantic expla-
nation, but they suggest a pragmatic one linked at

2δ takes the values 1.0, 1.2 and 1.4 for the head, partial and
full distribution of the relations, respectively.

3η takes the value of 4 for the full distribution while it has
no upper bound for the head and partial distributions.

4eo is estimated on the development corpus to the value of 6
for the head, partial and full distributions.

least to the type of conversation present in our cor-
pus. Short dialogues typically involve a opening
question broadcast to all the players in search of
a bargain, and typically all the other players reply.
The replies are then taken up and either a bargain is
reached or it isn’t. The players then move on. Thus,
the density of the graph in such short dialogues will
be determined by the number of players (in our case,
four). In a longer dialogue, we have more directed
discourse moves and threads involving subgroups
of the participants appear, but once again in these
dialogues it never happens that our participants re-
turn again and again to the same contribution; if the
thread of commenting on a contribution φ continues,
future comments attach to prior comments, not to φ.
Our ILP constraints on density and edge counts thus
suggest a novel way of capturing different dialogue
types and linguistic constraints.

Finally, we included various minor constraints,
such as the fact that EDUs cannot be attached to
themselves,5 if EDUs i and j are not attached the
pair is not assigned any discourse relation label,6

EDUs within a sequence of contributions by the
same speaker in our corpus are linked at least to the
previous EDU (Afantenos et al., 2015)7 and edges
with zero score are not included in the graph.8

For purposes of comparison with the ILP decoder,
we tested the Chu-Liu-Edmonds version of the clas-
sic Maximum Spanning Tree (MST) algorithm Mc-
Donald et al. (2005) used for discourse parsing by
Muller et al. (2012) and Li et al. (2014) and by Afan-
tenos et al. (2015) on the Settlers corpus. This al-
gorithm requires a specific node to be the root, i.e.
a node without any incoming edges, of the initial
complete graph. For each dialogue, we made an ar-
tificial node as the root with special dummy features.
At the end of the procedure, this node points to the
real root of the discourse graph. As baseline mea-
sures, we included what we call a LOCAL decoder
which creates a simple classifier out of the raw local
probability distribution. Since we use MaxEnt, this

5∀i aii = 0
6∀i, j ∑m

k=1 rijk = aij
7∀i t(i) = t(i+ 1) =⇒ ai,i+1 = 1
8∀i, j sa(i, j) = 0 =⇒ aij = 0 and

∀i, j, k sr(i, j, k) = 0 =⇒ xijk = 0

104

decoder selects

r̂ = argmax
r

(
1

Z(c)
exp

(
m∑
i=1

wifi(p, r)

))
with r representing a relation type or a binary attach-
ment value. A final baseline was LAST, where each
EDU is attached to the immediately preceding EDU
in the linear, textual order.

5 Experiments and Results

Features for training the local model and getting
scores for the decoders were extracted for every pair
of EDUs. Features concerned each EDU individ-
ually as well as the pair itself. We used obvious,
surface features such as: the position of EDUs in
the dialogue, who their speakers are, whether two
EDUs have the same speaker, the distance between
EDUs, the presence of mood indicators (‘?’, ‘!’) in
the EDU, lexical features of the EDU (e.g., does
a verb signifying an exchange occur in the EDU),
and first and last words of the EDU. We also used
the structures and Subject lemmas given by syntac-
tic dependency parsing, provided by the Stanford
CoreNLP pipeline (Manning et al., 2014). Finally
we used Cadilhac et al. (2013)’s method for classi-
fying EDUs with respect to whether they involved
an offer, a counteroffer, or were other.

As mentioned earlier, in addition to the ILP
and MST decoders we used two baseline decoders,
LAST and LOCAL. The LAST decoder simply se-
lects the previous EDU for attachment no matter
what the underlying probability distribution is. This
has proved a very hard baseline to beat in discourse.
The LOCAL decoder is a naive decoder which in the
case of attachment returns “attached” if the proba-
bility of attachment between EDUs i and j is higher
than .5 and “non-attached” in the opposite case.

Each of the three distribution methods described
in Section 3 (Head, Partial and Full Distribution)
yielded different dependency graphs for our input
documents, which formed three distinct corpora on
which we trained and tested separately. For each
of them, our training set represented 90% of the
dependency graphs from the initial corpus, chosen
at random; the test set representing the remaining
10%. Table 2 shows our evaluation results, com-
paring decoders and baselines for each of the dis-
tribution strategies. As can be seen, our ILP de-

coder consistently performs significantly better than
the baselines as well as the MST decoder, which was
the previous state of the art (Afantenos et al., 2015)
even when restricted to tree structures and HR (set-
ting the hyper-parameter δ = 1). This prompted us
to investigate how our objective function compared
to MST’s. We eliminated all constraints in ILP ex-
cept acyclicity, connectedness, turn constraint and
eliminating any constraint on outgoing edges (set-
ting δ = ∞); in this case, ILP’s objective func-
tion performed better on the full structure prediction
(.531 F1) than MST with attachment and labelling
jointly maximized (.516 F1). This means that our
objective function, although it maximizes scores and
not probabilities, produces an ordering over outputs
that outperforms classic MST. Our analysis showed
further that the constraints on outgoing edges (the
tuning of the hyperparameter eo = 6) were very im-
portant for our corpus and our (admittedly flawed)
local model; in other words, an ILP constrained tree
for this corpus was a better predictor of the data with
our local model than an unrestrained MST tree de-
coding.

We also note that our scores dropped in distribu-
tive settings but that ILP performed considerably
better than the alternatives and better than the previ-
ous state of the art on dependency trees using HR on
the gold and MST decoding. We need to investigate
further constraints, and to refine and improve our
features to get a better local model. Our local model
will eventually need to be replaced by one that takes
into account more of the surrounding structure when
it assigns scores to attachments and labels. We also
plan to investigate the use of recurrent neural net-
works in order to improve our local model.

6 Related Work

ILP has been used for various computational linguis-
tics tasks: syntactic parsing (Martins et al., 2010;
Fernández-González and Martins, 2015), semantic
parsing (Das et al., 2014), coreference resolution
(Denis and Baldridge, 2007) and temporal analysis
(Denis and Muller, 2011). As far as we know, we are
the first to use ILP to predict discourse structures.

Our use of dependency structures for discourse
also has antecedents in the literature. The first we
know of is Muller et al. (2012). Their prediction

105

Decoder Model Unlabelled Attachment Labelled Attachment
Precision Recall F1 Precision Recall F1

Head (no distribution)
LAST – 0.602 0.566 0.584 0.403 0.379 0.391
LOCAL local 0.664 0.379 0.483 0.591 0.337 0.429
MST local 0.688 0.655 0.671 0.529 0.503 0.516
ILP local 0.707 0.672 0.689 0.544 0.518 0.531

Partial distribution
LAST – 0.651 0.545 0.593 0.467 0.391 0.426
LOCAL local 0.647 0.370 0.471 0.544 0.311 0.396
MST local 0.710 0.594 0.647 0.535 0.448 0.488
ILP local 0.680 0.657 0.668 0.528 0.510 0.519

Full distribution
LAST – 0.701 0.498 0.582 0.505 0.360 0.420
LOCAL local 0.681 0.448 0.541 0.558 0.367 0.443
MST local 0.737 0.524 0.613 0.561 0.399 0.466
ILP local 0.703 0.649 0.675 0.549 0.507 0.527

Table 2: Evaluation results.

model uses local probability distributions and global
decoding, and they transform their data using HR,
and so ignore the semantics of discourse relations.
Hirao et al. (2013) and Li et al. (2014) also exploit
dependency structures by transforming RST trees.
Li et al. (2014) used both the Eisner algorithm (Eis-
ner, 1996) as well as the MST algorithm as decoders.
We plan to apply ILP techniques to the RST Tree
Bank to compare our method with theirs.

Most work on discourse parsing focuses on the
task of discourse relation labeling between pairs of
discourse units—e.g., Marcu and Echihabi (2002)
Sporleder and Lascarides (2005) and Lin et al.
(2009)—without worrying about global structure. In
essence the problem that they treat corresponds only
to our local model. As we have argued above, this
setting makes an unwarranted assumption, as it as-
sumes independence of local attachment decisions.
There is also work on discourse structure within
a single sentence; e.g., Soricut and Marcu (2003),
Sagae (2009). Such approaches do not apply to our
data, as most of the structure in our dialogues lies
beyond the sentence level.

As for other document-level discourse parsers,
Subba and Di Eugenio (2009) use a transition-based
approach, following the paradigm of Sagae (2009).
duVerle and Prendinger (2009) and Hernault et al.
(2010) both rely on locally greedy methods. They

treat attachment prediction and relation label predic-
tion as independent problems. Feng and Hirst (2012)
extend this approach by additional feature engineer-
ing but is restricted to sentence-level parsing. Joty
et al. (2013) and Joty et al. (2015) present a text-
level discourse parser that uses Conditional Random
Fields to capture label inter-dependencies and chart
parsing for decoding and have the best results on
non-dependency based discourse parsing, with an F1
of 0.689 on unlabelled structures and 0.5587 on la-
belled structures.

The afore-cited work concerns only monologue.
Baldridge and Lascarides (2005) predicted tree dis-
course structures for 2 party “directed” dialogues
from the Verbmobil corpus by training a PCFG that
exploited the structure of the underlying task. Elsner
and Charniak (2010), Elsner and Charniak (2011)
present a combination of local coherence models ini-
tially provided for monologues showing that those
models can satisfactorily model local coherence in
chat dialogues. However, they do not present a
full discourse parsing model. Our data required a
more open domain approach and a more sophisti-
cated approach to structure. Afantenos et al. (2015)
worked on multi-party chat dialogues with the same
corpus, but they too did not consider the seman-
tics of discourse relations and replaced CDUs with
their heads using HR. While this allowed them to

106

use MST decoding over local probability distribu-
tions, this meant that their implementation had in-
herent limitations because it is limited to producing
tree structures. They also used the turn constraint,
but imposed exogenously to decoding; ILP allows
us to integrate it into the structural decoding. We
achieve better results than they on treelike graphs
and we can explore the full range of non-treelike dis-
course graphs within the ILP framework. Our parser
has thus much more room to improve than those re-
stricted to MST decoding.

7 Conclusions and future work

We have presented a novel method for discourse
parsing of multiparty dialogue using ILP with lin-
guistically and empirically motivated constraints
and an objective function that integrates both attach-
ment and labelling tasks. We have shown also that
our method performs better than the competition on
multiparty dialogue data and that it can capture non-
treelike structures found in the data.

We also have a better treatment of the hierarchi-
cal structure of discourse than the competition. Our
treatment of CDUs in discourse annotations pro-
poses a new distributional translation of those an-
notations into dependency graphs, which we think
is promising for future work. After distribution,
our training corpus has a very different qualitative
look. There are treelike subgraphs and then densely
connected clusters of EDUs, indicating the presence
of CDUs. This gives us good reason to believe
that in subsequent work, we will be able to predict
CDUs and attack the problem of hierarchical dis-
course structure seriously.

References
Stergos Afantenos, Nicholas Asher, Farah Benamara,

Anas Cadilhac, Cdric Degremont, Pascal Denis,
Markus Guhe, Simon Keizer, Alex Lascarides, Oliver
Lemon, Philippe Muller, Soumya Paul, Verena Rieser,
and Laure Vieu. 2012. Developing a corpus of strate-
gic conversation in the settlers of catan. In Noriko To-
muro and Jose Zagal, editors, Workshop on Games and
NLP (GAMNLP-12), Kanazawa, Japan.

Stergos Afantenos, Eric Kow, Nicholas Asher, and
Jérémy Perret. 2015. Discourse parsing for multi-
party chat dialogues. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language

Processing, pages 928–937, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Studies in Natural Language Process-
ing. Cambridge University Press, Cambridge, UK.

Nicholas Asher. 1993. Reference to Abstract Objects in
Discourse. Kluwer Academic Publishers.

Jason Baldridge and Alex Lascarides. 2005. Probabilis-
tic head-driven parsing for discourse structure. In Pro-
ceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL).

A. Berger, S. Della Pietra, and V. Della Pietra. 1996. A
maximum entropy approach to natural language pro-
cessing. Computational Linguistics, 22(1):39–71.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classi-
fication. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2201–2211, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Anais Cadilhac, Nicholas Asher, Farah Benamara, and
Alex Lascarides. 2013. Grounding strategic conversa-
tion: Using negotiation dialogues to predict trades in
a win-lose game. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 357–368, Seattle, Washington, USA,
October. Association for Computational Linguistics.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2003. Building a discourse-tagged corpus in the
framework of rhetorical structure theory. In Jan van
Kuppevelt and Ronnie Smith, editors, Current Di-
rections in Discourse and Dialogue, pages 85–112.
Kluwer Academic Publishers.

Dipanjan Das, Desai Chen, André F. T. Martins, Nathan
Schneider, and Noah A. Smith. 2014. Frame-semantic
parsing. Computational Linguistics, 40(1):9–56,
March.

Pascal Denis and Jason Baldridge. 2007. Joint determi-
nation of anaphoricity and coreference resolution us-
ing integer programming. In Human Language Tech-
nologies 2007: The Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics; Proceedings of the Main Conference, pages
236–243, Rochester, New York, April. Association for
Computational Linguistics.

Pascal Denis and Philippe Muller. 2011. Predicting
globally-coherent temporal structures from texts via
endpoint inference and graph decomposition. In Proc.
of the International Joint Conference on Artificial In-
telligence (IJCAI).

David duVerle and Helmut Prendinger. 2009. A novel
discourse parser based on support vector machine clas-
sification. In Proceedings of the Joint Conference of

107

the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP, pages 665–673, Suntec, Singa-
pore, August. Association for Computational Linguis-
tics.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Proceed-
ings of the 16th International Conference on Compu-
tational Linguistics (COLING-96), volume 1, pages
340–345, Copenhagen, Denmark.

Micha Elsner and Eugene Charniak. 2010. Disentan-
gling chat. Computational Linguistics, 36(3):389–
409.

Micha Elsner and Eugene Charniak. 2011. Disentan-
gling chat with local coherence models. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 1179–1189, Portland, Oregon, USA,
June. Association for Computational Linguistics.

Vanessa Wei Feng and Graeme Hirst. 2012. Text-level
discourse parsing with rich linguistic features. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 60–68, Jeju Island, Korea, July. Asso-
ciation for Computational Linguistics.

Daniel Fernández-González and André F. T. Martins.
2015. Parsing as reduction. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 1523–1533, Beijing, China, July. Associ-
ation for Computational Linguistics.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue and Discourse, 1(3):1–33.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013. Single-
document summarization as a tree knapsack problem.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1515–1520, Seattle, Washington, USA, October. As-
sociation for Computational Linguistics.

Shafiq Joty, Giuseppe Carenini, Raymond Ng, and
Yashar Mehdad. 2013. Combining intra- and multi-
sentential rhetorical parsing for document-level dis-
course analysis. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 486–496, Sofia,
Bulgaria, August. Association for Computational Lin-
guistics.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng. 2015.
Codra: A novel discriminative framework for rhetori-
cal analysis. Computational Linguistics.

Sujian Li, Liang Wang, Ziqiang Cao, and Wenjie Li.
2014. Text-level discourse dependency parsing. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 25–35, Baltimore, Maryland, June. As-
sociation for Computational Linguistics.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 343–351, Singapore, August. Asso-
ciation for Computational Linguistics.

William C. Mann and Sandra A. Thompson. 1987.
Rhetorical Structure Theory: A Framework for the
Analysis of Texts. Technical Report ISI/RS-87-185,
Information Sciences Institute, Marina del Rey, Cali-
fornia.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Towards a Functional
Theory of Text Organization. Text, 8(3):243–281.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse rela-
tions. In Proceedings of ACL, pages 368–375.

Andre Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mario Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA, October. Association for Compu-
tational Linguistics.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency parsing
using spanning tree algorithms. In HLT/EMNLP.

Philippe Muller, Stergos Afantenos, Pascal Denis, and
Nicholas Asher. 2012. Constrained decoding for text-
level discourse parsing. In Proceedings of COLING
2012, pages 1883–1900, Mumbai, India, December.
The COLING 2012 Organizing Committee.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie L.
Webber. 2008. The Penn Discourse TreeBank 2.0. In
Proceedings of LREC 2008.

Kenji Sagae. 2009. Analysis of discourse structure with
syntactic dependencies and data-driven shift-reduce
parsing. In Proceedings of the 11th International Con-
ference on Parsing Technologies, IWPT ’09, pages 81–
84, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

108

R. Soricut and D. Marcu. 2003. Sentence level dis-
course parsing using syntactic and lexical information.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology-
Volume 1, pages 149–156. Association for Computa-
tional Linguistics.

Caroline Sporleder and Alex Lascarides. 2005. Exploit-
ing linguistic cues to classify rhetorical relations. In
Proceedings of Recent Advances in Natural Langauge
Processing (RANLP), Bulgaria.

Rajen Subba and Barbara Di Eugenio. 2009. An effec-
tive discourse parser that uses rich linguistic informa-
tion. In Proceedings of Human Language Technolo-
gies: The 2009 Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 566–574, Boulder, Colorado, June. As-
sociation for Computational Linguistics.

Maite Taboada and William C. Mann. 2006. Rhetorical
Structure Theory: Looking Back and Moving Ahead.
Discourse Studies, 8(3):423–459, June.

Li Wang, Marco Lui, Su Nam Kim, Joakim Nivre, and
Timothy Baldwin. 2011. Predicting thread discourse
structure over technical web forums. In Proceedings
of the 2011 Conference on Empirical Methods in Nat-
ural Language Processing, pages 13–25, Edinburgh,
Scotland, UK., July. Association for Computational
Linguistics.

109

Proceedings of NAACL-HLT 2016, pages 110–119,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Diversity-Promoting Objective Function for Neural Conversation Models

Jiwei Li1∗ Michel Galley2 Chris Brockett2 Jianfeng Gao2 Bill Dolan2

1Stanford University, Stanford, CA, USA
jiweil@stanford.edu

2Microsoft Research, Redmond, WA, USA
{mgalley,chrisbkt,jfgao,billdol}@microsoft.com

Abstract

Sequence-to-sequence neural network models
for generation of conversational responses tend
to generate safe, commonplace responses (e.g.,
I don’t know) regardless of the input. We sug-
gest that the traditional objective function, i.e.,
the likelihood of output (response) given input
(message) is unsuited to response generation
tasks. Instead we propose using Maximum Mu-
tual Information (MMI) as the objective func-
tion in neural models. Experimental results
demonstrate that the proposed MMI models
produce more diverse, interesting, and appro-
priate responses, yielding substantive gains in
BLEU scores on two conversational datasets
and in human evaluations.

1 Introduction

Conversational agents are of growing importance in
facilitating smooth interaction between humans and
their electronic devices, yet conventional dialog sys-
tems continue to face major challenges in the form
of robustness, scalability and domain adaptation. At-
tention has thus turned to learning conversational pat-
terns from data: researchers have begun to explore
data-driven generation of conversational responses
within the framework of statistical machine transla-
tion (SMT), either phrase-based (Ritter et al., 2011),
or using neural networks to rerank, or directly in the
form of sequence-to-sequence (SEQ2SEQ) models
(Sordoni et al., 2015; Vinyals and Le, 2015; Shang
et al., 2015; Serban et al., 2015; Wen et al., 2015).
SEQ2SEQ models offer the promise of scalability and
language-independence, together with the capacity

* The entirety of this work was conducted at Microsoft.

to implicitly learn semantic and syntactic relations
between pairs, and to capture contextual dependen-
cies (Sordoni et al., 2015) in a way not possible with
conventional SMT approaches (Ritter et al., 2011).

An engaging response generation system should
be able to output grammatical, coherent responses
that are diverse and interesting. In practice, how-
ever, neural conversation models tend to generate
trivial or non-committal responses, often involving
high-frequency phrases along the lines of I don’t
know or I’m OK (Sordoni et al., 2015; Serban et al.,
2015; Vinyals and Le, 2015). Table 1 illustrates this
phenomenon, showing top outputs from SEQ2SEQ

models. All the top-ranked responses are generic.
Responses that seem more meaningful or specific
can also be found in the N-best lists, but rank much
lower. In part at least, this behavior can be ascribed
to the relative frequency of generic responses like
I don’t know in conversational datasets, in contrast
with the relative sparsity of more contentful alterna-
tive responses.1 It appears that by optimizing for
the likelihood of outputs given inputs, neural mod-
els assign high probability to “safe” responses. This
objective function, common in related tasks such as
machine translation, may be unsuited to generation
tasks involving intrinsically diverse outputs. Intu-
itively, it seems desirable to take into account not
only the dependency of responses on messages, but
also the inverse, the likelihood that a message will be
provided to a given response.

We propose to capture this intuition by using Max-
imum Mutual Information (MMI), first introduced in

1In our training dataset from the OpenSubtitles database
(OSDb), 0.45% sentences contain the sequence I don’t know, a
high rate considering huge diversity of this dataset.

110

Input: What are you doing?
−0.86 I don’t know. −1.09 Get out of here.
−1.03 I don’t know! −1.09 I’m going home.
−1.06 Nothing. −1.09 Oh my god!
−1.09 Get out of the way. −1.10 I’m talking to you.
Input: what is your name?
−0.91 I don’t know. ...
−0.92 I don’t know! −1.55 My name is Robert.
−0.92 I don’t know, sir. −1.58 My name is John.
−0.97 Oh, my god! −1.59 My name’s John.
Input: How old are you?
−0.79 I don’t know. ...
−1.06 I’m fine. −1.64 Twenty-five.
−1.17 I’m all right. −1.66 Five.
−1.17 I’m not sure. −1.71 Eight.

Table 1: Responses generated by a 4-layer SEQ2SEQ
neural model trained on 20 million conversation pairs
take from the OpenSubtitles dataset. Decoding is imple-
mented with beam size set to 200. The top examples are
the responses with the highest average probability log-
likelihoods in the N-best list. Lower-ranked, less-generic
responses were manually chosen.

speech recognition (Bahl et al., 1986; Brown, 1987),
as an optimization objective that measures the mu-
tual dependence between inputs and outputs. Below,
we present practical strategies for neural generation
models that use MMI as an objective function. We
show that use of MMI results in a clear decrease in
the proportion of generic response sequences, gen-
erating correspondingly more varied and interesting
outputs.

2 Related work

The approach we take here is data-driven and end-to-
end. This stands in contrast to conventional dialog
systems, which typically are template- or heuristic-
driven even where there is a statistical component
(Levin et al., 2000; Oh and Rudnicky, 2000; Ratna-
parkhi, 2002; Walker et al., 2003; Pieraccini et al.,
2009; Young et al., 2010; Wang et al., 2011; Banchs
and Li, 2012; Chen et al., 2013; Ameixa et al., 2014;
Nio et al., 2014).

We follow a newer line of investigation, originally
introduced by Ritter et al. (2011), which frames
response generation as a statistical machine trans-
lation (SMT) problem. Recent progress in SMT
stemming from the use of neural language models
(Sutskever et al., 2014; Gao et al., 2014; Bahdanau et

al., 2015; Luong et al., 2015) has inspired attempts
to extend these neural techniques to response gener-
ation. Sordoni et al. (2015) improved upon Ritter
et al. (2011) by rescoring the output of a phrasal
SMT-based conversation system with a SEQ2SEQ

model that incorporates prior context. (Serban et al.,
2015; Shang et al., 2015; Vinyals and Le, 2015; Wen
et al., 2015) apply direct end-to-end SEQ2SEQ mod-
els These SEQ2SEQ models are Long Short-Term
Memory (LSTM) neural networks (Hochreiter and
Schmidhuber, 1997) that can implicitly capture com-
positionality and long-span dependencies. (Wen et
al., 2015) attempt to learn response templates from
crowd-sourced data, whereas we seek to develop
methods that can learn conversational patterns from
naturally-occurring data.

Prior work in generation has sought to increase
diversity, but with different goals and techniques.
Carbonell and Goldstein (1998) and Gimpel (2013)
produce multiple outputs that are mutually diverse,
either non-redundant summary sentences or N-best
lists. Our goal, however, is to produce a single non-
trivial output, and our method does not require iden-
tifying lexical overlap to foster diversity.2

On a somewhat different task, Mao et al. (2015,
Section 6) utilize a mutual information objective in
the retrieval component of image caption retrieval.
Below, we focus on the challenge of using MMI in
response generation, comparing the performance of
MMI models against maximum likelihood.

3 Sequence-to-Sequence Models

Given a sequence of inputs X = {x1, x2, ..., xNx},
an LSTM associates each time step with an input
gate, a memory gate and an output gate, respectively
denoted as ik, fk and ok. We distinguish e and h
where ek denotes the vector for an individual text unit
(for example, a word or sentence) at time step k while
hk denotes the vector computed by LSTM model at
time k by combining ek and hk−1. ck is the cell state
vector at time k, and σ denotes the sigmoid function.
Then, the vector representation hk for each time step

2Augmenting our technique with MMR-based (Carbonell
and Goldstein, 1998) diversity helped increase lexical but not
semantic diversity (e.g., I don’t know vs. I haven’t a clue), and
with no gain in performance.

111

k is given by:

ik = σ(Wi · [hk−1, ek]) (1)
fk = σ(Wf · [hk−1, ek]) (2)
ok = σ(Wo · [hk−1, ek]) (3)

lk = tanh(Wl · [hk−1, ek]) (4)
ck = fk · ck−1 + ik · lk (5)

hsk = ok · tanh(ck) (6)

where Wi, Wf , Wo, Wl ∈ RD×2D. In SEQ2SEQ

generation tasks, each input X is paired with a se-
quence of outputs to predict: Y = {y1, y2, ..., yNy}.
The LSTM defines a distribution over outputs and se-
quentially predicts tokens using a softmax function:

p(Y |X) =
Ny∏
k=1

p(yk|x1, x2, ..., xt, y1, y2, ..., yk−1)

=
Ny∏
k=1

exp(f(hk−1, eyk
))∑

y′ exp(f(hk−1, ey′))

where f(hk−1, eyk
) denotes the activation function

between hk−1 and eyk
, where hk−1 is the represen-

tation output from the LSTM at time k − 1. Each
sentence concludes with a special end-of-sentence
symbol EOS. Commonly, input and output use differ-
ent LSTMs with separate compositional parameters
to capture different compositional patterns.

During decoding, the algorithm terminates when
an EOS token is predicted. At each time step, either
a greedy approach or beam search can be adopted for
word prediction. Greedy search selects the token with
the largest conditional probability, the embedding of
which is then combined with preceding output to
predict the token at the next step.

4 MMI Models

4.1 Notation
In the response generation task, let S denote an in-
put message sequence (source) S = {s1, s2, ..., sNs}
where Ns denotes the number of words in S. Let
T (target) denote a sequence in response to source
sequence S, where T = {t1, t2, ..., tNt , EOS}, Nt

is the length of the response (terminated by an EOS
token) and t denotes a word token that is associated
with a D dimensional distinct word embedding et. V
denotes vocabulary size.

4.2 MMI Criterion
The standard objective function for sequence-to-
sequence models is the log-likelihood of target T
given source S, which at test time yields the statisti-
cal decision problem:

T̂ = arg max
T

{
log p(T |S)

}
(7)

As discussed in the introduction, we surmise that this
formulation leads to generic responses being gener-
ated, since it only selects for targets given sources,
not the converse. To remedy this, we replace it with
Maximum Mutual Information (MMI) as the objec-
tive function. In MMI, parameters are chosen to
maximize (pairwise) mutual information between the
source S and the target T :

log
p(S, T)
p(S)p(T)

(8)

This avoids favoring responses that unconditionally
enjoy high probability, and instead biases towards
those responses that are specific to the given input.
The MMI objective can written as follows:3

T̂ = arg max
T

{
log p(T |S)− log p(T)

}
We use a generalization of the MMI objective which
introduces a hyperparameter λ that controls how
much to penalize generic responses:

T̂ = arg max
T

{
log p(T |S)− λ log p(T)

}
(9)

An alternate formulation of the MMI objective
uses Bayes’ theorem:

log p(T) = log p(T |S) + log p(S)− log p(S|T)

which lets us rewrite Equation 9 as follows:

T̂ = arg max
T

{
(1− λ) log p(T |S)

+ λ log p(S|T)− λ log p(S)
}

= arg max
T

{
(1− λ) log p(T |S) + λ log p(S|T)

}
(10)

This weighted MMI objective function can thus be
viewed as representing a tradeoff between sources

3Note: log p(S,T)
p(S)p(T)

= log p(T |S)
p(T)

= log p(T |S)−log p(T)

112

given targets (i.e., p(S|T)) and targets given sources
(i.e., p(T |S)).

Although the MMI optimization criterion has been
comprehensively studied for other tasks, such as
acoustic modeling in speech recognition (Huang et
al., 2001), adapting MMI to SEQ2SEQ training is
empirically nontrivial. Moreover, we would like to
be able to adjust the value λ in Equation 9 with-
out repeatedly training neural network models from
scratch, which would otherwise be extremely time-
consuming. Accordingly, we did not train a joint
model (log p(T |S)− λ log p(T)), but instead trained
maximum likelihood models, and used the MMI cri-
terion only during testing.

4.3 Practical Considerations

Responses can be generated either from Equation 9,
i.e., log p(T |S) − λ log p(T) or Equation 10, i.e.,
(1− λ) log p(T |S) + λ log p(S|T). We will refer to
these formulations as MMI-antiLM and MMI-bidi,
respectively. However, these strategies are difficult
to apply directly to decoding since they can lead
to ungrammatical responses (with MMI-antiLM) or
make decoding intractable (with MMI-bidi). In the
rest of this section, we will discuss these issues and
explain how we resolve them in practice.

4.3.1 MMI-antiLM
The second term of log p(T |S)− λ log p(T) func-

tions as an anti-language model. It penalizes not
only high-frequency, generic responses, but also flu-
ent ones and thus can lead to ungrammatical outputs.
In theory, this issue should not arise when λ is less
than 1, since ungrammatical sentences should always
be more severely penalized by the first term of the
equation, i.e., log p(T |S). In practice, however, we
found that the model tends to select ungrammatical
outputs that escaped being penalized by p(T |S).

Solution Again, let Nt be the length of target T .
p(T) in Equation 9 can be written as:

p(T) =
Nt∏
k=1

p(tk|t1, t2, ..., tk−1) (11)

We replace the language model p(T) with U(T),
which adapts the standard language model by multi-
plying by a weight g(k) that is decremented mono-

tonically as the index of the current token k increases:

U(T) =
Nt∏
i=1

p(tk|t1, t2, ..., tk−1) · g(k) (12)

The underlying intuition here is as follows. First, neu-
ral decoding combines the previously built represen-
tation with the word predicted at the current step. As
decoding proceeds, the influence of the initial input
on decoding (i.e., the source sentence representation)
diminishes as additional previously-predicted words
are encoded in the vector representations.4 In other
words, the first words to be predicted significantly
determine the remainder of the sentence. Penalizing
words predicted early on by the language model con-
tributes more to the diversity of the sentence than it
does to words predicted later. Second, as the influ-
ence of the input on decoding declines, the influence
of the language model comes to dominate. We have
observed that ungrammatical segments tend to appear
in the later parts of the sentences, especially in long
sentences.

We adopt the most straightforward form of g(k)
by setting up a threshold (γ) by penalizing the first γ
words where5

g(k) =

{
1 if k ≤ γ
0 if k > γ

(13)

The objective in Equation 9 can thus be rewritten as:

log p(T |S)− λ logU(T) (14)

where direct decoding is tractable.

4.3.2 MMI-bidi
Direct decoding from (1 − λ) log p(T |S) +

λ log p(S|T) is intractable, as the second part (i.e.,
p(S|T)) requires completion of target generation be-
fore p(S|T) can be effectively computed. Due to the
enormous search space for target T , exploring all
possibilities is infeasible.

For practical reasons, then, we turn to an approxi-
mation approach that involves first generating N-best
lists given the first part of objective function, i.e.,

4Attention models (Xu et al., 2015) may offer some promise
of addressing this issue.

5We experimented with a smooth decay in g(k) rather than a
stepwise function, but this did not yield better performance.

113

standard SEQ2SEQ model p(T |S). Then we rerank
the N-best lists using the second term of the ob-
jective function. Since N-best lists produced by
SEQ2SEQ models are generally grammatical, the
final selected options are likely to be well-formed.
Model reranking has obvious drawbacks. It results in
non-globally-optimal solutions by first emphasizing
standard SEQ2SEQ objectives. Moreover, it relies
heavily on the system’s success in generating a suf-
ficiently diverse N-best set, requiring that a long list
of N-best lists be generated for each message.

Nonetheless, these two variants of the MMI crite-
rion work well in practice, significantly improving
both interestingness and diversity.

4.4 Training

Recent research has shown that deep LSTMs work
better than single-layer LSTMs for SEQ2SEQ tasks
(Vinyals et al., 2015; Sutskever et al., 2014). We
adopt a deep structure with four LSTM layers for
encoding and four LSTM layers for decoding, each
of which consists of a different set of parameters.
Each LSTM layer consists of 1,000 hidden neurons,
and the dimensionality of word embeddings is set to
1,000. Other training details are given below, broadly
aligned with Sutskever et al. (2014).
• LSTM parameters and embeddings are initial-

ized from a uniform distribution in [−0.08,
0.08].
• Stochastic gradient decent is implemented using

a fixed learning rate of 0.1.
• Batch size is set to 256.
• Gradient clipping is adopted by scaling gradi-

ents when the norm exceeded a threshold of 1.
Our implementation on a single GPU processes at a
speed of approximately 600-1200 tokens per second
on a Tesla K40.

The p(S|T) model described in Section 4.3.1 was
trained using the same model as that of p(T |S), with
messages (S) and responses (T) interchanged.

4.5 Decoding

4.5.1 MMI-antiLM
As described in Section 4.3.1, decoding using

log p(T |S) − λU(T) can be readily implemented
by predicting tokens at each time-step. In addition,
we found in our experiments that it is also important
to take into account the length of responses in decod-

ing. We thus linearly combine the loss function with
length penalization, leading to an ultimate score for
a given target T as follows:

Score(T) = p(T |S)− λU(T) + γNt (15)

where Nt denotes the length of the target and γ de-
notes associated weight. We optimize γ and λ using
MERT (Och, 2003) on N-best lists of response can-
didates. The N-best lists are generated using the de-
coder with beam size B = 200. We set a maximum
length of 20 for generated candidates. At each time
step of decoding, we are presented withB×B candi-
dates. We first add all hypotheses with an EOS token
being generated at current time step to the N-best list.
Next we preserve the top B unfinished hypotheses
and move to next time step. We therefore maintain
beam size of 200 constant when some hypotheses
are completed and taken down by adding in more
unfinished hypotheses. This will lead the size of final
N-best list for each input much larger than the beam
size.

4.5.2 MMI-bidi
We generate N-best lists based on P (T |S) and

then rerank the list by linearly combining p(T |S),
λp(S|T), and γNt. We use MERT to tune the
weights λ and γ on the development set.6

5 Experiments

5.1 Datasets
Twitter Conversation Triple Dataset We used an
extension of the dataset described in Sordoni et
al. (2015), which consists of 23 million conversa-
tional snippets randomly selected from a collection
of 129M context-message-response triples extracted
from the Twitter Firehose over the 3-month period
from June through August 2012. For the purposes
of our experiments, we limited context to the turn in
the conversation immediately preceding the message.
In our LSTM models, we used a simple input model
in which contexts and messages are concatenated to
form the source input.

6As with MMI-antiLM, we could have used grid search in-
stead of MERT, since there are only 3 features and 2 free param-
eters. In either case, the search attempts to find the best tradeoff
between p(T |S) and p(S|T) according to BLEU (which tends
to weight the two models relatively equally) and ensures that
generated responses are of reasonable length.

114

Model # of training instances BLEU distinct-1 distinct-2
SEQ2SEQ (baseline) 23M 4.31 .023 .107
SEQ2SEQ (greedy) 23M 4.51 .032 .148
MMI-antiLM: log p(T |S)− λU(T) 23M 4.86 .033 .175
MMI-bidi: (1− λ) log p(T |S) + λ log p(S|T) 23M 5.22 .051 .270
SMT (Ritter et al., 2011) 50M 3.60 .098 .351
SMT+neural reranking (Sordoni et al., 2015) 50M 4.44 .101 .358

Table 2: Performance on the Twitter dataset of 4-layer SEQ2SEQ models and MMI models. distinct-1 and distinct-2 are
respectively the number of distinct unigrams and bigrams divided by total number of generated words.

For tuning and evaluation, we used the develop-
ment dataset (2118 conversations) and the test dataset
(2114 examples), augmented using information re-
trieval methods to create a multi-reference set, as
described by Sordoni et al. (2015). The selection
criteria for these two datasets included a component
of relevance/interestingness, with the result that dull
responses will tend to be penalized in evaluation.

OpenSubtitles dataset In addition to unscripted
Twitter conversations, we also used the OpenSub-
titles (OSDb) dataset (Tiedemann, 2009), a large,
noisy, open-domain dataset containing roughly 60M-
70M scripted lines spoken by movie characters. This
dataset does not specify which character speaks
each subtitle line, which prevents us from inferring
speaker turns. Following Vinyals et al. (2015), we
make the simplifying assumption that each line of
subtitle constitutes a full speaker turn. Our mod-
els are trained to predict the current turn given the
preceding ones based on the assumption that consec-
utive turns belong to the same conversation. This
introduces a degree of noise, since consecutive lines
may not appear in the same conversation or scene,
and may not even be spoken by the same character.

This limitation potentially renders the OSDb
dataset unreliable for evaluation purposes. For eval-
uation purposes, we therefore used data from the
Internet Movie Script Database (IMSDB),7 which
explicitly identifies which character speaks each line
of the script. This allowed us to identify consecutive
message-response pairs spoken by different charac-
ters. We randomly selected two subsets as develop-
ment and test datasets, each containing 2k pairs, with
source and target length restricted to the range of
[6,18].

7IMSDB (http://www.imsdb.com/) is a relatively
small database of around 0.4 million sentences and thus not
suitable for open domain dialogue training.

Model BLEU distinct-1 distinct-2
SEQ2SEQ 1.28 0.0056 0.0136

MMI-antiLM 1.74 0.0184 0.066
(+35.9%) (+228%) (407%)

MMI-bidi 1.44 0.0103 0.0303
(+28.2%) (+83.9%) (+122%)

Table 3: Performance of the SEQ2SEQ baseline and two
MMI models on the OpenSubtitles dataset.

5.2 Evaluation

For parameter tuning and final evaluation, we used
BLEU (Papineni et al., 2002), which was shown to
correlate reasonably well with human judgment on
the response generation task (Galley et al., 2015).
In the case of the Twitter models, we used multi-
reference BLEU. As the IMSDB data is too limited to
support extraction of multiple references, only single
reference BLEU was used in training and evaluating
the OSDb models.

We did not follow Vinyals et al. (2015) in using
perplexity as evaluation metric. Perplexity is un-
likely to be a useful metric in our scenario, since our
proposed model is designed to steer away from the
standard SEQ2SEQ model in order to diversify the
outputs. We report degree of diversity by calculating
the number of distinct unigrams and bigrams in gen-
erated responses. The value is scaled by total number
of generated tokens to avoid favoring long sentences
(shown as distinct-1 and distinct-2 in Tables 2 and 3).

5.3 Results

Twitter Dataset We first report performance on
Twitter datasets in Table 2, along with results for
different models (i.e., Machine Translation and
MT+neural reranking) reprinted from Sordoni et
al. (2015) on the same dataset. The baseline is the
SEQ2SEQ model with its standard likelihood objec-
tive and a beam size of 200. We compare this base-

115

line against greedy-search SEQ2SEQ (Vinyals and
Le, 2015), which can help achieve higher diversity
by increasing search errors.8

Machine Translation is the phrase-based MT sys-
tem described in (Ritter et al., 2011). MT features
include commonly used ones in Moses (Koehn et al.,
2007), e.g., forward and backward maximum like-
lihood “translation” probabilities, word and phrase
penalties, linear distortion, etc. For more details,
refer to Sordoni et al. (2015).

MT+neural reranking is the phrase-based MT sys-
tem, reranked using neural models. N-best lists are
first generated from the MT system. Recurrent neu-
ral models generate scores for N-best list candidates
given the input messages. These generated scores are
re-incorporated to rerank all the candidates. Addi-
tional features to score [1-4]-gram matches between
context and response and between message and con-
text (context and message match CMM features) are
also employed, as in Sordoni et al. (2015).

MT+neural reranking achieves a BLEU score of
4.44, which to the best of our knowledge repre-
sents the previous state-of-the-art performance on
this Twitter dataset. Note that Machine Translation
and MT+neural reranking are trained on a much
larger dataset of roughly 50 million examples. A sig-
nificant performance boost is observed from MMI-
bidi over baseline SEQ2SEQ, both in terms of BLEU

score and diversity.
The beam size of 200 used in our main experiments

is quite conservative, and BLEU scores only slightly
degrade when reducing beam size to 20. For MMI-
bidi, BLEU scores for beam sizes of 200, 50, 20 are
respectively 5.90, 5.86, 5.76. A beam size of 20 still
produces relatively large N-best lists (173 elements
on average) with responses of varying lengths, which
offer enough diversity for the p(S|T) model to have
a significant effect.

OpenSubtitles Dataset All models achieve signif-
icantly lower BLEU scores on this dataset than on
the Twitter dataset, primarily because the IMSDB
data provides only single references for evaluation.
We note, however, that baseline SEQ2SEQ models

8Another method would have been to sample from the
p(T |S) distribution to increase diversity. While these meth-
ods have merits, we think we ought to find a proper objective
and optimize it exactly, rather than cope with an inadequate one
and add noise to it.

Comparator Gain 95% CI

SMT (Ritter et al., 2011) 0.29 [0.25, 0.32]
SMT+neural reranking 0.28 [0.25, 0.32]

SEQ2SEQ (baseline) 0.11 [0.07, 0.14]
SEQ2SEQ (greedy) 0.08 [0.04, 0.11]

Table 6: MMI-bidi gains over comparator systems, based
on pairwise human judgments.

yield lower levels of unigram diversity (distinct-1)
on the OpenSubtitles dataset than on the Twitter data
(0.0056 vs 0.017), which suggests that other factors
may be in play. It is likely that movie dialogs are
much more concise and information-rich than typical
conversations on Twitter, making it harder to match
gold-standard responses and causing the learned mod-
els to strongly favor safe, conservative responses.

Table 3 shows that the MMI-antiLM model yields
a significant performance boost, with a BLEU score
increase of up to 36% and a more than 200% jump in
unigram diversity. Our interpretation of this huge per-
formance improvement is that the diversity and com-
plexity of input messages lead standard SEQ2SEQ

models to generate very conservative responses,9

which fail to match the more interesting reference
strings typical of this dataset. This interpretation is
also supported by the fact that the MMI-bidi model
does not produce as significant a performance boost
as MMI-antiLM. In the case of MMI-bidi, N-best
lists generated using standard SEQ2SEQ models re-
main conservative and uninteresting, attenuating the
impact of later reranking. An important potential
limitation of MMI-bidi model is thus that its perfor-
mance hinges on the initial generation of a highly
diverse, informative N-best list.

Qualitative Evaluation We employed crowd-
sourced judges to provide evaluations for a random
sample of 1000 items in the Twitter test dataset. Ta-
ble 6 shows the results of human evaluations between
paired systems. Each output pair was ranked by 5
judges, who were asked to decide which of the two
outputs was better. They were instructed to prefer
outputs that were more specific (relevant) to the mes-
sage and preceding context, as opposed to those that

9The strings I don’t know, I don’t know what you are talking
about, I don’t think that is a good idea, and Oh my god constitute
32% percent of all generated responses.

116

message SEQ2SEQ MMI P (T |S)− λP (T)

I did not get the report from an mi-6
agent.

I don’t think that’s a good idea. You did the right thing, did you?

You haven’t been given an assignment
in this case.

I don’t know what you are talking about. I’ve been looking all over for you.

I’m losing my grip. I don’t know what you are talking about. I’m the only one in the world.
I am ready to help. Come on, come on I have something we need to talk about.
You programmed me to gather intelli-
gence. That’s all I’ve ever done.

You know that, don’t you? You do have fun, don’t you?

I mean, we’d have to talk to him. I mean, I don’t know. I mean, he’s a good guy.
This has nothing to do with him. You don’t know anything about him, do

you?
I know him as much.

How come you never say it? I don’t know Because I don’t want to hurt you
He is the one behind this scheme to crash
x-net.

I don’t know what you are talking about Yes, he is, isn’t he?

How much time do you have here? I don’t know. Not long enough. Sorry, sir.

Table 4: Responses from the SEQ2SEQ baseline and MMI-antiLM models on the OpenSubtitles dataset.

message SEQ2SEQ MMI-bidi
Ohh I’ve never seen that! How long does
it take you guys to learn the drill?

I don’t even know. Like 2 weeks ago!!

You’ll know when we sign Heskey in 2
weeks

I’ll see what I can do I sure hope so..

I’m waiting!! I have even got biscuits
waiting for you??

I have no idea what you’re talking about I’ll send you a pic when I get home xx

My parents actually had touch too much
played at their wedding.

I have no idea what you’re talking about How old are they??

Say anything you want... I know you
love me and I love you.

I love you so much. I love you too, baby.

I am off all week next week What time you going? What time you going?
How are you doing? I’m good, thanks. I’m good, you?

Table 5: Responses from the SEQ2SEQ baseline and MMI-bidi models on the Twitter dataset.

Input: What are you doing?
1. I’ve been looking for you. 4. I told you to shut up.
2. I want to talk to you. 5. Get out of here.
3. Just making sure you’re OK. 6. I’m looking for a doctor.
Input: What is your name?
1. Blue! 4. Daniel.
2. Peter. 5. My name is John.
3. Tyler. 6. My name is Robert.
Input: How old are you?
1. Twenty-eight. 4. Five.
2. Twenty-four. 5. 15.
3. Long. 6. Eight.

Table 7: Examples generated by the MMI-antiLM model
on the OpenSubtitles dataset.

were more generic. Ties were permitted. Identical
strings were algorithmically assigned the same score.
The mean of differences between outputs is shown as
the gain for MMI-bidi over the competing system. At
a significance level of α = 0.05, we find that MMI-
bidi outperforms both baseline and greedy SEQ2SEQ

systems, as well as the weaker SMT and SMT+RNN
baselines. MMI-bidi outperforms SMT in human
evaluations despite the greater lexical diversity of
MT output.

Separately, judges were also asked to rate overall
quality of MMI-bidi output over the same 1000-item
sample in isolation, each output being evaluated by
7 judges in context using a 5-point scale. The mean
rating was 3.84 (median: 3.85, 1st Qu: 3.57, 3rd Qu:
4.14), suggesting that overall MMI-bidi output does
appear reasonably acceptable to human judges.10

Table 7 presents the N-best candidates generated
using the MMI-bidi model for the inputs of Table 1.

10In the human evaluations, we asked the annotators to prefer
responses that were more specific to the context only when doing
the pairwise evaluations of systems. The absolute evaluation
was conducted separately (on different days) on the best system,
and annotators were asked to evaluate the overall quality of the
response, specifically Provide your impression of overall quality
of the response in this particular conversation.

117

We see that MMI generates significantly more inter-
esting outputs than SEQ2SEQ.

In Tables 4 and 5, we present responses generated
by different models. All examples were randomly
sampled (without cherry picking). We see that the
baseline SEQ2SEQ model tends to generate reason-
able responses to simple messages such as How are
you doing? or I love you. As the complexity of the
message increases, however, the outputs switch to
more conservative, duller forms, such as I don’t know
or I don’t know what you are talking about. An oc-
casional answer of this kind might go unnoticed in a
natural conversation, but a dialog agent that always
produces such responses risks being perceived as un-
cooperative. MMI-bidi models, on the other hand,
produce far more diverse and interesting responses.

6 Conclusions

We investigated an issue encountered when applying
SEQ2SEQ models to conversational response genera-
tion. These models tend to generate safe, common-
place responses (e.g., I don’t know) regardless of the
input. Our analysis suggests that the issue is at least
in part attributable to the use of unidirectional like-
lihood of output (responses) given input (messages).
To remedy this, we have proposed using Maximum
Mutual Information (MMI) as the objective function.
Our results demonstrate that the proposed MMI mod-
els produce more diverse and interesting responses,
while improving quality as measured by BLEU and
human evaluation.

To the best of our knowledge, this paper represents
the first work to address the issue of output diver-
sity in the neural generation framework. We have
focused on the algorithmic dimensions of the prob-
lem. Unquestionably numerous other factors such
as grounding, persona (of both user and agent), and
intent also play a role in generating diverse, conver-
sationally interesting outputs. These must be left
for future investigation. Since the challenge of pro-
ducing interesting outputs also arises in other neural
generation tasks, including image-description gener-
ation, question answering, and potentially any task
where mutual correspondences must be modeled, the
implications of this work extend well beyond conver-
sational response generation.

Acknowledgments

We thank the anonymous reviewers, as well as Dan
Jurafsky, Alan Ritter, Stephanie Lukin, George Sp-
ithourakis, Alessandro Sordoni, Chris Quirk, Meg
Mitchell, Jacob Devlin, Oriol Vinyals, and Dhruv
Batra for their comments and suggestions.

References

David Ameixa, Luisa Coheur, Pedro Fialho, and Paulo
Quaresma. 2014. Luke, I am your father: dealing with
out-of-domain requests by using movies subtitles. In
Intelligent Virtual Agents, pages 13–21. Springer.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
2015. Neural machine translation by jointly learning
to align and translate. In Proc. of the International
Conference on Learning Representations (ICLR).

L. Bahl, P. Brown, P. de Souza, and R. Mercer. 1986. Max-
imum mutual information estimation of hidden Markov
model parameters for speech recognition. Acoustics,
Speech, and Signal Processing, IEEE International
Conference on ICASSP ’86., pages 49–52.

Rafael E Banchs and Haizhou Li. 2012. IRIS: a chat-
oriented dialogue system based on the vector space
model. In Proc. of the ACL 2012 System Demonstra-
tions, pages 37–42.

Peter F. Brown. 1987. The Acoustic-modeling Problem in
Automatic Speech Recognition. Ph.D. thesis, Carnegie
Mellon University.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering docu-
ments and producing summaries. In In Research and
Development in Information Retrieval, pages 335–336.

Yun-Nung Chen, Wei Yu Wang, and Alexander Rudnicky.
2013. An empirical investigation of sparse log-linear
models for improved dialogue act classification. In
Proc. of ICASSP, pages 8317–8321.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Margaret
Mitchell, Jianfeng Gao, and Bill Dolan. 2015. ∆BLEU:
A discriminative metric for generation tasks with intrin-
sically diverse targets. In Proc. of ACL-IJCNLP, pages
445–450, Beijing, China, July.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng.
2014. Learning continuous phrase representations for
translation modeling. In Proc. of ACL, pages 699–709.

Kevin Gimpel, Dhruv Batra, Chris Dyer, and Gregory
Shakhnarovich. 2013. A systematic exploration of
diversity in machine translation. In Proceedings of
the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1100–1111.

118

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, and Raj
Foreword By-Reddy. 2001. Spoken language process-
ing: A guide to theory, algorithm, and system develop-
ment. Prentice Hall.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In Proc. of the 45th
Annual Meeting of the Association for Computational
Linguistics, pages 177–180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine interac-
tion for learning dialog strategies. IEEE Transactions
on Speech and Audio Processing, 8(1):11–23.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Proc.
of ACL-IJCNLP, pages 11–19, Beijing, China.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng
Huang, and Alan Yuille. 2015. Deep captioning with
multimodal recurrent neural networks (m-RNN). ICLR.

Lasguido Nio, Sakriani Sakti, Graham Neubig, Tomoki
Toda, Mirna Adriani, and Satoshi Nakamura. 2014.
Developing non-goal dialog system based on examples
of drama television. In Natural Interaction with Robots,
Knowbots and Smartphones, pages 355–361. Springer.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 160–167, Sapporo, Japan, July.
Association for Computational Linguistics.

Alice H Oh and Alexander I Rudnicky. 2000. Stochastic
language generation for spoken dialogue systems. In
Proc. of the 2000 ANLP/NAACL Workshop on Conver-
sational systems-Volume 3, pages 27–32. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic evalua-
tion of machine translation. In Proc. of ACL.

Roberto Pieraccini, David Suendermann, Krishna
Dayanidhi, and Jackson Liscombe. 2009. Are we there
yet? research in commercial spoken dialog systems. In
Text, Speech and Dialogue, pages 3–13. Springer.

Adwait Ratnaparkhi. 2002. Trainable approaches to sur-
face natural language generation and their application
to conversational dialog systems. Computer Speech &
Language, 16(3):435–455.

Alan Ritter, Colin Cherry, and William Dolan. 2011.
Data-driven response generation in social media. In
Proc. of EMNLP, pages 583–593.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2015. Hierarchical
neural network generative models for movie dialogues.
arXiv preprint arXiv:1507.04808.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural
responding machine for short-text conversation. In
ACL-IJCNLP, pages 1577–1586.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan. 2015. A neural network
approach to context-sensitive generation of conversa-
tional responses. In Proc. of NAACL-HLT.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112.

Jörg Tiedemann. 2009. News from OPUS – a collec-
tion of multilingual parallel corpora with tools and
interfaces. In Recent advances in natural language
processing, volume 5, pages 237–248.

Oriol Vinyals and Quoc Le. 2015. A neural conversational
model. In Proc. of ICML Deep Learning Workshop.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya
Sutskever, and Geoffrey Hinton. 2015. Grammar as a
foreign language. In Proc. of NIPS.

Marilyn A Walker, Rashmi Prasad, and Amanda Stent.
2003. A trainable generator for recommendations in
multimodal dialog. In INTERSPEECH.

William Yang Wang, Ron Artstein, Anton Leuski, and
David Traum. 2011. Improving spoken dialogue under-
standing using phonetic mixture models. In FLAIRS.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language gener-
ation for spoken dialogue systems. In Proc. of EMNLP,
pages 1711–1721, Lisbon, Portugal, September.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In
David Blei and Francis Bach, editors, Proc. of the 32nd
International Conference on Machine Learning (ICML-
15), pages 2048–2057. JMLR Workshop and Confer-
ence Proceedings.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu. 2010. The hidden information state model: A
practical framework for POMDP-based spoken dia-
logue management. Computer Speech & Language,
24(2):150–174.

119

Proceedings of NAACL-HLT 2016, pages 120–129,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multi-domain Neural Network Language Generation for
Spoken Dialogue Systems

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Lina M. Rojas-Barahona,
Pei-Hao Su, David Vandyke, Steve Young

Cambridge University Engineering Department,
Trumpington Street, Cambridge, CB2 1PZ, UK

{thw28,mg436,nm480,lmr46,phs26,djv27,sjy}@cam.ac.uk

Abstract

Moving from limited-domain natural lan-
guage generation (NLG) to open domain is
difficult because the number of semantic in-
put combinations grows exponentially with
the number of domains. Therefore, it is im-
portant to leverage existing resources and ex-
ploit similarities between domains to facilitate
domain adaptation. In this paper, we propose
a procedure to train multi-domain, Recurrent
Neural Network-based (RNN) language gen-
erators via multiple adaptation steps. In this
procedure, a model is first trained on counter-
feited data synthesised from an out-of-domain
dataset, and then fine tuned on a small set of
in-domain utterances with a discriminative ob-
jective function. Corpus-based evaluation re-
sults show that the proposed procedure can
achieve competitive performance in terms of
BLEU score and slot error rate while signifi-
cantly reducing the data needed to train gen-
erators in new, unseen domains. In subjective
testing, human judges confirm that the proce-
dure greatly improves generator performance
when only a small amount of data is available
in the domain.

1 Introduction

Modern Spoken Dialogue Systems (SDS) are typi-
cally developed according to a well-defined ontol-
ogy, which provides a structured representation of
the domain data that the dialogue system can talk
about, such as searching for a restaurant or shop-
ping for a laptop. Unlike conventional approaches
employing a substantial amount of handcrafting for

each individual processing component (Ward and Is-
sar, 1994; Bohus and Rudnicky, 2009), statistical ap-
proaches to SDS promise a domain-scalable frame-
work which requires a minimal amount of human in-
tervention (Young et al., 2013). Mrkšić et al. (2015)
showed improved performance in belief tracking by
training a general model and adapting it to specific
domains. Similar benefit can be observed in Gašić
et al. (2015), in which a Bayesian committee ma-
chine (Tresp, 2000) was used to model policy learn-
ing in a multi-domain SDS regime.

In past decades, adaptive NLG has been stud-
ied from linguistic perspectives, such as systems
that learn to tailor user preferences (Walker et al.,
2007), convey a specific personality trait (Mairesse
and Walker, 2008; Mairesse and Walker, 2011),
or align with their conversational partner (Isard
et al., 2006). Domain adaptation was first ad-
dressed by Hogan et al. (2008) using a generator
based on the Lexical Functional Grammar (LFG) f-
structures (Kaplan and Bresnan, 1982). Although
these approaches can model rich linguistic phe-
nomenon, they are not readily adaptable to data
since they still require many handcrafted rules to
define the search space. Recently, RNN-based lan-
guage generation has been introduced (Wen et al.,
2015a; Wen et al., 2015b). This class of statistical
generators can learn generation decisions directly
from dialogue act (DA)-utterance pairs without any
semantic annotations (Mairesse and Young, 2014)
or hand-coded grammars (Langkilde and Knight,
1998; Walker et al., 2002). Many existing adapta-
tion approaches (Wen et al., 2013; Shi et al., 2015;
Chen et al., 2015) can be directly applied due to the

120

flexibility of the underlying RNN language model
(RNNLM) architecture (Mikolov et al., 2010).

Discriminative training (DT) has been success-
fully used to train RNNs for various tasks. By op-
timising directly against the desired objective func-
tion such as BLEU score (Auli and Gao, 2014) or
Word Error Rate (Kuo et al., 2002), the model can
explore its output space and learn to discriminate be-
tween good and bad hypotheses. In this paper we
show that DT can enable a generator to learn more
efficiently when in-domain data is scarce.

The paper presents an incremental recipe for
training multi-domain language generators based on
a purely data-driven, RNN-based generation model.
Following a review of related work in section 2, sec-
tion 3 describes the detailed RNN generator archi-
tecture. The data counterfeiting approach for syn-
thesising an in-domain dataset is introduced in sec-
tion 4, where it is compared to the simple model
fine-tuning approach. In section 5, we describe
our proposed DT procedure for training natural lan-
guage generators. Following a brief review of the
data sets used in section 6, corpus-based evaluation
results are presented in section 7. In order to assess
the subjective performance of our system, a quality
test and a pairwise preference test are presented in
section 8. The results show that the proposed adap-
tation recipe improves not only the objective scores
but also the user’s perceived quality of the system.
We conclude with a brief summary in section 9.

2 Related Work

Domain adaptation problems arise when we have a
sufficient amount of labeled data in one domain (the
source domain), but have little or no labeled data in
another related domain (the target domain). Domain
adaptability for real world speech and language ap-
plications is especially important because both lan-
guage usage and the topics of interest are constantly
evolving. Historically, domain adaptation has been
less well studied in the NLG community. The most
relevant work was done by Hogan et al. (2008).
They showed that an LFG f-structure based gener-
ator could yield better performance when trained on
in-domain sentences paired with pseudo parse tree
inputs generated from a state-of-the-art, but out-of-
domain parser. The SPoT-based generator proposed

by Walker et al. (2002) has the potential to address
domain adaptation problems. However, their pub-
lished work has focused on tailoring user prefer-
ences (Walker et al., 2007) and mimicking person-
ality traits (Mairesse and Walker, 2011). Lemon
(2008) proposed a Reinforcement Learning (RL)
framework in which policy and NLG components
can be jointly optimised and adapted based on on-
line user feedback. In contrast, Mairesse et al.
(2010) has proposed using active learning to miti-
gate the data sparsity problem when training data-
driven NLG systems. Furthermore, Cuayhuitl et al.
(2014) trained statistical surface realisers from unla-
belled data by an automatic slot labelling technique.

In general, feature-based adaptation is perhaps the
most widely used technique (Blitzer et al., 2007;
Pan and Yang, 2010; Duan et al., 2012). By ex-
ploiting correlations and similarities between data
points, it has been successfully applied to problems
like speaker adaptation (Gauvain and Lee, 1994;
Leggetter and Woodland, 1995) and various tasks in
natural language processing (Daumé III, 2009). In
contrast, model-based adaptation is particularly use-
ful for language modeling (LM) (Bellegarda, 2004).
Mixture-based topic LMs (Gildea and Hofmann,
1999) are widely used in N-gram LMs for domain
adaptation. Similar ideas have been applied to appli-
cations that require adapting LMs, such as machine
translation (MT) (Koehn and Schroeder, 2007) and
personalised speech recognition (Wen et al., 2012).

Domain adaptation for Neural Network (NN)-
based LMs has also been studied in the past.
A feature augmented RNNLM was first proposed
by Mikolov and Zweig (2012), but later applied to
multi-genre broadcast speech recognition (Chen et
al., 2015) and personalised language modeling (Wen
et al., 2013). These methods are based on fine-
tuning existing network parameters on adaptation
data. However, careful regularisation is often nec-
essary (Yu et al., 2013). In a slightly different
area, Shi et al. (2015) applied curriculum learning
to RNNLM adaptation.

Discriminative training (DT) (Collins, 2002) is an
alternative to the maximum likelihood (ML) crite-
rion. For classification, DT can be split into two
phases: (1) decoding training examples using the
current model and scoring them, and (2) adjusting
the model parameters to maximise the separation

121

between the correct target annotation and the com-
peting incorrect annotations. It has been success-
fully applied to many research problems, such as
speech recognition (Kuo et al., 2002; Voigtlaender
et al., 2015) and MT (He and Deng, 2012; Auli et
al., 2014). Recently, Auli and Gao (2014) trained
an RNNLM with a DT objective and showed im-
proved performance on an MT task. However, their
RNN probabilities only served as input features to a
phrase-based MT system.

3 The Neural Language Generator

The neural language generation model (Wen et al.,
2015a; Wen et al., 2015b) is a RNNLM (Mikolov
et al., 2010) augmented with semantic input features
such as a dialogue act1 (DA) denoting the required
semantics of the generated output. At every time
step t, the model consumes the 1-hot representation
of both the DA dt and a token wt

2 to update its in-
ternal state ht. Based on this new state, the output
distribution over the next output token is calculated.
The model can thus generate a sequence of tokens
by repeatedly sampling the current output distribu-
tion to obtain the next input token until an end-of-
sentence sign is generated. Finally, the generated
sequence is lexicalised3 to form the target utterance.

The Semantically Conditioned Long Short-term
Memory Network (SC-LSTM) (Wen et al., 2015b)
is a specialised extension of the LSTM net-
work (Hochreiter and Schmidhuber, 1997) for
language generation which has previously been
shown capable of learning generation decisions from
paired DA-utterances end-to-end without a modu-
lar pipeline (Walker et al., 2002; Stent et al., 2004).
Like LSTM, SC-LSTM relies on a vector of mem-
ory cells ct ∈ Rn and a set of elementwise multi-
plication gates to control how information is stored,
forgotten, and exploited inside the network. The SC-
LSTM architecture used in this paper is defined by

1A combination of an action type and a set of slot-value
pairs. e.g. inform(name=”Seven days”,food=”chinese”)

2We use token instead of word because our model operates
on text for which slot values are replaced by their corresponding
slot tokens. We call this procedure delexicalisation.

3The process of replacing slot token by its value.

the following equations,
it
ft
ot
rt
ĉt

 =


sigmoid
sigmoid
sigmoid
sigmoid
tanh

W5n,2n

(
wt

ht−1

)

dt = rt � dt−1

ct = ft � ct−1 + it � ĉt + tanh(Wdcdt)

ht = ot � tanh(ct)

where n is the hidden layer size, it, ft,ot, rt ∈
[0, 1]n are input, forget, output, and reading gates re-
spectively, ĉt and ct are proposed cell value and true
cell value at time t, W5n,2n and Wdc are the model
parameters to be learned. The major difference of
the SC-LSTM compared to the vanilla LSTM is the
introduction of the reading gates for controlling the
semantic input features presented to the network. It
was shown in Wen et al. (2015b) that these reading
gates act like keyword and key phrase detectors that
learn the alignments between individual semantic
input features and their corresponding realisations
without additional supervision.

After the hidden layer state is obtained, the com-
putation of the next word distribution and sampling
from it is straightforward,

p(wt+1|wt, wt−1, ...w0,dt) = softmax(Whoht)

wt+1 ∼ p(wt+1|wt, wt−1, ...w0,dt).

where Who is another weight matrix to learn. The
entire network is trained end-to-end using a cross
entropy cost function, between the predicted word
distribution pt and the actual word distribution yt,
with regularisations on DA transition dynamics,

F (θ) =
∑

t p
ᵀ
t log(yt) + ‖dT‖+

∑T−1
t=0 ηξ

‖dt+1−dt‖ (1)

where θ = {W5n,2n,Wdc,Who}, dT is the DA
vector at the last index T, and η and ξ are constants
set to 10−4 and 100, respectively.

4 Training Multi-domain Models

Given training instances (represented by DA and
sentence tuples {di,Ωi}) from the source domain S
(rich) and the target domain T (limited), the goal is
to find a set of SC-LSTM parameters θT that can
perform acceptably well in the target domain.

122

Figure 1: An example of data counterfeiting algorithm. Both slots and values are delexicalised. Slots and
values that are not in the target domain are replaced during data counterfeiting (shown in red with * sign).
The prefix inside bracket <> indicates the slot’s functional class (I for informable and R for requestable).

4.1 Model Fine-Tuning

A straightforward way to adapt NN-based models to
a target domain is to continue training or fine-tuning
a well-trained generator on whatever new target do-
main data is available. This training procedure is as
follows:

1. Train a source domain generator θS on source
domain data {di,Ωi} ∈ S with all values delex-
icalised4.

2. Divide the adaptation data into training and val-
idation sets. Refine parameters by training on
adaptation data {di,Ωi} ∈ T with early stop-
ping and a smaller starting learning rate. This
yields the target domain generator θT.

Although this method can benefit from parameter
sharing of the LM part of the network, the parame-
ters of similar input slot-value pairs are not shared4.
In other words, realisation of any unseen slot-value
pair in the target domain can only be learned from
scratch. Adaptation offers no benefit in this case.

4.2 Data Counterfeiting

In order to maximise the effect of domain adapta-
tion, the model should be able to (1) generate accept-
able realisations for unseen slot-value pairs based
on similar slot-value pairs seen in the training data,

4We have tried training with both slots and values delexi-
calised and then using the weights to initialise unseen slot-value
pairs in the target domain. However, this yielded even worse
results since the learned semantic alignment stuck at local min-
ima. Pre-training only the LM parameters did not produce better
results either.

and (2) continue to distinguish slot-value pairs that
are similar but nevertheless distinct. Instead of ex-
ploring weight tying strategies in different training
stages (which is complex to implement and typically
relies on ad hoc tying rules), we propose instead a
data counterfeiting approach to synthesise target do-
main data from source domain data. The procedure
is shown in Figure 1 and described as following:

1. Categorise slots in both source and target do-
main into classes, according to some similarity
measure. In our case, we categorise them based
on their functional type to yield three classes:
informable, requestable, and binary5.

2. Delexicalise all slots and values.

3. For each slot s in a source instance (di,Ωi) ∈
S, randomly select a new slot s′ that belongs
to both the target ontology and the class of s
to replace s. Repeat this process for every slot
in the instance and yield a new pseudo instance
(d̂i, Ω̂i) ∈ T in the target domain.

4. Train a generator θ̂T on the counterfeited
dataset {d̂i, Ω̂i} ∈ T.

5. Refine parameters on real in-domain data. This
yields final model parameters θT.

This approach allows the generator to share realisa-
tions among slot-value pairs that have similar func-
tionalities, therefore facilitates the transfer learning

5Informable class include all non-binary informable slots
while binary class includes all binary informable slots.

123

Laptop Television

informable slots
family, *pricerange, batteryrating,

driverange, weightrange,
isforbusinesscomputing

family, *pricerange, screensizerange,
ecorating, hdmiport, hasusbport

requestable slots
*name, *type, *price, warranty, battery,

design, dimension, utility, weight,
platform, memory, drive, processor

*name, *type, *price, resolution,
powerconsumption, accessories, color,

screensize, audio

act type
*inform, *inform only match, *inform on match, inform all, *inform count,
inform no info, *recommend, compare, *select, suggest, *confirm, *request,
*request more, *goodbye

bold=binary slots, *=overlap with SF Restaurant and Hotel domains, all informable slots can take ”dontcare” value

Table 1: Ontologies for Laptop and TV domains

of rare slot-value pairs in the target domain. Further-
more, the approach also preserves the co-occurrence
statistics of slot-value pairs and their realisations.
This allows the model to learn the gating mechanism
even before adaptation data is introduced.

5 Discriminative Training

In contrast to the traditional ML criteria (Equation 1)
whose goal is to maximise the log-likelihood of cor-
rect examples, DT aims at separating correct exam-
ples from competing incorrect examples. Given a
training instance (di,Ωi), the training process starts
by generating a set of candidate sentences Gen(di)
using the current model parameter θ and DA di. The
discriminative cost function can therefore be written
as

F (θ) = −E[L(θ)]

= −
∑

Ω∈Gen(di)

pθ(Ω|di)L(Ω,Ωi) (2)

where L(Ω,Ωi) is the scoring function evaluating
candidate Ω by taking ground truth Ωi as reference.
pθ(Ω|di) is the normalised probability of the candi-
date and is calculated by

pθ(Ω|di) = exp[γ log p(Ω|di,θ)]∑
Ω′∈Gen(di) exp[γ log p(Ω′|di,θ)]

(3)

γ ∈ [0,∞] is a tuned scaling factor that flattens the
distribution for γ < 1 and sharpens it for γ > 1. The
unnormalised candidate likelihood log p(Ω|di, θ) is
produced by summing token likelihoods from the
RNN generator output,

log p(Ω|di, θ) =
∑
wt∈Ω

log p(wt|di, θ) (4)

The scoring function L(Ω,Ωi) can be further gen-
eralised to take several scoring functions into ac-
count

L(Ω,Ωi) =
∑
j

Lj(Ω,Ωi)βj (5)

where βj is the weight for j-th scoring function.
Since the cost function presented here (Equation 2)
is differentiable everywhere, back propagation can
be applied to calculate the gradients and update pa-
rameters directly.

6 Datasets

In order to test our proposed recipe for training
multi-domain language generators, we conducted
experiments using four different domains: finding a
restaurant, finding a hotel, buying a laptop, and buy-
ing a television. Datasets for the restaurant and hotel
domains have been previously released by Wen et al.
(2015b). These were created by workers recruited
by Amazon Mechanical Turk (AMT) by asking them
to propose an appropriate natural language realisa-
tion corresponding to each system dialogue act ac-
tually generated by a dialogue system. However,
the number of actually occurring DA combinations
in the restaurant and hotel domains were rather lim-
ited (∼200) and since multiple references were col-
lected for each DA, the resulting datasets are not suf-
ficiently diverse to enable the assessment of the gen-
eralisation capability of the different training meth-
ods over unseen semantic inputs.

In order to create more diverse datasets for the
laptop and TV domains, we enumerated all possible
combinations of dialogue act types and slots based
on the ontology shown in Table 1. This yielded

124

(a) BLEU score curve

(b) Slot error rate curve

Figure 2: Results evaluated on TV domain by
adapting models from laptop domain. Compar-
ing train-from-scratch model (scratch) with model
fine-tuning approach (tune) and data counterfeiting
method (counterfeit). 10% ≈ 700 examples.

about 13K distinct DAs in the laptop domain and 7K
distinct DAs in the TV domain. We then used AMT
workers to collect just one realisation for each DA.
Since the resulting datasets have a much larger input
space but only one training example for each DA,
the system must learn partial realisations of con-
cepts and be able to recombine and apply them to
unseen DAs. Also note that the number of act types
and slots of the new ontology is larger, which makes
NLG in both laptop and TV domains much harder.

7 Corpus-based Evaluation

We first assess generator performance using two ob-
jective evaluation metrics, the BLEU-4 score (Pap-
ineni et al., 2002) and slot error rate ERR (Wen et
al., 2015b). Slot error rates were calculated by aver-
aging slot errors over each of the top 5 realisations
in the entire corpus. We used multiple references to
compute the BLEU scores when available (i.e. for
the restaurant and hotel domains). In order to better

(a) BLEU score curve

(b) Slot error rate curve

Figure 3: The same set of comparison as in Figure 2,
but the results were evaluated by adapting from SF
restaurant and hotel joint dataset to laptop and TV
joint dataset. 10% ≈ 2K examples.

compare results across different methods, we plotted
the BLEU and slot error rate curves against different
amounts of adaptation data. Note that in the graphs
the x-axis is presented on a log-scale.

7.1 Experimental Setup

The generators were implemented using the Theano
library (Bergstra et al., 2010; Bastien et al., 2012),
and trained by partitioning each of the collected cor-
pora into a training, validation, and testing set in the
ratio 3:1:1. All the generators were trained by treat-
ing each sentence as a mini-batch. An l2 regulari-
sation term was added to the objective function for
every 10 training examples. The hidden layer size
was set to be 100 for all cases. Stochastic gradient
descent and back propagation through time (Werbos,
1990) were used to optimise the parameters. In or-
der to prevent overfitting, early stopping was imple-
mented using the validation set.

During decoding, we over-generated 20 utter-
ances and selected the top 5 realisations for each DA

125

according to the following reranking criteria,

R = −(F (θ) + λERR) (6)

where λ is a tradeoff constant, F (θ) is the cost gen-
erated by network parameters θ, and the slot error
rate ERR is computed by exact matching of the slot
tokens in the candidate utterances. λ is set to a large
value (10) in order to severely penalise nonsensical
outputs. Since our generator works stochastically
and the trained networks can differ depending on the
initialisation, all the results shown below were aver-
aged over 5 randomly initialised networks.

7.2 Data Counterfeiting
We first compared the data counterfeiting (coun-
terfeit) approach with the model fine-tuning (tune)
method and models trained from scratch (scratch).
Figure 2 shows the result of adapting models be-
tween similar domains, from laptop to TV. Because
of the parameter sharing in the LM part of the
network, model fine-tuning (tune) achieves a bet-
ter BLEU score than training from scratch (scratch)
when target domain data is limited. However, if we
apply the data counterfeiting (counterfeit) method,
we obtain an even greater BLEU score gain. This is
mainly due to the better realisation of unseen slot-
value pairs. On the other hand, data counterfeit-
ing (counterfeit) also brings a substantial reduction
in slot error rate. This is because it preserves the
co-occurrence statistics between slot-value pairs and
realisations, which allows the model to learn good
semantic alignments even before adaptation data is
introduced. Similar results can be seen in Figure 3,
in which adaptation was performed on more disjoint
domains: restaurant and hotel joint domain to laptop
and TV joint domain. The data counterfeiting (coun-
terfeit) method is still superior to the other methods.

7.3 Discriminative Training
The generator parameters obtained from data coun-
terfeiting and ML adaptation were further tuned by
applying DT. In each case, the models were opti-
mised using two objective functions: BLEU-4 score
and slot error rate. However, we used a soft version
of BLEU called sentence BLEU as described in Auli
and Gao (2014), to mitigate the sparse n-gram match
problem of BLEU at the sentence level. In our ex-
periments, we set γ to 5.0 and βj to 1.0 and -1.0 for

(a) Effect of DT on BLEU

(b) Effect of DT on slot error rate

Figure 4: Effect of applying DT training after ML
adaptation. The results were evaluated on laptop to
TV adaptation. 10% ≈ 700 examples.

BLEU and ERR, respectively. For each DA, we ap-
plied our generator 50 times to generate candidate
sentences. Repeated candidates were removed. We
treated the remaining candidates as a single batch
and updated the model parameters by the procedure
described in section 5. We evaluated performance
of the algorithm on the laptop to TV adaptation sce-
nario, and compared models with and without dis-
criminative training (ML+DT & ML). The results
are shown in Figure 4 where it can be seen that
DT consistently improves generator performance on
both metrics. Another interesting point to note is
that slot error rate is easier to optimise compared to
BLEU (ERR→ 0 after DT). This is probably be-
cause the sentence BLEU optimisation criterion is
only an approximation of the corpus BLEU score
used for evaluation.

8 Human Evaluation

Since automatic metrics may not consistently agree
with human perception (Stent et al., 2005), human
testing is needed to assess subjective quality. To do

126

Method TV to Laptop laptop to TV
Info. Nat. Info. Nat.

scrALL 2.64 2.37 2.54 2.36
DT-10% 2.52** 2.25** 2.51 2.19**

ML-10% 2.51** 2.22** 2.45** 2.22**

scr-10% 2.24** 2.03** 2.00** 1.92**

* p <0.05, ** p <0.005
Table 2: Human evaluation for utterance quality in
two domains. Results are shown in two metrics
(rating out of 3). Statistical significance was com-
puted using a two-tailed Student’s t-test, between the
model trained with full data (scrALL) and all others.

this, a set of judges were recruited using AMT. We
tested our models on two adaptation scenarios: lap-
top to TV and TV to laptop. For each task, two
systems among the four were compared: training
from scratch using full dataset (scrALL), adapting
with DT training but only 10% of target domain data
(DT-10%), adapting with ML training but only 10%
of target domain data (ML-10%), and training from
scratch using only 10% of target domain data (scr-
10%). In order to evaluate system performance in
the presence of language variation, each system gen-
erated 5 different surface realisations for each input
DA and the human judges were asked to score each
of them in terms of informativeness and naturalness
(rating out of 3), and also asked to state a prefer-
ence between the two. Here informativeness is de-
fined as whether the utterance contains all the infor-
mation specified in the DA, and naturalness is de-
fined as whether the utterance could plausibly have
been produced by a human. In order to decrease the
amount of information presented to the judges, utter-
ances that appeared identically in both systems were
filtered out. We tested about 2000 DAs for each sce-
nario distributed uniformly between contrasts except
that allowed 50% more comparisons between ML-
10% and DT-10% because they were close.

Table 2 shows the subjective quality assessments
which exhibit the same general trend as the objective
results. If a large amount of target domain data is
available, training everything from scratch (scrALL)
achieves a very good performance and adaptation is
not necessary. However, if only a limited amount
of in-domain data is available, efficient adaptation
is critical (DT-10% & ML-10% > scr-10%). More-

Pref.% scr-10% ML-10% DT-10% scrALL
scr-10% - 34.5** 33.9** 22.4**

ML-10% 65.5** - 44.9 36.8**

DT-10% 66.1** 55.1 - 35.9**

scrALL 77.6** 63.2** 64.1** -
* p <0.05, ** p <0.005

(a) Preference test on TV to laptop adaptation scenario

Pref.% scr-10% ML-10% DT-10% scrALL
scr-10% - 17.4** 14.2** 14.8**

ML-10% 82.6** - 48.1 37.1**

DT-10% 85.8** 51.9 - 41.6*

scrALL 85.2** 62.9** 58.4* -
* p <0.05, ** p <0.005

(b) Preference test on laptop to TV adaptation scenario

Table 3: Pairwise preference test among four ap-
proaches in two domains. Statistical significance
was computed using two-tailed binomial test.

over, judges also preferred the DT trained genera-
tor (DT-10%) compared to the ML trained genera-
tor (ML-10%), especially for informativeness. In the
laptop to TV scenario, the informativeness score of
DT method (DT-10%) was considered indistinguish-
able when comparing to the method trained with full
training set (scrALL). The preference test results are
shown in Table 3. Again, adaptation methods (DT-
10% & ML-10%) are crucial to bridge the gap be-
tween domains when the target domain data is scarce
(DT-10% & ML-10% > scr-10%). The results also
suggest that the DT training approach (DT-10%) was
preferred compared to ML training (ML-10%), even
though the preference in this case was not statisti-
cally significant.

9 Conclusion and Future Work

In this paper we have proposed a procedure for train-
ing multi-domain, RNN-based language generators,
by data counterfeiting and discriminative training.
The procedure is general and applicable to any data-
driven language generator. Both corpus-based eval-
uation and human assessment were performed. Ob-
jective measures on corpus data have demonstrated
that by applying this procedure to adapt models be-
tween four different dialogue domains, good perfor-
mance can be achieved with much less training data.
Subjective assessment by human judges confirm the
effectiveness of the approach.

127

The proposed domain adaptation method requires
a small amount of annotated data to be collected of-
fline. In our future work, we intend to focus on train-
ing the generator on the fly with real user feedback
during conversation.

Acknowledgments

Tsung-Hsien Wen and David Vandyke are supported
by Toshiba Research Europe Ltd, Cambridge Re-
search Laboratory.

References

Michael Auli and Jianfeng Gao. 2014. Decoder inte-
gration and expected bleu training for recurrent neural
network language models. In Proceedings of ACL. As-
sociation for Computational Linguistics.

Michael Auli, Michel Galley, and Jianfeng Gao. 2014.
Large-scale expected bleu training of phrase-based re-
ordering models. In Proceedings of EMNLP. Associa-
tion for Computational Linguistics.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

Jerome R. Bellegarda. 2004. Statistical language model
adaptation: review and perspectives. Speech Commu-
nication.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of ACL. Association for Computational
Linguistics.

Dan Bohus and Alexander I. Rudnicky. 2009. The raven-
claw dialog management framework: Architecture and
systems. Computer Speech and Language.

Xie Chen, Tan Tian, Liu Xunying, Lanchantin Pierre,
Wan Moquan, Mark Gales, and Woodland Phil. 2015.
Recurrent neural network language model adaptation
for multi-genre broadcast speech recognition. In Pro-
ceedings of InterSpeech.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-

ments with perceptron algorithms. In Proceedings of
EMNLP. Association for Computational Linguistics.

Heriberto Cuayhuitl, Nina Dethlefs, Helen Hastie, and
Xingkun Liu. 2014. Training a statistical surface re-
aliser from automatic slot labelling. In Spoken Lan-
guage Technology Workshop (SLT), 2014 IEEE.

Hal Daumé III. 2009. Frustratingly easy domain adapta-
tion. CoRR, abs/0907.1815.

Lixin Duan, Dong Xu, and Ivor W. Tsang. 2012. Learn-
ing with augmented features for heterogeneous do-
main adaptation. CoRR, abs/1206.4660.

Milica Gašić, Nikola Mrkšić, Pei-hao Su, David
Vandyke, Tsung-Hsien Wen, and Steve J. Young.
2015. Policy committee for adaptation in multi-
domain spoken dialogue systems. In Proceedings of
ASRU.

Jean-Luc Gauvain and Chin-Hui Lee. 1994. Maximum
a posteriori estimation for multivariate gaussian mix-
ture observations of markov chains. Speech and Audio
Processing, IEEE Transactions on.

Daniel Gildea and Thomas Hofmann. 1999. Topic-based
language models using em. In Proceedings of Eu-
roSpeech.

Xiaodong He and Li Deng. 2012. Maximum expected
bleu training of phrase and lexicon translation models.
In Proceedings of ACL. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Deirdre Hogan, Jennifer Foster, Joachim Wagner, and
Josef van Genabith. 2008. Parser-based retraining
for domain adaptation of probabilistic generators. In
Proceedings of INLG. Association for Computational
Linguistics.

Amy Isard, Carsten Brockmann, and Jon Oberlander.
2006. Individuality and alignment in generated dia-
logues. In Proceedings of INLG. Association for Com-
putational Linguistics.

Ronald M. Kaplan and Joan Bresnan. 1982. Lexical-
Functional Grammar: a formal system for grammati-
cal representation. In Joan Bresnan, editor, The mental
representation of grammatical relations. MIT Press.

Philipp Koehn and Josh Schroeder. 2007. Experiments in
domain adaptation for statistical machine translation.
In Proceedings of StatMT. Association for Computa-
tional Linguistics.

Hong-kwang Kuo, Eric Fosler-lussier, Hui Jiang, and
Chin-hui Lee. 2002. Discriminative training of lan-
guage models for speech recognition. In Proceedings
of ICASSP.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proceedings of ACL. Association for Computational
Linguistics.

128

Chris Leggetter and Philip Woodland. 1995. Maximum
likelihood linear regression for speaker adaptation of
continuous density hidden Markov models. Computer
Speech and Language.

Oliver Lemon. 2008. Adaptive natural language gen-
eration in dialogue using reinforcement learning. In
Proceedings of SemDial.

Franois Mairesse and Marilyn Walker. 2008. Trainable
generation of big-five personality styles through data-
driven parameter estimation. In Proceedings of ACL.
Association for Computational Linguistics.

François Mairesse and Marilyn A. Walker. 2011. Con-
trolling user perceptions of linguistic style: Trainable
generation of personality traits. Computer Linguistics.

François Mairesse and Steve Young. 2014. Stochastic
language generation in dialogue using factored lan-
guage models. Computer Linguistics.

François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation us-
ing graphical models and active learning. In Proceed-
ings of ACL. Association for Computational Linguis-
tics.

Tomáš Mikolov and Geoffrey Zweig. 2012. Context de-
pendent recurrent neural network language model. In
Proceedings of SLT.

Tomáš Mikolov, Martin Karafit, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceedings
of InterSpeech.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gašić, Pei-Hao Su, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2015. Multi-domain
Dialog State Tracking using Recurrent Neural Net-
works. In Proceedings of ACL.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Trans. on Knowledge and
Data Engineering.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL.
Association for Computational Linguistics.

Yangyang Shi, Martha Larson, and Catholijn M. Jonker.
2015. Recurrent neural network language model adap-
tation with curriculum learning. Computer, Speech
and Language.

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex infor-
mation presentation in spoken dialog systems. In Pro-
ceedings of ACL. Association for Computational Lin-
guistics.

Amanda Stent, Matthew Marge, and Mohit Singhai.
2005. Evaluating evaluation methods for generation in

the presence of variation. In Proceedings of CICLing
2005.

Volker Tresp. 2000. A bayesian committee machine.
Neural Computation.

Paul Voigtlaender, Patrick Doetsch, Simon Wiesler, Ralf
Schluter, and Hermann Ney. 2015. Sequence-
discriminative training of recurrent neural networks.
In Proceedings of ICASSP.

Marilyn A Walker, Owen C Rambow, and Monica Ro-
gati. 2002. Training a sentence planner for spoken
dialogue using boosting. Computer Speech and Lan-
guage.

Marilyn Walker, Amanda Stent, Franois Mairesse, and
Rashmi Prasad. 2007. Individual and domain adap-
tation in sentence planning for dialogue. Journal of
Artificial Intelligence Research (JAIR).

Wayne Ward and Sunil Issar. 1994. Recent improve-
ments in the cmu spoken language understanding sys-
tem. In Proceedings of Workshop on HLT. Association
for Computational Linguistics.

Tsung-Hsien Wen, Hung-Yi Lee, Tai-Yuan Chen, and
Lin-Shan Lee. 2012. Personalized language modeling
by crowd sourcing with social network data for voice
access of cloud applications. In Proceedings of SLT.

Tsung-Hsien Wen, Aaron Heidel, Hung yi Lee, Yu Tsao,
and Lin-Shan Lee. 2013. Recurrent neural network
based language model personalization by social net-
work crowdsourcing. In Proceedings of InterSpeech.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic language generation in di-
alogue using recurrent neural networks with convolu-
tional sentence reranking. In Proceedings of SIGdial.
Association for Computational Linguistics.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015b. Seman-
tically conditioned lstm-based natural language gener-
ation for spoken dialogue systems. In Proceedings of
EMNLP. Association for Computational Linguistics.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE.

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D. Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE.

Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and Frank
Seide. 2013. Kl-divergence regularized deep neu-
ral network adaptation for improved large vocabulary
speech recognition. In Proceedings of ICASSP.

129

Proceedings of NAACL-HLT 2016, pages 130–135,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Long Short-Term Memory Framework for Predicting Humor in Dialogues

Dario Bertero and Pascale Fung
Human Language Technology Center

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
dbertero@connect.ust.hk, pascale@ece.ust.hk

Abstract

We propose a first-ever attempt to employ a
Long Short-Term memory based framework
to predict humor in dialogues. We analyze
data from a popular TV-sitcom, whose canned
laughters give an indication of when the au-
dience would react. We model the setup-
punchline relation of conversational humor
with a Long Short-Term Memory, with utter-
ance encodings obtained from a Convolutional
Neural Network. Out neural network frame-
work is able to improve the F-score of 8% over
a Conditional Random Field baseline. We
show how the LSTM effectively models the
setup-punchline relation reducing the number
of false positives and increasing the recall. We
aim to employ our humor prediction model to
build effective empathetic machine able to un-
derstand jokes.

1 Introduction

There has been many recent attempts to detect and
understand humor, irony and sarcasm from sen-
tences, usually taken from Twitter (Reyes et al.,
2013; Barbieri and Saggion, 2014; Riloff et al.,
2013; Joshi et al., 2015), customer reviews (Reyes
and Rosso, 2012) or generic canned jokes (Yang et
al., 2015). Bamman and Smith (2015) and Karoui et
al. (2015) included the surrounding context.

Our work has a different focus from the above.
We analyze transcripts of funny dialogues, a genre
somehow neglected but important for human-robot
interaction. Laughter is the natural reaction of peo-
ple to a verbal or textual humorous stimulus. We
want to predict when the audience would laugh.

Compared to a typical canned joke or a sarcastic
Tweet, a dialog utterance is perceived as funny only
in relation to the dialog context and the past history.
In a spontaneous setting a funny dialog is usually
built through a setup which prepares the audience to
receive the humorous discourse stimuli, followed by
a punchline which releases the tension and triggers
the laughter reaction (Attardo, 1997; Taylor and Ma-
zlack, 2005). Automatic understanding of a humor-
ous dialog is a first step to build an effective empa-
thetic machine fully able to react to the user’s humor
and to other discourse stimuli. We are ultimately in-
terested in developing robots that can bond with hu-
mans better (Devillers et al., 2015).

As a source of situational humor we study a popu-
lar TV sitcom: “The Big Bang Theory”. The domain
of sitcoms is of interest as it provides a full dialog
setting, together with an indication of when the au-
dience is expected to laugh, given by the background
canned laughters. An example of dialog from this
sitcom, as well as of the setup-punchline schema, is
shown below (punchlines in bold):

PENNY: Okay, Sheldon, what can I get
you?
SHELDON: Alcohol.
PENNY: Could you be a little more spe-
cific?
SHELDON: Ethyl alcohol. LAUGH
Forty milliliters. LAUGH
PENNY: I’m sorry, honey, I don’t know
milliliters.
SHELDON: Ah. Blame President James
Jimmy Carter. LAUGH He started
America on a path to the metric system

130

but then just gave up. LAUGH

The utterances before the punchline are the setup.
Without them, the punchlines may not be perceived
as humorous (the last utterance, out of context, may
be a political complaint), only with proper setup a
laughter would be triggered. The humorous intent is
also strengthen by the fact the dialog takes place in
a bar (evident from the previous and following utter-
ances), where a request of 40 ml of “Ethyl Alcohol”
is unusual and weird.

Our previous attempts on the same corpus (Bert-
ero and Fung, 2016b; Bertero and Fung, 2016a)
showed that using a bag-of-ngram representation
over a sliding window or a simple RNN to cap-
ture the contextual information of the setup was not
ideal. For this reason we propose a method based
on a Long Short-Term Memory network (Hochre-
iter and Schmidhuber, 1997), where we encode each
sentence through a Convolutional Neural Network
(Collobert et al., 2011). LSTM is successfully used
in context-dependent sequential classification tasks
such as speech recognition (Graves et al., 2013), de-
pendency parsing (Dyer et al., 2015) and conversa-
tion modelling (Shang et al., 2015). This is also to
our knowledge the first-ever attempt that a LSTM is
applied to humor response prediction or general hu-
mor detection tasks.

2 Methodology

We employ a supervised classification method to
detect when punchlines occur. The bulk of our
classifier is made of a concatenation of a Convo-
lutional Neural Network (Collobert et al., 2011) to
encode each utterance, followed by a Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997)
to model the sequential context of the dialog. Before
the output softmax layer we add a vector of higher
level syntactic, structural and sentiment features. A
framework diagram is shown in Figure 1.

2.1 Convolutional Neural Network for each
utterance

The first stage of our classifier is represented by
a Convolutional Neural Network (Collobert et al.,
2011). Low-level, high-dimensional input feature
vectors are fed into a first embedding layer to obtain
a low dimensional dense vector. A sliding window is

Figure 1: Framework diagram. at, bt and ct are the CNN

three input features (words, word2vec and character trigrams).

lt are the high level feature vectors, and yt the outputs for each

utterance.

then moved on these vectors and another layer is ap-
plied to each group of token vectors, in order to cap-
ture the local context of each token. A max-pooling
operation is then applied to extract the most salient
features of all the tokens into a single vector for the
whole utterance. An additional layer is used to gen-
eralize and distribute each feature to its full range
before obtaining the final utterance vector.

In our task we use three input features:

1. Word tokens: each utterance token is repre-
sented as a one-hot vector. This feature models
how much each word is likely to trigger humor
in the specific corpus.

2. Character trigrams: each token is represented
as a bag-of-character-trigrams vector. The fea-
ture models the role of the word signifier and
removes the influence of the word stems.

3. Word2Vec: we extract for each token a word
vector from word2vec (Mikolov et al., 2013),
trained on the text9 Wikipedia corpus1. This
representation models the general semantic

1Extension of the text8 corpus, obtained from
http://mattmahoney.net/dc/textdata

131

meanings, and matches words that do not ap-
pear to others similar in meaning.

The convolution and max-pooling operation is ap-
plied individually to each feature, and the three vec-
tors obtained are then concatenated together and fed
to the final sentence encoding layer, which combines
all the contributions.

2.2 Long/Short Term Memory for the
utterance sequence

The LSTM is an improvement over the Recurrent
Neural Network aimed to improve its memory ca-
pabilities. In a standard RNN the hidden memory
layer is updated through a function of the input and
the hidden layer at the previous time instant:

ht = tanh(Wxxt + Whht−1 + b) (1)

where x is the network input and b the bias term.
This kind of connection is not very effective to main-
tain the information stored for long time instants, as
well as it does not allow to forget unneeded informa-
tion between two time steps. The LSTM enhances
the RNN with a series of three multiplicative gates.
The structure is the following:

it = σ(Wixxt + Wihht−1 + bi) (2)

ft = σ(Wfxxt + Wfh
ht−1 + bf) (3)

ot = σ(Woxxt + Woh
ht−1 + bo) (4)

st = tanh(Wsxxt + Wsh
ht−1 + bh) (5)

ct = ft � ct−1 + it � st (6)

ht = tanh(ct)� ot (7)

where� is the element-wise product. Each gate fac-
tor is able to let through or suppress a specific update
contribution, thus allowing a selective information
retaining. The input gate i is applied to the cell input
s, the forget gate f to the cell value at the previous
time step ct−1, and the output gate o to the cell out-
put for the current time instant ht. In this way a cell
value can be retained for multiple time steps when
i = 0, ignored in the output when o = 0, and for-
gotten when f = 0.

As dialog utterances are sequential, we feed all ut-
terance vectors of a sitcom scene in sequence into a
Long Short-Term Memory block to incorporate con-
textual information. The memory unit of the LSTM

keeps track of the context in each scene, and mim-
ics human memory to accumulate the setup that may
trigger a punchline.

Before the output we incorporate a set of high
level features from our previous work (Bertero and
Fung, 2016b) and past literature (Reyes et al., 2013;
Barbieri and Saggion, 2014). They include:

• Structural features: average word length, sen-
tence length, difference in sentence length with
the five previous utterances.

• Part of speech proportion: noun, verbs, adjec-
tives and adverbs.

• Antonyms: proportion of antonym words with
the previous utterance (from WordNet (Miller,
1995)).

• Sentiment: positive, negative and average sen-
timent score among all words (from Senti-
WordNet (Esuli and Sebastiani, 2006)).

• Speaker and turn: speaker character identity
and utterance position in the turn (beginning,
middle, end, isolated).

• Speaking rate: time duration of the utterance
from the subtitle files, divided by the sentence
length.

All these features are concatenated to the LSTM out-
put, and a softmax layer is applied to get the final
output probabilities.

3 Experiments

3.1 Corpus
We built a corpus from the popular TV-sitcom “The
Big Bang Theory”, seasons 1 to 6. We downloaded
the subtitle files (annotated with the timestamps of
each utterance) and the scripts2, used to segment all
the episodes into scenes and get the speaker identity
of each utterance. We extracted the audio track of
each episode in order to retrieve the canned laugh-
ters timestamps, with a vocal removal tool followed
by a silence/sound detector. We then annotated each
utterance as a punchline in case it was followed by
a laughter within 1s, assuming that utterances not

2From bigbangtrans.wordpress.com

132

Classifier and features Accuracy Precision Recall F-score
CRF n-grams 61.8 56.8 45.1 50.2
CRF language features 67.8 67.5 47.8 56.0
CRF n-grams + language features 65.9 61.2 55.3 58.1
LSTM 63.1 56.7 58.7 57.6
LSTM + high level features 70.0 66.7 59.4 62.9

Table 1: Results, percentage.

Encoding stage A P R F1
CNN 70.0 66.7 59.4 62.9
LSTM 68.4 66.2 53.4 59.1

Table 2: Comparison between a CNN and a LSTM sentence

encoding input.

followed by a laughter would be the setup for the
punchline.

We obtained a total of 135 episodes, 1589 overall
scenes, 42.8% of punchlines, and an average inter-
val between two punchlines of 2.2 utterances. We
built a training set of 80% of the overall episodes,
and a development and test set of 10% each. The
episodes were drawn from all the seasons with the
same proportion. The total number of utterances is
35865 for the training set, 3904 for the development
set and 3903 for the test set.

3.2 Experimental setup and baseline

In the neural network we set the size to 100 for all
the hidden layers of the CNN and the LSTM, and 5
to the convolutional window. We applied a dropout
regularization layer (Srivastava et al., 2014) after
the output of the LSTM, and L2 regularization on
the softmax output layer. The network was trained
with standard backpropagation, using each scene as
a training unit. The development set was used to
tune the hyperparameters, and to determine the early
stopping condition. When the error on the devel-
opment set began to increase for the first time we
kept training only the final softmax layer, this im-
proved the overall results. The neural network was
implemented with THEANO toolkit (Bergstra et al.,
2010). We ran experiments with and without the ex-
tra high-level feature vector.

As a baseline for comparison we used an imple-
mentation of the Conditional Random Field (Laf-
ferty et al., 2001) from CRFSuite (Okazaki, 2007),
with L2 regularization. We ran experiments using

the same high level feature vector added at the end
of the neural network, 1-2-3gram features of a win-
dow made by the utterance and the four previous,
and the two feature sets combined. We also com-
pared the overall system where we replace the CNN
with an LSTM sentence encoder (Li et al., 2015),
where we kept the same input features.

3.3 Results and discussion

Results of our system and our baselines are shown
in table 1. The LSTM with the aid of the high level
feature vector generally outperformed all the CRF
baselines with the highest accuracy of 70.0% and
the highest F-score of 62.9%. The biggest improve-
ment of the LSTM is the improvement of the recall
without affecting too much the precision. Lexical
features given by n-gram from a context window
are very useful to recognize more punchlines in our
baseline experiment, but they also yield many false
positives, when the same n-gram is used in differ-
ent contexts. A CNN-LSTM network seems to over-
come this issue as the CNN stage is better in model-
ing the lexical and semantic content of the utterance,
as the LSTM allows to put each utterance in relation
with the past context, filtering out many false posi-
tives from wrong contexts.

The choice of the CNN is further justified by
the results obtained from the comparison between
the CNN and the LSTM sentence encoding input,
shown in table 2. The CNN is more effective, ob-
taining a recall of 10% higher and 6% more in F-
score. The CNN is a simpler model that might ben-
efit more of a small-size corpus. It also required a
much shorter training time compared to the LSTM.
We may consider in the future to use more data, and
try other sentence input encoders, including deeper
or bi-directional LSTMs, to find the most effective
one.

Predicting humor response from the canned

133

laughters is a particularly challenging task. In some
cases canned laughters are inserted by the show pro-
ducers with the purpose of solicit response to weak
jokes, where otherwise people would not laugh. The
audience must also be kept constantly amused, extra
canned laughters may help in scenes where fewer
jokes are used.

4 Conclusion and future work

We proposed a Long Short-Term Memory based
framework to predict punchlines in a humorous di-
alog. We showed that our neural network is partic-
ularly effective in increasing the F-score to 62.9%
over a Conditional Random Field baseline of 58.1%.
We furthermore showed that the LSTM is more ef-
fective in obtaining an higher recall with fewer false
positives compared to simple n-gram shifting con-
text window features.

As future work we plan to use a virtual agent sys-
tem to collect a set of human-robot humorous inter-
actions, and adapt our model to predict humor from
them.

Acknowledgments

This work was partially funded by the Hong Kong
Phd Fellowship Scheme, and partially by grant
#16214415 of the Hong Kong Research Grants
Council.

References
Salvatore Attardo. 1997. The semantic foundations

of cognitive theories of humor. Humor-International
Journal of Humor Research, (10):395–420.

David Bamman and Noah A Smith. 2015. Contextual-
ized sarcasm detection on twitter. In Ninth Interna-
tional AAAI Conference on Web and Social Media.

Francesco Barbieri and Horacio Saggion. 2014. Mod-
elling irony in twitter. In Proceedings of the Student
Research Workshop at the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 56–64.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June. Oral Presenta-
tion.

Dario Bertero and Pascale Fung. 2016a. Deep learning
of audio and language features for humor prediction.
International Conference on Language Resources and
Evaluation (LREC) 2016.

Dario Bertero and Pascale Fung. 2016b. Predicting hu-
mor response in dialogues from TV sitcoms. In Acous-
tics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Laurence Devillers, Sophie Rosset, Guillaume Dubuis-
son Duplessis, Mohamed A Sehili, Lucile Béchade,
Agnes Delaborde, Clément Gossart, Vincent Letard,
Fan Yang, Yucel Yemez, et al. 2015. Multimodal
data collection of human-robot humorous interactions
in the joker project. In Affective Computing and Intel-
ligent Interaction (ACII), 2015 International Confer-
ence on, pages 348–354. IEEE.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
334–343, Beijing, China, July. Association for Com-
putational Linguistics.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sentiword-
net: A publicly available lexical resource for opinion
mining. In Proceedings of LREC, volume 6, pages
417–422.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 6645–6649. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing, volume 2, pages 757–762.

Jihen Karoui, Benamara Farah, Véronique Moriceau,
Nathalie Aussenac-Gilles, and Lamia Hadrich-
Belguith. 2015. Towards a contextual pragmatic
model to detect irony in tweets. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint

134

Conference on Natural Language Processing (Volume
2: Short Papers), pages 644–650, Beijing, China,
July. Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages
282–289, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Naoaki Okazaki. 2007. Crfsuite: a fast implemen-
tation of conditional random fields (crfs). URL
http://www.chokkan.org/software/crfsuite.

Antonio Reyes and Paolo Rosso. 2012. Making objec-
tive decisions from subjective data: Detecting irony
in customer reviews. Decision Support Systems,
53(4):754–760.

Antonio Reyes, Paolo Rosso, and Tony Veale. 2013. A
multidimensional approach for detecting irony in twit-
ter. Language Resources and Evaluation, 47(1):239–
268.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment and
negative situation. In EMNLP, pages 704–714.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Julia Taylor and Lawrence Mazlack. 2005. Toward
computational recognition of humorous intent. In
Proceedings of Cognitive Science Conference, pages
2166–2171.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2367–2376, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

135

Proceedings of NAACL-HLT 2016, pages 136–141,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Conversational Flow in Oxford-style Debates

Justine Zhang,1 Ravi Kumar,2 Sujith Ravi,2 Cristian Danescu-Niculescu-Mizil1
1Cornell University, 2Google

jz727@cornell.edu, ravi.k53@gmail.com,
ravi.sujith@gmail.com, cristian@cs.cornell.edu

Abstract

Public debates are a common platform for pre-
senting and juxtaposing diverging views on
important issues. In this work we propose a
methodology for tracking how ideas flow be-
tween participants throughout a debate. We
use this approach in a case study of Oxford-
style debates—a competitive format where the
winner is determined by audience votes—and
show how the outcome of a debate depends
on aspects of conversational flow. In particu-
lar, we find that winners tend to make better
use of a debate’s interactive component than
losers, by actively pursuing their opponents’
points rather than promoting their own ideas
over the course of the conversation.

1 Introduction

Public debates are a common platform for present-
ing and juxtaposing diverging viewpoints. As op-
posed to monologues where speakers are limited
to expressing their own beliefs, debates allow for
participants to interactively attack their opponents’
points while defending their own. The resulting flow
of ideas is a key feature of this conversation genre.

In this work we introduce a computational frame-
work for characterizing debates in terms of conver-
sational flow. This framework captures two main de-
bating strategies—promoting one’s own points and
attacking the opponents’ points—and tracks their
relative usage throughout the debate. By applying
this methodology to a setting where debate winners
are known, we show that conversational flow pat-
terns are predictive of which debater is more likely
to persuade an audience.

Case study: Oxford-style debates. Oxford-style
debates provide a setting that is particularly conve-
nient for studying the effects of conversational flow.
In this competitive debate format, two teams argue
for or against a preset motion in order to persuade
a live audience to take their position. The audience
votes before and after the debate, and the winning
team is the one that sways more of the audience to-
wards its view. This setup allows us to focus on the
effects of conversational flow since it disentangles
them from the audience’s prior leaning.1

The debate format involves an opening statement
from the two sides, which presents an overview of
their arguments before the discussion begins. This
allows us to easily identify talking points held by
the participants prior to the interaction, and con-
sider them separately from points introduced spon-
taneously to serve the discussion.

This work is taking steps towards better model-
ing of conversational dynamics, by: (i) introducing
a debate dataset with rich metadata (Section 2), (ii)
proposing a framework for tracking the flow of ideas
(Section 3), and (iii) showing its effectiveness in a
predictive setting (Section 4).

2 Debate Dataset: Intelligence Squared

In this study we use transcripts and results of
Oxford-style debates from the public debate series
“Intelligence Squared Debates” (IQ2 for short).2

These debates are recorded live, and contain mo-
tions covering a diversity of topics ranging from for-

1Other potential confounding factors are mitigated by the
tight format and topic enforced by the debate’s moderator.

2http://www.intelligencesquaredus.org

136

eign policy issues to the benefits of organic food.
Each debate consists of two opposing teams—one
for the motion and one against— of two or three ex-
perts in the topic of the particular motion, along with
a moderator. Each debate follows the Oxford-style
format and consists of three rounds. In the introduc-
tion, each debater is given 7 minutes to lay out their
main points. During the discussion, debaters take
questions from the moderator and audience, and re-
spond to attacks from the other team. This round
lasts around 30 minutes and is highly interactive;
teams frequently engage in direct conversation with
each other. Finally, in the conclusion, each debater
is given 2 minutes to make final remarks.

Our dataset consists of the transcripts of all de-
bates held by IQ2 in the US from September 2006
up to September 2015; in total, there are 108 de-
bates.3 Each debate is quite extensive: on average,
12801 words are uttered in 117 turns by members of
either side per debate.4

Winning side labels. We follow IQ2’s criteria for
deciding who wins a debate, as follows. Before the
debate, the live audience votes on whether they are
for, against, or undecided on the motion. A sec-
ond round of voting occurs after the debate. A side
wins the debate if the difference between the per-
centage of votes they receive post- and pre-debate
(the “delta”) is greater than that of the other side’s.
Often the debates are quite tight: for 30% of the de-
bates, the difference between the winning and losing
sides’ deltas is less than 10%.
Audience feedback. We check that the voting re-
sults are meaningful by verifying that audience reac-
tions to the debaters are related to debate outcome.
Using laughter and applause received by each side
in each round5 as markers of positive reactions, we
note that differences in audience reception of the two
sides emerge over the course of the debate. While
both sides get similar levels of reaction during the
introduction, winning teams tend to receive more
laughter during the discussion (p < 0.001)6 and
more applause during the conclusion (p = 0.05).

3We omitted one debate due to pdf parsing errors.
4The processed data is available at http://www.cs.

cornell.edu/˜cristian/debates/.
5Laughter and applause are indicated in the transcripts.
6Unless otherwise indicated, all reported p-values are calcu-

lated using the Wilcoxon signed-rank test.

Example debate. We will use a debate over the mo-
tion “Millennials don’t stand a chance” (henceforth
Millennials) as a running example.7 The For side
won the debate with a delta of 20% of the votes,
compared to the Against side which only gained 5%.

3 Modeling Idea Flow

Promoting one’s own points and addressing the op-
ponent’s points are two primary debating strategies.
Here we introduce a methodology to identify these
strategies, and use it to investigate their usage and
effect on a debate’s outcome.8

Identifying talking points. We first focus on ideas
which form the basis of a side’s stance on the mo-
tion. We identify such talking points by consider-
ing words whose frequency of usage differs signif-
icantly between the two teams during the introduc-
tion, before any interaction takes place. To find these
words, we use the method introduced by Monroe et
al. (2008) in the context of U.S. Senate speeches.
In particular, we estimate the divergence between
the two sides’ word-usage in the introduction, where
word-usage is modeled as multinomial distributions
smoothed with a uniform Dirichlet prior, and diver-
gence is given by log-odds ratio. The most discrim-
inating words are those with the highest and lowest
z-scores of divergence estimates. For a side X , we
define the set of talking pointsWX to be the k words
with the highest or lowest z-scores.9 We distinguish
betweenX’s own talking pointsWX , and the oppos-
ing talking pointsWY belonging to its opponent Y .
These are examples of talking points for the “Mil-
lennials” debate:

Side Talking points
For debt, boomer, college, reality

Against economy, volunteer, home, engage

The flow of talking points. A side can either pro-
mote its own talking points, address its opponent’s
points, or steer away from these initially salient

7http://www.intelligencesquaredus.
org/debates/past-debates/item/
1019-millennials-dont-stand-a-chance

8In the subsequent discussion, we treat all utterances of a
particular side as coming from a single speaker and defer mod-
eling interactions within teams to future work.

9In order to focus on concepts central to the sides’ argu-
ments, we discard stopwords, perform stemming on the text,
and take k = 20. We set these parameters by examining one
subsequently discarded debate.

137

Talking point volunteer boomer

Introduction AGAINST: [millennials] volunteer more than any
generation. 73 percent of millennials volunteered for
a nonprofit in 2012. And the percentage of [students]
believing that it’s [...] important to help people in
need is [at the highest level] in 40 years.

FOR: [referring to college completion rate] the
boomer generation is now [at] 32 percent. [Millen-
nials] are currently at [...] 33 percent. So this notion
that [millennials] have more education at this point in
time than anybody else is not actually true.

Discussion FOR: I’d make the argument [that] volunteering [is
done] for exntrinsic [sic] reasons. So, it’s done for
college applications, or it’s done because it’s a re-
quirement in high school.

FOR: It stinks to be young, having gone through what
your generation [referring to millennials] has gone
through. But keep in mind that [...] the boomers [...]
have gone through the same.

Table 1: Example talking points used throughout the “Millennials” debate. Each talking point belongs to the
side uttering the first excerpt, taken from the introduction; the second excerpt is from the discussion section.
In the first example, the For side addresses the opposing talking point volunteer during the discussion; in the
second example the For side refers to their own talking point boomer and recalls it later in the discussion.

Figure 1: The start of the debate’s interactive stage
triggers a drop in self-coverage (> 0, indicated by
leftmost two bars) and a rise in opponent-coverage
(< 0, indicated by rightmost bars), with eventual
winners showing a more pronounced drop in self-
coverage (comparing the two bars on the left).

ideas altogether. We quantify the use of these strate-
gies by comparing the airtime debaters devote to
talking points. For a side X , let the self-coverage
fr(X,X) be the fraction of content words uttered
by X in round r that are among their own talking
pointsWX ; and the opponent-coverage fr(X,Y) be
the fraction of its content words covering opposing
talking pointsWY .

Not surprisingly, we find that self-coverage
dominates during the discussion (fDisc(X,X) >
fDisc(X,Y), p < 0.001). However, this does not
mean debaters are simply giving monologues and
ignoring each other: the effect of the interaction is
reflected in a sharp drop in self-coverage and a rise
in opponent-coverage once the discussion round be-
gins. Respectively, fDisc(X,X) < fIntro(X,X)
and fDisc(X,Y) > fIntro(X,Y), both p < 0.001.
Examples of self- and opponent-coverage of two
talking points in the “Millennials” debate from the
introduction and discussion are given in Table 1.

Does the change in focus translate to any strategic
advantages? Figure 1 suggests this is the case: the
drop in self-coverage is slightly larger for the side
that eventually wins the debate (p = 0.08). The
drop in the sum of self- and opponent-coverage is
also larger for winning teams, suggesting that they
are more likely to steer away from discussing any
talking points from either side (p = 0.05).
Identifying discussion points. Having seen that
debaters can benefit by shifting away from talking
points that were salient during the introduction, we
now examine the ideas that spontaneously arise to
serve the discussion. We model such discussion
points as words introduced to the debate during the
discussion by a debater and adopted by his oppo-
nents at least twice.10 This allows us to focus on
words that become relevant to the conversation; only
3% of all newly introduced words qualify, amount-
ing to about 10 discussion points per debate.
The flow of discussion points. The adoption of dis-
cussion points plays an important role in persuad-
ing the audience: during the discussion, eventual
winners adopt more discussion points introduced by
their opponents than eventual losers (p < 0.01).
Two possible strategic interpretations emerge. From
a topic control angle (Nguyen et al., 2014), perhaps
losers are more successful at imposing their discus-
sion points to gain control of the discussion. This
view appears counterintuitive given work linking
topic control to influence in other settings (Planalp
and Tracy, 1980; Rienks et al., 2006).

10Ignoring single repetitions discards simple echoing of
words used by the previous speaker.

138

AGAINST: I would say [millennials] are effectively
moving towards goals [...] it might seem like imma-
turity if you don’t actually talk to millennials and look
at the statistics.

FOR: –actually, the numbers are showing [...] that it’s
worsening [...] Same statistics, dreadful statistics.

AGAINST: [...] there’s a incredible [sic] advantage that
millennials have when it comes to social media [...] be-
cause we have an understanding of that landscape as
digital natives [...]

FOR: Generation X [...] is also known as the digital
generation. The companies [...] that make you digital
natives were all founded by [...] people in generation X.
It’s simply inaccurate every time somebody says that
the millennial generation is the only generation [...]

Table 2: Example discussion points introduced by
the Against side in the “Millennials” debate. For
each point, the first excerpt is the context in which
the point was first mentioned by the Against side in
the discussion, and the second excerpt shows the For
side challenging the point later on.

An alternative interpretation could be that winners
are more active than losers in contesting their oppo-
nents’ points, a strategy that might play out favor-
ably to the audience. A post-hoc manual examina-
tion supports this interpretation: 78% of the valid
discussion points are picked up by the opposing side
in order to be challenged;11 this strategy is exem-
plified in Table 2. Overall, these observations tying
the flow of discussion points to the debate’s outcome
suggest that winners are more successful at using the
interaction to engage with their opponents’ ideas.

4 Predictive Power

We evaluate the predictive power of our flow fea-
tures in a binary classification setting: predict
whether the For or Against side wins the debate.12

This is a challenging task even for humans, thus the
dramatic reveal at the end of each IQ2 debate that
partly explains the popularity of the show. Our goal

11Three annotators (including one author) informally anno-
tated a random sample of 50 discussion points in the context of
all dialogue excerpts where the point was used. According to a
majority vote, in 26 cases the opponents challenged the point,
in 7 cases the point was supported, 4 cases were unclear, and
in 13 cases the annotators deemed the discussion point invalid.
We discuss the last category in Section 6.

12The task is balanced: after removing three debates ending
in a tie, we have 52 debates won by For and 53 by Against.

here is limited to understanding which of the flow
features that we developed carry predictive power.
Conversation flow features. We use all conversa-
tional features discussed above. For each side X we
include fDisc(X,X), fDisc(X,Y), and their sum.
We also use the drop in self-coverage given by sub-
tracting corresponding values for fIntro(·, ·), and the
number of discussion points adopted by each side.
We call these the Flow features.
Baseline features. To discard the possibility that
our results are simply explained by debater ver-
bosity, we use the number of words uttered and num-
ber of turns taken by each side (length) as baselines.
We also compare to a unigram baseline (BOW).
Audience features. We use the counts of applause
and laughter received by each side (described in Sec-
tion 2) as rough indicators of how well the audience
can foresee a debate’s outcome.

Prediction accuracy is evaluated using a leave-
one-out (LOO) approach. We use logistic regres-
sion; model parameters for each LOO train-test split
are selected via 3-fold cross-validation on the train-
ing set. To find particularly predictive flow features,
we also try using univariate feature selection on the
flow features before the model is fitted in each split;
we refer to this setting as Flow*.13

We find that conversation flow features obtain the
best accuracy among all listed feature types (Flow:
63%; Flow*: 65%), performing significantly higher
than a 50% random baseline (binomial test p <
0.05), and comparable to audience features (60%).
In contrast, the length and BOW baselines do not
perform better than chance. We note that Flow fea-
tures perform competitively despite being the only
ones that do not factor in the concluding round.

The features selected most often in the Flow* task
are: the number of discussion points adopted (with
positive regression coefficients), the recall of talk-
ing points during the discussion round (negative co-
efficients), and the drop in usage of own talking
points from introduction to discussion (positive co-
efficients). The relative importance of these features,
which focus on the interaction between teams, sug-
gests that audiences tend to favor debating strategies
which emphasize the discussion.

13We optimize the regularizer (`1 or `2), and the value of the
regularization parameter C (between 10−5 and 105). For Flow*
we also optimize the number of features selected.

139

5 Further Related Work

Previous work on conversational structure has pro-
posed approaches to model dialogue acts (Samuel et
al., 1998; Ritter et al., 2010; Ferschke et al., 2012)
or disentangle interleaved conversations (Elsner and
Charniak, 2010; Elsner and Charniak, 2011). Other
research has considered the problem of detecting
conversation-level traits such as the presence of dis-
agreements (Allen et al., 2014; Wang and Cardie,
2014) or the likelihood of relation dissolution (Nic-
ulae et al., 2015). At the participant level, several
studies present approaches to identify ideological
stances (Somasundaran and Wiebe, 2010; Rosenthal
and McKeown, 2015), using features based on par-
ticipant interactions (Thomas et al., 2006; Sridhar
et al., 2015), or extracting words and reasons char-
acterizing a stance (Monroe et al., 2008; Nguyen
et al., 2010; Hasan and Ng, 2014). In our setting,
both the stances and the turn structure of a debate
are known, allowing us to instead focus on the de-
bate’s outcome.

Existing research on argumentation strategies has
largely focused on exploiting the structure of mono-
logic arguments (Mochales and Moens, 2011), like
those of persuasive essays (Feng and Hirst, 2011;
Stab and Gurevych, 2014). In addition, Tan et al.
(2016) has examined the effectiveness of arguments
in the context of a forum where people invite oth-
ers to challenge their opinions. We complement this
line of work by looking at the relative persuasiveness
of participants in extended conversations as they ex-
change arguments over multiple turns.

Previous studies of influence in extended con-
versations have largely dealt with the political do-
main, examining moderated but relatively unstruc-
tured settings such as talk shows or presidential
debates, and suggesting features like topic control
(Nguyen et al., 2014), linguistic style matching
(Romero et al., 2015) and turn-taking (Prabhakaran
et al., 2013). With persuasion in mind, our work ex-
tends these studies to explore a new dynamic, the
flow of ideas between speakers, in a highly struc-
tured setting that controls for confounding factors.

6 Limitations and Future Work

This study opens several avenues for future research.
One could explore more complex representations of

talking points and discussion points, for instance
using topic models or word embeddings. Further-
more, augmenting the flow of content in a conversa-
tion with the speakers’ linguistic choices could bet-
ter capture their intentions. In addition, it would be
interesting to study the interplay between our con-
versational flow features and relatively monologic
features that consider the argumentative and rhetor-
ical traits of each side separately. More explicitly
comparing and contrasting monologic and interac-
tive dynamics could lead to better models of con-
versations. Such approaches could also help clar-
ify some of the intuitions about conversations ex-
plored in this work, particularly that engaging in di-
alogue carries different strategic implications from
self-promotion.

Our focus in this paper is on capturing and under-
standing conversational flow. We hence make some
simplifying assumptions that could be refined in fu-
ture work. For instance, by using a basic unigram-
based definition of discussion points, we do not ac-
count for the context or semantic sense in which
these points occur. In particular, our annotators
found that a significant proportion of the discussion
points under our definition actually referred to dif-
fering ideas in the various contexts in which they
appeared. We expect that improving our retrieval
model will also improve the robustness of our idea
flow analysis. A better model of discussion points
could also provide more insight into the role of these
points in persuading the audience.

While Oxford-style debates are a particularly con-
venient setting for studying the effects of conversa-
tional flow, our dataset is limited in terms of size. It
would be worthwhile to examine the flow features
we developed in the context of settings with richer
incentives beyond persuading an audience, such as
in the semi-cooperative environment of Wikipedia
talk pages. Finally, our methodology could point
to applications in areas such as education and co-
operative work, where it is key to establish the link
between conversation features and an interlocutor’s
ability to convey their point (Niculae and Danescu-
Niculescu-Mizil, 2016).
Acknowledgements. We thank the reviewers and V.
Niculae for their helpful comments, and I. Arawjo
and D. Sedra for annotations. This work was sup-
ported in part by a Google Faculty Research Award.

140

References
Kelsey Allen, Giuseppe Carenini, and Raymond T Ng.

2014. Detecting disagreement in conversations using
pseudo-monologic rhetorical structure. In Proceed-
ings of EMNLP.

Micha Elsner and Eugene Charniak. 2010. Disentan-
gling chat. Computational Linguistics, 36(3):389–
409.

Micha Elsner and Eugene Charniak. 2011. Disentan-
gling chat with local coherence models. In Proceed-
ings of ACL.

Vanessa Wei Feng and Graeme Hirst. 2011. Classifying
arguments by scheme. In Proceedings of ACL.

Oliver Ferschke, Iryna Gurevych, and Yevgen Chebotar.
2012. Behind the article: Recognizing dialog acts in
Wikipedia talk pages. In Proceedings of EACL.

Kazi Saidul Hasan and Vincent Ng. 2014. Why are you
taking this stance? Identifying and classifying reasons
in ideological debates. In Proceedings of EMNLP.

Raquel Mochales and Marie-Francine Moens. 2011. Ar-
gumentation mining. Artificial Intelligence and Law,
19(1):1–22.

Burt L. Monroe, Michael P. Colaresi, and Kevin M.
Quinn. 2008. Fightin’words: Lexical feature selec-
tion and evaluation for identifying the content of polit-
ical conflict. Political Analysis, 16(4):372–403.

Dong Nguyen, Elijah Mayfield, and Carolyn P Rosé.
2010. An analysis of perspectives in interactive set-
tings. In Proceedings of the KDD 2010 Workshop on
Social Media Analytics.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
Deborah A Cai, Jennifer E Midberry, and Yuanxin
Wang. 2014. Modeling topic control to detect influ-
ence in conversations using nonparametric topic mod-
els. Machine Learning, 95(3):381–421.

Vlad Niculae and Cristian Danescu-Niculescu-Mizil.
2016. Conversational markers of constructive discus-
sions. In Proceedings of NAACL.

Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and
Cristian Danescu-Niculescu-Mizil. 2015. Linguistic
harbingers of betrayal: A case study on an online strat-
egy game. In Proceedings of ACL.

Sally Planalp and Karen Tracy. 1980. Not to change the
subject but: A cognitive approach to the management
of conversation. Communication Yearbook, 4:680–
690.

Vinodkumar Prabhakaran, Ajita John, and Dorée D.
Seligmann. 2013. Who had the upper hand? Rank-
ing participants of interactions based on their relative
power. In Proceedings of IJCNLP.

Rutger Rienks, Dong Zhang, Daniel Gatica-Perez, and
Wilfried Post. 2006. Detection and application of in-
fluence rankings in small group meetings. In Proceed-
ings of ICMI.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Un-
supervised modeling of twitter conversations. In Pro-
ceedings of NAACL.

Daniel M Romero, Roderick I Swaab, Brian Uzzi, and
Adam D Galinsky. 2015. Mimicry is presidential:
Linguistic style matching in presidential debates and
improved polling numbers. Personality and Social
Psychology Bulletin, 41(10):1311–1319.

Sara Rosenthal and Kathleen McKeown. 2015. I
couldn’t agree more: The role of conversational struc-
ture in agreement and disagreement detection in online
discussions. In Proceedings of SIGDIAL.

Ken Samuel, Sandra Carberry, and K. Vijay-Shanker.
1998. Dialogue act tagging with transformation-based
learning. In Proceedings of ACL.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Genera-
tion of Emotion in Text.

Dhanya Sridhar, James Foulds, Bert Huang, Lise Getoor,
and Marilyn Walker. 2015. Joint models of disagree-
ment and stance in online debate. In Proceedings of
ACL.

Christian Stab and Iryna Gurevych. 2014. Identifying
argumentative discourse structures in persuasive es-
says. In Proceedings of EMNLP.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
arguments: Interaction dynamics and persuasion
strategies in good-faith online discussions. In
Proceedings of WWW.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
EMNLP.

Lu Wang and Claire Cardie. 2014. A piece of my mind:
A sentiment analysis approach for online dispute de-
tection. In Proceedings of ACL.

141

Proceedings of NAACL-HLT 2016, pages 142–148,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Counter-fitting Word Vectors to Linguistic Constraints

Nikola Mrkšić1, Diarmuid Ó Séaghdha2, Blaise Thomson2, Milica Gašić1

Lina Rojas-Barahona1, Pei-Hao Su1, David Vandyke1, Tsung-Hsien Wen1, Steve Young1

1 Department of Engineering, University of Cambridge, UK
2 Apple Inc.

{nm480,mg436,phs26,djv27,thw28,sjy}@cam.ac.uk
{doseaghdha, blaisethom}@apple.com

Abstract

In this work, we present a novel counter-fitting
method which injects antonymy and synonymy
constraints into vector space representations in
order to improve the vectors’ capability for
judging semantic similarity. Applying this
method to publicly available pre-trained word
vectors leads to a new state of the art perfor-
mance on the SimLex-999 dataset. We also
show how the method can be used to tailor the
word vector space for the downstream task of
dialogue state tracking, resulting in robust im-
provements across different dialogue domains.

1 Introduction

Many popular methods that induce representations
for words rely on the distributional hypothesis – the
assumption that semantically similar or related words
appear in similar contexts. This hypothesis sup-
ports unsupervised learning of meaningful word rep-
resentations from large corpora (Curran, 2003; Ó
Séaghdha and Korhonen, 2014; Mikolov et al., 2013;
Pennington et al., 2014). Word vectors trained using
these methods have proven useful for many down-
stream tasks including machine translation (Zou et al.,
2013) and dependency parsing (Bansal et al., 2014).

One drawback of learning word embeddings from
co-occurrence information in corpora is that it tends
to coalesce the notions of semantic similarity and con-
ceptual association (Hill et al., 2014b). Furthermore,
even methods that can distinguish similarity from
association (e.g., based on syntactic co-occurrences)
will generally fail to tell synonyms from antonyms
(Mohammad et al., 2008). For example, words such

east expensive British

Before

west pricey American
north cheaper Australian
south costly Britain

southeast overpriced European
northeast inexpensive England

After

eastward costly Brits
eastern pricy London
easterly overpriced BBC

- pricey UK
- afford Britain

Table 1: Nearest neighbours for target words using GloVe
vectors before and after counter-fitting

as east and west or expensive and inexpensive appear
in near-identical contexts, which means that distribu-
tional models produce very similar word vectors for
such words. Examples of such anomalies in GloVe
vectors can be seen in Table 1, where words such as
cheaper and inexpensive are deemed similar to (their
antonym) expensive.

A second drawback is that similarity and antonymy
can be application- or domain-specific. In our case,
we are interested in exploiting distributional knowl-
edge for the dialogue state tracking task (DST). The
DST component of a dialogue system is responsi-
ble for interpreting users’ utterances and updating
the system’s belief state – a probability distribution
over all possible states of the dialogue. For exam-
ple, a DST for the restaurant domain needs to detect
whether the user wants a cheap or expensive restau-
rant. Being able to generalise using distributional
information while still distinguishing between se-
mantically different yet conceptually related words

142

(e.g. cheaper and pricey) is critical for the perfor-
mance of dialogue systems. In particular, a dialogue
system can be led seriously astray by false synonyms.

We propose a method that addresses these two
drawbacks by using synonymy and antonymy rela-
tions drawn from either a general lexical resource
or an application-specific ontology to fine-tune dis-
tributional word vectors. Our method, which we
term counter-fitting, is a lightweight post-processing
procedure in the spirit of retrofitting (Faruqui et al.,
2015). The second row of Table 1 illustrates the
results of counter-fitting: the nearest neighbours cap-
ture true similarity much more intuitively than the
original GloVe vectors. The procedure improves
word vector quality regardless of the initial word vec-
tors provided as input.1 By applying counter-fitting
to the Paragram-SL999 word vectors provided by
Wieting et al. (2015), we achieve new state-of-the-art
performance on SimLex-999, a dataset designed to
measure how well different models judge semantic
similarity between words (Hill et al., 2014b). We
also show that the counter-fitting method can in-
ject knowledge of dialogue domain ontologies into
word vector space representations to facilitate the
construction of semantic dictionaries which improve
DST performance across two different dialogue do-
mains. Our tool and word vectors are available at
github.com/nmrksic/counter-fitting.

2 Related Work

Most work on improving word vector representa-
tions using lexical resources has focused on bringing
words which are known to be semantically related
closer together in the vector space. Some methods
modify the prior or the regularization of the original
training procedure (Yu and Dredze, 2014; Bian et al.,
2014; Kiela et al., 2015). Wieting et al. (2015) use
the Paraphrase Database (Ganitkevitch et al., 2013)
to train word vectors which emphasise word simi-
larity over word relatedness. These word vectors
achieve the current state-of-the-art performance on
the SimLex-999 dataset and are used as input for
counter-fitting in our experiments.

1When we write “improve”, we refer to improving the vector
space for a specific purpose. We do not expect that a vector
space fine-tuned for semantic similarity will give better results
on semantic relatedness. As Mohammad et al. (2008) observe,
antonymous concepts are related but not similar.

Recently, there has been interest in lightweight
post-processing procedures that use lexical knowl-
edge to refine off-the-shelf word vectors without re-
quiring large corpora for (re-)training as the afore-
mentioned “heavyweight” procedures do. Faruqui
et al.’s (2015) retrofitting approach uses similarity
constraints from WordNet and other resources to pull
similar words closer together.

The complications caused by antonymy for distri-
butional methods are well-known in the semantics
community. Most prior work focuses on extracting
antonym pairs from text rather than exploiting them
(Lin et al., 2003; Mohammad et al., 2008; Turney,
2008; Hashimoto et al., 2012; Mohammad et al.,
2013). The most common use of antonymy infor-
mation is to provide features for systems that de-
tect contradictions or logical entailment (Marcu and
Echihabi, 2002; de Marneffe et al., 2008; Zanzotto
et al., 2009). As far as we are aware, there is no
previous work on exploiting antonymy in dialogue
systems. The modelling work closest to ours are
Liu et al. (2015), who use antonymy and WordNet
hierarchy information to modify the heavyweight
Word2Vec training objective; Yih et al. (2012), who
use a Siamese neural network to improve the qual-
ity of Latent Semantic Analysis vectors; Schwartz et
al. (2015), who build a standard distributional model
from co-occurrences based on symmetric patterns,
with specified antonymy patterns counted as nega-
tive co-occurrences; and Ono et al. (2015), who use
thesauri and distributional data to train word embed-
dings specialised for capturing antonymy.

3 Counter-fitting Word Vectors to
Linguistic Constraints

Our starting point is an indexed set of word vec-
tors V = {v1,v2, . . . ,vN} with one vector for each
word in the vocabulary. We will inject semantic re-
lations into this vector space to produce new word
vectors V ′ = {v′1,v′2, . . . ,v′N}. For antonymy
and synonymy we have a set of constraints A and
S, respectively. The elements of each set are pairs
of word indices; for example, each pair (i, j) in S is
such that the i-th and j-th words in the vocabulary are
synonyms. The objective function used to counter-fit
the pre-trained word vectors V to the sets of linguistic
constraints A and S contains three different terms:

143

1. Antonym Repel (AR): This term serves to push
antonymous words’ vectors away from each other in
the transformed vector space V ′:

AR(V ′) =
∑

(u,w)∈A
τ
(
δ − d(v′u,v′w)

)
where d(vi, vj) = 1−cos(vi, vj) is a distance derived
from cosine similarity and τ(x) , max(0, x) im-
poses a margin on the cost. Intuitively, δ is the “ideal”
minimum distance between antonymous words; in
our experiments we set δ = 1.0 as it corresponds to
vector orthogonality.

2. Synonym Attract (SA): The counter-fitting
procedure should seek to bring the word vectors of
known synonymous word pairs closer together:

SA(V ′) =
∑

(u,w)∈S
τ
(
d(v′u,v

′
w)− γ)

where γ is the “ideal” maximum distance between
synonymous words; we use γ = 0.

3. Vector Space Preservation (VSP): the topol-
ogy of the original vector space describes relation-
ships between words in the vocabulary captured using
distributional information from very large textual cor-
pora. The VSP term bends the transformed vector
space towards the original one as much as possible in
order to preserve the semantic information contained
in the original vectors:

VSP(V, V ′) =
N∑
i=1

∑
j∈N(i)

τ
(
d(v′i,v

′
j)− d(vi,vj)

)
For computational efficiency, we do not calculate
distances for every pair of words in the vocabulary.
Instead, we focus on the (pre-computed) neighbour-
hood N(i), which denotes the set of words within
a certain radius ρ around the i-th word’s vector in
the original vector space V . Our experiments indi-
cate that counter-fitting is relatively insensitive to the
choice of ρ, with values between 0.2 and 0.4 showing
little difference in quality; here we use ρ = 0.2.

The objective function for the training procedure
is given by a weighted sum of the three terms:

C(V, V ′) = k1AR(V ′)+k2SA(V ′)+k3VSP(V, V ′)

where k1, k2, k3 ≥ 0 are hyperparameters that con-
trol the relative importance of each term. In our
experiments we set them to be equal: k1 = k2 = k3.
To minimise the cost function for a set of starting
vectors V and produce counter-fitted vectors V ′, we
run stochastic gradient descent (SGD) for 20 epochs.
An end-to-end run of counter-fitting takes less than
two minutes on a laptop with four CPUs.

3.1 Injecting Dialogue Domain Ontologies into
Vector Space Representations

Dialogue state tracking (DST) models capture users’
goals given their utterances. Goals are represented as
sets of constraints expressed by slot-value pairs such
as [food: Indian] or [parking: allowed]. The set of
slots S and the set of values Vs for each slot make up
the ontology of a dialogue domain.

In this paper we adopt the recurrent neural network
(RNN) framework for tracking suggested in (Hender-
son et al., 2014d; Henderson et al., 2014c; Mrkšić et
al., 2015). Rather than using a spoken language un-
derstanding (SLU) decoder to convert user utterances
into meaning representations, this model operates
directly on the n-gram features extracted from the
automated speech recognition (ASR) hypotheses. A
drawback of this approach is that the RNN model
can only perform exact string matching to detect the
slot names and values mentioned by the user. It can-
not recognise synonymous words such as pricey and
expensive, or even subtle morphological variations
such as moderate and moderately. A simple way to
mitigate this problem is to use semantic dictionaries:
lists of rephrasings for the values in the ontology.
Manual construction of dictionaries is highly labour-
intensive; however, if one could automatically detect
high-quality rephrasings, then this capability would
come at no extra cost to the system designer.

To obtain a set of word vectors which can be used
for creating a semantic dictionary, we need to inject
the domain ontology into the vector space. This can
be achieved by introducing antonymy constraints be-
tween all the possible values of each slot (i.e. Chinese
and Indian, expensive and cheap, etc.). The remain-
ing linguistic constraints can come from semantic
lexicons: the richer the sets of injected synonyms
and antonyms are, the better the resulting word rep-
resentations will become.

144

Model / Word Vectors ρ

Neural MT Model (Hill et al., 2014a) 0.52
Symmetric Patterns (Schwartz et al., 2015) 0.56
Non-distributional Vectors (Faruqui and Dyer, 2015) 0.58
GloVe vectors (Pennington et al., 2014) 0.41
GloVe vectors + Retrofitting 0.53
GloVe + Counter-fitting 0.58
Paragram-SL999 (Wieting et al., 2015) 0.69
Paragram-SL999 + Retrofitting 0.68
Paragram-SL999 + Counter-fitting 0.74
Inter-annotator agreement 0.67
Annotator/gold standard agreement 0.78

Table 2: Performance on SimLex-999. Retrofitting uses
the code and (PPDB) data provided by the authors

4 Experiments

4.1 Word Vectors and Semantic Lexicons

Two different collections of pre-trained word vectors
were used as input to the counter-fitting procedure:

1. Glove Common Crawl 300-dimensional vec-
tors made available by Pennington et al. (2014).

2. Paragram-SL999 300-dimensional vectors
made available by Wieting et al. (2015).

The synonymy and antonymy constraints were ob-
tained from two semantic lexicons:

1. PPDB 2.0 (Pavlick et al., 2015): the latest re-
lease of the Paraphrase Database. A new fea-
ture of this version is that it assigns relation
types to its word pairs. We identify the Equiv-
alence relation with synonymy and Exclusion
with antonymy. We used the largest available
(XXXL) version of the database and only con-
sidered single-token terms.

2. WordNet (Miller, 1995): a well known seman-
tic lexicon which contains vast amounts of high
quality human-annotated synonym and antonym
pairs. Any two words in our vocabulary which
had antonymous word senses were considered
antonyms; WordNet synonyms were not used.

In total, the lexicons yielded 12,802 antonymy and
31,828 synonymy pairs for our vocabulary, which
consisted of 76,427 most frequent words in Open-
Subtitles, obtained from invokeit.wordpress.
com/frequency-word-lists/.

Semantic Resource Glove Paragram
Baseline (no linguistic constraints) 0.41 0.69
PPDB− (PPDB antonyms) 0.43 0.69
PPDB+ (PPDB synonyms) 0.46 0.68
WordNet− (WordNet antonyms) 0.52 0.74
PPDB− and PPDB+ 0.50 0.69
WordNet− and PPDB− 0.53 0.74
WordNet− and PPDB+ 0.58 0.74
WordNet− and PPDB− and PPDB+ 0.58 0.74

Table 3: SimLex-999 performance when different sets of
linguistic constraints are used for counter-fitting

4.2 Improving Lexical Similarity Predictions

In this section, we show that counter-fitting pre-
trained word vectors with linguistic constraints im-
proves their usefulness for judging semantic simi-
larity. We use Spearman’s rank correlation coeffi-
cient with the SimLex-999 dataset, which contains
word pairs ranked by a large number of annotators
instructed to consider only semantic similarity.

Table 2 contains a summary of recently reported
competitive scores for SimLex-999, as well as the
performance of the unaltered, retrofitted and counter-
fitted GloVe and Paragram-SL999 word vectors. To
the best of our knowledge, the 0.685 figure reported
for the latter represents the current high score. This
figure is above the average inter-annotator agreement
of 0.67, which has been referred to as the ceiling
performance in most work up to now.

In our opinion, the average inter-annotator agree-
ment is not the only meaningful measure of ceiling
performance. We believe it also makes sense to com-
pare: a) the model ranking’s correlation with the gold
standard ranking to: b) the average rank correlation
that individual human annotators’ rankings achieved
with the gold standard ranking. The SimLex-999
authors have informed us that the average annotator
agreement with the gold standard is 0.78.2 As shown
in Table 2, the reported performance of all the models
and word vectors falls well below this figure.

Retrofitting pre-trained word vectors improves
GloVe vectors, but not the already semantically spe-
cialised Paragram-SL999 vectors. Counter-fitting
substantially improves both sets of vectors, showing
that injecting antonymy relations goes a long way

2This figure is now reported as a potentially fairer ceiling
performance on the SimLex-999 website: http://www.cl.
cam.ac.uk/˜fh295/simlex.html.

145

False Synonyms Fixed False Antonyms Fixed
sunset, sunrise X dumb, dense
forget, ignore adult, guardian

girl, maid polite, proper XX
happiness, luck XX strength, might

south, north X water, ice
go, come X violent, angry XX

groom, bride cat, lion XX
dinner, breakfast laden, heavy XX

- - engage, marry

Table 4: Highest-error SimLex-999 word pairs using Para-
gram vectors (before counter-fitting)

towards improving word vectors for the purpose of
making semantic similarity judgements.

Table 3 shows the effect of injecting different cate-
gories of linguistic constraints. GloVe vectors benefit
from all three sets of constraints, whereas the quality
of Paragram vectors, already exposed to PPDB, only
improves with the injection of WordNet antonyms.
Table 4 illustrates how incorrect similarity predic-
tions based on the original (Paragram) vectors can
be fixed through counter-fitting. The table presents
eight false synonyms and nine false antonyms: word
pairs with predicted rank in the top (bottom) 200
word pairs and gold standard rank 500 or more posi-
tions lower (higher). Eight of these errors are fixed
by counter-fitting: the difference between predicted
and gold-standard ranks is now 100 or less. Interest-
ingly, five of the eight corrected word pairs do not
appear in the sets of linguistic constraints; these are
indicated by double ticks in the table. This shows
that secondary (i.e. indirect) interactions through the
three terms of the cost function do contribute to the
semantic content of the transformed vector space.

4.3 Improving Dialogue State Tracking

Table 5 shows the dialogue state tracking datasets
used for evaluation. These datasets come from the
Dialogue State Tracking Challenges 2 and 3 (Hender-
son et al., 2014a; Henderson et al., 2014b).

We used four different sets of word vectors to con-
struct semantic dictionaries: the original GloVe and
Paragram-SL999 vectors, as well as versions counter-
fitted to each domain ontology. The constraints used
for counter-fitting were all those from the previous
section as well as antonymy constraints among the
set of values for each slot. We treated all vocabu-
lary words within some radius t of a slot value as

Dataset Train Dev Test #Slots
Restaurants 1612 506 1117 4

Tourist Information 1600 439 225 9

Table 5: Number of dialogues in the dataset splits used
for the Dialogue State Tracking experiments

Word Vector Space Restaurants Tourist Info
Baseline (no dictionary) 68.6 60.5
GloVe 72.5 60.9
GloVe + Counter-fitting 73.4 62.8
Paragram-SL999 73.2 61.5
Paragram-SL999 + Counter-fitting 73.5 61.9

Table 6: Performance of RNN belief trackers (ensembles
of four models) with different semantic dictionaries

rephrasings of that value. The optimal value of t
was determined using a grid search: we generated a
dictionary and trained a model for each potential t,
then evaluated on the development set. Table 6 shows
the performance of RNN models which used the con-
structed dictionaries. The dictionaries induced from
the pre-trained vectors substantially improved track-
ing performance over the baselines (which used no
semantic dictionaries). The dictionaries created us-
ing the counter-fitted vectors improved performance
even further. Contrary to the SimLex-999 experi-
ments, starting from the Paragram vectors did not
lead to superior performance, which shows that in-
jecting the application-specific ontology is at least as
important as the quality of the initial word vectors.

5 Conclusion

We have presented a novel counter-fitting method
for injecting linguistic constraints into word vector
space representations. The method efficiently post-
processes word vectors to improve their usefulness
for tasks which involve making semantic similarity
judgements. Its focus on separating vector represen-
tations of antonymous word pairs lead to substantial
improvements on genuine similarity estimation tasks.
We have also shown that counter-fitting can tailor
word vectors for downstream tasks by using it to
inject domain ontologies into word vectors used to
construct semantic dictionaries for dialogue systems.

Acknowledgements

We would like to thank Felix Hill for help with the
SimLex-999 evaluation. We also thank the anony-
mous reviewers for their helpful suggestions.

146

References

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In Proceedings of ACL.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Knowledge-
powered deep learning for word embedding. In
Machine Learning and Knowledge Discovery in
Databases.

James Curran. 2003. From Distributional to Semantic
Similarity. Ph.D. thesis, School of Informatics, Univer-
sity of Edinburgh.

Marie-Catherine de Marneffe, Anna N. Rafferty, and
Christopher D. Manning. 2008. Finding contradic-
tions in text. In Proceedings of ACL.

Manaal Faruqui and Chris Dyer. 2015. Non-distributional
word vector representations. In Proceedings of ACL.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris Dyer,
Eduard Hovy, and Noah A. Smith. 2015. Retrofitting
Word Vectors to Semantic Lexicons. In Proceedings of
NAACL HLT.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of NAACL HLT.

Chikara Hashimoto, Kentaro Torisawa, Stijn De Saeger,
Jong-Hoon Oh, and Junichi Kazama. 2012. Excitatory
or inhibitory: A new semantic orientation extracts con-
tradiction and causality from the Web. In Proceedings
of EMNLP-CoNLL.

Matthew Henderson, Blaise Thomson, and Jason D. Wil-
iams. 2014a. The Second Dialog State Tracking Chal-
lenge. In Proceedings of SIGDIAL.

Matthew Henderson, Blaise Thomson, and Jason D. Wil-
iams. 2014b. The Third Dialog State Tracking Chal-
lenge. In Proceedings of IEEE SLT.

Matthew Henderson, Blaise Thomson, and Steve Young.
2014c. Robust Dialog State Tracking using Delexi-
calised Recurrent Neural Networks and Unsupervised
Adaptation. In Proceedings of IEEE SLT.

Matthew Henderson, Blaise Thomson, and Steve Young.
2014d. Word-Based Dialog State Tracking with Recur-
rent Neural Networks. In Proceedings of SIGDIAL.

Felix Hill, Kyunghyun Cho, Sbastien Jean, Coline Devin,
and Yoshua Bengio. 2014a. Embedding word sim-
ilarity with neural machine translation. Computing
Research Repository.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014b.
SimLex-999: Evaluating Semantic Models with (Gen-
uine) Similarity Estimation. Computing Research
Repository.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015. Spe-
cializing word embeddings for similarity or relatedness.
In Proceedings of EMNLP.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou.
2003. Identifying synonyms among distributionally
similar words. In Proceedings of IJCAI.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and Yu Hu.
2015. Learning semantic word embeddings based on
ordinal knowledge constraints. In Proceedings of ACL.

Daniel Marcu and Abdsemmad Echihabi. 2002. An un-
supervised approach to recognizing discourse relations.
In Proceedings of ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representations
of Words and Phrases and their Compositionality. In
Proceedings of NIPS.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Communications of the ACM.

Saif Mohammad, Bonnie Dorr, and Graeme Hirst. 2008.
Computing word-pair antonymy. In Proceedings of
EMNLP.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thomson,
Milica Gašić, Pei-Hao Su, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2015. Multi-domain Di-
alog State Tracking using Recurrent Neural Networks.
In Proceedings of ACL.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki. 2015.
Word Embedding-based Antonym Detection using The-
sauri and Distributional Information. In Proceedings of
NAACL HLT.

Diarmuid Ó Séaghdha and Anna Korhonen. 2014. Prob-
abilistic distributional semantics. Computational Lin-
guistics, 40(3):587–631.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich, Ben-
jamin Van Durme, and Chris Callison-Burch. 2015.
PPDB 2.0: Better paraphrase ranking, fine-grained en-
tailment relations, word embeddings, and style classifi-
cation. In Proceedings of ACL.

Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. 2014. Glove: Global Vectors for Word Represen-
tation. In Proceedings of EMNLP.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings of
CoNLL.

Peter D. Turney. 2008. A uniform approach to analogies,
synonyms, antonyms, and associations. In Proceedings
of COLING.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to composi-
tional paraphrase model and back. Transactions of the
Association for Computational Linguistics.

147

Wen-Tau Yih, Geoffrey Zweig, and John C. Platt. 2012.
Polarity inducing Latent Semantic Analysis. In Pro-
ceedings of ACL.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings of
ACL.

Fabio Massimo Zanzotto, Marco Pennachiotti, and
Alessandro Moschitti. 2009. A machine learning ap-
proach to textual entailment recognition. Journal of
Natural Language Engineering, 15(4):551–582.

Will Y. Zou, Richard Socher, Daniel M. Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of EMNLP.

148

Proceedings of NAACL-HLT 2016, pages 149–159,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Grounded Semantic Role Labeling

Shaohua Yang1, Qiaozi Gao1, Changsong Liu1, Caiming Xiong2,
Song-Chun Zhu3, and Joyce Y. Chai1

1Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824
2Metamind, Palo Alto, CA 94301

3Center for Vision, Cognition, Learning, and Autonomy, University of California, Los Angeles, CA 90095
{yangshao,gaoqiaoz,cliu,jchai}@cse.msu.edu
cmxiong@metamind.io, sczhu@stat.ucla.edu

Abstract

Semantic Role Labeling (SRL) captures se-
mantic roles (or participants) such as agent,
patient, and theme associated with verbs
from the text. While it provides important in-
termediate semantic representations for many
traditional NLP tasks (such as information ex-
traction and question answering), it does not
capture grounded semantics so that an arti-
ficial agent can reason, learn, and perform
the actions with respect to the physical envi-
ronment. To address this problem, this pa-
per extends traditional SRL to grounded SRL
where arguments of verbs are grounded to
participants of actions in the physical world.
By integrating language and vision process-
ing through joint inference, our approach not
only grounds explicit roles, but also grounds
implicit roles that are not explicitly mentioned
in language descriptions. This paper describes
our empirical results and discusses challenges
and future directions.

1 Introduction

Linguistic studies capture semantics of verbs by
their frames of thematic roles (also referred to as
semantic roles or verb arguments) (Levin, 1993).
For example, a verb can be characterized by agent
(i.e., the animator of the action) and patient
(i.e., the object on which the action is acted upon),
and other roles such as instrument, source,
destination, etc. Given a verb frame, the goal
of Semantic Role Labeling (SRL) is to identify lin-
guistic entities from the text that serve different the-
matic roles (Palmer et al., 2005; Gildea and Jurafsky,

The	woman	takes	out	a	cucumber	from	the	
refrigerator.	

	Predicate:	“takes	out”:	track	1	
	Agent:	‘’The	woman’’	:	track	2	
	Pa.ent:	‘’a	cucumber’’	:	track	3	
	Source:	‘’from	the	refrigerator’’	:	
track	4	
	Des.na.on:	‘’	‘’	:	track	5	
	

Figure 1: An example of grounded semantic role labeling for

the sentence the woman takes out a cucumber from the refrig-

erator. The left hand side shows three frames of a video clip

with the corresponding language description. The objects in the

bounding boxes are tracked and each track has a unique identi-

fier. The right hand side shows the grounding results where each

role including the implicit role (destination) is grounded to

a track id.

2002; Collobert et al., 2011; Zhou and Xu, 2015).
For example, given the sentence the woman takes
out a cucumber from the refrigerator., takes out is
the main verb (also called predicate); the noun
phrase the woman is the agent of this action; a cu-
cumber is the patient; and the refrigerator is the
source.

SRL captures important semantic representations
for actions associated with verbs, which have shown
beneficial for a variety of applications such as infor-
mation extraction (Emanuele et al., 2013) and ques-
tion answering (Shen and Lapata, 2007). However,
the traditional SRL is not targeted to represent verb
semantics that are grounded to the physical world
so that artificial agents can truly understand the on-
going activities and (learn to) perform the specified
actions. To address this issue, we propose a new task
on grounded semantic role labeling.

Figure 1 shows an example of grounded SRL.

149

The sentence the woman takes out a cucumber
from the refrigerator describes an activity in a
visual scene. The semantic role representation
from linguistic processing (including implicit roles
such as destination) is first extracted and then
grounded to tracks of visual entities as shown in
the video. For example, the verb phrase take out
is grounded to a trajectory of the right hand. The
role agent is grounded to the person who actually
does the take-out action in the visual scene (track
1) ; the patient is grounded to the cucumber
taken out (track 3); and the source is grounded
to the refrigerator (track 4). The implicit role of
destination (which is not explicitly mentioned
in the language description) is grounded to the cut-
ting board (track 5).

To tackle this problem, we have developed an ap-
proach to jointly process language and vision by in-
corporating semantic role information. In particular,
we use a benchmark dataset (TACoS) which con-
sists of parallel video and language descriptions in
a complex cooking domain (Regneri et al., 2013) in
our investigation. We have further annotated sev-
eral layers of information for developing and eval-
uating grounded semantic role labeling algorithms.
Compared to previous works on language ground-
ing (Tellex et al., 2011; Yu and Siskind, 2013; Krish-
namurthy and Kollar, 2013), our work presents sev-
eral contributions. First, beyond arguments explic-
itly mentioned in language descriptions, our work
simultaneously grounds explicit and implicit roles
with an attempt to better connect verb semantics
with actions from the underlying physical world.
By incorporating semantic role information, our ap-
proach has led to better grounding performance.
Second, most previous works only focused on a
small number of verbs with limited activities. We
base our investigation on a wider range of verbs
and in a much more complex domain where object
recognition and tracking are notably more difficult.
Third, our work results in additional layers of anno-
tation to part of the TACoS dataset. This annotation
captures the structure of actions informed by seman-
tic roles from the video. The annotated data is avail-
able for download 1. It will provide a benchmark for
future work on grounded SRL.

1 http://lair.cse.msu.edu/gsrl.html

2 Related Work

Recent years have witnessed an increasing amount
of work in integrating language and vision, from
earlier image annotation (Ramanathan et al., 2013;
Kazemzadeh et al., 2014) to recent image/video
caption generation (Kuznetsova et al., 2013; Venu-
gopalan et al., 2015; Ortiz et al., ; Elliott and de
Vries, 2015; Devlin et al., 2015), video sentence
alignment (Naim et al., 2015; Malmaud et al., 2015),
scene generation (Chang et al., 2015), and multi-
model embedding incorporating language and vi-
sion (Bruni et al., 2014; Lazaridou et al., 2015).

What is more relevant to our work here is re-
cent progress on grounded language understanding,
which involves learning meanings of words through
connections to machine perception (Roy, 2005) and
grounding language expressions to the shared vi-
sual world, for example, to visual objects (Liu et
al., 2012; Liu and Chai, 2015), to physical land-
marks (Tellex et al., 2011; Tellex et al., 2014), and
to perceived actions or activities (Tellex et al., 2014;
Artzi and Zettlemoyer, 2013).

Different approaches and emphases have been ex-
plored. For example, linear programming has been
applied to mediate perceptual differences between
humans and robots for referential grounding (Liu
and Chai, 2015). Approaches to semantic pars-
ing have been applied to ground language to inter-
nal world representations (Chen and Mooney, 2008;
Artzi and Zettlemoyer, 2013). Logical Semantics
with Perception (LSP) (Krishnamurthy and Kol-
lar, 2013) was applied to ground natural language
queries to visual referents through jointly parsing
natural language (combinatory categorical grammar
(CCG)) and visual attribute classification. Graph-
ical models have been applied to word grounding.
For example, a generative model was applied to in-
tegrate And-Or-Graph representations of language
and vision for joint parsing (Tu et al., 2014). A Fac-
torial Hidden Markov Model (FHMM) was applied
to learn the meaning of nouns, verbs, prepositions,
adjectives and adverbs from short video clips paired
with sentences (Yu and Siskind, 2013). Discrimina-
tive models have also been applied to ground human
commands or instructions to perceived visual enti-
ties, mostly for robotic applications (Tellex et al.,
2011; Tellex et al., 2014). More recently, deep learn-

150

ing has been applied to ground phrases to image re-
gions (Karpathy and Fei-Fei, 2015).

3 Method

We first describe our problem formulation and then
provide details on the learning and inference algo-
rithms.

3.1 Problem Formulation

Given a sentence S and its corresponding video clip
V , our goal is to ground explicit/implicit roles as-
sociated with a verb in S to video tracks in V. In
this paper, we focus on the following set of semantic
roles: {predicate, patient, location,
source, destination, tool}. In the cook-
ing domain, as actions always involve hands, the
predicate is grounded to the hand pose repre-
sented by a trajectory of relevant hand(s). Normally
agent would be grounded to the person who does
the action. As there is only one person in the scene,
we thus ignore the grounding of the agent in this
work.

Video tracks capture tracks of objects (including
hands) and locations. For example, in Figure 1, there
are 5 tracks: human, hand, cucumber, refrigerator
and cutting board. Regarding the representation of
locations, instead of discretization of a whole image
to many small regions(large search space), we cre-
ate locations corresponding to five spatial relations
(center, up, down, left, right) with respect to each
object track, which means we have 5 times number
of locations compared with number of objects. For
instance, in Figure 1, the source is grounded to

s2	 s1	 s6	 s3	 s4	 s5	

φ5	

The	person	
[Agent]	

Takes	out	
[Predicate]	

The	drawer	
[Source]	

From	
[Source]	

A	cuAng	board	
[PaCent]	

[DesCnaCon]	

φ4	φ3	φ6	φ1	φ2	

v2	

v1	

v6	

v3	 v4	

v5	

Figure 2: The CRF structure of sentence “the person takes out

a cutting board from the drawer”. The text in the square bracket

indicates the corresponding semantic role.

the center of the bounding boxes of the refrigerator
track; and the destination is grounded to the
center of the cutting board track.

We use Conditional Random Field(CRF) to model
this problem. An example CRF factor graph is
shown in Figure 2. The CRF structure is cre-
ated based on information extracted from language.
More Specifically, s1, ..., s6 refers to the observed
text and its semantic role. Notice that s6 is an im-
plicit role as there is no text from the sentence de-
scribing destination. Also note that the whole
prepositional phrase “from the drawer” is identified
as the source rather than “the drawer” alone. This
is because the prepositions play an important role in
specifying location information. For example, “near
the cutting boarding” is describing a location that is
near to, but not exactly at the location of the cutting
board. Here v1, ..., v6 are grounding random vari-
ables which take values from object tracks and lo-
cations in the video clip, and φ1, ..., φ6 are binary
random variables which take values {0,1}. When
φi equals to 1, it means vi is the correct ground-
ing of corresponding linguistic semantic role, oth-
erwise it is not. The introduction of random vari-
ables φi follows previous work from Tellex and col-
leagues (Tellex et al., 2011), which makes CRF
learning more tractable.

3.2 Learning and Inference

In the CRF model, we do not directly model the ob-
jective function as:

p(v1, ..., vk|S, V)

where S refers to the sentence, V refers to the cor-
responding video clip and vi refers to the ground-
ing variable. Because the gradient based learning
method needs the expectation of v1, ..., vk, which
is infeasible, we instead use the following objective
function:

P (φ|s1, s2, . . . , sk, v1, v2, . . . , vk, V)

where φ is a binary random vector [φ1, ..., φk], in-
dicating whether the grounding is correct. In this
way, the objective function factorizes according to
the structure of language with local normalization at
each factor.

151

Gradient ascent with L2 regularization was used
for parameter learning to maximize the objective
function:

∂L
∂w =

∑
i F (φi, si, vi, V)−∑i EP (φi|si,vi,V)F (φi, si, vi, V)

where F refers to the feature function. During the
training, we also use random grounding as negative
samples for discriminative training.

During inference, the search space can be very
large when the number of objects in the world in-
creases. To address this problem we apply beam
search to first ground roles including patient,
tool, and then other roles including location,
source, destination and predicate.

4 Evaluation

4.1 Dataset

We conducted our investigation based on a sub-
set of the TACoS corpus (Regneri et al., 2013).
This dataset contains a set of video clips paired
with natural language descriptions related to sev-
eral cooking tasks. The natural language descrip-
tions were collected through crowd-sourcing on top
of the “MPII Cooking Composite Activities” video
corpus (Rohrbach et al., 2012). In this paper, we

Table 1: Statistics for a set of verbs and their semantic roles

in our annotated dataset. The entry indicates the number of ex-

plicit/implicit roles for each category. “–” denotes no such role

is observed in the data.1

Verb Patient Source Destn Location Tool

take 251 / 0 102 / 149 2 / 248 – –

put 94 / 0 – 75 / 19 – –

get 247 / 0 62 / 190 0 / 239 – –

cut 134 / 1 64 / 64 – 3 / 131 5 / 130

open 23 / 0 – – 0 / 23 2 / 21

wash 93 / 0 – – 26 / 58 2 / 82

slice 69 / 1 – – 2 / 68 2 / 66

rinse 76 / 0 0 / 74 – 8 / 64 –

place 104 / 1 – 105 / 7 – –

peel 29 / 0 – – 1 / 27 2 / 27

remove 40 / 0 34 / 6 – – –

1For some verbs (e.g., get), there is a slight discrepancy be-
tween the sum of implicit/explicit roles across different cate-

selected two tasks “cutting cucumber” and “cutting
bread” as our experimental data. Each task has 5
videos showing how different people perform the
same task. Each video is segmented to a sequence
of video clips where each video clip comes with one
or more language descriptions. The original TACoS
dataset does not contain annotation for grounded se-
mantic roles.

To support our investigation and evaluation, we
had made a significant effort adding the follow-
ing annotations. For each video clip, we anno-
tated the objects’ bounding boxes, their tracks, and
their labels (cucumber, cutting board, etc.) using
VATIC (Vondrick et al., 2013). On average, each
video clip is annotated with 15 tracks of objects. For
each sentence, we annotated the ground truth pars-
ing structure and the semantic frame for each verb.
The ground truth parsing structure is the represen-
tation of dependency parsing results. The seman-
tic frame of a verb includes slots, fillers, and their
groundings. For each semantic role (including both
explicit roles and implicit roles) of a given verb, we
also annotated the ground truth grounding in terms
of the object tracks and locations. In total, our anno-
tated dataset includes 976 pairs of video clips and
corresponding sentences, 1094 verbs occurrences,
and 3593 groundings of semantic roles. To check an-
notation agreement, 10% of the data was annotated
by two annotators. The kappa statistics is 0.83 (Co-
hen and others, 1960).

From this dataset, we selected 11 most frequent
verbs (i.e., get, take, wash, cut, rinse, slice, place,
peel, put, remove, open) in our current investigation
for the following reasons. First, they are used more
frequently so that we can have sufficient samples of
each verb to learn the model. Second, they cover dif-
ferent types of actions: some are more related to the
change of the state such as take, and some are more
related to the process such as wash. As it turns out,
these verbs also have different semantic role patterns
as shown in Table 1. The patient roles of all these
verbs are explicitly specified. This is not surprising
as all these verbs are transitive verbs. There is a large
variation for other roles. For example, for the verb
take, the destination is rarely specified by lin-

gories. This is partly due to the fact that some verb occurrences
take more than one objects as grounding to a role. It is also pos-
sibly due to missed/duplicated annotation for some categories.

152

guistic expressions (i.e., only 2 instances), however
it can be inferred from the video. For the verb cut,
the location and the tool are also rarely spec-
ified by linguistic expressions. Nevertheless, these
implicit roles contribute to the overall understanding
of actions and should also be grounded too.

4.2 Automated Processing

To build the structure of the CRF as shown in Fig-
ure 2 and extract features for learning and inference,
we have applied the following approaches to process
language and vision.
Language Processing. Language processing con-
sists of three steps to build a structure containing
syntactic and semantic information. First, the Stan-
ford Parser (Manning et al., 2014) is applied to cre-
ate a dependency parsing tree for each sentence.
Second, Senna (Collobert et al., 2011) is applied
to identify semantic role labels for the key verb in
the sentence. The linguistic entities with seman-
tic roles are matched against the dependency nodes
in the tree and the corresponding semantic role la-
bels are added to the tree. Third, for each verb, the
Propbank (Palmer et al., 2005) entries are searched
to extract all relevant semantic roles. The implicit
roles (i.e., not specified linguistically) are added as
direct children of verb nodes in the tree. Through
these three steps, the resulting tree from language
processing has both explicit and implicit semantic
roles. These trees are further transformed to the CRF
structures based on a set of rules.

Vision Processing. A set of visual detectors are first
trained for each type of objects. Here a random
forest classifier is adopted. More specifically, we
use 100 trees with HoG features (Dalal and Triggs,
2005) and color descriptors (Van De Weijer and
Schmid, 2006). Both HoG and Color descriptors
are used, because some objects are more structural,
such as knives, human; some are more textured such
as towels. With the learned object detectors, given
a candidate video clip, we run the detectors at each
10th frame (less than 0.5 second), and find the can-
didate windows for which the detector score corre-
sponding to the object is larger than a threshold (set
as 0.5). Then using the detected window as a starting
point, we adopt tracking-by-detection (Danelljan et
al., 2014) to go forward and backward to track this

object and obtain the candidate track with this object
label.

Feature Extraction. Features in the CRF model can
be divided into the following three categories:

1. Linguistic features include word occurrence
and semantic role information. They are ex-
tracted by language processing.

2. Track label features are the label information
for tracks in the video. The labels come from
human annotation or automated visual process-
ing depending on different experimental set-
tings (described in Section 4.3).

3. Visual features are a set of features involving
geometric relations between tracks in the video.
One important feature is the histogram compar-
ison score. It measures the similarity between
distance histograms. Specifically, histograms
of distance values between the tracks of the
predicate and other roles for each verb are
first extracted from the training video clips. For
an incoming distance histogram, we calculate
its Chi-Square distances (Zhang et al., 2007)
from the pre-extracted training histograms with
the same verb and the same role. its histogram
comparison score is set to be the average of
top 5 smallest Chi-Square distances. Other vi-
sual features include geometric information for
single tracks and geometric relations between
two tracks. For example, size, average speed,
and moving direction are extracted for a single
track. Average distance, size-ratio, and rela-
tive direction are extracted between two tracks.
For features that are continuous, we discretized
them into uniform bins.

To ground language into tracks from the video, in-
stead of using track label features or visual features
alone, we use a Cartesian product of these features
with linguistic features. To learn the behavior of dif-
ferent semantic roles of different verbs, visual fea-
tures are combined with the presence of both verbs
and semantic roles through Cartesian product. To
learn the correspondence between track labels and
words, track label features are combined with the
presence of words also through Cartesian product.

153

To train the model, we randomly selected 75% of
annotated 976 pairs of video clips and corresponding
sentences as training set. The remaining 25% were
used as the testing set.

4.3 Experimental Setup

Comparison. To evaluate the performance of our
approach, we compare it with two approaches.

• Baseline: To identify the grounding for each
semantic role, the first baseline chooses the
most possible track based on the object type
conditional distribution given the verb and se-
mantic role. If an object type corresponds
to multiple tracks in the video, e.g., multiple
drawers or knives, we then randomly select one
of the tracks as grounding. We ran this baseline
method five times and reported the average per-
formance.

• Tellex (2011): The second approach we com-
pared with is based on an implementa-
tion (Tellex et al., 2011). The difference is
that they don’t explicitly model fine-grained se-
mantic role information. For a better compar-
ison, we map the grounding results from this
approach to different explicit semantic roles ac-
cording to the SRL annotation of the sentence.
Note that this approach is not able to ground
implicit roles.

More specifically, we compare these two approaches
with two variations of our system:

• GSRLwo V: The CRF model using linguistic
features and track label features (described in
Section 4.2).

• GSRL: The full CRF model using linguistic
features, track label features, and visual fea-
tures(described in Section 4.2).

Configurations. Both automated language process-
ing and vision processing are error-prone. To fur-
ther understand the limitations of grounded SRL, we
compare performance under different configurations
along the two dimensions: (1) the CRF structure is
built upon annotated ground-truth language parsing

versus automated language parsing; (2) object track-
ing and labeling is based on annotation versus auto-
mated processing. These lead to four different ex-
perimental configurations.

Evaluation Metrics. For experiments that are based
on annotated object tracks, we can simply use the
traditional accuracy that directly measures the per-
centage of grounded tracks that are correct. How-
ever, for experiments using automated tracking,
evaluation can be difficult as tracking itself poses
significant challenges. The grounding results (to
tracks) cannot be directly compared with the an-
notated ground-truth tracks. To address this prob-
lem, we have defined a new metric called approxi-
mate accuracy. This metric is motivated by previous
computer vision work that evaluates tracking per-
formance (Bashir and Porikli, 2006). Suppose the
ground truth grounding for a role is track gt and the
predicted grounding is track pt. The two tracks gt
and pt are often not the same (although may have
some overlaps). Suppose the number of frames in
the video clip is k. For each frame, we calculate the
distance between the centroids of these two tracks.
If their distance is below a predefined threshold, we
consider the two tracks overlap in this frame. We
consider the grounding is correct if the ratio of the
overlapping frames between gt and pt exceeds 50%.
As can be seen, this is a lenient and an approximate
measure of accuracy.

4.4 Results

The results based on the ground-truth language pars-
ing are shown in Table 2, and the results based
on automated language parsing are shown in Table
3. For results based on annotated object tracking,
the performance is reported in accuracy and for re-
sults based on automated object tracking, the perfor-
mance is reported in approximate accuracy. When
the number of testing samples is less than 15, we
do not show the result as it tends to be unreliable
(shown as NA). Tellex (2011) does not address im-
plicit roles (shown as “–”). The best performance
score is shown in bold. We also conducted a two-
tailed bootstrap significance testing (Efron and Tib-
shirani, 1994). The score with a “*” indicates it is
statistically significant (p < 0.05) compared to the
baseline approach. The score with a “+” indicates

154

Table 2: Evaluation results based on annotated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.856 0.372 NA 0.225 0.314 0.311 0.569 NA 0.910 NA 0.853 0.556 0.620 0.583

Tellex(2011) 0.865 0.745 – 0.306 – 0.763 – NA – NA – 0.722 – –

GSRLwo V 0.854 0.794∗+ NA 0.375∗ 0.392∗+ 0.658∗ 0.615∗+ NA 0.920+ NA 0.793+ 0.768∗+ 0.648∗+ 0.717∗

GSRL 0.878∗+ 0.839∗+ NA 0.556∗+ 0.684∗+ 0.789∗ 0.641∗+ NA 0.930+ NA 0.897∗+ 0.825∗+ 0.768∗+ 0.8∗

Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.529 0.206 NA 0.169 0.119 0.236 0.566 NA 0.476 NA 0.6 0.352 0.393 0.369

Tellex(2011) 0.607 0.233 – 0.154 – 0.333 – NA – NA – 0.359 – –

GSRLwo V 0.582∗ 0.244∗ NA 0.262∗+ 0.126+ 0.485∗+ 0.613∗+ NA 0.467+ NA 0.714∗+ 0.410∗+ 0.425∗+ 0.417∗

GSRL 0.548 0.263∗ NA 0.262∗+ 0.086+ 0.394∗ 0.514+ NA 0.456+ NA 0.688∗+ 0.399∗+ 0.381+ 0.391∗

Upper Bound 0.920 0.309 NA 0.277 0.252 0.636 0.829 NA 0.511 NA 0.818 0.577 0.573 0.575

Table 3: Evaluation results based on automated language parsing.

Accuracy On the Gold Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.881 0.318 NA 0.203 0.316 0.235 0.607 NA 0.877 NA 0.895 0.539 0.595 0.563

Tellex(2011) 0.903 0.746 – 0.156 – 0.353 – NA – NA – 0.680 – –

GSRLwo V 0.873 0.813∗+ NA 0.328∗+ 0.360+ 0.412∗ 0.648∗+ NA 0.877+ NA 0.818+ 0.769∗+ 0.611+ 0.7∗

GSRL 0.873 0.875∗+ NA 0.453∗+ 0.667∗+ 0.412∗ 0.667∗+ NA 0.891+ NA 0.891+ 0.823∗+ 0.741∗+ 0.787∗

Approximated Accuracy On the Automated Recognition/Tracking Setting

Methods Predicate Patient Source Destination Location Tool
Explicit

All
Implicit

All
All

explicit implicit explicit implicit explicit implicit explicit implicit explicit implicit

Baseline 0.543 0.174 NA 0.121 0.113 0.093 0.594 NA 0.612 NA 0.567 0.327 0.405 0.362

Tellex(2011) 0.598 0.218 – 0.086 – 0.00 – NA – NA – 0.322 – –

GSRLwo V 0.618∗ 0.243∗ NA 0.190∗+ 0.120+ 0.133+ 0.641∗+ NA 0.585+ NA 0.723∗+ 0.401∗+ 0.434∗+ 0.415∗

GSRL 0.493 0.243∗ NA 0.190∗+ 0.063+ 0.133+ 0.612+ NA 0.554+ NA 0.617+ 0.367∗+ 0.386+ 0.375

Upper Bound 0.908 0.277 NA 0.259 0.254 0.4 0.854 NA 0.631 NA 0.830 0.543 0.585 0.561

it is statistically significant (p < 0.05) compared to
the approach (Tellex et al., 2011).

For experiments based on automated object track-
ing, we also calculated an upper bound to assess the
best possible performance which can be achieved
by a perfect grounding algorithm given the current
vision processing results. This upper bound is cal-
culated based on grounding each role to the track
which is closest to the ground-truth annotated track.
For the experiments based on annotated tracking,
the upper bound would be 100%. This measure
provides some understandings about how good the
grounding approach is given the limitation of vi-
sion processing. Notice that the grounding results in

the gold/automatic language processing setting are
not directly comparable as the automatic SRL can
misidentify frame elements.

4.5 Discussion
As shown in Table 2 and Table 3, our approach
consistently outperforms the baseline (for both ex-
plicit and implicit roles) and the Tellex (2011) ap-
proach. Under the configuration of gold recogni-
tion/tracking, the incorporation of visual features
further improves the performance. However, this
performance gain is not observed when automated
object tracking and labeling is used. One possi-
ble explanation is that as we only had limited data,
we did not use separate data to train models for

155

Figure 3: The relation between the accuracy and the entropy of each verb’s patient from the gold language, gold visual recogni-

tion/tracking setting. The entropy for the patient role of each verb is shown below the verb.

object recognition/tracking. So the GSRL model
was trained with gold recognition/tracking data and
tested with automated recognition/tracking data.

By comparing our method with Tellex (2011), we
can see that by incorporating fine grained seman-
tic role information, our approach achieves better
performance on almost all the explicit role (except
for the patient role under the automated tracking
condition).

The results have also shown that some roles are
easier to ground than others in this domain. For
example, the predicate role is grounded to the
hand tracks (either left hand or right hand), there
are not many variations such that the simple base-
line can achieve pretty high performance, especially
when annotated tracking is used. The same situation
happens to the location role as most of the lo-
cations happen near the sink when the verb is wash,
and near the cutting board for verbs like cut, etc.
However, for the patient role, there is a large
difference between our approach and baseline ap-
proaches as there is a larger variation of different
types of objects that can participate in the role for a
given verb.

For experiments with automated tracking, the up-
per bound for each role also varies. Some roles
(e.g., patient) have a pretty low upper bound.

The accuracy from our full GSRL model is already
quite close to the upper bound. For other roles
such as predicate and destination, there is
a larger gap between the current performance and
the upper bound. This difference reflects the model’s
capability in grounding different roles.

Figure 3 shows a close-up look at the grounding
performance to the patient role for each verb un-
der the gold parsing and gold tracking configuration.
The reason we only show the results of patient
role here is every verb has this role to be grounded.
For each verb, we also calculated its entropy based
on the distribution of different types of objects that
can serve as the patient role in the training data.
The entropy is shown at the bottom of the figure. For
verbs such as take and put, our full GSRL model
leads to much better performance compared to the
baseline. As the baseline approach relies on the en-
tropy of the potential grounding for a role, we fur-
ther measured the improvement of the performance
and calculated the correlation between the improve-
ment and the entropy of each verb. The result shows
that Pearson coefficient between the entropy and the
improvement of GSRL over the baseline is 0.614.
This indicates the improvement from GSRL is pos-
itively correlated with the entropy value associated
with a role, implying the GSRL model can deal with

156

more uncertain situations. For the verb cut, The
GSRL model performs slightly worse than the base-
line. One explanation is that the possible objects that
can participate as a patient for cut are relatively con-
strained where simple features might be sufficient.
A large number of features may introduce noise, and
thus jeopardizing the performance.

We further compare the performance of our full
GRSL model with Tellex (2011) (also shown in Fig-
ure 3) on the patient role of different verbs. Our
approach outperforms Tellex (2011) on most of the
verbs, especially put and open. A close look at the
results have shown that in those cases, the patient
roles are often specified by pronouns. Therefore, the
track label features and linguistic features are not
very helpful, and the correct grounding mainly de-
pends on visual features. Our full GSRL model can
better capture the geometry relations between differ-
ent semantic roles by incorporating fine-grained role
information.

5 Conclusion and Future Work

This paper investigates a new problem on grounded
semantic role labeling. Besides semantic roles ex-
plicitly mentioned in language descriptions, our ap-
proach also grounds implicit roles which are not
explicitly specified. As implicit roles also cap-
ture important participants related to an action (e.g.,
tools used in the action), our approach provides
a more complete representation of action seman-
tics which can be used by artificial agents for fur-
ther reasoning and planning towards the physical
world. Our empirical results on a complex cook-
ing domain have shown that, by incorporating se-
mantic role information with visual features, our ap-
proach can achieve better performance compared to
baseline approaches. Our results have also shown
that grounded semantic role labeling is a challenging
problem which often depends on the quality of au-
tomated visual processing (e.g., object tracking and
recognition).

There are several directions for future improve-
ment. First, the current alignment between a video
clip and a sentence is generated by some heuristics
which are error-prone. One way to address this is
to treat alignment and grounding as a joint problem.
Second, our current visual features have not shown

effective especially when they are extracted based
on automatic visual processing. This is partly due to
the complexity of the scene from the TACoS dataset
and the lack of depth information. Recent advances
in object tracking algorithms (Yang et al., 2013; Mi-
lan et al., 2014) together with 3D sensing can be
explored in the future to improve visual processing.
Moreover, linguistic studies have shown that action
verbs such as cut and slice often denote some change
of state as a result of the action (Hovav and Levin,
2010; Hovav and Levin, 2008). The change of state
can be perceived from the physical world. Thus an-
other direction is to systematically study causality
of verbs. Causality models for verbs can potentially
provide top-down information to guide intermediate
representations for visual processing and improve
grounded language understanding.

The capability of grounding semantic roles to the
physical world has many important implications. It
will support the development of intelligent agents
which can reason and act upon the shared phys-
ical world. For example, unlike traditional ac-
tion recognition in computer vision (Wang et al.,
2011), grounded SRL will provide deeper under-
standing of the activities which involve participants
in the actions guided by linguistic knowledge. For
agents that can act upon the physical world such as
robots, grounded SRL will allow the agents to ac-
quire the grounded structure of human commands
and thus perform the requested actions through plan-
ning (e.g., to follow the command “put the cup on
the table”). Grounded SRL will also contribute
to robot action learning where humans can teach
the robot new actions (e.g., simple cooking tasks)
through both task demonstration and language in-
struction.

6 Acknowledgement

The authors are grateful to Austin Littley and Zach
Richardson for their help on data annotation, and to
anonymous reviewers for their valuable comments
and suggestions. This work was supported in part by
IIS-1208390 from the National Science Foundation
and by N66001-15-C-4035 from the DARPA SIM-
PLEX program.

157

References

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping in-
structions to actions. TACL, 1:49–62.

Faisal Bashir and Fatih Porikli. 2006. Performance
evaluation of object detection and tracking systems.
In Proceedings 9th IEEE International Workshop on
PETS, pages 7–14.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49:1–47.

Angel Chang, Will Monroe, Manolis Savva, Christopher
Potts, and Christopher D Manning. 2015. Text to 3d
scene generation with rich lexical grounding. arXiv
preprint arXiv:1505.06289.

David L Chen and Raymond J Mooney. 2008. Learning
to sportscast: a test of grounded language acquisition.
In Proceedings of the 25th international conference on
Machine learning, pages 128–135. ACM.

Jacob Cohen et al. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Navneet Dalal and Bill Triggs. 2005. Histograms of ori-
ented gradients for human detection. In Computer Vi-
sion and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages
886–893. IEEE.

Martin Danelljan, Fahad Shahbaz Khan, Michael Fels-
berg, and Joost van de Weijer. 2014. Adaptive color
attributes for real-time visual tracking. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 1090–1097. IEEE.

Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta,
Li Deng, Xiaodong He, Geoffrey Zweig, and Margaret
Mitchell. 2015. Language models for image cap-
tioning: The quirks and what works. arXiv preprint
arXiv:1505.01809.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Desmond Elliott and Arjen de Vries. 2015. Describ-
ing images using inferred visual dependency repre-
sentations. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
42–52, Beijing, China, July. Association for Computa-
tional Linguistics.

Bastianelli Emanuele, Giuseppe Castellucci, Danilo
Croce, and Roberto Basili. 2013. Textual inference
and meaning representation in human robot interac-
tion. In Joint Symposium on Semantic Processing.,
page 65.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational linguistics,
28(3):245–288.

Malka Rappaport Hovav and Beth Levin. 2008. Re-
flections on manner/result complementarity. Lecture
notes.

Malka Rappaport Hovav and Beth Levin. 2010. Reflec-
tions on Manner / Result Complementarity. Lexical
Semantics, Syntax, and Event Structure, pages 21–38.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. June.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. 2014. Referitgame: Referring to ob-
jects in photographs of natural scenes. In Proceedings
of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 787–798,
Doha, Qatar, October. Association for Computational
Linguistics.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: Connecting natural lan-
guage to the physical world. Transactions of the Asso-
ciation for Computational Linguistics, 1:193–206.

Polina Kuznetsova, Vicente Ordonez, Alexander C Berg,
Tamara L Berg, and Yejin Choi. 2013. Generalizing
image captions for image-text parallel corpus. In ACL
(2), pages 790–796. Citeseer.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015. Combining language and vision with
a multimodal skip-gram model. arXiv preprint
arXiv:1501.02598.

Beth Levin. 1993. English verb classes and alternations:
A preliminary investigation. University of Chicago
press.

Changsong Liu and Joyce Y. Chai. 2015. Learning
to mediate perceptual differences in situated human-
robot dialogue. In The Twenty-Ninth Conference on
Artificial Intelligence (AAAI-15). to appear.

Changsong Liu, Rui Fang, and Joyce Chai. 2012. To-
wards mediating shared perceptual basis in situated di-
alogue. In Proceedings of the 13th Annual Meeting of
the Special Interest Group on Discourse and Dialogue,
pages 140–149, Seoul, South Korea.

Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nick Johnston, Andrew Rabinovich, and Kevin Mur-
phy. 2015. What’s cookin’? interpreting cooking
videos using text, speech and vision. arXiv preprint
arXiv:1503.01558.

158

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Anton Milan, Stefan Roth, and Kaspar Schindler. 2014.
Continuous energy minimization for multitarget track-
ing. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 36(1):58–72.

Iftekhar Naim, Young C. Song, Qiguang Liu, Liang
Huang, Henry Kautz, Jiebo Luo, and Daniel Gildea.
2015. Discriminative unsupervised alignment of nat-
ural language instructions with corresponding video
segments. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 164–174, Denver, Colorado, May–
June. Association for Computational Linguistics.

Luis Gilberto Mateos Ortiz, Clemens Wolff, and Mirella
Lapata. Learning to interpret and describe abstract
scenes. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1505–1515.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics, 31(1):71–
106.

Vignesh Ramanathan, Percy Liang, and Li Fei-Fei. 2013.
Video event understanding using natural language de-
scriptions. In Computer Vision (ICCV), 2013 IEEE In-
ternational Conference on, pages 905–912. IEEE.

Michaela Regneri, Marcus Rohrbach, Dominikus Wet-
zel, Stefan Thater, Bernt Schiele, and Manfred Pinkal.
2013. Grounding action descriptions in videos. Trans-
actions of the Association for Computational Linguis-
tics (TACL), 1:25–36.

Marcus Rohrbach, Michaela Regneri, Mykhaylo An-
driluka, Sikandar Amin, Manfred Pinkal, and Bernt
Schiele. 2012. Script data for attribute-based recog-
nition of composite activities. In Computer Vision–
ECCV 2012, pages 144–157. Springer.

Deb Roy. 2005. Grounding words in perception and ac-
tion: computational insights. TRENDS in Cognitive
Sciences, 9(8):389–396.

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In EMNLP-
CoNLL, pages 12–21.

Stefanie Tellex, Thomas Kollar, Steven Dickerson,
Matthew R Walter, Ashis Gopal Banerjee, Seth J
Teller, and Nicholas Roy. 2011. Understanding natu-
ral language commands for robotic navigation and mo-
bile manipulation. In AAAI.

Stefanie Tellex, Pratiksha Thaker, Joshua Joseph, and
Nicholas Roy. 2014. Learning perceptually grounded
word meanings from unaligned parallel data. Machine
Learning, 94(2):151–167.

Kewei Tu, Meng Meng, Mun Wai Lee, Tae Eun Choe,
and Song-Chun Zhu. 2014. Joint video and text pars-
ing for understanding events and answering queries.
MultiMedia, IEEE, 21(2):42–70.

Joost Van De Weijer and Cordelia Schmid. 2006. Col-
oring local feature extraction. In Computer Vision–
ECCV 2006, pages 334–348. Springer.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond Mooney, and Kate
Saenko. 2015. Translating videos to natural language
using deep recurrent neural networks. In Proceedings
of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1494–1504, Den-
ver, Colorado, May–June. Association for Computa-
tional Linguistics.

Carl Vondrick, Donald Patterson, and Deva Ramanan.
2013. Efficiently scaling up crowdsourced video an-
notation. International Journal of Computer Vision,
101(1):184–204.

Heng Wang, Alexander Kläser, Cordelia Schmid, and
Cheng-Lin Liu. 2011. Action recognition by dense
trajectories. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 3169–
3176. IEEE.

Yezhou Yang, Cornelia Fermuller, and Yiannis Aloi-
monos. 2013. Detection of manipulation action con-
sequences (mac). In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 2563–2570.

Haonan Yu and Jeffrey Mark Siskind. 2013. Grounded
language learning from video described with sen-
tences. In ACL (1), pages 53–63.

Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik,
and Cordelia Schmid. 2007. Local features and ker-
nels for classification of texture and object categories:
A comprehensive study. International journal of com-
puter vision, 73(2):213–238.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1127–
1137, Beijing, China, July. Association for Computa-
tional Linguistics.

159

Proceedings of NAACL-HLT 2016, pages 160–170,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Black Holes and White Rabbits:
Metaphor Identification with Visual Features

Ekaterina Shutova
Computer Laboratory

University of Cambridge
es407@cam.ac.uk

Douwe Kiela
Computer Laboratory

University of Cambridge
dk427@cam.ac.uk

Jean Maillard
Computer Laboratory

University of Cambridge
jean@maillard.it

Abstract

Metaphor is pervasive in our communication,
which makes it an important problem for nat-
ural language processing (NLP). Numerous
approaches to metaphor processing have thus
been proposed, all of which relied on linguis-
tic features and textual data to construct their
models. Human metaphor comprehension
is, however, known to rely on both our lin-
guistic and perceptual experience, and vision
can play a particularly important role when
metaphorically projecting imagery across do-
mains. In this paper, we present the first
metaphor identification method that simulta-
neously draws knowledge from linguistic and
visual data. Our results demonstrate that it
outperforms linguistic and visual models in
isolation, as well as being competitive with
the best-performing metaphor identification
methods, that rely on hand-crafted knowledge
about domains and perception.

1 Introduction

Metaphor lends vividness, sophistication and clar-
ity to our thought and communication. At the
same time, it plays a fundamental structural role in
our cognition, helping us to organise and project
knowledge (Lakoff and Johnson, 1980; Feldman,
2006). Metaphors arise due to systematic associ-
ations between distinct, and seemingly unrelated,
concepts. For instance, when we talk about “the
turning wheels of a political regime”, “rebuilding
the campaign machinery” or “mending foreign pol-
icy”, we view politics and political systems in terms
of mechanisms, they can function, break, be mended

etc. The existence of this association allows us to
transfer knowledge and imagery from the domain
of mechanisms (the source domain) to that of po-
litical systems (the target domain). According to
Lakoff and Johnson (1980), such metaphorical map-
pings, or conceptual metaphors, form the basis of
metaphorical language.

Metaphor is pervasive in our communication,
which makes it important for NLP applications deal-
ing with real-world text. A number of approaches to
metaphor processing have thus been proposed, us-
ing supervised classification (Gedigian et al., 2006;
Mohler et al., 2013; Tsvetkov et al., 2013; Hovy
et al., 2013; Dunn, 2013a), clustering (Shutova et
al., 2010; Shutova and Sun, 2013), vector space
models (Shutova et al., 2012; Mohler et al., 2014),
lexical resources (Krishnakumaran and Zhu, 2007;
Wilks et al., 2013) and web search with lexico-
syntactic patterns (Veale and Hao, 2008; Li et al.,
2013; Bollegala and Shutova, 2013). So far, these
and other metaphor processing works relied on tex-
tual data to construct their models. Yet, several
experiments indicated that perceptual properties of
concepts, such as concreteness and imageability, are
important features for metaphor identification (Tur-
ney et al., 2011; Neuman et al., 2013; Gandy et
al., 2013; Strzalkowski et al., 2013; Tsvetkov et
al., 2014). However, all of these methods used
manually-annotated linguistic resources to deter-
mine these properties (such as the MRC concrete-
ness database (Wilson, 1988)). To the best of our
knowledge, there has not yet been a metaphor pro-
cessing method that employed information learned
from both linguistic and visual data. Ample re-

160

search in cognitive science suggests that human
meaning representations are not merely a product
of our linguistic exposure, but are also grounded in
our perceptual system and sensori-motor experience
(Barsalou, 2008; Louwerse, 2011). Semantic mod-
els integrating information from multiple modalities
have been shown successful in tasks such as model-
ing semantic similarity and relatedness (Silberer and
Lapata, 2012; Bruni et al., 2014), lexical entailment
(Kiela et al., 2015a), compositionality (Roller and
Schulte im Walde, 2013) and bilingual lexicon in-
duction (Kiela et al., 2015b). Using visual informa-
tion is particularly relevant to modelling metaphor,
where imagery is ported across domains.

In this paper, we present the first metaphor identi-
fication method integrating meaning representations
learned from linguistic and visual data. We construct
our representations using a skip-gram model of
Mikolov et al. (2013a) trained on textual data to ob-
tain linguistic embeddings and a deep convolutional
neural network (Kiela and Bottou, 2014) trained on
image data to obtain visual embeddings. Linguis-
tic word embeddings have been previously success-
fully used to answer analogy questions (Mikolov et
al., 2013b; Levy and Goldberg, 2014). These works
have shown that such representations capture the nu-
ances of word meaning needed to recognise rela-
tional similarity (e.g. between pairs “king : queen”
and “man : woman”), quantified by the respective
vector offsets (king – queen≈man – woman). In our
experiments, we investigate how well these repre-
sentations can capture information about source and
target domains and their interaction in a metaphor.
We then enrich these representations with visual in-
formation. We first acquire linguistic and visual
embeddings for individual words and then extend
the methods to learn embeddings for longer phrases.
The focus of our experiments is on metaphorical ex-
pressions in verb–subject, verb–direct object and ad-
jectival modifier–noun constructions. We thus learn
embeddings for verbs, adjectives, nouns, as well as
verb–noun and adjective–noun phrases. We then use
a set of arithmetic operations on word and phrase
embedding vectors to classify phrases as literal or
metaphorical. To the best of our knowledge, our ap-
proach is also the first one to apply word or phrase
embeddings to the task of metaphor identification.

Our results demonstrate that the joint model in-

corporating linguistic and visual representations out-
performs the linguistic model in isolation, as well
as being competitive with the best-performing meta-
phor identification methods that rely on hand-crafted
information about domains, concreteness and im-
ageability.

2 Related work

A strand of metaphor processing research cast the
problem as a classification of linguistic expressions
as metaphorical or literal. They experimented with
a number of features, including lexical and syn-
tactic information and higher-level features such as
semantic roles and domain types. Gedigian et al.
(2006) classified verbs related to MOTION and CURE

within the domain of financial discourse. They used
the maximum entropy classifier and the verbs’ nom-
inal arguments and their semantic roles as features,
reporting encouraging results. Dunn (2013a) used a
logistic regression classifier and high-level proper-
ties of concepts extracted from SUMO ontology, in-
cluding domain types (ABSTRACT, PHYSICAL, SO-
CIAL, MENTAL) and event status (PROCESS, STATE,
OBJECT). Tsvetkov et al. (2013) also used logis-
tic regression and coarse semantic features, such as
concreteness, animateness, named entity types and
WordNet supersenses. They have shown that the
model learned with such coarse semantic features is
portable across languages. The work of Hovy et al.
(2013) is notable as they focused on compositional
rather than categorical features. They trained an
SVM with dependency-tree kernels to capture com-
positional information, using lexical, part-of-speech
tag and WordNet supersense representations of sen-
tence trees. Mohler et al. (2013) aimed at modelling
conceptual information. They derived semantic sig-
natures of texts as sets of highly-related and inter-
linked WordNet synsets. The semantic signatures
served as features to train a set of classifiers (max-
imum entropy, decision trees, SVM, random forest)
that map new metaphors to the semantic signatures
of the known ones.

Turney et al. (2011) hypothesized that metaphor
is commonly used to describe abstract concepts in
terms of more concrete or physical experiences.
Thus, Turney and colleagues expected that there
would be some discrepancy in the level of concrete-

161

ness of source and target terms in the metaphor.
They developed a method to automatically measure
concreteness of words and applied it to identify ver-
bal and adjectival metaphors. Neuman et al. (2013)
and Gandy et al. (2013) followed in Turney’s steps,
extending the models by incorporating information
about selectional preferences.

Heintz et al. (2013) and Strzalkowski et al. (2013)
focused on modeling topical structure of text to
identify metaphor. Their main hypothesis was that
metaphorical language (coming from a different do-
main) would represent atypical vocabulary within
the topical structure of the text. Strzalkowski et al.
(2013) acquired a set of topic chains by linking se-
mantically related words in a given text. They then
looked for vocabulary outside the topic chain and
yet connected to topic chain words via syntactic de-
pendencies and exhibiting high imageability. Heintz
et al. (2013) used LDA topic modelling to identify
sets of source and target domain vocabulary. In their
system, the acquired topics represented source and
target domains, and sentences containing vocabulary
from both were tagged as metaphorical.

Other approaches addressed automatic identifica-
tion of conceptual metaphor. Mason (2004) auto-
matically acquired domain-specific selectional pref-
erences of verbs, and then, by mapping their com-
mon nominal arguments in different domains, ar-
rived at the corresponding metaphorical mappings.
For example, the verb pour has a strong preference
for liquids in the LAB domain and for money in the
FINANCE domain, suggesting the mapping MONEY

is LIQUID. Shutova et al. (2010) pointed out that the
metaphorical uses of words constitute a large portion
of the dependency features extracted for abstract
concepts from corpora. For example, the feature
vector for politics would contain GAME or MECH-
ANISM terms among the frequent features. As a re-
sult, distributional clustering of abstract nouns with
such features identifies groups of diverse concepts
metaphorically associated with the same source do-
main (or sets of source domains). Shutova et al.
(2010) exploit this property of co-occurrence vectors
to identify new metaphorical mappings starting from
a set of examples. Shutova and Sun (2013) used hi-
erarchical clustering to derive a network of concepts
in which metaphorical associations are learned in an
unsupervised way.

3 Method

3.1 Learning linguistic representations
We obtained our linguistic representations using
the log-linear skip-gram model of Mikolov et al.
(2013a). Given a corpus of words w and their con-
texts c, the model learns a set of parameters θ that
maximize the overall corpus probability

arg max
θ

∏
w

[
∏

c∈C(w)

p(c|w; θ)], (1)

where C(w) is a set of contexts of word w and
p(c|w; θ) is a softmax function:

p(c|w; θ) =
evc·vw∑

c′∈C evc′ ·vw
, (2)

where vc and vw are vector representations of c and
w. The parameters we need to set are thus vci and
vwi for all words in our word vocabulary V and
context vocabulary C, and the set of dimensions
i ∈ 1, . . . , d. Given a set D of word-context pairs,
embeddings are learned by optimizing the following
objective:

arg max
θ

∑
(w,c)∈D

log p(c|w) =

∑
(w,c)∈D

(log evc·vw − log
∑
c′∈C

evc′ ·vw)
(3)

We used a recent dump of Wikipedia1 as our cor-
pus. The text was lemmatized, tagged, and parsed
with Stanford CoreNLP (Manning et al., 2014).
Words that appeared less than 100 times in their lem-
matized form were ignored. The 100-dimensional
word and phrase embeddings were learned in two
stages: in a first pass, we obtained word-level em-
beddings (e.g. for white and rabbit) using the stan-
dard skip-gram with negative sampling of Eq. (3);
we then obtained phrase embeddings (e.g. for white
rabbit) through a second pass over the same corpus.
In the second pass, the vectors vc and vc′ of Eq. (3)
were set to their values from the first pass, and kept
fixed. Verb-noun phrases were extracted by finding
nsubj and dobj arcs with V B head and NN de-
pendent; analogously, adjective-noun phrases were
extracted by finding amod arcs with NN head and
JJ dependent. No frequency cutoff was applied for

1https://dumps.wikimedia.org/enwiki/20150805/

162

phrases. All embeddings were trained on the corpus
for 3 epochs, using a symmetric window of 5, and
10 negative samples per word-context pair.

3.2 Learning visual representations

Visual embeddings were obtained in a manner simi-
lar to Kiela and Bottou (2014). Using the deep learn-
ing framework Caffe (Jia et al., 2014), we extracted
image embeddings from a deep convolutional neural
network that was trained on the ImageNet classifi-
cation task (Russakovsky et al., 2015). The network
(Krizhevsky et al., 2012) consists of 5 convolutional
layers, followed by two fully connected rectified lin-
ear unit (ReLU) layers that feed into a softmax for
classification. The network learns through a multi-
nomial logistic regression objective:

J(θ) = −
D∑
i=1

K∑
k=1

1{y(i) = k}

log
exp(θ(k)>x(i))∑K
j=1 exp(θ(j)>x(i))

(4)

where 1{·} is the indicator function and we train
on D examples with K classes. We obtain image
embeddings by doing a forward pass with a given
image and taking the 4096-dimensional fully con-
nected layer that precedes the softmax (typically
called FC7) as the representation of that image.

To construct our embeddings, we used up to 10
images for a given word or phrase, which were ob-
tained through Google Images. It has been shown
that images from Google yield higher quality repre-
sentations than comparable resources such as Flickr
and are competitive with hand-crafted datasets (Fer-
gus et al., 2005; Bergsma and Goebel, 2011). We
created our final visual representations for words
and phrases by taking the average of the extracted
image embeddings for a given word or phrase.

3.3 Multimodal fusion strategies

While it is desirable to jointly learn representations
from different modalities at the same time, this is
often not feasible (or may lead to poor performance)
due to data sparsity. Instead, we learn uni-modal
representations independently, as described above,
and then combine them into multi-modal ones. Pre-
vious work in multi-modal semantics (Bruni et al.,

2014) investigated different ways of combining, or
fusing, linguistic and perceptual cues. When calcu-
lating similarity, for instance, one can either com-
bine the representations first and subsequently com-
pute similarity scores; or compute similarity scores
independently per modality and afterwards combine
the scores. In contrast with joint learning (which has
also been called early fusion), these two possibilities
represent middle and late fusion, respectively (Kiela
and Clark, 2015).

We experiment with middle and late fusion strate-
gies. In middle fusion, we L-2 normalise and con-
catenate the vectors for linguistic and visual repre-
sentations and then compute a metaphoricity score
for a phrase based on this joint representation. In late
fusion, we first compute the metaphoricity scores
based on linguistic and visual representations in-
dependently, and then combine the metaphoricity
scores by taking their average.

3.4 Measuring metaphoricity

We investigate a set of arithmetic operations on the
linguistic, visual and multimodal embedding vectors
to determine whether the two words in the phrase
belong to the same domain or rather a word from one
domain is metaphorically used to describe another.

3.4.1 Word-level embeddings

In our first set of experiments, we compare em-
beddings learned for individual words in order to de-
termine whether they come from the same domain.
This is done by determining similarity between the
representations of the two words in a phrase:

sim(word1, word2), (5)

where word1 is either a verb or an adjective, word2

is a noun, and similarity is defined as cosine similar-
ity:

cos(x, y) =
x · y
||x||||y|| (6)

We expect the similarity of word representations to
be lower for metaphorical expressions (where one
word comes from the source domain and one from
the target), than for the literal ones (where both
words come from the target domain). We will fur-
ther refer to this method as WORDCOS.

163

3.4.2 Phrase-level embeddings
In our second set of experiments, we investigate

compositional properties of metaphorical phrases by
comparing the embeddings learned for the whole
phrase with those of the individual words in the
phrase. This allows us to determine which proper-
ties the phrase shares with each of the words, provid-
ing another criterion for metaphor identification. We
expect that the embeddings of literal phrases will be
more similar to the embeddings of individual words
in the phrase (or a combination thereof) than those
of metaphorical phrases. We use the following mea-
sures to test this hypothesis:

PHRASCOS1: cos(phrase− word1, word2) (7)

PHRASCOS2: cos(phrase− word2, word1) (8)

PHRASCOS3: cos(phrase, word1 + word2), (9)

where phrase is the phrase embedding vector, and
word1 and word2 are defined as above.

3.4.3 Classification
We use a small development set (a collection of

phrases annotated as metaphorical or literal) to de-
termine an optimal classification threshold for each
of the above scoring methods. We have optimized
the threshold by maximizing classification accuracy
on the development set.2 All instances with val-
ues above the threshold were considered literal and
those with values below the threshold metaphorical.
The thresholds were then applied to classify the test
instances as literal or metaphorical.

4 Experiments

4.1 Annotated datasets

We evaluate our method using two datasets manu-
ally annotated for metaphoricity:

Mohammad et al. dataset (MOH) Mohammad
et al. (2016) annotated different senses of WordNet
(Fellbaum, 1998) verbs for metaphoricity. They ex-
tracted verbs that had between three and ten senses
in WordNet and the sentences exemplifying them
in the corresponding glosses. The verb uses in the

2We have also experimented with optimizing F-score on the
development set and the results exhibited similar trends across
methods.

Verb noun Class Relation
blister foot literal SV
blister administration metaphorical VO
blur haze literal SV
blur vision literal VO
blur distinction metaphorical SV
boost economy metaphorical VO
boost voltage literal VO
bounce ball literal SV
bounce people metaphorical VO
bow person literal SV
bow government metaphorical SV
breathe person literal SV
breathe life metaphorical VO
breathe fabric metaphorical SV
breathe wine metaphorical SV

Figure 1: Annotated verb–direct object and verb–subject pairs

from MOH

sentences (1639 in total) were then annotated for
metaphoricity by 10 annotators each via the crowd-
sourcing platform CrowdFlower3. Mohammad et al.
selected the verbs that were tagged by at least 70%
of the annotators as metaphorical or literal to create
their dataset. We extracted verb–direct object and
verb–subject relations of the annotated verbs from
this dataset, discarding the instances with pronom-
inal or clausal subject or object. This resulted in a
dataset of 647 verb–noun pairs, 316 of which were
metaphorical and 331 literal. Figure 1 shows some
examples of annotated verbs from Mohammad et
al.’s dataset.

Tsvetkov et al. dataset (TSV) Tsvetkov et al.
(2014) created a large dataset of adjective–noun
pairs that they annotated for metaphoricity. Start-
ing with a 1000 frequent adjectives, they extracted
nouns they co-occur with in TenTen Web Corpus4

using SketchEngine and in collections of metaphor
on the Web. Tsvetkov et al. divided the data
into a training set (containing 884 literal and 884
metaphorical pairs) and test set (111 literal and 111
metaphorical pairs). We will refer to their train-
ing set as TSV-TRAIN and to the test set as TSV-
TEST. The test set was annotated for metaphoricity
by 5 annotators with an inter-annotator agreement
of κ = 0.76. Figure 2 shows a portion of the anno-

3www.crowdflower.com
4https://www.sketchengine.co.uk/xdocumentation/wiki/Cor-

pora/enTenTen

164

Metaphorical: Literal:
bald assertion cold beer
blind alley cold weather
breezy disregard huge number
dry wit dead animal
dumb luck deep sea
foggy brain gold coin
healthy balance dry skin
hollow mockery honest opinion
honest meal empty can
juicy scandal good idea
spicy language foggy night
stale cliché frosty morning
steep discount firm mattress

Figure 2: Annotated adjective–noun pairs from TSV-TEST

tated test set. Metaphorical phrases that depend on
wider context for their interpretation (e.g. drowning
students) were removed. The training set was anno-
tated by one annotator only, and it is thus likely that
the annotations are less reliable than those in the test
set. We thus evaluate our methods on Tsvetkov et
al.’s test set (TSV-TEST). However, we will also re-
port results on TSV-TRAIN to confirm whether the
observed trends hold in a larger, though likely nois-
ier, dataset.

We selected the above two datasets since they in-
clude examples for different senses (both metaphor-
ical and literal) of the same verbs or adjectives. This
allows us to test the extent to which our model is
able to discriminate between different word senses,
as opposed to merely selecting the most frequent
class for a given word.

4.2 Experimental setup

We divided the verb- and adjective-noun datasets
into development and test sets. The verb–noun de-
velopment set contained 80 instances from MOH (40
literal and 40 metaphorical), leaving us with the test
set of 567 verb-noun pairs from MOH. We cre-
ated the adjective–noun development set using 80
adjective-noun pairs (40 literal and 40 metaphorical)
from TSV-TRAIN, leaving all of the 222 adjective–
noun pairs in TSV-TEST for evaluation. In a separate
experiment, we also applied our methods to the re-
mainder of TSV-TRAIN (1688 adjective–noun pairs)
to evaluate our system on a larger adjective dataset.

We used the development sets to determine an op-

Features Method P R F1
Linguistic WORDCOS 0.67 0.76 0.71

PHRASCOS1 0.38 0.94 0.54
Visual WORDCOS 0.49 0.97 0.65

PHRASCOS1 0.56 0.79 0.66
Multimodal WORDMID 0.56 0.86 0.68

PHRASMID 0.44 0.93 0.59
WORDLATE 0.49 0.96 0.65
PHRASLATE 0.41 0.92 0.57
MIXLATE 0.65 0.87 0.75

Table 1: System performance on Mohammad et al. dataset

(MOH) in terms of precision (P), recall (R) and F-score (F1)

timal threshold value for each of our scoring meth-
ods. The thresholds for verb-noun and adjective-
noun phrases were optimized independently using
the corresponding development sets. We experi-
mented with the three phrase-level scoring methods
on the development sets, and found that PHRAS-
COS1 consistently outperformed PHRASCOS2 and
PHRASCOS3 for both verb–noun and adjective–
noun phrases. We thus report results for PHRAS-
COS1 on our test sets.

We first evaluated the performance of WORDCOS

and PHRASCOS1 using linguistic and visual repre-
sentations in isolation, and then evaluated the mul-
timodal models using middle and late fusion strate-
gies. In middle fusion, we concatenated the linguis-
tic and visual vectors, and then applied WORDCOS

and PHRASCOS1 methods to the resulting multi-
modal vectors. We will refer to these methods as
WORDMID and PHRASMID respectively. In late
fusion, we used an average of linguistic and vi-
sual scores to determine metaphoricity. We exper-
imented with three different scoring methods: (1)
WORDLATE, where linguistic and visual WORD-
COS scores were combined; (2) PHRASLATE, where
linguistic and visual PHRASCOS1 scores were com-
bined; and (3) MIXLATE, where linguistic and
WORDCOS and visual PHRASCOS1 scores were
combined.

4.3 Results and discussion
We evaluated the performance of our methods on
the MOH and TSV-TEST test sets in terms of preci-
sion, recall and F-score and the results are presented
in Tables 1 and 2 respectively. When using lin-
guistic embeddings alone, WORDCOS outperforms

165

Features Method P R F1
Linguistic WORDCOS 0.73 0.80 0.76

PHRASCOS1 0.43 0.96 0.57
Visual WORDCOS 0.50 0.95 0.66

PHRASCOS1 0.60 0.91 0.73
Multimodal WORDMID 0.59 0.85 0.70

PHRASMID 0.54 0.93 0.68
WORDLATE 0.69 0.72 0.70
PHRASLATE 0.50 1.00 0.67
MIXLATE 0.67 0.96 0.79

Table 2: System performance on Tsvetkov et al. test set (TSV-

TEST) in terms of precision (P), recall (R) and F-score (F1)

PHRASECOS1 for both verbs and adjectives by 17-
19%. This suggests that linguistic word embeddings
already successfully capture domain and composi-
tional information necessary for metaphor identifi-
cation. In contrast, the visual PHRASECOS1 model,
when applied in isolation, tends to outperform the
visual WORDCOS model. PHRASCOS1 measures
to what extent the meaning of the phrase can be
composed by simple combination of the represen-
tations of individual words. In metaphorical lan-
guage, however, a meaning transfer takes place and
this is no longer the case. Particularly in visual data,
where no linguistic conventionality and stylistic ef-
fects take place, PHRASCOS1 captures this prop-
erty. For adjectives this trend was more evident than
for verbs. The visual PHRASECOS1 model, even
when applied on its own, attains a high F-score of
0.73 on TSV-TEST, suggesting that concreteness and
other visual features are highly informative in iden-
tification of adjectival metaphors. This effect was
present, though not as pronounced, for verbal meta-
phors, where the vision-only PHRASECOS1 attains
an F-score of 0.66.

The multimodal model, integrating linguistic and
visual embeddings, outperforms the linguistic mod-
els for both verbs and adjectives, clearly demon-
strating the utility of visual features across word
classes. The late fusion method MIXLATE, which
combines the linguistic WORDCOS score and the vi-
sual PHRASECOS1, attains an F-score of 0.75 for
verbs and 0.79 for adjectives, which makes it best-
performing among our fusion strategies. When the
same type of scoring (i.e. either WORDCOS or
PHRASCOS1) is used with both linguistic and visual

embeddings, middle and late fusion techniques at-
tain comparable levels of performance, with WORD-
COS being the leading measure. The reason behind
the higher performance of MIXLATE is likely to be
the combination of different scoring methods, one of
which is more suitable for the linguistic model and
the other for the visual one.

The differences between verbs and adjectives with
respect to the utility of visual information can be ex-
plained by the following two factors. Firstly, pre-
vious psycholinguistic research on abstractness and
concreteness (Hill et al., 2014) suggests that humans
find it easier to judge the level of concreteness of ad-
jectives and nouns than that of verbs. It is thus possi-
ble that visual representations capture the concrete-
ness of adjectives and nouns more accurately than
that of verbs. Besides concreteness, it is also likely
that perceptual properties in general are more im-
portant for the semantics of nouns (e.g. objects) and
adjectives (their attributes), than for the semantics
of verbs (actions), since the latter are grounded in
our motor activity and not merely perception. Sec-
ondly, following the majority of multimodal seman-
tic models, we used images as our visual data rather
than videos. However, some verbs, e.g. stative verbs
and verbs for continuous actions, may be better cap-
tured in video than images. We thus expect that
using video data along with the images as input to
the acquisition of visual embeddings is likely to im-
prove metaphor identification performance for ver-
bal metaphors. However, we leave the investigation
of this issue for future work.

In an additional experiment, we evaluated our
methods on the larger TSV-TRAIN dataset (specifi-
cally using its portion that was not employed for de-
velopment purposes) and the trends observed were
the same. MIXLATE attained an F-score of 0.71,
outperforming language-only and vision-only mod-
els. The performance of all scoring methods on TSV-
TRAIN was lower than that on the TSV-TEST. This
may be the result of the fact that the labelling of TSV-
TRAIN was less consistent than that of TSV-TEST.
As TSV-TEST is a set of metaphors annotated by 5
annotators with a high agreement, the evaluation on
TSV-TEST is likely to be more reliable (Tsvetkov et
al., 2014).

It is important to note that, unlike other super-
vised approaches to metaphor, our methods do not

166

require large training sets to learn the respective
thresholds. The results reported here were ob-
tained using only 80 annotated examples for train-
ing. This is sufficient since the necessary lexical
knowledge and the knowledge about domain, con-
creteness and visual properties of concepts is al-
ready captured in the linguistic and visual embed-
dings. However, we additionally investigated how
stable the thresholds learned by the model are us-
ing the TSV-TRAIN dataset. For this purpose, we di-
vided the dataset into 10 portions of approximately
170 examples (balanced for metaphoricity). We then
trained the thresholds first on a small set of 170 ex-
amples and then increasing the dataset by 170 ex-
amples at each round. The thesholds appear to be
relatively stable, with a standard deviation of 0.03
for MIXLATE; 0.02 for WORDCOS (linguistic); and
0.05 for PHRASECOS1 (visual). This suggests that
our methods do not require a large annotated dataset
and training on a small number of examples is suffi-
cient.

Despite the limited need in training data and no
reliance on hand-coded lexical resources, the perfor-
mance of our method favourably compares to that
of existing metaphor identification systems (Turney
et al., 2011; Neuman et al., 2013; Gandy et al.,
2013; Dunn, 2013b; Tsvetkov et al., 2013; Hovy
et al., 2013; Hovy et al., 2013; Shutova and Sun,
2013; Strzalkowski et al., 2013; Beigman Klebanov
et al., 2015), that typically use such resources. For
instance, Turney et al. (2011) used hand-annotated
abstractness scores for words to develop their sys-
tem, and reported an F-score of 0.68 for verb–noun
metaphors and an accuracy of 0.79 for adjective–
noun metaphors (though the latter was only evalu-
ated on a small dataset of 10 adjectives and Tur-
ney and colleagues did not report results in terms
of F-score, which is likely to be lower). Our use
of visual features is in line with Turney’s hypoth-
esis concerning the relevance of concreteness fea-
tures to metaphor processing. However, our re-
sults indicate that extracting this information from
image data directly is a more suitable way to cap-
ture the concreteness itself, as well as capturing
other relevant perceptual properties of concepts. The
method of Tsvetkov et al. (2014) used both con-
creteness features (which they extracted from the
MRC concreteness database) and hand-coded do-

main information for words (which they extracted
from WordNet). They report a high F-score of 0.85
for adjective–noun classification on TSV-TEST. The
performance of our method on the same dataset is
a little lower than that of Tsvetkov et al. How-
ever, we do not use any hand-annotated resources
and acquire linguistic, domain and perceptual infor-
mation in the data-driven way. It is thus encour-
aging that, even though resource-lean, our methods
approach the performance level of the methods us-
ing hand-annotated features (as in case of Tsvetkov
et al. (2014)) or outperform them (as in case of
Turney et al. (2011), Neuman et al. (2013), Dunn
(2013b), Mohler et al. (2013), Gandy et al. (2013),
Strzalkowski et al. (2013), Beigman Klebanov et al.
(2015) and many others). For further comparison
with these approaches and their results see a recent
review by Shutova (2015).

5 Conclusion

We presented the first method that uses visual
features for metaphor identification. Our results
demonstrate that the multi-modal model combining
both linguistic and visual knowledge outperforms
language-only models, suggesting the importance of
visual information for metaphor processing. Un-
like previous metaphor processing approaches, that
employed hand-crafted resources to model percep-
tual properties of concepts, our method learns visual
knowledge from images directly, thus reducing the
risk of human annotation noise and having a wider
coverage and applicability. Since the method relies
on automatically acquired lexical knowledge, in the
form of linguistic and visual embeddings, and is oth-
erwise resource-independent, it can be applied to un-
restricted text in any domain and easily tailored to
other metaphor processing tasks.

In the future, it would be interesting to apply mul-
timodal word and phrase embeddings to automati-
cally interpret metaphorical language, e.g. by deriv-
ing literal or conventional paraphrases for metaphor-
ical expressions (similarly to the task of Shutova
(2010)). Multimodal embeddings are also likely to
provide useful information for the models of meta-
phor translation, as they have already proved suc-
cessful in bilingual lexicon induction more generally
(Kiela et al., 2015b). Finally, it would be interest-

167

ing to further investigate compositional properties of
metaphorical language using multimodal phrase em-
beddings and to apply the embeddings to automati-
cally generalise metaphorical associations between
distinct concepts or domains.

Acknowledgment

We are grateful to the NAACL reviewers for their
helpful feedback. Ekaterina Shutova’s research is
supported by the Leverhulme Trust Early Career
Fellowship. Douwe Kiela is supported by EPSRC
grant EP/I037512/1.

References

Lawrence W. Barsalou. 2008. Grounded cognition. An-
nual Review of Psychology, 59(1):617–645.

Beata Beigman Klebanov, Chee Wee Leong, and Michael
Flor. 2015. Supervised word-level metaphor detec-
tion: Experiments with concreteness and reweighting
of examples. In Proceedings of the Third Workshop
on Metaphor in NLP, pages 11–20, Denver, Colorado,
June. Association for Computational Linguistics.

Shane Bergsma and Randy Goebel. 2011. Using visual
information to predict lexical preference. In RANLP,
pages 399–405.

Danushka Bollegala and Ekaterina Shutova. 2013. Meta-
phor interpretation using paraphrases extracted from
the web. PLoS ONE, 8(9):e74304.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49:1–47.

Jonathan Dunn. 2013a. Evaluating the premises and
results of four metaphor identification systems. In
Proceedings of CICLing’13, pages 471–486, Samos,
Greece.

Jonathan Dunn. 2013b. What metaphor identification
systems can tell us about metaphor-in-language. In
Proceedings of the First Workshop on Metaphor in
NLP, pages 1–10, Atlanta, Georgia.

Jerome Feldman. 2006. From Molecule to Metaphor: A
Neural Theory of Language. The MIT Press.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Lexical Database (ISBN: 0-262-06197-X). MIT
Press, first edition.

Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew
Zisserman. 2005. Learning object categories from
google’s image search. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Conference on,
volume 2, pages 1816–1823. IEEE.

Lisa Gandy, Nadji Allan, Mark Atallah, Ophir Frieder,
Newton Howard, Sergey Kanareykin, Moshe Kop-
pel, Mark Last, Yair Neuman, and Shlomo Argamon.
2013. Automatic identification of conceptual meta-
phors with limited knowledge. In Proceedings of
AAAI 2013.

Matt Gedigian, John Bryant, Srini Narayanan, and Bran-
imir Ciric. 2006. Catching metaphors. In In Proceed-
ings of the 3rd Workshop on Scalable Natural Lan-
guage Understanding, pages 41–48, New York.

Ilana Heintz, Ryan Gabbard, Mahesh Srivastava, Dave
Barner, Donald Black, Majorie Friedman, and Ralph
Weischedel. 2013. Automatic extraction of linguistic
metaphors with lda topic modeling. In Proceedings of
the First Workshop on Metaphor in NLP, pages 58–66,
Atlanta, Georgia.

Felix Hill, Anna Korhonen, and Christian Bentz.
2014. A quantitative empirical analysis of the
abstract/concrete distinction. Cognitive Science,
38(1):162–177.

Dirk Hovy, Shashank Shrivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Proceed-
ings of the First Workshop on Metaphor in NLP, pages
52–57, Atlanta, Georgia.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.

Douwe Kiela and Léon Bottou. 2014. Learning Image
Embeddings using Convolutional Neural Networks for
Improved Multi-Modal Semantics. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-14).

Douwe Kiela and Stephen Clark. 2015. Multi- and cross-
modal semantics beyond vision: Grounding in audi-
tory perception. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2461–2470, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Douwe Kiela, Laura Rimell, Ivan Vulić, and Stephen
Clark. 2015a. Exploiting image generality for lexi-
cal entailment detection. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), Beijing, China.

Douwe Kiela, Ivan Vulić, and Stephen Clark. 2015b. Vi-
sual bilingual lexicon induction with transferred con-
vnet features. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, Lisbon, Portugal.

168

Saisuresh Krishnakumaran and Xiaojin Zhu. 2007.
Hunting elusive metaphors using lexical resources.
In Proceedings of the Workshop on Computational
Approaches to Figurative Language, pages 13–20,
Rochester, NY.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

George Lakoff and Mark Johnson. 1980. Metaphors We
Live By. University of Chicago Press, Chicago.

Omer Levy and Yoav Goldberg. 2014. Linguistic regu-
larities in sparse and explicit word representations. In
Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning, pages 171–180,
Ann Arbor, Michigan, June.

Hongsong Li, Kenny Q. Zhu, and Haixun Wang. 2013.
Data-driven metaphor recognition and explanation.
Transactions of the Association for Computational
Linguistics, 1:379–390.

Max M Louwerse. 2011. Symbol interdependency in
symbolic and embodied cognition. Topics in Cognitive
Science, 3(2):273–302.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Zachary Mason. 2004. Cormet: a computational,
corpus-based conventional metaphor extraction sys-
tem. Computational Linguistics, 30(1):23–44.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Proceedings of ICLR, Scotts-
dale, AZ.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-HLT,
pages 746–751.

Saif Mohammad, Ekaterina Shutova, and Peter Turney.
2016. Metaphor as a medium for emotion: An empiri-
cal study. Language Resources and Evaluation, forth-
coming.

Michael Mohler, David Bracewell, Marc Tomlinson,
and David Hinote. 2013. Semantic signatures for
example-based linguistic metaphor detection. In Pro-
ceedings of the First Workshop on Metaphor in NLP,
pages 27–35, Atlanta, Georgia.

Michael Mohler, Bryan Rink, David Bracewell, and Marc
Tomlinson. 2014. A novel distributional approach
to multilingual conceptual metaphor recognition. In
Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics: Technical
Papers, Dublin, Ireland.

Yair Neuman, Dan Assaf, Yohai Cohen, Mark Last,
Shlomo Argamon, Newton Howard, and Ophir
Frieder. 2013. Metaphor identification in large texts
corpora. PLoS ONE, 8(4):e62343.

Stephen Roller and Sabine Schulte im Walde. 2013. A
multimodal lda model integrating textual, cognitive
and visual modalities. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1146–1157.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252.

Ekaterina Shutova and Lin Sun. 2013. Unsupervised
metaphor identification using hierarchical graph fac-
torization clustering. In Proceedings of NAACL 2013,
Atlanta, GA, USA.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of Coling 2010, pages 1002–1010,
Beijing, China.

Ekaterina Shutova, Tim Van de Cruys, and Anna Korho-
nen. 2012. Unsupervised metaphor paraphrasing us-
ing a vector space model. In Proceedings of COLING
2012, Mumbai, India.

Ekaterina Shutova. 2010. Automatic metaphor inter-
pretation as a paraphrasing task. In Proceedings of
NAACL 2010, pages 1029–1037, Los Angeles, USA.

Ekaterina Shutova. 2015. Design and Evaluation of
Metaphor Processing Systems. Computational Lin-
guistics, 41(4).

Carina Silberer and Mirella Lapata. 2012. Grounded
models of semantic representation. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1423–1433. Asso-
ciation for Computational Linguistics.

Tomek Strzalkowski, George Aaron Broadwell, Sarah
Taylor, Laurie Feldman, Samira Shaikh, Ting Liu,
Boris Yamrom, Kit Cho, Umit Boz, Ignacio Cases,
and Kyle Elliot. 2013. Robust extraction of metaphor
from novel data. In Proceedings of the First Workshop
on Metaphor in NLP, pages 67–76, Atlanta, Georgia.

Yulia Tsvetkov, Elena Mukomel, and Anatole Gershman.
2013. Cross-lingual metaphor detection using com-
mon semantic features. In Proceedings of the First
Workshop on Metaphor in NLP, pages 45–51, Atlanta,
Georgia.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric
Nyberg, and Chris Dyer. 2014. Metaphor detection

169

with cross-lingual model transfer. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
248–258, Baltimore, Maryland, June. Association for
Computational Linguistics.

Peter D. Turney, Yair Neuman, Dan Assaf, and Yohai
Cohen. 2011. Literal and metaphorical sense iden-
tification through concrete and abstract context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’11,
pages 680–690, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tony Veale and Yanfen Hao. 2008. A fluid knowledge
representation for understanding and generating cre-
ative metaphors. In Proceedings of COLING 2008,
pages 945–952, Manchester, UK.

Yorick Wilks, Adam Dalton, James Allen, and Lucian
Galescu. 2013. Automatic metaphor detection using
large-scale lexical resources and conventional meta-
phor extraction. In Proceedings of the First Workshop
on Metaphor in NLP, pages 36–44, Atlanta, Georgia.

M.D. Wilson. 1988. The MRC Psycholinguistic
Database: Machine Readable Dictionary, Version
2. Behavioural Research Methods, Instruments and
Computers, 20:6–11.

170

Proceedings of NAACL-HLT 2016, pages 171–181,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bridge Correlational Neural Networks for Multilingual Multimodal
Representation Learning

Janarthanan Rajendran
IIT Madras, India.
rsdjjana@gmail.com

Mitesh M. Khapra
IBM Research India.
mikhapra@in.ibm.com

Sarath Chandar
University of Montreal.
apsarathchandar@gmail.com

Balaraman Ravindran
IIT Madras, India.
ravi@cse.iitm.ac.in

Abstract
Recently there has been a lot of interest in
learning common representations for multiple
views of data. Typically, such common rep-
resentations are learned using a parallel cor-
pus between the two views (say, 1M images
and their English captions). In this work,
we address a real-world scenario where no
direct parallel data is available between two
views of interest (say, V1 and V2) but parallel
data is available between each of these views
and a pivot view (V3). We propose a model
for learning a common representation for V1,
V2 and V3 using only the parallel data avail-
able between V1V3 and V2V3. The proposed
model is generic and even works when there
are n views of interest and only one pivot view
which acts as a bridge between them. There
are two specific downstream applications that
we focus on (i) transfer learning between lan-
guages L1,L2,...,Ln using a pivot language
L and (ii) cross modal access between im-
ages and a language L1 using a pivot lan-
guage L2. Our model achieves state-of-the-art
performance in multilingual document classi-
fication on the publicly available multilingual
TED corpus and promising results in multilin-
gual multimodal retrieval on a new dataset cre-
ated and released as a part of this work.

1 Introduction

The proliferation of multilingual and multimodal
content online has ensured that multiple views of
the same data exist. For example, it is common
to find the same article published in multiple lan-
guages online in multilingual news articles, multilin-
gual wikipedia articles, etc. Such multiple views can

even belong to different modalities. For example,
images and their textual descriptions are two views
of the same entity. Similarly, audio, video and subti-
tles of a movie are multiple views of the same entity.

Learning common representations for such mul-
tiple views of data will help in several downstream
applications. For example, learning a common rep-
resentation for images and their textual descriptions
could help in finding images which match a given
textual description. Further, such common represen-
tations can also facilitate transfer learning between
views. For example, a document classifier trained
on one language (view) can be used to classify doc-
uments in another language by representing docu-
ments of both languages in a common subspace.

Existing approaches to common representation
learning (Ngiam et al., 2011; Klementiev et al.,
2012; Chandar et al., 2013; Chandar et al., 2014;
Andrew et al., 2013; Wang et al., 2015) except (Her-
mann and Blunsom, 2014b) typically require paral-
lel data between all views. However, in many real-
world scenarios such parallel data may not be avail-
able. For example, while there are many publicly
available datasets containing images and their cor-
responding English captions, it is very hard to find
datasets containing images and their corresponding
captions in Russian, Dutch, Hindi, Urdu, etc. In this
work, we are interested in addressing such scenar-
ios. More specifically, we consider scenarios where
we have n different views but parallel data is only
available between each of these views, and a pivot
view. In particular, there is no parallel data available
between the non-pivot views.

To this end, we propose Bridge Correlational

171

Neural Networks (Bridge CorrNets) which learn
aligned representations across multiple views using
a pivot view. We build on the work of (Chandar
et al., 2016) but unlike their model, which only ad-
dresses scenarios where direct parallel data is avail-
able between two views, our model can work for
n(≥2) views even when no parallel data is avail-
able between all of them. Our model only requires
parallel data between each of these n views and a
pivot view. During training, our model maximizes
the correlation between the representations of the
pivot view and each of the n views. Intuitively, the
pivot view ensures that similar entities across differ-
ent views get mapped close to each other since the
model would learn to map each of them close to the
corresponding entity in the pivot view.

We evaluate our approach using two downstream
applications. First, we employ our model to facil-
itate transfer learning between multiple languages
using English as the pivot language. For this,
we do an extensive evaluation using 110 source-
target language pairs and clearly show that we out-
perform the current state-of-the art approach (Her-
mann and Blunsom, 2014b). Second, we em-
ploy our model to enable cross modal access be-
tween images and French/German captions using
English as the pivot view. For this, we created
a test dataset consisting of images and their cap-
tions in French and German in addition to the En-
glish captions which were publicly available. To the
best of our knowledge, this task of retrieving im-
ages given French/German captions (and vice versa)
without direct parallel training data between them
has not been addressed in the past. Even on this
task we report promising results. Code and data
used in this paper can be downloaded from http:
//sarathchandar.in/bridge-corrnet.

2 Related Work

Canonical Correlation Analysis (CCA) and its vari-
ants (Hotelling, 1936; Vinod, 1976; Nielsen et al.,
1998; Cruz-Cano and Lee, 2014; Akaho, 2001) are
the most commonly used methods for learning a
common representation for two views. However,
most of these models generally work with two views
only. Even though there are multi-view generaliza-
tions of CCA (Tenenhaus and Tenenhaus, 2011; Luo

et al., 2015), their computational complexity makes
them unsuitable for larger data sizes.

Another class of algorithms for multiview learn-
ing is based on Neural Networks. One of the ear-
liest neural network based model for learning com-
mon representations was proposed in (Hsieh, 2000).
Recently, there has been a renewed interest in this
field and several neural network based models have
been proposed. For example, Multimodal Autoen-
coder (Ngiam et al., 2011), Deep Canonically Cor-
related Autoencoder (Wang et al., 2015), Deep CCA
(Andrew et al., 2013) and Correlational Neural Net-
works (CorrNet) (Chandar et al., 2016). CorrNet
performs better than most of the above mentioned
methods and we build on their work as discussed in
the next section.

One of the tasks that we address in this work is
multilingual representation learning where the aim
is to learn aligned representations for words across
languages. Some notable neural network based ap-
proaches here include the works of (Klementiev et
al., 2012; Zou et al., 2013; Mikolov et al., 2013;
Hermann and Blunsom, 2014b; Hermann and Blun-
som, 2014a; Chandar et al., 2014; Soyer et al., 2015;
Gouws et al., 2015). However, except for (Her-
mann and Blunsom, 2014a; Hermann and Blunsom,
2014b), none of these other works handle the case
when parallel data is not available between all lan-
guages. Our model addresses this issue and outper-
forms the model of Hermann and Blunsom (2014b).

The task of cross modal access between images
and text addressed in this work comes under Mul-
tiModal Representation Learning where each view
belongs to a different modality. Ngiam et al. (2011)
proposed an autoencoder based solution to learning
common representation for audio and video. Srivas-
tava and Salakhutdinov (2014) extended this idea to
RBMs and learned common representations for im-
age and text. Other solutions for image/text rep-
resentation learning include (Zheng et al., 2014a;
Zheng et al., 2014b; Socher et al., 2014). All these
approaches require parallel data between the two
views and do not address multimodal, multilingual
learning in situations where parallel data is available
only between different views and a pivot view.

In the past, pivot/bridge languages have been used
to facilitate MT (for example, (Wu and Wang, 2007;
Cohn and Lapata, 2007; Utiyama and Isahara, 2007;

172

Nakov and Ng, 2009)), transitive CLIR (Ballesteros,
2000; Lehtokangas et al., 2008), transliteration and
transliteration mining (Khapra et al., 2010a; Ku-
maran et al., 2010; Khapra et al., 2010b; Zhang et
al., 2011). None of these works use neural networks
but it is important to mention them here because they
use the concept of a pivot language (view) which is
central to our work.

3 Bridge Correlational Neural Network

In this section, we describe Bridge CorrNet which
is an extension of the CorrNet model proposed by
(Chandar et al., 2016). They address the problem
of learning common representations between two
views when parallel data is available between them.
We propose an extension to their model which si-
multaneously learns a common representation forM
views when parallel data is available only between
one pivot view and the remaining M − 1 views.

Let these views be denoted by V1, V2, ..., VM and
let d1, d2, ..., dM be their respective dimensionali-
ties. Let the training data be Z = {zi}Ni=1 where
each training instance contains only two views, i.e.,
zi = (vij , v

i
M) where j ∈ {1, 2, ..,M−1} and M is

a pivot view. To be more clear, the training data con-
tains N1 instances for which (vi1, v

i
M) are available,

N2 instances for which (vi2, v
i
M) are available and

so on tillNM−1 instances for which (viM−1, v
i
M) are

available (such that N1 + N2 + ... + NM−1 = N).
We denote each of these disjoint pairwise training
sets by Z1 , Z2 to ZM−1 such that Z is the union of
all these sets.

As an illustration consider the case when English,
French and German texts are the three views of in-
terest with English as the pivot view. As training
data, we have N1 instances containing English and
their corresponding French texts and N2 instances
containing English and their corresponding German
texts. We are then interested in learning a common
representation for English, French and German even
though we do not have any training instance contain-
ing French and their corresponding German texts.

Bridge CorrNet uses an encoder-decoder architec-
ture with a correlation based regularizer to achieve
this. It contains one encoder-decoder pair for each
of the M views. For each view Vj , we have,

hVj (vj) = f(Wjvj + b) (1)

Figure 1: Bridge Correlational Neural Network. The views are

English, French and German with English being the pivot view.

where f is any non-linear function such as sigmoid
or tanh, Wj ∈ Rk×dj is the encoder matrix for view
Vj , b ∈ Rk is the common bias shared by all the
encoders. We also compute a hidden representation
for the concatenated training instance z = (vj , vM)
using the following encoder function:

hZ(z) = f(Wjvj +WM vM + b) (2)

In the remainder of this paper, whenever we drop the
subscript for the encoder, then the encoder is deter-
mined by its argument. For example h(vj) means
hVj (vj), h(z) means hZ(z) and so on.

Our model also has a decoder corresponding to
each view as follows:

gVj
(h) = p(W ′jh+ cj) (3)

where p can be any activation function,W ′j ∈ Rdj×k

is the decoder matrix for view Vj , cj ∈ Rdj is the
decoder bias for view Vj . We also define g(h) as
simply the concatenation of [gVj

(h), gVM
(h)].

In effect, hVj
(.) encodes the input vj into a hid-

den representation h and then gVj
(.) tries to de-

code/reconstruct vj from this hidden representation
h. Note that h can be computed using h(vj) or
h(vM). The decoder can then be trained to de-
code/reconstruct both vj and vM given a hidden rep-
resentation computed using any one of them. More
formally, we train Bridge CorrNet by minimizing
the following objective function:

JZ(θ) =
N∑

i=1

L(zi, g(h(zi))) +
N∑

i=1

L(zi, g(h(vi
l(i))))

+
N∑

i=1

L(zi, g(h(vi
M

)))− λ corr(h(Vl(i)), h(VM))

(4)

173

where l(i) = j if zi ∈ Zj and the correlation term
corr is defined as follows:

corr =
∑N

i=1(h(x
i)− h(X))(h(yi)− h(Y))√∑N

i=1(h(xi)− h(X))2
∑N

i=1(h(yi)− h(Y))2

(5)
Note that g(h(zi)) is the reconstruction of the input
zi after passing through the encoder and decoder. L
is a loss function which captures the error in this re-
construction, λ is the scaling parameter to scale the
last term with respect to the remaining terms, h(X)
is the mean vector for the hidden representations of
the first view and h(Y) is the mean vector for the
hidden representations of the second view.

We now explain the intuition behind each term in
the objective function. The first term captures the er-
ror in reconstructing the concatenated input zi from
itself. The second term captures the error in recon-
structing both views given the non-pivot view, vil(i).
The third term captures the error in reconstructing
both views given the pivot view, vi

M
. Minimizing the

second and third terms ensures that both the views
can be predicted from any one view. Finally, the
correlation term ensures that the network learns cor-
related common representations for all views.

Our model can be viewed as a generalization of
the two-view CorrNet model proposed in (Chandar
et al., 2016). By learning joint representations for
multiple views using disjoint training sets Z1 , Z2 to
ZM−1 it eliminates the need for nC2 pair-wise paral-
lel datasets between all views of interest. The pivot
view acts as a bridge and ensures that similar enti-
ties across different views get mapped close to each
other since all of them would be close to the corre-
sponding entity in the pivot view.

Note that unlike the objective function of Cor-
rNet (Chandar et al., 2016), the objective func-
tion of Equation 4, is a dynamic objective func-
tion which changes with each training instance. In
other words, l(i) ∈ {1, 2, ..,M−1} varies for each
i ∈ {1, 2, .., N}. For efficient implementation, we
construct mini-batches where each mini-batch will
come from only one of the sets Z1 to ZM−1 . We
randomly shuffle these mini-batches and use corre-
sponding objective function for each mini-batch.

As a side note, we would like to mention that in
addition to Z1 , Z2 to ZM−1 as defined earlier, if ad-
ditional parallel data is available between some of

the non-pivot views then the objective function can
be suitably modified to use this parallel data to fur-
ther improve the learning. However, this is not the
focus of this work and we leave this as a possible
future work.

4 Datasets

In this section, we describe the two datasets that we
used for our experiments.

4.1 Multlingual TED corpus

Hermann and Blunsom (2014b) provide a multilin-
gual corpus based on the TED corpus for IWSLT
2013 (Cettolo et al., 2012). It contains English tran-
scriptions of several talks from the TED conference
and their translations in multiple languages. We
use the parallel data between English and other lan-
guages for training Bridge Corrnet (English, thus,
acts as the pivot langauge). Hermann and Blunsom
(2014b) also propose a multlingual document classi-
fication task using this corpus. The idea is to use the
keywords associated with each talk (document) as
class labels and then train a classifier to predict these
classes. There are one or more such keywords asso-
ciated with each talk but only the 15 most frequent
keywords across all documents are considered as
class labels. We used the same pre-processed splits1

as provided by (Hermann and Blunsom, 2014b).
The training corpus consists of a total of 12,078 par-
allel documents distributed across 12 language pairs.

4.2 Multilingual Image Caption dataset

The MSCOCO dataset2 contains images and their
English captions. On an average there are 5 cap-
tions per image. The standard train/valid/test splits
for this dataset are also available online. However,
the reference captions for the images in the test split
are not provided. Since we need such reference cap-
tions for evaluations, we create a new train/valid/test
of this dataset. Specifically, we take 80K images
from the standard train split and 40K images from
the standard valid split. We then randomly split
the merged 120K images into train(118K), valida-
tion (1K) and test set (1K).

1http://www.clg.ox.ac.uk/tedcorpus
2http://mscoco.org/dataset/

174

We then create a multilingual version of the test
data by collecting French and German translations
for all the 5 captions for each image in the test
set. We use crowdsourcing to do this. We used the
CrowdFlower platform and solicited one French and
one German translation for each of the 5000 cap-
tions using native speakers. We got each transla-
tion verified by 3 annotators. We restricted the ge-
ographical location of annotators based on the tar-
get language. We found that roughly 70% of the
French translations and 60% of the German trans-
lations were marked as correct by a majority of the
verifiers. On further inspection with the help of
in-house annotators, we found that the errors were
mainly syntactic and the content words are trans-
lated correctly in most of the cases. Since none of
the approaches described in this work rely on syn-
tax, we decided to use all the 5000 translations as
test data. This multilingual image caption test data
(MIC test data) will be made publicly available3 and
will hopefully assist further research in this area.

5 Experiment 1: Transfer learning using a
pivot language

From the TED corpus described earlier, we consider
English transcriptions and their translations in 11
languages, viz., Arabic, German, Spanish, French,
Italian, Dutch, Polish, Portuguese (Brazilian), Ro-
man, Russian and Turkish. Following the setup of
Hermann and Blunsom (2014b), we consider the
task of cross language learning between each of the
11C2 non-English language pairs. The task is to clas-
sify documents in a language when no labeled train-
ing data is available in this language but training data
is available in another language. This involves the
following steps:
1. Train classifier: Consider one language as the
source language and the remaining 10 languages as
target languages. Train a document classifier us-
ing the labeled data of the source language, where
each training document is represented using the hid-
den representation computed using a trained Bridge
Corrnet model. As in (Hermann and Blunsom,
2014b) we used an averaged perceptron trained for
10 epochs as the classifier for all our experiments.
The train split provided by (Hermann and Blunsom,

3http://sarathchandar.in/bridge-corrnet

2014b) is used for training.
2. Cross language classification: For every target
language, compute a hidden representation for ev-
ery document in its test set using Bridge CorrNet.
Now use the classifier trained in the previous step
to classify this document. The test split provided by
(Hermann and Blunsom, 2014b) is used for testing.

5.1 Training and tuning Bridge Corrnet

For the above process to work, we first need to train
Bridge Corrnet so that it can then be used for com-
puting a common hidden representation for docu-
ments in different languages. For training Bridge
CorrNet, we treat English as the pivot language
(view) and construct parallel training sets Z1 to Z11 .
Every instance in Z1 contains the English and Ara-
bic view of the same talk (document). Similarly, ev-
ery instance in Z2 contains the English and German
view of the same talk (document) and so on. For
every language, we first construct a vocabulary con-
taining all words appearing more than 5 times in the
corpus (all talks) of that language. We then use this
vocabulary to construct a bag-of-words representa-
tion for each document. The size of the vocabulary
(|V |) for different languages varied from 31213 to
60326 words. To be more clear, v1 = varabic ∈
R|V |arabic , v2 = vgerman ∈ R|V |german and so on.

We train our model for 10 epochs using the above
training data Z = {Z1 ,Z2 , ...,Z11}. We use hidden
representations of size D = 128, as in (Hermann
and Blunsom, 2014b). Further, we used stochastic
gradient descent with mini-batches of size 20. Each
mini-batch contains data from only one of the Zis.
We get a stochastic estimate for the correlation term
in the objective function using this mini-batch. The
hyperparameter λ was tuned to each task using a
training/validation split for the source language and
using the performance on the validation set of an av-
eraged perceptron trained on the training set (notice
that this corresponds to a monolingual classification
experiment, since the general assumption is that no
labeled data is available in the target language).

5.2 Results

We now present the results of our cross language
classification task in Table 1. Each row corresponds
to a source language and each column corresponds
to a target language. We report the average F1-

175

Training
Language

Test Language
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Arabic 0.662 0.654 0.645 0.663 0.654 0.626 0.628 0.630 0.607 0.644
German 0.920 0.544 0.505 0.654 0.672 0.631 0.507 0.583 0.537 0.597
Spanish 0.666 0.465 0.547 0.512 0.501 0.537 0.518 0.573 0.463 0.434
French 0.761 0.585 0.679 0.681 0.646 0.671 0.650 0.675 0.613 0.578
Italian 0.701 0.421 0.456 0.457 0.530 0.442 0.491 0.390 0.402 0.499
Dutch 0.847 0.370 0.511 0.472 0.600 0.536 0.489 0.458 0.470 0.516
Polish 0.533 0.387 0.556 0.535 0.536 0.454 0.446 0.521 0.473 0.413
Pt-Br 0.609 0.502 0.572 0.553 0.548 0.535 0.545 0.557 0.451 0.463
Rom’n 0.573 0.460 0.559 0.530 0.521 0.484 0.475 0.485 0.486 0.458
Russian 0.755 0.460 0.537 0.437 0.567 0.499 0.550 0.478 0.475 0.484
Turkish 0.950 0.373 0.480 0.452 0.542 0.544 0.585 0.297 0.512 0.412

Table 1: F1-scores for TED corpus document classification results when training and testing on two languages that do not share

any parallel data. We train a Bridge CorrNet model on all en-L2 language pairs together, and then use the resulting embeddings to

train document classifiers in each language. These classifiers are subsequently used to classify data from all other languages.

Training
Language

Test Language
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Arabic 0.378 0.436 0.432 0.444 0.438 0.389 0.425 0.42 0.446 0.397
German 0.368 0.474 0.46 0.464 0.44 0.375 0.417 0.447 0.458 0.443
Spanish 0.353 0.355 0.42 0.439 0.435 0.415 0.39 0.424 0.427 0.382
French 0.383 0.366 0.487 0.474 0.429 0.403 0.418 0.458 0.415 0.398
Italian 0.398 0.405 0.461 0.466 0.393 0.339 0.347 0.376 0.382 0.352
Dutch 0.377 0.354 0.463 0.464 0.46 0.405 0.386 0.415 0.407 0.395
Polish 0.359 0.386 0.449 0.444 0.43 0.441 0.401 0.434 0.398 0.408
Pt-Br 0.391 0.392 0.476 0.447 0.486 0.458 0.403 0.457 0.431 0.431
Rom’n 0.416 0.32 0.473 0.476 0.46 0.434 0.416 0.433 0.444 0.402
Russian 0.372 0.352 0.492 0.427 0.438 0.452 0.43 0.419 0.441 0.447
Turkish 0.376 0.352 0.479 0.433 0.427 0.423 0.439 0.367 0.434 0.411

Table 2: F1-scores for TED corpus document classification results when training and testing on two languages that do not share

any parallel data. Same procedure as Table 1, but with DOC/ADD model in (Hermann and Blunsom, 2014b).

Setting Languages
Arabic German Spanish French Italian Dutch Polish Pt-Br Rom’n Russian Turkish

Raw Data NB 0.469 0.471 0.526 0.532 0.524 0.522 0.415 0.465 0.509 0.465 0.513
DOC/ADD (Single) 0.422 0.429 0.394 0.481 0.458 0.252 0.385 0.363 0.431 0.471 0.435
DOC/BI (Single) 0.432 0.362 0.336 0.444 0.469 0.197 0.414 0.395 0.445 0.436 0.428
DOC/ADD (Joint) 0.371 0.386 0.472 0.451 0.398 0.439 0.304 0.394 0.453 0.402 0.441
DOC/BI (Joint) 0.329 0.358 0.472 0.454 0.399 0.409 0.340 0.431 0.379 0.395 0.435
Bridge CorrNet 0.266 0.456 0.535 0.529 0.551 0.565 0.478 0.535 0.490 0.447 0.477

Table 3: : F1-scores on the TED corpus document classification task when training and evaluating on the same language. Results

other than Bridge CorrNet are taken from (Hermann and Blunsom, 2014b).

scores over all the 15 classes. We compare our re-
sults with the best results reported in (Hermann and
Blunsom, 2014b) (see Table 2). Out of the 110
experiments, our model outperforms the model of
(Hermann and Blunsom, 2014b) in 107 experiments.
This suggests that our model efficiently exploits the
pivot language to facilitate cross language learning
between other languages.

Finally, we present the results for a monolingual
classification task in Table 3. The idea here is to
see if learning common representations for multiple
views can also help in improving the performance
of a task involving only one view. Hermann and

Blunsom (2014b) argue that a Naive Bayes (NB)
classifier trained using a bag-of-words representa-
tion of the documents is a very strong baseline. In
fact, a classifier trained on document representations
learned using their model does not beat a NB classi-
fier for the task of monolingual classification. Rows
2 to 5 in Table 3 show the different settings tried by
them (we refer the reader to (Hermann and Blunsom,
2014b) for a detailed description of these settings).
On the other hand our model is able to beat NB for
5/11 languages. Further, for 4 other languages (Ger-
man, French, Romanian, Russian) its performance is
only marginally poor than that of NB.

176

6 Experiment 2: Cross modal access using
a pivot language

In this experiment, we are interested in retrieving
images given their captions in French (or German)
and vice versa. However, for training we do not
have any parallel data containing images and their
French (or German) captions. Instead, we have the
following datasets: (i) a dataset Z1 containing im-
ages and their English captions and (ii) a dataset Z2

containing English and their parallel French (or Ger-
man) documents. For Z1 , we use the training split
of MSCOCO dataset which contains 118K images
and their English captions (see Section 4.2). For
Z2 , we use the English-French (or German) paral-
lel documents from the train split of the TED corpus
(see Section 4.1). We use English as the pivot lan-
guage and train Bridge Corrnet usingZ = {Z1 ,Z2}
to learn common representations for images, En-
glish text and French (or German) text. For text,
we use bag-of-words representation and for image,
we use the 4096 (fc6) representation got from a pre-
trained ConvNet (BVLC Reference CaffeNet (Jia et
al., 2014)). We learn hidden representations of size
D = 200 by training Bridge Corrnet for 20 epochs
using stochastic gradient descent with mini-batches
of size 20. Each mini-batch contains data from only
one of the Zis.

For the task of retrieving captions given an image,
we consider the 1000 images in our test set (see sec-
tion 4.2) as queries. The 5000 French (or German)
captions corresponding to these images (5 per im-
age) are considered as documents. The task is then
to retrieve the relevant captions for each image. We
represent all the captions and images in the com-
mon space as computed using Bridge Corrnet. For
a given query, we rank all the captions based on the
Euclidean distance between the representation of the
image and the caption. For the task of retrieving im-
ages given a caption, we simply reverse the role of
the captions and images. In other words, each of the
5000 captions is treated as a query and the 1000 im-
ages are treated as documents. λ was tuned to each
task using a training/validation split. For the task of
retrieving French/German captions given an image,
λ was tuned using the performance on the validation
set for retrieving French (or German) sentences for
a given English sentence. For the other task, λ was

tuned using the performance on the validation set for
retrieving images, given English captions. We do
not use any image-French/German parallel data for
tuning the hyperparameters.

We use recall@k as the performance metric and
compare the following methods in Table 4:
1. En-Image CorrNet: This is the CorrNet model
trained using only Z1 as defined earlier in this sec-
tion. The task is to retrieve English captions for a
given image (or vice versa). This gives us an idea
about the performance we could expect if direct par-
allel data is available between images and their cap-
tions in some language. We used the publicly avail-
able implementation of CorrNet provided by (Chan-
dar et al., 2016).
2. Bridge CorrNet: This is the Bridge CorrNet
model trained using Z1 and Z2 as defined earlier in
this section. The task is to retrieve French (or Ger-
man) captions for a given image (or vice versa).
3. Bridge MAE: The Multimodal Autoencoder
(MAE) proposed by (Ngiam et al., 2011) was the
only competing model which was easily extendable
to the bridge case. We train their model using Z1

and Z2 to minimize a suitably modified objective
function. We then use the representations learned
to retrieve French (or German) captions for a given
image (or vice versa).
4. 2-CorrNet: Here, we train two individual Corr-
Nets using Z1 and Z2 respectively. For the task of
retrieving images given a French (or German) cap-
tion we first find its nearest English caption using
the Fr-En (or De-En) CorrNet. We then use this En-
glish caption to retrieve images using the En-Image
CorrNet. Similarly, for retrieving captions given an
image we use the En-Image CorrNet followed by the
En-Fr (or En-De) CorrNet.
5. CorrNet + MT: Here, we train an En-Image Cor-
rNet using Z1 and an Fr/De-En MT system4 using
Z2 . For the task of retrieving images given a French
(or German) caption we translate the caption to En-
glish using the MT system. We then use this English
caption to retrieve images using the En-Image Cor-
rNet. For retrieving captions given images, we first
translate all the 5000 French (or Germam) captions
to English. We then embed these English transla-
tions (documents) and images (queries) in the com-

4http://www.statmt.org/moses/

177

I To C C To I
Model Captions Recall@5 Recall@10 Recall@50 Recall@5 Recall@10 Recall@50
En-Image CorrNet English 0.118 0.190 0.456 0.091 0.168 0.532
Bridge MAE French 0.008 0.017 0.069 0.007 0.013 0.063
2-CorrNet French 0.018 0.024 0.085 0.027 0.055 0.205
Bridge CorrNet French 0.072 0.135 0.335 0.032 0.060 0.235
CorrNet+MT French 0.101 0.163 0.414 0.069 0.127 0.416
Bridge MAE German 0.005 0.009 0.053 0.006 0.013 0.058
2-CorrNet German 0.009 0.013 0.071 0.012 0.023 0.098
Bridge CorrNet German 0.063 0.105 0.298 0.027 0.049 0.183
CorrNet+MT German 0.084 0.163 0.420 0.061 0.107 0.343
Random 0.006 0.009 0.044 0.005 0.009 0.050

Table 4: Performance of different models for image to caption (I to C) and caption to image (C to I) retrieval

mon space computed using Image-En CorrNet and
do a retrieval as explained earlier.
6. Random: A random image is returned for the
given caption (and vice versa).

From Table 4, we observe that CorrNet + MT
is a very strong competitor and gives the best re-
sults. The main reason for this is that over the years
MT has matured enough for language pairs such as
Fr-En and De-En and it can generate almost per-
fect translations for short sentences (such as cap-
tions). In fact, the results for this method are almost
comparable to what we could have hoped for if we
had direct parallel data between Fr-Images and De-
Images (as approximated by the first row in the table
which reports cross-modal retrieval results between
En-Images using direct parallel data between them
for training). However, we would like to argue that
learning a joint embedding for multiple views in-
stead of having multiple pairwise systems is a more
elegant solution and definitely merits further atten-
tion. Further, a “translation system” may not be
available when we are dealing with modalities other
than text (for example, there are no audio-to-video
translation systems). In such cases, BridgeCorrNet
could still be employed. In this context, the perfor-
mance of BridgeCorrNet is definitely promising and
shows that a model which jointly learns represen-
tations for multiple views can perform better than
methods which learn pair-wise common representa-
tions (2-CorrNet).

6.1 Qualitative Analysis

To get a qualitative feel for our model’s perfor-
mance, we refer the reader to Table 5 and 6. The first
row in Table 5 shows an image and its top-5 nearest
German captions (based on Euclidean distance be-
tween their common representations). As per our

parallel image caption test set, only the second and
fourth caption actually correspond to this image.
However, we observe that the first and fifth cap-
tion are also semantically very related to the image.
Both these captions talk about horses, grass or wa-
ter body (ocean), etc. Similarly the last row in Table
5 shows an image and its top-5 nearest French cap-
tions. None of these captions actually correspond
to the image as per our parallel image caption test
set. However, clearly the first, third and fourth cap-
tion are semantically very relevant to this image as
all of them talk about baseball. Even the remaining
two captions capture the concept of a sport and ra-
quet. We can make a similar observation from Table
6 where most of the top-5 retrieved images do not
correspond to the French/German caption but they
are semantically very similar. It is indeed impressive
that the model is able to capture such cross modal
semantics between images and French/German even
without any direct parallel data between them.

7 Conclusion

In this paper, we propose Bridge Correlational Neu-
ral Networks which can learn common representa-
tions for multiple views even when parallel data is
available only between these views and a pivot view.
Our method performs better than the existing state
of the art approaches on the cross language clas-
sification task and gives very promising results on
the cross modal access task. We also release a new
multilingual image caption benchmark (MIC bench-
mark) which will help in further research in this
field5.

5Details about the MIC benchmark and performance of var-
ious state-of-the-art models will be maintained at http://
sarathchandar.in/bridge-corrnet

178

1. Zwei Pferde stehen auf einem sandigen Strand nahe dem Ocean. (Two horses standing on a sandy beach near the ocean.)
2. grasende Pferde auf einer trockenen Weide bei einem Flughafen. (Horses grazing in a dry pasture by an airport.)
3. ein Elefant , Wasser aufseinen Rückend sprühend , in einem staubigen Bereich neben einem Baum.
(A elephant spraying water on its back in a dirt area next to tree .)
4. ein braunes pferd ißt hohes gras neben einem behälter mit wasser. (Brown horses eating tall grass beside a body of water .)
5. vier Pferde grasen auf ein Feld mit braunem gras. (Four horses are grazing through a field of brown grass.)

1. Ein Teller mit Essen wie Sandwich , Chips , Suppe und einer Gurke.
(Plate of food including a sandwich , chips , soup and a pickle.)
2. Teller , gefüllt mit sortierten Früchten und Gemüse und einigem Fleisch.
(Plates filled with assorted fruits and veggies and some meat.)
3. Ein Tisch mit einer Schüssel Salat und einem Teller Pizza. (a Table with a bowl of salad and plate with a cooked pizza .)
4. Ein Teller mit Essen besteht aus Brokkoli und Rindfleisch. (A plate of food consists of broccoli and beef.)
5. Eine Platte mit Fleisch und grünem Gemüse gemixt mit Sauce. (A plate with meat and green veggies mixed with sauce.)

1. un bus de la conduite en ville dans une rue entourée par de grands immeubles.
(A city bus driving down a street surrounded by tall buildings.)
2. un bus de conduire dans une rue dans une ville avec des bâtiments de grande hauteur.
(A bus driving down a street in a city with very tall buildings.)
3. bus de conduire dans une rue de ville surpeuplée. (Double - decker bus driving down a crowded city street.)
4. le bus conduit à travers la ville sur une rue animée. (The bus drives through the city on a busy street.)
5. un grand bus coloré est arrêté dans une rue de la ville. (A big , colorful bus is stopped on a city street.)

1. Un homme portant une batte de baseball à deux mains lors d’un jeu de balle professionnel.
(A man holding a baseball bat with two hands at a professional ball game.)
2. un joueur de tennis balance une raquette à une balle. (A tennis player swinging a racket t a ball.)
3. un garçon qui est de frapper une balle avec une batte de baseball. (A boy that is hitting a ball with a baseball bat.)
4. une équipe de joueurs de baseball jouant un jeu de base-ball. (A team of baseball players playing a game of baseball.)
5. un garçon se prépare à frapper une balle de tennis avec une raquette. (A boy prepares to hit a tennis ball with a racquet.)

Table 5: Images and their top-5 nearest captions based on representations learned using Bridge CorrNet. First two examples show

German captions and the last two examples show French captions. English translations are given in parenthesis.

Speisen und Getränke auf einem
Tisch mit einer Frau essen im Hintergrund.
(Food and beverages set on a table with
a woman eating in the background .)

ein Foto von einem Laptop auf einem
Bett mit einem Fernseher im Hintergrund.
(A photo of a laptop on a bed with a tv
in the background .)

un homme debout à côté de aa groupe de vaches.
(A man standing next to a group of cows.)

personnes portant du matériel
de ski en se tenant debout dans la neige.
(People wearing ski equipment while
standing in snow.)

Table 6: French and German queries and their top-5 nearest images based on representations learned using Bridge CorrNet. First

two queries are in German and the last two queries are French. English translations are given in parenthesis.

Acknowledgments

We thank the reviewers for their useful feedback.
We also thank the workers from CrowdFlower for

helping us in creating the MIC benchmark. Finally,
we thank Amrita Saha (IBM Research India) for
helping us in running some of the experiments.

179

References
S. Akaho. 2001. A kernel method for canonical correla-

tion analysis. In Proc. Int’l Meeting on Psychometric
Society.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen
Livescu. 2013. Deep canonical correlation analysis.
ICML.

L.A. Ballesteros. 2000. Cross language retrieval via tran-
sitive translation. In W.B. Croft (Ed.), Advances in in-
formation retrieval: Recent research from the CIIR,
pages 203–234, Boston: Kluwer Academic Publish-
ers.

Mauro Cettolo, Christian Girardi, and Marcello Federico.
2012. Wit3: Web inventory of transcribed and trans-
lated talks. In Proceedings of the 16th Conference
of the European Association for Machine Translation
(EAMT), pages 261–268, Trento, Italy, May.

Sarath Chandar, Mitesh M. Khapra, Balaraman Ravin-
dran, Vikas C. Raykar, and Amrita Saha. 2013. Multi-
lingual deep learning. NIPS Deep Learning Workshop.

Sarath Chandar, Stanislas Lauly, Hugo Larochelle,
Mitesh M. Khapra, Balaraman Ravindran, Vikas C.
Raykar, and Amrita Saha. 2014. An autoencoder ap-
proach to learning bilingual word representations. In
Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 1853–1861.

Sarath Chandar, Mitesh M. Khapra, Hugo Larochelle,
and Balaraman Ravindran. 2016. Correlational neu-
ral networks. Neural Computation, 28(2):257 – 285.

Trevor Cohn and Mirella Lapata. 2007. Machine trans-
lation by triangulation: Making effective use of multi-
parallel corpora. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 728–735, Prague, Czech Republic, June.

Raul Cruz-Cano and Mei-Ling Ting Lee. 2014. Fast
regularized canonical correlation analysis. Computa-
tional Statistics & Data Analysis, 70:88 – 100.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed representa-
tions without word alignments. In Proceedings of the
32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 748–
756.

Karl Moritz Hermann and Phil Blunsom. 2014a. Mul-
tilingual Distributed Representations without Word
Alignment. In Proceedings of International Confer-
ence on Learning Representations (ICLR).

Karl Moritz Hermann and Phil Blunsom. 2014b. Mul-
tilingual models for compositional distributed seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics, ACL

2014, June 22-27, 2014, Baltimore, MD, USA, Volume
1: Long Papers, pages 58–68.

H. Hotelling. 1936. Relations between two sets of vari-
ates. Biometrika, 28:321 – 377.

W.W. Hsieh. 2000. Nonlinear canonical correla-
tion analysis by neural networks. Neural Networks,
13(10):1095 – 1105.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.

Mitesh M. Khapra, A. Kumaran, and Pushpak Bhat-
tacharyya. 2010a. Everybody loves a rich cousin: An
empirical study of transliteration through bridge lan-
guages. In Human Language Technologies: Confer-
ence of the North American Chapter of the Association
of Computational Linguistics, Proceedings, June 2-4,
2010, Los Angeles, California, USA, pages 420–428.

Mitesh M. Khapra, Raghavendra Udupa, A. Kumaran,
and Pushpak Bhattacharyya. 2010b. PR + RQ AL-
MOST EQUAL TO PQ: transliteration mining us-
ing bridge language. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing Crosslingual Distributed Representa-
tions of Words. In Proceedings of the International
Conference on Computational Linguistics (COLING).

A. Kumaran, Mitesh M. Khapra, and Pushpak Bhat-
tacharyya. 2010. Compositional machine transliter-
ation. ACM Trans. Asian Lang. Inf. Process., 9(4):13.

Raija Lehtokangas, Heikki Keskustalo, and Kalervo
Järvelin. 2008. Experiments with transitive dictio-
nary translation and pseudo-relevance feedback using
graded relevance assessments. Journal of the Ameri-
can Society for Information Science and Technology,
59(3):476–488.

Yong Luo, Dacheng Tao, Yonggang Wen, Kotagiri Ra-
mamohanarao, and Chao Xu. 2015. Tensor canonical
correlation analysis for multi-view dimension reduc-
tion. In Arxiv.

Tomas Mikolov, Quoc Le, and Ilya Sutskever. 2013.
Exploiting Similarities among Languages for Machine
Translation. Technical report, arXiv.

Preslav Nakov and Hwee Tou Ng. 2009. Improved statis-
tical machine translation for resource-poor languages
using related resource-rich languages. In Proceedings
of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1358–1367, Singa-
pore, August.

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and Ng.
Andrew. 2011. Multimodal deep learning. ICML.

180

F. Å. Nielsen, L. K. Hansen, and S. C. Strother. 1998.
Canonical ridge analysis with ridge parameter opti-
mization, may.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and de-
scribing images with sentences. TACL, 2:207–218.

Hubert Soyer, Pontus Stenetorp, and Akiko Aizawa.
2015. Leveraging monolingual data for crosslingual
compositional word representations. In Proceedings
of the 3rd International Conference on Learning Rep-
resentations, San Diego, California, USA, May.

Nitish Srivastava and Ruslan Salakhutdinov. 2014.
Multimodal learning with deep boltzmann machines.
Journal of Machine Learning Research, 15:2949–
2980.

Arthur Tenenhaus and Michel Tenenhaus. 2011. Reg-
ularized generalized canonical correlation analysis.
Psychometrika, 76(2):257–284.

Masao Utiyama and Hitoshi Isahara. 2007. A compar-
ison of pivot methods for phrase-based statistical ma-
chine translation. In Proceedings of the Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 484–491, Rochester,
New York, April.

H.D. Vinod. 1976. Canonical ridge and econometrics of
joint production. Journal of Econometrics, 4(2):147 –
166.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff
Bilmes. 2015. On deep multi-view representation
learning. In ICML.

Hua Wu and Haifeng Wang. 2007. Pivot language
approach for phrase-based statistical machine transla-
tion. Machine Translation, 21(3):165–181.

Min Zhang, Xiangyu Duan, Ming Liu, Yunqing Xia,
and Haizhou Li. 2011. Joint alignment and artifi-
cial data generation: An empirical study of pivot-based
machine transliteration. In Fifth International Joint
Conference on Natural Language Processing, IJCNLP
2011, Chiang Mai, Thailand, November 8-13, 2011,
pages 1207–1215.

Yin Zheng, Yu-Jin Zhang, and Hugo Larochelle. 2014a.
A deep and autoregressive approach for topic model-
ing of multimodal data. CoRR, abs/1409.3970.

Yin Zheng, Yu-Jin Zhang, and Hugo Larochelle. 2014b.
Topic modeling of multimodal data: An autoregressive
approach. In 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2014, Columbus,
OH, USA, June 23-28, 2014, pages 1370–1377.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual Word Embeddings
for Phrase-Based Machine Translation. In Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP 2013).

181

Proceedings of NAACL-HLT 2016, pages 182–192,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Unsupervised Visual Sense Disambiguation for Verbs using Multimodal
Embeddings

Spandana Gella, Mirella Lapata and Frank Keller
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB

S.Gella@sms.ed.ac.uk, mlap@inf.ed.ac.uk, keller@inf.ed.ac.uk

Abstract

We introduce a new task, visual sense disam-
biguation for verbs: given an image and a verb,
assign the correct sense of the verb, i.e., the
one that describes the action depicted in the
image. Just as textual word sense disambigua-
tion is useful for a wide range of NLP tasks,
visual sense disambiguation can be useful for
multimodal tasks such as image retrieval, im-
age description, and text illustration. We intro-
duce VerSe, a new dataset that augments exist-
ing multimodal datasets (COCO and TUHOI)
with sense labels. We propose an unsupervised
algorithm based on Lesk which performs vi-
sual sense disambiguation using textual, vi-
sual, or multimodal embeddings. We find that
textual embeddings perform well when gold-
standard textual annotations (object labels and
image descriptions) are available, while mul-
timodal embeddings perform well on unanno-
tated images. We also verify our findings by
using the textual and multimodal embeddings
as features in a supervised setting and analyse
the performance of visual sense disambigua-
tion task. VerSe is made publicly available
and can be downloaded at: https://github.
com/spandanagella/verse.

1 Introduction

Word sense disambiguation (WSD) is a widely stud-
ied task in natural language processing: given a word
and its context, assign the correct sense of the word
based on a pre-defined sense inventory (Kilgarrif,
1998). WSD is useful for a range of NLP tasks,
including information retrieval, information extrac-
tion, machine translation, content analysis, and lex-
icography (see Navigli (2009) for an overview).

Figure 1: Visual sense ambiguity: three of the senses
of the verb play.

Standard WSD disambiguates words based on their
textual context; however, in a multimodal setting
(e.g., newspaper articles with photographs), visual
context is also available and can be used for disam-
biguation. Based on this observation, we introduce
a new task, visual sense disambiguation (VSD) for
verbs: given an image and a verb, assign the correct
sense of the verb, i.e., the one depicted in the image.
While VSD approaches for nouns exist, VSD for
verbs is a novel, more challenging task, and related
in interesting ways to action recognition in computer
vision. As an example consider the verb play, which
can have the senses participate in sport, play on an
instrument, and be engaged in playful activity, de-
pending on its visual context, see Figure 1.

We expect visual sense disambiguation to be use-
ful for multimodal tasks such as image retrieval. As
an example consider the output of Google Image
Search for the query sit: it recognizes that the verb
has multiple senses and tries to cluster relevant im-
ages. However, the result does not capture the pol-
ysemy of the verb well, and would clearly benefit
from VSD (see Figure 2).

Visual sense disambiguation has previously been
attempted for nouns (e.g., apple can mean fruit or
computer), which is a substantially easier task that
can be solved with the help of an object detector

182

Figure 2: Google Image Search trying to disam-
biguate sit. All clusters pertain to the sit down sense,
other senses (baby sit, convene) are not included.

(Barnard et al., 2003; Loeff et al., 2006; Saenko and
Darrell, 2008; Chen et al., 2015). VSD for nouns is
helped by resources such as ImageNet (Deng et al.,
2009), a large image database containing 1.4 million
images for 21,841 noun synsets and organized ac-
cording to the WordNet hierarchy. However, we are
not aware of any previous work on VSD for verbs,
and no ImageNet for verbs exists. Not only image
retrieval would benefit from VSD for verbs, but also
other multimodal tasks that have recently received
a lot of interest, such as automatic image descrip-
tion and visual question answering (Karpathy and
Li, 2015; Fang et al., 2015; Antol et al., 2015).

In this work, we explore the new task of visual
sense disambiguation for verbs: given an image and
a verb, assign the correct sense of the verb, i.e., the
one that describes the action depicted in the image.
We present VerSe, a new dataset that augments exist-
ing multimodal datasets (COCO and TUHOI) with
sense labels. VerSe contains 3518 images, each an-
notated with one of 90 verbs, and the OntoNotes
sense realized in the image. We propose an algo-
rithm based on the Lesk WSD algorithm in order to
perform unsupervised visual sense disambiguation
on our dataset. We focus in particular on how to best
represent word senses for visual disambiguation,
and explore the use of textual, visual, and multi-
modal embeddings. Textual embeddings for a given
image can be constructed over object labels or image
descriptions, which are available as gold-standard in
the COCO and TUHOI datasets, or can be computed
automatically using object detectors and image de-
scription models.

Our results show that textual embeddings per-
form best when gold-standard textual annotations
are available, while multimodal embeddings per-
form best when automatically generated object la-
bels are used. Interestingly, we find that automati-
cally generated image descriptions result in inferior
performance.

Dataset Verbs Acts Images Sen Des
PPMI (Yao and Fei-Fei, 2010) 2 24 4800 N N
Stanford 40 Actions (Yao et al., 2011) 33 40 9532 N N
PASCAL 2012 (Everingham et al., 2015) 9 11 4588 N N
89 Actions (Le et al., 2013) 36 89 2038 N N
TUHOI (Le et al., 2014) – 2974 10805 N N
COCO-a (Ronchi and Perona, 2015) 140 162 10000 N Y
HICO (Chao et al., 2015) 111 600 47774 Y N
VerSe (our dataset) 90 163 3518 Y Y

Table 1: Comparison of VerSe with existing action
recognition datasets. Acts (actions) are verb-object
pairs; Sen indicates whether sense ambiguity is ex-
plicitly handled; Des indicates whether image de-
scriptions are included.

2 Related Work

There is an extensive literature on word sense disam-
biguation for nouns, verbs, adjectives and adverbs.
Most of these approaches rely on lexical databases
or sense inventories such as WordNet (Miller et al.,
1990) or OntoNotes (Hovy et al., 2006). Unsuper-
vised WSD approaches often rely on distributional
representations, computed over the target word and
its context (Lin, 1997; McCarthy et al., 2004; Brody
and Lapata, 2008). Most supervised approaches use
sense annotated corpora to extract linguistic features
of the target word (context words, POS tags, col-
location features), which are then fed into a classi-
fier to disambiguate test data (Zhong and Ng, 2010).
Recently, features based on sense-specific seman-
tic vectors learned using large corpora and a sense
inventory such as WordNet have been shown to
achieve state-of-the-art results for supervised WSD
(Rothe and Schutze, 2015; Jauhar et al., 2015).

As mentioned in the introduction, all existing
work on visual sense disambiguation has used
nouns, starting with Barnard et al. (2003). Sense dis-
crimination for web images was introduced by Lo-
eff et al. (2006), who used spectral clustering over
multimodal features from the images and web text.
Saenko and Darrell (2008) used sense definitions
in a dictionary to learn a latent LDA space overs
senses, which they then used to construct sense-
specific classifiers by exploiting the text surrounding
an image.

2.1 Related Datasets

Most of the datasets relevant for verb sense disam-
biguation were created by the computer vision com-
munity for the task of human action recognition (see

183

Table 1 for an overview). These datasets are anno-
tated with a limited number of actions, where an
action is conceptualized as verb-object pair: ride
horse, ride bicycle, play tennis, play guitar, etc.
Verb sense ambiguity is ignored in almost all action
recognition datasets, which misses important gener-
alizations: for instance, the actions ride horse and
ride bicycle represent the same sense of ride and
thus share visual, textual, and conceptual features,
while this is not the case for play tennis and play
guitar. This is the issue we address by creating a
dataset with explicit sense labels.

VerSe is built on top of two existing datasets,
TUHOI and COCO. The Trento Universal Human-
Object Interaction (TUHOI) dataset contains 10,805
images covering 2974 actions. Action (human-
object interaction) categories were annotated using
crowdsourcing: each image was labeled by multiple
annotators with a description in the form of a verb
or a verb-object pair. The main drawback of TUHOI
is that 1576 out of 2974 action categories occur only
once, limiting its usefulness for VSD. The Microsoft
Common Objects in Context (COCO) dataset is very
popular in the language/vision community, as it con-
sists of over 120k images with extensive annotation,
including labels for 91 object categories and five de-
scriptions per image. COCO contains no explicit ac-
tion annotation, but verbs and verb phrases can be
extracted from the descriptions. (But note that not
all the COCO images depict actions.)

The recently created Humans Interacting with
Common Objects (HICO) dataset is conceptually
similar to VerSe. It consists of 47774 images anno-
tated with 111 verbs and 600 human-object interac-
tion categories. Unlike other existing datasets, HICO
uses sense-based distinctions: actions are denoted by
sense-object pairs, rather than by verb-object pairs.
HICO doesn’t aim for complete coverage, but re-
stricts itself to the top three WordNet senses of a
verb. The dataset would be suitable for performing
visual sense disambiguation, but has so far not been
used in this way.

3 VerSe Dataset and Annotation

We want to build an unsupervised visual sense dis-
ambiguation system, i.e., a system that takes an im-
age and a verb and returns the correct sense of
the verb. As discussed in Section 2.1, most exist-

Verb: touch

2 make physical contact with, possibly with the effect of physically
manipulating. They touched their fingertips together and smiled

2 affect someone emotionally The president’s speech touched a
chord with voters.

2 be or come in contact without control They sat so close that their
arms touched.

2 make reference to, involve oneself with They had wide-ranging
discussions that touched on the situation in the Balkans.

2 Achieve a value or quality Nothing can touch cotton for durabil-
ity.

2 Tinge; repair or improve the appearance of He touched on the
paintings, trying to get the colors right.

Figure 3: Example item for depictability and sense
annotation: synset definitions and examples (in blue)
for the verb touch.

ing datasets are not suitable for this task, as they do
not include word sense annotation. We therefore de-
velop our own dataset with gold-standard sense an-
notation. The Verb Sense (VerSe) dataset is based on
COCO and TUHOI and covers 90 verbs and around
3500 images. VerSe serves two main purposes: (1) to
show the feasibility of annotating images with verb
senses (rather than verbs or actions); (2) to function
as test bed for evaluating automatic visual sense dis-
ambiguation methods.

Verb Selection Action recognition datasets often
use a limited number of verbs (see Table 1). We ad-
dressed this issue by using images that come with
descriptions, which in the case of action images typ-
ically contain verbs. The COCO dataset includes im-
ages in the form of sentences, the TUHOI dataset is
annotated with verbs or prepositional verb phrases
for a given object (e.g., sit on chair), which we use in
lieu of descriptions. We extracted all verbs from all
the descriptions in the two datasets and then selected
those verbs that have more than one sense in the
OntoNotes dictionary, which resulted in 148 verbs
in total (94 from COCO and 133 from TUHOI).

Depictability Annotation A verb can have mul-
tiple senses, but not all of them may be depictable,
e.g., senses describing cognitive and perception pro-
cesses. Consider two senses of touch: make physical
contact is depictable, whereas affect emotionally de-
scribes a cognitive process and is not depictable. We
therefore need to annotate the synsets of a verb as
depictable or non-depictable. Amazon Mechanical
Turk (AMT) workers were presented with the def-
initions of all the synsets of a verb, along with ex-

184

Verb type Examples Verbs Images Senses Depct ITA
Motion run, walk, jump, etc. 39 1812 10.76 5.79 0.680
Non-motion sit, stand, lay, etc. 51 1698 8.27 4.86 0.636

Table 2: Overview of VerSe dataset divided into
motion and non-motion verbs; Depct: depictable
senses; ITA: inter-annotator agreement.

amples, as given by OntoNotes. An example for this
annotation is shown in Figure 3. We used OntoNotes
instead of WordNet, as WordNet senses are very
fine-grained and potentially make depictability and
sense annotation (see below) harder. Granularity is-
sues with WordNet for text-based WSD are well
documented (Navigli, 2009).

OntoNotes lists a total of 921 senses for our 148
target verbs. For each synset, three AMT workers
selected all depictable senses. The majority label
was used as the gold standard for subsequent ex-
periments. This resulted in a 504 depictable senses.
Inter-annotator agreement (ITA) as measured by
Fleiss’ Kappa was 0.645.

Sense Annotation We then annotated a subset of
the images in COCO and TUHOI with verb senses.
For every image we assigned the verb that occurs
most frequently in the descriptions for that image
(for TUHOI, the descriptions are verb-object pairs,
see above). However, many verbs are represented
by only a few images, while a few verbs are rep-
resented by a large number of images. The datasets
therefore show a Zipfian distribution of linguistic
units, which is expected and has been observed pre-
viously for COCO (Ronchi and Perona, 2015). For
sense annotation, we selected only verbs for which
either COCO or TUHOI contained five or more im-
ages, resulting in a set of 90 verbs (out of the to-
tal 148). All images for these verbs were included,
giving us a dataset of 3518 images: 2340 images for
82 verbs from COCO and 1188 images for 61 verbs
from TUHOI (some verbs occur in both datasets).

These image-verb pairs formed the basis for sense
annotation. AMT workers were presented with the
image and all the depictable OntoNotes senses of
the associated verb. The workers had to chose the
sense of the verb that was instantiated in the image
(or “none of the above”, in the case of irrelevant im-
ages). Annotators were given sense definitions and
examples, as for the depictability annotation (see
Figure 3). For every image-verb pair, five annotators

performed the sense annotation task. A total of 157
annotators participated, reaching an inter-annotator
agreement of 0.659 (Fleiss’ Kappa). Out of 3528 im-
ages, we discarded 18 images annotated with “none
of the above”, resulting in a set of 3510 images cov-
ering 90 verbs and 163 senses. We present statis-
tics of our dataset in Table 2; we group the verbs
into motion verbs and non-motion verb using Levin
(1993) classes.

4 Visual Sense Disambiguation

For our disambiguation task, we assume we have a
set of images I, and a set of polysemous verbs V
and each image i ∈ I is paired with a verb v ∈ V .
For example, Figure 1 shows different images paired
with the verb play. Every verb v ∈ V , has a set of
senses S(v), described in a dictionary D . Now given
an image i paired with a verb v, our task is to pre-
dict the correct sense ŝ ∈ S(v), i.e., the sense that is
depicted by the associated image. Formulated as a
scoring task, disambiguation consists of finding the
maximum over a suitable scoring function Φ:

ŝ = argmax
s∈S(v)

Φ(s, i,v,D) (1)

For example, in Figure 1, the correct sense for the
first image is participate in sport, for the second one
it is play on an instrument, etc.

The Lesk (1986) algorithm is a well known
knowledge-based approach to WSD which relies
on the calculation of the word overlap between the
sense definition and the context in which a word oc-
curs. It is therefore an unsupervised approach, i.e.,
it does not require sense-annotated training data, but
instead exploits resources such as dictionaries or on-
tologies to infer the sense of a word in context. Lesk
uses the following scoring function to disambiguate
the sense of a verb v:

Φ(s,v,D) = |context(v)∩definition(s,D)| (2)

Here, context(v) the set of words that occur close
the target word v and definition(s,D) is the set of
words in the definition of sense s in the dictionary D .
Lesk’s approach is very sensitive to the exact word-
ing of definitions and results are known to change
dramatically for different sets of definitions (Nav-
igli, 2009). Also, sense definitions are often very

185

engage in
competition
or sport

perform or
transmit
music

engage in a
playful
activity

play Sense Inventory: D

O: person, tennis
racket, sports ball

C: A woman is
playing tennis.

 Sense Representations

objects

captions

CNN-fc7

Lesk Algorithm

s 1
s2 s3

 s1

Φ

 Image Representations

Figure 4: Schematic overview of the visual sense
disambiguation model.

short and do not provide sufficient vocabulary or
context.

We propose a new variant of the Lesk algorithm
to disambiguate the verb sense that is depicted in
an image. In particular, we explore the effectiveness
of textual, visual and multimodal representations in
conjunction with Lesk. An overview of our method-
ology is given in Figure 4. For a given image i la-
beled with verb v (here play), we create a represen-
tation (the vector i), which can be text-based (using
the object labels and descriptions for i), visual, or
multimodal. Similarly, we create text-based, visual,
and multimodal representations (the vector s) for ev-
ery sense s of a verb. Based on the representations i
and s (detailed below), we can then score senses as:1

Φ(s,v, i,D) = i · s (3)

Note that this approach is unsupervised: it requires
no sense annotated training data; we will use the
sense annotations in our VerSe dataset only for eval-
uation.

4.1 Sense Representations
For each candidate verb sense, we create a text-
based sense representation st and a visual sense rep-
resentation sc.

Text-based Sense Representation We create a
vector st for every sense s ∈ S(v) of a verb v from
its definition and the example usages provided in

1Taking the dot product of two normalized vectors is equiv-
alent to using cosine as similarity measure. We experimented
with other similarity measures, but cosine performed best.

play

perform or
transmit music

engage in
competition or
sport

engage in a
playful activity

 playing guitar

 playing music

 playing in a
band

 playing tennis

 playing sport

 playing game

playful activity

 kids playing

children playing

#1

#3

#2

q 11
q 12

q 13

q 22

q21

q
23

q
31

q
32q

33

#4

M
ean P

ooling
M

ean P
ooling

M
ean P

ooling

CNN - fc7

CNN - fc7

CNN - fc7

CNN - fc7

CNN - fc7

CNN - fc7

play #1

play #2

play #3

Figure 5: Extracting visual sense representation for
the verb play.

the OntoNotes dictionary D . We apply word2vec
(Mikolov et al., 2013), a widely used model of word
embeddings, to obtain a vector for every content
word in the definition and examples of the sense.
We then take the average of these vectors to com-
pute an overall representation of the verb sense. For
our experiments we used the pre-trained 300 dimen-
sional vectors available with the word2vec package
(trained on part of Google News dataset, about 100
billion words).

Visual Sense Representation Sense dictionaries
typically provide sense definitions and example sen-
tences, but no visual examples or images. For nouns,
this is remedied by ImageNet (Deng et al., 2009),
which provides a large number of example images
for a subset of the senses in the WordNet noun hier-
archy. However, no comparable resource is available
for verbs (see Section 2.1).

In order to obtain visual sense representation sc,
we therefore collected sense-specific images for the
verbs in our dataset. For each verb sense s, three
trained annotators were presented with the definition
and examples from OntoNotes, and had to formulate
a query Q (s) that would retrieve images depicting
the verb sense when submitted to a search engine.
For every query q we retrieved images I (q) using
Bing image search (for examples, see Figure 5). We
used the top 50 images returned by Bing for every
query.

Once we have images for every sense, we can
turn these images into feature representations us-

186

ing a convolutional neural network (CNN). Specifi-
cally, we used the VGG 16-layer architecture (VG-
GNet) trained on 1.2M images of the 1000 class
ILSVRC 2012 object classification dataset, a subset
of ImageNet (Simonyan and Zisserman, 2014). This
CNN model has a top-5 classification error of 7.4%
on ILSVRC 2012. We use the publicly available ref-
erence model implemented using CAFFE (Jia et al.,
2014) to extract the output of the fc7 layer, i.e., a
4096 dimensional vector ci, for every image i. We
perform mean pooling over all the images extracted
using all the queries of a sense to generate a single
visual sense representation sc (shown in Equation 4):

sc =
1
n ∑

q j∈Q (s)
∑

i∈I (q j)
ci (4)

where n is the total number of images retrieved per
sense s.

4.2 Image Representations
We first explore the possibility of representing the
image indirectly, viz., through text associated with it
in the form of object labels or image descriptions (as
shown in Figure 4). We experiment with two differ-
ent forms of textual annotation: GOLD annotation,
where object labels and descriptions are provided
by human annotators, and predicted (PRED) anno-
tation, where state-of-the-art object recognition and
image description generation systems are applied to
the image.

Object Labels (O) GOLD object annotations are
provided with the two datasets we use. Each im-
age sampled from COCO is annotated with one
or more of 91 object categories. Each image from
TUHOI is annotated with one more of 189 object
categories. PRED object annotations were generated
using the same VGG-16-layer CNN object recogni-
tion model that was used to compute visual sense
representations. Only object labels with object de-
tection threshold of t > 0.2 were used.

Descriptions (C) To obtain GOLD image descrip-
tions, we used the used human-generated descrip-
tions that come with COCO. For TUHOI images,
we generated descriptions of the form subject-verb-
object, where the subject is always person, and the
verb-object pairs are the action labels that come with
TUHOI. To obtain PRED descriptions, we generated

three descriptions for every image using the state-
of-the-art image description system of Vinyals et al.
(2015).2

We can now create a textual representation it of
the image i. Again, we used word2vec to obtain
word embeddings, but applied these to the object la-
bels and to the words in the image descriptions. An
overall representation of the image is then computed
by averaging these vectors over all labels, all content
words in the description, or both.

Creating a visual representation ic of an image i
is straightforward: we extract the fc7 layer of the
VGG-16 network when applied to the image and
use the resulting vector as our image representation
(same setup as in Section 4.1).

Apart from experimenting with separate textual
and visual representations of images, it also makes
sense to combine the two modalities into a multi-
modal representation. The simplest approach is a
concatenation model which appends textual and vi-
sual features. More complex multimodal vectors can
be created using methods such as Canonical Corre-
lation Analysis (CCA) and Deep Canonical Corre-
lation Analysis (DCCA) (Hardoon et al., 2004; An-
drew et al., 2013; Wang et al., 2015). CCA allows us
to find a latent space in which the linear projections
of text and image vectors are maximally correlated
(Gong et al., 2014; Hodosh et al., 2015). DCCA can
be seen as non-linear version of CCA and has been
successfully applied to image description task (Yan
and Mikolajczyk, 2015), outperforming previous ap-
proaches, including kernel-based CCA.

We use both CCA and DCCA to map the vectors
it and ic (which have different dimensions) into a
joint latent space of n dimensions. We represent the
projected vectors of textual and visual features for
image i as it′ and ic′ and combine them to obtain
multimodal representation im as follows:

im = λt it
′+λcic′ (5)

We experimented with a number of parameter set-
tings for λt and λc for textual and visual models re-
spectively. We use the same model to combine the
multimodal representation for sense s as follows:

sm = λtst′+λcsc′ (6)

2We used Karpathy’s implementation, publicly available at
https://github.com/karpathy/neuraltalk.

187

We use these vectors (it, st), (ic, sc) and (im, sm)
as described in Equation 3 to perform sense disam-
biguation.

5 Experiments

5.1 Unsupervised Setup

To train the CCA and DCCA models, we use the
text representations learned from image descriptions
of COCO and Flickr30k dataset as one view and
the VGG-16 features from the respective images as
the second view. We divide the data into train, test
and development samples (using a 80/10/10 split).
We observed that the correlation scores for DCCA
model were better than for the CCA model. We use
the trained models to generate the projected rep-
resentations of text and visual features for the im-
ages in VerSe. Once the textual and visual features
are projected, we then merge them to get the multi-
modal representation. We experimented with differ-
ent ways of combining visual and textual features
projected using CCA or DCCA: (1) weighted in-
terpolation of textual and visual features (see Equa-
tions 5 and 6), and (2) concatenating the vectors of
textual and visual features.

To evaluate our proposed method, we compare
against the first sense heuristic, which defaults to
the sense listed first in the dictionary (where senses
are typically ordered by frequency). This is a strong
baseline which is known to outperform more com-
plex models in traditional text-based WSD. In VerSe
we observe skewness in the distribution of the senses
and the first sense heuristic is as strong as over text.
Also the most frequent sense heuristic, which as-
signs the most frequently annotated sense for a given
verb in VerSe, shows very strong performance. It is
supervised (as it requires sense annotated data to ob-
tain the frequencies), so it should be regarded as an
upper limit on the performance of the unsupervised
methods we propose (also, in text-based WSD, the
most frequent sense heuristic is considered an upper
limit, Navigli (2009)).

5.1.1 Results
In Table 3, we summarize the results of the gold-

standard (GOLD) and predicted (PRED) settings
for motion and non-motion verbs across represen-
tations. In the GOLD setting we find that for both
types of verbs, textual representations based on im-

age descriptions (C) outperform visual representa-
tions (CNN features). The text-based results com-
pare favorably to the original Lesk (as described
in Equation 2), which performs at 30.7 for motion
verbs and 36.2 for non-motion verbs in the GOLD
setting. This improvement is clearly due to the use
of word2vec embeddings.3 Note that CNN-based
visual features alone performed better than gold-
standard object labels alone in the case of motion
verbs.

We also observed that adding visual features
to textual features improves performance in some
cases: multimodal features perform better than tex-
tual features alone both for object labels (CNN+O)
and for image descriptions (CNN+C). However,
adding CNN features to textual features based on
object labels and descriptions together (CNN+O+C)
resulted in a small decrease in performance. Further-
more, we note that CCA models outperform simple
vector concatenation in case of GOLD setting for
motion verbs, and overall DCCA performed consid-
erably worse than concatenation. Note that for CCA
and DCCA we report the best performing scores
achieved using weighted interpolation of textual and
visual features with weights λt = 0.5 and λc = 0.5.

When comparing to our baseline and upper limit,
we find that the all the GOLD models which use
descriptions-based representations (except DCCA)
outperform to the first sense heuristic for motion-
verbs (accuracy 70.8), whereas they performed be-
low the first sense heuristic in case of non-motion
verbs (accuracy 80.6). As expected, both motion and
non-motion verbs performed significantly below the
most frequent sense heuristic (accuracy 86.2 and
90.7 respectively), which we argued provides an up-
per limit for unsupervised approaches.

We now turn the PRED configuration, i.e., to re-
sults obtained using object labels and image descrip-
tions predicted by state-of-the-art automatic sys-
tems. This is arguably the more realistic scenario,
as it only requires images as input, rather than as-
suming human-generated object labels and image
descriptions (though object detection and image de-
scription systems are required instead). In the PRED
setting, we find that textual features based on ob-

3We also experimented with Glove vectors (Pennington et
al., 2014) but observed that word2vec representations consis-
tently achieved better results that Glove vectors.

188

(a) Motion verbs (39), FS: 70.8, MFS: 86.2
Annotation Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C

GOLD 54.6 73.3 75.6 58.3 66.6 74.7 73.8 50.5 75.4 74.0 52.4 66.3 68.3
PRED 65.1 54.9 61.6 58.3 72.6 63.6 66.5 54.0 56.6 56.2 57.1 56.5 56.2

(b) Non-motion verbs (51), FS: 80.6, MFS: 90.7
Annotation Textual Vis Concat (CNN+) CCA (CNN+) DCCA (CNN+)

O C O+C CNN O C O+C O C O+C O C O+C

GOLD 57.0 72.7 72.6 56.1 66.0 72.2 71.3 53.6 71.6 70.2 57.3 59.8 55.1
PRED 59.0 64.3 64.0 56.1 63.8 66.3 66.1 50.7 55.3 54.8 49.5 50.0 50.0

Table 3: Accuracy scores for motion and non-motion verbs using for different types of sense and image
representations (O: object labels, C: image descriptions, CNN: image features, FS: first sense heuristic,
MFS: most frequent sense heuristic). Configurations that performed better than FS in bold.

Motion verbs (19), FS: 60.0, MFS: 76.1
Features GOLD PRED

Sup Unsup Sup Unsup

O 82.3 35.3 80.0 43.8
C 78.4 53.8 69.2 41.5
O+C 80.0 55.3 70.7 45.3
CNN 82.3 58.4 82.3 58.4
CNN+O 83.0 48.4 83.0 60.0
CNN+C 82.3 66.9 82.3 53.0
CNN+O+C 83.0 58.4 83.0 55.3

Table 4: Accuracy scores for motion verbs for both
supervised and unsupervised approaches using dif-
ferent types of sense and image representation fea-
tures.

ject labels (O) outperform both first sense heuristic
and textual features based on image descriptions (C)
in the case of motion verbs. Combining textual and
visual features via concatenation improves perfor-
mance for both motion and non-motion verbs. The
overall best performance of 72.6 for predicted fea-
tures is obtained by combining CNN features and
embeddings based on object labels and outperforms
first sense heuristic in case of motion verbs (accu-
racy 70.8). In the PRED setting for both classes of
verbs the simpler concatenation model performed
better than the more complex CCA and DCCA mod-
els. Note that for CCA and DCCA we report the best
performing scores achieved using weighted interpo-
lation of textual and visual features with weights
λt = 0.3 and λc = 0.7. Overall, our findings are con-
sistent with the intuition that motion verbs are easier
to disambiguate than non-motion verbs, as they are

Non-Motion verbs (19), FS: 71.3, MFS: 80.0
Features GOLD PRED

Sup Unsup Sup Unsup

O 79.1 48.6 78.2 46.0
C 79.1 53.9 77.3 61.7
O+C 79.1 66.0 77.3 55.6
CNN 80.0 55.6 80.0 55.6
CNN+O 80.0 56.5 80.0 52.1
CNN+C 80.0 56.5 80.3 60.0
CNN+O+C 80.0 59.1 80.0 55.6

Table 5: Accuracy scores for non-motion verbs for
both supervised and unsupervised approaches using
different types of sense and image representation
features.

more depictable and more likely to involve objects.
Note that this is also reflected in the higher inter-
annotator agreement for motion verbs (see Table 2).

5.2 Supervised Experiments and Results

Along with the unsupervised experiments we inves-
tigated the performance of textual and visual repre-
sentations of images in a simplest supervised setting.
We trained logistic regression classifiers for sense
prediction by dividing the images in VerSe dataset
into train and test splits. To train the classifiers we
selected all the verbs which has atleast 20 images an-
notated and has at least two senses in VerSe. This re-
sulted in 19 motion verbs and 19 non-motion verbs.
Similar to our unsupervised experiments we explore
multimodal features by using both textual and visual
features for classification (similar to concatenation
in unsupervised experiments).

189

Verb Image Predicted Descriptions Pred. Obj.

play

A man holding a nintendo wii game
controller. A man and a woman play-
ing a video game. A man and a woman
are playing a video game.

person, bas-
soon, violin
fiddle, oboe,
hautboy

swing

A woman standing next to a fire hy-
drant. A woman walking down a street
holding an umbrella. A woman stand-
ing on a sidewalk holding an umbrella.

person,
horizontal
bar, high
bar, pole

feed

A couple of cows standing next to each
other. A cow that is standing in the dirt.
A close up of a horse in a stable

arabian
camel,
dromedary,
person

Table 6: Images that were assigned an incorrect
sense in the PRED setting.

In Table 4 we report accuracy scores for 19 mo-
tion verbs using a supervised logistic regression
classifier and for comparison we also report the
scores of our proposed unsupervised algorithm for
both GOLD and PRED setting. Similarly in Table 5
we report the accuracy scores for 19 non-motion
verbs. We observe that all supervised classifiers for
both motion and non-motion verbs performing bet-
ter than first sense baseline. Similar to our findings
using an unsupervised approach we find that in most
cases multimodal features obtained using concate-
nating textual and visual features has outperformed
textual or visual features alone especially in the
PRED setting which is arguably the more realistic
scenario. We observe that the features from PRED
image descriptions showed better results for non-
motion verbs for both supervised and unsupervised
approaches whereas PRED object features showed
better results for motion verbs. We also observe
that supervised classifiers outperform most frequent
sense for motion verbs and for non-motion verbs our
scores match with most frequent sense heuristic.

5.3 Error Analysis

In order to understand the cases where the proposed
unsupervised algorithm failed, we analyzed the im-
ages that were disambiguated incorrectly. For the
PRED setting, we observed that using predicted im-
age descriptions yielded lower scores compared to
predicted object labels. The main reason for this is
that the image description system often generates ir-
relevant descriptions or descriptions not related to
the action depicted, whereas the object labels pre-
dicted by the CNN model tend to be relevant. This
highlights that current image description systems

still have clear limitations, despite the high evalu-
ation scores reported in the literature (Vinyals et al.,
2015; Fang et al., 2015). Examples are shown in
Table 6: in all cases human generated descriptions
and object labels that are relevant for disambigua-
tion, which explains the higher scores in the GOLD
setting.

6 Conclusion

We have introduced the new task of visual verb sense
disambiguation: given an image and a verb, identify
the verb sense depicted in the image. We developed
the new VerSe dataset for this task, based on the
existing COCO and TUHOI datasets. We proposed
an unsupervised visual sense disambiguation model
based on the Lesk algorithm and demonstrated that
both textual and visual information associated with
an image can contribute to sense disambiguation. In
an in-depth analysis of various image representa-
tions we showed that object labels and visual fea-
tures extracted using state-of-the-art convolutional
neural networks result in good disambiguation per-
formance, while automatically generated image de-
scriptions are less useful.

References

Galen Andrew, Raman Arora, Jeff A. Bilmes, and Karen
Livescu. 2013. Deep canonical correlation analysis.
In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA,
16-21 June 2013, pages 1247–1255.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. VQA: visual question answering.
In 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, December 7-13,
2015, pages 2425–2433.

Kobus Barnard, Matthew Johnson, and David Forsyth.
2003. Word sense disambiguation with pictures.
In Proceedings of the HLT-NAACL 2003 workshop
on Learning word meaning from non-linguistic data-
Volume 6, pages 1–5. Association for Computational
Linguistics.

Samuel Brody and Mirella Lapata. 2008. Good neigh-
bors make good senses: Exploiting distributional sim-
ilarity for unsupervised wsd. In Proceedings of
the 22nd International Conference on Computational
Linguistics-Volume 1, pages 65–72. Association for
Computational Linguistics.

190

Yu-Wei Chao, Zhan Wang, Yugeng He, Jiaxuan Wang,
and Jia Deng. 2015. HICO: A benchmark for recog-
nizing human-object interactions in images. In 2015
IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015,
pages 1017–1025.

Xinlei Chen, Alan Ritter, Abhinav Gupta, and Tom M.
Mitchell. 2015. Sense discovery via co-clustering on
images and text. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 5298–5306.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Fei-Fei Li. 2009. ImageNet: A large-scale hi-
erarchical image database. In 2009 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248–255.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool,
Christopher K. I. Williams, John M. Winn, and An-
drew Zisserman. 2015. The Pascal visual object
classes challenge: A retrospective. International Jour-
nal of Computer Vision, 111(1):98–136.

Hao Fang, Saurabh Gupta, Forrest N. Iandola, Ru-
pesh K. Srivastava, Li Deng, Piotr Dollár, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C. Platt,
C. Lawrence Zitnick, and Geoffrey Zweig. 2015.
From captions to visual concepts and back. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pages 1473–1482.

Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hock-
enmaier, and Svetlana Lazebnik. 2014. Improving
image-sentence embeddings using large weakly anno-
tated photo collections. In Computer Vision - ECCV
2014 - 13th European Conference, Zurich, Switzer-
land, September 6-12, 2014, Proceedings, Part IV,
pages 529–545.

David R. Hardoon, Sándor Szedmák, and John Shawe-
Taylor. 2004. Canonical correlation analysis: An
overview with application to learning methods. Neu-
ral Computation, 16(12):2639–2664.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2015. Framing image description as a ranking task:
Data, models and evaluation metrics (extended ab-
stract). In Proceedings of the Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, IJ-
CAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 4188–4192.

Eduard H. Hovy, Mitchell P. Marcus, Martha Palmer,
Lance A. Ramshaw, and Ralph M. Weischedel. 2006.
Ontonotes: The 90% solution. In Human Language
Technology Conference of the North American Chap-
ter of the Association of Computational Linguistics,

Proceedings, June 4-9, 2006, New York, New York,
USA, pages 57–60.

Sujay Kumar Jauhar, Chris Dyer, and Eduard H. Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
NAACL HLT 2015, The 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Denver, Colorado, USA, May 31 - June 5, 2015, pages
683–693.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross B. Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Con-
volutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on
Multimedia, MM ’14, Orlando, FL, USA, November
03 - 07, 2014, pages 675–678.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 3128–3137.

Adam Kilgarrif. 1998. Senseval: An exercise in evalu-
ating word sense disambiguation programs. In Proc.
of the first international conference on language re-
sources and evaluation, pages 581–588.

Dieu Thu Le, Raffaella Bernardi, and Jasper Uijlings.
2013. Exploiting language models to recognize un-
seen actions. In Proceedings of the 3rd ACM con-
ference on International conference on multimedia re-
trieval, pages 231–238. ACM.

Dieu-Thu Le, Jasper Uijlings, and Raffaella Bernardi,
2014. Proceedings of the Third Workshop on Vision
and Language, chapter TUHOI: Trento Universal Hu-
man Object Interaction Dataset, pages 17–24. Dublin
City University and the Association for Computational
Linguistics.

Michael Lesk. 1986. Automatic sense disambiguation
using machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proceedings of the 5th
Annual International Conference on Systems Docu-
mentation, SIGDOC 1986, Toronto, Ontario, Canada,
1986, pages 24–26.

Beth Levin. 1993. English verb classes and alternations:
A preliminary investigation. University of Chicago
Press.

Dekang Lin. 1997. Using syntactic dependency as local
context to resolve word sense ambiguity. In Proceed-
ings of the 35th Annual Meeting of the Association for
Computational Linguistics and Eighth Conference of
the European Chapter of the Association for Computa-
tional Linguistics, pages 64–71. Association for Com-
putational Linguistics.

191

Nicolas Loeff, Cecilia Ovesdotter Alm, and David A.
Forsyth. 2006. Discriminating image senses by clus-
tering with multimodal features. In ACL 2006, 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Confer-
ence, Sydney, Australia, 17-21 July 2006, pages 547–
554. Association for Computational Linguistics.

Diana McCarthy, Rob Koeling, Julie Weeds, and John
Carroll. 2004. Finding predominant word senses in
untagged text. In Proceedings of the 42nd Annual
Meeting on Association for Computational Linguis-
tics, pages 279–286. Association for Computational
Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database.
International Journal of Lexicography, 3(4):235–244.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys (CSUR), 41(2):10.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1532–1543.

Matteo Ruggero Ronchi and Pietro Perona. 2015. De-
scribing common human visual actions in images. In
Proceedings of the British Machine Vision Confer-
ence (BMVC 2015), pages 52.1–52.12. BMVA Press,
September.

Sascha Rothe and Hinrich Schutze. 2015. Autoex-
tend: Extending word embeddings to embeddings for
synsets and lexemes. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Federa-
tion of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers,
pages 1793–1803.

Kate Saenko and Trevor Darrell. 2008. Unsupervised
learning of visual sense models for polysemous words.
In Advances in Neural Information Processing Sys-
tems 21, Proceedings of the Twenty-Second Annual
Conference on Neural Information Processing Sys-
tems, Vancouver, British Columbia, Canada, Decem-
ber 8-11, 2008, pages 1393–1400.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and tell: A neural image
caption generator. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 3156–3164.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff A.
Bilmes. 2015. On deep multi-view representation
learning. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 1083–1092.

Fei Yan and Krystian Mikolajczyk. 2015. Deep corre-
lation for matching images and text. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
3441–3450.

Bangpeng Yao and Li Fei-Fei. 2010. Grouplet: A struc-
tured image representation for recognizing human and
object interactions. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages
9–16. IEEE.

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai
Lin, Leonidas Guibas, and Li Fei-Fei. 2011. Hu-
man action recognition by learning bases of action at-
tributes and parts. In Computer Vision (ICCV), 2011
IEEE International Conference on, pages 1331–1338.
IEEE.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In ACL 2010, Proceedings of the 48th
Annual Meeting of the Association for Computational
Linguistics, July 11-16, 2010, Uppsala, Sweden, Sys-
tem Demonstrations, pages 78–83.

192

Proceedings of NAACL-HLT 2016, pages 193–198,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Stating the Obvious:
Extracting Visual Common Sense Knowledge

Mark Yatskar1, Vicente Ordonez2, Ali Farhadi1,2
1Computer Science & Engineering, University of Washington, Seattle, WA

2Allen Institute for Artificial Intelligence (AI2), Seattle, WA
[my89, ali]@cs.washington.edu, vicenteor@allenai.org

Abstract

Obtaining common sense knowledge using
current information extraction techniques is
extremely challenging. In this work, we in-
stead propose to derive simple common sense
statements from fully annotated object detec-
tion corpora such as the Microsoft Common
Objects in Context dataset. We show that
many thousands of common sense facts can
be extracted from such corpora at high quality.
Furthermore, using WordNet and a novel sub-
modular k-coverage formulation, we are able
to generalize our initial set of common sense
assertions to unseen objects and uncover over
400k potentially useful facts.

1 Introduction

How can we discover that bowls can hold broc-
coli, that if a knife touches a cake then a person
is probably cutting cake, or that cutlery can be on
dining tables? We propose to leverage the effort of
computer vision researchers in creating large scale
datasets for object detection and use these resources
instead to extract symbolic representations of visual
common sense. The knowledge we compile is phys-
ical, not commonly covered in text and more exhaus-
tive than what people can usually produce.

Our focus is particularly on visual common sense,
defined as the information about spatial and func-
tional properties of entities in the world. We pro-
pose to extract three types of knowledge from the
Microsoft Common Objects in Context dataset (Lin
et al., 2014) (MS-COCO), consisting of 300,000
images, covering 80 objects, with object segments

and natural language captions. First, we find spa-
tial relations, e.g. holds(bed, dog), from outlines
of co-occurring objects. Next, we construct entail-
ment rules like holds(bed, dog) ⇒ laying-on(dog,
bed) by associating spatial relations with text in
captions. Finally, we uncover general facts such
as holds(furniture, domestic animal), applicable to
object types not present in MS-COCO by using
WordNet (Miller, 1995) and a novel submodular k-
coverage formulation.

Evaluations using crowdsourcing show our meth-
ods can discover many thousands of high qual-
ity explicit statements of visual common sense.
While some of this knowledge can be potentially ex-
tracted from text (Vanderwende, 2005), we found
that from our top 100 extracted spatial relations,
e.g. holds(bed, dog), only 4 are present in some
form in the AtLocation relations in the popular Con-
ceptNet (Speer and Havasi, 2013) knowledge base.
This shows that the knowledge we derive provides
complimentary information for other more general
knowledge bases. Such common sense facts have
proved useful for query expansion (Kotov and Zhai,
2012; Bouchoucha et al., 2013) and could benefit en-
tailment (Dagan et al., 2010), grounded entailment
(Bowman et al., 2015), or visual recognition tasks
(Zhu et al., 2014).

2 Related Work

Common sense knowledge has been predominately
created directly from human input or extracted from
text (Lenat et al., 1990; Liu and Singh, 2004; Carl-
son et al., 2010). In contrast, our work is focused on
visual common sense extracted from images anno-

193

a touches b
b touches a

a holds b
b inside a

a besides b
b besides a

a above b
b under a

b on a

a disconnected from b
b disconnected from a

Less than 10 % of
pixels from a overlap
with b.

The angle between the
centroid of a and the
centroid of b lies
between 315° and 45°,
or 135° and 225°.

The angle between the
centroid of a and the
centroid of b lies
between 225° and 315°,
or 45° and 135°.

The entire extents of
object b are inside the
extents of object a.

There is more than 50%
of pixels in object b
overlapping with the
extents of object a.

No intersection

Figure 1: We define 6 types of unique relationships:
{touches, above, besides, holds, on, disconnected}.

tated with regions and descriptions.

There has also been recent interest in the vi-
sion community to build databases of visual com-
mon sense knowledge. Efforts have focused on a
small set of relations, such as similar to or part
of (Chen et al., 2013). Webly supervised tech-
niques (Divvala et al., 2014; Chen et al., 2013) have
also been used to test whether a particular object-
relation-object triplet occurs in images (Sadeghi et
al., 2015). In contrast, we use seven spatial relations
and allow natural language relations that represent a
larger array of higher level semantics. We also lever-
age existing efforts on annotating large scale image
datasets instead of relying on the noisy outputs of a
computer vision system.

On a technical level, our methods for extracting
common sense facts from images rely on Pointwise-
Mutual Information (PMI), analogous to other rule
extraction systems based on text (Lin and Pantel,
2001; Schoenmackers et al., 2010). We view ob-
jects as an analogy for words, images as documents,
and object-object configurations as typed bigrams.
Our methods for generalizing relations are inspired

by work that tries to predict a class label for an im-
age given a hierarchy of concepts (Deng et al., 2012;
Ordonez et al., 2013; Ordonez et al., 2015). Yet
our work is the first to deal with visual relations be-
tween pairs of concepts in the hierarchy by using a
sub-modular formulation that maximizes the amount
of coverage of subordinate categories while avoid-
ing contradictions with an initial set of discovered
common-sense assertions.

3 Methods

We assume the availability of an object-level anno-
tated image dataset D containing a set of images
with textual descriptions. Each object in an image
must be annotated with: (1) a mask or polygon out-
lining the extents of the object, and (2) the category
of the object from a set of categories V and (3) an
overall description of the image.

We produce three types of common sense facts,
each with an associated scoring function: (1)
Object-object relationships implicitly encoded in the
relative configurations between objects in the anno-
tated image data, i.e. on(bed, dog) (sec 3.1) , (2)
Entailment relations encoded in the relationships be-
tween object-object configurations and textual de-
scriptions i.e. on(bed, dog) ⇒ laying-on(bed, dog)
(sec 3.2), and (3) Generalized relations induced by
using the semantic hierarchy of concepts in Word-
Net, i.e. on(furniture , domestic-animal) (sec 3.3).

3.1 Mining Object-Object Relations

Our objective in this section is to score and rank
a set of relations S1 = {r(o1, o2)}, where r is a
object-object relation and o1, o2 ∈ V , using a func-
tion γ1 : S1 → R. First, we define a vocabulary
R of object-object relations between pairs of anno-
tated objects. Our relations are inspired by Region
Connection Calculus (Randell et al., 1992), and the
Visual Dependency Grammar of (Elliott et al., 2014;
Elliott and de Vries, 2015), details in Figure 1.

For every image, we record the instances of each
of these object-object relations r(o1, o2) between all
co-occurring objects in D1. We use Point-wise Mu-
tual Information (PMI) to estimate the evidence for

1For symmetric relations like above(o1, o2), and under(o1,
o2) we only record one of the relations.

194

holds(person, o2)

holds(person, tie)

holds(person, toothbrush)
holds(person, cellphone)
holds(person, baseball glove)
holds(person, remote)

…

holds(person, bench)
holds(person, dining table)
holds(person, car)

holds(o1, person)

holds(bus, person)

holds(train, person)
holds(airplane, person)
holds(boat, person)
holds(tv, person)

…

holds(dining table, person)
holds(cell phone, person)
holds(chair, person)

r(o1, frisbee)

touches(dog, frisbee)

touches(person, frisbee)
holds(dog, frisbee)
holds(person, frisbee)
besides(umbrella, frisbee)

…

besides(person, frisbee)
above(car, frisbee)
above(person, frisbee)

r(o1, o2)

holds(pizza, broccoli)

holds(person, tie)
holds(dining table, sandwich)
holds(dining table, broccoli)

holds(dining table, pizza)

…

holds(cell_phone, person)
above(person, bus)
above(bicycle, car)

Q
ua

lit
y

Figure 2: Example of our extracted object-object relations. The first column contains the overall 3 best and worst
relations ranked by PMI, the following columns show similar results for the queries: what does a person hold? what
holds a person?, and what interacts with a frisbee?

each relationship triplet:

γ1(r(o1, o2)) = log
p[r(o1, o2)]
p[r]p[(o1, o2)]

, (1)

We estimate these probabilities by counting
object-object-relation co-ocurrences using existen-
tial quantifiers for every image. This means every
image can at most contribute one to the count of
r(o1, o2) so that we do not exacerbate the results by
images with many identical object types taken from
unusual viewpoints. In Figure 2, we provide exam-
ples of our extracted object-object relations.

3.2 Mining Entailment Relations
In this section we combine our relation-based tu-
ples mined from visual annotations (section 2) with
more than 400k textual descriptions included in MS-
COCO. We generate a set of entailments S2 =
{r(o1, o2) ⇒ z}, where r(o1, o2) is an element
from S1 and z is a consequent obtained from tex-
tual descriptions. Similarly as in the previous sec-
tion, we rank the relations in S2 using a function
γ2 : S2 → R.

We start by generating an exhaustive list of can-
didate consequents z. We first pre-process the im-
age captions with the part-of-speech tagger and lem-
matizer from the Stanford Core NLP toolkit (Man-
ning et al., 2014), and remove stop words. Then
we generate a list of n-length skipgrams in each
caption. The set of n-skipgrams are filtered based
on predefined lexical patterns2, and redundancies

2〈noun, verb〉, 〈noun,*, verb,*, noun〉, 〈noun,*, preposition,
, noun〉, 〈noun,, verb, preposition,*,noun〉

are removed3. Skipgrams, z, are then paired with
co-occurring relations, r(o1, o2), removing pairs
with the disconnected-from spatial relation (see Fig-
ure 1). Pairs are scored with the conditional proba-
bility:

γ2(r(o1, o2)⇒ z) =
P [z, r(o1, o2)]
P [r(o1, o2)]

(2)

The consequent z can take the form q, q(o1),
q(o2), or q(o1, o2), by performing a simple align-
ment with the arguments in the antecedent. We
perform this alignment by mapping the object cat-
egories in the antecedent r(o1, o2) to WordNet
synsets, and matching any word in z to any word
in the gloss set of the predicate arguments o1 and
o2. The unmatched words in z form the relation,
whereas matched words form arguments. We pro-
duce the form q if there are no matches, q(o1),
or q(o2) when one argument word matches, and
q(o1, o2) when both match. Examples of discovered
entailments are in Figure 3.

3.3 Generalizing Relations using WordNet

In this section we present an approach to general-
ize an initial set of relations, S, to objects not found
in the original vocabulary V . Using WordNet we
construct a superset G containing all possible parent
relations for the relations in S by replacing their ar-
guments o1, o2 by all their possible hypernyms. Our
objective is to select a subset T from G that con-
tains high quality and diverse generalized relations.

3〈noun,*, verb, *, noun〉 are collapsed to 〈noun,*, verb,
preposition,*,noun〉.

195

holds(chair, cat) on(cat, chair)

holds(suitcase, cat) in(cat, suitcase)

holds(person, donut) eating(person)

on(knife, cake) person-cutting(cake)

touches(cat, dining table) on(cat, table)

touches(bird, chair) on(bird, chair) besides(cat, umbrella) under(cat, umbrella)

touches(cat, teddy bear) stuffed(cat)

above(sink, bowl) person-in-kitchen

touches(tie, teddy bear) teddy(bears)

above(kite, backpack) people-flying

on(pizza, oven) in(pizza, oven)

[misinterpreted object-object relations based on geometry alone]

[misinterpreted object-object relation based on geometry alone]

[poor n-skipgram assertion candidate]

[too general implication]

[mis-alignment and poor n-skipgram assertion due to compound nouns]

[poor n-skipgram assertion candidate and implication]

[corrected language interpretation of the proposed geometric relation]

[corrected language interpretation of the proposed geometric relation]

[inverse-functional relation discovered]

[implication involving only the first argument of the relation]

[implication involving only the second argument of the relation]

[implication involving both arguments and successful alignment of compund word]

Figure 3: Left: correctly identified entailment relations and right: failure cases.

Note that elements in G can be too general and con-
tradict statements in S while others could be correct
but add little new knowledge. To balance these con-
cerns, we formulate the selection as an optimization
problem by maximizing a fitness function L:

max
T
L(T), such that |T | = k, and T ⊆ G, (3)

L(T) = λlog(1+ψ(T))+
∑
t∈T

log(1+φ(t, S)), (4)

where ψ is a coverage term that computes the total
number of facts implied through hyponym relation-
ships by the elements in T . The second term φ is a
consistency term that measures the compatibility of
a generalized relation t with the relations in S. We
assume that if a relation is missing from S, then it
is false (this corresponds to a closed world assump-
tion over the domain of S). Thus, φ is the ratio of
the scores of relations in S consistent with relation
t (i.e. evidence for t based on S), and a value that
is proportional to the number of missing relations
from S (i.e. the amount of counter-evidence). More
concretely:

φ(t, S) =
∑

s:t⇒s∧s∈S γ(s)
µ · (1 +

∑
s:t⇒s∧s/∈S 1) · d(t, S)

, (5)

where µ is a constant and d is the product of the
WordNet distances of the synsets involved in t to
their nearest synset in S. This penalizes relations
that are far away from categories in S. The opti-
mization defined in Equation 3 is an instance of the
submodular k-coverage problem. We use a greedy
algorithm that adds elements to T that maximize L,
which due to the submodular nature of the problem
approximates the solution up to a constant factor.

4 Experimental Setup
Object-Object Relations: We filter out from the ini-
tial set of candidate relations the ones that occur
less than 20 times. We extract more than 3.1k
unique statements (6k including symmetric spatial
relations). Entailment Relations: We use skipgrams
of length 2-6 allowing at most 6 skips, filter can-
didates such that they occur at least 5 times, and
return the top 10 most likely entailments per spa-
tial relation. Overall, 6.3k unique statements are ex-
tracted (10k including symmetric relations). Gen-
eralized Relations: We optimize Equation 4 only
for object-object relations because the closed world
assumption makes counts for implications sparse.
The parameter µ is set to the average of the scores,
λ = 0.05 and k = 200.

5 Evaluation

We evaluated the quality of the common sense we
derive on Amazon Mechanical Turk. Annotators
are presented with possible facts and asked to grade
statements on a five point scale. Each fact was eval-
uated by 10 workers and we normalize their average
responses to a scale from 0 to 1. Figure 4 shows
plots of quality vs. coverage, where coverage means
the top percent of relations sorted by our predicted
quality scores.

Object-Object Relations As a baseline, 1000 ran-
domly sampled relations have a quality of 0.225.
Figure 4a shows our PMI measure ranks many high
quality facts at the top, with the top quintile of the
ranking being rated above 0.63 in quality. Facts
about persons are higher quality, likely because this
category is in over 50% of the images in MS-COCO.

196

Q
ua

lit
y

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Coverage
0% 20% 40% 60% 80% 100%

all [3,120]
person [426]
animal [477]
vehicle [636]
furniture [438]
random relations

(a) Object-object relations
Q

ua
lit

y

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Coverage
0% 20% 40% 60% 80% 100%

all [3,000]
person [1,325]
animal [1,241]
vehicle [659]
furniture [468]
random

(b) Entailment relations

Q
ua

lit
y

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Coverage
0% 20% 40% 60% 80% 100%

generalizd obj-obj relations [200]
randomly generalized obj-obj relations

(c) Generalizations
Figure 4: Quality of extracted common sense, as judged by people. Legends show total relations covered at 100% for
a few high level types in MS-COCO.

Entailment Relations Turkers were instructed to
assign the lowest score when they could not un-
derstand the consequent of the entailment relation.
As a baseline, 1000 randomly sampled implications
that meet our patterns have a quality of 0.33. Fig-
ure 4b shows that extracting high quality entailment
is harder than object-object relations likely because
supposition and consequent need to coordinate. Re-
lations involving furniture are rated higher and man-
ual inspection revealed that many relations about
furniture imply stative verbs or spatial terms.

Generalized Relations To evaluate generaliza-
tions, Figure 4c, we also present users with defini-
tions4. As a baseline, 200 randomly sampled gen-
eralizations from our 3k object-object relations have
a quality of 0.53. Generalizations we find are high
quality and cover over 400k objects facts not present
in MS-COCO. Examples from the 200 we derive in-
clude: holds(dining-table, cutlery), holds(bowl, edi-
ble fruit) or on(domestic animal, bed).

6 Conclusion

In this work, we use an existing object detection
dataset to extract 16k common sense statements
about annotated categories. We also show how to
generalize using WordNet and induced hundreds of
thousands of facts about unseen objects. The infor-
mation we extracted is visual, large scale and good
quality. It has the potential to be useful for both vi-
sual recognition and entailment applications.

4sometimes rules involve abstract concepts, for example
vessel, any object that can be used as a container

7 Acknowledgments

The authors would like to thank Hannaneh Ha-
jishirzi, Yejin Choi, and Luke Zettlemoyer for help-
ful comments on the draft and the reviewers for use-
ful feedback. We also thank Ani Kembhavi, and
Roozbeh Mottaghi for helping to formalize visual
common sense and Mechanical Turkers who helped
evaluate output.

References

Arbi Bouchoucha, Jing He, and Jian-Yun Nie. 2013. Di-
versified query expansion using conceptnet. In Pro-
ceedings of the 22nd ACM international conference on
Conference on information & knowledge manage-
ment, CIKM ’13, pages 1861–1864, New York, NY,
USA. ACM.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka Jr, and Tom M Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In AAAI Conference on Artificial In-
telligence, volume 5, page 3.

Xinlei Chen, Ashish Shrivastava, and Arpan Gupta.
2013. Neil: Extracting visual knowledge from web
data. In International Conference on Computer Vision
(ICCV), pages 1409–1416. IEEE.

Ido Dagan, Bill Dolan, Bernardo Magnini, and Dan Roth.
2010. Recognizing textual entailment: Rational, eval-
uation and approaches–erratum. Natural Language
Engineering, 16(01):105–105.

197

Jia Deng, Jonathan Krause, Alexander C Berg, and
Li Fei-Fei. 2012. Hedging your bets: Optimiz-
ing accuracy-specificity trade-offs in large scale visual
recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3450–3457. IEEE.

Santosh Divvala, Ali Farhadi, and Carlos Guestrin.
2014. Learning everything about anything: Webly-
supervised visual concept learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3270–3277.

Desmond Elliott and Arjen P de Vries. 2015. Describ-
ing images using inferred visual dependency repre-
sentations. Association for Computational Linguistics
(ACL).

Desmond Elliott, Victor Lavrenko, and Frank Keller.
2014. Query-by-example image retrieval using visual
dependency representations. In International Confer-
ence on Computational Linguistics (COLING), pages
109–120, August.

Alexander Kotov and ChengXiang Zhai. 2012. Tapping
into knowledge base for concept feedback: Leverag-
ing conceptnet to improve search results for difficult
queries. In Proceedings of the Fifth ACM Interna-
tional Conference on Web Search and Data Mining,
WSDM ’12, pages 403–412, New York, NY, USA.
ACM.

Douglas B Lenat, Ramanathan V. Guha, Karen Pittman,
Dexter Pratt, and Mary Shepherd. 1990. Cyc: toward
programs with common sense. Communications of the
ACM, 33(8):30–49.

Dekang Lin and Patrick Pantel. 2001. Dirt@ sbt@ dis-
covery of inference rules from text. In Proceedings
of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 323–
328. ACM.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014,
pages 740–755. Springer.

Hugo Liu and Push Singh. 2004. Conceptnet: A prac-
tical commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Annual Meeting of the Association
for Computational Linguistics (ACL): System Demon-
strations, pages 55–60.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Vicente Ordonez, Jia Deng, Yejin Choi, Alexander C
Berg, and Tamara Berg. 2013. From large scale image

categorization to entry-level categories. In Interna-
tional Conference on Computer Vision (ICCV), pages
2768–2775. IEEE.

Vicente Ordonez, Wei Liu, Jia Deng, Yejin Choi, Alexan-
der C. Berg, and Tamara L. Berg. 2015. Predicting
entry-level categories. International Journal of Com-
puter Vision, pages 1–15.

David A Randell, Zhan Cui, and Anthony G Cohn. 1992.
A spatial logic based on regions and connection. In In-
ternational Conference on Knowledge Representation
and Reasoning.

Fereshteh Sadeghi, Santosh K Divvala, and Ali Farhadi.
2015. Viske: Visual knowledge extraction and
question answering by visual verification of relation
phrases. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1456–1464.

Stefan Schoenmackers, Oren Etzioni, Daniel S Weld, and
Jesse Davis. 2010. Learning first-order horn clauses
from web text. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1088–1098.

Robert Speer and Catherine Havasi. 2013. Concept-
net 5: A large semantic network for relational knowl-
edge. In The Peoples Web Meets NLP, pages 161–176.
Springer.

Lucy Vanderwende. 2005. Volunteers created the
web. In Proceedings of the 2005 AAAI Spring Sympo-
sium, Knowledge Collection from Volunteer Contribu-
tors. American Association for Artificial Intelligence,
March.

Yuke Zhu, Alireza Fathi, and Li Fei-Fei. 2014. Reason-
ing about Object Affordances in a Knowledge Base
Representation. In European Conference on Com-
puter Vision.

198

Proceedings of NAACL-HLT 2016, pages 199–209,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Recurrent Neural Network Grammars
Chris Dyer♠ Adhiguna Kuncoro♠ Miguel Ballesteros♦♠ Noah A. Smith♥
♠School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

♦NLP Group, Pompeu Fabra University, Barcelona, Spain
♥Computer Science & Engineering, University of Washington, Seattle, WA, USA

{cdyer,akuncoro}@cs.cmu.edu, miguel.ballesteros@upf.edu, nasmith@cs.washington.edu

Abstract

We introduce recurrent neural network gram-
mars, probabilistic models of sentences with
explicit phrase structure. We explain efficient
inference procedures that allow application to
both parsing and language modeling. Experi-
ments show that they provide better parsing in
English than any single previously published
supervised generative model and better lan-
guage modeling than state-of-the-art sequen-
tial RNNs in English and Chinese.

1 Introduction

Sequential recurrent neural networks (RNNs) are
remarkably effective models of natural language.
In the last few years, language model results that
substantially improve over long-established state-of-
the-art baselines have been obtained using RNNs
(Zaremba et al., 2015; Mikolov et al., 2010) as well
as in various conditional language modeling tasks
such as machine translation (Bahdanau et al., 2015),
image caption generation (Xu et al., 2015), and dia-
logue generation (Wen et al., 2015). Despite these
impressive results, sequential models are a priori
inappropriate models of natural language, since re-
lationships among words are largely organized in
terms of latent nested structures rather than sequen-
tial surface order (Chomsky, 1957).

In this paper, we introduce recurrent neural net-
work grammars (RNNGs; §2), a new generative
probabilistic model of sentences that explicitly mod-
els nested, hierarchical relationships among words
and phrases. RNNGs operate via a recursive syntac-
tic process reminiscent of probabilistic context-free
grammar generation, but decisions are parameter-
ized using RNNs that condition on the entire syntac-
tic derivation history, greatly relaxing context-free
independence assumptions.

The foundation of this work is a top-down vari-
ant of transition-based parsing (§3). We give two
variants of the algorithm, one for parsing (given an
observed sentence, transform it into a tree), and one
for generation. While several transition-based neu-
ral models of syntactic generation exist (Hender-
son, 2003, 2004; Emami and Jelinek, 2005; Titov
and Henderson, 2007; Buys and Blunsom, 2015b),
these have relied on structure building operations
based on parsing actions in shift-reduce and left-
corner parsers which operate in a largely bottom-
up fashion. While this construction is appealing be-
cause inference is relatively straightforward, it lim-
its the use of top-down grammar information, which
is helpful for generation (Roark, 2001).1 RNNGs
maintain the algorithmic convenience of transition-
based parsing but incorporate top-down (i.e., root-
to-terminal) syntactic information (§4).

The top-down transition set that RNNGs are
based on lends itself to discriminative modeling as
well, where sequences of transitions are modeled
conditional on the full input sentence along with the
incrementally constructed syntactic structures. Sim-
ilar to previously published discriminative bottom-
up transition-based parsers (Henderson, 2004; Sagae
and Lavie, 2005; Zhang and Clark, 2011, inter alia),
greedy prediction with our model yields a linear-
time deterministic parser (provided an upper bound
on the number of actions taken between process-
ing subsequent terminal symbols is imposed); how-
ever, our algorithm generates arbitrary tree struc-
tures directly, without the binarization required by
shift-reduce parsers. The discriminative model also
lets us use ancestor sampling to obtain samples of
parse trees for sentences, and this is used to solve

1The left-corner parsers used by Henderson (2003, 2004)
incorporate limited top-down information, but a complete path
from the root of the tree to a terminal is not generally present
when a terminal is generated. Refer to Henderson (2003, Fig.
1) for an example.

199

a second practical challenge with RNNGs: approx-
imating the marginal likelihood and MAP tree of a
sentence under the generative model. We present a
simple importance sampling algorithm which uses
samples from the discriminative parser to solve in-
ference problems in the generative model (§5).

Experiments show that RNNGs are effective for
both language modeling and parsing (§6). Our gen-
erative model obtains (i) the best-known parsing re-
sults using a single supervised generative model and
(ii) better perplexities in language modeling than
state-of-the-art sequential LSTM language models.
Surprisingly—although in line with previous pars-
ing results showing the effectiveness of genera-
tive models (Henderson, 2004; Johnson, 2001)—
parsing with the generative model obtains signifi-
cantly better results than parsing with the discrim-
inative model.

2 RNN Grammars

Formally, an RNNG is a triple (N,Σ,Θ) consisting
of a finite set of nonterminal symbols (N), a finite
set of terminal symbols (Σ) such that N ∩ Σ = ∅,
and a collection of neural network parameters Θ. It
does not explicitly define rules since these are im-
plicitly characterized by Θ. The algorithm that the
grammar uses to generate trees and strings in the lan-
guage is characterized in terms of a transition-based
algorithm, which is outlined in the next section. In
the section after that, the semantics of the param-
eters that are used to turn this into a stochastic al-
gorithm that generates pairs of trees and strings are
discussed.

3 Top-down Parsing and Generation

RNNGs are based on a top-down generation algo-
rithm that relies on a stack data structure of par-
tially completed syntactic constituents. To empha-
size the similarity of our algorithm to more familiar
bottom-up shift-reduce recognition algorithms, we
first present the parsing (rather than generation) ver-
sion of our algorithm (§3.1) and then present modi-
fications to turn it into a generator (§3.2).

3.1 Parser Transitions

The parsing algorithm transforms a sequence of
words x into a parse tree y using two data structures

(a stack and an input buffer). As with the bottom-
up algorithm of Sagae and Lavie (2005), our algo-
rithm begins with the stack (S) empty and the com-
plete sequence of words in the input buffer (B). The
buffer contains unprocessed terminal symbols, and
the stack contains terminal symbols, “open” nonter-
minal symbols, and completed constituents. At each
timestep, one of the following three classes of op-
erations (Fig. 1) is selected by a classifier, based on
the current contents on the stack and buffer:

• NT(X) introduces an “open nonterminal” X onto
the top of the stack. Open nonterminals are
written as a nonterminal symbol preceded by an
open parenthesis, e.g., “(VP”, and they represent
a nonterminal whose child nodes have not yet
been fully constructed. Open nonterminals are
“closed” to form complete constituents by subse-
quent REDUCE operations.
• SHIFT removes the terminal symbol x from the

front of the input buffer, and pushes it onto the
top of the stack.
• REDUCE repeatedly pops completed subtrees or

terminal symbols from the stack until an open
nonterminal is encountered, and then this open
NT is popped and used as the label of a new con-
stituent that has the popped subtrees as its chil-
dren. This new completed constituent is pushed
onto the stack as a single composite item. A single
REDUCE operation can thus create constituents
with an unbounded number of children.

The parsing algorithm terminates when there is a
single completed constituent on the stack and the
buffer is empty. Fig. 2 shows an example parse
using our transition set. Note that in this paper
we do not model preterminal symbols (i.e., part-of-
speech tags) and our examples therefore do not in-
clude them.2

Our transition set is closely related to the op-
erations used in Earley’s algorithm which likewise
introduces nonterminals symbols with its PREDICT

2Preterminal symbols are, from the parsing algorithm’s
point of view, just another kind of nonterminal symbol that re-
quires no special handling. However, leaving them out reduces
the number of transitions by O(n) and also reduces the number
of action types, both of which reduce the runtime. Furthermore,
standard parsing evaluation scores do not depend on preterminal
prediction accuracy.

200

operation and later COMPLETEs them after consum-
ing terminal symbols one at a time using SCAN

(Earley, 1970). It is likewise closely related to the
“linearized” parse trees proposed by Vinyals et al.
(2015) and to the top-down, left-to-right decompo-
sitions of trees used in previous generative parsing
and language modeling work (Roark, 2001, 2004;
Charniak, 2010).

A further connection is to LL(∗) parsing which
uses an unbounded lookahead (compactly repre-
sented by a DFA) to distinguish between parse alter-
natives in a top-down parser (Parr and Fisher, 2011);
however, our parser uses an RNN encoding of the
lookahead rather than a DFA.

Constraints on parser transitions. To guarantee
that only well-formed phrase-structure trees are pro-
duced by the parser, we impose the following con-
straints on the transitions that can be applied at each
step which are a function of the parser state (B,S, n)
where n is the number of open nonterminals on the
stack:

• The NT(X) operation can only be applied if B is
not empty and n < 100.3

• The SHIFT operation can only be applied if B is
not empty and n ≥ 1.
• The REDUCE operation can only be applied if the

top of the stack is not an open nonterminal sym-
bol.
• The REDUCE operation can only be applied if n ≥

2 or if the buffer is empty.

To designate the set of valid parser transitions, we
write AD(B,S, n).

3.2 Generator Transitions

The parsing algorithm that maps from sequences
of words to parse trees can be adapted with mi-
nor changes to produce an algorithm that stochas-
tically generates trees and terminal symbols. Two
changes are required: (i) there is no input buffer of

3Since our parser allows unary nonterminal productions,
there are an infinite number of valid trees for finite-length sen-
tences. The n < 100 constraint prevents the classifier from
misbehaving and generating excessively large numbers of non-
terminals. Similar constraints have been proposed to deal with
the analogous problem in bottom-up shift-reduce parsers (Sagae
and Lavie, 2005).

unprocessed words, rather there is an output buffer
(T), and (ii) instead of a SHIFT operation there are
GEN(x) operations which generate terminal symbol
x ∈ Σ and add it to the top of the stack and the out-
put buffer. At each timestep an action is stochasti-
cally selected according to a conditional distribution
that depends on the current contents of B and T .
The algorithm terminates when a single completed
constituent remains on the stack. Fig. 4 shows an
example generation sequence.

Constraints on generator transitions. The gen-
eration algorithm also requires slightly modified
constraints. These are:

• The GEN(x) operation can only be applied if n ≥
1.

• The REDUCE operation can only be applied if the
top of the stack is not an open nonterminal symbol
and n ≥ 1.

To designate the set of valid generator transitions,
we write AG(T, S, n).

This transition set generates trees using nearly the
same structure building actions and stack configura-
tions as the “top-down PDA” construction proposed
by Abney et al. (1999), albeit without the restriction
that the trees be in Chomsky normal form.

3.3 Transition Sequences from Trees

Any parse tree can be converted to a sequence of
transitions via a depth-first, left-to-right traversal of
a parse tree. Since there is a unique depth-first, left-
ro-right traversal of a tree, there is exactly one tran-
sition sequence of each tree. For a tree y and a
sequence of symbols x, we write a(x,y) to indi-
cate the corresponding sequence of generation tran-
sitions, and b(x,y) to indicate the parser transitions.

3.4 Runtime Analysis

A detailed analysis of the algorithmic properties of
our top-down parser is beyond the scope of this pa-
per; however, we briefly state several facts. As-
suming the availability of constant time push and
pop operations, the runtime is linear in the number
of the nodes in the parse tree that is generated by
the parser/generator (intuitively, this is true since al-
though an individual REDUCE operation may require

201

Stackt Buffert Open NTst Action Stackt+1 Buffert+1 Open NTst+1

S B n NT(X) S | (X B n+ 1
S x | B n SHIFT S | x B n
S | (X | τ1 | . . . | τ` B n REDUCE S | (X τ1 . . . τ`) B n− 1

Figure 1: Parser transitions showing the stack, buffer, and open nonterminal count before and after each action type. S represents

the stack, which contains open nonterminals and completed subtrees; B represents the buffer of unprocessed terminal symbols; x

is a terminal symbol, X is a nonterminal symbol, and each τ is a completed subtree. The top of the stack is to the right, and the

buffer is consumed from left to right. Elements on the stack and buffer are delimited by a vertical bar (|).

Input: The hungry cat meows .

Stack Buffer Action
0 The | hungry | cat |meows | . NT(S)
1 (S The | hungry | cat |meows | . NT(NP)
2 (S | (NP The | hungry | cat |meows | . SHIFT

3 (S | (NP |The hungry | cat |meows | . SHIFT

4 (S | (NP |The | hungry cat |meows | . SHIFT

5 (S | (NP |The | hungry | cat meows | . REDUCE

6 (S | (NP The hungry cat) meows | . NT(VP)
7 (S | (NP The hungry cat) | (VP meows | . SHIFT

8 (S | (NP The hungry cat) | (VP meows . REDUCE

9 (S | (NP The hungry cat) | (VP meows) . SHIFT

10 (S | (NP The hungry cat) | (VP meows) | . REDUCE

11 (S (NP The hungry cat) (VP meows) .)

Figure 2: Top-down parsing example.

Stackt Termst Open NTst Action Stackt+1 Termst+1 Open NTst+1

S T n NT(X) S | (X T n+ 1
S T n GEN(x) S | x T | x n
S | (X | τ1 | . . . | τ` T n REDUCE S | (X τ1 . . . τ`) T n− 1

Figure 3: Generator transitions. Symbols defined as in Fig. 1 with the addition of T representing the history of generated terminals.

Stack Terminals Action
0 NT(S)
1 (S NT(NP)
2 (S | (NP GEN(The)
3 (S | (NP |The The GEN(hungry)
4 (S | (NP |The | hungry The | hungry GEN(cat)
5 (S | (NP |The | hungry | cat The | hungry | cat REDUCE

6 (S | (NP The hungry cat) The | hungry | cat NT(VP)
7 (S | (NP The hungry cat) | (VP The | hungry | cat GEN(meows)
8 (S | (NP The hungry cat) | (VP meows The | hungry | cat |meows REDUCE

9 (S | (NP The hungry cat) | (VP meows) The | hungry | cat |meows GEN(.)
10 (S | (NP The hungry cat) | (VP meows) | . The | hungry | cat |meows | . REDUCE

11 (S (NP The hungry cat) (VP meows) .) The | hungry | cat |meows | .
Figure 4: Joint generation of a parse tree and sentence.

202

applying a number of pops that is linear in the num-
ber of input symbols, the total number of pop opera-
tions across an entire parse/generation run will also
be linear). Since there is no way to bound the num-
ber of output nodes in a parse tree as a function of
the number of input words, stating the runtime com-
plexity of the parsing algorithm as a function of the
input size requires further assumptions. Assuming
our fixed constraint on maximum depth, it is linear.

3.5 Comparison to Other Models

Our generation algorithm algorithm differs from
previous stack-based parsing/generation algorithms
in two ways. First, it constructs rooted tree struc-
tures top down (rather than bottom up), and sec-
ond, the transition operators are capable of directly
generating arbitrary tree structures rather than, e.g.,
assuming binarized trees, as is the case in much
prior work that has used transition-based algorithms
to produce phrase-structure trees (Sagae and Lavie,
2005; Zhang and Clark, 2011; Zhu et al., 2013).

4 Generative Model

RNNGs use the generator transition set just pre-
sented to define a joint distribution on syntax trees
(y) and words (x). This distribution is defined as a
sequence model over generator transitions that is pa-
rameterized using a continuous space embedding of
the algorithm state at each time step (ut); i.e.,

p(x,y) =
|a(x,y)|∏
t=1

p(at | a<t)

=
|a(x,y)|∏
t=1

exp r>at
ut + bat∑

a′∈AG(Tt,St,nt)
exp r>a′ut + ba′

,

and where action-specific embeddings ra and bias
vector b are parameters in Θ.

The representation of the algorithm state at time
t, ut, is computed by combining the representation
of the generator’s three data structures: the output
buffer (Tt), represented by an embedding ot, the
stack (St), represented by an embedding st, and the
history of actions (a<t) taken by the generator, rep-
resented by an embedding ht,

ut = tanh (W[ot; st; ht] + c) ,

where W and c are parameters. Refer to Figure 5
for an illustration of the architecture.

The output buffer, stack, and history are se-
quences that grow unboundedly, and to obtain rep-
resentations of them we use recurrent neural net-
works to “encode” their contents (Cho et al., 2014).
Since the output buffer and history of actions are
only appended to and only contain symbols from a
finite alphabet, it is straightforward to apply a stan-
dard RNN encoding architecture. The stack (S) is
more complicated for two reasons. First, the ele-
ments of the stack are more complicated objects than
symbols from a discrete alphabet: open nontermi-
nals, terminals, and full trees, are all present on the
stack. Second, it is manipulated using both push and
pop operations. To efficiently obtain representations
of S under push and pop operations, we use stack
LSTMs (Dyer et al., 2015).

4.1 Syntactic Composition Function

When a REDUCE operation is executed, the parser
pops a sequence of completed subtrees and/or to-
kens (together with their vector embeddings) from
the stack and makes them children of the most recent
open nonterminal on the stack, “completing” the
constituent. To compute an embedding of this new
subtree, we use a composition function based on
bidirectional LSTMs, which is illustrated in Fig. 6.

The first vector read by the LSTM in both the for-
ward and reverse directions is an embedding of the
label on the constituent being constructed (in the fig-
ure, NP). This is followed by the embeddings of the
child subtrees (or tokens) in forward or reverse or-
der. Intuitively, this order serves to “notify” each
LSTM what sort of head it should be looking for as it
processes the child node embeddings. The final state
of the forward and reverse LSTMs are concatenated,
passed through an affine transformation and a tanh
nonlinearity to become the subtree embedding.4 Be-
cause each of the child node embeddings (u, v, w in
Fig. 6) is computed similarly (if it corresponds to an

4We found the many previously proposed syntactic compo-
sition functions inadequate for our purposes. First, we must
contend with an unbounded number of children, and many
previously proposed functions are limited to binary branching
nodes (Socher et al., 2013b; Dyer et al., 2015). Second, those
that could deal with n-ary nodes made poor use of nonterminal
information (Tai et al., 2015), which is crucial for our task.

203

The hungry cat

NP (VP(S

RE
DU

CE
GE

N
NT

(N
P)

NT
(VP

)

…

cat hungry The
a<t

p(at)

ut
Ttz }| {Stz }| {

Figure 5: Neural architecture for defining a distribution over at given representations of the stack (St), output buffer (Tt) and

history of actions (a<t). Details of the composition architecture of the NP, the action history LSTM, and the other elements of the

stack are not shown. This architecture corresponds to the generator state at line 7 of Figure 4.

NP

u v w

NP u v w NP

x
x

Figure 6: Syntactic composition function based on bidirec-

tional LSTMs that is executed during a REDUCE operation; the

network on the right models the structure on the left.

internal node), this composition function is a kind of
recursive neural network.

4.2 Word Generation
To reduce the size of AG(S, T, n), word genera-
tion is broken into two parts. First, the decision to
generate is made (by predicting GEN as an action),
and then choosing the word, conditional on the cur-
rent parser state. To further reduce the computa-
tional complexity of modeling the generation of a
word, we use a class-factored softmax (Baltescu and
Blunsom, 2015; Goodman, 2001). By using

√|Σ|
classes for a vocabulary of size |Σ|, this prediction
step runs in time O(

√|Σ|) rather than the O(|Σ|) of
the full-vocabulary softmax. To obtain clusters, we
use the greedy agglomerative clustering algorithm
of Brown et al. (1992).

4.3 Training
The parameters in the model are learned to maxi-
mize the likelihood of a corpus of trees.

4.4 Discriminative Parsing Model

A discriminative parsing model can be obtained by
replacing the embedding of Tt at each time step with
an embedding of the input buffer Bt. To train this
model, the conditional likelihood of each sequence
of actions given the input string is maximized.5

5 Inference via Importance Sampling

Our generative model p(x,y) defines a joint dis-
tribution on trees (y) and sequences of words (x).
To evaluate this as a language model, it is neces-
sary to compute the marginal probability p(x) =∑

y′∈Y(x) p(x,y
′). And, to evaluate the model as

a parser, we need to be able to find the MAP parse
tree, i.e., the tree y ∈ Y(x) that maximizes p(x,y).
However, because of the unbounded dependencies
across the sequence of parsing actions in our model,
exactly solving either of these inference problems
is intractable. To obtain estimates of these, we use
a variant of importance sampling (Doucet and Jo-
hansen, 2011).

Our importance sampling algorithm uses a condi-
tional proposal distribution q(y | x) with the fol-
lowing properties: (i) p(x,y) > 0 =⇒ q(y |
x) > 0; (ii) samples y ∼ q(y | x) can be ob-
tained efficiently; and (iii) the conditional probabil-
ities q(y | x) of these samples are known. While
many such distributions are available, the discrim-

5For the discriminative parser, the POS tags are processed
similarly as in (Dyer et al., 2015); they are predicted for English
with the Stanford Tagger (Toutanova et al., 2003) and Chinese
with Marmot (Mueller et al., 2013).

204

inatively trained variant of our parser (§4.4) ful-
fills these requirements: sequences of actions can
be sampled using a simple ancestral sampling ap-
proach, and, since parse trees and action sequences
exist in a one-to-one relationship, the product of the
action probabilities is the conditional probability of
the parse tree under q. We therefore use our discrim-
inative parser as our proposal distribution.

Importance sampling uses importance weights,
which we define as w(x,y) = p(x,y)/q(y | x), to
compute this estimate. Under this definition, we can
derive the estimator as follows:

p(x) =
∑

y∈Y(x)

p(x,y) =
∑

y∈Y(x)

q(y | x)w(x,y)

= Eq(y|x)w(x,y).

We now replace this expectation with its Monte
Carlo estimate as follows, using N samples from q:

y(i) ∼ q(y | x) for i ∈ {1, 2, . . . , N}

Eq(y|x)w(x,y)
MC≈ 1

N

N∑
i=1

w(x,y(i))

To obtain an estimate of the MAP tree ŷ, we choose
the sampled tree with the highest probability under
the joint model p(x,y).

6 Experiments

We present results of our two models both on parsing
(discriminative and generative) and as a language
model (generative only) in English and Chinese.

Data. For English, §2–21 of the Penn Treebank
are used as training corpus for both, with §24 held
out as validation, and §23 used for evaluation. Sin-
gleton words in the training corpus with unknown
word classes using the the Berkeley parser’s map-
ping rules.6 Orthographic case distinctions are pre-
served, and numbers (beyond singletons) are not
normalized. For Chinese, we use the Penn Chinese
Treebank Version 5.1 (CTB) (Xue et al., 2005).7 For

6http://github.com/slavpetrov/
berkeleyparser

7§001–270 and 440–1151 for training, §301–325 develop-
ment data, and §271–300 for evaluation.

the Chinese experiments, we use a single unknown
word class. Corpus statistics are given in Table 1.8

Table 1: Corpus statistics.

PTB-train PTB-test CTB-train CTB-test
Sequences 39,831 2,416 50,734 348
Tokens 950,012 56,684 1,184,532 8,008
Types 23,815 6,823 31,358 1,637
UNK-Types 49 42 1 1

Model and training parameters. For the dis-
criminative model, we used hidden dimensions of
128 and 2-layer LSTMs (larger numbers of dimen-
sions reduced validation set performance). For the
generative model, we used 256 dimensions and 2-
layer LSTMs. For both models, we tuned the
dropout rate to maximize validation set likelihood,
obtaining optimal rates of 0.2 (discriminative) and
0.3 (generative). For the sequential LSTM baseline
for the language model, we also found an optimal
dropout rate of 0.3. For training we used stochas-
tic gradient descent with a learning rate of 0.1. All
parameters were initialized according to recommen-
dations given by Glorot and Bengio (2010).

English parsing results. Table 2 (last two rows)
gives the performance of our parser on Section 23,
as well as the performance of several representa-
tive models. For the discriminative model, we used
a greedy decoding rule as opposed to beam search
in some shift-reduce baselines. For the generative
model, we obtained 100 independent samples from
a flattened distribution of the discriminative parser
(by exponentiating each probability by α = 0.8 and
renormalizing) and reranked them according to the
generative model.9

Chinese parsing results. Chinese parsing results
were obtained with the same methodology as in En-
glish and show the same pattern (Table 6).

Language model results. We report held-out per-
word perplexities of three language models, both se-
quential and syntactic. Log probabilities are normal-
ized by the number of words (excluding the stop

8This preprocessing scheme is more similar to what is stan-
dard in parsing than what is standard in language modeling.
However, since our model is both a parser and a language
model, we opted for the parser normalization.

9The value α = 0.8 was chosen based on the diversity of
the samples generated on the development set.

205

Table 2: Parsing results on PTB §23 (D=discriminative,

G=generative, S=semisupervised).

Model type F1

Henderson (2004) D 89.4
Socher et al. (2013a) D 90.4
Zhu et al. (2013) D 90.4
Vinyals et al. (2015) – WSJ only D 90.5
Petrov and Klein (2007) G 90.1
Bod (2003) G 90.7
Shindo et al. (2012) – single G 91.1
Shindo et al. (2012) – ensemble G 92.4
Zhu et al. (2013) S 91.3
McClosky et al. (2006) S 92.1
Vinyals et al. (2015) – single S 92.5
Vinyals et al. (2015) – ensemble S 92.8
Discriminative, q(y | x) D 89.8
Generative, p̂(y | x) G 92.4

Table 3: Parsing results on CTB 5.1.
Model type F1

Zhu et al. (2013) D 82.6
Wang et al. (2015) D 83.2
Huang and Harper (2009) D 84.2
Charniak (2000) G 80.8
Bikel (2004) G 80.6
Petrov and Klein (2007) G 83.3
Zhu et al. (2013) S 85.6
Wang and Xue (2014) S 86.3
Wang et al. (2015) S 86.6
Discriminative, q(y | x) D 80.7
Generative, p̂(y | x) G 82.7

symbol), inverted, and exponentiated to yield the
perplexity. Results are summarized in Table 4.

7 Discussion

It is clear from our experiments that the proposed
generative model is quite effective both as a parser
and as a language model. This is the result of
(i) relaxing conventional independence assumptions
(e.g., context-freeness) and (ii) inferring continu-
ous representations of symbols alongside non-linear
models of their syntactic relationships. The most
significant question that remains is why the dis-
criminative model—which has more information
available to it than the generative model—performs

Table 4: Language model perplexity results.

Model test ppl (PTB) test ppl (CTB)
IKN 5-gram 169.3 255.2
LSTM LM 113.4 207.3
RNNG 102.4 171.9

worse than the generative model. This pattern has
been observed before in neural parsing by Hender-
son (2004), who hypothesized that larger, unstruc-
tured conditioning contexts are harder to learn from,
and provide opportunities to overfit. Our discrimi-
native model conditions on the entire history, stack,
and buffer, while our generative model only ac-
cesses the history and stack. The fully discrimina-
tive model of Vinyals et al. (2015) was able to obtain
results similar to those of our generative model (al-
beit using much larger training sets obtained through
semisupervision) but similar results to those of our
discriminative parser using the same data. In light of
their results, we believe Henderson’s hypothesis is
correct, and that generative models should be con-
sidered as a more statistically efficient method for
learning neural networks from small data.

8 Related Work

Our language model combines work from two mod-
eling traditions: (i) recurrent neural network lan-
guage models and (ii) syntactic language model-
ing. Recurrent neural network language models
use RNNs to compute representations of an un-
bounded history of words in a left-to-right language
model (Zaremba et al., 2015; Mikolov et al., 2010;
Elman, 1990). Syntactic language models jointly
generate a syntactic structure and a sequence of
words (Baker, 1979; Jelinek and Lafferty, 1991).
There is an extensive literature here, but one strand
of work has emphasized a bottom-up generation of
the tree, using variants of shift-reduce parser ac-
tions to define the probability space (Chelba and
Jelinek, 2000; Emami and Jelinek, 2005). The
neural-network–based model of Henderson (2004)
is particularly similar to ours in using an unbounded
history in a neural network architecture to param-
eterize generative parsing based on a left-corner
model. Dependency-only language models have
also been explored (Titov and Henderson, 2007;

206

Buys and Blunsom, 2015a,b). Modeling generation
top-down as a rooted branching process that recur-
sively rewrites nonterminals has been explored by
Charniak (2000) and Roark (2001). Of particular
note is the work of Charniak (2010), which uses ran-
dom forests and hand-engineered features over the
entire syntactic derivation history to make decisions
over the next action to take.

The neural networks we use to model sentences
are structured according to the syntax of the sen-
tence being generated. Syntactically structured neu-
ral architectures have been explored in a num-
ber of applications, including discriminative pars-
ing (Socher et al., 2013a; Kiperwasser and Gold-
berg, 2016), sentiment analysis (Tai et al., 2015;
Socher et al., 2013b), and sentence representa-
tion (Socher et al., 2011; Bowman et al., 2006).
However, these models have been, without excep-
tion, discriminative; this is the first work to use syn-
tactically structured neural models to generate lan-
guage. Earlier work has demonstrated that sequen-
tial RNNs have the capacity to recognize context-
free (and beyond) languages (Sun et al., 1998;
Siegelmann and Sontag, 1995). In contrast, our
work may be understood as a way of incorporating a
context-free inductive bias into the model structure.

9 Outlook

RNNGs can be combined with a particle filter infer-
ence scheme (rather than the importance sampling
method based on a discriminative parser, §5) to pro-
duce a left-to-right marginalization algorithm that
runs in expected linear time. Thus, they could be
used in applications that require language models.

A second possibility is to replace the sequential
generation architectures found in many neural net-
work transduction problems that produce sentences
conditioned on some input. Previous work in ma-
chine translation has showed that conditional syn-
tactic models can function quite well without the
computationally expensive marginalization process
at decoding time (Galley et al., 2006; Gimpel and
Smith, 2014).

A third consideration regarding how RNNGs, hu-
man sentence processing takes place in a left-to-
right, incremental order. While an RNNG is not a
processing model (it is a grammar), the fact that it is

left-to-right opens up several possibilities for devel-
oping new sentence processing models based on an
explicit grammars, similar to the processing model
of Charniak (2010).

Finally, although we considered only the super-
vised learning scenario, RNNGs are joint models
that could be trained without trees, for example, us-
ing expectation maximization.

10 Conclusion

We introduced recurrent neural network grammars,
a probabilistic model of phrase-structure trees that
can be trained generatively and used as a language
model or a parser, and a corresponding discrimina-
tive model that can be used as a parser. Apart from
out-of-vocabulary preprocessing, the approach re-
quires no feature design or transformations to tree-
bank data. The generative model outperforms ev-
ery previously published parser built on a single su-
pervised generative model in English, and a bit be-
hind the best-reported generative model in Chinese.
As language models, RNNGs outperform the best
single-sentence language models.

Acknowledgments

We thank Brendan O’Connor, Swabha
Swayamdipta, and Brian Roark for feedback
on drafts of this paper, and Jan Buys, Phil Blunsom,
and Yue Zhang for help with data preparation.
This work was sponsored in part by the Defense
Advanced Research Projects Agency (DARPA)
Information Innovation Office (I2O) under the
Low Resource Languages for Emergent Incidents
(LORELEI) program issued by DARPA/I2O under
Contract No. HR0011-15-C-0114; it was also sup-
ported in part by Contract No. W911NF-15-1-0543
with the DARPA and the Army Research Office
(ARO). Approved for public release, distribution
unlimited. The views expressed are those of the au-
thors and do not reflect the official policy or position
of the Department of Defense or the U.S. Govern-
ment. Miguel Ballesteros was supported by the
European Commission under the contract numbers
FP7-ICT-610411 (project MULTISENSOR) and
H2020-RIA-645012 (project KRISTINA).

207

References
Steven Abney, David McAllester, and Fernando Pereira.

1999. Relating probabilistic grammars and automata.
In Proc. ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine transation by jointly learn-
ing to align and translate. In Proc. ICLR.

James K. Baker. 1979. Trainable grammars for speech
recognition. The Journal of the Acoustical Society of
America, 65(S1):S132–S132.

Paul Baltescu and Phil Blunsom. 2015. Pragmatic neural
modelling in machine translation. In Proc. NAACL.

Dan Bikel. 2004. On the parameter space of generative
lexicalized statistical parsing models. Ph.D. thesis,
University of Pennsylvania.

Rens Bod. 2003. An efficient implementation of a new
DOP model. In Proc. EACL.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, Christopher D. Manning, and Christo-
pher Potts. 2006. A fast unified model for parsing and
sentence understanding. CoRR, abs/1603.06021.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional Linguistics, 18(4):467–479.

Jan Buys and Phil Blunsom. 2015a. A Bayesian model
for generative transition-based dependency parsing.
CoRR, abs/1506.04334.

Jan Buys and Phil Blunsom. 2015b. Generative incre-
mental dependency parsing with neural networks. In
Proc. ACL.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. NAACL.

Eugene Charniak. 2010. Top-down nearly-context-
sensitive parsing. In Proc. EMNLP.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling. Computer Speech and Language,
14(4).

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proc. EMNLP.

Noam Chomsky. 1957. Syntactic Structures. Mouton,
The Hague/Paris.

Arnaud Doucet and Adam M. Johansen. 2011. A tutorial
on particle filtering and smoothing: Fifteen years later.
In Handbook of Nonlinear Filtering. Oxford.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-based

dependency parsing with stack long short-term mem-
ory. In Proc. ACL.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14:179–211.

Ahmad Emami and Frederick Jelinek. 2005. A neural
syntactic language model. Machine Learning, 60:195–
227.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proc.
ACL.

Kevin Gimpel and Noah A. Smith. 2014. Phrase de-
pendency machine translation with quasi-synchronous
tree-to-tree features. Computational Linguistics,
40(2).

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proc. ICML.

Joshua Goodman. 2001. Classes for fast maximum en-
tropy training. CoRR, cs.CL/0108006.

James Henderson. 2003. Inducing history representations
for broad coverage statistical parsing. In Proc. NAACL.

James Henderson. 2004. Discriminative training of a neu-
ral network statistical parser. In Proc. ACL.

Zhongqiang Huang and Mary Harper. 2009. Self-training
PCFG grammars with latent annotations across lan-
guages. In Proc. EMNLP.

Frederick Jelinek and John D. Lafferty. 1991. Compu-
tation of the probability of initial substring generation
by stochastic context-free grammars. Computational
Linguistics, 17(3):315–323.

Mark Johnson. 2001. Joint and conditional estimation of
tagging and parsing models. In Proc. ACL.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
first dependency parsing with hierarchical tree
LSTMs. ArXiv:1603.00375.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proc.
NAACL.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proc. Inter-
speech.

Thomas Mueller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morphologi-
cal tagging. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-

208

ing, pages 322–332. Association for Computational
Linguistics, Seattle, Washington, USA. URL http:
//www.aclweb.org/anthology/D13-1032.

Terence Parr and Kathleen Fisher. 2011. LL(*): The
foundation of the ANTLR parser generator. In Proc.
PLDI.

Slav Petrov and Dan Klein. 2007. Improved inference for
unlexicalized parsing. In Proc. NAACL.

Brian Roark. 2001. Probabilistic top-down parsing and
language modeling. Computational Linguistics, 27(2).

Brian Roark. 2004. Robust garden path parsing. JNLE,
10(1):1–24.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proc. IWPT.

Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and
Masaaki Nagata. 2012. Bayesian symbol-refined tree
substitution grammars for syntactic parsing. In Proc.
ACL.

Hava T. Siegelmann and Eduardo D. Sontag. 1995. On
the computational power of neural nets. Journal of
Computer and System Sciences, 50.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013a. Parsing with compositional
vectors. In Proc. ACL.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Proc. NIPS.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013b. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. EMNLP.

Guo-Zheng Sun, C. Lee Giles, and Hsing-Hen Chen.
1998. The neural network pushdown automaton: Ar-
chitecture, dynamics and training. In Adaptive Pro-
cessing of Sequences and Data Structures, volume
1387 of Lecture Notes in Computer Science, pages
296–345.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proc. ACL.

Ivan Titov and James Henderson. 2007. A latent variable
model for generative dependency parsing. In Proc.
IWPT.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc.
NAACL.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. ICLR.

Zhiguo Wang, Haitao Mi, and Nianwen Xue. 2015. Fea-
ture optimization for constituent parsing via neural
networks. In Proc. ACL-IJCNLP.

Zhiguo Wang and Nianwen Xue. 2014. Joint POS tag-
ging and transition-based constituent parsing in Chi-
nese with non-local features. In Proc. ACL.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Semanti-
cally conditioned LSTM-based natural language gen-
eration for spoken dialogue systems. In Proc. EMNLP.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In Proc. ICML.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer.
2005. The Penn Chinese TreeBank: Phrase structure
annotation of a large corpus. Nat. Lang. Eng., 11(2).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2015. Recurrent neural network regularization. In
Proc. ICLR.

Yue Zhang and Stephen Clark. 2011. Syntactic process-
ing using the generalized perceptron and beam search.
Computational Linguistics, 37(1).

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In Proc. ACL.

209

Proceedings of NAACL-HLT 2016, pages 210–220,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Expected F-Measure Training for Shift-Reduce Parsing with Recurrent
Neural Networks

Wenduan Xu† Michael Auli‡ Stephen Clark†
†
Computer Laboratory, Cambridge University

‡
Facebook AI Research

wx217@cam.ac.uk, michaelauli@fb.com, sc609@cam.ac.uk

Abstract

We present expected F-measure training for
shift-reduce parsing with RNNs, which en-
ables the learning of a global parsing model
optimized for sentence-level F1. We apply
the model to CCG parsing, where it improves
over a strong greedy RNN baseline, by 1.47%
F1, yielding state-of-the-art results for shift-
reduce CCG parsing.

1 Introduction

Shift-reduce parsing is a popular parsing paradigm,
one reason being the potential for fast parsers based
on the linear number of parsing actions needed to an-
alyze a sentence (Nivre and Scholz, 2004; Sagae and
Lavie, 2006; Zhang and Clark, 2011; Goldberg et
al., 2013; Zhu et al., 2013; Xu et al., 2014). Recent
work has shown that by combining distributed rep-
resentations and neural network models (Chen and
Manning, 2014), accurate and efficient shift-reduce
parsing models can be obtained with little feature
engineering, largely alleviating the feature sparsity
problem of linear models.

In practice, the most common objective for opti-
mizing neural network shift-reduce parsing models
is maximum likelihood. In the greedy search set-
ting, the log-likelihood of each target action is max-
imized during training, and the most likely action is
committed to at each step of the parsing process dur-
ing inference (Chen and Manning, 2014; Dyer et al.,
2015). In the beam search setting, Zhou et al. (2015)
show that sentence-level likelihood, together with
contrastive learning (Hinton, 2002), can be used
to derive a global model which incorporates beam

search at both training and inference time (Zhang
and Clark, 2008), giving significant accuracy gains
over a fully greedy model. However, despite the ef-
fectiveness of optimizing likelihood, it is often de-
sirable to directly optimize for task-specific metrics,
which often leads to higher accuracies for a variety
of models and applications (Goodman, 1996; Och,
2003; Smith and Eisner, 2006; Rosti et al., 2010;
Auli and Lopez, 2011; He and Deng, 2012; Auli et
al., 2014; Auli and Gao, 2014; Gao et al., 2014).

In this paper, we present a global neural net-
work parsing model, optimized for a task-specific
loss based on expected F-measure. The model natu-
rally incorporates beam search during training, and
is globally optimized, to learn shift-reduce action se-
quences that lead to parses with high expected F-
scores. In contrast to Auli and Lopez (2011), who
optimize a CCG parser for F-measure via softmax-
margin (Gimpel and Smith, 2010), we directly op-
timize an expected F-measure objective, derivable
from only a set of shift-reduce action sequences and
sentence-level F-scores. More generally, our method
can be seen as an alternative approach for training
a neural beam search parsing model (Watanabe and
Sumita, 2015; Weiss et al., 2015; Zhou et al., 2015),
combining the benefits of global learning and task-
specific optimization.

We also introduce a simple recurrent neural net-
work (RNN) model to shift-reduce parsing on which
the greedy baseline and the global model is based.
Compared with feed-forward networks, RNNs have
the potential to capture and use an unbounded his-
tory, and they have been used to learn explicit
representations for parser states as well as actions

210

performed on the stack and queue in shift-reduce
parsers (Dyer et al., 2015; Watanabe and Sumita,
2015), following Miikkulainen (1996) and May-
berry and Miikkulainen (1999). In comparison, our
model is a natural extension of the feed-forward ar-
chitecture in Chen and Manning (2014) using Elman
RNNs (Elman, 1990).

We apply our models to CCG, and evaluate the re-
sulting parsers on standard CCGBank data (Hock-
enmaier and Steedman, 2007). More specifically,
by combining the global RNN parsing model with
a bidirectional RNN CCG supertagger that we have
developed (§4) — building on the supertagger of Xu
et al. (2015), we obtain accuracies higher than the
shift-reduce CCG parsers of Zhang and Clark (2011)
and Xu et al. (2014). Finally, although we choose to
focus on shift-reduce parsing for CCG, we expect the
methods to generalize to other shift-reduce parsers.

2 RNN Models

In this section, we start by describing the baseline
model, which is also taken as the pretrained model to
train the global model (§2.4). We abstract away from
the details of CCG and present the models in a canon-
ical shift-reduce parsing framework (Aho and Ull-
man, 1972), which is henceforth assumed: partially
constructed derivations are maintained on a stack,
and a queue stores remaining words from the input
string; the initial parse item has an empty stack and
no input has been consumed on the queue. Parsing
proceeds by applying a sequence of shift-reduce ac-
tions to transform the input until the queue has been
exhausted and no more actions can be applied.

2.1 Model

Our recurrent neural network model is a standard El-
man network (Elman, 1990) which is factored into
an input layer, a hidden layer with recurrent con-
nections, and an output layer. Similar to Chen and
Manning (2014), the input layer xt encodes stack
and queue contexts of a parse item through con-
catenation of feature embeddings. The output layer
yt represents a probability distribution over possible
parser actions for the current item.

The current state of the hidden layer is determined
by the current input and the previous hidden layer
state. The weights between the layers are repre-

sented by a number of matrices: matrix U contains
weights between the input and hidden layers, V con-
tains weights between the hidden and output layers,
and W contains weights between the previous hid-
den layer and the current hidden layer.

The hidden and output layers at time step t are
computed via a series of vector-matrix products and
non-linearities:

ht = f(xtU + ht−1W),
yt = g(htV),

where

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk

are sigmoid1 and softmax functions, respectively.

2.2 Feature Embeddings
Given a parse item, we first extract features using
a set of predefined feature templates; each template
belongs to a feature type f (such as word or POS

tag), which has an associated look-up table, denoted
as Lf , to project a feature to its distributed represen-
tation; and Lf ∈ Rnf×df , where nf is the vocabu-
lary size of feature type f and df is its embedding
dimension. The embedding for a concrete feature is
obtained by retrieving the corresponding row from
Lf . At time step t, the input layer xt is:

xt = [ef1,1 ; . . . ; ef1,|f1| ; . . . ; efk,1 ; . . . ; efk,|fk|],

where “; ” denotes concatenation, |fk| is the num-
ber of feature templates for the kth feature type and
xt ∈ R1×(df1 |f1|+...+dfk |fk|). For each feature type,
a special embedding is used for unknown features.

2.3 Greedy Training
To train a greedy model, we extract gold-standard
actions from the training data and minimize cross-
entropy loss with stochastic gradient descent (SGD)
using backpropagation through time (BPTT; Rumel-
hart et al., 1988). Similar to Chen and Manning
(2014), we compute the softmax over only feasible
actions at each step.

Unfortunately, although we use an RNN, which
keeps a representation of previous parse items in its

1We also experimented with tanh, and found no difference
in resulting performance.

211

hidden state and has the potential to capture long-
term dependencies, the resulting model is still fully
greedy: a locally optimal action is taken at each step
given the current input xt and the previous hidden
state ht−1. Therefore, once a sub-optimal action has
been committed to by the parser at any step, it has
no means to recover and has to continue from that
mistake. Such mistakes accumulate until the goal is
reached, and they are referred to as search errors.

In order to enlarge the search space of the greedy
model thereby alleviating some search errors, we ex-
periment with applying beam search decoding dur-
ing inference; and we observe some accuracy im-
provements by taking the highest scored action se-
quence as the output (Table 3). However, since the
greedy model itself is only optimized locally, as ex-
pected, the improvements diminish after a certain
beam size. Instead, we show below that by using
the greedy model weights as a starting point, we can
train a global model optimized for an expected F-
measure loss, which gives further significant accu-
racy improvements (§5).

2.4 Expected F1 Training
The RNN we use to train the global model has the
same Elman architecture as the greedy model. Given
the greedy model, we summarize its weights as θ =
{U,V,W} and initialize the weights of the global
model to θ, and training proceeds as follows:

1. We use a beam-search decoder to parse a sen-
tence xn in the training data and let the decoder
generate a k-best list2 of output parses using the
current θ, denoted as Λ(xn). Similar to other
structured training approaches that use inexact
beam search (Zhang and Clark, 2008; Weiss et
al., 2015; Watanabe and Sumita, 2015; Zhou et
al., 2015), Λ(xn) is as an approximation to the
set of all possible parses of an input sentence.

2. Let yi be the shift-reduce action sequence of a
parse in the k-best list Λ(xn), and let |yi| be its
total number of actions and yij be the jth ac-
tion in yi, for 1 ≤ j ≤ |yi|. We compute the
log-linear action sequence score of yi, ρ(yi),
as a sum of individual action scores in that

2We do not put a limit on k, and whenever an item is fin-
ished, it is appended to the k-best list. We found the size of the
k-best lists were on average twice the size of a given beam size.

sequence: ρ(yi) =
∑|yi|

j=1 log sθ(yij), where
sθ(yij) is the softmax action score of yij given
by the RNN model. For each yi, we also com-
pute its sentence-level F1 using the set of la-
beled, directed dependencies, denoted as ∆, as-
sociated with its parse item. (We assume F1
over labeled, directed dependencies is also the
parser evaluation metric.)

3. We compute the negative expected F1 objective
(-xF1, defined below) for xn using the scores
obtained in the above step and minimize this
objective using SGD (maximizing the expected
F1 for xn). These three steps repeat for other
sentences in the training data, updating θ after
processing each sentence, and training iterates
in epochs until convergence.

We note that the above process is different from
parse reranking (Collins, 2000; Charniak and John-
son, 2005), in which Λ(xn) would stay the same for
each xn in the training data across all epochs, and a
reranker is trained on all fixed Λ(xn); whereas the
xF1 training procedure is on-line learning with pa-
rameters updated after processing each sentence and
each Λ(xn) is generated with a new θ.

More formally, we define the loss J(θ), which in-
corporates all action scores in each action sequence,
and all action sequences in Λ(xn), for each xn as

J(θ) = −xF1(θ)

= −
∑

yi∈Λ(xn)

p(yi|θ)F1(∆yi ,∆
G
xn), (1)

where F1(∆yi ,∆
G
xn) is the sentence level F1 of the

parse derived by yi, with respect to the gold-standard
dependency structure ∆G

xn of xn; p(yi|θ) is the nor-
malized probability score of the action sequence yi,
computed as

p(yi|θ) =
exp{ρ(yi)}∑

y∈Λ(xn) exp{ρ(y)} . (2)

To apply SGD, we derive the error gradients used
for backpropagation. First, by applying the chain

212

rule to J(θ), we have

∂J(θ)
∂θ

= −
∑

yi∈Λ(xn)

∑
yij∈yi

∂J(θ)
∂sθ(yij)

∂sθ(yij)
∂θ

= −
∑

yi∈Λ(xn)

∑
yij∈yi

δyij
∂sθ(yij)
∂θ

,

where ∂sθ(yij)
∂θ is the standard softmax gradients.

Next, to compute δyij , which are the error gradients
propagated from the loss to the softmax layer, we
rewrite the loss in (1) as

J(θ) = −xF1 = −G(θ)
Z(θ)

(3)

= −
∑

yi∈Λ(xn) exp{ρ(yi)}F1(∆yi ,∆
G
xn)∑

yi∈Λ(xn) exp{ρ(yi)} ,

and by simplifying:

∂G(θ)
∂sθ(yij)

=
1

sθ(yij)
exp{ρ(yi)}F1(∆yi ,∆

G
xn),

∂Z(θ)
∂sθ(yij)

=
1

sθ(yij)
exp{ρ(yi)},

since
∂ρ(yi)
∂sθ(yij)

=
1

sθ(yij)
.

Finally, using (2) and (3) plus the above simplifica-
tions, the error term δyij can be derived using the
quotient rule:

δyij = −∂xF1(θ)
∂sθ(yij)

= −∂(G(θ)/Z(θ))
∂sθ(yij)

=
G(θ)Z ′(θ)−G′(θ)Z(θ)

Z2(θ)

=
exp{ρ(yi)}
Z(θ)

(xF1(θ)− F1(∆yi ,∆
G
xn))

1
sθ(yij)

= p(yi|θ)(xF1(θ)− F1(∆yi ,∆
G
xn))

1
sθ(yij)

,

(4)

which has a simple closed form.
A naive implementation of the xF1 training pro-

cedure would backpropagate the error gradients in-
dividually for each yi in Λ(xn). To make it efficient,

we observe that the unfolded network in the beam
containing all yi becomes a DAG (with one hidden
state leading to one or more resulting hidden states)
and apply backpropagation through structure (Goller
and Kuchler, 1996) to obtain the gradients.

3 Shift-Reduce CCG Parsing

We explain the application of the RNN models to
CCG by first describing the CCG mechanisms used
in our parser, followed by details of the shift-reduce
transition system.

3.1 Combinatory Categorial Grammar
A lexicon, together with a set of CCG rules, for-
mally constitute a CCG. The former defines a map-
ping from words to sets of lexical categories repre-
senting syntactic types, and the latter gives schemas
which dictate whether two categories can be com-
bined. Given the lexicon and the rules, the syntactic
types of complete constituents can be obtained by
recursive combination of categories using the rules.

More generally, both lexical and non-lexical CCG

categories can be either atomic or complex: atomic
categories are categories without any slashes, and
complex categories are constructed recursively from
atomic ones using forward (/) and backward slashes
(\) as two binary operators. As such, all categories
can be represented as follows (Vijay-Shanker and
Weir, 1993; Kuhlmann and Satta, 2014):

x := α|1z1|2z2 . . . |mzm,
where m ≥ 0, α is an atomic category, |1, . . . , |m ∈
{\, /} and zi are meta-variables for categories.

CCG rules have the following two schematic
forms, each a generalized version of functional com-
position (Vijay-Shanker and Weir, 1993):

x/y y|1z1 . . . |mzm → x|1z1 . . . |mzm,
y|1z1 . . . |mzm x\y → x|1z1 . . . |mzm.

The first schematic form above instantiates into a
forward application rule (>) for m = 0, and for-
ward composition rules (>B) for m > 0. Similarly,
the second schematic form, which is symmetric to
the first, instantiates into backward application (<)
and composition (<B) rules.

Fig.1 shows an example CCG derivation. All the
rule instances in this derivation are instantiated from

213

the flying ginger cat

NP/N N /N N /N N
>B

N /N
>

N
>

NP

Figure 1: An example CCG derivation.

forward rules; for example, N /N N /N → N /N is
an instance of forward composition and N /N N →
N is an instance of forward application.

Given CCGBank (Hockenmaier and Steedman,
2007), there are two approaches to extract a gram-
mar from this data. The first is to treat all CCG

derivations as phrase-structure trees, and a binary,
context-free “cover” grammar, consisting of all CCG

rule instances in the treebank, is extracted from local
trees in all the derivations (Fowler and Penn, 2010;
Zhang and Clark, 2011). In contrast, one can extract
the lexicon from the treebank and define only the
rule schemas, without explicitly enumerating any
rule instances (Hockenmaier, 2003). This is the ap-
proach taken in the C&C parser (Clark and Curran,
2007) and the one we use here. Moreover, follow-
ing Zhang and Clark (2011), our CCG parsing model
is also a normal-form model, which models action
sequences of normal-form derivations in CCGBank.

3.2 The Transition System
The transition system we use in this work is based
on the CCG transition system of Zhang and Clark
(2011). We denote parse items as (j, δ, β,∆)3,
where δ is the stack (with top element δ|s0), β is the
queue (with top element xwj |β), j is the positional
index of the word at the front of the queue, and ∆
is the set of CCG dependencies realized for the input
consumed so far (needed to calculate the expected
F-score). We also assume a set of lexical categories
has been assigned to each word using a supertag-
ger (Bangalore and Joshi, 1999; Clark and Curran,
2004). The transition system is specified using three
action types:

• SHIFT (sh) removes one of the lexical cate-
gories xwj of the front word wj in the queue,
and pushes it onto the stack; and removes wj
from the queue.

3We partly adopt standard notations from dependency pars-
ing (Nivre, 2008).

input: w0 . . . wn−1

axiom: 0 : (0, ε, β, φ)

goal: 2n− 1 + µ : (n, δ, ε,∆)

ω : (j, δ, xwj |β,∆)
ω + 1 : (j + 1, δ|xwj , β,∆)

(sh; 0 ≤ j < n)

ω : (j, δ|s1|s0, β,∆)
ω + 1 : (j, δ|x, β,∆ ∪ 〈x〉)) (re; s1s0 → x)

ω : (j, δ|s0, β,∆)
ω + 1 : (j, δ|x, β,∆)

(un; s0 → x)

Figure 2: The shift-reduce deduction system.

• REDUCE (re) combines the top two subtrees s0

and s1 on the stack using a CCG rule (s1s0 →
x) and replaces them with a subtree rooted in
x. It also appends the set of newly created de-
pendencies on x, denoted as 〈x〉, to ∆.

• UNARY (un) applies either a type-raising or
type-changing rule (s0 → x) to the stack-top
element and replaces it with a unary subtree
rooted in x.

The deduction system (Fig. 2) of our shift-reduce
parser follows from the transition system.4 Each
parse item is associated with a step indicator ω,
which denotes the number of actions used to build
it. Given a sentence of length n, a full derivation
requires 2n − 1 + µ steps to terminate, where µ is
the total number of un actions applied. In Zhang
and Clark (2011), a finish action is used to indicate
termination, which we do not use in our parser: an
item finishes when no further action can be taken.
Another difference between the transition systems is
that Zhang and Clark (2011) omit the ∆ field in each
parse item, due to their use of a context-free, phrase-
structure cover, and dependencies are recovered at a
post-processing step; in our system, we build depen-
dencies as parsing proceeds.

4We abuse notation slightly for the sh deduction, using
xwj |β to denote that the lexical category xwj is available for
the front word on the queue.

214

s0.w s1.w s2.w s3.w
s.w0 s.w1 s.w2 s.w3

s0.l.w s1.l.w so.r.w s1.r.w
q0.w q1.w q2.w q3.w
s0.c s0.l.c s0.r.c
s1.c s1.l.c s1.r.c
s2.c s3.c

Table 1: Atomic feature templates.

3.3 RNN CCG Parsing
We use the same set of CCG rules as in Clark and
Curran (2007) and the total number of output units
in our RNN model is equal to the number of lexical
categories (i.e., all possible sh actions), plus 10 units
for re5 and 18 units for un actions.

All features in our model fall into three types:
word, POS tag and CCG category. Table 1 shows the
atomic feature templates and we have |fw| = 16,
|fp| = 16 and |fc| = 8 (all word-based features are
generalized to POS features). Each template has two
parts: the first part denotes parse item context and
the second part denotes the feature type. s denotes
stack contexts and q denotes queue contexts; e.g.,
s0 is the top subtree on the stack, and so.l is its left
child. w represents head words of constituents and
w0 is the right-most word of the input string that has
been shifted onto the stack.

4 Bidirectional Supertagging

We extend the RNN supertagging model of Xu et al.
(2015) by using a bidirectional RNN (BRNN). The
BRNN processes an input in both directions with
two separate hidden layers, which are then fed to
one output layer to make predictions. At each time
step t, we compute the forward hidden state ht for
t = (0, 1, . . . , n − 1); the backward hidden state h′t
is computed similarly but from the reverse direction
for t = (n− 1, n− 2, . . . , 0) as

h′t = f(xtU′ + ht+1W′), (5)

and the output layer, for t = (0, 1, . . . , n − 1), is
computed as

yt = f([ht;h′t]V
′). (6)

The BRNN introduces two new parameter matrices
U′ and W′ and replaces the old hidden-to-output

5In principle, only 1 re unit is needed, but we use 9 addi-
tional units to handle non-standard CCG rules in the treebank.

matrix V with V′ to take two hidden layers as in-
put. We use the same three feature embedding types
as Xu et al. (2015), namely word, suffix and capital-
ization, and all features are extracted from a context
window size of 7 surrounding the current word.

5 Experiments

Setup. All experiments were performed on CCG-
Bank (Hockenmaier and Steedman, 2007) with the
standard split.6 We used the C&C supertagger (Clark
and Curran, 2007) and the RNN supertagger model
of Xu et al. (2015) as two supertagger baselines.
For the parsing experiments, the baselines were the
shift-reduce CCG parsers of Zhang and Clark (2011)
and Xu et al. (2014) and the C&C parser of (Clark
and Curran, 2007).

To train the RNN parser, we used 10-fold cross
validation for both POS tagging and supertagging.
For both development and test parsing experiments,
we used the C&C POS tagger and automatically as-
signed POS tags. The BRNN supertagging model
was used as the supertagger by all RNN parsing
models for both training and testing. F-score over di-
rected, labeled CCG predicate-argument dependen-
cies was used as the parser evaluation metric, ob-
tained using the script from C&C.

Hyperparameters. For the BRNN supertagging
model, we used identical hyperparameter settings
as in Xu et al. (2015). For all RNN parsing mod-
els, the weights were uniformly initialized using
the interval [−2.0, 2.0], and scaled by their fan-
in (Bengio, 2012); the hidden layer size was 220,
and 50-dimensional embeddings were used for all
feature types and scaled Turian embeddings were
used (Turian et al., 2010) for word embeddings. We
also pretrained CCG lexcial category and POS em-
beddings by using the GENSIM word2vec implemen-
tation.7 The data used for this was obtained by pars-
ing a Wikipedia dump using the C&C parser and
concatenating the output with CCGBank Sections
02-21. Embeddings for unknown words and CCG

categories outside of the lexical category set were
uniformly initialized ([−2.0, 2.0]) without scaling.

6Training: Sections 02-21; development: Section 00; test
Section 23.

7https://radimrehurek.com/gensim/

215

Supertagger Dev Test
C&C (gold POS) 92.60 93.32
C&C (auto POS) 91.50 92.02
RNN 93.07 93.00
BRNN 93.49 93.52

Table 2: 1-best supertagging accuracy comparison.

To train all the models, we used a fixed learning
rate of 0.0025 and did not truncate the gradients for
BPTT, except for training the greedy RNN parsing
model where we used a BPTT step size of 9. We
applied dropout at the input layer (Legrand and Col-
lobert, 2015), with a dropout rate of 0.25 for the su-
pertagger and 0.30 for the parser.

5.1 Supertagging Results

Table 2 shows 1-best supertagging results. The
MaxEnt C&C supertagger uses POS tag features and
a tag dictionary, neither of which are used by the
RNN supertaggers. For all supertaggers, the same
set of 425 lexical categories is used (Clark and Cur-
ran, 2007). On the test set, our BRNN supertag-
ger achieves a 1-best accuracy of 93.52%, an abso-
lute improvement of 0.52% over the RNN model,
demonstrating the usefulness of contextual informa-
tion from both input directions.

Fig. 3a shows multi-tagging accuracy comparison
for the three supertaggers by varying the variable-
width beam probability cut-off value β for each su-
pertagger. The β value determines the average num-
ber of supertags (ambiguity) assigned to each word
by pruning supertags whose probabilities are not
within β times the probability of the 1-best supertag;
for this experiment we used β values ranging from
0.09 to 2 × 10−4 and it can be seen that the BRNN
supertagger consistently achieves better accuracies
at similar ambiguity levels.

Finally, all shift-reduce CCG parsers mentioned in
this paper take multi-tagging output obtained with
a fixed β for training and testing; and in general, a
smaller β value can be used by a shift-reduce CCG

parser than by the C&C parser. This is because a β
value too small may explode the dynamic program
of the C&C parser, and it thus relies on an adap-
tive supertagging strategy (Clark and Curran, 2007),
by starting from a large β value and backing off
to smaller values if no spanning analysis can found
with the current β.

Supertagger β
0.09 0.08 0.07 0.06

b = 1 84.61 84.58 84.55 84.50
b = 2 84.94 84.86 84.86 84.81
b = 4 85.01 84.95 84.92 84.92
b = 6 85.02 84.96 84.94 84.93
b = 8 85.02 84.99 84.96 84.95
b = 16 85.01 84.95 84.97 84.98

Table 3: The effect on dev F1 by varying the beam size and
supertagger β value for the greedy RNN model.

5.2 Parsing Results

To pretrain the greedy model, we trained 10 cross-
validated BRNN supertagging models to supply su-
pertags for the parsing model, and used a supertag-
ger β value of 0.00025 which gave on average 5.02
supertags per word. We ran SGD training for 60
epochs, observing no accuracy gains after that, and
the best greedy model was obtained after the 52nd

epoch (Fig. 3b).
Furthermore, we found that using a relatively

smaller supertagger β value (higher ambiguity) for
training, and a larger β value (lower ambiguity) for
testing, resulted in more accurate models; and we
chose the final β value used for the greedy model
to be 0.09 using the dev set (Table 3). This obser-
vation was different from Zhang and Clark (2011)
and Xu et al. (2014), which are two shift-reduce CCG

parsers using the averaged perceptron and beam
search (Collins, 2002; Collins and Roark, 2004;
Zhang and Clark, 2008): they used the same β val-
ues for training and testing, which resulted in lower
accuracy for our greedy model.

Table 3 also shows the effect on dev F1 by us-
ing different beam sizes at test time for the greedy
model: with b = 6, we obtained an accuracy of
85.02%, an improvement of 0.41% over b = 1 (with
a β value of 0.09); we saw accuracy gains up to
b = 8 (with very minimal gains with b = 16 for
β values 0.06 and 0.07), after which the accuracy
started to drop. F1 on dev with b = 6 across all
training epochs are shown in Fig. 3b as well, and the
best model was obtained after the 43rd epoch.

For the xF1 model, we used b = 8 and a supertag-
ger β value of 0.09 for both training and testing.
Fig.3c shows dev F1 versus the number of train-
ing epochs. The best dev F1 was obtained after
the 54th epoch with an accuracy of 85.73%, 1.12%

216

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

m
u
lt
i-
ta

g
g
in

g
 a

c
c
u
ra

c
y

avg. supertags per word (ambiguity)

C&C
RNN

BRNN

(a) multi-tagging accuracy on dev

 79

 80

 81

 82

 83

 84

 85

 86

 0 10 20 30 40 50 60

F
1
 o

n
 d

e
v
 s

e
t

training epochs

RNN-greedy (b = 1)
RNN-greedy (b = 6)

(b) F1 on dev with RNN-greedy

 85

 85.1

 85.2

 85.3

 85.4

 85.5

 85.6

 85.7

 85.8

 0 10 20 30 40 50 60

F
1
 o

n
 d

e
v
 s

e
t

training epochs

RNN-xF1 (b = 8)

(c) F1 on dev with RNN-xF1
Figure 3: Experiment results on the dev set. (a) shows multi-tagging accuracy using the best tagging model. (b) shows F1 scores
for the greedy RNN parsing models with beam size b ∈ {1, 6}. (c) shows F1 scores for the xF1 models with b = 8.

Section 00 Section 23
Model LP LR LF CAT LP LR LF CAT Speed
C&C (normal) 85.18 82.53 83.83 92.39 85.45 83.97 84.70 92.83 97.90
C&C (hybrid) 86.07 82.77 84.39 92.57 86.24 84.17 85.19 93.00 95.25
Zhang and Clark (2011) (b = 16) 87.15 82.95 85.00 92.77 87.43 83.61 85.48 93.12 -
Zhang and Clark (2011)* (b = 16) 86.76 83.15 84.92 92.64 87.04 84.14 85.56 92.95 49.54
Xu et al. (2014) (b = 128) 86.29 84.09 85.18 92.75 87.03 85.08 86.04 93.10 12.85
RNN-greedy (b = 1) 88.12 81.38 84.61 93.42 88.53 81.65 84.95 93.57 337.45
RNN-greedy (b = 6) 87.96 82.27 85.02 93.47 88.54 82.77 85.56 93.68 96.04
RNN-xF1 (b = 8) 88.20 83.40 85.73 93.56 88.74 84.22 86.42 93.87 67.65

Table 4: Final parsing results on Section 00 and Section 23 (100% coverage). Zhang and Clark (2011)* is a reimplementation
of the original. All speed results (sents/sec) are obtained using Section 23 and precomputation is used for all RNN parsers. LP
(labeled precision); LR (labeled recall); LF (labeled F-score over CCG dependencies); CAT (lexical category assignment accuracy).
All experiments using auto POS.

higher than that of the greedy model with b = 1 and
0.71% higher than the greedy model with b ∈ {6, 8}.
This result improves over shift-reduce CCG models
of Zhang and Clark (2011) and Xu et al. (2014) by
0.73% and 0.55%, respectively (Table 4).

Table 4 summarizes final results.8 RNN-xF1,
the xF1 trained beam-search model, is currently the
most accurate shift-reduce CCG parser, achieving a
final F-score of 86.42%, and gives an F-score im-
provement of 1.47% over the greedy RNN base-
line. We show the results for the model of Xu et
al. (2014) for reference only, since it uses a more
sophisticated dependency, rather than normal-form
derivation, model.

At test time, we also used the precomputation
trick of Devlin et al. (2014) to speed up the RNN
models by caching the top 20K word embeddings

8The C&C parser fails to produce spanning analyses for a
very small number of sentences (Clark and Curran, 2007) on
both dev and test sets, which is not the case for any of the shift-
reduce parsers; and for brevity, we omit C&C coverage results.

and all POS embeddings,9 and this made the greedy
RNN parser more than 3 times faster than the C&C

parser (all speed experiments were measured on a
workstation with an Intel Core i7 4.0GHz CPU).10

6 Related Work

Optimizing for Task-specific Metrics. Our train-
ing objective is largely inspired by task-specific opti-
mization for parsing and MT. Goodman (1996) pro-
posed algorithms for optimizing a parser for var-
ious constituent matching criteria, and it was one
of the earliest work that we are aware of on opti-
mizing a parser for evaluation metrics. Smith and
Eisner (2006) proposed a framework for minimiz-
ing expected loss for log-linear models and applied
it to dependency parsing by optimizing for labeled
attachment scores, although they obtained little per-

9We used b = 8 to do the precomputation.
10The speed results for the C&C parser were ob-

tained using the per-compiled C&C binary for Linux avail-
able from http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/Download.

217

formance improvements. Auli and Lopez (2011) op-
timized the C&C parser for F-measure. However,
they used the softmax-margin (Gimpel and Smith,
2010) objective, which required decomposing preci-
sion and recall statistics over parse forests. Instead,
we directly optimize for an F-measure loss. In MT,
task-specific optimization has also received much
attention (e.g., see Och (2003)). Closely related
to our work, Gao and He (2013) proposed train-
ing a Markov random field translation model as an
additional component in a log-linear phrase-based
translation system using a k-best list based expected
BLEU objective; using the same objective, Auli et
al. (2014) and Auli and Gao (2014) trained a large
scale phrase-based reordering model and a RNN lan-
guage model respectively, all as additional compo-
nents within a log-linear translation model. In con-
trast, our RNN parsing model is trained in an end-to-
end fashion with an expected F-measure loss and all
parameters of the model are optimized using back-
propagation and SGD.

Parsing with RNNs. A line of work is devoted to
parsing with RNN models, including using RNNs
(Miikkulainen, 1996; Mayberry and Miikkulainen,
1999; Legrand and Collobert, 2015; Watanabe and
Sumita, 2015) and LSTM (Hochreiter and Schmid-
huber, 1997) RNNs (Vinyals et al., 2015; Balles-
teros et al., 2015; Dyer et al., 2015; Kiperwasser and
Goldberg, 2016). Legrand and Collobert (2015) used
RNNs to learn conditional distributions over syntac-
tic rules; Vinyals et al. (2015) explored sequence-
to-sequence learning (Sutskever et al., 2014) for
parsing; Ballesteros et al. (2015) utilized character-
level representations and Kiperwasser and Gold-
berg (2016) built an easy-first dependency parser
using tree-structured compositional LSTMs. How-
ever, all these parsers use greedy search and are
trained using the maximum likelihood criterion (ex-
cept Kiperwasser and Goldberg (2016), who used a
margin-based objective). For learning global mod-
els, Watanabe and Sumita (2015) used a margin-
based objective, which was not optimized for the
evaluation metric; although not using RNNs, Weiss
et al. (2015) proposed a method using the averaged
perceptron with beam search (Collins, 2002; Collins
and Roark, 2004; Zhang and Clark, 2008), which re-
quired fixing the neural network representations, and

thus their model parameters were not learned using
end-to-end backpropagation.

Finally, a number of recent work (Bengio et al.,
2015; Vaswani and Sagae, 2016) explored train-
ing neural network models for parsing and other
tasks such that the network learns from the oracle
as well as its own predictions, and are hence more
robust to search errors during inference. In princi-
ple, these techniques are largely orthogonal to both
global learning and task-based optimization, and we
would expect further accuracy gains are possible by
combining these techniques in a single model.

7 Conclusion

Neural network shift-reduce parsers are often trained
by maximizing likelihood, which does not optimize
towards the final evaluation metric. In this paper,
we addressed this problem by developing expected
F-measure training for an RNN shift-reduce pars-
ing model. We have demonstrated the effective-
ness of our method on shift-reduce parsing for CCG,
achieving higher accuracies than all shift-reduce
CCG parsers to date and the de facto C&C parser.11

We expect the general framework will be applicable
to models using other types of neural networks such
as feed-forward or LSTM nets, and to shift-reduce
parsers for constituent and dependency parsing.

Acknowledgments

We thank the anonymous reviewers for their de-
tailed comments. Xu acknowledges the Carnegie
Trust for the Universities of Scotland and the Cam-
bridge Trusts for funding. Clark is supported by
ERC Starting Grant DisCoTex (306920) and EPSRC
grant EP/I037512/1.

References

Alfred V Aho and Jeffrey D Ullman. 1972. The theory
of parsing, translation, and compiling. Prentice-Hall.

Michael Auli and Jianfeng Gao. 2014. Decoder integra-
tion and expected BLEU training for recurrent neural
network language models. In Proc. of ACL (Volume
2).

11Auli and Lopez (2011) present higher accuracies but on a
different coverage to enable a comparison to Fowler and Penn
(2010). Their results are thus not directly comparable to ours.

218

Michael Auli and Adam Lopez. 2011. Training a log-
linear parser with loss functions via softmax-margin.
In Proc. of EMNLP.

Michael Auli, Michel Galley, and Jianfeng Gao. 2014.
Large-scale expected BLEU training of phrase-based
reordering models. In Proc. of EMNLP.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with LSTMs. In Proc. of
EMNLP.

Srinivas Bangalore and Aravind K Joshi. 1999. Su-
pertagging: An approach to almost parsing. In Com-
putational linguistics. MIT Press.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam M. Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks. In
Proc. of NIPS.

Yoshua Bengio. 2012. Practical recommendations for
gradient-based training of deep architectures. In Neu-
ral Networks: Tricks of the Trade. Springer.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proc. of ACL.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proc. of EMNLP.

Stephen Clark and James R Curran. 2004. The impor-
tance of supertagging for wide-coverage CCG parsing.
In Proc. of COLING.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. In Computational Linguistics. MIT
Press.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proc. of
ACL.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Proc. of ICML.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. of EMNLP.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for statis-
tical machine translation. In Proc. of ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. of ACL.

Jeffrey L Elman. 1990. Finding structure in time. In
Cognitive science. Elsevier.

Timothy A.D. Fowler and Gerald Penn. 2010. Accu-
rate context-free parsing with Combinatory Categorial
Grammar. In Proc. of ACL.

Jianfeng Gao and Xiaodong He. 2013. Training MRF-
based phrase translation models using gradient ascent.
In Proc. of NAACL.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng.
2014. Learning continuous phrase representations for
translation modeling. In Proc. of ACL.

Kevin Gimpel and Noah Smith. 2010. Softmax-margin
CRFs: training log-linear models with cost functions.
In Proc. of NAACL.

Yoav Goldberg, Kai Zhao, and Liang Huang. 2013. Ef-
ficient implementation for beam search incremental
parsers. In Proc. of ACL (Volume 2).

Christoph Goller and Andreas Kuchler. 1996. Learning
task-dependent distributed representations by back-
propagation through structure. In Proc. of IEEE In-
ternational Conference on Neural Networks.

Joshua Goodman. 1996. Parsing algorithms and metrics.
In Proc. of ACL.

Xiaodong He and Li Deng. 2012. Maximum expected
BLEU training of phrase and lexicon translation mod-
els. In Proc. of ACL.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. In Neural com-
putation. MIT Press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. In Neural computation. MIT
Press.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
Bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. In Com-
putational Linguistics. MIT Press.

Julia Hockenmaier. 2003. Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Easy-first dependency parsing with hierarchical tree
LSTMs. arXiv:1603.00375.

Marco Kuhlmann and Giorgio Satta. 2014. A new
parsing algorithm for combinatory categorial gram-
mar. In Transactions of the Association for Compu-
tational Linguistics. ACL.

Joël Legrand and Ronan Collobert. 2015. Joint RNN-
based greedy parsing and word composition. In Proc.
of ICLR.

Marshall R. Mayberry and Risto Miikkulainen. 1999.
Sardsrn: A neural network shift-reduce parser. In
Proc. of IJCAI.

Risto Miikkulainen. 1996. Subsymbolic case-role analy-
sis of sentences with embedded clauses. In Cognitive
Science. Elsevier.

Tomáš Mikolov. 2012. Statistical Language Models
Based on Neural Networks. Ph.D. thesis, Brno Uni-
versity of Technology.

219

J. Nivre and M Scholz. 2004. Deterministic dependency
parsing of English text. In Proc. of COLING.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. In Computational Lin-
guistics. MIT Press.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. of ACL.

Antti-Veikko I Rosti, Bing Zhang, Spyros Matsoukas,
and Richard Schwartz. 2010. BBN system descrip-
tion for WMT10 system combination task. In Proc. of
the Joint Fifth Workshop on Statistical Machine Trans-
lation and MetricsMATR.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. In Nature.

Kenji Sagae and Alon Lavie. 2006. A best-first proba-
bilistic shift-reduce parser. In Proc. of COLING/ACL.

David A. Smith and Jason Eisner. 2006. Minimum-risk
annealing for training log-linear models. In Proc. of
COLING-ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Se-
quence to sequence learning with neural networks. In
Proc. of NIPS.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proc. of ACL.

Ashish Vaswani and Kenji Sagae. 2016. Efficient struc-
tured inference for transition-based parsing with neu-
ral networks and error states. In Transactions of the
Association for Computational Linguistics. ACL.

Krishnamurti Vijay-Shanker and David J Weir. 1993.
Parsing some constrained grammar formalisms. In
Computational Linguistics. MIT Press.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Grammar
as a foreign language. In Proc. of NIPS.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proc. of ACL.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proc. of ACL.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014.
Shift-Reduce CCG parsing with a dependency model.
In Proc. of ACL.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network. In
Proc. of ACL (Volume 2).

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: investigating and combining graph-based
and transition-based dependency parsing using beam-
search. In Proc. of EMNLP.

Yue Zhang and Stephen Clark. 2011. Shift-Reduce CCG
parsing. In Proc. of ACL.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen.
2015. A neural probabilistic structured-prediction
model for transition-based dependency parsing. In
Proc. of ACL.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and
Jingbo Zhu. 2013. Fast and accurate shift-reduce con-
stituent parsing. In Proc. of ACL.

220

Proceedings of NAACL-HLT 2016, pages 221–231,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

LSTM CCG Parsing

Mike Lewis Kenton Lee Luke Zettlemoyer
Computer Science & Engineering

University of Washington
Seattle, WA 98195

{mlewis,kentonl,lsz}@cs.washington.edu

Abstract

We demonstrate that a state-of-the-art parser
can be built using only a lexical tagging model
and a deterministic grammar, with no ex-
plicit model of bi-lexical dependencies. In-
stead, all dependencies are implicitly encoded
in an LSTM supertagger that assigns CCG lex-
ical categories. The parser significantly out-
performs all previously published CCG re-
sults, supports efficient and optimal A∗ de-
coding, and benefits substantially from semi-
supervised tri-training. We give a detailed
analysis, demonstrating that the parser can re-
cover long-range dependencies with high ac-
curacy and that the semi-supervised learning
enables significant accuracy gains. By run-
ning the LSTM on a GPU, we are able to parse
over 2600 sentences per second while improv-
ing state-of-the-art accuracy by 1.1 F1 in do-
main and up to 4.5 F1 out of domain.

1 Introduction

Combinatory Categorial Grammar (CCG) is a
strongly lexicalized formalism—the vast majority of
attachment decisions during parsing are specified by
the selection of lexical entries for words (see Fig-
ure 1 for examples). State-of-the-art parsers typi-
cally include a supertagging model, to select possi-
ble lexical categories, and a bi-lexical dependency
model, to resolve the remaining parse attachment
ambiguities. In this paper, we introduce a long short-
term memory (LSTM) CCG parsing model that has
no explicit model of bi-lexical dependencies, but in-
stead relies on a bi-directional recurrent neural net-
work (RNN) supertagger to capture all long distance

dependencies. This approach has a number of ad-
vantages: it is conceptually simple, allows for the
reuse of existing optimal and efficient parsing algo-
rithms, benefits significantly from semi-supervised
learning, and is highly accurate both in and out of
domain. The parser is publicly released.1

Neural networks have shown strong performance
in a range of NLP tasks; however they can break the
dynamic programs for structured prediction prob-
lems, such as parsing, when vector embeddings are
recursively computed for subparts of the output. Ex-
isting neural net parsers either (1) use greedy in-
ference techniques including shift-reduce parsing
(Henderson et al., 2013; Chen and Manning, 2014;
Weiss et al., 2015; Dyer et al., 2015), constituency
parse re-ranking (Socher et al., 2013), and string-
to-string transduction (Vinyals et al., 2015), or (2)
avoid recursive computations entirely (Durrett and
Klein, 2015). Our approach gives a simple alterna-
tive: we only train a model for tagging decisions,
where we can easily use recurrent architectures such
as LSTMs (Hochreiter and Schmidhuber, 1997), and
rely on the highly lexicalized nature of the CCG
grammar to allow this tagger to specify nearly ev-
ery aspect of the complete parse.

Our LSTM supertagger is bi-directional and in-
cludes a softmax potential over tags for each word
in the sentence. During training, we jointly opti-
mize all LSTM parameters, including the word em-
beddings, to maximize the conditional likelihood of
supertag sequences. For inference, we use a recently
introduced A* CCG parsing algorithm (Lewis and
Steedman, 2014a), which efficiently searches for the

1http://github.com/mikelewis0/EasySRL

221

I saw squirrels with nuts

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

S\NP
<

S

I saw squirrels with binoculars

NP (S\NP)/NP NP ((S\NP)\(S\NP)/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

houses in suburbs of Paris

NP (NP\NP)/NP NP (NP\NP)/NP NP
> >

NP\NP NP\NP
<

NP
<

NP

houses in suburbs of Paris

NP (NP\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

NP\NP
<

NP

Figure 1: Four examples of prepositional phrase attachment in CCG. In the upper two parses, the attachment
decision is determined by the choice of supertags. In the lower parses, the attachment is ambiguous given
the supertags. In such cases, our parser deterministically attaches low (i.e. preferring the lower-right parse).

highest probability sequence of tags that combine to
produce a complete parse tree. Whenever there is
parsing ambiguity not specified by the supertags, the
model attaches low (see Figure 1).

This approach is not only conceptually simple but
also highly effective, as we demonstrate with exten-
sive experiments. Because the A* algorithm is ex-
tremely efficient and the LSTMs can be run in par-
allel on GPUs, the end-to-end parser can process
over 2600 sentences per second. This is more than
three times the speed of any publicly available parser
for any formalism. Apart from Hall et al. (2014),
we are not aware of efficient algorithms for running
other state-of-art-parsers on GPUs. The LSTM pa-
rameters also benefit from semi-supervised training,
which we demonstrate by employing a recently in-
troduced tri-training scheme (Weiss et al., 2015).
Finally, the recurrent nature of the LSTM allows
for effective modelling of long distance dependen-
cies, as we show empirically. Our approach signif-
icantly advances the state-of-the-art on benchmark
datasets—improving accuracy by 1.1 F1 in domain
and up to 4.5 F1 out of domain.

2 Background

Combinatory Categorial Grammar (CCG)
Compared to a phrase-structure grammar, CCG
contains a much smaller set of binary rules (we
use 11), but a much larger set of lexical tags (we
use 425). The binary rules are conjectured to be
language-universal, and most language-specific

information is lexicalized (Steedman, 2000). The
large tag set means that most (but not all) attachment
decisions are determined by tagging decisions. Fig-
ure 1 shows how a prepositional phrase attachment
decision can be encoded in the choice of tags.

The process of assigning CCG categories to
words is called supertagging. All supertaggers used
in practice are probabilistic, providing a distribu-
tion over possible tags for each word. Parsing mod-
els either use these scores directly (Auli and Lopez,
2011b), or as a form of beam search (Clark and Cur-
ran, 2007), typically in conjunction with models of
the dependencies or derivation.

Supertag-Factored A∗ CCG Parsing Lewis and
Steedman (2014a) introduced supertag-factored
CCG parsers, in which the score for a parse is sim-
ply the sum of the scores of its supertags. The parser
takes in a distribution over supertags for each word,
and outputs the highest scoring parse—subject to
the hard constraint that the parse only uses stan-
dard CCG combinators (resolving any remaining
ambiguity by attaching low). One advantage of the
supertag-factored model is that it allows a simple A∗

parsing algorithm, which provably finds the highest
scoring supertag sequence that can be combined to
construct a complete parse.

In A∗ parsing, partial parses yi,j of span i . . . j
are maintained in a sorted agenda and added to the
chart in order of their cost, which is the sum of
their Viterbi inside score g(yi,j) and an upper bound
on their Viterbi outside score h(yi,j). When yi,j is

222

doctor

NP

sent

(Spss\NP)/PP

for

PP/NP

Figure 2: Visualization of our supertagging model,
based on stacked bi-directional LSTMs. Each word
is fed into stacked LSTMs reading the sentence in
each direction, the outputs of the LSTMs are com-
bined, and there is a final softmax over categories.

added to the chart, the agenda is updated with any
new partial parses that can be created by combining
yi,j with existing chart items (Algorithm 1). If h is
a monotonic upper bound on the outside score, the
first chart entry for a span with a given category is
guaranteed to be optimal—all other possible com-
pletions of the competing partial parses provably
have lower scores, due to the outside score bounds.
There is no guarantee this certificate of optimality is
achieved efficiently for parses of the whole sentence,
and in the worst case the algorithm could fill the en-
tire parse chart. However, as we will see later, A*
parsing is very efficient in practice for the models
we present in this paper.

In the supertag-factored model, g and h are com-
puted as follows, where g(yk) is the score for word
k having tag yk.

g(yi,j) =
j∑
k=i

g(yk) (1)

h(yi,j) =
i−1∑
k=1

max
yk

g(yk) +
N∑

k=j+1

max
yk

g(yk) (2)

where Eq. 1 follows from the definition of the su-
pertag factored model and Eq. 2 combines this def-
inition with the fact that the max score over all su-
pertags for a word is an upperbound on the score for
the actual supertag used in the best parse.

3 LSTM CCG Supertagging Model

Supertagging is almost parsing (Bangalore and
Joshi, 1999)—consequently the task is very chal-

Algorithm 1 Agenda-based parsing algorithm
Definitions x1...N is the input words, and y variables
denote scored partial parses. TAG(x1...N) returns a
set of scored pre-terminals for every word. ADD(C,
y) adds partial parse y to chart C. RULES(C, y) re-
turns the set of scored partial parses that can be cre-
ated by combining y with existing entries in C. The
agenda A is ordered as described in Section 2.

1: function PARSE(x1...N)
2: A← ∅ . Empty agenda A
3: for y ∈ TAG(x1...N) do
4: PUSH(A, y)
5: C ← ∅ . Empty chart C
6: while C1,N = ∅ ∧A 6= ∅ do
7: y← EXTRACT_MAX(A)
8: if y /∈ C then
9: ADD(C, y)

10: for y′ ∈ RULES(C, y) do
11: INSERT(A, y′)
12: return C1,N

lenging, with hundreds of tags, and the correct as-
signment often depending on long-range dependen-
cies. For example, in The doctor sent for the patient
arrived, the category for sent depends on the final
word. Recent work has made dramatic progress, us-
ing feed-forward neural networks (Lewis and Steed-
man, 2014b) and RNNs (Xu et al., 2015).

We make several extensions to previous work on
supertagging. Firstly, we use bi-directional models,
to capture both previous and subsequent sentence
context into supertagging decisions. Secondly, we
use LSTMs, rather than RNNs. Many tagging de-
cisions rely on long-range context, and RNNs typ-
ically struggle to account for sequences of longer
than a few words (Hochreiter and Schmidhuber,
1997). Finally, we use a deep architecture, to allow
the modelling of complex interactions in the context.

Our supertagging model is summarized in Figure
2. Each word is mapped to an embedding vector.
This vector is a concatenation of an embedding for
the word (lower-cased), and embeddings for features
of the word (we use 1 to 4 character prefixes and
suffixes). The embedding vector is used as input to
two stacked LSTMs (with depth 2), one processing
the sentence left-to-right, and the other right-to-left.

223

The outputs from the LSTMs are projected into a
further hidden layer, a bias is added, and a RELU
non-linearity is applied. This layer gives a context-
dependent representation of the word that is fed into
a softmax over supertags.

We use a variant on the standard LSTM with cou-
pled ‘input’ and ‘forget’ gates, and peephole con-
nections. Each LSTM cell at position t takes three
inputs: a cell state vector ct−1 and hidden state vec-
tor ht−1 from the cell at position t− 1, and xt from
the layer below. It outputs ht to the layer above, and
ct and ht to the cell at t+ 1. ct and ht are computed
as follows, where σ is the component-wise logistic
sigmoid, and ◦ is the component-wise product:

it =σ(Wi[ct−1, ht−1, xt] + bi) (3)

c̃t = tanh(Wc[ht−1, xt] + bc̃) (4)

ot =σ(Wo[c̃t, ht−1, xt] + bo) (5)

ct =it ◦ c̃t + (1− it)ct−1 (6)

ht =ot ◦ tanh(ct) (7)

We train the model using stochastic gradient de-
scent, with a minibatch size of 1, a learning rate of
0.01, and using momentum with µ = 0.7. We then
fine-tune models using a larger minibatch size of 32.
Gradients whose L2 norm exceeds 5 are clipped.
Training was run for 30 epochs, shuffling the or-
der of sentences after each epoch, and we used the
model parameters with the highest development su-
pertagging accuracy. The input layer uses dropout
with a rate of 0.5. All trainable parameters have
L2 regularization of Λ = 10−6. Word embedding
are initialized using 50-dimensional pre-trained val-
ues from Turian et al. (2010). For prefix and suf-
fix embeddings, we use randomly initialized 32-
dimensional vectors—features occurring less than 3
times are replaced with an ‘unknown’ embedding.
We add special start and end tokens to each sen-
tence, with trainable parameters. The LSTM state
size is 128 and the RELU layer has a size of 64.

4 Parsing Models

Our experiments focus on two parsing models:

Supertag-Factored We use the supertagging
model described in Section 3 to build a supertag-
factored parser, closely following the approach
described in Section 2. We also add a penalty of 0.1

(tuned on development data) for every time a unary
rule is applied in a parse. The attach-low heuristic
is implemented by adding a small penalty of −εd
at every binary rule instantiation, where d is the
absolute distance between the heads of the left and
right children, and ε is a small constant. We increase
the penalty to 10ε for clitics, to encourage these to
attach locally. Because these penalties are ≤ 0, they
do not affect the A* upper bound calculations.

Dependencies We also train a model with depen-
dency features, to investigate how much they im-
prove accuracy beyond the supertag-factored model.
We adapt a joint CCG and SRL model (Lewis et
al., 2015) to CCGbank parsing, by assigning every
CCGbank dependency a role based on its argument
number (i.e., the first argument of every category has
role ARG0). A global log-linear model is trained
to maximize the marginal likelihood of the gold de-
pendencies. We use the same features and hyper-
parameters as Lewis et al. (2015), except that we
do not use the supertagger score feature (to separate
the effect of the dependencies features from the su-
pertagger). We choose this model because it has an
A∗ parsing algorithm, meaning that we do not need
to use aggressive beam search.

5 Semi-supervised Learning

A number of papers have shown that strong parsers
can be improved by exploiting text without gold-
standard annotations. Recent work suggests tri-
training, in which the output of two parsers is in-
tersected to create training data for a third parser, is
highly effective (Weiss et al., 2015).

We perform the first application of tri-training to
a lexicalized formalism. Following Weiss et al., we
parse the corpus of Chelba et al. (2013) with a shift-
reduce parser and a chart-based model. We use the
shift-reduce parser from Ambati et al. (2016) and
our dependency model (without using a supertag-
ger feature, to limit the correlation with our tag-
ging model). On development sentences where the
parsers produce the same supertags (40%), supertag-
ging accuracy is 98.0%. This subset is considerably
easier than general text—our CCGbank-trained su-
pertagger is 97.4% accurate on this data—but tri-
training still provides useful additional training data.

In total, we include 43 million words of text that

224

the parsers annotate with the same supertags and 15
copies of the gold CCGbank training data. Our ex-
periments show that tri-training improves both su-
pertagging and parsing accuracy.

6 GPU Parsing

Our parser makes an unusual trade-off, by combin-
ing a complex tagging model with a deterministic
parsing model. The A∗ parsing algorithm is ex-
tremely efficient, and the overall time required to
process a sentence is dominated by the supertagger.

GPUs can improve performance over CPUs by
computing many vector operations in parallel. There
are two major obstacles to using GPUs for parsing.
First, most models use sparse rather than dense fea-
tures, which are difficult to compute efficiently on
GPUs. The most successful implementation we are
aware of exploits the fact that the Berkeley parser
is unlexicalized to run parsing operations in parallel
(Hall et al., 2014). Second, most neural models have
features that depend on the current parse or stack
state (e.g. Chen and Manning (2014)). This makes it
difficult to exploit the parallelism of GPUs, because
these data structures are typically built incrementally
on CPU. It may be possible to write GPU-specific
code that maintains the entire parse state on GPU,
but we are not aware of any such implementations.

In contrast, our supertagger only uses matrix op-
erations, and does not take any parse state as input—
meaning it is straightforward to run on a GPU.
To exploit the parallelism of GPUs, we process
thousands of sentences simultaneously—improving
parsing efficiency by an order-of-magnitude over
CPU. A major advantage of our model is that it al-
lows all of the computationally intensive decisions
to occur on GPUs. Unlike existing GPU parsers, the
LSTM can be run with generic library code.2

7 Experiments

7.1 Experimental setup
We trained our parser on Sections 02-21 of CCG-
bank (Hockenmaier and Steedman, 2007), using
Section 00 for development, and Section 23 for test.
Our experiments use a supertagger beam of 10−4—
which does not affect the final scores, but reduces
overheads such as building the initial agenda.
2We use TensorFlow (Abadi et al., 2015).

Model Dev Test
C&C tagger 91.5 92.0
NN 91.3 91.6
RNN 93.1 93.0
LSTM 94.1 94.3
LSTM + Tri-training 94.9 94.7

Table 1: Supertagging accuracy on CCGbank.

Model P R F1
C&C 86.2 84.2 85.2
C&C + RNN 87.7 86.4 87.0
EASYCCG 83.7 83.0 83.3
Dependencies 86.5 85.8 86.1
LSTM 87.7 86.7 87.2
LSTM + Dependencies 88.2 87.3 87.8
LSTM + Tri-training 88.6 87.5 88.1
LSTM + Tri-training + Dependencies 88.2 87.3 87.8

Table 2: Labelled F1 for CCGbank dependencies
on the CCGbank test set (Section 23).

Where results are available, we compare our work
with the following models: EASYCCG, which has
the same parsing model as our parser, but uses
a feed-forward neural-network supertagger (NN);
the C&C parser (Clark and Curran, 2007), and
C&C+RNN (Xu et al., 2015), which is the C&C
parser with an RNN supertagger. All results are for
100% coverage of the test data.

We refer to the models described in Section 4 as
LSTM and DEPENDENCIES respectively. We also
report the performance of LSTM+DEPENDENCIES,
which combines the model scores (weighting the
LSTM score by 1.8, tuned on development data).

7.2 Supertagging Results
The most direct measure of the effectiveness of our
LSTM and tri-training is on the supertagging task.
Results are shown in Table 1. The improvement
of our deep LSTM over the RNN model is greater
than the improvement of the RNN over C&C model.
Further gains follow from tri-training, improving the
state-of-the-art by 1.7%.

7.3 English Parsing Results
Parsing results are shown in Figure 2. Surpris-
ingly, our CCGBank-trained LSTM outperforms
any previous approach.3 The ensemble of the LSTM
3We cannot compare directly with Fowler and Penn (2010)’s
adaptation of the Berkeley parser to CCG, or Auli and Lopez

225

Model QUESTIONS BIOINFER

P R F1 P R F1

C&C - - 86.6 77.8 71.4 74.5
EASYCCG 78.1 78.2 78.1 76.8 77.6 77.2
C&C + RNN - - - 80.1 75.5 77.7
LSTM 87.6 87.4 87.5 80.1 80.9 80.5
LSTM + Dependencies 88.2 87.9 88.0 77.8 80.1 79.4
LSTM + Tri-training - - - 81.8 82.6 82.2

Table 3: Out-of-domain experiments.

and the Dependency model outperforms the LSTM
alone, showing that dependency features are cap-
turing some generalizations that the LSTM does
not. However, semi-supervised learning substan-
tially improves the LSTM, matching the accuracy of
the ensemble—showing that the LSTM is expressive
enough to compensate given sufficient data.

7.4 Out-of-domain Experiments
We also evaluate on two out-of-domain datasets
used by Rimell and Clark (2008), but did no devel-
opment on this data. In both cases, we use Rimell
and Clark’s scripts for converting CCG parses to the
target dependency representations. The datasets are:

QUESTIONS 500 questions from
TREC (Rimell and Clark, 2008). Questions
frequently contain very long range dependencies,
providing an interesting test of the LSTM supertag-
ger’s ability to capture unbounded dependencies.
We follow Rimell and Clark by re-training the
supertagger on the concatenation of the CCGbank
training data and 10 copies of the QUESTIONS
training data.

BIOINFER 500 sentences from biomedical ab-
stracts. This dataset tests the parser’s robustness to a
large amount of unseen vocabulary.

Results are shown in Table 3. Our LSTM
parser outperforms existing work on question pars-
ing, showing that it can successfully model the long-
range dependencies found in questions. Adding de-
pendency features yields only a small improvement.

On the BIOINFER corpus, our tri-trained LSTM
parser is 4.5 F1 better than the previous state-of-
the-art. Dependency features appear to be much

(2011b)’s joint parsing and supertagging model, due to differ-
ences in the experimental setup. These models are 0.3 and 1.5
F1 more accurate than the C&C baseline respectively, which is
well within the margin of improvement obtained by our model.

Parser Sentences
per second

SpaCy*4 778
Berkeley GPU* (Hall et al., 2014) 687
Chen and Manning (2014)* 391
C&C 66
EASYCCG 606
LSTM 214
LSTM + Dependencies 58
LSTM GPU 2670

Table 4: Sentences parsed per second on our hard-
ware. Parsers marked * use non-CCG formalisms
but are the fastest available CPU and GPU parsers.

less robust to unseen words than the LSTM tagging
model, and are unhelpful. Because the parser was
not trained or developed on this domain, it is likely
to perform similarly well on other domains.

7.5 Efficiency Experiments

In contrast to standard parsing algorithms, the effi-
ciency of our model depends directly on the accu-
racy of the supertagger in guiding the search. We
therefore measure the efficiency empirically.

Results are shown in Table 4.5 Our parser runs
more slowly than EASYCCG on CPU, due to the
more complex tagging model (but is 4.8 F1 more
accurate). Adding dependencies substantially re-
duces efficiency, due to calculating sparse features.
Without dependencies, the run time is dominated
by the LSTM supertagger. Running the supertag-
ger on a GPU reduces parsing times dramatically—
outperforming SpaCy, the fastest publicly available
parser (Choi et al., 2015). Roughly half the pars-
ing time is spent on GPU supertagging, and half on
CPU parsing. To better exploit batching in the GPU,
our implementation dynamically buckets sentences
by length (bins of width 10), and tags batches when
the bucket size reaches 3072 (the number of threads
on our GPU). We are not aware of any GPU im-
plementations of shift-reduce parsers or lexicalized
chart parsers, so it is unclear if most other state-of-
the-art parsers can be adapted to exploit GPUs.

4honnibal.github.io/spaCy
5All timing experiments use a single 3.5GHz core and (where
applicable) a single NVIDIA TITAN X GPU.

226

Supertagger Accuracy
Bidirectional RNNs 93.4
Forward LSTM only 83.5
Backward LSTM only 89.5
Bidirectional LSTMs 94.1

Table 5: Development supertagging accuracy.

Word Class NN LSTM LSTM+
Tri-training

All 91.32 94.14 94.90
Unseen Words 90.39 94.21 95.26
Unseen Usages 45.80 59.37 62.46
Prepositions 78.11 84.40 85.98
Verbs 82.55 87.85 89.24
Wh-words 90.47 92.09 94.16
Long range 74.80 83.99 86.31

Table 6: Development supertagging accuracy on
several classes of words. Long range refers to words
taking an argument at least 5 words away.

8 Ablations

We also measure performance while removing dif-
ferent aspects of the full parsing model.

8.1 Supertagger Model Architecture

Numerous variations are possible on our supertag-
ging architecture. Apart from tri-training, the major
differences from the previous state-of-the-art (Xu et
al., 2015) are that we use LSTMs rather than RNNs,
and that we use bidirectional networks rather than
only a forward-directional RNN. These modifica-
tions lead to a 1.3% improvement in accuracy. Table
5 shows performance while ablating these changes;
they all contribute substantially to tagging accuracy.

Table 6 shows several classes of words where the
LSTM model outperforms the baseline neural net-
work that uses only local context (NN). The perfor-
mance increase on unseen words is likely due to the
fact that the LSTM can model more context to de-
termine the category for a word. Unsurprisingly,
this leads to a large improvement in accuracy for
words taking non-local arguments. Finally, we see
a large improvement in prepositional phrase attach-
ment. This improvement is likely to be due to the
deep architecture, which can better take into account
the interaction between the preposition, its argument

Relaxation LSTM+
Tri-train F1

LSTM+
Dependencies F1

- 87.9 87.9
{NP , N } 87.8 87.7
{NP , PP} 87.7 87.6
{NP , PP , N , Nnum} 87.4 87.2
* 78.3 79.3

Table 7: Effect of simulating weaker grammars, by
allowing the specified atomic categories to unify. *
allows all atomic categories to unify, except con-
junctions and punctuation. Results are on develop-
ment sentences of length ≤40.

noun phrase, and its nominal or verbal attachment.

8.2 Semi-supervised learning
Table 6 also shows cases where the semi-supervised
models perform better. Accuracy improves on un-
seen words—showing that tri-training can be a more
effective way of generalizing to unseen words than
pre-trained word embeddings alone. We also see
improvement in accuracy on wh-words, which we
attribute to the training data containing more exam-
ples of rare categories used for wh-words in pied-
piping and similar constructions. One case where
performance remains weak for all models is on un-
seen usages—where words occur in the CCGbank
training data, but not with the category required in
the test data. The improvement from tri-training is
limited, likely due to the weakness of the baseline
parses, and new techniques will be required to cor-
rect such errors.

8.3 Effect of Grammar
A subtle but crucial point is that our method depends
on the strictness of the CCGbank grammar to ex-
clude ungrammatical derivations. Because there is
no dependency model, we rely on the determinis-
tic CCG grammar as a hard constraint. There is a
trade-off between restrictive grammars which may
be brittle on noisy text, and weaker grammars that
may overgenerate ungrammatical sentences.

We measure this trade-off by testing weaker
grammars, which merge categories that are normally
distinct. For example, if we merge PP and NP , then
an S\NP can take either a PP or NP argument.

Table 7 shows that relaxing the grammar signif-
icantly hurts performance; the deterministic con-
straints are crucial to training a high quality LSTM

227

CCG parser. With a very relaxed grammar in
which all atoms can unify, dependencies features
help compensate for the weakened grammar. Fu-
ture work should explore further strengthening the
grammar—-e.g. marking plurality on NPs to en-
force plural agreement, or using slash-modalities
to prevent over-generation arising from composition
(Baldridge and Kruijff, 2003).

8.4 Effect of Dependency Features
Perhaps our most surprising result is that high accu-
racy can be achieved with a rule-based grammar and
no dependency features. We performed several ex-
periments to verify whether the model can capture
long-range dependencies, and the extent to which
dependency features are required to further improve
parsing performance.

Supertagging accuracy is still the bottleneck A
natural question is whether further improvements
to our model will require a more powerful pars-
ing model (such as adding dependency or derivation
features), or if future work should focus on the su-
pertagger. We found that on sentences where all the
supertags are correct in the final parse (51%), the F1
is very high: 97.7. On parses containing supertag
errors, the F1 drops to just 80.3. This result sug-
gests that parsing accuracy can be significantly in-
creased by improving the supertagger, and that very
high performance could be attained only using a su-
pertagging model.

‘Attach low’ heuristic is surprisingly effective
Given a sequence of supertags, our grammar is still
ambiguous. As explained in Section 2, we resolve
these ambiguities by attaching low. To investigate
the accuracy of this heuristic, we performed ora-
cle decoding given the highest scoring supertags—
and found that F1 improved by 1.3, showing that
there are limits to what can be achieved with a rule-
based grammar. In contrast, an ‘attach high’ heuris-
tic scores 5.2 F1 less than attaching low, suggesting
that these decisions are reasonably frequent, but that
attaching low is much more common.

Would adding a dependency model help here? We
consider several dependencies whose attachment is
often ambiguous given the supertags. Results are
shown in Table 8. Any improvements from the de-
pendency model are small—it is difficult to improve

Dependency Attach Low
Heuristic

Dependencies
Model

Relative clause 84.66 85.44
Adnominal PP 91.67 93.67
Adverbial PP 97.78 95.86
Adverb 99.09 98.09

Table 8: Per-relation accuracy for several dependen-
cies whose attachments are often ambiguous given
the supertags. Results are only on sentences where
the parsers assign the correct supertags.

0 10 20 30 40
40

60

80

100

Dependency Length

F1

LSTM
LSTM+Dependencies

Figure 3: F1 on dependencies of various lengths.

on the ‘attach low’ heuristic with current models.

Supertag-factored model is accurate on long-
range dependencies One motivation for CCG
parsing is to recover long-range dependencies.
While we do not explicitly model these dependen-
cies, they can still be extracted from the parse. In-
stead, we rely on the LSTM supertagger to implicitly
model the dependencies—a task that becomes more
challenging with longer dependencies. We investi-
gate the accuracy of our parser for dependencies of
different lengths. Figure 3 shows that adding depen-
dencies features does not improve the recovery of
long-range dependencies over the LSTM alone; the
LSTM accurately models long-range dependencies.

9 Related Work

Recent work has applied neural networks to pars-
ing, mostly using neural classifiers in shift-reduce
parsers (Henderson et al., 2013; Chen and Manning,
2014; Dyer et al., 2015; Weiss et al., 2015). Un-
like our approach, none of these report both state-of-
the-art speed and accuracy. Vinyals et al. (2015) in-

228

stead propose embedding entire sentences in a vec-
tor space, and then generating parse trees as strings.
Our model achieves state-of-the-art accuracy with a
non-ensemble model trained on the standard train-
ing data, whereas their model requires ensembles or
extra supervision to match the state of the art.

Most work on CCG parsing has either used CKY
chart parsing (Hockenmaier, 2003; Clark and Cur-
ran, 2007; Fowler and Penn, 2010; Auli and Lopez,
2011a) or shift-reduce algorithms (Zhang and Clark,
2011; Xu et al., 2014; Ambati et al., 2015). These
methods rely on beam-search to cope with the huge
space of possible CCG parses. Instead, we use
Lewis and Steedman (2014a)’s A∗ algorithm. By
using a semi-supervised LSTM supertagger, we im-
proved over Lewis and Steedman’s parser by 4.8 F1.

CCG supertagging was first attempted with
maximum-entropy Markov models (Clark, 2002)—
in practice, the combination of sparse features and
a large tag set makes such models brittle. Lewis
and Steedman (2014b) applied feed-forward neural
networks to supertagging, motivated by using pre-
trained work embeddings to reduce sparsity. Xu et
al. (2015) showed further improvements by using
RNNs to condition on non-local context. Concur-
rently with this work, Xu et al. (2016) explored bidi-
rectional RNN models, and Vaswani et al. (2016)
use bidirectional LSTMs with a different training
procedure.

Our tagging model is closely related to the bi-
directional LSTM POS tagging model of Ling et
al. (2015). We see larger gains over the state-of-
the-art—likely because supertagging involves more
long-range dependencies than POS tagging.

Other work has successfully applied GPUs to
parsing, but has required GPU-specific code and al-
gorithms (Yi et al., 2011; Johnson, 2011; Canny et
al., 2013; Hall et al., 2014). GPUs have also been
used for machine translation (He et al., 2015).

10 Conclusions and Future Work

We have shown that a combination of deep learn-
ing, linguistics and classic AI search can be used to
build a parser with both state-of-the-art speed and
accuracy. Future work will explore using our parser
to recover other representations from CCG, such as
Universal Dependencies (McDonald et al., 2013) or

semantic roles. The major obstacle is the mismatch
between these representations and CCGbank—we
will therefore investigate new techniques for obtain-
ing other representations from CCG parses. We will
also explore new A∗ parsing algorithms that explic-
itly model the global parse structure using neural
networks, while maintaining optimality guarantees.

Acknowledgements

We thank Bharat Ram Ambati, Greg Coppola, Chloé
Kiddon, Luheng He, Yannis Konstas and the anony-
mous reviewers for comments on an earlier version,
and Mark Yatskar for helpful discussions.

This research was supported in part by the NSF
(IIS-1252835), DARPA under the DEFT program
through the AFRL (FA8750-13-2-0019), an Allen
Distinguished Investigator Award, and a gift from
Google.

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2015. TensorFlow: Large-scale Machine Learning on
Heterogeneous Systems. Software available from ten-
sorflow.org.

Bharat Ram Ambati, Tejaswini Deoskar, Mark Johnson,
and Mark Steedman. 2015. An Incremental Algo-
rithm for Transition-based CCG Parsing. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Association for
Computational Linguistics.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark Steed-
man. 2016. Shift-Reduce CCG Parsing using Neural
Network Models. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers.

Michael Auli and Adam Lopez. 2011a. A Comparison
of Loopy Belief Propagation and Dual Decomposition
for Integrated CCG Supertagging and Parsing. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1.

Michael Auli and Adam Lopez. 2011b. Training a log-
linear parser with loss functions via softmax-margin.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Jason Baldridge and Geert-Jan M Kruijff. 2003. Multi-
modal Combinatory Categorial Grammar. In Proceed-

229

ings of the tenth conference on European chapter of
the Association for Computational Linguistics-Volume
1.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2).

John Canny, David Hall, and Dan Klein. 2013. A multi-
teraflop constituency parser using gpus. Architecture,
3:3–5.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2013. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. Technical
report, Google.

Danqi Chen and Christopher D Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), volume 1, pages 740–750.

Jinho D. Choi, Joel Tetreault, and Amanda Stent. 2015.
It Depends: Dependency Parser Comparison Using A
Web-based Evaluation Tool. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 387–396, Beijing, China, July.
Association for Computational Linguistics.

Stephen Clark and James R Curran. 2007. Wide-
coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4).

Stephen Clark. 2002. Supertagging for Combinatory
Categorial Grammar. In Proceedings of the 6th Inter-
national Workshop on Tree Adjoining Grammars and
Related Frameworks (TAG+ 6), pages 19–24.

Greg Durrett and Dan Klein. 2015. Neural CRF Parsing.
In Proceedings of the Association for Computational
Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based Dependency Parsing with Stack Long Short-
Term Memory. In Proc. ACL.

Timothy AD Fowler and Gerald Penn. 2010. Accu-
rate Context-free Parsing with Combinatory Catego-
rial Grammar. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics.

David Hall, Taylor Berg-Kirkpatrick, and Dan Klein.
2014. Sparser, better, faster gpu parsing. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 208–217, Baltimore, Maryland, June. Associa-
tion for Computational Linguistics.

Hua He, Jimmy Lin, and Adam Lopez. 2015. Gappy
Pattern Matching on GPUs for On-Demand Extraction
of Hierarchical Translation Grammars. TACL, 3:87–
100.

James Henderson, Paola Merlo, Ivan Titov, and Gabriele
Musillo. 2013. Multi-lingual Joint Parsing of Syntac-
tic and Semantic Dependencies with a Latent Variable
Model. Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-term Memory. Neural computation, 9(8):1735–
1780.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a Corpus of CCG derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33(3).

Julia Hockenmaier. 2003. Data and models for statis-
tical parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh. College of Sci-
ence and Engineering. School of Informatics.

Mark Johnson. 2011. Parsing in Parallel on Multi-
ple Cores and GPUs. In Proceedings of the Aus-
tralasian Language Technology Association Workshop
2011, pages 29–37, Canberra, Australia, December.

Mike Lewis and Mark Steedman. 2014a. A* CCG Pars-
ing with a Supertag-factored Model. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing.

Mike Lewis and Mark Steedman. 2014b. Improved CCG
parsing with Semi-supervised Supertagging. Transac-
tions of the Association for Computational Linguistics.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint A* CCG Parsing and Semantic Role Labelling.
In Empirical Methods in Natural Language Process-
ing.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso,
Ramon Fermandez, Silvio Amir, Luís Marujo, and
Tiago Luís. 2015. Finding function in form: Com-
positional character models for open vocabulary word
representation. In EMNLP, pages 1520–1530. The As-
sociation for Computational Linguistics.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, et al. 2013. Universal Dependency An-
notation for Multilingual Parsing. In ACL (2), pages
92–97.

Laura Rimell and Stephen Clark. 2008. Adapting a
Lexicalized-grammar Parser to Contrasting Domains.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013. Parsing with Compositional
Vector Grammars. In Proceedings of the ACL confer-
ence.

230

Mark Steedman. 2000. The Syntactic Process. MIT
Press.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A Simple and General Method
for Semi-supervised Learning. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging With LSTMs . In Pro-
ceedings of the Human Language Technology Confer-
ence of the NAACL.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a Foreign Language. In Advances in Neural
Information Processing Systems.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Net-
work Transition-Based Parsing. In Proceedings of
ACL 2015, pages 323–333.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014.
Shift-Reduce CCG Parsing with a Dependency Model.
In Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL 2014).

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG Supertagging with a Recurrent Neural Network.
Volume 2: Short Papers, page 250.

Wenduan Xu, Michael Auli, and Stephen Clark. 2016.
Shift-Reduce CCG Parsing with Recurrent Neural
Networks and Expected F-Measure Training. In Pro-
ceedings of the Human Language Technology Confer-
ence of the NAACL.

Youngmin Yi, Chao-Yue Lai, Slav Petrov, and Kurt
Keutzer. 2011. Efficient parallel cky parsing on gpus.
In Proceedings of the 12th International Conference
on Parsing Technologies, IWPT ’11, pages 175–185,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Yue Zhang and Stephen Clark. 2011. Shift-reduce CCG
Parsing. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1.

231

Proceedings of NAACL-HLT 2016, pages 232–237,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Supertagging with LSTMs

Ashish Vaswani1, Yonatan Bisk1, Kenji Sagae2, and Ryan Musa3

1University of Southern California, 2Kitt.ai
3University of Illinois at Urbana-Champaign
vaswani@usc.edu, ybisk@isi.edu

sagae@kitt.ai, ramusa2@illinois.edu

Abstract

In this paper we present new state-of-the-art
performance on CCG supertagging and pars-
ing. Our model outperforms existing ap-
proaches by an absolute gain of 1.5%. We an-
alyze the performance of several neural mod-
els and demonstrate that while feed-forward
architectures can compete with bidirectional
LSTMs on POS tagging, models that encode
the complete sentence are necessary for the
long range syntactic information encoded in
supertags.

1 Introduction

Morphosyntactic labels for words are commonly
used in a variety of NLP applications. For this rea-
son, part-of-speech (POS) tagging and supertagging
have drawn significant attention from the commu-
nity. Combinatory Categorial Grammar is a lexical-
ized grammar formalism that is widely used for syn-
tactic and semantic parsing. Supertagging (Clark,
2002; Bangalore and Joshi, 2010) assigns complex
syntactic labels to words to enable fast and accurate
parsing. The disambiguation of correctly labeling
a word with one of over 1,200 CCG labels is dif-
ficult compared to choosing on of the 45 POS la-
bels in the Penn Treebank (Marcus et al., 1993). In
addition to the large label space of CCG supertags,
labeling a word correctly depends on knowledge of
syntactic phenomena arbitrarily far in the sentence
(Hockenmaier and Steedman, 2007). This is be-
cause supertags encode highly specific syntactic in-
formation (e.g. types and locations of arguments)
about a word’s usage in a sentence.

In this paper, we show that Bidirectional Long
Short-Term Memory recurrent neural networks (bi–
LSTMs) (Graves, 2013; Zaremba et al., 2014),
which can use information from the entire sentence,

are a natural and powerful architecture for CCG su-
pertagging. In addition to the bi–LSTM, we create
a simple yet novel model that outperforms the pre-
vious state-of-the-art RNN model that uses hand-
crafted features (Xu et al., 2015) by 1.5%. Con-
current to this work (Lewis et al., 2016) introduced
a different training methodology for bi-LSTM for
supertagging. We provide a detailed analysis of
the quality of various LSTM architectures, forward,
backward, and bi-directional, shedding light over the
ability of the bi–LSTM to exploit rich sentential con-
text necessary for performing supertagging. We also
show that a baseline feed-forward neural network
(NN) architecture significantly outperforms previ-
ous feed-forward NN baselines, with slightly fewer
features, achieving better accuracy than the RNN
model from (Xu et al., 2015).

Recently, bi–LSTMs have achieved high accu-
racies in a simpler sequence labeling task: part-
of-speech tagging (Wang et al., 2015; Ling et al.,
2015) on the Penn treebank, with small improve-
ments over local models. However, we achieve
strong accuracies compared to (Wang et al., 2015)
using feed-forward neural network model trained on
local context, showing that this task does not require
bi–LSTMs. Our strong feed-forward NN baselines
show the power of feed-forward NNs for some tasks.

Our main contributions are the introduction of
a new bi–LSTM model for CCG supertagging that
achieves state-of-the-art, on both CCG supertagging
and parsing, and a detailed analysis of our results,
including a comparison of bi–LSTMs and simpler
feed forward NN models for supertagging and POS
tagging, which suggests that the added complexity
of bi–LSTMs may not be necessary for POS tagging,
where local contexts suffice to a much greater extent
than in supertagging.

232

2 Models And Training

We use feed-forward neural network models and
bidirectional LSTM (bi–LSTM) based models in
this work.

2.1 Feed-Forward
For both POS tagging and our baseline supertagging
model, we use feed-forward neural networks with
two hidden layers of rectified linear units (Nair and
Hinton, 2010). For supertagging, we use a slightly
smaller set than Lewis and Steedman (2014a), us-
ing a left and right 3-word window with suffix and
capitalization features for the center word. However,
unlike them, we train on the full set of supertag cat-
egories observed during training.

In POS tagging, when tagging word wi, we con-
sider only features from a window of five words,
with wi at the center. For each wj with i − 2 ≤
j ≤ i + 2, we add wj lowercased and a string that
encodes the basic “word shape” of wj . This is com-
puted by replacing all sequences of uppercase letters
with A, all sequences of lowercase letters with a, all
sequences of digits with 9, and all sequences of other
characters with ∗. Finally, we add two and three let-
ter suffixes and two letter prefix for wi only.

2.2 LSTM models
We experiment with two kinds of bi–LSTM models.
We train a basic bi–LSTM where the forward and
backward LSTMs take input words wi and produce
hidden state

−→
h i and

←−
h i. For each position, we pro-

duce h̃i, where

h̃i = σ(W←−
h

←−
h Ti +W−→

h

−→
h Ti), (1)

where σ(x) = max(0, x) is a rectifier nonlinear-
ity, and where W←−

h
and W−→

h
are parameters to be

learned. The unnormalized likelihood of an output
supertag is computed using supertag embeddings
Dti and biases bti as p(ti | h̃i) = Dti h̃

T
i + bti . The

final softmax layer computes normalized supertag
probabilities.

Although bidirectional LSTMs can capture long
distance interactions between words, each output la-
bel is predicted independently. To explicitly model
supertag interactions, our next model combines two
models, the bi–LSTM and a LSTM language model
(LM) over the supertags (Figure 1). At position

… …

… …

…

Backward LSTM

Forward LSTM

Combiner Nodes

LSTM LM

Combiner Nodes

Output

Words

hLMi hLMi+1 hLMi+2

←−hi
←−−hi+1

←−−hi+2

−−→hi+2
−−→hi+1

−→hi

ti ti+1 ti+2

ti ti+1 ti+2

…

eat sushi with tuna

Figure 1: We add a language model between supertags.

i, the LM accepts an input supertag ti−1 produc-
ing hidden state hLMi , and a second combiner layer,
parametrized by matrices WLM and Wh̃ transforms
h̃i and hLMi to hi similar to the combiner for h̃i
(Equation 1). Output supertag probabilities are com-
puted just as before, replacing replacing h̃i with hi.
We refer to this model as bi–LSTM–LM. For all our
LSTM models, we only use words as input features.

2.3 Training

We train our models to maximize the log-likelihood
of the data with minibatch gradient ascent. Gradi-
ents of the models are computed with backpropa-
gation (Chauvin and Rumelhart, 1995). Since gold
supertags are available during training time and not
while decoding, a bi–LSTM–LM trained on gold su-
pertags might not recover from errors caused by us-
ing incorrectly predicted supertags. This results in
the bi–LSTM–LM slightly underperforming the bi–
LSTM (we refer to training with gold supertags as
g–train in Table 1). To bridge this gap between train-
ing and testing we also experiment with a sampling
training regime in addition to training.

Scheduled sampling: Following (Bengio et al.,
2015; Ranzato et al., 2015), for each output token,
with some probability p, we use the most likely pre-
dicted supertag (arg maxtiP (ti | hi)) from the
model in position i−1 as input to the supertag LSTM
LM in position i and use the gold supertag with
probability 1 − p. We denote this training as ss–
train–1. We also experiment with using the 5-best
previous predicted supertags from the output distri-
bution at position i − 1 and feed them to the LM as
input in position i as a bit vector. Additionally, we

233

Epoch g-train SS-train-1b SS-train-kb

1 1.663079261779785 1.493532538414001 1.471613883972168

2 1.59983241558075 1.397878646850586 1.391600012779236

3 1.584500551223755 1.343078851699829 1.331377267837524

4 1.565570712089539 1.313792586326599 1.307917714118958

5 1.568343997001648 1.305177807807922 1.298569440841675

6 1.585107803344727 1.30352258682251 1.290364503860474

7 1.562329530715942 1.279528975486755 1.276203751564026

8 1.612882614135742 1.2797691822052 1.279410839080811

9 1.588557481765747 1.278935551643372 1.273308753967285

10 1.612249255180359 1.28274667263031 1.272010803222656

11 1.594677925109863 1.282948136329651 1.272024273872375

12 1.617396116256714 1.281896352767944 1.278515696525574

13 1.610980749130249 1.285645723342896 1.274761080741882

14 1.621490359306335 1.28062105178833 1.275495886802673

15 1.628495216369629 1.285783290863037 1.272665500640869

16 1.639569163322449 1.284226417541504 1.276064276695251

17 1.638893842697144 1.286049485206604 1.275808334350586

18 1.630186915397644 1.284650564193726 1.275925874710083

19 1.633984208106995 1.286053538322449 1.276958823204041

20 1.628738522529602 1.284542202949524 1.27592945098877

21 1.627252221107483 1.284929633140564 1.276000380516052

22 1.627161264419556 1.28664767742157 1.276474475860596

23 1.626600503921509 1.286289811134338 1.275714635848999

24 1.630642294883728 1.284499049186707 1.275835752487183

25 1.626240372657776 1.285952687263489 1.275785207748413

Pe
rp
le
xi
ty

1.25

1.4

1.55

1.7

Epochs

1 5 9 13 17 21 25

g-train ss-train-1 ss-train-5

�1

Figure 2: Scheduled sampling improves the perplexity of the

gold sequence under predicted tags. We see that the perplexity

of the gold supertag sequence when using predicted tags for the

LM is lower for ss–train–1 and ss–train–5 than with g–train.

use their probabilities (re-normalized over the 5-best
tags) and scale the input supertag embeddings with
their re-normalized probability during look-up. We
refer to this setting as ss–train–5. In this work, we
use an inverse sigmoid schedule to compute p,

p =
k

k + e
s
k

,

where s is the epoch number and k is a hyperpa-
rameter that is tuned.1 In Figure 2, we see that for
the development set training with scheduled sam-
pling improves the perplexity of the gold supertag
sequence when using predicted supertags, indicat-
ing better recovery from conditioning on erroneous
supertags. For both ss-train and g-train, we use gold
supertags for the output layer and train the model to
maximize the log-likelihood of the data.2

2.4 Architectures

Our feed-forward models use 2048 rectifier units in
the first hidden layer, 50 and 128 rectifier units in the
second hidden layer for POS tagging and Supertag-
ging respectively, and 64 dim. input embeddings.

Our LSTM based models use 512 hidden states.
We pre-train our word embeddings with a 7-
gram feed-forward neural language model using the
NPLM toolkit3 on a concatenation of the BLLIP cor-
pus (Charniak et al., 2000) and WSJ sections 02–21
of the Penn Treebank.

1The reader should refer to (Bengio et al., 2015) for details.
2We use dropout for all our feed-forward (Srivastava, 2013)

and bi-LSTM based models (Zaremba et al., 2014). We carry
out a grid search over dropout probabilities and sampling sched-
ules. We train the LSTMs for 25 epochs and the feed-forward
models for 30 epochs, tuning on the development data.

3http://nlg.isi.edu/software/nplm/

Supertag Accuracy
Model All Seen Novel % P

Lewis et al. (2014) 91.30
Wenduan et al. (2015) 93.07

Feed Forward + g–train 93.29 93.77 91.53 70.3
Forward LSTM + g–train 83.70 85.76 46.22 20.7
Backward LSTM + g–train 88.82 90.06 66.22 40.6
bi–LSTM 94.08 95.03 76.36 81.1
bi–LSTM–LM + g–train 93.89 94.93 76.83 96.5
bi–LSTM–LM + ss–train–1 94.24 95.22 76.70 87.8
bi–LSTM–LM + ss–train–5 94.23 95.20 76.62 94.5

Table 1: Accuracies on the development section. The language

model provides a boost in performance, and large gains on the

parseability of the sequence (%P). The numbers for bi–LSTM–

LM + ss–train–1 and + g–train are with beam decoding. All

others use greedy decoding. Interestingly, greedy decoding with

ss–train–5 works as well as beam decoding with ss–train–1.

2.5 Decoding

We perform greedy decoding. For each position i,
we select the most probable supertag from the output
distribution. For the bi–LSTM–LM models trained
with g–train and ss–train–1, we feed the most likely
supertag from the output distribution as LM input
in the next position. We decode with beam search
(size 12) for bi–LSTM–LMs trained with g–train
and ss–train–1. For the bi–LSTM–LMs trained with
ss–train–5, we perform greedy decoding similar to
training, feeding the k-best supertags from the out-
put supertag distribution in position i − 1 as input
to the LM in position i, along with the renormal-
ized probabilities. We don’t perform beam decoding
for ss–train–5, as the previous k-best inputs already
capture different paths through the network.4

3 Data

For supertagging, experiments were run with the
standard splits of CCGbank. Unlike previous work
no features were extracted for the LSTM models and
rare categories were not thresholded. Words were
lowercased and digits replaced with @.

CCGbank’s training section contains 1,284 lexi-
cal categories (394 in Dev). The distribution of cate-
gories has a long tail, with only a third of those cate-

4Code and supertags for our models can be downloaded
here: https://bitbucket.org/ashish_vaswani/
lstm_supertagger

234

LSTM
Supertag F-For Forward Backward bi–LSTM +LM(g–train) ss–train–1 ss–train–5

(NP\NP)/NP 90.00 88.89 81.91 92.09 92.18 91.72 92.31
((S\NP)\(S\NP))/NP 75.75 69.53 61.60 80.38 78.21 79.91 78.77
S[dcl]\NP 77.29 61.14 58.52 84.28 83.41 82.97 80.35
(S[dcl]\NP)/NP 91.39 56.58 69.86 92.34 92.46 92.46 92.82
((S[dcl]\NP)/PP)/NP 42.30 30.77 42.31 56.41 64.10 62.82 60.26
(S[dcl]\NP)/(S[adj]\NP) 86.80 22.84 83.25 87.31 88.83 87.82 86.80
((S[dcl]\NP)/(S[to]\NP))/NP 86.49 56.76 75.68 94.59 91.89 91.89 91.89

Table 2: Prediction accuracy for our models on several common and difficult supertags.

Architecture Test Acc

Ling et al. (2015) Bi-LSTM 97.36
Wang et al. (2015) Bi-LSTM 97.78
Søgaard (2011) SCNN 97.50

This work Feed-Forward 97.40

Table 3: Our new POS tagging results show a strong Feed-

Forward baseline can perform as well as or better than more

sophisticated models (e.g. Bi-LSTMs).

gories having a frequency count ≥ 10 (the threshold
used by existing literature). Following (Lewis and
Steedman, 2014b), we allow the model to predict all
categories for a word, not just those with which the
word was observed to co-occur in the training data.
Accuracies on these unseen (word, cat) pairs are pre-
sented in the third column of Table 1.

4 Results

Table 3 presents our Feed-Forward POS tagging re-
sults. We achieve 97.28% on the development set
and 97.4% on test. Although slightly below state-of-
the-art, we approach existing work with bi–LSTMs,
and our models are much simpler and faster to train.5

Table 1 shows a steady increase in performance
as the model is provided additional context. The for-
ward and backward models are presented with infor-
mation that may be arbitrarily far away in the sen-
tence, but only in a specific direction. This yields
weaker results than the Feed Forward model which
can see in both directions within a small window.
The real gains are achieved by the Bidirectional
LSTM which incorporates knowledge from the en-
tire sentence. Our addition of a language model
and changes to training, further improve the perfor-

5We use train, dev, and test splits of WSJ sections 00–18,
19–21, and 22–24, for POS tagging.

Dev F1 Test F1

Wenduan et al. (2015) 86.25 87.04
+ new POS Tags & C&C 86.99 87.50
bi–LSTM–LM +ss–train–1 87.75 88.32

Table 4: Parsing at 100% coverage with our new Feed-Forward

POS tagger and the Java implementation of C&C. We show both

the published and improved results for Wenduan et al.

mance. Our final model (bi–LSTM–LM+ss–train–1
model with beam decoding) has a test accuracy of
94.5%, 1.5% above state-of-the-art.

4.1 Parsing

Our primary goal in this paper was to demonstrate
how a bi–LSTM captures new and different in-
formation from uni-directional or feed-forward ap-
proaches. This advantage also translates to gains
in parsing. Table 4 presents new state-of-the-art
parsing results for both (Xu et al., 2015) and our
bi–LSTM–LM +ss–train–1. These results were at-
tained using our part-of-speech tags (Table 3) and
the Java implementation (Clark et al., 2015) of the
C&C parser (Clark and Curran, 2007)6.

4.2 Error Analysis

Our analysis indicates that the information follow-
ing a word is more informative than what preceded
it. Table 2 compares how well our models recover
common and syntactically interesting supertags. In
particular, the Forward and Backward models, moti-
vate the need for a Bi-directional approach.

6Results are presented on the standard development and test
splits (Section 00 and 23), and with a beam threshold of 10−6.
For a fair comparison to prior work we report results without
the skimmer, so no partial credit is given to parse failures. The
skimmer boosts performance to 87.91/88.39 for Dev and Test.

235

(S[dcl]\NP)/(S[adj]\NP)

Forward Backward Bidirectional

((S[dcl]\NP)/PP)/(S[adj]\NP) ((S[dcl]\NP)/PP)/(S[adj]\NP) (S[dcl]\NP)/(S[pss]\NP)
((S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP) ((S[b]\NP)\NP)/(S[adj]\NP) (S[dcl]\NP)/PP)/(S[adj]\NP)
((S[dcl]\NP)/PP)/PP (S[dcl]\S[qem])/(S[adj]\NP) (S[b]\NP)\NP)/(S[adj]\NP)
(S[dcl]\NP)/S ((S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP) (S[dcl]\NP)/(S[to]\NP))/(S[adj]\NP)
(S[dcl]\NP)/(S[pss]\NP) ((S[dcl]\NP)/(S[adj]\NP))/(S[adj]\NP) (S[dcl]\NP)/(S[adj]\NP))/(S[adj]\NP)

Table 5: “Neighbor” categories as determined by embedding-based vector similarity for each class of model. As expected for this

category, the Backward model captures the argument preference while the Forward model correctly predicts the result.

The first two rows show prepositional phrase at-
tachment decisions (noun and verb attaching cate-
gories are in rows one and two, respectively). Here
the forward model outperforms the backward model,
presumably because knowing the word to be modi-
fied and the preposition, is more important than ob-
serving the object of the prepositional phrase (the
information available to the backward model).

Conversely, the backward model outperforms the
forward model in most of the remaining categories.
(Di-)transitive verbs (lines 4 & 5) require knowledge
of future arguments in the sentence (e.g. separated
by a relative clause). Because English has strict SVO
word-order, the presence of a subject is more pre-
dictable than the presence of an (in-)direct object. It
is therefore not surprising that the backward model
is often comparable to the Feed Forward model.

If the information missing from either the forward
or backward models were local, the bidirectional
model should perform the same as the Feed-Forward
model, instead it surpasses it, often by a large mar-
gin. This implies there is long range information
necessary for choosing a supertag.

Embeddings In addition, we can visualize the in-
formation captured by our models by investigating
a category’s nearest neighbors based on the learned
embeddings. Table 5 shows nearest neighbor cate-
gories for (S[dcl]\NP)/(S[adj]\NP) under the For-
ward, Backward, and Bidirectional models.

We see see that the forward model learns inter-
nal structure with the query category, but the list of
arguments is nearly random. In contrast, the back-
ward model clusters categories primarily based on
the final argument, perhaps sharing similarities in
the subject argument only because of the predictable
SVO nature of English text. However, due to its
lack of forward context the model incorrectly asso-

ciates categories with less-common first arguments
(e.g. S[qem]). Finally, the bidirectional embeddings
appear to cleanly capture the strengths of both the
forward and backward models.

Consistency and Internal Structure Because su-
pertags are highly structured their co-occurence in
a sentence must be permitted by the combinators
of CCG. Without encoding this explicitly, the lan-
guage model dramatically increases the percent of
predicted sequences that result in a valid parse by up
to 15% (last column of Table 2).

Sparsity One consideration of our approach is that
we do not threshold rare categories or use any tag
dictionaries; our models are presented with the full
space of CCG categories, despite the long tail. This
did not did not hurt performance and the models
learned to successfully use several categories which
were outside the set of traditionally-thresholded fre-
quent categories. Additionally, the total number of
categories used correctly at least once by the bi-
directional models was substantially higher than the
other models (∼270 vs. ∼220 of 394), though the
large number of unused categories (≥120) indicates
that there is still substantial room for improvement.

5 Conclusions and Future Work

Because bi–LSTMs with a language model encode
an entire sentence at decision time, we demonstrated
large gains in supertagging and parsing. Future work
will investigate improving performance on rare cat-
egories.

Acknowledgements

This work was supported by the U.S. DARPA
LORELEI Program No. HR0011-15-C-0115. We
would like to thank Wenduan Xu for his help.

236

References
Srinivas Bangalore and Aravind K. Joshi. 2010. Su-

pertagging: Using Complex Lexical Descriptions in
Natural Language Processing. The MIT Press.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–
1179.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 2000. Bllip 1987-
89 wsj corpus release 1. Linguistic Data Consortium,
Philadelphia, 36.

Yves Chauvin and David E Rumelhart. 1995. Backprop-
agation: theory, architectures, and applications. Psy-
chology Press.

Stephen Clark and James Curran. 2007. Wide-Coverage
Efficient Statistical Parsing with CCG and Log-Linear
Models. Computational Linguistics, 33(4):493–552.

Stephen Clark, Darren Foong, Luana Bulat, and Wenduan
Xu. 2015. The Java Version of the C&C Parser: Ver-
sion 0.95. Technical report, University of Cambridge
Computer Laboratory, August.

Stephen Clark. 2002. Supertagging for combinatory cat-
egorial grammar. In Proceedings of the 6th Interna-
tional Workshop on Tree Adjoining Grammars and Re-
lated Formalisms (TAG+6), pages 19–24.

A. Graves. 2013. Generating sequences with recurrent
neural networks. arXiv preprint arXiv:1308.0850.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33:355–396, September.

Mike Lewis and Mark Steedman. 2014a. A* ccg pars-
ing with a supertag-factored model. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP-2014).

Mike Lewis and Mark Steedman. 2014b. Improved ccg
parsing with semi-supervised supertagging. Transac-
tions of the Association for Computational Linguistics,
2:327–338.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 15th An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics.

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated

Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19:313–330, June.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified lin-
ear units improve restricted Boltzmann machines. In
Proceedings of ICML, pages 807–814.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. 2015. Sequence Level Train-
ing with Recurrent Neural Networks. arXiv preprint
arXiv:1511.06732.

Anders Søgaard. 2011. Semisupervised condensed near-
est neighbor for part-of-speech tagging. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies: short papers-Volume 2, pages 48–52. Asso-
ciation for Computational Linguistics.

Nitish Srivastava. 2013. Improving neural networks with
dropout. Ph.D. thesis, University of Toronto.

Peilu Wang, Yao Qian, Frank K Soong, Lei He, and Hai
Zhao. 2015. Part-of-speech tagging with bidirec-
tional long short-term memory recurrent neural net-
work. arXiv preprint arXiv:1510.06168.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
Ccg supertagging with a recurrent neural network.
Volume 2: Short Papers, page 250.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Re-
current neural network regularization. arXiv preprint
arXiv:1409.2329.

237

Proceedings of NAACL-HLT 2016, pages 238–248,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

An Empirical Study of Automatic Chinese Word Segmentation for Spoken
Language Understanding and Named Entity Recognition

Wencan Luo∗
University of Pittsburgh

Pittsburgh, PA 15260
wencan@cs.pitt.edu

Fan Yang
Nuance Communications, Inc.

Seattle, WA 98104
fan.yang@nuance.com

Abstract

Word segmentation is usually recognized as
the first step for many Chinese natural lan-
guage processing tasks, yet its impact on these
subsequent tasks is relatively under-studied.
For example, how to solve the mismatch prob-
lem when applying an existing word seg-
menter to new data? Does a better word seg-
menter yield a better subsequent NLP task per-
formance? In this work, we conduct an ini-
tial attempt to answer these questions on two
related subsequent tasks: semantic slot filling
in spoken language understanding and named
entity recognition. We propose three tech-
niques to solve the mismatch problem: us-
ing word segmentation outputs as additional
features, adaptation with partial-learning and
taking advantage of n-best word segmentation
list. Experimental results demonstrate the ef-
fectiveness of these techniques for both tasks
and we achieve an error reduction of about
11% for spoken language understanding and
24% for named entity recognition over the
baseline systems.

1 Introduction

Unlike English text in which sentences are se-
quences of words separated by white spaces, in Chi-
nese text (as are some other languages including
Arabic, Japanese, etc.), sentences are represented as
strings of characters without similar natural delim-
iters. Therefore, it is generally claimed that the first
step in a Chinese language processing task is to iden-
tify the sequence of words in a sentence and mark

∗Work done at Nuance during an internship.

boundaries in appropriate places, which is refereed
to as the task of Chinese Word Segmentation (CWS).

(1) Input: 能穿多少穿多少

CWS 1: 能|穿|多多多少少少|穿|多少1

(Put on as much clothes as possible.)
CWS 2: 能|穿|多|少少少|穿|多|少

(Put on as little clothes as possible.)

Word segmentations in Chinese text do reduce
ambiguities. In the example (1), the same span of
text (the input) can convey entirely opposite mean-
ings (the English sentences in parentheses) depend-
ing on how word boundaries (CWS 1 and CWS 2)
are labeled. Therefore, it is generally believed that
more accurate word segmentations should benefit
more the subsequent Chinese language processing
tasks, such as part-of-speech tagging, named entity
recognition, etc. There has been quite a number of
research in the field of CWS to improve segmen-
tation accuracy, yet its impact on the subsequent
processing is relatively under-studied. Chang et
al. (2008) explore how word segmentation improves
machine translation; and Ni and Leung (2014) ex-
plore how word segmentation impacts automatic
speech recognition yet do not have conclusive find-
ings. In this research, we aim to better understand
how CWS benefits the subsequent NLP tasks, using
semantic slot filling in spoken language understand-
ing (SLU) and named entity recognition (NER) as
two case studies.

In particular, we investigate the impact of Chinese
word segmentation in three different situations.

1We use ‘|’ to indicate a word boundary. Example is bor-
rowed and revised from (Chen et al., 2015).

238

First, assuming domain data (the data for a partic-
ular subsequent task, e.g. SLU or NER) having no
word boundary annotation (§4), we can apply word
segmenters trained with publicly-available data to
the domain data to get the word boundary. However,
existing word segmenters may have a domain mis-
match problem due to the fact that they may have
different genre from the subsequent task and are
usually segmented with different standards (Huang
and Zhao, 2007). Therefore, we propose three tech-
niques to solve this problem. Note, these techniques
can be used together.

1) We use word segmentation outputs as ad-
ditional features in subsequent tasks (§3.2),
which is more robust against error propagation
than using segmented word units.

2) We adapt existing word segmenters with
partially-labeled data derived from the subse-
quent task training data (§3.3), further improv-
ing the end-to-end performance.

3) We take advantage of the n-best list of word
segmentation outputs (§3.4), making the subse-
quent task less sensitive to word segmentation
errors.

Second, assuming domain training data (e.g.,
NER) is already segmented with word boundary
(§5), we are able to train a domain word segmenter
with the data itself and apply it to the testing data.
This allows us to see the differences between a
word segmenter trained with in-domain data and one
trained with publicly-available data.

Last, assuming both domain training and testing
data have word boundary information (§5), it allows
to explore the upper bound performance of the sub-
sequent task with a perfect word segmenter.

Experimental results show that the proposed tech-
niques do improve the end-to-end performance and
we achieve an error rate reduction of 11% for SLU
and 24% for NER over their corresponding baseline
systems. In addition, we found that even a word seg-
menter that is only moderately reliable is still able
to improve the end-to-end performance, and a word
segmenter trained with in-domain data is not neces-
sarily better compared to a word segmenter trained
with out-domain data in terms of the end-to-end per-
formance.

2 Related Work

Word segmentation has received steady attention
over the past two decades. People have shown that
models trained with limited text can have a rea-
sonable accuracy (Li and Sun, 2009; Zhang et al.,
2013a; Li et al., 2013; Cheng et al., 2015). However,
the fact is that none of existing algorithms is robust
enough to reliably segment unfamiliar types of texts
without fine-tuning (Huang et al., 2007). Several
approaches have proposed to eliminate this issue,
for example the use of unlabeled data (Sun and Xu,
2011; Wang et al., 2011; Zhang et al., 2013b) and
partially-labeled data (Yang and Vozila, 2014; Taka-
hasi and Mori, 2015). In our work, we encounter
the same issue when applying word segmentation to
the subsequent tasks and thus we propose three ap-
proaches to solve this problem.

Word segmentation has been applied in several
subsequent tasks, e.g. NER (Zhai et al., 2004), in-
formation retrieval (Peng et al., 2002), automatic
speech recognition (Ni and Leung, 2014), machine
translation (Xu et al., 2008; Chang et al., 2008;
Zhang et al., 2008; Zeng et al., 2014), etc. In gen-
eral, there are two types of approaches to utilize
word segmentation in subsequent tasks: pipeline and
joint-learning. The pipeline approach creates word
segmentation first and then feeds the segmented
words into subsequent task(s). It is straightforward,
but suffers from error propagation since an incor-
rect word segmentation would cause an error in the
subsequent task. The joint-learning approach trains
a model to learn both word segmentation and the
subsequent task(s) at the same time. A number of
subsequent tasks have been unified into joint mod-
els, including disambiguation (Wang et al., 2012),
part-of-speech tagging (Jiang et al., 2008a; Jiang
et al., 2008b; Zhang and Clark, 2010; Sun, 2011),
NER (Gao et al., 2005; Xu et al., 2014; Peng and
Dredze, 2015), and parsing (Hatori et al., 2012; Qian
and Liu, 2012). However, the joint-learning process
generally assumes the availability of manual word
segmentations for the training data, which limits the
use of this approach. Thus in this work, we focus
on the pipeline approach, but instead of feeding the
segmented words, we use word segmentation results
as additional features in the subsequent tasks, which
is more robust against error propagation.

239

3 Applying CWS to Subsequent Tasks

In this section, we describe how to integrate word
segmentation information when domain data having
no word boundary information, using SLU and NER
as two case studies.

We first introduce the baseline system, and then
describe the techniques that we propose to solve the
domain mismatch problem when applying automatic
CWS to the subsequent NLP tasks.

3.1 Baseline system

Both of the SLU and NER can be formulated as
sequence labeling tasks, and can be solved us-
ing machine learning techniques such as Condi-
tional Random Field (CRF), Recurrent Neural Net-
work, or their combinations (Wan et al., 2011;
Mesnil et al., 2015; Rondeau and Su, 2015).
We adopt the tool wapiti (Lavergne et al., 2010),
which is an implementation of CRF. In the base-
line system, each Chinese character is treated as
a labeling unit. Here is an example of our
training sentences for SLU:‘三|division 元|division
里|division 莫|street 干|street 山|street 路|street
周|locref围|locref的|unk餐|query厅|query’ (Find
the restaurants near Sanyuanli Mogan Mountain
road). The input features for training the baseline
CRF model are character ngrams in the K-window
and label bigrams. For computational efficiency, we
use trigram within 5-character window. Given the
current character c0, we extract the following char-
acter ngram features: c−2, c−1, c0, c1, c2, c−2c−1,
c−1c0, c0c1, c1c2, c−2c−1c0, c−1c0c1, and c0c1c2.

3.2 Using CWS as features

When word segmentation information is not avail-
able within the domain data, we can use publicly-
available corpora such as the Chinese Tree Bank
(Levy and Manning, 2003), to train an automatic
word segmenter.

A dominant approach for supervised CWS is to
formulate it as a character sequence labeling prob-
lem, and label each character with its location in a
word (Xue, 2003). A popular labeling scheme is
‘BIES’: ‘B’ for the beginning character of a word,
‘I’ for the internal characters, ‘E’ for the ending
character, and ‘S’ for single-character word. Fol-
lowing (Yang and Vozila, 2014), we train our au-

tomatic word segmenter with CRF using the input
features of character unigrams and bigrams, con-
secutive character equivalence, separated character
equivalence, punctuation, character sequence pat-
tern, anchor of word unigram and bigram. This
word segmenter achieves state-of-the-art or compa-
rable performance.

A straightforward way to integrate word segmen-
tation is the traditional pipeline approach. It uses
word segmentation first and feeds the segmented
words to subsequent task(s), named as Word Unit.
However, this method suffers from the error propa-
gation problem since an incorrect word segmenta-
tion would cause an error in the subsequent task.
Therefore, we proposed to use word segmentation
outputs as additional features (As Features) in the
subsequent tasks, as introduced below. We hypoth-
esize the As Features is less sensitive to word seg-
mentation errors since the CRF model can still rely
on the character features when a word segmentation
is not perfect.

Word Unit We can use segmented words instead
of characters as labeling units for the CRF
learning. During training we can run forced-
decoding (Lavergne et al., 2010) on word seg-
mentation so that word boundaries are consis-
tent with semantic slot or named entity bound-
aries. During testing we simply apply the word
segmenter to the sentences.

As Features We can still keep using characters
as the labeling units, but add the word seg-
mentation information as additional features.
Given the current character c0 and word seg-
mentation output represented as ‘BIES’ tag t0,
we extract the character ngram features to-
gether with the following word segmentation
tag ngram features: t−2, t−1, t0, t1, t2, t−2t−1,
t−1t0, t0t1, t1t2, t−2t−1t0, t−1t0t1, and t0t1t2.
The tag ngram features provide word segmen-
tation information indirectly. For example,
t0t1=‘BE’ indicates c0 initiates a two-character
word, while t0t1t2=‘BII’ means that c0 is prob-
ably a beginning of a long word.

3.3 Adaptation with Partial-learning
The publicly-available corpora for word segmenta-
tion, however, may create a domain-mismatch prob-

240

Figure 1: Partially-labeled word segmentations derived from named entity labels. The first character in a name (‘美’ in the

organization name ‘美中贸易全国委员会’) can only be labeled as ‘S’ or ‘B’, while the last one (‘会’) can only be labeled as ‘S’

or ‘E’; similarly, a character after a name (‘主’) can only be labeled as ‘S’ or ‘B’, while a character before a slot (‘席’) can only be

labeled as ‘S’ or ‘E’.

lem (especially for the SLU data). First, these cor-
pora tend to be news articles and thus have differ-
ent genre in content. Second, these corpora are usu-
ally segmented with different standards (Huang and
Zhao, 2007) and it is unclear which one would serve
the purpose of the subsequent task.

Even if the NER/SLU task training data is not
word segmented, the semantic slot and named en-
tity labels actually provide valuable information on
word boundaries. As illustrated in Fig. 1, the first
character in an organization/person/location name
can only be labeled as ‘S’ or ‘B’, while the last
one can only be labeled as ‘S’ or ‘E’; similarly,
a character after a name can only be labeled as
‘S’ or ‘B’, while a character before a name can
only be labeled as ‘S’ or ‘E’. We can thus create
partially-labeled CWS data from SLU and NER la-
bels. These partially-labeled data can then be used
to adapt the out-of-domain word segmenter trained
from publicly-available corpus.

Täckström et al. (2013) propose the approach
partial-label learning to learn from partially-labeled
data, and Yang and Vozila (2014) apply it to Chinese
word segmentation. In partial-label training, each
item in the sequence receives multiple labels, and
each sequence has a lattice constraint, as shown in
Fig. 1. The basic idea is to marginalize the probabil-
ity mass of the constrained lattice in a cost function.
The marginal probability of the lattice is defined as
Equation 1, where C denotes the input character se-
quence, L denotes the label sequence, and Ŷ (C, L̃)
denotes the constrained lattice (with regard to the in-
put sequence C and the partial-labels L̃).

pθ(Ŷ (C, L̃)|C) =
∑

L∈Ŷ (C,L̃)

pθ(L|C) (1)

The optimization objective function is to maxi-
mize the log-likelihood of the training set, in which
likelihood is calculated via the probability mass of
the constrained lattice, as shown in Equation 2. Here
n denotes the number of sentences in the training set.

L(θ) =
n∑
i=1

log pθ(Ŷ (Ci, L̃i)|Ci) (2)

With CRF2, a gradient-based approach such as L-
BFGS can be used to optimize Equation 2. We ex-
pect that this adaptation process should help to pro-
vide better word segmentation information that fur-
ther improves the subsequent task performance.

3.4 N-best CWS
Only using the best word segmentation output as
features for the subsequent tasks might not be suf-
ficient (as we will show in our experiments). Indeed
we can make use of the n-best word segmentation
outputs. The task of SLU or NER is to find the best
label sequence L, given the character sequence C,
represented as arg maxL P (L|C). By including the
word segmentation information, we can rewrite it by
marginalizing over all possible word segmentations.

arg max
L

P (L|C) = arg max
L

∑
j

P (L,Wj |C)

= arg max
L

∑
j

P (L|Wj , C) · P (Wj |C)
(3)

2We modified wapiti to implement partial learning.

241

Where, Wj is each possible word segmentation.
This formula can be understood as two compo-
nents: P (Wj |C) is the word segmentation model
and P (L|Wj , C) is the SLU/NER model. In prac-
tice, we can use the n-best outputs associated poste-
rior probabilities from the wapiti, for both P (Wj |C)
and P (L|Wj , C).3

4 CWS for SLU

In this section, we investigate the impact of CWS to
the task of spoken language understanding (SLU) by
making use of existing word segmenters trained with
publicly-available data (1st situation in §1). This is
motivated by the fact that our SLU training and test-
ing data are not pre-segmented by semantic word
units.

We choose semantic slot filling in SLU because it
is becoming popular as it is a critical component to
support conversational virtual assistants, such as Ap-
ple Siri, Samsung S Voice, Microsoft Cortana, Nu-
ance Nina, just to name a few. The task of SLU is to
convert a user utterance into a machine-readable se-
mantic representation, which typically includes two
sub-tasks: intent recognition and semantic slot fill-
ing (Tur et al., 2013). Intent recognition is to de-
termine the intention of the user utterance. For ex-
ample, for the input utterance ‘book a ticket from
Boston to Seattle’, SLU will determine that its in-
tent is ticket-booking as opposed to music-playing.
Semantic slot filling is to extract the designated slot
values for the recognized intent from the input utter-
ance. For example, SLU will extract ‘depart:Boston’
and ‘arrive:Seattle’ from the above user utterance. In
this paper, we assume the availability and correct-
ness of intent recognition, and focus only on seman-
tic slot filling.

4.1 SLU experiments setting

As described above, intent recognition is the first
step in SLU, and the availability of which is assumed
in this research work. We organize our training and
testing data for semantic slot filling according to
their intents. A single model for semantic slot filling
is trained for each individual intent because different

3During training we build the SLU/NER model with 1-best
word segmentation; during evaluation, we use n-best word seg-
mentation and n-best SLU/NER.

CTB6 PKU
number of sentences 23,458 19,058

number of unique character 4,223 4,685
number of unique word 42,127 55,302
average sentence length 45.0 95.8

average word length 1.7 1.7

Table 1: Statistics of two publicly-available corpus for CWS

training.

intents have different designated slots. For example,
for the intent ticket-booking, the designated slots are
the arrival and departure city/airport, airline, date,
etc.; While the local-search intent is more interested
in the city, address, street name, type of point of in-
terest, etc. For evaluation, each model is applied to
the corresponding intent’s testing data. At the end,
we gather the automatic semantic labels of all intents
in a pool and calculate F-measure.

Our SLU data consists of about 2 million sen-
tences for training and 260 thousand sentences for
testing, distributing into 170 intents.

4.2 Results and discussion
We build two word segmenters from two public cor-
pora, the Chinese Tree Bank 6 (CTB6) and the PKU
corpus from the SIGHAN Bakeoff 2005, respec-
tively. The data statistics of the two corpora are
shown in Table 1.

The SLU performances are summarized in Ta-
ble 2. Baseline using only character ngram features
gives an F-measure of 93.92%. When switching
to using automatic segmented words as the labeling
units (Word Unit), the performance is a lot worse in
both cases (87.10% for CTB6 and 88.68% for PKU).
This indeed is not too surprising because errors in
CWS propagate into SLU semantic slot filling. If an
error results in a word crossing the boundary of se-
mantic slots, it will definitely lead to an error in SLU
semantic slot filling.

On the other hand, when supplying the automatic
‘BIES’ ngrams from CWS to SLU semantic slot fill-
ing (As Features), we observe a nice gain in both
cases, 94.41% for CTB6 and 94.13% for PKU. Us-
ing the ngram ‘BIES’ as input features provides use-
ful information of word segmentation to SLU se-
mantic slot filling, while it is less sensitive to word
segmentation errors.

242

CTB6 PKU
R (%) P (%) F (%) R (%) P (%) F (%)

Baseline 94.10 93.73 93.92 94.10 93.73 93.92
Word Unit 89.42 84.90 87.10 90.29 87.12 88.68
As Features 94.13 94.70 94.41∗ 94.10 94.16 94.13∗

Partial Learning 94.18 94.76 94.47∗ 94.19 94.77 94.48∗

N-best 94.36 94.84 94.60∗ 94.37 94.85 94.61∗

Table 2: SLU Results in Recall (R), Precision (P), and F-measure (F). ∗ means it is statistically significant better than Baseline
using a Z-test with a confidence level of 99%.

(2) Input: 查找[湖湖湖南南南财财财政政政经济学院][附近]的[餐厅]4

CWS:查找|湖湖湖南南南|财财财政政政|经济|学院|附近|的|餐厅
(Find the restaurants near Hunan College
of Finance and Economics)

Example (2) illustrates that how CWS helps SLU
semantic slot filling. For the sentence, the baseline
system extracts ‘湖南财’ as a location name. How-
ever, the word segmentation separates the words ‘湖
南’ (Hunan) and ‘财政’ (Finance), which reduces
the probability score of ‘湖南财’ being a slot value
because it crosses word boundaries. With CWS in-
formation, the system is able to extract ‘湖南财政经
济学院’ (Hunan College of Finance and Economics)
as a slot value.

(3) Input: 转发[淘淘淘宝宝宝网网网的链接]
CWS 1: 转发|淘淘淘|宝宝宝网网网|的|链接

(Forward the link of bao.com)
CWS 2: 转发|淘淘淘宝宝宝网网网|的|链接

(Forward the link of taobao.com)
(4) Input: 亲[四四四季季季酒酒酒店店店]在哪里

CWS 1: 亲亲亲四四四季季季酒酒酒店店店|在|哪里
(Where is the Kiss Four Seasons Hotel)

CWS 2: 亲|四四四季季季酒酒酒店店店|在|哪里
(Dear, where is the Four Seasons Hotel)

Adapting the word segmentation with SLU
partially-labeled data gives further gain to seman-
tic slot filling. In the case of CTB6 it reaches an
F-measure of 94.47%, and 94.48% in PKU, using
the ngram of ‘BIES’ labels from the adapted seg-
menters. Here are two examples showing how the
adaptation process further improves SLU. In the ex-
ample (3), we have the incorrect word segmentation
(CWS 1) before adaptation. It splits a word ‘淘宝

4Semantic slots in the input sentence are marked by ‘[]’.

网’ (taobao.com) and thus labels ‘宝网的链接’ as a
semantic slot. From the adaptation the system learns
that ‘淘宝网’ is a word, and it generates the correct
word segmentation (CWS 2) and thus is able to cre-
ate the correct semantic slot value ‘淘宝网的链接’
(the link of taobao.com). Similarly, in the example
(4), the sentence is initially under-segmented (CWS
1) and it creates the incorrect semantic slot value ‘亲
四季酒店’. From the adaptation the system learns to
put a word boundary between ‘亲’ and ‘四’ and then
the correct slot value ‘四季酒店’ (Four Seasons Ho-
tel) is extracted.

Finally, we take 10-best outputs from the adapted
word segmenter, for each word segmentation gener-
ate 10-best SLU outputs, sum up the probabilities,
and search for the best semantic label sequence fol-
lowing Equation 3. We further push the performance
to an F-measure of 94.60% for CTB6 and 94.61%
for PKU. Compared with the baseline system that
uses character ngrams as input features, the infor-
mation of CWS helps us achieve an error reduction
of about 11%.

5 CWS for NER

In our experiments on SLU, we showed how CWS
helps the subsequent task when no in-domain word
segmentation data is available (1st situation in §1).
In this section, we investigate the impact of CWS
to another important subsequent task: named en-
tity recognition (NER). For the NER data we use,
both the domain training and testing data have word
boundary information, which allows us to explore
the differences between word segmenters trained
with in-domain data and publicly-available data (2nd

situation). It also allows us to see the performance
of the subsequent task using manual word segmen-

243

tation (3rd situation). Moreover, it allows us to see
the relationship between the performance of word
segmentation and the end-to-end subsequent task.

5.1 NER experiments setting
For NER experiments, we use the benchmark NER
data from the third SIGHAN Chinese language pro-
cessing Bakeoff (SIGHAN-3) (Levow, 2006). It
consists of 46,364 sentences in the training set and
4,365 sentences in the testing set. These data are
annotated with both word boundaries and NER in-
formation.

5.2 Results and discussion
Baseline system which only uses character ngram
features (same configuration as the SLU task) gives
the performance of 85.81% in F-measure, as shown
in Table 3.5

Oracle system uses character ngram features to-
gether with manual in-domain word boundary in-
formation during both training and testing, show-
ing that perfect word segmentation information does
help NER a lot. Again this suggests that good word
segmentation does reduce ambiguities for the sub-
sequent NLP tasks, as we argue in the introduction.
Of course, since manual word segmentation is not
generally available (esp. on testing), this raises the
motivation of our research work: what is the impact
of automatic CWS on NER and how to make the best
out of it.

To understand the impact of automatic CWS on
NER, we discard the manual word segmentations in
the NER data, and build two word segmenters from
two public corpora, CTB6 and PKU respectively,
same as we did for the SLU experiments. We also
adapt them to NER with partial-label learning, and
finally apply n-best CWS to NER decoding. Here
we only report the results for As Features, as sum-
marized in Table 3. Similar to SLU, when supply-
ing the automatic ‘BIES’ ngrams from CWS to NER
(As Features), we observe a nice gain in both cases

5We also train a model to learn both word segmentation
and NER at the same time (Joint-learning) using char ngram
features, and then during decoding we marginalize all possible
CWS sequences to search for the best NER labels. The perfor-
mance, however, is only 85.39% in F-measure, suggesting it is
non-trivial to leverage the gain from joint-training and the com-
parison between joint-training and our approaches is out of the
scope of this paper.

of CTB6 and PKU. The NER F-measure improves
to 86.40% and 87.05% respectively. In addition,
adapting the word segmentation with NER partially-
labeled data gives a further gain for both CTB6 and
PKU, with an F-measure of 86.96% and 87.64% re-
spectively. Note that, the adaptation process does
improve the CWS performances for both CTB6 and
PKU.

In-domain CWS
NER system uses the NER training data to build a

word segmenter and then apply it to the NER train-
ing and testing data to extract the word segmenta-
tion features. A naive thought is that it will result
in a better NER performance than CTB6 and PKU
since a word segmenter trained with the in-domain
data should be better than one trained with publicly-
available data due to the domain mismatch issue.
As shown in Table 3, it is true that the word seg-
mentation F-measures of NER are much better than
CTB6 and PKU. However, to our surprise, the NER
F-measure is only 83.45%, which is even worse than
Baseline.

We hypothesize that this is due to the mismatch
of the training CWS and testing CWS (as shown in
Table 3, CWS F (train) and F (test)). When CWS ac-
curacy is high on the training data, the NER model
trained with such data puts more weight on word
segmentation features rather than character features.
However, during testing, the performance of CWS
drops, resulting in more word segmentation errors,
with a high chance to propagate to NER errors; even
worse, a lot of these CWS errors are around NERs
since a lot of NERs are OOVs and thus are challeng-
ing to segment correctly. To test this hypothesis, we
use 3-fold cross-validation to get the word boundary
information during the CWS training, and thus the
model is named as NER 3-fold. Note, although the
performance of CWS decreases in the training, it has
a more balanced CWS performance between train-
ing and testing, which gives a better NER perfor-
mance (improving 83.45% from NER to 86.80%).

N-best CWS
The model N-best takes N -best outputs from the

adapted word segmenter, for each word segmen-
tation generate K-best NER outputs, sums up the
probabilities and searches for the best named-entity

244

CWS NER
F (Train) (%) F (Test) (%) R (%) P (%) F (%)

Baseline - - 81.63 90.44 85.81
Oracle 100 100 92.01 96.39 94.15*

CTB6
As Features 84.16 84.71 82.91 90.20 86.40
Partial Learning 85.21 85.21 83.78 90.39 86.96*
N-best - - 86.88 90.36 88.59*

PKU
As Features 86.53 87.37 84.04 90.29 87.05*
Partial Learning 87.56 87.57 84.81 90.66 87.64*
N-best - - 87.44 90.59 88.99*

NER As Features 99.64 95.70 80.88 86.19 83.45
N-best - - 84.55 87.47 85.98

NER 3-fold As Features 94.69 95.70 83.61 90.25 86.80*
N-best - - 87.22 91.30 89.21*

SIGHAN-3 Best System - - 84.20 88.94 86.51

Table 3: CWS and NER Results in F-measure. CWS F (Train) and CWS F (Test) are the word segmentation F-measure in the

training and testing data respectively. NER F is the named-entity testing F-measure. ‘-’ means that the metric does not apply. For

example, Baseline has no word segmentation model and F-measure cannot be calculated for N-best models. For N-best, we set

N=10 and K=2. ‘*’ means it is statistically significant better than Baseline using a Z-test with a confidence level of 99%.

label sequence following Equation 3. We can see a
big jump in N-best performances for all the models
in Table 3. This verifies our hypothesis that 1-best
CWS is not sufficient.

1 2 4 6 8 10
N

83

84

85

86

87

88

89

90

N
E
R

 F
 (

%
)

NER 3-fold

PKU

CTB6

NER

Figure 2: N-best results when varying N (K = 1)

To better understand how N-best helps NER, we
vary the parameter N and the performance of NER
(K=1) is shown in Fig. 2. The N-best performance
improves dramatically when N jumps from 1 to 2.
After that the performance seems to quickly satu-
rate. We also found that the performance does not
change much when changingK. These results show
that in practice we can set N=2 and K=1, which is
cost-efficient.

SIGHAN-3 evaluation
In the closed track evaluation of SIGHAN-

3 (Levow, 2006), participants could only use the in-
formation found in the provided training data. Our
best model (NER 3-fold) belongs to this track since
it uses only the word segmentation annotation in the
training data set. Our model outperforms all the sub-
missions as shown in Table 3. Furthermore, even if
manual word segmentation does not exist in the data,
the model CTB6 N-best and PKU N-best which us-
ing existing word segmenters trained from publicly-
available data can still outperform all the submis-
sions in SIGHAN-3. Note that, these models use
only character and word segmentation features with-
out requiring additional name lists, part-of-speech
taggers, etc.

6 Conclusion and future work

Chinese word segmentation is an important research
topic and usually is the first step in Chinese natu-
ral language processing, yet its impact on the sub-
sequent processing is relatively under-studied. To
our knowledge, this research work is the first attempt
to understand in depth how automatic CWS impacts
the two related subsequent tasks: SLU semantic slot
filling and named entity recognition.

In this work, we proposed three techniques to

245

solve the domain mismatch problem when applying
CWS to other tasks: using word segmentation out-
puts as additional features, adaptation with partial-
learning and taking advantage of n-best list. All
three techniques work for both tasks.

We also examined the impact of CWS in three
different situations: First, when domain data has no
word boundary information, we showed that a word
segmenter built from public out-of-domain data is
able to improve the end-to-end performance. In ad-
dition, adapting it with the partially-labeled data de-
rived from human annotation can further improve
the performance. Moreover, marginalizing n-best
word segmentations leads to further improvement.
Second, when domain word segmentation is avail-
able, the word segmenter trained with the domain
data itself has a better CWS performance but it does
not necessarily have a better end-to-end task perfor-
mance. A word segmenter with more balanced per-
formance on the training and testing data may obtain
a better end-to-end performance. Third, when test-
ing data is manually segmented, word segmentation
does help the task a lot. This is not a typical use case
in reality, but it does suggest that word segmenta-
tion does reduce ambiguities for the subsequent NLP
tasks.

In the future, we can try to sequentially stack two
CRFs (one for word segmentation and one of subse-
quent task). We also would like to explore more sub-
sequent tasks beyond sequence labeling problems.

Acknowledgments

The authors would like to thank Paul Vozila, Xin Lu,
Xi Chen, and Xiang Li for helpful discussions, and
the anonymous reviewers for insightful comments.

References

Pi-Chuan Chang, Michel Galley, and Christopher D.
Manning. 2008. Optimizing Chinese word segmen-
tation for machine translation performance. In Pro-
ceedings of the Third Workshop on Statistical Machine
Translation, StatMT ’08, pages 224–232, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. 2015.
Long short-term memory neural networks for chinese
word segmentation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1197–1206, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Fei Cheng, Kevin Duh, and Yuji Matsumoto. 2015. Syn-
thetic word parsing improves chinese word segmenta-
tion. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 262–267,
Beijing, China, July. Association for Computational
Linguistics.

Jianfeng Gao, Mu Li, Andi Wu, and Chang-Ning Huang.
2005. Chinese word segmentation and named entity
recognition: A pragmatic approach. Computational
Linguistics, 31(4):531–574, December.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, pos tagging, and dependency pars-
ing in Chinese. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguis-
tics: Long Papers - Volume 1, ACL ’12, pages 1045–
1053, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Changning Huang and Hai Zhao. 2007. Chinese word
segmentation: A decade review. Journal of Chinese
Information Processing, 21(3):8–19, May.

Chu-Ren Huang, Petr Šimon, Shu-Kai Hsieh, and Lau-
rent Prévot. 2007. Rethinking chinese word seg-
mentation: Tokenization, character classification, or
wordbreak identification. In Proceedings of the 45th
Annual Meeting of the Association for Computational
Linguistics Companion Volume Proceedings of the
Demo and Poster Sessions, pages 69–72, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
2008a. A cascaded linear model for joint chinese word
segmentation and part-of-speech tagging. In Proceed-
ings of ACL-08: HLT, pages 897–904, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Wenbin Jiang, Haitao Mi, and Qun Liu. 2008b. Word
lattice reranking for chinese word segmentation and
part-of-speech tagging. In Proceedings of the 22nd
International Conference on Computational Linguis-
tics (Coling 2008), pages 385–392, Manchester, UK,
August. Coling 2008 Organizing Committee.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Proceed-
ings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 504–513. As-
sociation for Computational Linguistics, July.

Gina-Anne Levow. 2006. The third international Chi-
nese language processing bakeoff: Word segmentation

246

and named entity recognition. In Proceedings of the
Fifth SIGHAN Workshop on Chinese Language Pro-
cessing, pages 108–117, Sydney, Australia, July. As-
sociation for Computational Linguistics.

Roger Levy and Christopher Manning. 2003. Is it harder
to parse Chinese, or the Chinese treebank? In Pro-
ceedings of the 41st Annual Meeting on Association
for Computational Linguistics - Volume 1, ACL ’03,
pages 439–446, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Zhongguo Li and Maosong Sun. 2009. Punctuation as
implicit annotations for chinese word segmentation.
Computational Linguistics, 35(4):505–512.

Xiaoqing Li, Chengqing Zong, and Keh-Yih Su. 2013.
A study of the effectiveness of suffixes for chinese
word segmentation. Sponsors: National Science
Council, Executive Yuan, ROC Institute of Linguistics,
Academia Sinica NCCU Office of Research and Devel-
opment, page 118.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He,
Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey
Zweig. 2015. Using recurrent neural networks for slot
filling in spoken language understanding. Trans. Au-
dio, Speech and Lang. Proc., 23(3):530–539, March.

Chongjia Ni and Cheung-Chi Leung. 2014. Investi-
gation of using different Chinese word segmentation
standards and algorithms for automatic speech recog-
nition. In International Symposium on Chinese Spoken
Language Processing, pages 44–48.

Nanyun Peng and Mark Dredze. 2015. Named en-
tity recognition for Chinese social media with jointly
trained embeddings. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 548–554, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Fuchun Peng, Xiangji Huang, Dale Schuurmans, and
Nick Cercone. 2002. Investigating the relation-
ship between word segmentation performance and re-
trieval performance in chinese ir. In Proceedings of
the 19th international conference on Computational
linguistics-Volume 1, pages 1–7. Association for Com-
putational Linguistics.

Xian Qian and Yang Liu. 2012. Joint chinese word seg-
mentation, pos tagging and parsing. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 501–511, Jeju Is-
land, Korea, July. Association for Computational Lin-
guistics.

Marc-Antoine Rondeau and Yi Su. 2015. Full-rank
linear-chain neurocrf for sequence labeling. In IEEE

International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2015, pages 5281–5285.

Weiwei Sun and Jia Xu. 2011. Enhancing chinese word
segmentation using unlabeled data. In Proceedings of
the 2011 Conference on Empirical Methods in Natu-
ral Language Processing, pages 970–979, Edinburgh,
Scotland, UK., July. Association for Computational
Linguistics.

Weiwei Sun. 2011. A stacked sub-word model for
joint Chinese word segmentation and part-of-speech
tagging. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11,
pages 1385–1394, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 1:1–12.

Fumihiko Takahasi and Shinsuke Mori. 2015. Key-
board logs as natural annotations for word segmen-
tation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1186–1196, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Gokhan Tur, Anoop Deoras, and Dilek Hakkani-Tur.
2013. Semantic parsing using word confusion net-
works with conditional random fields. In Annual Con-
ference of the International Speech Communication
Association (Interspeech), September.

Xiaojun Wan, Liang Zong, Xiaojiang Huang, Tengfei
Ma, Houping Jia, Yuqian Wu, and Jianguo Xiao. 2011.
Named entity recognition in Chinese news comments
on the web. In Proceedings of 5th International Joint
Conference on Natural Language Processing, pages
856–864, Chiang Mai, Thailand, November. Asian
Federation of Natural Language Processing.

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Torisawa.
2011. Improving Chinese word segmentation and
pos tagging with semi-supervised methods using large
auto-analyzed data. In Proceedings of 5th Interna-
tional Joint Conference on Natural Language Process-
ing, pages 309–317, Chiang Mai, Thailand, Novem-
ber. Asian Federation of Natural Language Processing.

Longyue Wang, Shuo Li, Derek F. Wong, and Lidia S.
Chao. 2012. A joint chinese named entity recogni-
tion and disambiguation system. In Proceedings of the
Second CIPS-SIGHAN Joint Conference on Chinese
Language Processing, pages 146–151, Tianjin, China,
December. Association for Computational Linguistics.

Jia Xu, Jianfeng Gao, Kristina Toutanova, and Her-
mann Ney. 2008. Bayesian semi-supervised chinese

247

word segmentation for statistical machine translation.
In Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pages
1017–1024, Manchester, UK, August. Coling 2008
Organizing Committee.

Yan Xu, Yining Wang, Tianren Liu, Jiahua Liu, Yubo
Fan, Yi Qian, Junichi Tsujii, and Eric I Chang. 2014.
Joint segmentation and named entity recognition using
dual decomposition in Chinese discharge summaries.
Journal of the American Medical Informatics Associa-
tion, 21(e1):84–92, February.

Nianwen Xue. 2003. Chinese word segmentation as
character tagging. Computational Linguistics and
Chinese Language Processing, 8(1):29–48.

Fan Yang and Paul Vozila. 2014. Semi-supervised Chi-
nese word segmentation using partial-label learning
with conditional random fields. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 90–98, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Xiaodong Zeng, Lidia S. Chao, Derek F. Wong, Isabel
Trancoso, and Liang Tian. 2014. Toward better chi-
nese word segmentation for smt via bilingual con-
straints. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1360–1369, Baltimore,
Maryland, June. Association for Computational Lin-
guistics.

Lufeng Zhai, Pascale Fung, Richard Schwartz, Marine
Carpuat, and Dekai Wu. 2004. Using n-best lists
for named entity recognition from Chinese speech. In
Daniel Marcu Susan Dumais and Salim Roukos, edi-
tors, HLT-NAACL 2004: Short Papers, pages 37–40,
Boston, Massachusetts, USA, May 2 - May 7. Associ-
ation for Computational Linguistics.

Yue Zhang and Stephen Clark. 2010. A fast decoder for
joint word segmentation and POS-tagging using a sin-
gle discriminative model. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 843–852, Cambridge, MA,
October. Association for Computational Linguistics.

Ruiqiang Zhang, Keiji Yasuda, and Eiichiro Sumita.
2008. Improved statistical machine translation by
multiple Chinese word segmentation. In Proceedings
of the Third Workshop on Statistical Machine Transla-
tion, pages 216–223, Columbus, Ohio, June. Associa-
tion for Computational Linguistics.

Longkai Zhang, Li Li, Zhengyan He, Houfeng Wang, and
Ni Sun. 2013a. Improving chinese word segmentation
on micro-blog using rich punctuations. In Proceed-
ings of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),

pages 177–182, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mairgup
Mansur. 2013b. Exploring representations from un-
labeled data with co-training for Chinese word seg-
mentation. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 311–321, Seattle, Washington, USA, October.
Association for Computational Linguistics.

248

Proceedings of NAACL-HLT 2016, pages 249–259,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Name Tagging for Low-resource Incident Languages based on
Expectation-driven Learning

Boliang Zhang1, Xiaoman Pan1, Tianlu Wang2, Ashish Vaswani3,
Heng Ji1, Kevin Knight3, Daniel Marcu3

1 Computer Science Department, Rensselaer Polytechnic Institute
{zhangb8,panx2,jih}@rpi.edu

2 Computer Science Department, Zhejiang University
3 Information Sciences Institute, University of Southern California

{vaswani,knight,marcu}@isi.edu

Abstract

In this paper we tackle a challenging name
tagging problem in an emergent setting - the
tagger needs to be complete within a few
hours for a new incident language (IL) us-
ing very few resources. Inspired by observing
how human annotators attack this challenge,
we propose a new expectation-driven learning
framework. In this framework we rapidly ac-
quire, categorize, structure and zoom in on IL-
specific expectations (rules, features, patterns,
gazetteers, etc.) from various non-traditional
sources: consulting and encoding linguistic
knowledge from native speakers, mining and
projecting patterns from both mono-lingual
and cross-lingual corpora, and typing based
on cross-lingual entity linking. We also pro-
pose a cost-aware combination approach to
compose expectations. Experiments on seven
low-resource languages demonstrate the effec-
tiveness and generality of this framework: we
are able to setup a name tagger for a new IL
within two hours, and achieve 33.8%-65.1%
F-score 1.

1 Introduction: “Tibetan Room”

In many emergent situations such as disease out-
breaks and natural disasters, there is great demand
to rapidly develop a Natural Language Processing
(NLP) system, such as name tagger, for a “surprise”
Incident Language (IL) with very few resources.
Traditional supervised learning methods that rely on
large-scale manual annotations would be too costly.

1The resources developed in this paper, includ-
ing the survey, patterns and gazetteers, are available at
http://nlp.cs.rpi.edu/data/elisaienaacl16.zip

Let’s start by investigating how a human would
discover information in a foreign IL environment.
When we are in a foreign country, even if we don’t
know the language, we would still be able to guess
the word “gate” from the airport broadcast based on
its frequency and position in a sentence; guess the
word “station” by pattern mining of many subway
station labels; and guess the word “left” or “right”
from a taxi driver’s GPS speaker by matching move-
ment actions. We designed a “Tibetan Room” game,
similar to “Chinese Room” (Searle, 1980), by ask-
ing a human user who doesn’t know Tibetan to find
persons, locations and organizations from some Ti-
betan documents. We designed an interface where
test sentences are presented to the player one by one.
When the player clicks token, the interface will dis-
play up to 100 manually labeled Tibetan sentences
that include this token. The player can also see trans-
lations of some common words and a small gazetteer
of common names (800 entries) in the interface.

14 players who don’t know Tibetan joined the
game. Their name tagging F-scores ranged from 0%
to 94%. We found that good players usually bring
in some kind of “expectations” derived from their
own native languages, or general linguistic knowl-
edge, or background knowledge about the scenario.
Then they actively search, confirm, adjust and up-
date these expectations during tagging. For exam-
ple, they know from English that location names are
often ended with suffix words such as “city” and
“country”, so they search for phrases starting or end-
ing with the translations of these suffix words. After
they successfully tag some seeds, they will continue
to discover more names based on more expectations.

249

For example, if they already tagged an organization
name A, and now observe a sequence matching a
common English pattern “[A (Organization)]’s [Ti-
tle] [B (Person)]”, they will tag B as a person name.
And if they know the scenario is about Ebola, they
will be looking for a phrase with translation simi-
lar to “West Africa” and tag it as a location. Sim-
ilarly, based on the knowledge that names appear
in a conjunction structure often have the same type,
they propagate high-confidence types across multi-
ple names. They also keep gathering and synthe-
sizing common contextual patterns and rules (such
as position, frequency and length information) about
names and non-names to expand their expectations.
For example, after observing a token frequently ap-
pearing between a subsidiary and a parent organiza-
tion, they will predict it as a preposition similar to
“of ” in English, and tag the entire string as a nested
organization.
Based on these lessons learned from this game, we

propose to automatically acquire and encode expec-
tations about what will appear in IL data (names, pat-
terns, rules), and encode those expectations to drive
IL name tagging. We explored various ways of sys-
tematically discovering and unifying latent and ex-
pressed expectations from nontraditional resources:

• Language Universals: Language-independent
rules and patterns;

• Native Speaker: Interaction with native speak-
ers through a machine-readable survey and su-
pervised active learning;

• Prior Mining: IL entity prior knowledge min-
ing from both mono-lingual and cross-lingual
corpora and knowledge bases;

Furthermore, in emergent situations these expec-
tations might not be available at once, and they may
have different costs, so we need to organize and
prioritize them to yield optimal performance within
given time bounds. Therefore we also experimented
with various cost-aware composition methods with
the input of acquired expectations, plus a time bound
for development (1 hour, 2 hours), and the output
as a wall-time schedule that determines the best se-
quence of applying modules and maximizes the use
of all available resources. Experiments on seven
low-resource languages demonstrate that our frame-

work can create an effective name tagger for an IL
within a couple of hours using very few resources.

2 Starting Time: Language Universals

First we use some language universal rules,
gazetteers and patterns to generate a binary feature
vector F = {f1, f2, ...} for each token. Table 1
shows these features along with examples. An
identification rule is rI = ⟨TI , f = {fa, fb, ...}⟩
where TI is a “B/I/O” tag to indicate the beginning,
inside or outside of a name, and {fa, fb, ...} is a set
of selected features. If the features are all matched,
the token will be tagged as TI . Similarly, a classifi-
cation rule is rC = ⟨TC , f = {fa, fb, ...}⟩, where
TC is “Person/Organization/Location”. These rules
are triggered in order, and some examples are as fol-
lows: ⟨B, {AllUppercased}⟩, ⟨PER, {PersonGaz}⟩,
⟨ORG, {Capitalized, LongLength}⟩, etc.

3 Expectation Learning

3.1 Approach Overview
Figure 1 illustrates our overall approach of acquiring
various expectations, by simulating the strategies hu-
man players adopted during the Tibetan Room game.
Next we will present details about discovering ex-
pectations from each source.

Native Speaker

Expectation
Acquisition Methods

Time 0 Time 1 Time 2

IL Documents

Universal
Name Tagger

Native Speaker

Unsupervised Method

Supervised Method

Data
SamplingAnnotating

CRF
Model

Expectation Driven
Tagger at Time 1

CRF Name Tagger
at Time 1

Expectation Driven
Tagger at Time 2

CRF Name Tagger
at Time 2

Data
SamplingAnnotating

CRF
Model

Resources

Expectations

Expectation
Acquisition Methods

More
Expectations

Available Resources Expectations

IL Monolingual
Corpora

IL to English
Parallel Data

English NER
Patterns

Native Speaker

Expectation Acquisition

IL Pattern Mining

Pattern Translation

IL Language Survey

English Information Extraction

Word Alignment

English KB
(DBpedia)

IL to English Lexicons

IL Specific Rules

IL Name Patterns

Gazetteers

Entity Linker Typing

Comparable
English Corpora

Figure 1: Expectation Driven Name Tagger
Overview

3.2 Survey with Native Speaker
The best way to understand a language is to con-
sult people who speak it. We introduce a human-in-

250

Features Examples (Feature name is underlined)
in English
Gazetteer

- PerGaz: person (472, 765); LocGaz: location (211, 872);OrgGaz: organization (124, 403); Title (889);NoneName (2, 380).

Case - Capitalized; - AllUppercased; -MixedCase
Punctuation - IternalPeriod: includes an internal period
Digit - Digits: consisted of digits
Length - LongLength: a name including more than 4 tokens is likely to be an ORG
TF-IDF - TF-IDF: if a capitalized word appears at the beginning of a sentence, and has a low TF-IDF, then it’s unlikely to be a name
Patterns - Pattern1: “Title ⟨ PER Name ⟩”

- Pattern2: “⟨PERName⟩, 00∗,” where 00 are two digits
- Pattern3: “[⟨Namei⟩...], ⟨Namen − 1⟩⟨singleterm⟩⟨Namen⟩” where all names have the same type.

Multi-
occurrences

- MultipleOccurrence: If a word appears in both uppercased and lowercased forms in a single document, it’s unlikely to be a
name.

Table 1: Universal Name Tagger Features

the-loop process to acquire knowledge from native
speakers. To meet the needs in the emergent set-
ting, we design a comprehensive survey that aims
to acquire a wide-range of IL-specific knowledge
from native speakers in an efficient way. The sur-
vey categorizes questions and organizes them into a
tree structure, so that the order of questions is cho-
sen based on the answers of previous questions. The
survey answers are then automatically translated into
rules, patterns or gazetteers in the tagger. Some ex-
ample questions are shown in Table 2.

3.3 Mono-lingual Expectation Mining

We use a bootstrapping method to acquire IL pat-
terns from unlabeled mono-lingual IL documents.
Following the same idea in (Agichtein and Gravano,
2000; Collins and Singer, 1999), we first use names
identified by high-confident rules as seeds, and gen-
eralize patterns from the contexts of these seeds.
Then we evaluate the patterns and apply high-quality
ones to find more names as new seeds. This process
is repeated iteratively 2.
We define a pattern as a triple

⟨left, name, right⟩, where name is a name,
left and right3 are context vectors with weighted
terms (the weight is computed based on each token’s
tf-idf score). For example, from a Hausa sentence
“gwamnatin kasar Sin ta samar wa kasashen
yammacin Afirka ... (the Government of China has
given ... products to the West African countries)”,
we can discover a pattern:

2We empirically set the number of iterations as 2 in this pa-
per.

3left and right are the context three tokens before and after
the name

• left: ⟨gwamnatin (goevernment), 0.5⟩, ⟨kasar (coun-
try), 0.6⟩

• name: ⟨Sin (China), 0.5⟩
• right: ⟨ta (by), 0.2⟩

This pattern matches strings like “gwamnatin kasar
Fiji ta (by the government of Fiji)”.
For any two triples ti = ⟨li, namei, ri⟩ and tj =

⟨lj , namej , rj⟩, we comput e their similarity by:
Sim(ti, tj) = li · lj + ri · rj

We use this similarity measurement to cluster all
triples and select the centroid triples in each cluster
as candidate patterns.
Similar to (Agichtein and Gravano, 2000), we

evaluate the quality of a candidate pattern P by:

Conf(P) =
Ppositive

(Ppositive + Pnegative)

,where Ppositive is the number of positive matches
for P and Pnegative is the number of negative
matches. Due to the lack of syntactic and seman-
tic resources to refine these lexical patterns, we set a
conservative confidence threshold 0.9.

3.4 Cross-lingual Expectation Projection

Name tagging research has been done for high-
resource languages such as English for over twenty
years, so we have learned a lot about them. We col-
lected 1,362 patterns from English name tagging lit-
erature. Some examples are listed below:

• ⟨{}, {PER}, {< say >, < . >}⟩
• ⟨{< headquarter >, < in >}, {LOC}, {}⟩
• ⟨{< secretary >, < of >}, {ORG}, {}⟩
• ⟨{< in >, < the >}, {LOC}, {< area >}⟩

251

True/False Questions
1. The letters of this language have upper and lower cases
2. The names of people, organizations and locations start with a capitalized (uppercased) letter
3. The first word of a sentence starts with a capitalized (uppercased) letter
4. Some periods indicate name abbreviations, e.g., St. = Saint, I.B.M. = International Business Machines.
5. Locations usually include designators, e.g., in a format like“country United states”,“city Washington”
6. Some prepositions are part of names
Text input
1. Morphology: please enter preposition suffixes as many as you can (e.g. “’da” in “Ankara’da yaşıyorum (I live in Ankara)”
is a preposition suffix which means “in”).
Translation
1. Please translate the following English words and phrases:
- organization suffix: agency, group, council, party, school, hospital, company, office, ...
- time expression: January, ..., December; Monday, ..., Sunday; ...

Table 2: Survey Question Examples

Besides the static knowledge like patterns, we
can also dynamically acquire expected names from
topically-related English documents for a given
IL document. We apply the Stanford name tag-
ger (Finkel et al., 2005) to the English documents
to obtain a list of expected names. Then we translate
the English patterns and expected names to IL.When
there is no human constructed English-to-IL lexicon
available, we derive a word-for-word translation ta-
ble from a small parallel data set using the GIZA++
word alignment tool (Och and Ney, 2003). We also
convert IL text to Latin characters based on Unicode
mapping4, and then apply Soundex code (Mortimer
and Salathiel, 1995; Raghavan and Allan, 2004) to
find the IL name equivalent that shares the most sim-
ilar pronunciation as each English name. For exam-
ple, the Bengali name “টিন েơয়ার” and “Tony Blair”
have the same Soundex code “T500 B460”.

3.5 Mining Expectations from KB
In addition to unstructured documents, we also try to
leverage structured English knowledge bases (KBs)
such as DBpedia5. Each entry is associated with a
set of types such as Company, Actor and Agent.
We utilize the Abstract Meaning Representation cor-
pus (Banarescu et al., 2013) which contains both en-
tity type and linked KB title annotations, to automat-
ically map 9, 514 entity types in DBPedia to three
main entity types of interest: Person (PER), Loca-
tion (LOC) and Organization (ORG).
Then we adopt a language-independent cross-

lingual entity linking system (Wang et al., 2015)
4http://www.ssec.wisc.edu/ tomw/java/unicode.html
5http://dbpedia.org

to link each IL name mention to English DBPe-
dia. This linker is based on an unsupervised quan-
tified collective inference approach. It constructs
knowledge networks from the IL source documents
based on entity mention co-occurrence, and knowl-
edge networks from KB. Each IL name is matched
with candidate entities in English KB using name
translation pairs derived from inter-lingual KB links
inWikipedia and DBPedia. We also apply the word-
for-word translation tables constructed from paral-
lel data as described in Section 3.4 to translate some
uncommon names. Then it performs semantic com-
parison between two knowledge networks based on
three criteria: salience, similarity and coherence. Fi-
nally we map the DBPedia types associated with the
linked entity candidates to obtain the entity type for
each IL name.

4 Supervised Active Learning

We anticipated that not all expectations can be en-
coded as explicit rules and patterns, or covered by
projected names, therefore for comparison we in-
troduce a supervised method with pool-based ac-
tive learning to learn implicit expectations (features,
new names, etc.) directly from human data annota-
tion. We exploited basic lexical features including
ngrams, adjacent tokens, casing information, punc-
tuations and frequency to train a Conditional Ran-
dom Fields (CRFs) (Lafferty et al., 2001) based
model through active learning (Settles, 2010).
We segment documents into sentences and use

each sentence as a training unit. Let x∗b be the most
informative instance according to a query strategy

252

ϕ(x), which is a function used to evaluate each in-
stance x in the unlabeled pool U . Algorithm 1 illus-
trates the procedure.

Algorithm 1 Pool-based Active Learning
1: L← labeled set, U ← unlabeled pool
2: ϕ(·)← query strategy, B ← query batch size
3: M ← maximum number of tokens
4: while Length(L)< M do
5: θ = train(L);
6: for b ∈ {1, 2, ..., B} do
7: x∗b = argmaxx∈U ϕ(x)
8: L = L ∪ {x∗b , label(x∗b)}
9: U = U − x∗b
10: end for
11: end while

Jing et al. (2004) proposed an entropy measure
for active learning for image retrieval task. We
compared it with other measures proposed by (Set-
tles and Craven, 2008) and found that sequence
entropy (SE) is most effective for our name tagging
task. We use ϕSE to represent how informative a
sentence is:

ϕSE(x) = −
T∑

t=1

M∑
m=1

Pθ(yt = m)logPθ(yt = m)

, where T is the length of x, m ranges over all pos-
sible token labels and Pθ(yt = m) is the probability
when yt is tagged as m.

5 Cost-aware Combination

Anew requirement for IL name tagging is aLinguis-
tic Workflow Generator, which can generate an
activity schedule to organize and maximize the use
of acquired expectations to yield optimal F-scores
within given time bounds. Therefore, the input to
the IL name tagger is not only the test data, but also
a time bound for development (1 hour, 2 hours, 24
hours, 1 week, 1 month, etc.).
Figure 2 illustrates our cost-aware expectation

composition approach. Given some IL documents
as input, as the clock ticks, the system delivers name
tagging results at time 0 (immediately), time 1 (e.g.,
in one hour) and time 2 (e.g., in two hours). At time
0, name tagging results are provided by the universal
tagger described in Section 2. During the first hour,
we can either ask the native speaker to annotate a
small amount of data for supervised active learning
of a CRFs model, or fill in the survey to build a rule-
based tagger. We estimate the confidence value of

Language IL Test
Docs

Name Unique
Name

IL Dev.
Docs

IL-English
Docs

Bengali 100 4,713 2,820 12,495 169
Hausa 100 1,619 950 13,652 645
Tagalog 100 6,119 3,375 1,616 145
Tamil 100 4120 2,871 4,597 166
Thai 100 4,954 3,314 10,000 191
Turkish 100 2,694 1,323 10,000 484
Yoruba 100 3,745 2,337 427 252

Table 3: Data Statistics

each expectation-driven rule based on its precision
score on a small development set of ten documents.
Then we apply these rules in the priority order of
their confidence values. When the results of two tag-
gers are conflicting on either mention boundary or
type, if the applied rule has high confidence we will
trust its output, otherwise adopt the CRFs model’s
output.

6 Experiments

In this section we will present our experimental de-
tails, results and observations.

6.1 Data
We evaluate our framework on seven low-resource
incident languages: Bengali, Hausa, Tagalog, Tamil,
Thai, Turkish and Yoruba, using the ground-
truth name tagging annotations from the DARPA
LORELEI program 6. Table 3 shows data statistics.

6.2 Cost-aware Overall Performance
We test with three checking points: starting time,
within one hour, and within two hours. Based on the
combination approach described in Section 5, we can
have three possible combinations of the expectation-
driven learning and supervised active learning meth-
ods during two hours: (1) expectation-driven learn-
ing + supervised active learning; (2) supervised ac-
tive learning + expectation-driven learning; and (3)
supervised active learning for two hours. Figure 3
compares the overall performance of these combi-
nations for each language.
We can see that our approach is able to rapidly

set up a name tagger for an IL and achieves promis-
ing performance. During the first hour, there is no
clear winner between expectation-driven learning or

6http://www.darpa.mil/program/low-resource-languages-
for-emergent-incidents

253

Available Resources Expectations

IL Monolingual
Corpora

IL to English
Parallel Data

English NER
Patterns

Native Speaker

Expectation Acquisition

IL Pattern Mining

Pattern Translation

IL Language Survey

English Information Extraction

Word Alignment

English KB
(DBpedia)

IL to English Lexicons

IL Specific Rules

IL Name Patterns

IL Gazetteers

Entity Linker Typing

Comparable
English Corpora

Latest version

Expectation
Acquisition Methods

Time 0 Time 1 Time 2

IL Documents

Universal
Name Tagger

Data
SamplingAnnotating

CRFs
Model

Expectations

Rule-based
Tagger Result

CRFs Tagger
Result

Rule-based+CRFs
Tagger Result

CRFs+Rule-based
Tagger Result

CRFs+CRFs
Tagger Result

Resources

Native
Speaker

Data
SamplingAnnotating

CRFs
Model

Expectation
Acquisition Methods

Expectations

Resources

Expectation-driven Learning

Supervised Active Learning Expectation-driven Learning

Supervised Active Learning

or

or

Figure 2: Cost-aware Expectation Composition

supervised active learning. But it’s clear that super-
vised active learning for two hours is generally not
the optimal solution. Using Hausa as a case study,
we take a closer look at the supervised active learn-
ing curve as shown in Figure 4. We can see that su-
pervised active learning based on simple lexical fea-
tures tends to converge quickly. As time goes by it
will reach its own upper-bound of learning and gen-
eralizing linguistic features. In these cases our pro-
posed expectation-driven learning method can com-
pensate by providing more explicit and deeper IL-
specific linguistic knowledge.

6.3 Comparison of Expectation Discovery
Methods

Table 4 shows the performance gain of each type of
expectation acquisition method. IL gazetteers cov-
ered some common names, especially when the uni-
versal case-based rules failed at identifying names
from non-Latin languages. IL name patterns were
mainly effective for classification. For example,
the Tamil name “கத்தோலிக்கன் சிரியன் வங்கியில
(Catholic Syrian Bank)” was classified as an orga-
nization because it ends with an organization suf-
fix word “வங்கியில(bank)”. The patterns projected
from English were proven very effective at identi-
fying name boundaries. For example, some non-
names such as titles are also capitalized in Turkish,
so simple case-based patterns produced many spu-
rious names. But projected patterns can fix many
of them. In the following Turkish sentence, “An-
cak Avrupa Birliği Dış İlişkiler Sorumlusu Catherine
Ashton,...(But European Union foreign policy chief
Catherine Ashton,...)”, among all these capitalized

tokens, after we confirmed “Avrupa Birliği (Euro-
pean Union)” as an organization and “Dış İlişkiler
Sorumlusu (foreign policy chief)” as a title, we ap-
plied a pattern projected from English “[Organiza-
tion] [Title] [Person]” and successfully identified
“Catherine Ashton” as a person. Cross-lingual en-
tity linking based typing successfully enhanced clas-
sification accuracy, especially for languages where
names often appear the same as their English forms
and so entity linking achieved high accuracy. For
example, “George Bush” keeps the same in Hausa,
Tagalog and Yoruba as English.

6.4 Impact of Supervised Active Learning

Figure 5 shows the comparison of supervised active
learning and passive learning (random sampling in
training data selection). We asked a native speaker
to annotate Chinese news documents in one hour,
and estimated the human annotation speed approxi-
mately as 7,000 tokens per hour. Therefore we set
the number of tokens as 7,000 for one hour, and
14,000 for two hours. We can clearly see that super-
vised active learning significantly outperforms pas-
sive learning for all languages, especially for Tamil,
Tagalog and Yoruba. Because of the rich morphol-
ogy in Turkish, the gain of supervised active learn-
ing is relatively small because simple lexical fea-
tures cannot capture name-specific characteristics
regardless of the size of labeled data. For example,
some prepositions (e.g., “nin (in)”) can be part of
the names, so it’s difficult to determine name bound-
aries, such as “<ORG Ludian bölgesi hastanesi>nin
(in <ORG Ludian Hospital>)”

254

(a) Bengali (b) Hausa

(c) Tamil (d) Tagalog

(e) Thai (f) Turkish

(g) Yoruba
Figure 3: Comparison of methods combining expectation-driven learning and supervised active learning
given various time bounds

255

Methods Bengali Hausa Tamil Tagalog Thai Turkish Yoruba
Universal Rules 4.1 26.5 0.0 30.2 2.2 12.4 17.1
+IL Gazetteers 29.7 32.1 21.8 34.3 18.9 17.3 26.9
+IL Name Patterns 31.2 33.8 22.9 35.1 18.9 19.1 28.0
+IL to English Lexicons 31.3 35.2 24.0 38.0 20.5 19.6 29.4
+IL Survey with Native Speaker 34.1 40.6 25.6 45.9 21.6 39.3 30.2
+KB Linking based Typing 34.8 48.3 26.0 51.3 21.7 43.6 36.0

Table 4: Contributions of Various Expectation Discovery Methods (F-score %)

Figure 4: Hausa Supervised Active Learning Curve

46.7
39.3

33.9
26.8

30.6
26.9

62.156.6

31.4
23.9

47.6
43.8

34.4
30.2

Active

F-
sc

or
e

0

15

30

45

60

ben (time 1)
ben (time 2)
hau (time1)
hau (time2)
tam (time1)
tam (time2)
tgl (time1)
tgl (time2)
tha (time1)
tha (time2)
tur (time1)
tur (time2)
yor (time1)
yor (time2)

32.9

21.3

32.5

23.120.9
14.3

49.7

37.8

16.5
10.2

43.8

34.9

22.5
18.7

Passive

Table 1

ben (time 1) ben (time 2) hau (time1) hau (time2) tam (time1) tam (time2) tgl (time1) tgl (time2) tha (time1) tha (time2) tur (time1) tur (time2) yor (time1) yor (time2)

Passive 18.7 22.5 34.9 43.8 10.2 16.5 37.8 49.7 14.3 20.9 23.1 32.5 21.3 32.9
Active 30.2 34.4 43.8 47.6 23.9 31.4 56.6 62.1 26.9 30.6 26.8 33.9 39.3 46.7

�1

Figure 5: Active Learning vs. Passive Learning (%)

6.5 Remaining Error Analysis

Language Identification F-score Typing
Accuracy*

Overall
F-scorePER ORG LOC All

Bengali 51.0 32.7 54.3 48.5 84.1 40.7
Hausa 51.8 36.6 63.3 55.1 93.6 51.6
Tamil 40.4 16.4 46.8 39.2 86.2 33.8
Tagalog 71.6 65.2 73.9 70.1 92.8 65.1
Thai 48.5 21.8 72.8 48.6 72.0 35.0

Turkish 64.3 41.3 73.0 63.1 69.1 43.6
Yoruba 69.3 38.3 60.0 57.2 82.3 47.1

* typing accuracy is computed on correctly identified names
Table 5: Breakdown Scores

Table 5 presents the detailed break-down scores
for all languages. We can see that name identifi-
cation, especially organization identification is the
main bottleneck for all languages. For example,
many organization names in Hausa are often very
long, nested or all low-cased, such as “makaran-

tar horas da Malaman makaranta ta Bawa Jan
Gwarzo (Bawa JanGwarzoMemorial Teachers Col-
lege)” and “kungiyar masana’antu da tattalin arziki
ta kasar Sin (China’s Association of Business and In-
dustry)”. Our name tagger will further benefit from
more robust universal word segmentation, rich mor-
phology analysis and IL-specific knowledge. For ex-
ample, in Tamil “ஃ” is a visarga used as a diacritic
to write foreign sounds, so we can infer a phrase in-
cluding it (e.g., “ஹெய்ஃபாவின் (Haifa)”) is likely to
be a foreign name. Therefore our survey should be
enriched by exercising with many languages to cap-
ture more categories of linguistic phenomena.

7 Related Work

Name Tagging is a well-studied problem. Many
types of frameworks have been used, including
rules (Farmakiotou et al., 2000; Nadeau and Sekine,
2007), supervisedmodels usingmonolingual labeled
data (Zhou and Su, 2002; Chieu and Ng, 2002; Rizzo
and Troncy, 2012; McCallum and Li, 2003; Li and
McCallum, 2003), bilingual labeled data (Li et al.,
2012; Kim et al., 2012; Che et al., 2013; Wang
et al., 2013) or naturally partially annotated data
such asWikipedia (Nothman et al., 2013), bootstrap-
ping (Agichtein and Gravano, 2000; Niu et al., 2003;
Becker et al., 2005; Wu et al., 2009; Chiticariu et al.,
2010), and unsupervised learning (Mikheev et al.,
1999; McCallum and Li, 2003; Etzioni et al., 2005;
Nadeau et al., 2006; Nadeau and Sekine, 2007; Ji and
Lin, 2009).
Name tagging has been explored for many non-

English languages such as in Chinese (Ji and Gr-
ishman, 2005; Li et al., 2014), Japanese (Asahara
and Matsumoto, 2003; Li et al., 2014), Arabic (Mal-
oney and Niv, 1998), Catalan (Carreras et al.,
2003), Bulgarian (Osenova and Kolkovska, 2002),
Dutch (De Meulder et al., 2002), French (Béchet

256

et al., 2000), German (Thielen, 1995), Ital-
ian (Cucchiarelli et al., 1998), Greek (Karkaletsis
et al., 1999), Spanish (Arévalo et al., 2002), Por-
tuguese (Hana et al., 2006), Serbo-croatian (Nenadić
and Spasić, 2000), Swedish (Dalianis and Åström,
2001) and Turkish (Tür et al., 2003). However, most
of previous work relied on substantial amount of re-
sources such as language-specific rules, basic tools
such as part-of-speech taggers, a large amount of la-
beled data, or a huge amount of Web ngram data,
which are usually unavailable for low-resource ILs.
In contrast, in this paper we put the name tagging
task in a new emergent setting where we need to pro-
cess a surprise IL within very short time using very
few resources.
The TIDES 2003 Surprise Language Hindi

Named Entity Recognition task (Li and McCallum,
2003) had a similar setting. A name tagger was re-
quired to be finished within a time bound (five days).
However, 628 labeled documents were provided in
the TIDES task, while in our setting no labeled doc-
uments are available at the starting point. There-
fore we applied active learning to efficiently anno-
tate about 40 documents for each language and pro-
posed new methods to learn expectations. The re-
sults of the tested ILs are still far from perfect, but
we hope our detailed comparison and result analysis
can introduce new ideas to balance the quality and
cost of name tagging.

8 Conclusions and Future Work

Name tagging for a new IL is a very important
but also challenging task. We conducted a thor-
ough study on various ways of acquiring, encod-
ing and composing expectations from multiple non-
traditional sources. Experiments demonstrate that
this framework can be used to build a promising
name tagger for a new IL within a few hours. In
the future we will exploit broader and deeper entity
prior knowledge to improve name identification. We
will aim to make the framework more transparent for
native speakers so the survey can be done in an au-
tomatic interactive question-answering fashion. We
will also developmethods tomake the tagger capable
of active self-assessment to produce the best work-
flow within time bounds.

Acknowledgments

This work was supported by the U.S. DARPA
LORELEI Program No. HR0011-15-C-0115 and
ARL/ARO MURI W911NF-10-1-0533. The views
and conclusions contained in this document are those
of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or
implied, of the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Government purposes notwithstanding
any copyright notation here on.

References
Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collections.
In Proceedings of the fifth ACM conference on Digital
libraries.

Montse Arévalo, Xavier Carreras, Lluís Màrquez,
María Antònia Martí, Lluís Padró, and María José
Simón. 2002. A proposal for wide-coverage spanish
named entity recognition. Procesamiento del lenguaje
natural.

Masayuki Asahara and Yuji Matsumoto. 2003. Japanese
named entity extraction with redundant morphological
analysis. In Proceedings of the 2003 Conference of the
North American Chapter of the Association for Com-
putational Linguistics on Human Language Technol-
ogy.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation for
sembanking. In ACL Workshop on Linguistic Annota-
tion and Interoperability with Discourse.

Frédéric Béchet, Alexis Nasr, and Franck Genet. 2000.
Tagging unknown proper names using decision trees.
In Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics.

Markus Becker, Ben Hachey, Beatrice Alex, and Claire
Grover. 2005. Optimising selective sampling for boot-
strapping named entity recognition. In Proceedings
of ICML-2005 Workshop on Learning with Multiple
Views.

Xavier Carreras, Lluís Màrquez, and Lluís Padró. 2003.
Named entity recognition for catalan using spanish re-
sources. In Proceedings of the tenth conference on Eu-
ropean chapter of the Association for Computational
Linguistics.

Wanxiang Che, MengqiuWang, Christopher DManning,
and Ting Liu. 2013. Named entity recognition with
bilingual constraints. In Proceedings of HLT-NAACL.

257

Hai Leong Chieu and Hwee Tou Ng. 2002. Named en-
tity recognition: a maximum entropy approach using
global information. In Proceedings of the 19th inter-
national conference on Computational linguistics.

Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao
Li, Frederick Reiss, and Shivakumar Vaithyanathan.
2010. Domain adaptation of rule-based annotators
for named-entity recognition tasks. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In Proceedings
of the joint SIGDAT conference on empirical methods
in natural language processing and very large cor-
pora.

Alessandro Cucchiarelli, Danilo Luzi, and Paola Velardi.
1998. Automatic semantic tagging of unknown proper
names. In Proceedings of the 17th international con-
ference on Computational linguistics.

Hercules Dalianis and Erik Åström. 2001. Swenam—
a swedish named entity recognizer. Technical report,
Technical Report. Department of Numerical Analysis
and Computing Science.

Fien De Meulder, Walter Daelemans, and Véronique
Hoste. 2002. A named entity recognition system for
dutch. Language and Computers.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Unsuper-
vised named-entity extraction from the web: An exper-
imental study. Artificial intelligence.

Dimitra Farmakiotou, Vangelis Karkaletsis, John Kout-
sias, George Sigletos, Constantine D Spyropoulos, and
Panagiotis Stamatopoulos. 2000. Rule-based named
entity recognition for greek financial texts. In Pro-
ceedings of the Workshop on Computational lexicog-
raphy and Multimedia Dictionaries (COMLEX 2000).

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling.
In Proceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics.

Jirka Hana, Anna Feldman, Chris Brew, and Luiz Ama-
ral. 2006. Tagging portuguese with a spanish tagger
using cognates. In Proceedings of the International
Workshop on Cross-Language Knowledge Induction.

Heng Ji and Ralph Grishman. 2005. Improving name
tagging by reference resolution and relation detection.
In Proceedings of ACL2005.

Heng Ji and Dekang Lin. 2009. Gender and animacy
knowledge discovery from web-scale n-grams for un-
supervised person mention detection. In Proceedings
of PACLIC2009.

Feng Jing, Mingjing Li, HongJiang Zhang, and Bo Zhang.
2004. Entropy-based active learning with support vec-
tormachines for content-based image retrieval. InPro-
ceedings of ICMCS2004.

Vangelis Karkaletsis, Georgios Paliouras, Georgios Peta-
sis, Natasa Manousopoulou, and Constantine D Spy-
ropoulos. 1999. Named-entity recognition from greek
and english texts. Journal of Intelligent and Robotic
Systems.

Sungchul Kim, Kristina Toutanova, and Hwanjo Yu.
2012. Multilingual named entity recognition using
parallel data and metadata from wikipedia. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics.

John D. Lafferty, AndrewMcCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Confer-
ence on Machine Learning.

Wei Li and Andrew McCallum. 2003. Rapid devel-
opment of hindi named entity recognition using con-
ditional random fields and feature induction. ACM
Transactions on Asian and Low-Resource Language
Information Processing.

Qi Li, Haibo Li, Heng Ji, Wen Wang, Jing Zheng, and
Fei Huang. 2012. Joint bilingual name tagging for
parallel corpora. In Proceedings of the 21st ACM in-
ternational conference on Information and knowledge
management.

Haibo Li, Masato Hagiwara, Qi Li, and Heng Ji. 2014.
Comparison of the impact of word segmentation on
name tagging for chinese and japanese. In Proceed-
ings of LREC2014.

John Maloney and Michael Niv. 1998. Tagarab: a fast,
accurate arabic name recognizer using high-precision
morphological analysis. In Proceedings of the Work-
shop on Computational Approaches to Semitic Lan-
guages.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional random
fields, feature induction and web-enhanced lexicons.
In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003.

Andrei Mikheev, Marc Moens, and Claire Grover. 1999.
Named entity recognition without gazetteers. In Pro-
ceedings of the ninth conference on European chapter
of the Association for Computational Linguistics.

JY Mortimer and JA Salathiel. 1995. ’soundex’codes
of surnames provide confidentiality and accuracy in a
national hiv database. Communicable disease report.
CDR review.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvisti-
cae Investigationes.

258

David Nadeau, Peter Turney, and Stan Matwin. 2006.
Unsupervised named-entity recognition: Generating
gazetteers and resolving ambiguity.

Goran Nenadić and Irena Spasić. 2000. Recognition and
acquisition of compound names from corpora. In Nat-
ural Language Processing—NLP 2000.

Cheng Niu, Wei Li, Jihong Ding, and Rohini K Srihari.
2003. Bootstrapping for named entity tagging using
concept-based seeds. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Lan-
guage Technology.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James RCurran. 2013. Learningmultilingual
named entity recognition fromwikipedia. Artificial In-
telligence.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational linguistics.

Petya Osenova and Sia Kolkovska. 2002. Combin-
ing the named-entity recognition task and np chunking
strategy for robust pre-processing. In Proceedings of
the Workshop on Treebanks and Linguistic Theories,
September.

Hema Raghavan and James Allan. 2004. Using soundex
codes for indexing names in asr documents. In Pro-
ceedings of the Workshop on Interdisciplinary Ap-
proaches to Speech Indexing and Retrieval at HLT-
NAACL 2004.

Giuseppe Rizzo and Raphaël Troncy. 2012. Nerd: a
framework for unifying named entity recognition and
disambiguation extraction tools. In Proceedings of
the Demonstrations at the 13th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics.

John Searle. 1980. Minds, brains, and programs. Journal
of the Association for Computing Machinery.

Burr Settles and Mark Craven. 2008. An analysis of ac-
tive learning strategies for sequence labeling tasks. In
Proceedings of the conference on empirical methods in
natural language processing.

Burr Settles. 2010. Active learning literature survey.
University of Wisconsin, Madison.

Christine Thielen. 1995. An approach to proper name
tagging for german. arXiv preprint cmp-lg/9506024.

Gökhan Tür, Dilek Hakkani-Tür, and Kemal Oflazer.
2003. A statistical information extraction system for
turkish. Natural Language Engineering.

Mengqiu Wang, Wanxiang Che, and Christopher DMan-
ning. 2013. Joint word alignment and bilingual named
entity recognition using dual decomposition. In Pro-
ceedings of the Association for Computational Linguis-
tics.

Han Wang, Jin Guang Zheng, Xiaogang Ma, Peter Fox,
and Heng Ji. 2015. Language and domain independent
entity linking with quantified collective validation. In
Proceedings of Conference on Empirical Methods in
Natural Language Processing (EMNLP2015).

Dan Wu, Wee Sun Lee, Nan Ye, and Hai Leong Chieu.
2009. Domain adaptive bootstrapping for named entity
recognition. InProceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing.

GuoDong Zhou and Jian Su. 2002. Named entity recog-
nition using an hmm-based chunk tagger. In Proceed-
ings of the 40th Annual Meeting on Association for
Computational Linguistics.

259

Proceedings of NAACL-HLT 2016, pages 260–270,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Neural Architectures for Named Entity Recognition
Guillaume Lample♠ Miguel Ballesteros♣♠

Sandeep Subramanian♠ Kazuya Kawakami♠ Chris Dyer♠
♠Carnegie Mellon University ♣NLP Group, Pompeu Fabra University
{glample,sandeeps,kkawakam,cdyer}@cs.cmu.edu,

miguel.ballesteros@upf.edu

Abstract

State-of-the-art named entity recognition sys-
tems rely heavily on hand-crafted features and
domain-specific knowledge in order to learn
effectively from the small, supervised training
corpora that are available. In this paper, we
introduce two new neural architectures—one
based on bidirectional LSTMs and conditional
random fields, and the other that constructs
and labels segments using a transition-based
approach inspired by shift-reduce parsers.
Our models rely on two sources of infor-
mation about words: character-based word
representations learned from the supervised
corpus and unsupervised word representa-
tions learned from unannotated corpora. Our
models obtain state-of-the-art performance in
NER in four languages without resorting to
any language-specific knowledge or resources
such as gazetteers. 1

1 Introduction

Named entity recognition (NER) is a challenging
learning problem. One the one hand, in most lan-
guages and domains, there is only a very small
amount of supervised training data available. On the
other, there are few constraints on the kinds of words
that can be names, so generalizing from this small
sample of data is difficult. As a result, carefully con-
structed orthographic features and language-specific
knowledge resources, such as gazetteers, are widely
used for solving this task. Unfortunately, language-
specific resources and features are costly to de-
velop in new languages and new domains, making
NER a challenge to adapt. Unsupervised learning

1The code of the LSTM-CRF and Stack-LSTM NER
systems are available at https://github.com/
glample/tagger and https://github.com/clab/
stack-lstm-ner

from unannotated corpora offers an alternative strat-
egy for obtaining better generalization from small
amounts of supervision. However, even systems
that have relied extensively on unsupervised fea-
tures (Collobert et al., 2011; Turian et al., 2010;
Lin and Wu, 2009; Ando and Zhang, 2005b, in-
ter alia) have used these to augment, rather than
replace, hand-engineered features (e.g., knowledge
about capitalization patterns and character classes in
a particular language) and specialized knowledge re-
sources (e.g., gazetteers).

In this paper, we present neural architectures
for NER that use no language-specific resources
or features beyond a small amount of supervised
training data and unlabeled corpora. Our mod-
els are designed to capture two intuitions. First,
since names often consist of multiple tokens, rea-
soning jointly over tagging decisions for each to-
ken is important. We compare two models here,
(i) a bidirectional LSTM with a sequential condi-
tional random layer above it (LSTM-CRF; §2), and
(ii) a new model that constructs and labels chunks
of input sentences using an algorithm inspired by
transition-based parsing with states represented by
stack LSTMs (S-LSTM; §3). Second, token-level
evidence for “being a name” includes both ortho-
graphic evidence (what does the word being tagged
as a name look like?) and distributional evidence
(where does the word being tagged tend to oc-
cur in a corpus?). To capture orthographic sen-
sitivity, we use character-based word representa-
tion model (Ling et al., 2015b) to capture distribu-
tional sensitivity, we combine these representations
with distributional representations (Mikolov et al.,
2013b). Our word representations combine both of
these, and dropout training is used to encourage the
model to learn to trust both sources of evidence (§4).

Experiments in English, Dutch, German, and
Spanish show that we are able to obtain state-

260

of-the-art NER performance with the LSTM-CRF
model in Dutch, German, and Spanish, and very
near the state-of-the-art in English without any
hand-engineered features or gazetteers (§5). The
transition-based algorithm likewise surpasses the
best previously published results in several lan-
guages, although it performs less well than the
LSTM-CRF model.

2 LSTM-CRF Model

We provide a brief description of LSTMs and CRFs,
and present a hybrid tagging architecture. This ar-
chitecture is similar to the ones presented by Col-
lobert et al. (2011) and Huang et al. (2015).

2.1 LSTM
Recurrent neural networks (RNNs) are a family
of neural networks that operate on sequential
data. They take as input a sequence of vectors
(x1,x2, . . . ,xn) and return another sequence
(h1,h2, . . . ,hn) that represents some information
about the sequence at every step in the input.
Although RNNs can, in theory, learn long depen-
dencies, in practice they fail to do so and tend to
be biased towards their most recent inputs in the
sequence (Bengio et al., 1994). Long Short-term
Memory Networks (LSTMs) have been designed to
combat this issue by incorporating a memory-cell
and have been shown to capture long-range depen-
dencies. They do so using several gates that control
the proportion of the input to give to the memory
cell, and the proportion from the previous state to
forget (Hochreiter and Schmidhuber, 1997). We use
the following implementation:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi)
ct = (1− it)� ct−1+

it � tanh(Wxcxt + Whcht−1 + bc)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo)
ht = ot � tanh(ct),

where σ is the element-wise sigmoid function, and
� is the element-wise product.

For a given sentence (x1,x2, . . . ,xn) containing
nwords, each represented as a d-dimensional vector,
an LSTM computes a representation

−→
ht of the left

context of the sentence at every word t. Naturally,
generating a representation of the right context

←−
ht

as well should add useful information. This can be
achieved using a second LSTM that reads the same
sequence in reverse. We will refer to the former as
the forward LSTM and the latter as the backward
LSTM. These are two distinct networks with differ-
ent parameters. This forward and backward LSTM
pair is referred to as a bidirectional LSTM (Graves
and Schmidhuber, 2005).

The representation of a word using this model is
obtained by concatenating its left and right context
representations, ht = [

−→
ht;
←−
ht]. These representa-

tions effectively include a representation of a word
in context, which is useful for numerous tagging ap-
plications.

2.2 CRF Tagging Models
A very simple—but surprisingly effective—tagging
model is to use the ht’s as features to make indepen-
dent tagging decisions for each output yt (Ling et
al., 2015b). Despite this model’s success in simple
problems like POS tagging, its independent classifi-
cation decisions are limiting when there are strong
dependencies across output labels. NER is one such
task, since the “grammar” that characterizes inter-
pretable sequences of tags imposes several hard con-
straints (e.g., I-PER cannot follow B-LOC; see §2.4
for details) that would be impossible to model with
independence assumptions.

Therefore, instead of modeling tagging decisions
independently, we model them jointly using a con-
ditional random field (Lafferty et al., 2001). For an
input sentence

X = (x1,x2, . . . ,xn),

we consider P to be the matrix of scores output by
the bidirectional LSTM network. P is of size n × k,
where k is the number of distinct tags, and Pi,j cor-
responds to the score of the jth tag of the ith word
in a sentence. For a sequence of predictions

y = (y1, y2, . . . , yn),

we define its score to be

s(X,y) =
n∑
i=0

Ayi,yi+1 +
n∑
i=1

Pi,yi

261

where A is a matrix of transition scores such that
Ai,j represents the score of a transition from the
tag i to tag j. y0 and yn are the start and end
tags of a sentence, that we add to the set of possi-
ble tags. A is therefore a square matrix of size k+2.

A softmax over all possible tag sequences yields a
probability for the sequence y:

p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ)

.

During training, we maximize the log-probability of
the correct tag sequence:

log(p(y|X)) = s(X,y)− log

 ∑
ỹ∈YX

es(X,ỹ)


= s(X,y)− logadd

ỹ∈YX

s(X, ỹ), (1)

where YX represents all possible tag sequences
(even those that do not verify the IOB format) for
a sentence X. From the formulation above, it is ev-
ident that we encourage our network to produce a
valid sequence of output labels. While decoding, we
predict the output sequence that obtains the maxi-
mum score given by:

y∗ = argmax
ỹ∈YX

s(X, ỹ). (2)

Since we are only modeling bigram interactions
between outputs, both the summation in Eq. 1 and
the maximum a posteriori sequence y∗ in Eq. 2 can
be computed using dynamic programming.

2.3 Parameterization and Training
The scores associated with each tagging decision
for each token (i.e., the Pi,y’s) are defined to be
the dot product between the embedding of a word-
in-context computed with a bidirectional LSTM—
exactly the same as the POS tagging model of Ling
et al. (2015b) and these are combined with bigram
compatibility scores (i.e., the Ay,y′’s). This archi-
tecture is shown in figure 1. Circles represent ob-
served variables, diamonds are deterministic func-
tions of their parents, and double circles are random
variables.

Figure 1: Main architecture of the network. Word embeddings

are given to a bidirectional LSTM. li represents the word i and

its left context, ri represents the word i and its right context.

Concatenating these two vectors yields a representation of the

word i in its context, ci.

The parameters of this model are thus the matrix
of bigram compatibility scores A, and the parame-
ters that give rise to the matrix P, namely the param-
eters of the bidirectional LSTM, the linear feature
weights, and the word embeddings. As in part 2.2,
let xi denote the sequence of word embeddings for
every word in a sentence, and yi be their associated
tags. We return to a discussion of how the embed-
dings xi are modeled in Section 4. The sequence of
word embeddings is given as input to a bidirectional
LSTM, which returns a representation of the left and
right context for each word as explained in 2.1.

These representations are concatenated (ci) and
linearly projected onto a layer whose size is equal
to the number of distinct tags. Instead of using the
softmax output from this layer, we use a CRF as pre-
viously described to take into account neighboring
tags, yielding the final predictions for every word
yi. Additionally, we observed that adding a hidden
layer between ci and the CRF layer marginally im-
proved our results. All results reported with this
model incorporate this extra-layer. The parameters
are trained to maximize Eq. 1 of observed sequences
of NER tags in an annotated corpus, given the ob-
served words.

262

2.4 Tagging Schemes

The task of named entity recognition is to assign a
named entity label to every word in a sentence. A
single named entity could span several tokens within
a sentence. Sentences are usually represented in the
IOB format (Inside, Outside, Beginning) where ev-
ery token is labeled as B-label if the token is the
beginning of a named entity, I-label if it is inside
a named entity but not the first token within the
named entity, or O otherwise. However, we de-
cided to use the IOBES tagging scheme, a variant of
IOB commonly used for named entity recognition,
which encodes information about singleton entities
(S) and explicitly marks the end of named entities
(E). Using this scheme, tagging a word as I-label
with high-confidence narrows down the choices for
the subsequent word to I-label or E-label, however,
the IOB scheme is only capable of determining that
the subsequent word cannot be the interior of an-
other label. Ratinov and Roth (2009) and Dai et al.
(2015) showed that using a more expressive tagging
scheme like IOBES improves model performance
marginally. However, we did not observe a signif-
icant improvement over the IOB tagging scheme.

3 Transition-Based Chunking Model

As an alternative to the LSTM-CRF discussed in
the previous section, we explore a new architecture
that chunks and labels a sequence of inputs using
an algorithm similar to transition-based dependency
parsing. This model directly constructs representa-
tions of the multi-token names (e.g., the name Mark
Watney is composed into a single representation).

This model relies on a stack data structure to in-
crementally construct chunks of the input. To ob-
tain representations of this stack used for predict-
ing subsequent actions, we use the Stack-LSTM pre-
sented by Dyer et al. (2015), in which the LSTM
is augmented with a “stack pointer.” While sequen-
tial LSTMs model sequences from left to right, stack
LSTMs permit embedding of a stack of objects that
are both added to (using a push operation) and re-
moved from (using a pop operation). This allows
the Stack-LSTM to work like a stack that maintains
a “summary embedding” of its contents. We refer
to this model as Stack-LSTM or S-LSTM model for
simplicity.

Finally, we refer interested readers to the original
paper (Dyer et al., 2015) for details about the Stack-
LSTM model since in this paper we merely use the
same architecture through a new transition-based al-
gorithm presented in the following Section.

3.1 Chunking Algorithm

We designed a transition inventory which is given in
Figure 2 that is inspired by transition-based parsers,
in particular the arc-standard parser of Nivre (2004).
In this algorithm, we make use of two stacks (des-
ignated output and stack representing, respectively,
completed chunks and scratch space) and a buffer
that contains the words that have yet to be processed.
The transition inventory contains the following tran-
sitions: The SHIFT transition moves a word from
the buffer to the stack, the OUT transition moves a
word from the buffer directly into the output stack
while the REDUCE(y) transition pops all items from
the top of the stack creating a “chunk,” labels this
with label y, and pushes a representation of this
chunk onto the output stack. The algorithm com-
pletes when the stack and buffer are both empty. The
algorithm is depicted in Figure 2, which shows the
sequence of operations required to process the sen-
tence Mark Watney visited Mars.

The model is parameterized by defining a prob-
ability distribution over actions at each time step,
given the current contents of the stack, buffer, and
output, as well as the history of actions taken. Fol-
lowing Dyer et al. (2015), we use stack LSTMs
to compute a fixed dimensional embedding of each
of these, and take a concatenation of these to ob-
tain the full algorithm state. This representation is
used to define a distribution over the possible ac-
tions that can be taken at each time step. The model
is trained to maximize the conditional probability of
sequences of reference actions (extracted from a la-
beled training corpus) given the input sentences. To
label a new input sequence at test time, the maxi-
mum probability action is chosen greedily until the
algorithm reaches a termination state. Although this
is not guaranteed to find a global optimum, it is ef-
fective in practice. Since each token is either moved
directly to the output (1 action) or first to the stack
and then the output (2 actions), the total number of
actions for a sequence of length n is maximally 2n.

It is worth noting that the nature of this algorithm

263

Outt Stackt Buffert Action Outt+1 Stackt+1 Buffert+1 Segments
O S (u, u), B SHIFT O (u, u), S B —
O (u, u), . . . , (v, v), S B REDUCE(y) g(u, . . . ,v, ry), O S B (u . . . v, y)
O S (u, u), B OUT g(u, r∅), O S B —

Figure 2: Transitions of the Stack-LSTM model indicating the action applied and the resulting state. Bold symbols indicate

(learned) embeddings of words and relations, script symbols indicate the corresponding words and relations.

Transition Output Stack Buffer Segment
[] [] [Mark, Watney, visited, Mars]

SHIFT [] [Mark] [Watney, visited, Mars]
SHIFT [] [Mark, Watney] [visited, Mars]
REDUCE(PER) [(Mark Watney)-PER] [] [visited, Mars] (Mark Watney)-PER
OUT [(Mark Watney)-PER, visited] [] [Mars]
SHIFT [(Mark Watney)-PER, visited] [Mars] []
REDUCE(LOC) [(Mark Watney)-PER, visited, (Mars)-LOC] [] [] (Mars)-LOC

Figure 3: Transition sequence for Mark Watney visited Mars with the Stack-LSTM model.

model makes it agnostic to the tagging scheme used
since it directly predicts labeled chunks.

3.2 Representing Labeled Chunks
When the REDUCE(y) operation is executed, the al-
gorithm shifts a sequence of tokens (together with
their vector embeddings) from the stack to the out-
put buffer as a single completed chunk. To compute
an embedding of this sequence, we run a bidirec-
tional LSTM over the embeddings of its constituent
tokens together with a token representing the type of
the chunk being identified (i.e., y). This function is
given as g(u, . . . ,v, ry), where ry is a learned em-
bedding of a label type. Thus, the output buffer con-
tains a single vector representation for each labeled
chunk that is generated, regardless of its length.

4 Input Word Embeddings

The input layers to both of our models are vector
representations of individual words. Learning inde-
pendent representations for word types from the lim-
ited NER training data is a difficult problem: there
are simply too many parameters to reliably estimate.
Since many languages have orthographic or mor-
phological evidence that something is a name (or
not a name), we want representations that are sen-
sitive to the spelling of words. We therefore use a
model that constructs representations of words from
representations of the characters they are composed
of (4.1). Our second intuition is that names, which
may individually be quite varied, appear in regular
contexts in large corpora. Therefore we use embed-

Figure 4: The character embeddings of the word “Mars” are

given to a bidirectional LSTMs. We concatenate their last out-

puts to an embedding from a lookup table to obtain a represen-

tation for this word.

dings learned from a large corpus that are sensitive
to word order (4.2). Finally, to prevent the models
from depending on one representation or the other
too strongly, we use dropout training and find this is
crucial for good generalization performance (4.3).

4.1 Character-based models of words

An important distinction of our work from most
previous approaches is that we learn character-level

264

features while training instead of hand-engineering
prefix and suffix information about words. Learn-
ing character-level embeddings has the advantage of
learning representations specific to the task and do-
main at hand. They have been found useful for mor-
phologically rich languages and to handle the out-
of-vocabulary problem for tasks like part-of-speech
tagging and language modeling (Ling et al., 2015b)
or dependency parsing (Ballesteros et al., 2015).

Figure 4 describes our architecture to generate a
word embedding for a word from its characters. A
character lookup table initialized at random contains
an embedding for every character. The character
embeddings corresponding to every character in a
word are given in direct and reverse order to a for-
ward and a backward LSTM. The embedding for a
word derived from its characters is the concatenation
of its forward and backward representations from
the bidirectional LSTM. This character-level repre-
sentation is then concatenated with a word-level rep-
resentation from a word lookup-table. During test-
ing, words that do not have an embedding in the
lookup table are mapped to a UNK embedding. To
train the UNK embedding, we replace singletons
with the UNK embedding with a probability 0.5. In
all our experiments, the hidden dimension of the for-
ward and backward character LSTMs are 25 each,
which results in our character-based representation
of words being of dimension 50.

Recurrent models like RNNs and LSTMs are ca-
pable of encoding very long sequences, however,
they have a representation biased towards their most
recent inputs. As a result, we expect the final rep-
resentation of the forward LSTM to be an accurate
representation of the suffix of the word, and the fi-
nal state of the backward LSTM to be a better rep-
resentation of its prefix. Alternative approaches—
most notably like convolutional networks—have
been proposed to learn representations of words
from their characters (Zhang et al., 2015; Kim et al.,
2015). However, convnets are designed to discover
position-invariant features of their inputs. While this
is appropriate for many problems, e.g., image recog-
nition (a cat can appear anywhere in a picture), we
argue that important information is position depen-
dent (e.g., prefixes and suffixes encode different in-
formation than stems), making LSTMs an a priori
better function class for modeling the relationship

between words and their characters.

4.2 Pretrained embeddings

As in Collobert et al. (2011), we use pretrained
word embeddings to initialize our lookup table. We
observe significant improvements using pretrained
word embeddings over randomly initialized ones.
Embeddings are pretrained using skip-n-gram (Ling
et al., 2015a), a variation of word2vec (Mikolov et
al., 2013a) that accounts for word order. These em-
beddings are fine-tuned during training.

Word embeddings for Spanish, Dutch, German
and English are trained using the Spanish Gigaword
version 3, the Leipzig corpora collection, the Ger-
man monolingual training data from the 2010 Ma-
chine Translation Workshop and the English Giga-
word version 4 (with the LA Times and NY Times
portions removed) respectively.2 We use an embed-
ding dimension of 100 for English, 64 for other lan-
guages, a minimum word frequency cutoff of 4, and
a window size of 8.

4.3 Dropout training

Initial experiments showed that character-level em-
beddings did not improve our overall performance
when used in conjunction with pretrained word rep-
resentations. To encourage the model to depend on
both representations, we use dropout training (Hin-
ton et al., 2012), applying a dropout mask to the final
embedding layer just before the input to the bidirec-
tional LSTM in Figure 1. We observe a significant
improvement in our model’s performance after us-
ing dropout (see table 5).

5 Experiments

This section presents the methods we use to train our
models, the results we obtained on various tasks and
the impact of our networks’ configuration on model
performance.

5.1 Training

For both models presented, we train our networks
using the back-propagation algorithm updating our
parameters on every training example, one at a
time, using stochastic gradient descent (SGD) with

2(Graff, 2011; Biemann et al., 2007; Callison-Burch et al.,
2010; Parker et al., 2009)

265

a learning rate of 0.01 and a gradient clipping of
5.0. Several methods have been proposed to enhance
the performance of SGD, such as Adadelta (Zeiler,
2012) or Adam (Kingma and Ba, 2014). Although
we observe faster convergence using these methods,
none of them perform as well as SGD with gradient
clipping.

Our LSTM-CRF model uses a single layer for
the forward and backward LSTMs whose dimen-
sions are set to 100. Tuning this dimension did
not significantly impact model performance. We set
the dropout rate to 0.5. Using higher rates nega-
tively impacted our results, while smaller rates led
to longer training time.

The stack-LSTM model uses two layers each of
dimension 100 for each stack. The embeddings of
the actions used in the composition functions have
16 dimensions each, and the output embedding is
of dimension 20. We experimented with different
dropout rates and reported the scores using the best
dropout rate for each language.3 It is a greedy model
that apply locally optimal actions until the entire
sentence is processed, further improvements might
be obtained with beam search (Zhang and Clark,
2011) or training with exploration (Ballesteros et al.,
2016).

5.2 Data Sets

We test our model on different datasets for named
entity recognition. To demonstrate our model’s
ability to generalize to different languages, we
present results on the CoNLL-2002 and CoNLL-
2003 datasets (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003) that contain in-
dependent named entity labels for English, Span-
ish, German and Dutch. All datasets contain four
different types of named entities: locations, per-
sons, organizations, and miscellaneous entities that
do not belong in any of the three previous cate-
gories. Although POS tags were made available for
all datasets, we did not include them in our models.
We did not perform any dataset preprocessing, apart
from replacing every digit with a zero in the English
NER dataset.

3English (D=0.2), German, Spanish and Dutch (D=0.3)

5.3 Results

Table 1 presents our comparisons with other mod-
els for named entity recognition in English. To
make the comparison between our model and oth-
ers fair, we report the scores of other models with
and without the use of external labeled data such
as gazetteers and knowledge bases. Our models do
not use gazetteers or any external labeled resources.
The best score reported on this task is by Luo et al.
(2015). They obtained a F1 of 91.2 by jointly model-
ing the NER and entity linking tasks (Hoffart et al.,
2011). Their model uses a lot of hand-engineered
features including spelling features, WordNet clus-
ters, Brown clusters, POS tags, chunks tags, as
well as stemming and external knowledge bases like
Freebase and Wikipedia. Our LSTM-CRF model
outperforms all other systems, including the ones us-
ing external labeled data like gazetteers. Our Stack-
LSTM model also outperforms all previous models
that do not incorporate external features, apart from
the one presented by Chiu and Nichols (2015).

Tables 2, 3 and 4 present our results on NER for
German, Dutch and Spanish respectively in compar-
ison to other models. On these three languages, the
LSTM-CRF model significantly outperforms all pre-
vious methods, including the ones using external la-
beled data. The only exception is Dutch, where the
model of Gillick et al. (2015) can perform better by
leveraging the information from other NER datasets.
The Stack-LSTM also consistently presents state-
the-art (or close to) results compared to systems that
do not use external data.

As we can see in the tables, the Stack-LSTM
model is more dependent on character-based repre-
sentations to achieve competitive performance; we
hypothesize that the LSTM-CRF model requires less
orthographic information since it gets more contex-
tual information out of the bidirectional LSTMs;
however, the Stack-LSTM model consumes the
words one by one and it just relies on the word rep-
resentations when it chunks words.

5.4 Network architectures

Our models had several components that we could
tweak to understand their impact on the overall per-
formance. We explored the impact that the CRF, the
character-level representations, pretraining of our

266

Model F1

Collobert et al. (2011)* 89.59
Lin and Wu (2009) 83.78
Lin and Wu (2009)* 90.90
Huang et al. (2015)* 90.10
Passos et al. (2014) 90.05
Passos et al. (2014)* 90.90
Luo et al. (2015)* + gaz 89.9
Luo et al. (2015)* + gaz + linking 91.2
Chiu and Nichols (2015) 90.69
Chiu and Nichols (2015)* 90.77
LSTM-CRF (no char) 90.20
LSTM-CRF 90.94
S-LSTM (no char) 87.96
S-LSTM 90.33

Table 1: English NER results (CoNLL-2003 test set). * indi-

cates models trained with the use of external labeled data

Model F1

Florian et al. (2003)* 72.41
Ando and Zhang (2005a) 75.27
Qi et al. (2009) 75.72
Gillick et al. (2015) 72.08
Gillick et al. (2015)* 76.22
LSTM-CRF – no char 75.06
LSTM-CRF 78.76
S-LSTM – no char 65.87
S-LSTM 75.66

Table 2: German NER results (CoNLL-2003 test set). * indi-

cates models trained with the use of external labeled data

Model F1

Carreras et al. (2002) 77.05
Nothman et al. (2013) 78.6
Gillick et al. (2015) 78.08
Gillick et al. (2015)* 82.84
LSTM-CRF – no char 73.14
LSTM-CRF 81.74
S-LSTM – no char 69.90
S-LSTM 79.88

Table 3: Dutch NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data

Model F1

Carreras et al. (2002)* 81.39
Santos and Guimarães (2015) 82.21
Gillick et al. (2015) 81.83
Gillick et al. (2015)* 82.95
LSTM-CRF – no char 83.44
LSTM-CRF 85.75
S-LSTM – no char 79.46
S-LSTM 83.93

Table 4: Spanish NER (CoNLL-2002 test set). * indicates mod-

els trained with the use of external labeled data

word embeddings and dropout had on our LSTM-
CRF model. We observed that pretraining our word
embeddings gave us the biggest improvement in
overall performance of +7.31 in F1. The CRF layer
gave us an increase of +1.79, while using dropout
resulted in a difference of +1.17 and finally learn-

ing character-level word embeddings resulted in an
increase of about +0.74. For the Stack-LSTM we
performed a similar set of experiments. Results with
different architectures are given in table 5.

Model Variant F1

LSTM char + dropout + pretrain 89.15
LSTM-CRF char + dropout 83.63
LSTM-CRF pretrain 88.39
LSTM-CRF pretrain + char 89.77
LSTM-CRF pretrain + dropout 90.20
LSTM-CRF pretrain + dropout + char 90.94
S-LSTM char + dropout 80.88
S-LSTM pretrain 86.67
S-LSTM pretrain + char 89.32
S-LSTM pretrain + dropout 87.96
S-LSTM pretrain + dropout + char 90.33

Table 5: English NER results with our models, using differ-

ent configurations. “pretrain” refers to models that include pre-

trained word embeddings, “char” refers to models that include

character-based modeling of words, “dropout” refers to models

that include dropout rate.

6 Related Work

In the CoNLL-2002 shared task, Carreras et al.
(2002) obtained among the best results on both
Dutch and Spanish by combining several small
fixed-depth decision trees. Next year, in the CoNLL-
2003 Shared Task, Florian et al. (2003) obtained the
best score on German by combining the output of
four diverse classifiers. Qi et al. (2009) later im-
proved on this with a neural network by doing unsu-
pervised learning on a massive unlabeled corpus.

Several other neural architectures have previously
been proposed for NER. For instance, Collobert et
al. (2011) uses a CNN over a sequence of word em-
beddings with a CRF layer on top. This can be
thought of as our first model without character-level
embeddings and with the bidirectional LSTM be-
ing replaced by a CNN. More recently, Huang et al.
(2015) presented a model similar to our LSTM-CRF,
but using hand-crafted spelling features. Zhou and
Xu (2015) also used a similar model and adapted
it to the semantic role labeling task. Lin and Wu
(2009) used a linear chain CRF with L2 regular-
ization, they added phrase cluster features extracted
from the web data and spelling features. Passos et
al. (2014) also used a linear chain CRF with spelling
features and gazetteers.

Language independent NER models like ours
have also been proposed in the past. Cucerzan

267

and Yarowsky (1999; 2002) present semi-supervised
bootstrapping algorithms for named entity recogni-
tion by co-training character-level (word-internal)
and token-level (context) features. Eisenstein et
al. (2011) use Bayesian nonparametrics to construct
a database of named entities in an almost unsu-
pervised setting. Ratinov and Roth (2009) quanti-
tatively compare several approaches for NER and
build their own supervised model using a regular-
ized average perceptron and aggregating context in-
formation.

Finally, there is currently a lot of interest in mod-
els for NER that use letter-based representations.
Gillick et al. (2015) model the task of sequence-
labeling as a sequence to sequence learning prob-
lem and incorporate character-based representations
into their encoder model. Chiu and Nichols (2015)
employ an architecture similar to ours, but instead
use CNNs to learn character-level features, in a way
similar to the work by Santos and Guimarães (2015).

7 Conclusion

This paper presents two neural architectures for se-
quence labeling that provide the best NER results
ever reported in standard evaluation settings, even
compared with models that use external resources,
such as gazetteers.

A key aspect of our models are that they model
output label dependencies, either via a simple CRF
architecture, or using a transition-based algorithm
to explicitly construct and label chunks of the in-
put. Word representations are also crucially impor-
tant for success: we use both pre-trained word rep-
resentations and “character-based” representations
that capture morphological and orthographic infor-
mation. To prevent the learner from depending too
heavily on one representation class, dropout is used.

Acknowledgments

This work was sponsored in part by the Defense
Advanced Research Projects Agency (DARPA)
Information Innovation Office (I2O) under the
Low Resource Languages for Emergent Incidents
(LORELEI) program issued by DARPA/I2O under
Contract No. HR0011-15-C-0114. Miguel Balles-
teros is supported by the European Commission un-
der the contract numbers FP7-ICT-610411 (project

MULTISENSOR) and H2020-RIA-645012 (project
KRISTINA).

References

Rie Kubota Ando and Tong Zhang. 2005a. A framework
for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learning
Research, 6:1817–1853.

Rie Kubota Ando and Tong Zhang. 2005b. Learning
predictive structures. JMLR, 6:1817–1853.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based dependency parsing
by modeling characters instead of words with LSTMs.
In Proceedings of EMNLP.

Miguel Ballesteros, Yoav Golderg, Chris Dyer, and
Noah A. Smith. 2016. Training with Explo-
ration Improves a Greedy Stack-LSTM Parser. In
arXiv:1603.03793.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transac-
tions on, 5(2):157–166.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The leipzig corpora
collection-monolingual corpora of standard size. Pro-
ceedings of Corpus Linguistic.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Kay Peterson, Mark Przybocki, and Omar F Zaidan.
2010. Findings of the 2010 joint workshop on sta-
tistical machine translation and metrics for machine
translation. In Proceedings of the Joint Fifth Workshop
on Statistical Machine Translation and MetricsMATR,
pages 17–53. Association for Computational Linguis-
tics.

Xavier Carreras, Lluı́s Màrquez, and Lluı́s Padró. 2002.
Named entity extraction using adaboost, proceedings
of the 6th conference on natural language learning.
August, 31:1–4.

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Silviu Cucerzan and David Yarowsky. 1999. Language
independent named entity recognition combining mor-
phological and contextual evidence. In Proceedings of
the 1999 Joint SIGDAT Conference on EMNLP and
VLC, pages 90–99.

268

Silviu Cucerzan and David Yarowsky. 2002. Language
independent ner using a unified model of internal and
contextual evidence. In proceedings of the 6th confer-
ence on Natural language learning-Volume 20, pages
1–4. Association for Computational Linguistics.

Hong-Jie Dai, Po-Ting Lai, Yung-Chun Chang, and
Richard Tzong-Han Tsai. 2015. Enhancing of chem-
ical compound and drug name recognition using rep-
resentative tag scheme and fine-grained tokenization.
Journal of cheminformatics, 7(Suppl 1):S14.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proc. ACL.

Jacob Eisenstein, Tae Yano, William W Cohen, Noah A
Smith, and Eric P Xing. 2011. Structured databases
of named entities from bayesian nonparametrics. In
Proceedings of the First Workshop on Unsupervised
Learning in NLP, pages 2–12. Association for Com-
putational Linguistics.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL
2003-Volume 4, pages 168–171. Association for Com-
putational Linguistics.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2015. Multilingual language processing
from bytes. arXiv preprint arXiv:1512.00103.

David Graff. 2011. Spanish gigaword third edition
(ldc2011t12). Linguistic Data Consortium, Univer-
sity of Pennsylvania, Philadelphia, PA.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM net-
works. In Proc. IJCNN.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 782–792.
Association for Computational Linguistics.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR, abs/1508.01991.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural language
models. CoRR, abs/1508.06615.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proc. ICML.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering
for discriminative learning. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2-Volume 2,
pages 1030–1038. Association for Computational Lin-
guistics.

Wang Ling, Lin Chu-Cheng, Yulia Tsvetkov, Silvio Amir,
Rámon Fernandez Astudillo, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015a. Not all contexts
are created equal: Better word representations with
variable attention. In Proc. EMNLP.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernandez
Astudillo, Silvio Amir, Chris Dyer, Alan W Black, and
Isabel Trancoso. 2015b. Finding function in form:
Compositional character models for open vocabulary
word representation. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP).

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing
Nie. 2015. Joint named entity recognition and disam-
biguation. In Proc. EMNLP.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Proc. NIPS.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R Curran. 2013. Learning multilin-
gual named entity recognition from wikipedia. Artifi-
cial Intelligence, 194:151–175.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2009. English gigaword fourth
edition (ldc2009t13). Linguistic Data Consortium,
Univer-sity of Pennsylvania, Philadelphia, PA.

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embed-

269

dings for named entity resolution. arXiv preprint
arXiv:1404.5367.

Yanjun Qi, Ronan Collobert, Pavel Kuksa, Koray
Kavukcuoglu, and Jason Weston. 2009. Combining
labeled and unlabeled data with word-class distribu-
tion learning. In Proceedings of the 18th ACM con-
ference on Information and knowledge management,
pages 1737–1740. ACM.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning, pages 147–155.
Association for Computational Linguistics.

Cicero Nogueira dos Santos and Victor Guimarães. 2015.
Boosting named entity recognition with neural charac-
ter embeddings. arXiv preprint arXiv:1505.05008.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proc.
CoNLL.

Erik F. Tjong Kim Sang. 2002. Introduction to the conll-
2002 shared task: Language-independent named entity
recognition. In Proc. CoNLL.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proc. ACL.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

Yue Zhang and Stephen Clark. 2011. Syntactic process-
ing using the generalized perceptron and beam search.
Computational Linguistics, 37(1).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

270

Proceedings of NAACL-HLT 2016, pages 271–281,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Dynamic Feature Induction:
The Last Gist to the State-of-the-Art

Jinho D. Choi
Department of Mathematics and Computer Science

Emory University
Atlanta, GA 30322, USA

jinho.choi@emory.edu

Abstract

We introduce a novel technique called dynamic
feature induction that keeps inducing high di-
mensional features automatically until the fea-
ture space becomes ‘more’ linearly separable.
Dynamic feature induction searches for the fea-
ture combinations that give strong clues for
distinguishing certain label pairs, and gener-
ates joint features from these combinations.
These induced features are trained along with
the primitive low dimensional features. Our ap-
proach was evaluated on two core NLP tasks,
part-of-speech tagging and named entity recog-
nition, and showed the state-of-the-art results
for both tasks, achieving the accuracy of 97.64
and the F1-score of 91.00 respectively, with
about a 25% increase in the feature space.

1 Introduction

Feature engineering typically involves two processes:
the process of discovering novel features with domain
knowledge, and the process of optimizing combina-
tions between existing features. Discovering novel
features may require linguistic background as well
as good understanding in machine learning such that
it is often difficult to do. Optimizing feature combi-
nations can be also difficult but usually requires less
domain knowledge and more importantly, it can be
as effective as discovering new features. It has been
shown for many tasks that approaches using simple
machine learning with extensive feature engineering
outperform ones using more advanced machine learn-
ing with less intensive feature engineering (Xue and
Palmer, 2004; Bengtson and Roth, 2008; Ratinov and
Roth, 2009; Zhang and Nivre, 2011).

Recently, people have tried to automate the second
part of feature engineering, the optimization of fea-
ture combinations, through leading-edge models such
as neural networks (Collobert et al., 2011). Coupled
with embedding approaches (Mikolov et al., 2013; Le
and Mikolov, 2014; Pennington et al., 2014), neural
networks can find the optimal feature combinations
using techniques such as random weight initialization
and back-propagation, and have established the new
state-of-the-art for several tasks (Socher et al., 2013;
Devlin et al., 2014; Yu et al., 2014). However, neural
networks are not as good at optimizing combinations
between sparse features, which are still the most dom-
inating factors in natural language processing.

This paper introduces a new technique called dy-
namic feature induction that automates the optimiza-
tion of feature combinations (Section 3), and can be
easily adapted to any NLP task using sparse features.
Dynamic feature induction allows humans to focus
on the first part of feature engineering, the discovery
of novel features, while machines handle the second
part. Our approach was experimented with two core
NLP tasks, part-of-speech tagging (Section 4) and
named entity recognition (Section 5) and showed the
state-of-the-art results for both tasks.

2 Background

2.1 Nonlinearity in NLP

Linear classification algorithms such as Perceptron,
Winnow, or Support Vector Machines with a linear
kernel have performed exceptionally well for various
NLP tasks (Collins, 2002; Zhang and Johnson, 2003;
Pradhan et al., 2005). This is not because our feature
space is linearly separable by nature, but sparse fea-

271

Figure 1: Overview of dynamic feature induction.

tures introduced to NLP yield very high dimensional
vector space such that it is rather forced to be linearly
separable. For example, NLP features for a word wi
typically involve the word forms ofwi−1 andwi (e.g.,
fi−1, fi). If the feature space is not linearly separable
with these features, a common trick is to introduce
‘higher’ dimension features by joining ‘lower’ dimen-
sion features together (e.g., fi−1 fi). The more joint
features we introduce, the higher chance we get for
the feature space being linearly separable although
these joint features can be very overfitted.

Let us define low dimensional features as the primi-
tive features such as fi−1 or fi, and high dimensional
features as the joint features such as fi fi+1. 1 Low
dimensional features are well explored for most NLP
tasks; it is the high dimensional features that are quite
sensitive to specific tasks. Finding high dimensional
features can be a manual intensive work and this is
what dynamic feature induction intends to take over.

2.2 Related Work
Kudo and Matsumoto (2003) introduced the polyno-
mial kernel expansion that explicitly enumerated the
feature combinations. Our approach is distinguished
because they used a frequency-based PrefixSpan al-
gorithm (Pei et al., 2001) whereas we used the online
learning weights for finding the feature combinations.
Goldberg and Elhadad (2008) suggested an efficient
algorithm for computing polynomial kernel SVMs by
combining inverted indexing and kernel expansion.
Their work is focused more on improving support
vector machines whereas our work is generalized to
any linear classification algorithm.

1The joint features tend to yield a much higher dimensional
feature space than the primitive features.

Okanohara and Tsujii (2009) introduced an approach
for generating feature combinations using `1 regular-
ization and grafting (Perkins et al., 2003). Although
we share similar ideas, their grafting algorithm starts
with an empty feature set whereas ours starts with low
dimensional features, and their correlation parame-
ters αi,y are pre-computed whereas ours are dynami-
cally determined. Strubell et al. (2015) suggested an
algorithm that dynamically selected strong features
during decoding. Our work is distinguished because
we do not run multiple training phases as they do for
figuring our strong features.

3 Dynamic Feature Induction

The intuition behind dynamic feature induction is to
keep populating high dimensional features by joining
low dimensional features together until the feature
space becomes ‘more’ linearly separable.2 Figure 1
shows how features are induced during training:

1. Given a training instance (x1, y1), where x1 is a
feature set consisting of 5 features and y1 is the
gold label, the classifier predicts the label ŷ1.

2. Let us refer “strong features for y against ŷ” to
features that give strong clues for distinguishing
y from ŷ. If ŷ1 is not equal to y1 (2.1), strong
features for y1 against ŷ1 in x1 are selected (2.2),
and combinations of these features are added to
the induced feature set F (2.3).

3. Given a new training instance (x2, y2), combi-
nations of features in x2 are checked by F (3.1),
and appended to x2 if allowed (3.2).

2The term ‘more’ is used because dynamic feature induction
does not guarantee for the feature space to be linearly separable.

272

4. The extended feature set x2 is fed into the classi-
fier. If ŷ2 is equal to y2, no feature combination
is induced from x2.

Thus, high dimensional features in F are incremen-
tally induced and learned along with low dimensional
features during training. During decoding, each fea-
ture set is extended by the induced features in F , and
the prediction is made using the extended feature set.
The size of F can grow up to |X |2, where |X | is the
size of low dimensional features. However, we found
that |F| is more like 1/4 · |X | in practice.

The following sections explain our approach in de-
tails. Sections 3.1, 3.2, and 3.3 describe how features
are induced and learned during training. Sections 3.4
and 3.5 describe how the induced features are stored
and expanded during decoding.

3.1 Feature Induction
Algorithm 1 shows an online learning algorithm that
induces and learns high dimensional features during
training. It takes the set of training instances D and
the learning rate η, and returns the weight vector w
and the set of induced features F .

Algorithm 1 Feature Induction

Input: D: training set, η: learning rate.
Output: w: weight vector, F : induced feature set.

1: w← g← 0
2: F ← ∅
3: until max epoch is reached do
4: foreach (x, y) ∈ D do
5: ŷ ← arg maxy′∈Y(w · φ(x, y′,F)− Iy(y′))
6: if y 6= ŷ then
7: ∂ ← φ(x, y,F)− φ(x, ŷ,F)
8: g← g + ∂ ◦ ∂
9: w← w + (η/(ρ+√g)) · ∂

10: v← [w ◦ φ(x, y,∅)]y − [w ◦ φ(x, ŷ,∅)]ŷ
11: L ← arg kmax∀i vi
12: for i = 2 to |L| do
13: F ← F ∪ {(L1,Li)}
14: return w,F

The algorithm begins by initializing the weight vector
w, the diagonal vector g, and the induced feature set
F (lines 1-2). For each instance (x, y) ∈ D where
y is the gold-label for the feature set x, it predicts
ŷ maximizing w · φ(x, y′,F) − Iy(y′), where I is
defined as follows (lines 4-5):

Iy(y′)←
{

1, if y = y′.
0, otherwise.

The feature map φ takes (x, y,F), and returns a d×l-
dimensional vector, where d and l are the sizes of
features and labels, respectively; each dimension con-
tains the value for a particular feature and a label.3

If certain combinations between features in x exist
in F , they are appended to the feature vector along
with the low dimensional features (see Section 3.5
for more details). The indicator function I allows our
algorithm to be optimized for the hinge loss for mul-
ticlass classification (Crammer and Singer, 2002):

`h = max[0, 1 + w · (φ(x, ŷ,F)− φ(x, y,F))]

If y is not equal to ŷ (line 6), the partial vector ∂ is
measured (line 7), and g and w are updated (lines 8-9)
by AdaGrad (Duchi et al., 2011), where the learning
rate η is adjusted by g (in our case, ρ =1E-5). Once
w is updated, the d-dimensional vector v is generated
by subtracting [w◦φ(x, ŷ,∅)]ŷ from [w◦φ(x, y,∅)]y
(line 10), where [. . .]y returns only the portion of the
values relevant to y (Figure 2).

The i’th element in v represents the strength of
the i’th feature for y against ŷ; the greater vi is, the
stronger the i’th feature is. Next, indices of the top-k
entries in v are collected in the ordered listL (line 11),
representing the strongest features for y against ŷ.4

Finally, the pairs of the first index in L, representing
the strongest feature, and the other indices in L are
added to the induced feature set F (lines 12-13). For
example, if L = [i, j, k] such that vi ≥ vj ≥ vk > 0,
two pairs, (i, j) and (i, k), are added to F .

For all our experiments, k = 3 is used; increasing
k beyond this cutoff did not show much improvement.
Notice that all induced features in F are derived by
joining only low dimensional features together. Our
algorithm does not join a high dimensional feature
with either a low dimensional feature or another high
dimensional feature. This was done intentionally to
prevent from the feature space being exploded; such
features can be induced by replacing ∅ with F in the
line 10 as follows:

v← [w ◦ φ(x, y,F)]y − [w ◦ φ(x, ŷ,F)]ŷ
3In most cases, these values are either 0 or 1.
4‘arg kmax’ returns the ordered list of indices whose values

in v are 1)k-largest and 2)greater than 0.

273

Figure 2: Given the weight vector w and the feature map φ, [w◦φ(x, y,∅)]y takes the Hadamard product between w and φ(x, y,∅),

then truncates the resulting vector with respect to the label y.

It is worth mentioning that we did not find it useful
for joining intermediate features together (e.g., (j, k)
in the above example). It is possible to utilize these
combinations by weighting them differently, which
we will explore in the future. Additionally, we exper-
imented with the combinations between strong and
weak features (joining i’th and j’th features, where
vi > 0 and vj < 0), which again was not so useful.
We are planning to evaluate our approach on more
tasks and data, which will give us better understand-
ing of what combinations are the most effective.

3.2 Regularized Dual Averaging
Each high dimensional feature in F is induced for
making classification between two labels, y and ŷ,
but it may or may not be helpful for distinguishing
labels other than those two. Our algorithm can be
modified to learn the weights of the induced features
only for their relevant labels by adding the label in-
formation to F , which would change the line 13 in
Algorithm 1 as follows:

F ← F ∪ {(L1,Li, y, ŷ)}

However, introducing features targeting specific la-
bel pairs potentially confuses the classifier, especially
when they are trained with the low dimensional fea-
tures targeting all labels. Instead, it is better to apply
a feature selection technique such as `1 regulariza-
tion so the induced features can be selectively learned
for labels that find those features useful. We adapt
regularized dual averaging (Xiao, 2010), which effi-
ciently finds the convergence rates for online convex

optimization, and works most effectively with sparse
feature vectors. To apply regularized dual averaging,
the line 1 in Algorithm 1 is changed to:

w← g← c← 0; t← 1

c is a d × l-dimensional vector consisting of accu-
mulative penalties. t is the number of weight vectors
generated during training. Although w is technically
not updated when y = ŷ, it is still considered a new
vector. Thus, t is incremented for every training in-
stance, so t← t+ 1 is inserted after the line 5. c is
updated by adding the partial vector ∂ as follows (to
be inserted after the line 7):

c← c + ∂

Thus, each dimension in c represents the accumula-
tive penalty (or reward) for a particular feature and a
label. At last, the line 9 is changed to:

w← (η/(ρ+√g)) · `1(c, t, λ)

`1(c, t, λ)←
{

ci − sgn(ci) · λ · t, |c∀i| > λ · t.
0, otherwise.

The function `1 takes c, t, and the regularizer pa-
rameter λ tuned during development. If the absolute
value of the accumulative penalty ci is greater than
λ · t, the weight wi is updated by λ and t; otherwise,
it is assigned to 0. For our experiments, RDA was
able to throw out irrelevant features successfully, and
showed improvement in accuracy; in fact, dynamic
feature induction without RDA did not show as much
improvement over low dimensional features.

274

3.3 Locally Optimal Learning to Search

Features in most NLP tasks are extracted from struc-
tures (e.g., sequence, tree). For structured learning,
we adapt “locally optimal learning to search” (Chang
et al., 2015b), that is a member of imitation learning
similar to DAGGER (Ross et al., 2011). LOLS not
only performs well relative to the reference policy,
but also can improve upon the reference policy, show-
ing very good results for tasks such as part-of-speech
tagging and dependency parsing. We adapt LOLS by
setting the reference policy as follows:

1. The reference policy π determines how often the
gold label y is picked over the predicted label ŷ
to build a structure. For all our experiments, π
is initialized to 0.95.

2. For the first epoch, since π is 0.95, y is randomly
picked over ŷ for 95% of the time.

3. After every epoch, π is multiplied by 0.95. This
allows the next epoch to pick y less often than
the previous epoch (e.g., π becomes 0.952 =
0.9025 for the 2nd epoch so y is picked about
90% of the time instead of 95%).

For our experiments, LOLS gave only marginal im-
provement, probably because the tasks we evaluated,
part-of-speech tagging and named entity recognition,
did not yield complex structures. However, we still
included this in our framework because we wanted to
evaluate our approach on more tasks such as depen-
dency parsing where learning to search algorithms
show a clear advantage (Goldberg and Nivre, 2012;
Choi and McCallum, 2013; Chang et al., 2015a).

3.4 Feature Hashing

Feature hashing is a technique of converting string
features to vectors (Ganchev and Dredze, 2008; Wein-
berger et al., 2009). Given a string feature f and a
hash function h, the index of f in the vector space is
determined by taking the remainder of the hash code:

k ← hstring→int(f) mod δ

The divisor δ is tuned during development. Feature
hashing allows to convert string features into sparse
vectors without reserving an extra space for a map
whose keys and values are the string features and their

indices. Given a feature index pair (i, j) representing
strong features for y against ŷ (Section 3.1), the index
of the induced feature can be measured as follows:

k ← hint→int(i · |X |+ j) mod δ

For efficiency, feature hashing is adapted to our sys-
tem such that the induced feature setF is actually not
a set but a δ-dimensional boolean array, where each
dimension represents the validity of the correspond-
ing induced feature. Thus, the line 13 in Algorithm 1
is changed to:

k ← hint→int(L1 · |X |+ Li) mod δ
Fk ← True

For the choice of h, xxHash is used, that is a fast
non-cryptographic hash algorithm showing the per-
fect score on the Q.Score.5

3.5 Feature Expansion
Algorithm 2 describes how high dimensional features
are expanded from low dimensional features during
training and decoding. It takes the sparse vector xl
containing only low dimensional features and returns
a new sparse vector xl+h containing both low and
high dimensional features.

Algorithm 2 Feature Expansion

Input: xl: sparse feature vector containing only
low dimensional features.

Output: xl+h: sparse feature vector containing both
low and high dimensional features.

1: xl+h ← copy(xl)
2: for i← 1 to |xl| do
3: for j ← i+ 1 to |xl| do
4: k ← hint→int(i · |X |+ j) mod δ
5: if Fk then xl+h.append(k)
6: return xl+h

The algorithm begins by copying xl to xl+h (line 1).
For every combination (i, j) ∈ xl× xl, where i and j
represent the corresponding feature indices (lines 2-
3), it first measures the index k of the feature com-
bination (line 4), then checks if this combination is
valid (Section 3.4). If the combination is valid, mean-
ing that (Fk = True), k is added to xl+h (line 5).
Finally, xl+h is returned with the expanded high di-
mensional features.

5https://github.com/Cyan4973/xxHash

275

4 Part-of-Speech Tagging

4.1 Corpus
The Wall Street Journal corpus from the Penn Tree-
bank III is used (Marcus et al., 1993) with the stan-
dard split for part-of-speech tagging experiments.

Set Sections Sentences ALL OOV
TRN 0-18 38,219 912,344 0
DEV 19-21 5,527 131,768 4,467
TST 22-24 5,462 129,654 3,649

Table 1: Distributions of the Wall Street Journal corpus. TRN:

training, DEV: development, TST: evaluation, ALL: all words,

OOV: out-of-vocabulary words.

4.2 Tagging and Learning Algorithms
A one-pass, left-to-right tagging algorithm is used for
our experiments. Such a simple algorithm is chosen
because we want to see the performance gain purely
from our approach, not by a more sophisticated tag-
ging algorithm (Toutanova et al., 2003; Shen et al.,
2007), which may improve the performance further.

For learning, the final algorithm from Section 3 is
used. Additionally, mini-batch is applied, where each
batch consists of training instances from k-number of
sentences, causing the sizes of these batches different.
We found that grouping instances with respect to the
sentence boundary was more effective than batching
them across arbitrary sentences. For all our experi-
ments, the learning rate η = 0.02 and the mini-batch
boundary k = 5 were used without tuning.

4.3 Ambiguity Classes
The ambiguity class of a word is the concatenation
of all possible tags for that word. For example, if the
word ‘study’ can be tagged by NN (common noun) or
VB (base verb), its ambiguity class becomes NN VB.
Instead of building ambiguity classes only from the
training dataset, we automatically tagged a mixture of
large datasets, the English Wikipedia articles6 and the
New York Times corpus,7 and pre-constructed ambi-
guity classes using the automatic tags before training.
This was motivated by Moore (2015), who showed
extraordinary results on the out-of-vocabulary words
by limiting the classification to the ambiguity classes
collected from such large corpora.

6dumps.wikimedia.org/enwiki
7catalog.ldc.upenn.edu/LDC2008T19

We used the ClearNLP POS tagger (Choi and Palmer,
2012) for tagging the data (about 141M words), threw
away tags appearing less than a certain threshold, and
created the ambiguity classes. For each word, tags
appearing less than 20% of the time for that word
were discarded. As the result, about 2M ambiguity
classes were collected from these datasets.

4.4 Feature Template

Table 2 shows the template for low dimensional fea-
tures. Digits inside the curly brackets imply the con-
text windows with respect to the wordwi to be tagged.
For example, f{0,±1} represents the word-forms of
wi, wi−1, and wi+1. No joint features (e.g., f0 f1)
are included in this template; they should be automat-
ically induced by dynamic feature induction.

Orthographic (Giménez and Màrquez, 2004) and
word shape (Finkel et al., 2005) features are adapted
from the previous work. The positional features indi-
cate whether wi is the first or the last word in the sen-
tence. Word clusters are trained on the same datasets
in Section 4.3 using Brown et al. (1992).

f:{0,±1,±2}, fu:{0,±1,±2}, s:{0,±1}, c:{0,±1},
π2:{0}, π3:{0}, σ1:{0}, σ2:{0}, σ3:{0}, σ4:{0},
p:{0,−1,−2,−3}, a:{0,1,2,3},O:{0},P:{0}

Table 2: Feature template for part-of-speech tagging. f : word-

form, fu: uncapitalized word-form, s: word shape, c: word

cluster, πk: k’th prefix, σk: k’th suffix, p: part-of-speech tag,

a: ambiguity class, O: orthographic feature set, P: positional

feature set.

4.5 Development

The regularization parameter λ (Section 3.2) and the
modulo divisor δ (Section 3.4) are tuned during de-
velopment through grid search on λ ∈ [1E-9, 1E-6]
and δ ∈ [1.5M, 5M]. Table 3 shows the accuracies
achieved by our models on the development set.

Model ALL OOV FEAT
M0: baseline 97.09 86.14 365,400
M1: M0 + ext. ambi. 97.37 91.92 365,409
M2: M1 + clusters 97.45 91.96 372,181
M3: M1 + dynamic 97.42 92.10 468,378
M4: M2 + dynamic 97.48 92.21 473,134

Table 3: Part-of-speech tagging accuracies on the development

set. FEAT: the number of features generated by each model.

276

M0 used the tagging and the learning algorithms in
Section 4.2 and the feature template in Section 4.4,
where the ambiguity classes were collected only from
the training dataset; dynamic feature induction was
not used for M0. By applying the external ambiguity
classes in Section 4.3, M1 achieved about a 5.8% im-
provement on OOV. M2 gained small improvements
by adding word clusters. Coupled with dynamic fea-
ture induction, M3 and M4 gained about 0.04% and
0.2% improvements on average for ALL and OOV.

For both M3 and M4, about 100K more features
were generated from M1 and M2, implying that about
25% of the features were automatically induced by
dynamic feature induction. It is worth pointing out
that improving upon M1 was a difficult task because
it was already reaching near the state-of-the-art. The
external ambiguity classes by themselves were strong
enough to make accurate predictions such that the
induced features did not find a critical role in the
classification.

4.6 Evaluation
Table 4 shows the accuracies achieved by the models
from Section 4.5 and the previous state-of-the-art
approaches on the evaluation set.

Approach ALL OOV EXT
Manning (2011) 97.29 89.70
Manning (2011) 97.32 90.79 X
Shen et al. (2007) 97.33 89.61
Sun (2014) 97.36 -
Moore (2015) 97.36 91.09 X
Spoustová et al. (2009) 97.44 - X
Søgaard (2011) 97.50 - X
Tsuboi (2014) 97.51 91.64 X
This work: M0 97.18 86.35
This work: M1 97.37 91.34 X
This work: M2 97.46 91.23 X
This work: M3 97.52 91.53 X
This work: M4 97.64 92.03 X

Table 4: Part-of-speech tagging accuracies on the evaluation set.

EXT: whether or not the approach used external data.

The results on the evaluation set appear much more
promising. Still, the biggest gain was made by M1,
but our final model M4 was able to achieve a 0.8% im-
provement on OOV over M2, and showed the state-of-
the-art results on both ALL and OOV. Interestingly,

M2 showed a slightly lower accuracy on OOV than
M1 even with the additional word cluster features. On
the other hand, M2 did show a slightly higher accu-
racy on ALL, indicating that the model was probably
too overfitted to the in-vocabulary words.8 However,
M4 was still able to achieve improvements over M2

on both ALL and OOV, implying that dynamic fea-
ture induction facilitated the classifier to be trained
more robustly.

5 Named Entity Recognition

5.1 Corpus
The English corpus from the CoNLL’03 shared task
is used (Tjong Kim Sang and De Meulder, 2003) for
named entity recognition experiments.

Set Articles Sentences Words
TRN 946 14,987 203,621
DEV 216 3,466 51,362
TST 231 3,684 46,435

Table 5: Distributions of the English corpus from the CoNLL’03

shared task. TRN: training, DEV: development, TST: evaluation.

5.2 Feature Template
Table 6 shows the feature template for NER, adapting
the specifications in Table 2. Following the state-of-
the-art approaches (Table 8), word clusters are trained
on the Reuters Corpus Volume I (Lewis et al., 2004)
using Brown et al. (1992). Named entity gazetteers
are collected from DBPedia.9 Word embeddings are
trained on the datasets in Section 4.3 using Mikolov
et al. (2013) and appended to the sparse feature vec-
tors as dense vectors. Note that the word embedding
features did not participate in dynamic feature induc-
tion; it was not intuitive how to combine sparse and
dense features together so we left it as a future work.

f:{0,±1}, fu:{0,±1,±2}, s:{0,±1}, l:{0}, c:{0,1,2},
e:{0,±1,±2,±3,±4}, π1:{0}, π3:{1}, σ1:{0}, σ3:{−1,0},
p:{0,±1,±2}, n:{−1,−2,−3}, z:{±1,0,2,3},O:{0},O:{1}

Table 6: Feature template for named entity recognition. f : word-

form, fu: uncapitalized word-form, s: word shape, l: lemma,

c: word cluster, e: word embedding, πk: k’th prefix, σk: k’th

suffix, p: part-of-speech tag, n: named entity tag, z: named

entity gazetteer, O: orthographic feature set.

8A similar trend is shown in Table 3 for M1 and M2.
9wiki.dbpedia.org/downloads2015-04

277

5.3 Development

The regularization parameter and the modulo divisor
are tuned during development through the same grid
search in Section 4.5. Table 7 shows the precisions
and the recalls achieved by our models on the devel-
opment set (the F1-scores are shown in Table 8).

Model P R FEAT
M0: baseline 90.87 89.15 164,440
M1: M0 + gazetteers 92.30 90.61 164,720
M2: M1 + clusters 93.66 91.79 169,232
M3: M2 + embeddings 94.14 92.43 169,682
M4: M3 + dynamic 94.50 93.10 208,860

Table 7: Precision and recall on the development set for named

entity recognition. P: precision, R: recall.

M0 used the tagging and the learning algorithms in
Section 4.2 and the feature template in Section 5.2,
excluding the gazetteer, cluster, and embedding fea-
tures; dynamic feature induction was not applied to
M0. M{1,2,3} gained incremental improvements from
the gazetteer, cluster, and embedding features, respec-
tively. M4 showed 0.36% and 0.67% improvements
on precision and recall respectively, and generated
about 40K more features compared to M3. This is
about 23% increase in features that is similar to the
increase shown in Table 3.

5.4 Evaluation

Table 8 shows the F1-scores achieved by our models
and the previous state-of-the-art approaches.10

Approach DEV TST
Turian et al. (2010) 93.25 89.41
Suzuki and Isozaki (2008) 94.48 89.92
Ratinov and Roth (2009) 93.50 90.57
Lin and Wu (2009) - 90.90
Passos et al. (2014) 94.46 90.90
This work: M0 90.00 84.44
This work: M1 91.45 86.85
This work: M2 92.72 89.64
This work: M3 93.27 90.57
This work: M4 93.79 91.00

Table 8: F1-scores on the development and the evaluation sets

for named entity recognition.

10Ratinov and Roth (2009) reported the F1-score of 90.80 on
the evaluation set, but that model was trained on both the training
and the development sets so not compared in this table.

All models showed improvements over their prede-
cessors; the improvements made in TST were more
dramatic than the ones made in DEV although they
followed a very similar trend. Notice that M3, not us-
ing dynamic feature induction, showed very similar
scores to Ratinov and Roth (2009). This was not sur-
prising because M3 adapted many features suggested
by them, except for the non-local features.11

M4 achieved about 0.5% improvements over M3,
showing the state-of-the-art result on TST. Consid-
ering that M3 was already near state-of-the-art, this
improvement was meaningful. It was interesting that
Suzuki and Isozaki (2008) achieved the state-of-the-
art result on DEV although their score on TST was
much lower than the other approaches. This might
be because features extracted from the huge external
data they used were overfitted to DEV, but more thor-
ough analysis needs to be done. On the other hand,
Passos et al. (2014) achieved the near state-of-the-art
result on DEV while it also got a very high score on
TST by utilizing phrase embeddings, which we will
look into in the future.

6 Conclusion

In this paper, we introduced a novel technique called
dynamic feature induction that automatically induces
high dimensional features so the feature space can be
more linearly separable. Our approach was evaluated
on two NLP tasks, part-of-speech tagging and named
entity recognition, and showed the state-of-the-art
results on both tasks. The improvements achieved by
dynamic feature induction might not be statistically
significant, but important because they gave the last
gist to the state-of-the-art; without this last gist, our
system would have not reached the bar.

It is worth mentioning that we also experimented
with several feature templates including many joint
features without applying dynamic feature induction.
The results we got from these manually induced fea-
tures were not any better (often worse) than the ones
achieved by dynamic feature induction, which was
very encouraging. In the future, we will experiment
our approach on more NLP tasks such as dependency
parsing and conference resolution where induced fea-
tures should play a more critical role.

11We transformed the original data into the BILOU notation,
which was also suggested by Ratinov and Roth (2009).

278

We concede that our approach is more empirically
motivated than theoretically justified. For instance,
the choice of k (line 11) or the combination configu-
ration for L (line 13) in Algorithm 1 are rather empir-
ically derived. All the parameters are automatically
tuned by running grid searches on the development
sets (Sections 4.5 and 5.3); it would be intellectually
intriguing to find a more principled way of adjusting
these hyper-parameters than just brute-force search.

The locally optimal learning to search is used to
help structured learning although it gives a relatively
smaller impact to the tasks involving sequence clas-
sification such as part-of-speech tagging and named
entity recognition. This framework is used because
we plan to apply our approach on more structurally
oriented tasks such as dependency parsing and AMR
parsing. Our work is also related to feature group-
ing, which has been shown to be beneficial in learn-
ing high-dimensional data (Zhong and Kwok, 2011;
Suzuki and Nagata, 2013). It will be interesting to
compare our work to the previous work and see the
strengths and weaknesses of our approach.

Acknowledgments

We gratefully acknowledge the support of the Yahoo
Academic Career Enhancement Award, the IPsoft
Development Enhancement Grant, the University Re-
search Committee Award, and the Infosys Research
Enhancement Grant. Any contents expressed in this
material are those of the authors and do not necessar-
ily reflect the views of these awards and grants.

References
Eric Bengtson and Dan Roth. 2008. Understanding the

Value of Features for Coreference Resolution. In Pro-
ceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing, EMNLP’08, pages
294–303.

Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram Models of Natural Language. Computa-
tional Linguistics, 18(4):467–480.

Kai-Wei Chang, He He, Hal Daumé III, and John Lang-
ford. 2015a. Learning to Search for Dependencies.
arXiv:1503.05615.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal,
Hal Daume, and John Langford. 2015b. Learning to
Search Better than Your Teacher. In Proceedings of the

32nd International Conference on Machine Learning,
ICML’15, pages 2058–2066.

Jinho D. Choi and Andrew McCallum. 2013. Transition-
based Dependency Parsing with Selectional Branching.
In Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL’13, pages
1052–1062.

Jinho D. Choi and Martha Palmer. 2012. Fast and Robust
Part-of-Speech Tagging Using Dynamic Model Selec-
tion. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics, ACL’12,
pages 363–367.

Michael Collins. 2002. Discriminative Training Methods
for Hidden Markov Models: Theory and Experiments
with Perceptron Algorithms. In Proceedings of the
conference on Empirical methods in natural language
processing, EMNLP’02, pages 1–8.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch.
Journal of Machine Learning Research, 12:2493–2537.

Koby Crammer and Yoram Singer. 2002. On the Algorith-
mic Implementation of Multiclass Kernel-based Vector
Machines. Journal of Machine Learning Research,
2:265–292.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and Robust Neural Network Joint Models for Sta-
tistical Machine Translation. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics, ACL’14, pages 1370–1380.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adap-
tive Subgradient Methods for Online Learning and
Stochastic Optimization. The Journal of Machine
Learning Research, 12(39):2121–2159.

Jenny Finkel, Shipra Dingare, Christopher Manning,
Malvina Nissim, and Beatrice Alex. 2005. Explor-
ing the Boundaries: Gene and Protein Identification in
Biomedical Text. BMC Bioinformatics, 6:S5.

Kuzman Ganchev and Mark Dredze. 2008. Small Statisti-
cal Models by Random Feature Mixing. In Proceedings
of the ACL Workshop on Mobile NLP, pages 604–613.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A
general POS tagger generator based on Support Vector
Machines. In Proceedings of the 4th International
Conference on Language Resources and Evaluation,
LREC’04.

Yoav Goldberg and Michael Elhadad. 2008. splitSVM:
Fast, Space-Efficient, non-Heuristic, Polynomial Ker-
nel Computation for NLP Applications. In Proceedings
of the Annual Conference of the Association for Com-
putational Linguistics, ACL:HLT’08, pages 237–240.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Ora-
cle for Arc-Eager Dependency Parsing. In Proceedings

279

of the 24th International Conference on Computational
Linguistics, COLING’12.

Taku Kudo and Yuji Matsumoto. 2003. Fast Methods for
Kernel-Based Text Analysis. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics, ACL’04, pages 24–31.

Quoc V. Le and Tomas Mikolov. 2014. Distributed Rep-
resentations of Sentences and Documents. In Proceed-
ings of the 31th International Conference on Machine
Learning, ICML’14, pages 1188–1196.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.
2004. RCV1: A New Benchmark Collection for Text
Categorization Research. Journal of Machine Learning
Research, 5:361–397.

Dekang Lin and Xiaoyun Wu. 2009. Phrase Clustering
for Discriminative Learning. In Proceedings of the 47th
Annual Meeting of the Association for Computational
Linguistics, ACL’09, pages 1030–1038.

Christopher D. Manning. 2011. Part-of-Speech Tagging
from 97% to 100%: Is It Time for Some Linguistics?
In Proceedings of the 12th international conference on
Computational linguistics and intelligent text process-
ing, CICLing’11, pages 171–189.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a Large Annotated Cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeff Dean.
2013. Efficient Estimation of Word Representations in
Vector Space. arXiv:1301.3781.

Robert Moore. 2015. An Improved Tag Dictionary for
Faster Part-of-Speech Tagging. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, EMNLP’15, pages 1303–1308.

Daisuke Okanohara and Jun’ichi Tsujii. 2009. Learn-
ing Combination Features with L1 Regularization. In
Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
Companion Volume: Short Papers, NAACL’09, pages
97–100.

Alexandre Passos, Vineet Kumar, and Andrew McCallum.
2014. Lexicon Infused Phrase Embeddings for Named
Entity Resolution. In Proceedings of the 18th Confer-
ence on Computational Natural Language Learning,
CoNLL’14, pages 78–86.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto,
Qiming Chen, Umeshwar Dayal, and Meichun Hsu.
2001. PrefixSpan: Mining Sequential Patterns by
Prefix-Projected Growth. In Proceedings of the 17th
International Conference on Data Engineering, pages
215–224.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word

Representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing,
EMNLP’14, pages 1532–1543.

Simon Perkins, Kevin Lacker, and James Theiler. 2003.
Grafting: Fast, Incremental Feature Selection by Gra-
dient Descent in Function Space. Journal of Machine
Learning Research, 3:1333–1356.

Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne
Ward, James H. Martin, and Daniel Jurafsky. 2005.
Support Vector Learning for Semantic Argument Clas-
sification. Machine Learning, 60(1):11–39.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition. In
Proceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning, CoNLL’09, pages
147–155.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell.
2011. A Reduction of Imitation Learning and Struc-
tured Prediction to No-Regret Online Learning. In
Proceedings of the Workshop on Artificial Intelligence
and Statistics, AI-STATS’11, pages 627–635.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007.
Guided Learning for Bidirectional Sequence Classi-
fication. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, ACL’07,
pages 760–767.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, EMNLP’13, pages
1631–1642.

Anders Søgaard. 2011. Semi-supervised condensed near-
est neighbor for part-of-speech tagging. In Proceedings
of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies,
ACL:HLT’11, pages 48–52.

Drahomı́ra ”johanka” Spoustová, Jan Hajič, Jan Raab, and
Miroslav Spousta. 2009. Semi-supervised Training for
the Averaged Perceptron POS Tagger. In Proceedings
of the 12th Conference of the European Chapter of the
Association for Computational Linguistics, EACL’09,
pages 763–771.

Emma Strubell, Luke Vilnis, Kate Silverstein, and An-
drew McCallum. 2015. Learning Dynamic Feature
Selection for Fast Sequential Prediction. In Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics, ACL’16, pages 146–155.

Xu Sun. 2014. Structure Regularization for Structured
Prediction. In Proceedings of Advances in Neural Infor-
mation Processing Systems., NIPS’14, pages 2402—
2410.

280

Jun Suzuki and Hideki Isozaki. 2008. Semi-Supervised
Sequential Labeling and Segmentation Using Giga-
Word Scale Unlabeled Data. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies,
ACL:HLT’08, pages 665–673.

Jun Suzuki and Masaaki Nagata. 2013. Supervised Model
Learning with Feature Grouping based on a Discrete
Constraint. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 18–23.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the CoNLL-2003 Shared Task: Language-
independent Named Entity Recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4, CONLL
’03, pages 142–147. Association for Computational
Linguistics.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. In Pro-
ceedings of the Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics on Human Language Technology, NAACL’03,
pages 173–180.

Yuta Tsuboi. 2014. Neural Networks Leverage Corpus-
wide Information for Part-of-speech Tagging. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP’14, pages 938–
950.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, ACL’10, pages 384–394.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature Hash-
ing for Large Scale Multitask Learning. In Proceedings
of the 26th Annual International Conference on Ma-
chine Learning, ICML’09, pages 1113–1120.

Lin Xiao. 2010. Dual Averaging Methods for Regularized
Stochastic Learning and Online Optimization. Journal
of Machine Learning Research, 11:2543–2596.

Nianwen Xue and Martha Palmer. 2004. Calibrating
Features for Semantic Role Labeling. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, EMNLP’04, pages 88–94.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen
Pulman. 2014. Deep Learning for Answer Sentence
Selection. In Proceedings of the NIPS Deep Learning
Workshop.

Tong Zhang and David Johnson. 2003. A Robust Risk
Minimization Based Named Entity Recognition Sys-

tem. In Proceedings of the 7th Conference on Natural
Language Learning, CONLL’03, pages 204–207.

Yue Zhang and Joakim Nivre. 2011. Transition-based
Dependency Parsing with Rich Non-local Features. In
Proceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, ACL’11, pages 188–193.

Wenliang Zhong and James Kwok. 2011. Efficient Sparse
Modeling with Automatic Feature Grouping. In Lise
Getoor and Tobias Scheffer, editors, Proceedings of the
28th International Conference on Machine Learning
(ICML-11), ICML ’11, pages 9–16, New York, NY,
USA, June. ACM.

281

Proceedings of NAACL-HLT 2016, pages 282–288,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Drop-out Conditional Random Fields for Twitter with Huge Mined
Gazetteer

Eunsuk Yang‡§ Young-Bum Kim†§ Ruhi Sarikaya† Yu-Seop Kim‡

†Microsoft Corporation, Redmond, WA
‡Hallym University, South Korea
esyang219@gmail.com

{ybkim, ruhi.sarikaya}@microsoft.com
yskim01@hallym.ac.kr

Abstract

In named entity recognition task especially
for massive data like Twitter, having a large
amount of high quality gazetteers can allevi-
ate the problem of training data scarcity. One
could collect large gazetteers from knowl-
edge graph and phrase embeddings to obtain
high coverage of gazetteers. However, large
gazetteers cause a side-effect called “feature
under-training”, where the gazetteer features
overwhelm the context features. To resolve
this problem, we propose the dropout condi-
tional random fields, which decrease the influ-
ence of gazetteer features with a high weight.
Our experiments on named entity recognition
with Twitter data lead to higher F1 score of
69.38%, about 4% better than the strong base-
line presented in Smith and Osborne (2006).

1 Introduction

Nowadays, people are generating tremendous
amount of information on social websites. For ex-
ample, more than 200 million tweets are generated
everyday on Twitter (Ritter et al., 2011). Twitter has
become a key news source, in addition to standard
news channels. As such, social scientists are start-
ing to pay attention to it in recent years (Bollen et
al., 2011; Chung and Mustafaraj, 2011; Xu et al.,
2014; Calvin et al., 2015; Baldwin et al., 2015; Bell-
more et al., 2015). The traditional machine learned
modeling approaches trained with small and clean
general text, such as news articles, perform poorly
when applied to tweets, because tweets are struc-
turally very different from general text. Thus, it

§ Both authors contributed equally.

is necessary to build new models for Twitter. One
could label a reasonable size of tweets to train a
model for a natural language processing (NLP) ap-
plication. The problem is that it is very expensive
to refresh the annotated data to keep the model up-
to-date, because users generate tweets in a unprece-
dented rate (Hachman, 2011).

An obvious solution to the problem is to de-
velop methods of utilizing a large amount of un-
labeled data. One way is to induce word embed-
dings in a real-valued vector space from a large num-
ber of tweets (Kim et al., 2015a; Mikolov et al.,
2013; Pennington et al., 2014). It is shown that
the task-specific embeddings induced on tweets pro-
vide more powerful than those created from out-of-
domain texts (Owoputi et al., 2012; Anastasakos et
al., 2014).

Another method is to build the task-specific
gazetteers. Task-specific gazetteers make the mod-
els more general and increase their coverage for un-
seen events. They have been proven to be useful on
a number of tasks (Smith and Osborne, 2006; Li et
al., 2009; Liu and Sarikaya, 2014; Kim et al., 2015b;
Kim et al., 2015c). Since gazetteers can improve
modeling performance, here we more focus on how
to use gazetteer more effectively. To build gazetteers
with sufficient coverage for our task, we first expand
gazetteers from knowledge graph and phrase embed-
dings.

However, since the expanded gazetteers cover sig-
nificant proportions of the entities in the training
data, the weight of gazetteers features are easily in-
flated and thus the model tends to rely too much
on lexical features extracted from the gazetteers fea-

282

tures to assign a tag rather than the contextual fea-
tures such as n-gram, a phenomenon called “feature
under-training”. As a result, we often observe no-
ticeable performance degradation at test time when
the entity value does not exist in the training set or
the entity dictionary.

To solve this problem, we introduce a model
called dropout CRFs 1 and compare to the com-
bination model proposed by Smith and Osborne
(2006). In our experiments, we show that the pro-
posed method significantly improves the F1 score
from 65.54% to 69.38%, compared to the baseline.

2 Model

For the named entity recognition (NER) task, the in-
put is a sentence consisting of a sequence of words,
x = (x1 . . . xn) and the output is a sequence of
corresponding named entity tags y = (y1 . . . yn).
We model the conditional probability p(y|x; θ) us-
ing linear-chain CRFs (Lafferty et al., 2001):

p(y|x; θ) =
exp(θ · Φ(x, y))∑

y′∈Y(x) exp(θ · Φ(x, y′))

where θ is a set of model parameters. Y con-
tains all possible label sequences of x, and Φ
maps (x, y) into a feature vector that is a linear
combination of local feature vectors: Φ(x, y) =∑n

j=1 φ(xj , yj−1, yj). Given fully observed training
data, {(x(i), y(i))}Ni=1, the objective of the training
is to find θ that maximizes the log likelihood of the
training data under the model with l2-regularization:

θ∗ = argmax
θ

N∑
i=1

log p(y(i)|x(i); θ)

−λ
2
||θ||2 . (1)

CRFs have benefited from having a rich set of
gazetteers as features in the model (Smith and Os-
borne, 2006; Liu and Sarikaya, 2014; Hillard et al.,
2011; Kim et al., 2014; Kim et al., 2015c; Kim et
al., 2015b; Kim et al., 2015d). Smith and Osborne
(2006) point out that common gazetteer features fire

1The original dropout technique is to inactivate features ran-
domly. Here, we consider to decrease the weight of a specific
feature.

often enough to overwhelm other features during in-
ference. They address this problem by building a
combination of two models: one without gazetteers
and another with gazetteers. Instead of combining
two models, we propose a simple model by having a
new penalty term to the equation (1):

θ∗ = argmax
θ

N∑
i=1

log p(y(i)|x(i); θ)

−λ1

2
||θ||2 − λ2

∑
g∈G

θg freq(g), (2)

where G is a set of gazetteers and freq(g) counts
how many times words appear in gazetteer g from
training data. In our experiments, we tuned both
penalty weights for local features and for gazetteer
features based on a small held-out validation set.
The θg is a member of model parameter θ and
each gazetteer has its own parameter θg. The in-
troduced penalty decreases common gazetteers’ in-
fluence on model’s decisions. By this term, we call
our model dropout CRFs. The original dropout tech-
nique removes features randomly - for each training
instance, only a random subset of the features will
be activated (Hinton et al., 2012; Xu and Sarikaya,
2014). While it can be perceived as a general treat-
ment to the under-training problem, it is not specifi-
cally directed at the problem we are facing in named
entity recognition (NER) task. In NER, the under-
training problem is more specific - the contextual
features may not get large enough weights due to
the strong influence of the gazetteer features. The
negative impact of such under-training is also more
measurable - if a named entity is unseen, the chance
of a detection error becomes much higher. There-
fore, we focus on decreasing influence of specific
features. For specific features, we reduce the cover-
age of dropout from all features to gazetteer feature
through feature dependent regularization. Also, the
objective function of dropout CRFs, given in equa-
tion (2), is still convex because the equation (1) is
convex and the new penalty term is linear with re-
spect to θ. Therefore, a standard optimization algo-
rithm finds optimal θ without sacrificing any abili-
ties, which original CRFs have.

283

3 Features

In this section, we detail the feature templates used
for our experiments. Besides basic features, we
also employ part-of-speech (POS) tags, chunks,
word representations and gazetteers. We run task-
specific POS-tagger and chunker, which are trained
on tweets annotated with Twitter-specific tags (Rit-
ter et al., 2011) as well as standard Penn Treebank
tags, of Owoputi et al. (2012) to produce POS tags
and chunks. We explain the word representations
and gazetteer features in the following subsections.

3.1 Basic Features

The model of Ritter et al. (2011) employs the fea-
tures described in this subsection. They are com-
posed of the following features: (1) n-grams: uni-
grams and bigrams, (2) capitalization, (3) three char-
acter suffix and prefix presence, (4) binary features
that indicate presence of hyphen, punctuation mark,
single-digit and double-digit, (5) gazetteers (6) top-
ics inferred by LabeledLDA (Ramage et al., 2009),
and (7) brown cluster (Brown et al., 1992) produced
by Ritter et al. (2011).

To alleviate the problem of word sparsity, we
also use task-specific latent continuous word repre-
sentations, induced on 65 million unlabeled tweets
with 1.3 billion tokens. We create three sets of
word representations: CCA (Dhillon et al., 2012;
Kim et al., 2015a) based on matrix factorization,
word2vec (Mikolov et al., 2013) and glove (Pen-
nington et al., 2014), which are gradient based.
All word representation algorithms produce 50-
dimensional word vectors for all words occurring at
least 40 times in the data. We use left and right word
of the target word as context for learning the word
representations.

We also use compounding embeddings as an addi-
tional feature. Combining multiple sets of features
has been proven to be effective (Koo et al., 2008;
Kim and Snyder, 2013; Yu et al., 2013). We ex-
plore four different ways of combining the word rep-
resentations: element-wise averaging, element-wise
multiplication, concatenation and hierarchical clus-
tering. We empirically determined that the element-
wise averaging achieves better performance than
single embeddings and other combination methods.
We do not describe the results for embedding com-

binations in detail here.

4 Gazetteers

NER models degrades when they encounter un-
seen words during training. To make the problem
worse, tweets contain many rare words and it is pro-
hibitively expensive to create a training set with suf-
ficient lexical coverage. To alleviate the problem,
we extend the original gazetteers with two methods:
gathering data from knowledge graph and construct-
ing task-specific gazetteer with phrase embeddings.

4.1 Expansion from Knowledge Graph
To expand gazetteers from knowledge graph, we ap-
ply the following processing steps. We first extract
the seed words from training data. With seed words,
we then collect the relevant lexicons from knowl-
edge graph such as Freebase, Wikipedia and Yelp.
For example, “Dior” is related to company and prod-
uct from knowledge graph. We collect all lexicons
associated with seed words. In addition, we post-
process gazetteers for variance: i) organization: it is
composed with full name with abbreviation, such as
“Indigenous Land Corporation (ILC)”. We also gen-
erate variants of full names (“Indigenous Land Cor-
poration”) and abbreviation (“ILC”), respectively, ii)
facility: because the term elementary indicates a
school, we add a lexicon removing the word school
of “tedder elementary school”. At the end of the pro-
cessing, we end up with 2.7 millions lexicon items.

4.2 Constructing Gazetteers with Phrase
Embeddings

We now describe how to construct task-specific
gazetteer with phrase embeddings. We use canonical
correlation analysis (CCA) (Hotelling, 1936) to in-
duce vector representations for phrase embeddings.
To extract candidate phrases from unlabeled Twit-
ter data, we first count the frequency of the context
words set for each token. The size of context words
set ranges from 1 to 3. The context words set oc-
curring more than 100 are used as a rule to extract
candidate phrases.

Let n be the number of candidate phrases ex-
tracted by rules. Let x1 . . . xn be the original
representations of the candidate phrases itself and
y1 . . . yn be the original representations of two
words to the left and right of the candidate phrases.

284

We use the following definition for the original
representations. Let d be the number of distinct can-
didate phrases and d′ be the number of distinct con-
text words set.

• xl ∈ Rd is a zero vector, in which the entry
corresponding to the candidate phrases of the
l-th instance is set to 1.

• yl ∈ Rd′ is a zero vector, in which the entries
corresponding to context words set surrounding
candidate phrases are set to 1.

Using CCA, we obtain phrase embeddingsU with
k-dimensional space. To train a classifier, we man-
ually construct a training data with 5 positive and 5
negative samples, for each gazetteer. With this data,
we learn a binary classifier with the phrase embed-
dings as a feature. Using this classifier, we predict
whether the phrases fit to the gazetteers; we refer
the readers to Neelakantan and Collins (2014) for
details.

5 Experiments

To demonstrate the effectiveness of the dropout
CRFs, we run experiments on named entity recog-
nition task on the Twitter dataset of Baldwin et al.
(2015). We refer the readers to Baldwin et al. (2015)
for the details of the dataset. We split the data into
70% for training, 10% for tuning, and 20% for test-
ing. For all the experiments presented in this section,
both CRFs and dropout CRFs are trained using the
L-BFGS (Liu and Nocedal, 1989).

5.1 Effectiveness of the Gazetteers
One of our contributions is to augment the size of
gazetteers with knowledge graph and phrase em-
beddings. Table 1 represents the performance of a
model with original gazetteers, which are collected
by Ritter et al. (2011) from freebase (Base Gazet)
and with gazetteers we extended (Our Gazet). The
size of Base Gazet is 2.9 million and the size of
Our Gazet is 6.6 million, which has an additional
3.7 million entries compared to the Base Gazet. The
model trained Our Gazet improves the F1 score from
62.76% to 64.67%, compared to the baseline. As
shown in Table 1, we believe that larger gazetteers
can mitigate the “unseen words” problem by in-
creasing the coverage of the gazetteers.

F1
Base Gazet 62.76
Our Gazet 64.67

Table 1: Comparison of models with or without new gazetteers.

Base Gazet is a model with gazetteers collected by Ritter et

al. (2011) and Our gazet is a model with gazetteers we con-

structed by augmenting the Base Gazet with additional items,

using knowledge graph and phrase embeddings.

5.2 Effectiveness of the Dropout CRFs

We conducted additional experiments with the CRF
model that uses Our Gazet. Table 2 shows
the overall results for models with and without
dropout. We compare three models: the vanilla
CRFs (CRFsvanilla), the combination model as de-
scribed in Smith and Osborne (2006) (CRFsLOP)
and our dropout model (CRFsdropout). To avoid
model parameters for gazetteer features getting
over-regularized, Smith and Osborne (2006) pro-
pose to train separate models with and without
gazetteers. They combine predictions from the two
models by using logarithmic opinion pool (LOP).
We refer the reader to Smith et al. (2005) for further
details.

The CRFsvanila yields 64.03% F1 score and the
CRFsLOP improves the performance to 65.54%.
The CRFsdropout, which reduces the influence of
gazetteer features, improves the F1 score to 69.38%,
which corresponds to a 13% decrease in error rela-
tive to vanilla CRFs.

F1
CRFsvanila 64.67
CRFsLOP 65.54
CRFsdropout 69.38

Table 2: Comparison of models with or without dropout.

CRFsvanilla is the vanilla CRFs with all features. CRFsLOP

is a combination of CRFs with all features except for gazetteers

and CRFs with gazetteers only, using logarithmic opinion pool

(LOP). CRFsdropout is the dropout CRFs with all features.

5.3 Analysis

While previous NER tasks mostly focus on report-
ing numbers on the original data set (Baldwin et
al., 2015; Yang and Kim, 2015; Kim et al., 2015c),
we further investigate how the tagging performance

285

may change, if entities are unseen at test time. To
enable such analysis, we create additional test set
based on the original test set by replacing each word
in person and company entities with a special to-
ken, XXXXX, indicating unseen words. This new test
set represents an extreme case, where none of the
words contained in the gazetteers are observed in the
training data.

Table 3 represents the comparison of vanilla CRF
model and dropout model for unseen test. Gazetteer
is helpful to resolve “unseen words” problem. Un-
fortunately, frequent appearance of gazetteer makes
a model learn weak context feature and strong
gazetteer feature. By forcing a weight of gazetteer
feature low, the dropout model allows the weak con-
text features to become strong and the large weight
of gazetteer feature to become smaller. Conse-
quently, CRFdropout shows the significant improve-
ment compared to CRFvanilla.

Tags CRFdropout CRFvanilla
person 74.43 65.81

company 65.74 57.19
Table 3: Comparison of vanilla CRF model and dropout model

for unseen test

To see a change of feature weight when we apply
dropout technique, we show the feature weights for
the word “cahill” of vanilla CRFs and dropout CRFs
in Table 4. In vanilla CRFs, gazetteers have a strong
weight compared to the context features. However,
our dropout CRFs decrease the weight of gazetteer
features, while making the context features larger, to
steer the models’ decision in the right direction.

6 Conclusion

In this paper, we showed how to improve the CRF
based NER model for Twitter by exploiting a large
number of gazetteers. Using gazetteers in model-
ing helps the coverage and generalization but sim-
ply incorporating gazetteers of all of large sizes into
the model may lead to “under-training” of parame-
ters corresponding to the context features. We ad-
dressed this problem by adding the dropout penalty
term in the CRF training, which improves better pa-
rameter. The proposed technique results in signifi-
cant improvements over the baseline.

cahill (answer: geo-loc prediction: person)
CRFsvanila
people.person→ I-person : 7.46
lastname.5000→ I-person: 9.63
lastname.5000→ I-geo-loc: 4.01
people.person.lastnames→ I-person : 6.6
w[-1]|w[0]=’s|Cahill→ I-person : -1.24
w[-1]|w[0]=’s|Cahill→ I-geo-loc : 0.28
w[-1]=’s→ I-person : 0.97
w[-1]=’s→ I-geo-loc : -0.13
CRFsdropout
people.person→ I-person : 5.2
lastname.5000→ I-person: 4.67
lastname.5000→ I-geo-loc: 4.19
people.person.lastnames→ I-person : 4.36
w[-1]|w[0]=’s|Cahill→ I-person : 1.98
w[-1]|w[0]=’s|Cahill→ I-geo-loc : 3.02
w[-1]=’s→ I-person : 1.41
w[-1]=’s→ I-geo-loc : 1.82

Table 4: Snapshot of feature weights for the word “cahill”,

given sentence tonight ’s cahill event. The vanilla CRFs pre-

dict it to person and dropout CRFs predict it to geo-loc

correctly.

One of the future directions of research is to ex-
tend the same idea to various sequence learning
problems: part-of-speech tagging and slot tagging.

Acknowledgments

We thank Do Kook Choe, Puyang Xu, Alan Rit-
ter and Karl Startos for helpful discussion and feed-
back.

References

Tasos Anastasakos, Young-Bum Kim, and Anoop Deo-
ras. 2014. Task specific continuous word represen-
tations for mono and multi-lingual spoken language
understanding. In Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2014 IEEE International Confer-
ence on, pages 3246–3250. IEEE.

Timothy Baldwin, Young-Bum Kim, Marie Catherine
de Marneffe, Alan Ritter, Bo Han, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization and
named entity recognition. ACL-IJCNLP 2015, page
126.

286

Amy Bellmore, Angela J Calvin, Jun-Ming Xu, and Xi-
aojin Zhu. 2015. The five ws of bullying on twitter:
Who, what, why, where, and when. Computers in Hu-
man Behavior, 44:305–314.

Johan Bollen, Huina Mao, and Xiaojun Zeng. 2011.
Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

Angela J Calvin, Amy Bellmore, Jun-Ming Xu, and Xi-
aojin Zhu. 2015. # bully: Uses of hashtags in posts
about bullying on twitter. Journal of School Violence,
14(1):133–153.

Jessica Elan Chung and Eni Mustafaraj. 2011. Can col-
lective sentiment expressed on twitter predict political
elections? In AAAI.

Paramveer Dhillon, Jordan Rodu, Dean Foster, and Lyle
Ungar. 2012. Two step cca: A new spectral method
for estimating vector models of words. arXiv preprint
arXiv:1206.6403.

Mark Hachman. 2011. Humanitys tweets: Just 20 ter-
abytes. PCMAG. COM.

Dustin Hillard, Asli Celikyilmaz, Dilek Z Hakkani-Tür,
and Gökhan Tür. 2011. Learning weighted entity lists
from web click logs for spoken language understand-
ing. In INTERSPEECH, pages 705–708.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Harold Hotelling. 1936. Relations between two sets of
variates. Biometrika, 28(3/4):321–377.

Young-Bum Kim and Benjamin Snyder. 2013. Unsu-
pervised consonant-vowel prediction over hundreds of
languages. In ACL (1), pages 1527–1536.

Young-Bum Kim, Heemoon Chae, Benjamin Snyder, and
Yu-Seop Kim. 2014. Training a korean srl system
with rich morphological features. In ACL (2), pages
637–642.

Young-Bum Kim, Benjamin Snyder, and Ruhi Sarikaya.
2015a. Part-of-speech taggers for low-resource lan-
guages using cca features. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1292–1302.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi
Sarikaya. 2015b. Compact lexicon selection with
spectral methods. In Proceedings of Association for
Computational Linguistics (ACL), pages 806–811.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015c. Pre-training of hidden-unit crfs. ACL. Asso-
ciation for Computational Linguistics.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and Min-
woo Jeong. 2015d. New transfer learning techniques
for disparate label sets. ACL. Association for Compu-
tational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.

Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extracting
structured information from user queries with semi-
supervised conditional random fields. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval.

D.C. Liu and J. Nocedal. 1989. On the limited memory
bfgs method for large scale optimization. Mathemati-
cal programming, 45(1):503–528.

Xiaohu Liu and Ruhi Sarikaya. 2014. A discriminative
model based entity dictionary weighting approach for
spoken language understanding.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Arvind Neelakantan and Michael Collins. 2014. Learn-
ing dictionaries for named entity recognition using
minimal supervision. EACL 2014, page 452.

Olutobi Owoputi, Brendan OConnor, Chris Dyer, Kevin
Gimpel, and Nathan Schneider. 2012. Part-of-speech
tagging for twitter: Word clusters and other advances.
School of Computer Science, Carnegie Mellon Univer-
sity, Tech. Rep.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2014), 12.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D Manning. 2009. Labeled lda: A super-
vised topic model for credit attribution in multi-labeled
corpora. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 1-Volume 1, pages 248–256. Association for
Computational Linguistics.

Alan Ritter, Sam Clark, Oren Etzioni, et al. 2011. Named
entity recognition in tweets: an experimental study. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1524–1534.
Association for Computational Linguistics.

Andrew Smith and Miles Osborne. 2006. Using
gazetteers in discriminative information extraction. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 133–140.
Association for Computational Linguistics.

287

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005.
Logarithmic opinion pools for conditional random
fields. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 18–
25. Association for Computational Linguistics.

Puyang Xu and Ruhi Sarikaya. 2014. Targeted feature
dropout for robust slot filling in natural language un-
derstanding. In Fifteenth Annual Conference of the In-
ternational Speech Communication Association.

Jun-Ming Xu, Hsun-Chih Huang, Amy Bellmore, and
Xiaojin Zhu. 2014. School bullying in twitter and
weibo: a comparative study. Reporter, 7(16):10–14.

Eun-Suk Yang and Yu-Seop Kim. 2015. Hallym: Named
entity recognition on twitter with induced word repre-
sentation. ACL-IJCNLP 2015, page 72.

Mo Yu, Tiejun Zhao, Daxiang Dong, Hao Tian, and Di-
anhai Yu. 2013. Compound embedding features for
semi-supervised learning. In HLT-NAACL, pages 563–
568.

288

Proceedings of NAACL-HLT 2016, pages 289–299,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Joint Extraction of Events and Entities within a Document Context

Bishan Yang
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

bishan@cs.cmu.edu

Tom Mitchell
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

tom.mitchell@cs.cmu.edu

Abstract

Events and entities are closely related; entities
are often actors or participants in events and
events without entities are uncommon. The
interpretation of events and entities is highly
contextually dependent. Existing work in in-
formation extraction typically models events
separately from entities, and performs infer-
ence at the sentence level, ignoring the rest
of the document. In this paper, we propose
a novel approach that models the dependen-
cies among variables of events, entities, and
their relations, and performs joint inference
of these variables across a document. The
goal is to enable access to document-level
contextual information and facilitate context-
aware predictions. We demonstrate that our
approach substantially outperforms the state-
of-the-art methods for event extraction as well
as a strong baseline for entity extraction.

1 Introduction

Events are things that happen or occur; they in-
volve entities (people, objects, etc.) who perform
or are affected by the events and spatio-temporal as-
pects of the world. Understanding events and their
descriptions in text is necessary for any generally-
applicable machine reading systems. It is also essen-
tial in facilitating practical applications such as news
summarization, information retrieval, and knowl-
edge base construction.

The interpretation of event descriptions is highly
contextually dependent. To make correct predic-
tions, a model needs to account for mentions of

events and entities together with the discourse con-
text. Consider, for example, the following excerpt
from a news report:

“On Thursday, there was a massive
U.S. aerial bombardment in which more
than 300 Tomahawk cruise missiles rained
down on Baghdad. Earlier Saturday,
Baghdad was again targeted. ...”

The excerpt describes two U.S. attacks on Baghdad.
The two event anchors (triggers) are boldfaced and
the mentions of entities and spatio-temporal infor-
mation are italicized. The first event anchor “aerial
bombardment” along with its surrounding entity
mentions — “U.S.”, “Tomahawk cruise missiles”,
and “Baghdad”, describe an attack from the U.S. on
Baghdad with Tomahawk cruise missiles being the
weapon. The second sentence on its own contains
little event-related information, but together with the
context of the previous sentence, it indicates another
U.S. attack on Baghdad.

State-of-the-art event extraction systems have dif-
ficulties inferring such information due to two main
reasons. First, they extract events and entities in
separate stages: entities such as people, organiza-
tion, and locations are first extracted by a named
entity tagger, and then these extracted entities are
used as inputs for extracting events and their argu-
ments (Li et al., 2013). This often causes errors to
propagate. In the above example, if the entity tagger
mistakenly identifies “Baghdad” as a person, then
the event extractor will fail to extract “Baghdad” as
the place where the attack happened. In fact, previ-
ous work (Li et al., 2013) observes that using previ-
ously extracted entities in event extraction results in

289

a substantial decrease in performance compared to
using gold-standard entity information.

Second, most existing work extracts events in-
dependently from each individual sentence, ignor-
ing the rest of the document (Li et al., 2013; Judea
and Strube, 2015; Nguyen and Grishman, 2015).
Very few attempts have been made to incorporate
document context for event extraction. Ji and Gr-
ishman (2008) model the information flow in two
stages: the first stage trains classifiers for event
triggers and arguments within each sentence; the
second stage applies heuristic rules to adjust the
classifiers’ outputs to satisfy document-wide (or
document-cluster-wide) consistency. Liao and Gr-
ishman (2010) further improved the rule-based in-
ference by training additional classifiers for event
triggers and arguments using document-level infor-
mation. Both approaches only propagate the highly
confident predictions from the first stage to the sec-
ond stage. To the best of our knowledge, there is no
unified model that jointly extracts events from sen-
tences across the whole document.

In this paper, we propose a novel approach that
simultaneously extracts events and entities within a
document context.1 We first decompose the learn-
ing problem into three tractable subproblems: (1)
learning the dependencies between a single event
and all of its potential arguments, (2) learning the co-
occurrence relations between events across the doc-
ument, and (3) learning for entity extraction. Then
we combine the learned models for these subprob-
lems into a joint optimization framework that simul-
taneously extracts events, semantic roles, and enti-
ties in a document. In summary, our main contribu-
tions are:

1. We propose a structured model for learning
within-event structures that can effectively cap-
ture the dependencies between an event and its
arguments, and between the semantic roles and
entity types for the arguments.

2. We introduce a joint inference framework that
combines probabilistic models of within-event
structures, event-event relations, and entity ex-

1The code for our system is available
at https://github.com/bishanyang/
EventEntityExtractor.

traction for joint extraction of the set of entities
and events over the whole document.

3. We conduct extensive experiments on the Au-
tomatic Content Extraction (ACE) corpus, and
show that our approach significantly outper-
forms the state-of-the-art methods for event ex-
traction and a strong baseline for entity extrac-
tion.

2 Task Definition

We adopt the ACE definition for entities ((LDC),
2005a) and events ((LDC), 2005b):

• Entity mention: An entity is an object or set
of objects in the world. An entity mention is
a reference to an entity in the form of a noun
phrase or a pronoun.

• Event trigger: the word or phrase that clearly
expresses its occurrence. Event triggers can be
verbs, nouns, and occasionally adjectives like
“dead” or “bankrupt”.

• Event argument: event arguments are entities
that fill specific roles in the event. They mainly
include participants (i.e., the entities that are in-
volved in the event) and general event attributes
such as place and time, and some event-type-
specific attributes that have certain values (e.g.,
JOB-TITLE, CRIME).

We are interested in extracting entity mentions,
event triggers, and event arguments. We consider
ACE entity types PER, ORG, GPE, LOC, FAC,
VEH, WEA and ACE VALUE and TIME expres-
sions2, and focus on 33 ACE event subtypes, each
of which has its own set of semantic roles for the
potential arguments. There are 35 such roles in to-
tal, but we collapse 8 of them that are time-related
(e.g., TIME-HOLDS, TIME-AT-END) into one, be-
cause most of these roles have very few training ex-
amples. Figure 2 shows an example of ACE anno-
tations for events and entities in a sentence. Note
that not every entity mention in the sentence is in-
volved in events and a single entity mention can be
associated with multiple events.

2To simplify notation, we include values and times when
referring to entities in the rest of the paper.

290

Figure 1: An example of ACE annotations of events and entities. The event triggers and the entity mentions are marked in different

colors. Each event trigger has an event subtype marked above it and each entity mention has an entity type marked above it. Each

event trigger evokes an event with semantic roles that are filled by entity mentions. The roles are marked on the links between event

trigger and entity mentions. For example, “conviction” evokes a CONVICT event, and has the CRIME and DEFENDANT roles filled

by “blasphemy” and “Christian man” respectively.

3 Approach

In this section, we describe our approach for joint
extraction of events and entities within a document
context. We first decompose the learning problem
into three tractable subproblems: learning within-
event structures, learning event-event relations, and
learning for entity extraction. We will describe the
probabilistic models for learning these subproblems.
Then we present a joint inference framework that in-
tegrates these learned models into a single model to
jointly extract events and entities across a document.

3.1 Learning Within-event Structures

As described in Section 2, a mention of an event con-
sists of an event trigger and a set of event arguments.
Each event argument is also an entity mention with
an entity type. In the following, we develop a proba-
bilistic model to learn such dependency structure for
each individual event mention.

Given a document x, we first generate a set of
event trigger candidates T and a set of entity can-
didates N .3 For each trigger candidate i ∈ T , we
associate it with a discrete variable ti that takes val-
ues from the 33 ACE event types and a NONE class
indicating other events or no events. Denote the set
of entity candidates that are potential arguments for
trigger candidate i as Ni.4 For each j ∈ Ni, we as-
sociate it with a discrete variable rij which models
the event-argument relation between trigger candi-
date i and entity candidate j. It takes values from 28
semantic roles and a NONE class indicating invalid

3We describe how to extract these candidates in Section 4.
4In this paper we only consider entity mentions that are in

the same sentence as the trigger to be potential event arguments
due to the ACE annotations. However, our model is general
and can handle event-argument relations across sentences with
appropriate features.

…

…

ti

ri1 ri2 rim

a1 a2 am

Figure 2: A factor graph representation of the within-event

model, relating the event type ti of trigger candidate i to the

role type rij of each argument candidate j along with its entity

type aj .

roles. Each argument candidate j is also associated
with an entity type variable aj , which takes values
from 9 entity types and a NONE class indicating in-
valid entity types.

We define the joint distribution of variables ti,
ri· = {rij}j∈Ni , and a· = {aj}j∈Ni conditioned on
the observations, which can be factorized according
to the factor graph shown in Figure 2:

pθ(ti, ri·,a·|i,Ni, x) ∝ exp
(
θT1 f1(ti, i, x)+∑

j∈Ni

θT2 f2(rij , i, j, x) +
∑
j∈Ni

θT3 f3(ti, rij , i, j, x)+

∑
j∈Ni

θT4 f4(aj , j, x) +
∑
j∈Ni

θT5 f5(rij , aj , j, x)
)

(1)

where θ1, ...,θ5 are vectors of parameters that need
to be estimated, and f1, ..., f5 are different forms of
feature functions which we will describe later.

Note that not all configurations of the variables
are valid in our model. Based on the definitions
in Section 2, each event type takes arguments with
certain semantic roles. For example, the arguments
of the event MARRY can only play the roles of

291

PERSON, TIME, and PLACE. In addition, a NONE

event type should not take any arguments. Similarly,
each semantic role should be filled with entities with
compatible types. For example, the PERSON role
type can only be filled with an entity of type PER.
However, a NONE role type can be filled with an
entity of any type. To account for these compati-
bility constraints, we enforce the probabilities of all
invalid configurations to be zero.

Features. f1, f2, and f4 are unary feature func-
tions that depend on trigger variable ti, argument
variable rij , and entity variable aj respectively. We
construct a set of features for each feature function
(see Table 1). Many of these features overlap with
those used in previous work (Li et al., 2013; Li
et al., 2014), except for the word embedding fea-
tures for triggers and the features for entities which
are derived from multiple entity resources. f3 and
f5 are pairwise feature functions that depend on
trigger-argument pair (ti, rij) and argument-entity
pair (rij , aj) respectively. We consider simple in-
dicator functions 1t,r and 1r,a as features (1y(x)
equals 1 when x = y and 0 otherwise).

Training. For model training, we find the opti-
mal parameters θ using the maximum-likelihood es-
timates with an L2 regularization:

θ∗ = arg max
θ
L(θ)− λ||θ||22

L(θ) =
∑
i

log p(ti, ri·,a·|i,Ni, x)

We use L-BFGS to optimize the training objective.
To calculate the gradient, we use the sum-product
algorithm to compute the exact marginals for the
unary cliques ti, rij , aj and the pairwise cliques
(ti, rij), (rij , aj). Typically the training complex-
ity for graphical models with unary and pairwise
cliques is quadratic in the size of the label set. How-
ever, the complexity of our model is much lower
than that since we only need to compute the joint
distributions over valid variable configurations. De-
note the number of event subtypes as T , the num-
ber of event argument roles as N , the average num-
ber of argument roles for each event subtype as k1,
the average number of entity types for each event
argument as k2, and the average number of argu-
ment candidates for each trigger candidate as M .
The complexity of computing the joint distribution

isO(M×(k1T+k2N)), and k1 and k2 are expected
to be small in practice (k1 = 6, k2 = 3 in ACE).

3.2 Learning Event-Event Relations
So far we have described a model for learning struc-
tures for a single event. However, the inference of
the event types for individual events may depend on
other events that are mentioned in the document. For
example, an ATTACK event is more likely to occur
with INJURE and DIE events than with life events
like MARRY and BORN. In order to capture this in-
tuition, we develop a pairwise model of event-event
relations in a document.

Our training data consists of all pairs of trigger
candidates that co-occur in the same sentence or are
connected by a coreferent subject/object if they are
in different sentences.5 We want to propagate in-
formation between these trigger pairs since they are
more likely to be related.

Formally, given a trigger candidate pair (i, i′),
we estimate the probabilities for their event types
(ti, ti′) as

pφ(ti, ti′ |x, i, i′) ∝ exp
(
φT g(ti, ti′ , x, i, i′)

)
(2)

where φ is a vector of parameters and g is a feature
function that depends on the trigger candidate pair
and their context. We consider both trigger-specific
features and relational features. For trigger-specific
features, we use the same trigger features listed in
Table 1. For relational features, we consider for each
pair of trigger candidates: (1) whether they are con-
nected by a conjunction dependency relation (based
on dependency parsing); (2) whether they share a
subject or an object (based on dependency pars-
ing and coreference resolution); (3) whether they
have the same head word lemma; (4) whether they
share a semantic frame based on FrameNet. During
training, we use L-BFGS to compute the maximum-
likelihood estimates of φ.

3.3 Entity Extraction
For entity extraction, we trained a standard linear-
chain Conditional Random Field (CRF) (Lafferty et
al., 2001) using the BIO scheme (i.e., identifying
the Beginning, the Inside and the Outside of the

5We use the Stanford coreference system (Lee et al., 2013)
for within-document entity coreference.

292

Category Type Features

Trigger

Lexical resources:
WordNet
Nomlex
FrameNet
Word2Vec

1. lemmas of the words in the trigger mention
2. nominalization of the words based on Nomlex (Macleod et al., 1998)
3. context words within a window of size 2
4. similarity features between the head word and a list of trigger seeds based on
WordNet (Bronstein et al., 2015)
5. semantic frames that associate with the head word and its p-o-s tag based on
FrameNet (Li et al., 2014)
6. pre-trained vector for the head word (Mikolov et al., 2013)

Syntactic resources:
Stanford parser

7. dependency edges involving the head word, both lexicalized and unlexical-
ized
8. whether the head word is a pronoun

Argument

Lexical resources:
WordNet

1. lemmas of the words in the entity mention
2. lemmas of the words in the trigger mention
3. words between the entity mention and the trigger mention

Syntactic resources:
Stanford parser

4. the relative position of the entity mention to the trigger mention (before, after,
or contain)
5. whether the entity mention and the trigger mention are in the same clause
6. the shortest dependency paths between the entity mention and the trigger
mention

Entity
Entity resources:
Stanford NER
NELL KB

1. Gender and animacy attributes of the entity mention
2. Stanford NER type for the entity mention
3. Semantic type for the entity mention based on the NELL knowledge
base (Mitchell et al., 2015)
4. Predicted entity type and confidence score for the entity mention output by
the entity extractor described in Section 3.3

Table 1: Features for event triggers, event arguments, and entity mentions.

text segments). We use features that are similar to
those from previous work (Ratinov and Roth, 2009):
(1) current words and part-of-speech tags; (2) con-
text words in a window of size 2; (3) word type
such as all-capitalized, is-capitalized, and all-digits;
(4) Gazetteer-based entity type if the current word
matches an entry in the gazetteers collected from
Wikipedia (Ratinov and Roth, 2009). In addition,
we consider pre-trained word embeddings (Mikolov
et al., 2013) as dense features for each word in order
to improve the generalizability of the model.

3.4 Joint Inference

Our end goal is to extract coherent event mentions
and entity mentions across a document. To achieve
this, we propose a joint inference approach that al-
lows information flow among the three local models
and finds globally-optimal assignments of all vari-
ables, including the trigger variables t, the argument
role variables r, and the entity variables a. Specifi-
cally, we define the following objective:

max
t,r,a

∑
i∈T

E(ti, ri·,a·)+
∑
i,i′∈T

R(ti, ti′)+
∑
j∈N

D(aj)

(3)

The first term is the sum of confidence scores for in-
dividual event mentions based on the parameter es-
timates from the within-event model. E(ti, ri·,a·)
can be further decomposed into three parts.

E(ti, ri·,a·) =

log pθ(ti|i,Ni, x) +
∑
j∈Ni

log pθ(ti, rij |i,Ni, x)

+
∑
j∈Ni

log pθ(rij , aj |i,Ni, x)

The second term is the sum of confidence scores
for event relations based on the parameter estimates
from the pairwise event model, where R(ti, ti′) =
log pφ(ti, ti′ |i, i′, x). The third term is the sum
of confidence scores for entity mentions, where
D(aj) = log pψ(aj |j, x) and pψ(aj |j, x) is the
marginal probability derived from the linear-chain
CRF described in Section 3.3. The optimization is
subjected to agreement constraints that enforce the
overlapping variables among the three components
to agree on their values.

The joint inference problem can be formulated
as an integer linear program (ILP). To solve it ef-
ficiently, we find solutions for the relaxation of

293

the problem using a dual decomposition algorithm
AD3 (Martins et al., 2011). AD3 has been shown
to be orders of magnitude faster than a general pur-
pose ILP solver in practice (Das et al., 2012). It is
also particularly suitable for our problem since it in-
volves decompositions that have many overlapping
simple factors. We observed that AD3 recovers the
exact solutions for all the test documents in our ex-
periments and the runtime for labeling each docu-
ment is only three seconds in average in a 64-bit ma-
chine with two 2GHz CPUs and 8GB of RAM.

4 Experiments

We conduct experiments on the ACE2005 corpus.6

It contains text documents from a variety of sources
such as newswire reports, weblogs, and discussion
forums. We use the same data split as in Li et
al. (2013). Table 2 shows the data statistics.

We adopt the evaluation metrics for events as de-
fined in Li et al. (2013). An event trigger is cor-
rectly identified if its offsets match those of a gold-
standard trigger; and it is correctly classified if its
event subtype (33 in total) also match the subtype
of the gold-standard trigger. An event argument is
correctly identified if its offsets and event subtype
match those of any of the reference argument men-
tions in the document; and it is correctly classified if
its semantic role (28 in total) is also correct. For en-
tities, a predicted mention is correctly extracted if its
head offsets and entity type (9 in total) match those
of the reference entity mention.

Note that our approach requires entity mention
candidates and event trigger candidates as input. In-
stead of enumerating all possible text spans, we
generate high-quality entity mentions from the k-
best predictions of our CRF entity extractor (in Sec-
tion 3.3).7 Similarly, we train a CRF for event trig-
ger extraction using the same features except for the
gazetteers, and generate trigger candidates based on
the k-best predictions. We set k = 50 for enti-
ties and k = 10 for event triggers based on perfor-
mance on the development set. They cover 92.3% of
the gold-standard entity mentions and 96.3% of the
gold-standard event triggers in the test set.

6http://www.itl.nist.gov/iad/mig/tests/
ace/2005/

7During training, we randomly split the training data into 10

Train Dev Test
Documents 529 40 30
Sentences 14,837 863 672
Triggers 4,337 497 438

Arguments 7,768 933 911
Entity Mentions 48,797 3,917 4,184

Table 2: Statistics of the ACE2005 dataset.

4.1 Results

Event Extraction. We compare the proposed
models WITHINEVENT (in Section 3.1) and JOIN-
TEVENTENTITY (in Section 3.4) with two strong
baselines. One is JOINTBEAM (Li et al., 2013), a
state-of-the-art event extractor that uses a structured
perceptron with beam search for sentence-level joint
extraction of event triggers and arguments. The
other is STAGEDMAXENT, a typical two-stage ap-
proach that detects event triggers first and then event
arguments. We use the same event trigger candidates
and entity mention candidates as input to all the
comparing models except for JOINTBEAM, because
JOINTBEAM only extracts event mentions and as-
sumes entity mentions are given. We consider a re-
alistic experimental setting where no gold-standard
annotations are available for entities during testing.
To obtain results from JOINTBEAM, we ran the ac-
tual system8 used in Li et al. (2013) using the entity
mentions output by our CRF-based entity extractor.

Table 3 shows the average9 precision, recall, and
F1 score for event triggers and event arguments. We
can see that our WITHINEVENT model, which ex-
plicitly models the trigger-argument dependencies
and argument-role-entity-type dependencies, out-
performs the MaxEnt pipeline, especially in event
argument extraction. This shows that modeling the
trigger-argument dependencies is effective in reduc-
ing error propagation.

Comparing to the state-of-the-art event extrac-
tor JOINTBEAM, the improvements introduced by
WITHINEVENT are substantial in both event triggers
and event arguments. We believe there are two main
reasons: (1) WITHINEVENT considers all possible
joint trigger/argument label assignments, whereas

parts and consider the k-best predictions for each part.
8https://github.com/oferbr/

BIU-RPI-Event-Extraction-Project
9We report the micro-average scores as in previous work (Li

et al., 2013).

294

Event Trigger
Identification

Event Trigger
Classification

Event Argument
Identification

Argument Role
Classification

Model P R F1 P R F1 P R F1 P R F1
JOINTBEAM (Li et al., 2013) 76.6 58.7 66.5 74.0 56.7 64.2 74.6 25.5 38.0 68.8 23.5 35.0

STAGEDMAXENT 73.9 66.5 70.0 70.4 63.3 66.7 75.7 20.2 31.9 71.2 19.0 30.0
WITHINEVENT 76.9 63.8 69.7 74.7 62.0 67.7 72.4 37.2 49.2 69.9 35.9 47.4

JOINTEVENTENTITY 77.6 65.4 71.0∗ 75.1 63.3 68.7 73.7 38.5 50.6∗ 70.6 36.9 48.4∗

Table 3: Event extraction results on the ACE2005 test set. ∗ indicates that the difference in F1 compared to the second best model

(WITHINEVENT) is statistically significant (p < 0.05).

Model Trigger Arg
CROSS-DOC (Ji and Grishman, 2008) 67.3 42.6
CNN (Nguyen and Grishman, 2015) 67.6 -

JOINTEVENTENTITY 68.7 48.4

Table 4: Comparison of the results (F1 score) of JOINTEVEN-

TENTITY and the best known results on ACE event trigger clas-

sification and argument role classification.

Model P R F1
CRFENTITY 85.5 73.5 79.1

JOINTEVENTENTITY 82.4 79.2 80.7∗

Table 5: Entity extraction results on the ACE2005 test set. ∗
indicates statistical significance (p < 0.05).

JOINTBEAM considers only a subset of the possi-
ble assignments based on a heuristic beam search.
More specifically, when predicting labels for token
i, JointBeam considers only the K-best (K = 4
in their paper) partial trigger/argument label con-
figurations for the previous i − 1 tokens. As the
length of the sentence increases, a large amount
of information will be thrown away. (2) WITH-
INEVENT models argument-role-entity-type depen-
dencies, whereas JOINTBEAM assumes the entity
types are given. This can cause error propagation.

JOINTEVENTENTITY provides the best perfor-
mance among all the models on all evaluation cate-
gories. It boosts both precision and recall compared
to WITHINEVENT.10 This demonstrates the advan-
tages of JOINTEVENTENTITY in allowing informa-
tion propagation across event mentions and entity
mentions and making more context-aware and se-
mantically coherent predictions.

We also compare the results of JOINTEVENTEN-
TITY with the best known results on the ACE event

10All significance tests reported in this paper were computed
using the paired bootstrap procedure (Berg-Kirkpatrick et al.,
2012) with 10,000 samples of the test documents.

Model PER GPE ORG TIME
CRFENTITY 85.1 87.0 65.4 78.4

JOINTEVENTENTITY 87.1 87.0 70.2 80.2

Table 6: Entity extraction results (F1 score) per entity type.

extraction task in Table 4. CROSS-DOC (Ji and Gr-
ishman, 2008) performs cross-document inference
of events using document clustering information,
and CNN (Nguyen and Grishman, 2015) is a convo-
lutional neural network for extracting event triggers
at the sentence level. We see that JOINTEVENTEN-
TITY outperforms both models and achieves new
state-of-the-art results for event trigger and argu-
ment extraction in an end-to-end evaluation setting.

Entity Extraction. In addition to extracting event
mentions, JOINTEVENTENTITY also extracts entity
mentions. We compare its output with the output of
a strong entity extraction baseline CRFENTITY (de-
scribed in Section 3.3). Table 5 shows the (micro-
)average precision, recall, and F1 score. We see that
JOINTEVENTENTITY introduces a significant im-
provement in recall and F1. Table 6 further shows
the F1 score for four major entity types PER, GPE,
ORG, and TIME in ACE. The promising improve-
ments indicate that joint modeling of events and en-
tities allows for more accurate predictions about not
only events but also entities.

4.2 Error Analysis

Table 7 divides the errors made by JOINTEVEN-
TENTITY based on different subtasks and the clas-
sification error types in each task. For event trig-
gers, the majority of the errors relates to missing
triggers and only 3.7% involves misclassified event
types (e.g., a DEMONSTRATION event is mistaken
for a TRANSPORT event). Among the missing trig-
gers, we examine the cases where the event types
are correctly identified in a sentence but with in-

295

Error Type Missing Spurious Misclassified
TRIGGER 62.1% 34.2% 3.7%

ARGUMENT 71.2% 24.7% 4.1%
ENTITY 43.4% 30.5% 26.1%

Table 7: Classification of errors made by JOINTEVENTEN-

TITY.

correct triggers and find that there are only 5% of
such cases. For event arguments, the majority of the
errors relates to missing arguments and only 4.1%
is about misclassified argument roles. Among the
missing event arguments, 10% of them has correctly
identified entity types.

In general, the errors for event extraction are com-
monly due to three reasons: (1) Lexical sparsity.
For example, in the sentence “At least three mem-
bers of a family ... were hacked to death ...”, our
model fails to detect that “hacked” triggers an AT-
TACK event, because it has never seen “hacked” with
this sense during training. Using WordNet and pre-
trained word vectors may alleviate the sparsity issue.
It is also important to disambiguate word senses in
context. (2) Shallow understanding of context, es-
pecially long-range context. For example, given the
sentence “She is being held on 50,000 dollars bail
on a charge of first-degree reckless homicide ...”,
the model detects that “homicide” triggers an event,
but fails to detect that “She” refers to the AGENT

who committed the homicide. This is mainly due
to the complex long-distance dependency between
the trigger and the argument. (3) Use of complex
language such as metaphor, idioms, and sarcasm.
Addressing these phenomena is in general difficult
since it requires richer background knowledge and
more sophisticated inference.

For entity extraction, we find that integrating
event information into entity extraction successfully
improves recall and F1. However, since the ACE
dataset is restricted to a limited set of events, a large
portion of the sentences does not contain any event
triggers and event arguments that are of interest. For
these sentences, there is little or no benefit of joint
modeling. We also find that some entity misclassifi-
cation errors can be avoided if entity coreference in-
formation is available. We plan to investigate coref-
erence resolution as an additional component to our
joint model in future work.

5 Related Work

Event extraction has been mainly studied using the
ACE data (Doddington et al., 2004) and biomedi-
cal data for the BioNLP shared tasks (Kim et al.,
2009). To reduce task complexity, early work em-
ploys a pipeline of classifiers that extracts event trig-
gers first, and then determines their arguments (Ahn,
2006; Björne et al., 2009). Recently, Convolutional
Neural Networks have been used to improve the
pipeline classifiers (Nguyen and Grishman, 2015;
Chen et al., 2015). As pipeline approaches suf-
fer from error propagation, researchers have pro-
posed methods for joint extraction of event trig-
gers and arguments, using either structured percep-
tron (Li et al., 2013), Markov Logic (Poon and
Vanderwende, 2010), or dependency parsing algo-
rithms (McClosky et al., 2011). However, exist-
ing joint models largely rely on heuristic search
to aggressively shrink the search space. One ex-
ception is work in Riedel and McCallum (2011),
which uses dual decomposition to solve joint infer-
ence with runtime guarantees. Our work is similar
to Riedel and McCallum (2011). However, there
are two main differences: first, our model extracts
both event mentions and entity mentions; second, it
performs joint inference across sentence boundaries.
Although our approach is evaluated on ACE, it can
be easily adapted to BioNLP data by using appropri-
ate features for events triggers, argument roles, and
entities. We consider this as future work.

There has been work on improving event extrac-
tion by exploiting document-level context. Berant et
al. (2014) exploits event-event relations, e.g., causal-
ity, inhibition, which frequently occur in biological
texts. For general texts most work focuses on ex-
ploiting temporal event relations (Chambers and Ju-
rafsky, 2008; Do et al., 2012; McClosky and Man-
ning, 2012). For the ACE domain, there is work on
utilizing event type co-occurrence patterns to prop-
agation event classification decisions (Ji and Grish-
man, 2008; Liao and Grishman, 2010). Our model
is similar to their work. It models the co-occurrence
relations between event types (e.g., a DIE event
tends to co-occur with ATTACK events and TRANS-
PORT events). It can be extended to handle other
types of event relations (e.g., causal and temporal)
by designing appropriate features. Chambers and

296

Jurafsky (2009; 2011) learn narrative schemas by
linking event verbs that have coreferring syntactic
arguments. Our model also adopts this intuition to
relate event triggers across sentences. In addition,
each event argument is grounded by its entity type
(e.g., an entity mention of type PER can only fill
roles that can be played by a person).

6 Conclusion

In this paper, we introduce a new approach for auto-
matic extraction of events and entities across a docu-
ment. We first decompose the learning problem into
three tractable subproblems: learning within-event
structures, learning event-event relations, and learn-
ing for entity extraction. We then integrate these
learned models into a single model that performs
joint inference of all event triggers, semantic roles
for events, and entities across the whole document.
Experimental results demonstrate that our approach
outperforms the state-of-the-art event extractors by a
large margin and substantially improves a strong en-
tity extraction baseline. For future work, we plan to
integrate entity and event coreference as additional
components into the joint inference framework. We
are also interested in investigating the integration of
more sophisticated event-event relation models of
causality and temporal ordering.

Acknowledgments

This work was supported in part by NSF grant IIS-
1250956, and in part by the DARPA DEFT program
under contract FA87501320005. We would like to
thank members of the CMU NELL group for helpful
comments. We also thank the anonymous reviewers
for insightful suggestions.

References

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events, pages 1–8. Association
for Computational Linguistics.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Brad
Huang, Christopher D Manning, Abby Vander Lin-
den, Brittany Harding, and Peter Clark. 2014. Mod-
eling biological processes for reading comprehension.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),

pages 1499–1510. Association for Computational Lin-
guistics.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in nlp. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 995–1005. Association
for Computational Linguistics.

Jari Björne, Juho Heimonen, Filip Ginter, Antti Airola,
Tapio Pahikkala, and Tapio Salakoski. 2009. Extract-
ing complex biological events with rich graph-based
feature sets. In Proceedings of the Workshop on Cur-
rent Trends in Biomedical Natural Language Process-
ing: Shared Task, pages 10–18. Association for Com-
putational Linguistics.

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-based event trigger labeling: How
far can event descriptions get us? In ACL Volume 2:
Short Papers, pages 372–376. Association for Compu-
tational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2008. Jointly
combining implicit constraints improves temporal or-
dering. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 698–706. Association for Computa-
tional Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2-Volume 2, pages 602–
610. Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2011. Template-
based information extraction without the templates. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 976–986. Asso-
ciation for Computational Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (ACL-IJCNLP), volume 1, pages 167–176. Associ-
ation for Computational Linguistics.

Dipanjan Das, André FT Martins, and Noah A Smith.
2012. An exact dual decomposition algorithm for
shallow semantic parsing with constraints. In Pro-
ceedings of the First Joint Conference on Lexical and
Computational Semantics-Volume 1: Proceedings of
the main conference and the shared task, and Volume

297

2: Proceedings of the Sixth International Workshop on
Semantic Evaluation, pages 209–217. Association for
Computational Linguistics.

Quang Xuan Do, Wei Lu, and Dan Roth. 2012. Joint
inference for event timeline construction. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning (EMNLP-CoNLL),
pages 677–687. Association for Computational Lin-
guistics.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC-2004).
European Language Resources Association (ELRA).

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of ACL-08: HLT, pages 254–262. Associa-
tion for Computational Linguistics.

Alex Judea and Michael Strube. 2015. Event extraction
as frame-semantic parsing. Proceedings of the Fourth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2015), pages 159–164.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
bionlp’09 shared task on event extraction. In Proceed-
ings of the Workshop on Current Trends in Biomedical
Natural Language Processing: Shared Task, pages 1–
9. Association for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proc. 18th International Conf. on Machine Learn-
ing (ICML), pages 282–289.

Linguistic Data Consortium (LDC). 2005a.
English annotation guidelines for enti-
ties. https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-entities-guidelines-v5.6.
6.pdf.

Linguistic Data Consortium (LDC). 2005b.
English annotation guidelines for events.
https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-events-guidelines-v5.4.3.
pdf.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
73–82. Association for Computational Linguistics.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Construct-
ing information networks using one single model. In
Proceedings of the Conference on Empirical Meth-
ods on Natural Language Processing (EMNLP), pages
1846–1851. Association for Computational Linguis-
tics.

Shasha Liao and Ralph Grishman. 2010. Using docu-
ment level cross-event inference to improve event ex-
traction. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 789–797. Association for Computational Lin-
guistics.

Catherine Macleod, Ralph Grishman, Adam Meyers,
Leslie Barrett, and Ruth Reeves. 1998. Nomlex: A
lexicon of nominalizations. In Proceedings of EU-
RALEX, volume 98, pages 187–193. Citeseer.

André FT Martins, Mario AT Figeuiredo, Pedro MQ
Aguiar, Noah A Smith, and Eric P Xing. 2011. An
augmented lagrangian approach to constrained map in-
ference. In Proceedings of the International Confer-
ence on Machine Learning (ICML).

David McClosky and Christopher D Manning. 2012.
Learning constraints for consistent timeline extraction.
In Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), pages 873–882. Association for Computa-
tional Linguistics.

David McClosky, Mihai Surdeanu, and Christopher D
Manning. 2011. Event extraction as dependency pars-
ing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies (ACL), pages 1626–1635.
Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems
(NIPS), pages 3111–3119.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015. Never-
ending learning. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI-15).

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional

298

neural networks. In Proceedings of ACL-IJCNLP
2015 Volume 2: Short Papers, pages 365–371. Associ-
ation for Computational Linguistics.

Hoifung Poon and Lucy Vanderwende. 2010. Joint infer-
ence for knowledge extraction from biomedical litera-
ture. In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL),
pages 813–821. Association for Computational Lin-
guistics.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning, pages 147–155.
Association for Computational Linguistics.

Sebastian Riedel and Andrew McCallum. 2011. Fast and
robust joint models for biomedical event extraction. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 1–
12. Association for Computational Linguistics.

299

Proceedings of NAACL-HLT 2016, pages 300–309,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Joint Event Extraction via Recurrent Neural Networks

Thien Huu Nguyen, Kyunghyun Cho and Ralph Grishman
Computer Science Department, New York University, New York, NY 10003, USA

thien@cs.nyu.edu,kyunghyun.cho@nyu.edu,grishman@cs.nyu.edu

Abstract

Event extraction is a particularly challenging
problem in information extraction. The state-
of-the-art models for this problem have ei-
ther applied convolutional neural networks in
a pipelined framework (Chen et al., 2015) or
followed the joint architecture via structured
prediction with rich local and global features
(Li et al., 2013). The former is able to learn
hidden feature representations automatically
from data based on the continuous and gen-
eralized representations of words. The latter,
on the other hand, is capable of mitigating the
error propagation problem of the pipelined ap-
proach and exploiting the inter-dependencies
between event triggers and argument roles via
discrete structures. In this work, we propose
to do event extraction in a joint framework
with bidirectional recurrent neural networks,
thereby benefiting from the advantages of the
two models as well as addressing issues inher-
ent in the existing approaches. We systemati-
cally investigate different memory features for
the joint model and demonstrate that the pro-
posed model achieves the state-of-the-art per-
formance on the ACE 2005 dataset.

1 Introduction

We address the problem of event extraction (EE):
identifying event triggers of specified types and their
arguments in text. Triggers are often single verbs
or normalizations that evoke some events of interest
while arguments are the entities participating into
such events. This is an important and challeng-
ing task of information extraction in natural lan-
guage processing (NLP), as the same event might

be present in various expressions, and an expression
might expresses different events in different con-
texts.

There are two main approaches to EE: (i) the joint
approach that predicts event triggers and arguments
for sentences simultaneously as a structured predic-
tion problem, and (ii) the pipelined approach that
first performs trigger prediction and then identifies
arguments in separate stages.

The most successful joint system for EE (Li et
al., 2013) is based on the structured perceptron al-
gorithm with a large set of local and global fea-
tures1. These features are designed to capture the
discrete structures that are intuitively helpful for EE
using the NLP toolkits (e.g., part of speech tags, de-
pendency and constituent tags). The advantages of
such a joint system are twofold: (i) mitigating the er-
ror propagation from the upstream component (trig-
ger identification) to the downstream classifier (ar-
gument identification), and (ii) benefiting from the
the inter-dependencies among event triggers and ar-
gument roles via global features. For example, con-
sider the following sentence (taken from Li et al.
(2013)) in the ACE 2005 dataset:

In Baghdad, a cameraman died when an Ameri-
can tank fired on the Palestine hotel.

In this sentence, died and fired are the event trig-
gers for the events of types Die and Attack, respec-
tively. In the pipelined approach, it is often simple
for the argument classifiers to realize that camera-

1Local features encapsulate the characteristics for the in-
dividual tasks (i.e, trigger and argument role labeling) while
global features target the dependencies between triggers and ar-
guments and are only available in the joint approach.

300

man is the Target argument of the Die event due to
the proximity between cameraman and died in the
sentence. However, as cameraman is far away from
fired, the argument classifiers in the pipelined ap-
proach might fail to recognize cameraman as the
Target argument for the event Attack with their lo-
cal features. The joint approach can overcome this
issue by relying on the global features to encode the
fact that a Victim argument for the Die event is often
the Target argument for the Attack event in the same
sentence.

Despite the advantages presented above, the joint
system by Li et al. (2013) suffers from the lack of
generalization over the unseen words/features and
the inability to extract the underlying structures for
EE (due to its discrete representation from the hand-
crafted feature set) (Nguyen and Grishman, 2015b;
Chen et al., 2015).

The most successful pipelined system for EE to
date (Chen et al., 2015) addresses these drawbacks
of the joint system by Li et al. (2013) via dy-
namic multi-pooling convolutional neural networks
(DMCNN). In this system, words are represented by
the continuous representations (Bengio et al., 2003;
Turian et al., 2010; Mikolov et al., 2013a) and fea-
tures are automatically learnt from data by the DM-
CNN, thereby alleviating the unseen word/feature
problem and extracting more effective features for
the given dataset. However, as the system by Chen
et al. (2015) is pipelined, it still suffers from the
inherent limitations of error propagation and failure
to exploit the inter-dependencies between event trig-
gers and argument roles (Li et al., 2013). Finally, we
notice that the discrete features, shown to be helpful
in the previous studies for EE (Li et al., 2013), are
not considered in Chen et al. (2015).

Guided by these characteristics of the EE sys-
tems by Li et al. (2013) and Chen et al. (2015),
in this work, we propose to solve the EE problem
with the joint approach via recurrent neural net-
works (RNNs) (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014) augmented with the discrete fea-
tures, thus inheriting all the benefits from both sys-
tems as well as overcoming their inherent issues. To
the best of our knowledge, this is the first work to
employ neural networks to do joint EE.

Our model involves two RNNs that run over the
sentences in both forward and reverse directions to

learn a richer representation for the sentences. This
representation is then utilized to predict event trig-
gers and argument roles jointly. In order to capture
the inter-dependencies between triggers and argu-
ment roles, we introduce memory vectors/matrices
to store the prediction information during the course
of labeling the sentences.

We systematically explore various memory vec-
tor/matrices as well as different methods to learn
word representations for the joint model. The ex-
perimental results show that our system achieves
the state-of-the-art performance on the widely used
ACE 2005 dataset.

2 Event Extraction Task

We focus on the EE task of the Automatic Context
Extraction (ACE) evaluation2. ACE defines an event
as something that happens or leads to some change
of state. We employ the following terminology:
• Event mention: a phrase or sentence in which

an event occurs, including one trigger and an
arbitrary number of arguments.
• Event trigger: the main word that most clearly

expresses an event occurrence.
• Event argument: an entity mention, temporal

expression or value (e.g. Job-Title) that servers
as a participant or attribute with a specific role
in an event mention.

ACE annotates 8 types and 33 subtypes (e.g., At-
tack, Die, Start-Position) for event mentions that
also correspond to the types and subtypes of the
event triggers. Each event subtype has its own set
of roles to be filled by the event arguments. For in-
stance, the roles for the Die event include Place, Vic-
tim and Time. The total number of roles for all the
event subtypes is 36.

Given an English text document, an event extrac-
tion system needs to recognize event triggers with
specific subtypes and their corresponding arguments
with the roles for each sentence. Following the pre-
vious work (Liao and Grishman, 2011; Li et al.,
2013; Chen et al., 2015), we assume that the argu-
ment candidates (i.e, the entity mentions, temporal
expressions and values) are provided (by the ACE
annotation) to the event extraction systems.

2
http://projects.ldc.upenn.edu/ace

301

3 Model

We formalize the EE task as follow. Let W =
w1w2 . . . wn be a sentence where n is the sentence
length and wi is the i-th token. Also, let E =
e1, e2, . . . , ek be the entity mentions3 in this sen-
tence (k is the number of the entity mentions and can
be zero). Each entity mention comes with the offsets
of the head and the entity type. We further assume
that i1, i2, . . . , ik be the indexes of the last words of
the mention heads for e1, e2, . . . , ek, respectively.

In EE, for every token wi in the sentence, we need
to predict the event subtype (if any) for it. If wi is a
trigger word for some event of interest, we then need
to predict the roles (if any) that each entity mention
ej plays in such event.

The joint model for event extraction in this work
consists of two phases: (i) the encoding phase that
applies recurrent neural networks to induce a more
abstract representation of the sentence, and (ii) the
prediction phase that uses the new representation
to perform event trigger and argument role identi-
fication simultaneously for W . Figure 1 shows an
overview of the model.

3.1 Encoding
3.1.1 Sentence Encoding

In the encoding phase, we first transform each to-
ken wi into a real-valued vector xi using the con-
catenation of the following three vectors:

1. The word embedding vector of wi: This is ob-
tained by looking up a pre-trained word embedding
table D (Collobert and Weston, 2008; Turian et al.,
2010; Mikolov et al., 2013a).

2. The real-valued embedding vector for the en-
tity type of wi: This vector is motivated from the
prior work (Nguyen and Grishman, 2015b) and gen-
erated by looking up the entity type embedding table
(initialized randomly) for the entity type of wi. Note
that we also employ the BIO annotation schema to
assign entity type labels to each token in the sen-
tences using the heads of the entity mentions as do
Nguyen and Grishman (2015b).

3. The binary vector whose dimensions corre-
spond to the possible relations between words in the
dependency trees. The value at each dimension of

3From now on, when mentioning entity mentions, we al-
ways refer to the ACE entity mentions, times and values.

this vector is set to 1 only if there exists one edge
of the corresponding relation connected to wi in the
dependency tree of W . This vector represents the
dependency features that are shown to be helpful in
the previous research (Li et al., 2013).

Note that we do not use the relative position fea-
tures, unlike the prior work on neural networks for
EE (Nguyen and Grishman, 2015b; Chen et al.,
2015). The reason is we predict the whole sentences
for triggers and argument roles jointly, thus having
no fixed positions for anchoring in the sentences.

The transformation from the token wi to the
vector xi essentially converts the input sentence
W into a sequence of real-valued vectors X =
(x1, x2, . . . , xn), to be used by recurrent neural net-
works to learn a more effective representation.

3.1.2 Recurrent Neural Networks
Consider the input sequence X =

(x1, x2, . . . , xn). At each step i, we compute
the hidden vector αi based on the current input
vector xi and the previous hidden vector αi−1,
using the non-linear transformation function
Φ: αi = Φ(xi, αi−1). This recurrent compu-
tation is done over X to generate the hidden
vector sequence (α1, α2, . . . , αn), denoted by−−→
RNN(x1, x2, . . . , xn) = (α1, α2, . . . , αn).

An important characteristics of the recurrent
mechanism is that it adaptively accumulates the
context information from position 1 to i into the
hidden vector αi, making αi a rich representa-
tion. However, αi is not sufficient for the event
trigger and argument predictions at position i as
such predictions might need to rely on the con-
text information in the future (i.e, from position i
to n). In order to address this issue, we run a
second RNN in the reverse direction from Xn to
X1 to generate the second hidden vector sequence:←−−
RNN(xn, xn−1, . . . , x1) = (α′n, α′n−1, . . . , α

′
1) in

which α′i summarizes the context information from
position n to i. Eventually, we obtain the new
representation (h1, h2, . . . , hn) for X by concate-
nating the hidden vectors in (α1, α2, . . . , αn) and
(α′n, α′n−1, . . . , α

′
1): hi = [αi, α′i]. Note that hi es-

sentially encapsulates the context information over
the whole sentence (from 1 to n) with a greater fo-
cus on position i.

Regarding the non-linear function, the simplest

302

a

died
when

a
tank
fired

in
Baghdad Sentence

Encoding

Trigger

Prediction

Argument

Role

Prediction

Memory

Vectors/Matrices

word

embeddings

entity type

embeddings

depdendecy

tree relations

input sentence

indexes of trigger

and entity mention

candidates

local argument

feature generator

(Li et al., 2013)
memory matrices

hidden

vectors
word embedding

look up

feature representations

prediction outputs

X

Bidirectional

Recurrent

Neural

Network

a

man

man died when tanka fired in Baghdad

local context

vector extraction

entity mention "man"

entity mention "Baghdad"

Figure 1: The joint EE model for the input sentence “a man died when a tank fired in Baghdad” with local context
window d = 1. We only demonstrate the memory matrices Garg/trg

i in this figure. Green corresponds to the trigger
candidate “died” at the current step while violet and red are for the entity mentions “man” and “Baghdad” respectively.

form of Φ in the literature considers it as a one-layer
feed-forward neural network. Unfortunately, this
function is prone to the “vanishing gradient” prob-
lem (Bengio et al., 1994), making it challenging to
train RNNs properly. This problem can be alleviated
by long-short term memory units (LSTM) (Hochre-
iter and Schmidhuber, 1997; Gers, 2001). In this
work, we use a variant of LSTM; called the Gated
Recurrent Units (GRU) from Cho et al. (2014).
GRU has been shown to achieve comparable perfor-
mance (Chung et al., 2014; Józefowicz et al., 2015).

3.2 Prediction
In order to jointly predict triggers and argument
roles for W , we maintain a binary memory vector
G

trg
i for triggers, and binary memory matrices Garg

i

and Garg/trg
i for arguments (at each time i). These

vector/matrices are set to zeros initially (i = 0) and
updated during the prediction process for W .

Given the bidirectional representation
h1, h2, . . . , hn in the encoding phase and the
initialized memory vector/matrices, the joint predic-
tion procedure loops over n tokens in the sentence
(from 1 to n). At each time step i, we perform the
following three stages in order:

(i) trigger prediction for wi.

(ii) argument role prediction for all the entity men-
tions e1, e2, . . . , ek with respect to the current
token wi.

(iii) compute G
trg
i , Garg

i and G
arg/trg
i for the cur-

rent step using the previous memory vec-
tor/matrices Gtrg

i−1, Garg
i−1 and G

arg/trg
i−1 , and the

prediction output in the earlier stages.

The output of this process would be the pre-
dicted trigger subtype ti for wi, the predicted ar-
gument roles ai1, ai2, . . . , aik and the memory vec-
tor/matrices Gtrg

i , Garg
i and G

arg/trg
i for the current

step. Note that ti should be the event subtype ifwi is
a trigger word for some event of interest, or “Other”
in the other cases. aij , in constrast, should be the
argument role of the entity mention ej with respect
to wi if wi is a trigger word and ej is an argument
of the corresponding event, otherwise aij is set to
“Other” (j = 1 to k).

3.2.1 Trigger Prediction
In the trigger prediction stage for the current to-

ken wi, we first compute the feature representation
vector Rtrg

i for wi using the concatenation of the fol-
lowing three vectors:
• hi: the hidden vector to encapsulate the global

context of the input sentence.

303

• Ltrg
i : the local context vector for wi. L

trg
i is

generated by concatenating the vectors of the
words in a context window d of wi:
L

trg
i = [D[wi−d], . . . , D[wi], . . . , D[wi+d]].

• Gtrg
i−1: the memory vector from the previous

step.
The representation vector Rtrg

i = [hi, L
trg
i , G

trg
i−1]

is then fed into a feed-forward neural network F trg

with a softmax layer in the end to compute the prob-
ability distribution P trg

i;t over the possible trigger sub-
types: P trg

i;t = P
trg
i (l = t) = F

trg
t (Rtrg

i) where t is
a trigger subtype. Finally, we compute the predicted
type ti for wi by: ti = argmaxt(P

trg
i;t).

3.2.2 Argument Role Prediction

In the argument role prediction stage, we first
check if the predicted trigger subtype ti in the previ-
ous stage is “Other” or not. If yes, we can simply set
aij to “Other” for all j = 1 to k and go to the next
stage immediately. Otherwise, we loop over the en-
tity mentions e1, e2, . . . , ek. For each entity mention
ej with the head index of ij , we predict the argument
role aij with respect to the trigger word wi using the
following procedure.

First, we generate the feature representation vec-
torRarg

ij for ej andwi by concatenating the following
vectors:
• hi and hij : the hidden vectors to capture the

global context of the input sentence for wi and
ej , respectively.
• Larg

ij : the local context vector for wi and ej .
L

arg
ij is the concatenation of the vectors of the

words in the context windows of size d for wi
and wij :
L

arg
ij = [D[wi−d], . . . , D[wi], . . . , D[wi+d],

D[wij−d], . . . , D[wij], . . . , D[wij+d]].
• Bij : the hidden vector for the binary feature

vector Vij . Vij is based on the local argument
features between the tokens i and ij from (Li et
al., 2013). Bij is then computed by feeding Vij
into a feed-forward neural network F binary for
further abstraction: Bij = F binary(Vij).
• Garg

i−1[j] and Garg/trg
i−1 [j]: the memory vectors for

ej that are extracted out of the memory matri-
ces Garg

i−1 and Garg/trg
i−1 from the previous step.

In the next step, we again use a feed-
forward neural network F arg with a soft-

max layer in the end to transform R
arg
ij =

[hi, hij , L
arg
ij , Bij , G

arg
i−1[j], Garg/trg

i−1 [j]] into the prob-
ability distribution P trg

ij;a over the possible argument
roles: P arg

ij;a = P
arg
ij (l = a) = F

arg
a (Rarg

ij) where
a is an argument role. Eventually, the predicted
argument role forwi and ej is aij = argmaxa(P

arg
ij;a).

Note that the binary vector Vij enriches the fea-
ture representation Rarg

ij for argument labeling with
the discrete structures discovered in the prior work
on feature analysis for EE (Li et al., 2013). These
features include the shortest dependency paths, the
entity types, subtypes, etc.

3.2.3 The Memory Vector/Matrices
An important characteristics of EE is the exis-

tence of the dependencies between trigger labels and
argument roles within the same sentences (Li et al.,
2013). In this work, we encode these dependen-
cies into the memory vectors/matricesGtrg

i ,Garg
i and

G
arg/trg
i (i = 0 to n) and use them as features in

the trigger and argument prediction explicitly (as
shown in the representation vectors Rtrg

i and R
arg
ij

above). We classify the dependencies into the fol-
lowing three categories:

1. The dependencies among trigger subtypes:
are captured by the memory vectors Gtrg

i (Gtrg
i ∈

{0, 1}nT for i = 0, . . . , n, and nT is the number
of the possible trigger subtypes). At time i, Gtrg

i in-
dicates which event subtypes have been recognized
before i. We obtain Gtrg

i from G
trg
i−1 and the trigger

prediction output ti at time i: Gtrg
i [t] = 1 if t = ti

and Gtrg
i−1[t] otherwise.

A motivation for such dependencies is that if a
Die event appears somewhere in the sentences, the
possibility for the later occurrence of an Attack event
would be likely.

2. The dependencies among argument roles:
are encoded by the memory matrix G

arg
i (Garg

i ∈
{0, 1}k×nA for i = 0, . . . , n, and nA is the number
of the possible argument roles). At time i,Garg

i sum-
marizes the argument roles that the entity mentions
has played with some event in the past. In particular,
G

arg
i [j][a] = 1 if and only if ej has the role of a with

some event before time i. G
arg
i is computed from

G
arg
i−1, and the prediction outputs ti and ai1, . . . , aik

at time i: Garg
i [j][a] = 1 if ti 6= “Other” and a = aij ,

and Garg
i−1[j][a] otherwise (for j = 1 to k).

304

3. The dependencies between argument roles
and trigger subtypes: are encoded by the memory
matrixGarg/trg

i (Garg/trg
i ∈ {0, 1}k×nT for i = 0 to n).

At time i, Garg/trg
i specifies which entity mentions

have been identified as arguments for which event
subtypes before. In particular,Garg/trg

i [j][t] = 1 if and
only if ej has been detected as an argument for some
event of subtype t before i. Garg/trg

i is computed from
G

arg/trg
i−1 and the trigger prediction output ti at time i:

G
arg/trg
i [j][t] = 1 if ti 6= “Other” and t = ti, and

G
arg/trg
i−1 [j][t] otherwise (for all j = 1 to k).

3.3 Training
Denote the given trigger subtypes and argument
roles forW in the training time as T = t∗1, t∗2, . . . , t∗n
and A = (a∗ij)

j=1,k
i=1,n . We train the network by min-

imizing the joint negative log-likelihood function C
for triggers and argument roles:

C(T,A,X,E) = − logP (T,A|X,E)
=− logP (T |X,E)− logP (A|T,X,E)

=−
n∑
i=1

logP trg
i;t∗i

−
n∑
i=1

I(ti 6= “Other”)
k∑
j=1

logP arg
ij;a∗ij

where I is the indicator function.
We apply the stochastic gradient descent algo-

rithm with mini-batches and the AdaDelta update
rule (Zeiler, 2012). The gradients are computed us-
ing back-propagation. During training, besides the
weight matrices, we also optimize the word and en-
tity type embedding tables to achieve the optimal
states. Finally, we rescale the weights whose Frobe-
nius norms exceed a hyperparameter (Kim, 2014;
Nguyen and Grishman, 2015a).

4 Word Representation

Following the prior work (Nguyen and Grishman,
2015b; Chen et al., 2015), we pre-train word em-
beddings from a large corpus and employ them to
initialize the word embedding table. One of the
models to train word embeddings have been pro-
posed in Mikolov et al. (2013a; 2013b) that intro-
duce two log-linear models, i.e the continuous bag-

of-words model (CBOW) and the continuous skip-
gram model (SKIP-GRAM). The CBOW model at-
tempts to predict the current word based on the av-
erage of the context word vectors while the SKIP-
GRAM model aims to predict the surrounding words
in a sentence given the current word. In this work,
besides the CBOW and SKIP-GRAM models, we
examine a concatenation-based variant of CBOW
(C-CBOW) to train word embeddings and compare
the three models to understand their effectiveness for
EE. The objective of C-CBOW is to predict the tar-
get word using the concatenation of the vectors of
the words surrounding it.

5 Experiments

5.1 Resources, Parameters and Dataset
For all the experiments below, in the encoding
phase, we use 50 dimensions for the entity type em-
beddings, 300 dimensions for the word embeddings
and 300 units in the hidden layers for the RNNs.

Regarding the prediction phase, we employ the
context window of 2 for the local features, and the
feed-forward neural networks with one hidden layer
for F trg, F arg and F binary (the size of the hidden lay-
ers are 600, 600 and 300 respectively).

Finally, for training, we use the mini-batch size =
50 and the parameter for the Frobenius norms = 3.

These parameter values are either inherited from
the prior research (Nguyen and Grishman, 2015b;
Chen et al., 2015) or selected according to the vali-
dation data.

We pre-train the word embeddings from the
English Gigaword corpus utilizing the word2vec
toolkit4 (modified to add the C-CBOW model). Fol-
lowing Baroni et al. (2014), we employ the context
window of 5, the subsampling of the frequent words
set to 1e-05 and 10 negative samples.

We evaluate the model with the ACE 2005 corpus.
For the purpose of comparison, we use the same data
split as the previous work (Ji and Grishman, 2008;
Liao and Grishman, 2010; Li et al., 2013; Nguyen
and Grishman, 2015b; Chen et al., 2015). This data
split includes 40 newswire articles (672 sentences)
for the test set, 30 other documents (836 sentences)
for the development set and 529 remaining docu-
ments (14,849 sentences) for the training set. Also,

4
https://code.google.com/p/word2vec/

305

we follow the criteria of the previous work (Ji and
Grishman, 2008; Liao and Grishman, 2010; Li et
al., 2013; Chen et al., 2015) to judge the correctness
of the predicted event mentions.

5.2 Memory Vector/Matrices

This section evaluates the effectiveness of the mem-
ory vector and matrices presented in Section 3.2.3.
In particular, we test the joint model on different
cases where the memory vector for triggers Gtrg and
the memory matrices for arguments Garg/trg and Garg

are included or excluded from the model. As there
are 4 different ways to combine Garg/trg and Garg for
argument labeling and two options to to employGtrg

or not for trigger labeling, we have 8 systems for
comparison in total. Table 1 reports the identifica-
tion and classification performance (F1 scores) for
triggers and argument roles on the development set.
Note that we are using the word embeddings trained
with the C-CBOW technique in this section.

System No Garg/trg Garg Garg/trg+Garg

No Trigger 67.9 68.0 64.6 64.2
Argument 55.6 58.1 55.2 53.1

Gtrg Trigger 63.8 61.0 61.3 66.8
Argument 55.2 56.6 54.7 53.6

Table 1: Performance of the Memory Vector/Matrices
on the development set. No means not using the memory
vector/matrices.

We observe that the memory vector Gtrg is not
helpful for the joint model as it worsens both trig-
ger and argument role performance (considering the
same choice of the memory matrices Garg/trg and
Garg (i.e, the same row in the table) and except in
the row with Garg/trg +Garg).

The clearest trend is that Garg/trg is very effective
in improving the performance of argument labeling.
This is true in both the inclusion and exclusion of
Gtrg. Garg and its combination with Garg/trg, on the
other hand, have negative effect on this task. Finally,
Garg/trg and Garg do not contribute much to the trig-
ger labeling performance in general (except in the
case where Gt, Garg/trg and Garg are all applied).

These observations suggest that the dependencies
among trigger subtypes and among argument roles
are not strong enough to be helpful for the joint
model in this dataset. This is in contrast to the de-

pendencies between argument roles and trigger sub-
types that improve the joint model significantly.

The best system corresponds to the application of
the memory matrixGarg/trg and will be used in all the
experiments below.

5.3 Word Embedding Evaluation

We investigate different techniques to obtain the pre-
trained word embeddings for initialization in the
joint model of EE. Table 2 presents the performance
(for both triggers and argument roles) on the devel-
opment set when the CBOW, SKIP-GRAM and C-
CBOW techniques are utilized to obtain word em-
beddings from the same corpus. We also report the
performance of the joint model when it is initialized
with the Word2Vec word embeddings from Mikolov
et al. (2013a; 2013b) (trained with the Skip-gram
model on Google News) (WORD2VEC). Finally,
for comparison, the performance of the random
word embeddings (RANDOM) is also included. All
of these word embeddings are updated during the
training of the model.

Word Embeddings Trigger Argument
RANDOM 59.9 50.1
SKIP-GRAM 66.7 57.1
CBOW 66.5 53.8
WORD2VEC 66.9 56.4
C-CBOW 68.0 58.1

Table 2: Performance of the Word Embedding Tech-
niques.

The first observation from the table is that RAN-
DOM is not good enough to initialize the word em-
beddings for joint EE and we need to borrow some
pre-trained word embeddings for this purpose. Sec-
ond, SKIP-GRAM, WORD2VEC and CBOW have
comparable performance on trigger labeling while
the argument labeling performance of SKIP-GRAM
and WORD2VEC is much better than that of CBOW
for the joint EE model. Third and most importantly,
among the compared word embeddings, it is clear
that C-CBOW significantly outperforms all the oth-
ers. We believe that the better performance of C-
CBOW stems from its concatenation of the multi-
ple context word vectors, thus providing more infor-
mation to learn better word embeddings than SKIP-
GRAM and WORD2VEC. In addition, the concate-

306

Model Trigger Trigger Identification Argument Argument
Identification (%) + Classification (%) Identification (%) Role (%)
P R F P R F P R F P R F

Li’s basline 76.2 60.5 67.4 74.5 59.1 65.9 74.1 37.4 49.7 65.4 33.1 43.9
Liao’s cross-event† N/A 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Hong’s cross-entity† N/A 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
Li’s structure 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
JRNN 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4

Table 3: Overall Performance on the Blind Test Data. “†” designates the systems that employ the evidences beyond
sentence level.

nation mechanism essentially helps to assign differ-
ent weights to different context words, thereby be-
ing more flexible than CBOW that applies a single
weight for all the context words.

From now on, for consistency, C-CBOW would
be utilized in all the following experiments.

5.4 Comparison to the State of the art

The state-of-the-art systems for EE on the ACE 2005
dataset have been the pipelined system with dy-
namic multi-pooling convolutional neural networks
by Chen et al. (2015) (DMCNN) and the joint sys-
tem with structured prediction and various discrete
local and global features by Li et al. (2013) (Li’s
structure).

Note that the pipelined system in Chen et al.
(2015) is also the best-reported system based on
neural networks for EE. Table 3 compares these
state-of-the-art systems with the joint RNN-based
model in this work (denoted by JRNN). For com-
pleteness, we also report the performance of the fol-
lowing representative systems:

1) Li’s baseline: This is the pipelined system with
local features by Li et al. (2013).

2) Liao’s cross event: is the system by Liao and
Grishman (2010) with the document-level informa-
tion.

3) Hong’s cross-entity (Hong et al., 2011): This
system exploits the cross-entity inference, and is
also the best-reported pipelined system with discrete
features in the literature.

From the table, we see that JRNN achieves the
best F1 scores (for both trigger and argument la-
beling) among all of the compared models. This
is significant with the argument role labeling per-

formance (an improvement of 1.9% over the best-
reported model DMCNN in Chen et al. (2015)),
and demonstrates the benefit of the joint model with
RNNs and memory features in this work. In ad-
dition, as JRNN significantly outperforms the joint
model with discrete features in Li et al. (2013) (an
improvement of 1.8% and 2.7% for trigger and ar-
gument role labeling respectively), we can confirm
the effectiveness of RNNs to learn effective feature
representations for EE.

5.5 Sentences with Multiple Events

In order to further prove the effectiveness of JRNN,
especially for those sentences with multiple events,
we divide the test data into two parts according to
the number of events in the sentences (i.e, single
event and multiple events) and evaluate the perfor-
mance separately, following Chen et al. (2015). Ta-
ble 4 shows the performance (F1 scores) of JRNN,
DMCNN and two other baseline systems, named
Embeddings+T and CNN in Chen et al. (2015).
Embeddings+T uses word embeddings and the tra-
ditional sentence-level features in (Li et al., 2013)
while CNN is similar to DMCNN, except that it ap-
plies the standard pooling mechanism instead of the
dynamic multi-pooling method (Chen et al., 2015).

The most important observation from the table is
that JRNN significantly outperforms all the other
methods with large margins when the input sen-
tences contain more than one events (i.e, the row la-
beled with 1/N in the table). In particular, JRNN
is 13.9% better than DMCNN on trigger labeling
while the corresponding improvement for argument
role labeling is 6.5%, thereby further suggesting the
benefit of JRNN with the memory features. Regard-

307

Stage Model 1/1 1/N all
Embedding+T 68.1 25.5 59.8

Trigger CNN 72.5 43.1 66.3
DMCNN 74.3 50.9 69.1

JRNN 75.6 64.8 69.3
Embedding+T 37.4 15.5 32.6

Argument CNN 51.6 36.6 48.9
DMCNN 54.6 48.7 53.5

JRNN 50.0 55.2 55.4
Table 4: System Performance on Single Event Sentences
(1/1) and Multiple Event Sentences (1/N).

ing the performance on the single event sentences,
JRNN is still the best system on trigger labeling al-
though it is worse than DMCNN on argument role
labeling. This can be partly explained by the fact
that DMCNN includes the position embedding fea-
tures for arguments and the memory matrix Garg/trg

in JRNN is not functioning in this single event case.

6 Related Work

Early research on event extraction has primarily fo-
cused on local sentence-level representations in a
pipelined architecture (Grishman et al., 2005; Ahn,
2006). After that, higher level features has been in-
vestigated to improve the performance (Ji and Gr-
ishman, 2008; Gupta and Ji, 2009; Patwardhan and
Riloff, 2009; Liao and Grishman, 2010; Liao and
Grishman, 2011; Hong et al., 2011; McClosky et al.,
2011; Huang and Riloff, 2012; Li et al., 2013). Be-
sides, some recent research has proposed joint mod-
els for EE, including the methods based on Markov
Logic Networks (Riedel et al., 2009; Poon and Van-
derwende, 2010; Venugopal et al., 2014), structured
perceptron (Li et al., 2013; Li et al., 2014b), and dual
decomposition (Riedel et al. (2009; 2011a; 2011b)).

The application of neural networks to EE is very
recent. In particular, Nguyen and Grishman (2015b)
study domain adaptation and event detection via
CNNs while Chen et al. (2015) apply dynamic
multi-pooling CNNs for EE in a pipelined frame-
work. However, none of these work utilizes RNNs
to perform joint EE as we do in this work.

7 Conclusion

We present a joint model to do EE based on bidirec-
tional RNN to overcome the limitation of the previ-

ous models for this task. We introduce the memory
matrix that can effectively capture the dependencies
between argument roles and trigger subtypes. We
demonstrate that the concatenation-based variant of
the CBOW word embeddings is very helpful for the
joint model. The proposed joint model is empiri-
cally shown to be effective on the sentences with
multiple events as well as yields the state-of-the-art
performance on the ACE 2005 dataset. In the fu-
ture, we plan to apply this joint model on the event
argument extraction task of the KBP evaluation as
well as extend it to other joint tasks such as mention
detection together with relation extraction etc.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In ACL.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradient
descent is difficult. In Journal of Machine Learning
Research 3.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. In Journal of Machine Learning Re-
search 3.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In ACL-
IJCNLP.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In EMNLP.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. In arXiv preprint arXiv:1412.3555.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: deep neural
networks with multitask learning. In ICML.

Felix Gers. 2001. Long short-term memory in recurrent
neural networks. In PhD Thesis.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyus english ace 2005 system description. In
ACE 2005 Evaluation Workshop.

308

Prashant Gupta and Heng Ji. 2009. Predicting unknown
time arguments based on cross-event propagation. In
ACL-IJCNLP.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. In Neural Computation.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction. In
ACL.

Ruihong Huang and Ellen Riloff. 2012. Modeling tex-
tual cohesion for event extraction. In AAAI.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In ICML.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In EMNLP.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In ACL.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014b.
Constructing information networks using one single
model. In EMNLP.

Shasha Liao and Ralph Grishman. 2010. Using docu-
ment level cross-event inference to improve event ex-
traction. In ACL.

Shasha Liao and Ralph Grishman. 2011. Acquiring topic
features to improve event extraction: in pre-selected
and balanced collections. In RANLP.

David McClosky, Mihai Surdeanu, and Christopher Man-
ning. 2011. Event extraction as dependency parsing.
In BioNLP Shared Task Workshop.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In ICLR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
NIPS.

Thien Huu Nguyen and Ralph Grishman. 2015a. Rela-
tion extraction: Perspective from convolutional neural
networks. In The NAACL Workshop on Vector Space
Modeling for NLP (VSM).

Thien Huu Nguyen and Ralph Grishman. 2015b. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP.

Siddharth Patwardhan and Ellen Riloff. 2009. A unified
model of phrasal and sentential evidence for informa-
tion extraction. In EMNLP.

Hoifung Poon and Lucy Vanderwende. 2010. Joint in-
ference for knowledge extraction from biomedical lit-
erature. In NAACL-HLT.

Sebastian Riedel and Andrew McCallum. 2011a. Fast
and robust joint models for biomedical event extrac-
tion. In EMNLP.

Sebastian Riedel and Andrew McCallum. 2011b. Robust
biomedical event extraction with dual decomposition
and minimal domain adaptation. In BioNLP Shared
Task 2011 Workshop.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Takagi,
and Jun’ichi Tsujii. 2009. A markov logic approach
to bio-molecular event extraction. In BioNLP 2009
Workshop.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In ACL.

Deepak Venugopal, Chen Chen, Vibhav Gogate, and Vin-
cent Ng. 2014. Relieving the computational bottle-
neck: Joint inference for event extraction with high-
dimensional features. In EMNLP.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. In CoRR, abs/1212.5701.

309

Proceedings of NAACL-HLT 2016, pages 310–320,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Top-down Tree Long Short-Term Memory Networks

Xingxing Zhang, Liang Lu and Mirella Lapata
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

{x.zhang,liang.lu}@ed.ac.uk,mlap@inf.ed.ac.uk

Abstract

Long Short-Term Memory (LSTM) networks,
a type of recurrent neural network with a
more complex computational unit, have been
successfully applied to a variety of sequence
modeling tasks. In this paper we develop Tree
Long Short-Term Memory (TREELSTM), a
neural network model based on LSTM, which
is designed to predict a tree rather than a lin-
ear sequence. TREELSTM defines the prob-
ability of a sentence by estimating the gener-
ation probability of its dependency tree. At
each time step, a node is generated based
on the representation of the generated sub-
tree. We further enhance the modeling power
of TREELSTM by explicitly representing the
correlations between left and right depen-
dents. Application of our model to the MSR
sentence completion challenge achieves re-
sults beyond the current state of the art. We
also report results on dependency parsing
reranking achieving competitive performance.

1 Introduction

Neural language models have been gaining increas-
ing attention as a competitive alternative to n-grams.
The main idea is to represent each word using a
real-valued feature vector capturing the contexts in
which it occurs. The conditional probability of the
next word is then modeled as a smooth function of
the feature vectors of the preceding words and the
next word. In essence, similar representations are
learned for words found in similar contexts result-
ing in similar predictions for the next word. Previ-
ous approaches have mainly employed feed-forward

(Bengio et al., 2003; Mnih and Hinton, 2007) and
recurrent neural networks (Mikolov et al., 2010;
Mikolov, 2012) in order to map the feature vec-
tors of the context words to the distribution for the
next word. Recently, RNNs with Long Short-Term
Memory (LSTM) units (Hochreiter and Schmidhu-
ber, 1997; Hochreiter, 1998) have emerged as a pop-
ular architecture due to their strong ability to capture
long-term dependencies. LSTMs have been success-
fully applied to a variety of tasks ranging from ma-
chine translation (Sutskever et al., 2014), to speech
recognition (Graves et al., 2013), and image descrip-
tion generation (Vinyals et al., 2015).

Despite superior performance in many applica-
tions, neural language models essentially predict se-
quences of words. Many NLP tasks, however, ex-
ploit syntactic information operating over tree struc-
tures (e.g., dependency or constituent trees). In this
paper we develop a novel neural network model
which combines the advantages of the LSTM archi-
tecture and syntactic structure. Our model estimates
the probability of a sentence by estimating the gen-
eration probability of its dependency tree. Instead
of explicitly encoding tree structure as a set of fea-
tures, we use four LSTM networks to model four
types of dependency edges which altogether specify
how the tree is built. At each time step, one LSTM is
activated which predicts the next word conditioned
on the sub-tree generated so far. To learn the repre-
sentations of the conditioned sub-tree, we force the
four LSTMs to share their hidden layers. Our model
is also capable of generating trees just by sampling
from a trained model and can be seamlessly inte-
grated with text generation applications.

310

Our approach is related to but ultimately differ-
ent from recursive neural networks (Pollack, 1990)
a class of models which operate on structured in-
puts. Given a (binary) parse tree, they recursively
generate parent representations in a bottom-up fash-
ion, by combining tokens to produce representations
for phrases, and eventually the whole sentence. The
learned representations can be then used in classi-
fication tasks such as sentiment analysis (Socher et
al., 2011b) and paraphrase detection (Socher et al.,
2011a). Tai et al. (2015) learn distributed representa-
tions over syntactic trees by generalizing the LSTM
architecture to tree-structured network topologies.
The key feature of our model is not so much that
it can learn semantic representations of phrases or
sentences, but its ability to predict tree structure and
estimate its probability.

Syntactic language models have a long history
in NLP dating back to Chelba and Jelinek (2000)
(see also Roark (2001) and Charniak (2001)). These
models differ in how grammar structures in a parsing
tree are used when predicting the next word. Other
work develops dependency-based language models
for specific applications such as machine translation
(Shen et al., 2008; Zhang, 2009; Sennrich, 2015),
speech recognition (Chelba et al., 1997) or sentence
completion (Gubbins and Vlachos, 2013). All in-
stances of these models apply Markov assumptions
on the dependency tree, and adopt standard n-gram
smoothing methods for reliable parameter estima-
tion. Emami et al. (2003) and Sennrich (2015) esti-
mate the parameters of a structured language model
using feed-forward neural networks (Bengio et al.,
2003). Mirowski and Vlachos (2015) re-implement
the model of Gubbins and Vlachos (2013) with
RNNs. They view sentences as sequences of words
over a tree. While they ignore the tree structures
themselves, we model them explicitly.

Our model shares with other structured-based lan-
guage models the ability to take dependency infor-
mation into account. It differs in the following re-
spects: (a) it does not artificially restrict the depth
of the dependencies it considers and can thus be
viewed as an infinite order dependency language
model; (b) it not only estimates the probability of a
string but is also capable of generating dependency
trees; (c) finally, contrary to previous dependency-
based language models which encode syntactic in-

formation as features, our model takes tree structure
into account more directly via representing different
types of dependency edges explicitly using LSTMs.
Therefore, there is no need to manually determine
which dependency tree features should be used or
how large the feature embeddings should be.

We evaluate our model on the MSR sentence com-
pletion challenge, a benchmark language modeling
dataset. Our results outperform the best published
results on this dataset. Since our model is a general
tree estimator, we also use it to rerank the top K de-
pendency trees from the (second order) MSTPasrser
and obtain performance on par with recently pro-
posed dependency parsers.

2 Tree Long Short-Term Memory
Networks

We seek to estimate the probability of a sentence by
estimating the generation probability of its depen-
dency tree. Syntactic information in our model is
represented in the form of dependency paths. In the
following, we first describe our definition of depen-
dency path and based on it explain how the proba-
bility of a sentence is estimated.

2.1 Dependency Path

Generally speaking, a dependency path is the path
between ROOT and w consisting of the nodes on
the path and the edges connecting them. To rep-
resent dependency paths, we introduce four types
of edges which essentially define the “shape” of a
dependency tree. Let w0 denote a node in a tree
and w1,w2, . . . ,wn its left dependents. As shown in
Figure 1, LEFT edge is the edge between w0 and
its first left dependent denoted as (w0,w1). Let wk
(with 1< k ≤ n) denote a non-first left dependent
of w0. The edge from wk−1 to wk is a NX-LEFT

edge (NX stands for NEXT), where wk−1 is the right
adjacent sibling of wk. Note that the NX-LEFT edge
(wk−1,wk) replaces edge (w0,wk) (illustrated with a
dashed line in Figure 1) in the original dependency
tree. The modification allows information to flow
from w0 to wk through w1, . . . ,wk−1 rather than di-
rectly from w0 to wk. RIGHT and NX-RIGHT edges
are defined analogously for right dependents.

Given these four types of edges, dependency
paths (denoted as D(w)) can be defined as follows

311

w0

w1wk−1wkwn LEFT

NX-LEFT
Figure 1: LEFT and NX-LEFT edges. Dotted line between

w1 and wk−1 (also between wk and wn) indicate that there may

be ≥ 0 nodes inbetween.

bearing in mind that the first right dependent of
ROOT is its only dependent and that wp denotes the
parent of w. We use (. . .) to denote a sequence,
where () is an empty sequence and ‖ is an operator
for concatenating two sequences.

(1) if w is ROOT, then D(w) = ()
(2) if w is a left dependent of wp

(a) if w is the first left dependent, then
D(w) = D(wp)‖(〈wp,LEFT〉)

(b) if w is not the first left dependent and ws is
its right adjacent sibling, then
D(w) = D(ws)‖(〈ws,NX-LEFT〉)

(3) if w is a right dependent of wp

(a) if w is the first right dependent, then
D(w) = D(wp)‖(〈wp,RIGHT〉)

(b) if w is not the first right dependent and ws

is its left adjacent sibling, then
D(w) = D(ws)‖(〈ws,NX-RIGHT〉)

A dependency tree can be represented by the set of
its dependency paths which in turn can be used to
reconstruct the original tree.1

Dependency paths for the first two levels
of the tree in Figure 2 are as follows (ig-
noring for the moment the subscripts which
we explain in the next section). D(sold) =
(〈ROOT,RIGHT〉) (see definitions (1) and (3a)),
D(year) = D(sold)‖(〈sold,LEFT〉) (see (2a)),
D(manufacturer) = D(year)‖(〈year,NX-LEFT〉)
(see (2b)), D(cars) = D(sold)‖(〈sold,RIGHT〉)
(see (3a)), D(in) = D(cars)‖(〈cars,NX-RIGHT〉)
(according to (3b)).

2.2 Tree Probability
The core problem in syntax-based language model-
ing is to estimate the probability of sentence S given

1Throughout this paper we assume all dependency trees are
projective.

ROOT

sold1

manufacturer3

The9 luxury8 auto7

year2

last6

cars4

1,21410

in5

U.S.11

the12

Figure 2: Dependency tree of the sentence The luxury auto

manufacturer last year sold 1,214 cars in the U.S. Subscripts

indicate breadth-first traversal. ROOT has only one dependent

(i.e., sold) which we view as its first right dependent.

its corresponding tree T , P(S|T). We view the prob-
ability computation of a dependency tree as a gener-
ation process. Specifically, we assume dependency
trees are constructed top-down, in a breadth-first
manner. Generation starts at the ROOT node. For
each node at each level, first its left dependents are
generated from closest to farthest and then the right
dependents (again from closest to farthest). The
same process is applied to the next node at the same
level or a node at the next level. Figure 2 shows the
breadth-first traversal of a dependency tree.

Under the assumption that each word w in a de-
pendency tree is only conditioned on its dependency
path, the probability of a sentence S given its depen-
dency tree T is:

P(S|T) = ∏
w∈BFS(T)\ROOT

P(w|D(w)) (1)

where D(w) is the dependency path of w. Note that
each word w is visited according to its breadth-first
search order (BFS(T)) and the probability of ROOT

is ignored since every tree has one. The role of
ROOT in a dependency tree is the same as the begin
of sentence token (BOS) in a sentence. When com-
puting P(S|T) (or P(S)), the probability of ROOT (or
BOS) is ignored (we assume it always exists), but is
used to predict other words. We explain in the next
section how TREELSTM estimates P(w|D(w)).

2.3 Tree LSTMs
A dependency path D(w) is subtree which we de-
note as a sequence of 〈word, edge-type〉 tuples. Our

312

w0

w1w2w3 w4 w5 w6

Generated by four LSTMs with tied We and tied Who

w0

w1w2w3

w0w1w2

w4 w5 w6

w0 w4 w5

G
EN-L

GEN-NX-LGEN-NX-L

GEN-R

GEN-NX-R GEN-NX-R

Figure 3: Generation process of left (w1,w2,w3) and right

(w4,w5,w6) dependents of tree node wo (top) using four LSTMs

(GEN-L, GEN-R, GEN-NX-L and GEN-NX-R). The model can

handle an arbitrary number of dependents due to GEN-NX-L

and GEN-NX-R.

innovation is to learn the representation of D(w) us-
ing four LSTMs. The four LSTMs (GEN-L, GEN-
R, GEN-NX-L and GEN-NX-R) are used to repre-
sent the four types of edges (LEFT, RIGHT, NX-
LEFT and NX-RIGHT) introduced earlier. GEN,
NX, L and R are shorthands for GENERATE, NEXT,
LEFT and RIGHT. At each time step, an LSTM is
chosen according to an edge-type; then the LSTM
takes a word as input and predicts/generates its de-
pendent or sibling. This process can be also viewed
as adding an edge and a node to a tree. Specifi-
cally, LSTMs GEN-L and GEN-R are used to gen-
erate the first left and right dependent of a node
(w1 and w4 in Figure 3). So, these two LSTMs
are responsible for going deeper in a tree. While
GEN-NX-L and GEN-NX-R generate the remain-
ing left/right dependents and therefore go wider in
a tree. As shown in Figure 3, w2 and w3 are gener-
ated by GEN-NX-L, whereas w5 and w6 are gener-
ated by GEN-NX-R. Note that the model can handle
any number of left or right dependents by applying
GEN-NX-L or GEN-NX-R multiple times.

We assume time steps correspond to the steps
taken by the breadth-first traversal of the depen-
dency tree and the sentence has length n. At
time step t (1 ≤ t ≤ n), let 〈wt ′ ,zt〉 denote the last
tuple in D(wt). Subscripts t and t ′ denote the
breadth-first search order of wt and wt ′ , respectively.
zt ∈ {LEFT,RIGHT,NX-LEFT,NX-RIGHT} is the
edge type (see the definitions in Section 2.1). Let
We ∈Rs×|V | denote the word embedding matrix and

Who ∈R|V |×d the output matrix of our model, where
|V | is the vocabulary size, s the word embedding size
and d the hidden unit size. We use tied We and tied
Who for the four LSTMs to reduce the number of pa-
rameters in our model. The four LSTMs also share
their hidden states. Let H ∈ Rd×(n+1) denote the
shared hidden states of all time steps and e(wt) the
one-hot vector of wt . Then, H[:, t] represents D(wt)
at time step t, and the computation2 is:

xt = We · e(wt ′) (2a)

ht = LSTMzt (xt ,H[:, t ′]) (2b)

H[:, t] = ht (2c)

yt = Who ·ht (2d)

where the initial hidden state H[:,0] is initialized to
a vector of small values such as 0.01. According to
Equation (2b), the model selects an LSTM based on
edge type zt . We describe the details of LSTMzt in
the next paragraph. The probability of wt given its
dependency path D(wt) is estimated by a softmax
function:

P(wt |D(wt)) =
exp(yt,wt)

∑|V |k′=1 exp(yt,k′)
(3)

We must point out that although we use four jointly
trained LSTMs to encode the hidden states, the train-
ing and inference complexity of our model is no dif-
ferent from a regular LSTM, since at each time step
only one LSTM is working.

We implement LSTMz in Equation (2b) using a
deep LSTM (to simplify notation, from now on we
write z instead of zt). The inputs at time step t
are xt and ht ′ (the hidden state of an earlier time
step t ′) and the output is ht (the hidden state of cur-
rent time step). Let L denote the layer number of
LSTMz and ĥl

t the internal hidden state of the l-th
layer of the LSTMz at time step t, where xt is ĥ0

t and
ht ′ is ĥL

t ′ . The LSTM architecture introduces mul-
tiplicative gates and memory cells ĉl

t (at l-th layer)
in order to address the vanishing gradient problem
which makes it difficult for the standard RNN model
to learn long-distance correlations in a sequence.
Here, ĉl

t is a linear combination of the current input
signal ut and an earlier memory cell ĉl

t ′ . How much
input information ut will flow into ĉl

t is controlled
2We ignore all bias terms for notational simplicity.

313

w0

w0w1w2

w4 w5 w6

w0 w4 w5

G
EN-L

GEN-NX-LGEN-NX-L

GEN-R

GEN-NX-R GEN-NX-R

w1w2w3

LD LD

Figure 4: Generation of left and right dependents of node w0

according to LDTREELSTM.

by input gate it and how much of the earlier mem-
ory cell ĉl

t ′ will be forgotten is controlled by forget
gate ft . This process is computed as follows:

ut = tanh(Wz,l
ux · ĥl−1

t +Wz,l
uh · ĥl

t ′) (4a)

it = σ(Wz,l
ix · ĥl−1

t +Wz,l
ih · ĥl

t ′) (4b)

ft = σ(Wz,l
f x · ĥl−1

t +Wz,l
f h · ĥl

t ′) (4c)

ĉl
t = ft � ĉl

t ′ + it �ut (4d)

where Wz,l
ux ∈ Rd×d (Wz,l

ux ∈ Rd×s when l = 1) and
Wz,l

uh ∈ Rd×d are weight matrices for ut , Wz,l
ix and

Wz,l
ih are weight matrices for it and Wz,l

f x, and Wz,l
f h

are weight matrices for ft . σ is a sigmoid function
and � the element-wise product.

Output gate ot controls how much information of
the cell ĉl

t can be seen by other modules:

ot = σ(Wz,l
ox · ĥl−1

t +Wz,l
oh · ĥl

t ′) (5a)

ĥl
t = ot � tanh(ĉl

t) (5b)

Application of the above process to all layers L, will
yield ĥL

t , which is ht . Note that in implementation,
all ĉl

t and ĥl
t (1 ≤ l ≤ L) at time step t are stored,

although we only care about ĥL
t (ht).

2.4 Left Dependent Tree LSTMs
TREELSTM computes P(w|D(w)) based on the de-
pendency path D(w), which ignores the interaction
between left and right dependents on the same level.
In many cases, TREELSTM will use a verb to pre-
dict its object directly without knowing its subject.
For example, in Figure 2, TREELSTM uses 〈ROOT,
RIGHT〉 and 〈 sold, RIGHT 〉 to predict cars. This in-
formation is unfortunately not specific to cars (many
things can be sold, e.g., chocolates, candy). Consid-
ering manufacturer, the left dependent of sold would
help predict cars more accurately.

In order to jointly take left and right dependents
into account, we employ yet another LSTM, which
goes from the furthest left dependent to the closest
left dependent (LD is a shorthand for left depen-
dent). As shown in Figure 4, LD LSTM learns the
representation of all left dependents of a node w0;
this representation is then used to predict the first
right dependent of the same node. Non-first right de-
pendents can also leverage the representation of left
dependents, since this information is injected into
the hidden state of the first right dependent and can
percolate all the way. Note that in order to retain the
generation capability of our model (Section 3.4), we
only allow right dependents to leverage left depen-
dents (they are generated before right dependents).

The computation of the LDTREELSTM is al-
most the same as in TREELSTM except when
zt = GEN-R. In this case, let vt be the cor-
responding left dependent sequence with length
K (vt = (w3,w2,w1) in Figure 4). Then, the hidden
state (qk) of vt at each time step k is:

mk = We · e(vt,k) (6a)

qk = LSTMLD(mk,qk−1) (6b)

where qK is the representation for all left depen-
dents. Then, the computation of the current hid-
den state becomes (see Equation (2) for the original
computation):

rt =
[

We · e(wt ′)
qK

]
(7a)

ht = LSTMGEN-R(rt ,H[:, t ′]) (7b)

where qK serves as additional input for LSTMGEN-R.
All other computational details are the same as in
TreeLSTM (see Section 2.3).

2.5 Model Training
On small scale datasets we employ Negative Log-
likelihood (NLL) as our training objective for both
TREELSTM and LDTREELSTM:

LNLL(θ) =− 1
|S | ∑S∈S

logP(S|T) (8)

where S is a sentence in the training set S , T is the
dependency tree of S and P(S|T) is defined as in
Equation (1).

314

On large scale datasets (e.g., with vocabulary
size of 65K), computing the output layer activa-
tions and the softmax function with NLL would
become prohibitively expensive. Instead, we em-
ploy Noise Contrastive Estimation (NCE; Gutmann
and Hyvärinen (2012), Mnih and Teh (2012)) which
treats the normalization term Ẑ in P̂(w|D(wt)) =
exp(Who[w,:]·ht)

Ẑ
as constant. The intuition behind NCE

is to discriminate between samples from a data dis-
tribution P̂(w|D(wt)) and a known noise distribu-
tion Pn(w) via binary logistic regression. Assuming
that noise words are k times more frequent than real
words in the training set (Mnih and Teh, 2012), then
the probability of a word w being from our model
Pd(w,D(wt)) is P̂(w|D(wt))

P̂(w|D(wt))+kPn(w) . We apply NCE to
large vocabulary models with the following training
objective:

LNCE(θ) =− 1
|S | ∑

T∈S

|T |
∑
t=1

(
logPd(wt ,D(wt))

+
k

∑
j=1

log[1−Pd(w̃t, j,D(wt))]
)

where w̃t, j is a word sampled from the noise distri-
bution Pn(w). We use smoothed unigram frequen-
cies (exponentiating by 0.75) as the noise distribu-
tion Pn(w) (Mikolov et al., 2013b). We initialize
ln Ẑ = 9 as suggested in Chen et al. (2015), but in-
stead of keeping it fixed we also learn Ẑ during train-
ing (Vaswani et al., 2013). We set k = 20.

3 Experiments

We assess the performance of our model on two
tasks: the Microsoft Research (MSR) sentence com-
pletion challenge (Zweig and Burges, 2012), and de-
pendency parsing reranking. We also demonstrate
the tree generation capability of our models. In the
following, we first present details on model train-
ing and then present our results. We implemented
our models using the Torch library (Collobert et
al., 2011) and our code is available at https://
github.com/XingxingZhang/td-treelstm.

3.1 Training Details

We trained our model with back propagation
through time (Rumelhart et al., 1988) on an Nvidia

GPU Card with a mini-batch size of 64. The ob-
jective (NLL or NCE) was minimized by stochastic
gradient descent. Model parameters were uniformly
initialized in [−0.1,0.1]. We used the NCE objec-
tive on the MSR sentence completion task (due to
the large size of this dataset) and the NLL objec-
tive on dependency parsing reranking. We used an
initial learning rate of 1.0 for all experiments and
when there was no significant improvement in log-
likelihood on the validation set, the learning rate was
divided by 2 per epoch until convergence (Mikolov
et al., 2010). To alleviate the exploding gradients
problem, we rescaled the gradient g when the gradi-
ent norm ||g|| > 5 and set g = 5g

||g|| (Pascanu et al.,
2013; Sutskever et al., 2014). Dropout (Srivastava
et al., 2014) was applied to the 2-layer TREELSTM
and LDTREELSTM models. The word embedding
size was set to s = d/2 where d is the hidden unit
size.

3.2 Microsoft Sentence Completion Challenge

The task in the MSR Sentence Completion Chal-
lenge (Zweig and Burges, 2012) is to select the
correct missing word for 1,040 SAT-style test sen-
tences when presented with five candidate comple-
tions. The training set contains 522 novels from
the Project Gutenberg which we preprocessed as fol-
lows. After removing headers and footers from the
files, we tokenized and parsed the dataset into de-
pendency trees with the Stanford Core NLP toolkit
(Manning et al., 2014). The resulting training set
contained 49M words. We converted all words to
lower case and replaced those occurring five times
or less with UNK. The resulting vocabulary size
was 65,346 words. We randomly sampled 4,000
sentences from the training set as our validation set.

The literature describes two main approaches to
the sentence completion task based on word vectors
and language models. In vector-based approaches,
all words in the sentence and the five candidate
words are represented by a vector; the candidate
which has the highest average similarity with the
sentence words is selected as the answer. For lan-
guage model-based methods, the LM computes the
probability of a test sentence with each of the five
candidate words, and picks the candidate comple-
tion which gives the highest probability. Our model
belongs to this class of models.

315

Model d |θ| Accuracy
Word Vector based Models
LSA — — 49.0
Skip-gram 640 102M 48.0
IVLBL 600 96.0M 55.5
Language Models
KN5 — — 40.0
UDepNgram — — 48.3
LDepNgram — — 50.0
RNN 300 48.1M 45.0
RNNME 300 1120M 49.3
depRNN+3gram 100 1014M 53.5
ldepRNN+4gram 200 1029M 50.7
LBL 300 48.0M 54.7
LSTM 300 29.9M 55.00
LSTM 400 40.2M 57.02
LSTM 450 45.3M 55.96
Bidirectional LSTM 200 33.2M 48.46
Bidirectional LSTM 300 50.1M 49.90
Bidirectional LSTM 400 67.3M 48.65
Model Combinations
RNNMEs — — 55.4
Skip-gram + RNNMEs — — 58.9
Our Models
TREELSTM 300 31.6M 55.29
LDTREELSTM 300 32.5M 57.79
TREELSTM 400 43.1M 56.73
LDTREELSTM 400 44.7M 60.67

Table 1: Model accuracy on the MSR sentence completion task.

The results of KN5, RNNME and RNNMEs are reported in

Mikolov (2012), LSA and RNN in Zweig et al. (2012), UDep-

Ngram and LDepNgram in Gubbins and Vlachos (2013), de-

pRNN+3gram and depRNN+4gram in Mirowski and Vlachos

(2015), LBL in Mnih and Teh (2012), Skip-gram and Skip-

gram+RNNMEs in Mikolov et al. (2013a), and IVLBL in Mnih

and Kavukcuoglu (2013); d is the hidden size and |θ| the num-

ber of parameters in a model.

Table 1 presents a summary of our results to-
gether with previoulsy published results. The best
performing word vector model is IVLBL (Mnih and
Kavukcuoglu, 2013) with an accuracy of 55.5, while
the best performing single language model is LBL
(Mnih and Teh, 2012) with an accuracy of 54.7.
Both approaches are based on the log-bilinear lan-
guage model (Mnih and Hinton, 2007). A combi-
nation of several recurrent neural networks and the
skip-gram model holds the state of the art with an
accuracy of 58.9 (Mikolov et al., 2013b). To fairly
compare with existing models, we restrict the layer

Parser Development Test
UAS LAS UAS LAS

MSTParser-2nd 92.20 88.78 91.63 88.44
TREELSTM 92.51 89.07 91.79 88.53
TREELSTM* 92.64 89.09 91.97 88.69
LDTREELSTM 92.66 89.14 91.99 88.69
NN parser* 92.00 89.70 91.80 89.60
S-LSTM* 93.20 90.90 93.10 90.90

Table 2: Performance of TREELSTM and LDTREELSTM on

reranking the top dependency trees produced by the 2nd order

MSTParser (McDonald and Pereira, 2006). Results for the NN

and S-LSTM parsers are reported in Chen and Manning (2014)

and Dyer et al. (2015), respectively. * indicates that the model

is initialized with pre-trained word vectors.

size of our models to 1. We observe that LDTREEL-
STM consistently outperforms TREELSTM, which
indicates the importance of modeling the interac-
tion between left and right dependents. In fact,
LDTREELSTM (d = 400) achieves a new state-of-
the-art on this task, despite being a single model.
We also implement LSTM and bidirectional LSTM
language models.3 An LSTM with d = 400 out-
performs its smaller counterpart (d = 300), however
performance decreases with d = 450. The bidirec-
tional LSTM is worse than the LSTM (see Mnih
and Teh (2012) for a similar observation). The
best performing LSTM is worse than a LDTREEL-
STM (d = 300). The input and output embeddings
(We and Who) dominate the number of parame-
ters in all neural models except for RNNME, de-
pRNN+3gram and ldepRNN+4gram, which include
a ME model that contains 1 billion sparse n-gram
features (Mikolov, 2012; Mirowski and Vlachos,
2015). The number of parameters in TREELSTM
and LDTREELSTM is not much larger compared to
LSTM due to the tied We and Who matrices.

3.3 Dependency Parsing
In this section we demonstrate that our model can
be also used for parse reranking. This is not possi-
ble for sequence-based language models since they
cannot estimate the probability of a tree. We use
our models to rerank the top K dependency trees
produced by the second order MSTParser (McDon-

3LSTMs and BiLSTMs were also trained with NCE
(s = d/2; hyperparameters were tuned on the development set).

316

ald and Pereira, 2006).4 We follow closely the ex-
perimental setup of Chen and Manning (2014) and
Dyer et al. (2015). Specifically, we trained TREEL-
STM and LDTREELSTM on Penn Treebank sec-
tions 2–21. We used section 22 for development and
section 23 for testing. We adopted the Stanford ba-
sic dependency representations (De Marneffe et al.,
2006); part-of-speech tags were predicted with the
Stanford Tagger (Toutanova et al., 2003). We trained
TREELSTM and LDTREELSTM as language mod-
els (singletons were replaced with UNK) and did
not use any POS tags, dependency labels or com-
position features, whereas these features are used in
Chen and Manning (2014) and Dyer et al. (2015).
We tuned d, the number of layers, and K on the de-
velopment set.

Table 2 reports unlabeled attachment scores
(UAS) and labeled attachment scores (LAS) for
the MSTParser, TREELSTM (d = 300, 1 layer,
K = 2), and LDTREELSTM (d = 200, 2 layers,
K = 4). We also include the performance of two
neural network-based dependency parsers; Chen and
Manning (2014) use a neural network classifier to
predict the correct transition (NN parser); Dyer et
al. (2015) also implement a transition-based depen-
dency parser using LSTMs to represent the contents
of the stack and buffer in a continuous space. As can
be seen, both TREELSTM and LDTREELSTM out-
perform the baseline MSTParser, with LDTREEL-
STM performing best. We also initialized the word
embedding matrix We with pre-trained GLOVE vec-
tors (Pennington et al., 2014). We obtained a slight
improvement over TREELSTM (TREELSTM* in
Table 2; d = 200, 2 layer, K = 4) but no im-
provement over LDTREELSTM. Finally, notice that
LDTREELSTM is slightly better than the NN parser
in terms of UAS but worse than the S-LSTM parser.
In the future, we would like to extend our model so
that it takes labeled dependency information into ac-
count.

3.4 Tree Generation

This section demonstrates how to use a trained
LDTREELSTM to generate tree samples. The gen-
eration starts at the ROOT node. At each time step t,
for each node wt , we add a new edge and node to

4http://www.seas.upenn.edu/ strctlrn/MSTParser

Profit widened to $ UNK million , from $ 1.37 billion a year earlier .

ROOT

But Mr. O’Kicki said all industry executives certainly do n’t have to focus now .

ROOT

That would postpone a stock activity in the forefront of the monetary policy .

ROOT

Figure 5: Generated dependency trees with LDTREELSTM

trained on the PTB.

the tree. Unfortunately during generation, we do not
know which type of edge to add. We therefore use
four binary classifiers (ADD-LEFT, ADD-RIGHT,
ADD-NX-LEFT and ADD-NX-RIGHT) to predict
whether we should add a LEFT, RIGHT, NX-LEFT

or NX-RIGHT edge.5 Then when a classifier pre-
dicts true, we use the corresponding LSTM to gener-
ate a new node by sampling from the predicted word
distribution in Equation (3). The four classifiers take
the previous hidden state H[:, t ′] and the output em-
bedding of the current node Who ·e(wt) as features.6

Specifically, we use a trained LDTREELSTM to
go through the training corpus and generate hidden
states and embeddings as input features; the corre-
sponding class labels (true and false) are “read off”
the training dependency trees. We use two-layer rec-
tifier networks (Glorot et al., 2011) as the four clas-
sifiers with a hidden size of 300. We use the same
LDTREELSTM model as in Section 3.3 to gener-
ate dependency trees. The classifiers were trained
using AdaGrad (Duchi et al., 2011) with a learning
rate of 0.01. The accuracies of ADD-LEFT, ADD-
RIGHT, ADD-NX-LEFT and ADD-NX-RIGHT are
94.3%, 92.6%, 93.4% and 96.0%, respectively. Fig-

5It is possible to get rid of the four classifiers by adding
START/STOP symbols when generating left and right depen-
dents as in (Eisner, 1996). We refrained from doing this for
computational reasons. For a sentence with N words, this ap-
proach will lead to 2N additional START/STOP symbols (with
one START and one STOP symbol for each word). Conse-
quently, the computational cost and memory consumption dur-
ing training will be three times as much rendering our model
less scalable.

6The input embeddings have lower dimensions and therefore
result in slightly worse classifiers.

317

ure 5 shows examples of generated trees.

4 Conclusions

In this paper we developed TREELSTM (and
LDTREELSTM), a neural network model architec-
ture, which is designed to predict tree structures
rather than linear sequences. Experimental results
on the MSR sentence completion task show that
LDTREELSTM is superior to sequential LSTMs.
Dependency parsing reranking experiments high-
light our model’s potential for dependency pars-
ing. Finally, the ability of our model to gener-
ate dependency trees holds promise for text gen-
eration applications such as sentence compression
and simplification (Filippova et al., 2015). Although
our experiments have focused exclusively on depen-
dency trees, there is nothing inherent in our formu-
lation that disallows its application to other types of
tree structure such as constituent trees or even tax-
onomies.

Acknowledgments

We would like to thank Adam Lopez, Frank Keller,
Iain Murray, Li Dong, Brian Roark, and the NAACL
reviewers for their valuable feedback. Xingxing
Zhang gratefully acknowledges the financial sup-
port of the China Scholarship Council (CSC). Liang
Lu is funded by the UK EPSRC Programme Grant
EP/I031022/1, Natural Speech Technology (NST).

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proceedings of the 39th Annual
Meeting on Association for Computational Linguis-
tics, pages 124–131. Association for Computational
Linguistics.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling. Computer Speech and Language,
14(4):283–332.

Ciprian Chelba, David Engle, Frederick Jelinek, Vic-
tor Jimenez, Sanjeev Khudanpur, Lidia Mangu, Harry
Printz, Eric Ristad, Ronald Rosenfeld, Andreas Stol-
cke, et al. 1997. Structure and performance of a de-

pendency language model. In EUROSPEECH. Cite-
seer.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar, October. Association for
Computational Linguistics.

X Chen, X Liu, MJF Gales, and PC Woodland. 2015.
Recurrent neural network language model training
with noise contrastive estimation for speech recogni-
tion. In In 40th IEEE International Conference on Ac-
coustics, Speech and Signal Processing, pages 5401–
5405, Brisbane, Australia.

Ronan Collobert, Koray Kavukcuoglu, and Clément
Farabet. 2011. Torch7: A matlab-like environment
for machine learning. In BigLearn, NIPS Workshop,
number EPFL-CONF-192376.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
334–343, Beijing, China, July. Association for Com-
putational Linguistics.

Jason M Eisner. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In Pro-
ceedings of the 16th conference on Computational
linguistics-Volume 1, pages 340–345. Association for
Computational Linguistics.

Ahmad Emami, Peng Xu, and Frederick Jelinek. 2003.
Using a connectionist model in a syntactical based lan-
guage model. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing, pages 372–375, Hong Kong, China.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In
EMNLP, pages 360–368.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 315–323.

318

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 6645–6649. IEEE.

Joseph Gubbins and Andreas Vlachos. 2013. De-
pendency language models for sentence completion.
In EMNLP, pages 1405–1410, Seattle, Washington,
USA, October. Association for Computational Lin-
guistics.

Michael U Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statis-
tics. The Journal of Machine Learning Research,
13(1):307–361.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sepp Hochreiter. 1998. Vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-based Systems, 6(2):107–116.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 55–60.

Ryan T McDonald and Fernando CN Pereira. 2006. On-
line learning of approximate dependency parsing algo-
rithms. In EACL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In
INTERSPEECH 2010, 11th Annual Conference of
the International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Proceedings of the 2013 In-
ternational Conference on Learning Representations,
Scottsdale, Arizona, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Tomas Mikolov. 2012. Statistical Language Models
based on Neural Networks. Ph.D. thesis, Brno Uni-
versity of Technology.

Piotr Mirowski and Andreas Vlachos. 2015. Depen-
dency recurrent neural language models for sentence

completion. In ACL, pages 511–517, Beijing, China,
July. Association for Computational Linguistics.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of the 24th International Conference on
Machine Learning, pages 641–648.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive es-
timation. In Advances in Neural Information Process-
ing Systems 26, pages 2265–2273.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of the 29th International Con-
ference on Machine Learning, pages 1751–1758, Ed-
inburgh, Scotland.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 31st International
Conference on Machine Learning, pages 1310–1318,
Atlanta, Georgia, USA.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. EMNLP, 12:1532–1543.

Jordan B. Pollack. 1990. Recursive distributed represen-
tations. Artificial Intelligence, 1–2(46):77–105.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational linguistics,
27(2):249–276.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling, 5:3.

Rico Sennrich. 2015. Modelling and optimizing on
syntactic n-grams for statistical machine translation.
Transactions of the Association for Computational
Linguistics, 3:169–182.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-08: HLT, pages 577–585, Colum-
bus, Ohio, USA.

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Christopher D. Manning, and Andrew Ng. 2011a. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems, pages 801–809.

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011b.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Proceedings of the 2011
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 151–161, Edinburgh, Scot-
land, UK.

319

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1556–1566,
Beijing, China, July. Association for Computational
Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics on Human Language Technology-Volume 1,
pages 173–180. Association for Computational Lin-
guistics.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale neu-
ral language models improves translation. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1387–1392,
Seattle, Washington, USA.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and tell: A neural image
caption generator. In The IEEE Conference on Com-
puter Vision and Pattern Recognition, Boston, Mas-
sachusetts, USA.

Ying Zhang. 2009. Structured language models for sta-
tistical machine translation. Ph.D. thesis, Johns Hop-
kins University.

Geoffrey Zweig and Chris J.C. Burges. 2012. A chal-
lenge set for advancing language modeling. In Pro-
ceedings of the NAACL-HLT 2012 Workshop: Will
We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT, pages 29–36,
Montréal, Canada.

Geoffrey Zweig, John C Platt, Christopher Meek,
Christopher JC Burges, Ainur Yessenalina, and Qiang
Liu. 2012. Computational approaches to sentence
completion. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 601–610. Association
for Computational Linguistics.

320

Proceedings of NAACL-HLT 2016, pages 321–331,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Recurrent Memory Networks for Language Modeling

Ke Tran Arianna Bisazza Christof Monz
Informatics Institute, University of Amsterdam

Science Park 904, 1098 XH Amsterdam, The Netherlands
{m.k.tran,a.bisazza,c.monz}@uva.nl

Abstract

Recurrent Neural Networks (RNNs) have ob-
tained excellent result in many natural lan-
guage processing (NLP) tasks. However, un-
derstanding and interpreting the source of this
success remains a challenge. In this paper, we
propose Recurrent Memory Network (RMN),
a novel RNN architecture, that not only am-
plifies the power of RNN but also facilitates
our understanding of its internal functioning
and allows us to discover underlying patterns
in data. We demonstrate the power of RMN
on language modeling and sentence comple-
tion tasks. On language modeling, RMN out-
performs Long Short-Term Memory (LSTM)
network on three large German, Italian, and
English dataset. Additionally we perform in-
depth analysis of various linguistic dimen-
sions that RMN captures. On Sentence Com-
pletion Challenge, for which it is essential to
capture sentence coherence, our RMN obtains
69.2% accuracy, surpassing the previous state
of the art by a large margin.1

1 Introduction

Recurrent Neural Networks (RNNs) (Elman, 1990;
Mikolov et al., 2010) are remarkably powerful mod-
els for sequential data. Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997), a spe-
cific architecture of RNN, has a track record of suc-
cess in many natural language processing tasks such
as language modeling (Józefowicz et al., 2015), de-
pendency parsing (Dyer et al., 2015), sentence com-

1Our code and data are available at https://github.
com/ketranm/RMN

pression (Filippova et al., 2015), and machine trans-
lation (Sutskever et al., 2014).

Within the context of natural language process-
ing, a common assumption is that LSTMs are able to
capture certain linguistic phenomena. Evidence sup-
porting this assumption mainly comes from evaluat-
ing LSTMs in downstream applications: Bowman
et al. (2015) carefully design two artificial datasets
where sentences have explicit recursive structures.
They show empirically that while processing the in-
put linearly, LSTMs can implicitly exploit recursive
structures of languages. Filippova et al. (2015) find
that using explicit syntactic features within LSTMs
in their sentence compression model hurts the per-
formance of overall system. They then hypothesize
that a basic LSTM is powerful enough to capture
syntactic aspects which are useful for compression.

To understand and explain which linguistic di-
mensions are captured by an LSTM is non-trivial.
This is due to the fact that the sequences of input
histories are compressed into several dense vectors
by the LSTM’s components whose purposes with re-
spect to representing linguistic information is not ev-
ident. To our knowledge, the only attempt to better
understand the reasons of an LSTM’s performance
and limitations is the work of Karpathy et al. (2015)
by means of visualization experiments and cell acti-
vation statistics in the context of character-level lan-
guage modeling.

Our work is motivated by the difficulty in un-
derstanding and interpreting existing RNN architec-
tures from a linguistic point of view. We propose Re-
current Memory Network (RMN), a novel RNN ar-
chitecture that combines the strengths of both LSTM

321

and Memory Network (Sukhbaatar et al., 2015). In
RMN, the Memory Block component—a variant of
Memory Network—accesses the most recent input
words and selectively attends to words that are rel-
evant for predicting the next word given the current
LSTM state. By looking at the attention distribution
over history words, our RMN allows us not only to
interpret the results but also to discover underlying
dependencies present in the data.

In this paper, we make the following contribu-
tions:

1. We propose a novel RNN architecture that
complements LSTM in language modeling. We
demonstrate that our RMN outperforms com-
petitive LSTM baselines in terms of perplex-
ity on three large German, Italian, and English
datasets.

2. We perform an analysis along various linguis-
tic dimensions that our model captures. This
is possible only because the Memory Block al-
lows us to look into its internal states and its ex-
plicit use of additional inputs at each time step.

3. We show that, with a simple modification,
our RMN can be successfully applied to NLP
tasks other than language modeling. On the
Sentence Completion Challenge (Zweig and
Burges, 2012), our model achieves an impres-
sive 69.2% accuracy, surpassing the previous
state of the art 58.9% by a large margin.

2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) have shown im-
pressive performances on many sequential modeling
tasks due to their ability to encode unbounded input
histories. However, training simple RNNs is diffi-
cult because of the vanishing and exploding gradi-
ent problems (Bengio et al., 1994; Pascanu et al.,
2013). A simple and effective solution for explod-
ing gradients is gradient clipping proposed by Pas-
canu et al. (2013). To address the more challeng-
ing problem of vanishing gradients, several variants
of RNNs have been proposed. Among them, Long
Short-Term Memory (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (Cho et al., 2014)
are widely regarded as the most successful variants.
In this work, we focus on LSTMs because they have

been shown to outperform GRUs on language mod-
eling tasks (Józefowicz et al., 2015). In the follow-
ing, we will detail the LSTM architecture used in
this work.
Long Short-Term Memory
Notation: Throughout this paper, we denote matri-
ces, vectors, and scalars using bold uppercase (e. g.,
W), bold lowercase (e. g., b) and lowercase (e. g.,
α) letters, respectively.

The LSTM used in this work is specified as fol-
lows:

it = sigm(Wxixt + Whiht−1 + bi)
jt = sigm(Wxjxt + Whjht−1 + bj)
f t = sigm(Wxfxt + Whfht−1 + bf)
ot = tanh(Wxoxt + Whoht−1 + bo)
ct = ct−1 � f t + it � jt
ht = tanh(ct)� ot

where xt is the input vector at time step t, ht−1 is the
LSTM hidden state at the previous time step, W∗
and b∗ are weights and biases. The symbol � de-
notes the Hadamard product or element-wise multi-
plication.

Despite the popularity of LSTM in sequential
modeling, its design is not straightforward to justify
and understanding why it works remains a challenge
(Hermans and Schrauwen, 2013; Chung et al., 2014;
Greff et al., 2015; Józefowicz et al., 2015; Karpa-
thy et al., 2015). There have been few recent at-
tempts to understand the components of an LSTM
from an empirical point of view: Greff et al. (2015)
carry out a large-scale experiment of eight LSTM
variants. The results from their 5,400 experimental
runs suggest that forget gates and output gates are
the most critical components of LSTMs. Józefowicz
et al. (2015) conduct and evaluate over ten thousand
RNN architectures and find that the initialization of
the forget gate bias is crucial to the LSTM’s perfor-
mance. While these findings are important to help
choosing appropriate LSTM architectures, they do
not shed light on what information is captured by
the hidden states of an LSTM.

Bowman et al. (2015) show that a vanilla LSTM,
such as described above, performs reasonably well
compared to a recursive neural network (Socher et
al., 2011) that explicitly exploits tree structures on

322

two artificial datasets. They find that LSTMs can
effectively exploit recursive structure in the artifi-
cial datasets. In contrast to these simple datasets
containing a few logical operations in their exper-
iments, natural languages exhibit highly complex
patterns. The extent to which linguistic assumptions
about syntactic structures and compositional seman-
tics are reflected in LSTMs is rather poorly under-
stood. Thus it is desirable to have a more principled
mechanism allowing us to inspect recurrent architec-
tures from a linguistic perspective. In the following
section, we propose such a mechanism.

3 Recurrent Memory Network

It has been demonstrated that RNNs can retain in-
put information over a long period. However, exist-
ing RNN architectures make it difficult to analyze
what information is exactly retained at their hidden
states at each time step, especially when the data has
complex underlying structures, which is common in
natural language. Motivated by this difficulty, we
propose a novel RNN architecture called Recurrent
Memory Network (RMN). On linguistic data, the
RMN allows us not only to qualify which linguis-
tic information is preserved over time and why this
is the case but also to discover dependencies within
the data (Section 5). Our RMN consists of two com-
ponents: an LSTM and a Memory Block (MB) (Sec-
tion 3.1). The MB takes the hidden state of the
LSTM and compares it to the most recent inputs
using an attention mechanism (Gregor et al., 2015;
Bahdanau et al., 2014; Graves et al., 2014). Thus,
analyzing the attention weights of a trained model
can give us valuable insight into the information that
is retained over time in the LSTM.

In the following, we describe in detail the MB ar-
chitecture and the combination of the MB and the
LSTM to form an RMN.

3.1 Memory Block

The Memory Block (Figure 1) is a variant of Mem-
ory Network (Sukhbaatar et al., 2015) with one hop
(or a single-layer Memory Network). At time step t,
the MB receives two inputs: the hidden state ht of
the LSTM and a set {xi} of n most recent words
including the current word xt. We refer to n as
the memory size. Internally, the MB consists of

softmax

{xi}

hm

h

P

mi

ci

⇥

g

Figure 1: A graphical representation of the MB.

two lookup tables M and C of size |V | × d, where
|V | is the size of the vocabulary. With a slight
abuse of notation we denote Mi = M({xi}) and
Ci = C({xi}) as n × d matrices where each row
corresponds to an input memory embedding mi and
an output memory embedding ci of each element of
the set {xi}. We use the matrix Mi to compute an
attention distribution over the set {xi}:

pt = softmax(Miht) (1)

When dealing with data that exhibits a strong tem-
poral relationship, such as natural language, an ad-
ditional temporal matrix T ∈ Rn×d can be used to
bias attention with respect to the position of the data
points. In this case, equation 1 becomes

pt = softmax
(
(Mi + T)ht

)
(2)

We then use the attention distribution pt to compute
a context vector representation of {xi}:

st = CT
i pt (3)

Finally, we combine the context vector st and the
hidden state ht by a function g(·) to obtain the out-
put hmt of the MB. Instead of using a simple addi-
tion function g(st,ht) = st + ht as in Sukhbaatar
et al. (2015), we propose to use a gating unit that
decides how much it should trust the hidden state
ht and context st at time step t. Our gating unit is
a form of Gated Recurrent Unit (Cho et al., 2014;
Chung et al., 2014):

zt = sigm(Wszst + Uhzht) (4)

rt = sigm(Wsrst + Uhrht) (5)

h̃t = tanh(Wst + U(rt � ht)) (6)

hmt = (1− zt)� ht + zt � h̃t (7)

323

where zt is an update gate, rt is a reset gate.
The choice of the composition function g(·) is

crucial for the MB especially when one of its in-
put comes from the LSTM. The simple addition
function might overwrite the information within the
LSTM’s hidden state and therefore prevent the MB
from keeping track of information in the distant past.
The gating function, on the other hand, can control
the degree of information that flows from the LSTM
to the MB’s output.

3.2 RMN Architectures
As explained above, our proposed MB receives the
hidden state of the LSTM as one of its input. This
leads to an intuitive combination of the two units by
stacking the MB on top of the LSTM. We call this
architecture Recurrent-Memory (RM). The RM ar-
chitecture, however, does not allow interaction be-
tween Memory Blocks at different time steps. To
enable this interaction we can stack one more LSTM
layer on top of the RM. We call this architecture
Recurrent-Memory-Recurrent (RMR).

MB

LSTM

LSTMLSTMLSTM

MB

LSTM

LSTM

MBMB

LSTMLSTM

LSTM

LSTM

MB

Figure 2: A graphical illustration of an unfolded
RMR with memory size 4. Dashed line indicates
concatenation. The MB takes the output of the bot-
tom LSTM layer and the 4-word history as its input.
The output of the MB is then passed to the second
LSTM layer on top. There is no direct connection
between MBs of different time steps. The last LSTM
layer carries the MB’s outputs recurrently.

4 Language Model Experiments

Language models play a crucial role in many NLP
applications such as machine translation and speech
recognition. Language modeling also serves as
a standard test bed for newly proposed models
(Sukhbaatar et al., 2015; Kalchbrenner et al., 2015).
We conjecture that, by explicitly accessing history
words, RMNs will offer better predictive power than

the existing recurrent architectures. We therefore
evaluate our RMN architectures against state-of-the-
art LSTMs in terms of perplexity.

4.1 Data

We evaluate our models on three languages: En-
glish, German, and Italian. We are especially inter-
ested in German and Italian because of their larger
vocabularies and complex agreement patterns. Ta-
ble 1 summarizes the data used in our experiments.

Lang Train Dev Test |s| |V |
En 26M 223K 228K 26 77K
De 22M 202K 203K 22 111K
It 29M 207K 214K 29 104K

Table 1: Data statistics. |s| denotes the average sen-
tence length and |V | the vocabulary size.

The training data correspond to approximately
1M sentences in each language. For English, we
use all the News Commentary data (8M tokens)
and 18M tokens from News Crawl 2014 for train-
ing. Development and test data are randomly drawn
from the concatenation of the WMT 2009-2014 test
sets (Bojar et al., 2015). For German, we use the
first 6M tokens from the News Commentary data
and 16M tokens from News Crawl 2014 for train-
ing. For development and test data we use the re-
maining part of the News Commentary data con-
catenated with the WMT 2009-2014 test sets. Fi-
nally, for Italian, we use a selection of 29M tokens
from the PAISÀ corpus (Lyding et al., 2014), mainly
including Wikipedia pages and, to a minor extent,
Wikibooks and Wikinews documents. For develop-
ment and test we randomly draw documents from
the same corpus.

4.2 Setup

Our baselines are a 5-gram language model
with Kneser-Ney smoothing, a Memory Network
(MemN) (Sukhbaatar et al., 2015), a vanilla single-
layer LSTM, and two stacked LSTMs with two and
three layers respectively. N-gram models have been
used intensively in many applications for their ex-
cellent performance and fast training. Chen et al.
(2015) show that n-gram model outperforms a pop-
ular feed-forward language model (Bengio et al.,

324

2003) on a one billion word benchmark (Chelba et
al., 2013). While taking longer time to train, RNNs
have been proven superior to n-gram models.

We compare these baselines with our two model
architectures: RMR and RM. For each of our mod-
els, we consider two settings: with or without tem-
poral matrix (+tM or –tM), and linear vs. gating
composition function. In total, we experiment with
eight RMN variants.

For all neural network models, we set the dimen-
sion of word embeddings, the LSTM hidden states,
its gates, the memory input, and output embeddings
to 128. The memory size is set to 15. The bias of the
LSTM’s forget gate is initialized to 1 (Józefowicz et
al., 2015) while all other parameters are initialized
uniformly in (−0.05, 0.05). The initial learning rate
is set to 1 and is halved at each epoch after the forth
epoch. All models are trained for 15 epochs with
standard stochastic gradient descent (SGD). During
training, we rescale the gradients whenever their
norm is greater than 5 (Pascanu et al., 2013).

Sentences with the same length are grouped into
buckets. Then, mini-batches of 20 sentences are
drawn from each bucket. We do not use truncated
back-propagation through time, instead gradients
are fully back-propagated from the end of each sen-
tence to its beginning. When feeding in a new mini-
batch, the hidden states of LSTMs are reset to zeros,
which ensures that the data is properly modeled at
the sentence level. For our RMN models, instead of
using padding, at time step t < n, we use a slice
T[1 : t] ∈ Rt×d of the temporal matrix T ∈ Rn×d.

4.3 Results
Perplexities on the test data are given in Table 2.
All RMN variants largely outperform n-gram and
MemN models, and most RMN variants also outper-
form the competitive LSTM baselines. The best re-
sults overall are obtained by RM with temporal ma-
trix and gating composition (+tM-g).

Our results agree with the hypothesis of mitigat-
ing prediction error by explicitly using the last n
words in RNNs (Karpathy et al., 2015). We further
observe that using a temporal matrix always bene-
fits the RM architectures. This can be explained by
seeing the RM as a principled way to combine an
LSTM and a neural n-gram model. By contrast,
RMR works better without temporal matrix but its

Model De It En
5-gram – 225.8 167.5 219.0

MemN 1 layer 169.3 127.5 188.2

LSTM
1 layer 135.8 108.0 145.1
2 layers 128.6 105.9 139.7
3 layers 125.1 106.5 136.6

RMR

+tM-l 127.5 109.9 133.3
–tM-l 126.4 106.1 134.5

+tM-g 126.2 99.5 135.2
–tM-g 122.0 98.6 131.2

RM

+tM-l 121.5 92.4 127.2
–tM-l 122.9 94.0 130.4

+tM-g 118.6 88.9 128.8
–tM-g 129.7 96.6 135.7

Table 2: Perplexity comparison including RMN
variants with and without temporal matrix (tM) and
linear (l) versus gating (g) composition function.

overall performance is not as good as RM. This sug-
gests that we need a better mechanism to address
the interaction between MBs, which we leave to fu-
ture work. Finally, the proposed gating composition
function outperforms the linear one in most cases.

For historical reasons, we also run a stacked three-
layer LSTM and a RM(+tM-g) on the much smaller
Penn Treebank dataset (Marcus et al., 1993) with the
same setting described above. The respective per-
plexities are 126.1 and 123.5.

5 Attention Analysis

The goal of our RMN design is twofold: (i) to obtain
better predictive power and (ii) to facilitate under-
standing of the model and discover patterns in data.
In Section 4, we have validated the predictive power
of the RMN and below we investigate the source of
this performance based on linguistic assumptions of
word co-occurrences and dependency structures.

5.1 Positional and lexical analysis

As a first step towards understanding RMN, we look
at the average attention weights of each history word
position in the MB of our two best model variants
(Figure 3). One can see that the attention mass tends
to concentrate at the rightmost position (the current

325

en
it

de

-15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

en
it

de

0.08
0.12
0.16
0.20
0.24

Figure 3: Average attention per position of RMN
history. Top: RMR(–tM-g), bottom: RM(+tM-g).
Rightmost positions represent most recent history.

word) and decreases when moving further to the
left (less recent words). This is not surprising since
the success of n-gram language models has demon-
strated that the most recent words provide important
information for predicting the next word. Between
the two variants, the RM average attention mass is
less concentrated to the right. This can be explained
by the absence of an LSTM layer on top, meaning
that the MB in the RM architecture has to pay more
attention to the more distant words in the past. The
remaining analyses described below are performed
on the RM(+tM-g) architecture as this yields the best
perplexity results overall.

Beyond average attention weights, we are inter-
ested in those cases where attention focuses on dis-
tant positions. To this end, we randomly sample 100
words from test data and visualize attention distri-
butions over the last 15 words. Figure 4 shows the
attention distributions for random samples of Ger-
man and Italian. Again, in many cases attention
weights concentrate around the last word (bottom
row). However, we observe that many long distance
words also receive noticeable attention mass. Inter-
estingly, for many predicted words, attention is dis-
tributed evenly over memory positions, possibly in-

de

it

en

Figure 4: Attention visualization of 100 word sam-
ples. Bottom positions in each plot represent most
recent history. Darker color means higher weight.

dicating cases where the LSTM state already con-
tains enough information to predict the next word.

To explain the long-distance dependencies, we
first hypothesize that our RMN mostly memorizes
frequent co-occurrences. We run the RM(+tM-g)
model on the German development and test sen-
tences, and select those pairs of (most-attended-
word, word-to-predict) where the MB’s attention
concentrates on a word more than six positions to
the left. Then, for each set of pairs with equal dis-
tance, we compute the mean frequency of corre-
sponding co-occurrences seen in the training data
(Table 3). The lack of correlation between frequency
and memory location suggests that RMN does more
than simply memorizing frequent co-occurrences.

d 7 8 9 10 11 12 13 14 15

µ 54 63 42 67 87 47 67 44 24

Table 3: Mean frequency (µ) of (most-attended-
word, word-to-predict) pairs grouped by relative dis-
tance (d).

Previous work (Hermans and Schrauwen, 2013;
Karpathy et al., 2015) studied this property of
LSTMs by analyzing simple cases of closing brack-
ets. By contrast RMN allows us to discover more
interesting dependencies in the data. We manually
inspect those high-frequency pairs to see whether
they display certain linguistic phenomena. We ob-
serve that RMN captures, for example, separable
verbs and fixed expressions in German. Separable
verbs are frequent in German: they typically consist
of preposition+verb constructions, such ab+hängen
(‘to depend’) or aus+schließen (‘to exclude’), and
can be spelled together (abhängen) or apart as in
‘hängen von der Situation ab’ (‘depend on the sit-
uation’), depending on the grammatical construc-
tion. Figure 5a shows a long-dependency exam-
ple for the separable verb abhängen (to depend).
When predicting the verb’s particle ab, the model
correctly attends to the verb’s core hängt occurring
seven words to the left. Figure 5b and 5c show fixed
expression examples from German and Italian, re-
spectively: schlüsselrolle ... spielen (play a key role)
and insignito ... titolo (awarded title). Here too, the
model correctly attends to the key word despite its
long distance from the word to predict.

326

ab (-1.8)
und (-2.1)
, (-2.5)
. (-2.7)
von (-2.8)

(a) wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen

Gloss: how effective the from-that resulting strategy be will, depends therefore on the accuracy of-these measures

Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures

spielen (-1.9)
gewinnen (-3.0)
finden (-3.4)
haben (-3.4)
schaffen (-3.4)

 … die lage versetzen werden , eine schlüsselrolle bei der eindämmung der regionalen ambitionen chinas zu

Gloss: … the position place will, a key-role in the curbing of-the regional ambitions China’s to
Translation: …which will put him in a position to play a key role in curbing the regional ambitions of China

(b)

sacro (-1.5)
titolo (-2.9)
re (-3.0)
<unk> (-3.1)
leone (-3.6)

 ... che fu insignito nel 1692 dall' Imperatore Leopoldo I del

Gloss: … who was awarded in 1692 by-the Emperor Leopold I of-the

Translation: … who was awarded the title by Emperor Leopold I in 1692

(c)

Figure 5: Examples of distant memory positions attended by RMN. The resulting top five word predictions
are shown with the respective log-probabilities. The correct choice (in bold) was ranked first in sentences
(a,b) and second in (c).

Other interesting examples found by the RMN in
the test data include:

German: findet statt (takes place), kehrte zurück
(came back), fragen antworten (questions
answers), kämpfen gegen (fight against),
bleibt erhalten (remains intact), verantwortung
übernimmt (takes responsibility);

Italian: sinistra destra (left right), latitudine lon-
gitudine (latitude longitude), collegata tramite
(connected through), sposò figli (got-married
children), insignito titolo (awarded title).

5.2 Syntactic analysis

It has been conjectured that RNNs, and LSTMs in
particular, model text so well because they capture
syntactic structure implicitly. Unfortunately this has
been hard to prove, but with our RMN model we can
get closer to answering this important question.

We produce dependency parses for our test sets
using (Sennrich et al., 2013) for German and (At-
tardi et al., 2009) for Italian. Next we look at
how much attention mass is concentrated by the
RM(+tM-g) model on different dependency types.
Figure 6 shows, for each language, a selection of
ten dependency types that are often long-distance.2

Dependency direction is marked by an arrow: e.g.
→mod means that the word to predict is a modifier
of the attended word, while mod← means that the

2The full plots are available at https://github.com/
ketranm/RMN. The German and Italian tag sets are explained
in (Simi et al., 2014) and (Foth, 2006) respectively.

attended word is a modifier of the word to predict.3

White cells denote combinations of position and de-
pendency type that were not present in the test data.

While in most of the cases closest positions are
attended the most, we can see that some dependency
types also receive noticeably more attention than
the average (ALL) on the long-distance positions.
In German, this is mostly visible for the head of
separable verb particles (→avz), which nicely sup-
ports our observations in the lexical analysis (Sec-
tion 5.1). Other attended dependencies include: aux-
iliary verbs (→aux) when predicting the second el-
ement of a complex tense (hat . . . gesagt / has said);
subordinating conjunctions (konj←) when predict-
ing the clause-final inflected verb (dass sie sagen
sollten / that they should say); control verbs (→obji)
when predicting the infinitive verb (versucht ihr
zu helfen / tries to help her). Out of the Italian
dependency types selected for their frequent long-
distance occurrences (bottom of Figure 6), the most
attended are argument heads (→arg), complement
heads (→comp), object heads (→obj) and subjects
(subj←). This suggests that RMN is mainly captur-
ing predicate argument structure in Italian. Notice
that syntactic annotation is never used to train the
model, but only to analyze its predictions.

We can also use RMN to discover which complex
dependency paths are important for word prediction.
To mention just a few examples, high attention on

3Some dependency directions, like obj← in Italian, are al-
most never observed due to order constraints of the language.

327

[-15, -12] [-11, -8] [-7, -4] -3 -2 -1

[ALL]
subj←
→rel
→obji
→objc
obja←
konj←
→kon
→avz
→aux
adv←

0.0

0.1

0.2

0.3

0.4

0.5

[-15, -12] [-11, -8] [-7, -4] -3 -2 -1

[ALL]
subj←
→sub
→pred
→obj

mod←
→mod
→con

comp←
→comp
→arg

0.1

0.2

0.3

0.4

0.5

Figure 6: Average attention weights per position,
broken down by dependency relation type+direction
between the attended word and the word to predict.
Top: German. Bottom: Italian. More distant posi-
tions are binned.

the German path [subj←,→kon,→cj] indicates that
the model captures morphological agreement be-
tween coordinate clauses in non-trivial constructions
of the kind: spielen die Kinder im Garten und singen
/ the children play in the garden and sing. In Italian,
high attention on the path [→obj,→comp,→prep]
denotes cases where the semantic relatedness be-
tween a verb and its object does not stop at the ob-
ject’s head, but percolates down to a prepositional
phrase attached to it (passò buona parte della sua
vita / spent a large part of his life). Interestingly,
both local n-gram context and immediate depen-
dency context would have missed these relations.

While much remains to be explored, our analysis
shows that RMN discovers patterns far more com-
plex than pairs of opening and closing brackets, and
suggests that the network’s hidden state captures to
a large extent the underlying structure of text.

6 Sentence Completion Challenge

The Microsoft Research Sentence Completion Chal-
lenge (Zweig and Burges, 2012) has recently be-

come a test bed for advancing statistical language
modeling. We choose this task to demonstrate the
effectiveness of our RMN in capturing sentence co-
herence. The test set consists of 1,040 sentences se-
lected from five Sherlock Holmes novels by Conan
Doyle. For each sentence, a content word is removed
and the task is to identify the correct missing word
among five given candidates. The task is carefully
designed to be non-solvable for local language mod-
els such as n-gram models. The best reported re-
sult is 58.9% accuracy (Mikolov et al., 2013)4 which
is far below human accuracy of 91% (Zweig and
Burges, 2012).

As baseline we use a stacked three-layer LSTM.
Our models are two variants of RM(+tM-g), each
consisting of three LSTM layers followed by a
MB. The first variant (unidirectional-RM) uses n
words preceding the word to predict, the second
(bidirectional-RM) uses the n words preceding and
the n words following the word to predict, as MB
input. We include bidirectional-RM in the experi-
ments to show the flexibility of utilizing future con-
text in RMN.

We train all models on the standard training data
of the challenge, which consists of 522 novels from
Project Gutenberg, preprocessed similarly to (Mnih
and Kavukcuoglu, 2013). After sentence splitting,
tokenization and lowercasing, we randomly select
19,000 sentences for validation. Training and val-
idation sets include 47M and 190K tokens respec-
tively. The vocabulary size is about 64,000.

We initialize and train all the networks as de-
scribed in Section 4.2. Moreover, for regularization,
we place dropout (Srivastava et al., 2014) after each
LSTM layer as suggested in (Pham et al., 2014). The
dropout rate is set to 0.3 in all the experiments.

Table 4 summarizes the results. It is worth to
mention that our LSTM baseline outperforms a de-
pendency RNN making explicit use of syntactic in-
formation (Mirowski and Vlachos, 2015) and per-
forms on par with the best published result (Mikolov
et al., 2013). Our unidirectional-RM sets a new state
of the art for the Sentence Completion Challenge
with 69.2% accuracy. Under the same setting of d
we observe that using bidirectional context does not

4The authors use a weighted combination of skip-ngram and
RNN without giving any technical details.

328

The stage lost a fine , even as science lost an acute reasoner , when he became a specialist in crime
a) linguist b) hunter c) actor♣ d) estate e) horseman♦

What passion of hatred can it be which leads a man to in such a place at such a time
a) lurk♣ b) dine♦ c) luxuriate d) grow e) wiggle

My heart is already since i have confided my trouble to you
a) falling b) distressed♦ c) soaring d) lightened♣ e) punished

My morning’s work has not been , since it has proved that he has the very strongest motives for
standing in the way of anything of the sort
a) invisible b) neglected♦♣ c) overlooked d) wasted e) deliberate

That is his fault , but on the whole he’s a good worker
a) main b) successful c) mother’s♣ d) generous e) favourite♦

Figure 7: Examples of sentence completion. The correct option is in boldface. Predictions by the LSTM
baseline and by our best RMN model are marked by ♦ and ♣ respectively.

Model n d Accuracy
LSTM – 256 56.0

unidirectional-RM
15 256 64.3
15 512 69.2

bidirectional-RM
7 256 59.6

10 512 67.0

Table 4: Accuracy on 1,040 test sentences. We use
perplexity to choose the best model. Dimension of
word embeddings, LSTM hidden states, and gate g
parameters are set to d.

bring additional advantage to the model. Mnih and
Kavukcuoglu (2013) also report a similar observa-
tion. We believe that RMN may achieve further im-
provements with hyper-parameter optimization.

Figure 7 shows some examples where our best
RMN beats the already very competitive LSTM
baseline, or where both models fail. We can see
that in some sentences the necessary clues to predict
the correct word occur only to its right. While this
seems to conflict with the worse result obtained by
the bidirectional-RM, it is important to realize that
prediction corresponds to the whole sentence prob-
ability. Therefore a badly chosen word can have a
negative effect on the score of future words. This ap-
pears to be particularly true for the RMN due to its
ability to directly access (distant) words in the his-
tory. The better performance of unidirectional ver-

sus bidirectional-RM may indicate that the attention
in the memory block can be distributed reliably only
on words that have been already seen and summa-
rized by the current LSTM state. In future work,
we may investigate whether different ways to com-
bine two RMNs running in opposite directions fur-
ther improve accuracy on this challenging task.

7 Conclusion

We have proposed the Recurrent Memory Network
(RMN), a novel recurrent architecture for language
modeling. Our RMN outperforms LSTMs in terms
of perplexity on three large dataset and allows us
to analyze its behavior from a linguistic perspective.
We find that RMNs learn important co-occurrences
regardless of their distance. Even more interest-
ingly, our RMN implicitly captures certain depen-
dency types that are important for word prediction,
despite being trained without any syntactic informa-
tion. Finally RMNs obtain excellent performance at
modeling sentence coherence, setting a new state of
the art on the challenging sentence completion task.

Acknowledgments

This research was funded in part by the Netherlands
Organization for Scientific Research (NWO) under
project numbers 639.022.213 and 612.001.218.

329

References
Giuseppe Attardi, Felice Dell’Orletta, Maria Simi, and

Joseph Turian. 2009. Accurate dependency parsing
with a stacked multilayer perceptron. In Proceedings
of Evalita’09, Evaluation of NLP and Speech Tools for
Italian, Reggio Emilia, Italy.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015, San
Diego, CA, USA, May.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradient
descent is difficult. Transaction on Neural Networks,
5(2):157–166, March.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155,
March.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Samuel R. Bowman, Christopher D. Manning, and
Christopher Potts. 2015. Tree-structured composi-
tion in neural networks without tree-structured archi-
tectures. In Proceedings of Proceedings of the NIPS
2015 Workshop on Cognitive Computation: Integrat-
ing Neural and Symbolic Approaches, December.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
2013. One billion word benchmark for measuring
progress in statistical language modeling. Technical
report, Google.

Welin Chen, David Grangier, and Michael Auli. 2015.
Strategies for Training Large Vocabulary Neural Lan-
guage Models. ArXiv e-prints, December.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111, Doha, Qatar, October.
Association for Computational Linguistics.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS Deep Learning and Representation
Learning Workshop.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, pages 334–343, Beijing, China,
July. Association for Computational Linguistics.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 360–368,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Kilian A. Foth. 2006. Eine umfassende Constraint-
Dependenz-Grammatik des Deutschen. Fachbereich
Informatik.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR, abs/1410.5401.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R. Steunebrink, and Jürgen Schmidhuber.
2015. LSTM: A search space odyssey. CoRR,
abs/1503.04069.

Karol Gregor, Ivo Danihelka, Alex Graves,
Danilo Jimenez Rezende, and Daan Wierstra.
2015. DRAW: A recurrent neural network for image
generation. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 1462–1471.

Michiel Hermans and Benjamin Schrauwen. 2013.
Training and analysing deep recurrent neural net-
works. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26,
pages 190–198. Curran Associates, Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780, November.

Rafal Józefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 2342–2350.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2015. Grid long short-term memory. CoRR,
abs/1507.01526.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
CoRR, abs/1506.02078.

Verena Lyding, Egon Stemle, Claudia Borghetti, Marco
Brunello, Sara Castagnoli, Felice Dell’Orletta, Henrik

330

Dittmann, Alessandro Lenci, and Vito Pirrelli. 2014.
The PAISÀ corpus of italian web texts. In Proceedings
of the 9th Web as Corpus Workshop (WaC-9), pages
36–43, Gothenburg, Sweden, April. Association for
Computational Linguistics.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: The penn treebank. Comput. Linguist.,
19(2):313–330, June.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In
INTERSPEECH 2010, 11th Annual Conference of
the International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In ICLR.

Piotr Mirowski and Andreas Vlachos. 2015. Depen-
dency recurrent neural language models for sentence
completion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages
511–517, Beijing, China, July. Association for Com-
putational Linguistics.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive es-
timation. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26,
pages 2265–2273. Curran Associates, Inc.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural net-
works. In ICML (3), volume 28 of JMLR Proceedings,
pages 1310–1318.

Vu Pham, Christopher Bluche, Théodore Kermorvant,
and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
In International Conference on Frontiers in Handwrit-
ing Recognition (ICFHR), pages 285–290, Sept.

Rico Sennrich, Martin Volk, and Gerold Schneider. 2013.
Exploiting synergies between open resources for ger-
man dependency parsing, pos-tagging, and morpho-
logical analysis. In Recent Advances in Natural Lan-
guage Processing (RANLP 2013), pages 601–609,
September.

Maria Simi, Cristina Bosco, and Simonetta Montemagni.
2014. Less is more? towards a reduced inventory of
categories for training a parser for the italian stanford
dependencies. In Proceedings of the Ninth Interna-
tional Conference on Language Resources and Evalu-

ation (LREC’14), Reykjavik, Iceland, may. European
Language Resources Association (ELRA).

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 151–161, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, January.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama,
R. Garnett, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 28, pages 2431–
2439. Curran Associates, Inc.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Geoffrey Zweig and Chris J. C. Burges. 2012. A chal-
lenge set for advancing language modeling. In Pro-
ceedings of the NAACL-HLT 2012 Workshop: Will We
Ever Really Replace the N-gram Model? On the Fu-
ture of Language Modeling for HLT, WLM ’12, pages
29–36, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

331

Proceedings of NAACL-HLT 2016, pages 332–342,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Latent Variable Recurrent Neural Network
for Discourse Relation Language Models

Yangfeng Ji
Georgia Institute of Technology

Atlanta, GA 30308, USA
jiyfeng@gatech.edu

Gholamreza Haffari
Monash University

Clayton, VIC, Australia
gholamreza.haffari

@monash.edu

Jacob Eisenstein
Georgia Institute of Technology

Atlanta, GA 30308, USA
jacobe@gatech.edu

Abstract

This paper presents a novel latent variable re-
current neural network architecture for jointly
modeling sequences of words and (possibly
latent) discourse relations between adjacent
sentences. A recurrent neural network gen-
erates individual words, thus reaping the ben-
efits of discriminatively-trained vector repre-
sentations. The discourse relations are rep-
resented with a latent variable, which can be
predicted or marginalized, depending on the
task. The resulting model can therefore em-
ploy a training objective that includes not only
discourse relation classification, but also word
prediction. As a result, it outperforms state-of-
the-art alternatives for two tasks: implicit dis-
course relation classification in the Penn Dis-
course Treebank, and dialog act classification
in the Switchboard corpus. Furthermore, by
marginalizing over latent discourse relations
at test time, we obtain a discourse informed
language model, which improves over a strong
LSTM baseline.

1 Introduction

Natural language processing (NLP) has recently ex-
perienced a neural network “tsunami” (Manning,
2016). A key advantage of these neural architec-
tures is that they employ discriminatively-trained
distributed representations, which can capture the
meaning of linguistic phenomena ranging from in-
dividual words (Turian et al., 2010) to longer-range
linguistic contexts at the sentence level (Socher et
al., 2013) and beyond (Le and Mikolov, 2014). Be-
cause they are discriminatively trained, these meth-

ods can learn representations that yield very accurate
predictive models (e.g., Dyer et al, 2015).

However, in comparison with the probabilistic
graphical models that were previously the dominant
machine learning approach for NLP, neural archi-
tectures lack flexibility. By treating linguistic an-
notations as random variables, probabilistic graphi-
cal models can marginalize over annotations that are
unavailable at test or training time, elegantly model-
ing multiple linguistic phenomena in a joint frame-
work (Finkel et al., 2006). But because these graph-
ical models represent uncertainty for every element
in the model, adding too many layers of latent vari-
ables makes them difficult to train.

In this paper, we present a hybrid architecture
that combines a recurrent neural network language
model with a latent variable model over shallow
discourse structure. In this way, the model learns
a discriminatively-trained distributed representation
of the local contextual features that drive word
choice at the intra-sentence level, using techniques
that are now state-of-the-art in language model-
ing (Mikolov et al., 2010). However, the model
treats shallow discourse structure — specifically, the
relationships between pairs of adjacent sentences —
as a latent variable. As a result, the model can act
as both a discourse relation classifier and a language
model. Specifically:

• If trained to maximize the conditional like-
lihood of the discourse relations, it outper-
forms state-of-the-art methods for both im-
plicit discourse relation classification in the
Penn Discourse Treebank (Rutherford and Xue,
2015) and dialog act classification in Switch-

332

board (Kalchbrenner and Blunsom, 2013). The
model learns from both the discourse annota-
tions as well as the language modeling objec-
tive, unlike previous recursive neural architec-
tures that learn only from annotated discourse
relations (Ji and Eisenstein, 2015).

• If the model is trained to maximize the joint
likelihood of the discourse relations and the
text, it is possible to marginalize over discourse
relations at test time, outperforming language
models that do not account for discourse struc-
ture.

In contrast to recent work on continuous latent
variables in recurrent neural networks (Chung et al.,
2015), which require complex variational autoen-
coders to represent uncertainty over the latent vari-
ables, our model is simple to implement and train,
requiring only minimal modifications to existing re-
current neural network architectures that are imple-
mented in commonly-used toolkits such as Theano,
Torch, and CNN.

We focus on a class of shallow discourse rela-
tions, which hold between pairs of adjacent sen-
tences (or utterances). These relations describe how
the adjacent sentences are related: for example, they
may be in CONTRAST, or the latter sentence may of-
fer an answer to a question posed by the previous
sentence. Shallow relations do not capture the full
range of discourse phenomena (Webber et al., 2012),
but they account for two well-known problems: im-
plicit discourse relation classification in the Penn
Discourse Treebank, which was the 2015 CoNLL
shared task (Xue et al., 2015); and dialog act clas-
sification, which characterizes the structure of in-
terpersonal communication in the Switchboard cor-
pus (Stolcke et al., 2000), and is a key component of
contemporary dialog systems (Williams and Young,
2007). Our model outperforms state-of-the-art alter-
natives for implicit discourse relation classification
in the Penn Discourse Treebank, and for dialog act
classification in the Switchboard corpus.

2 Background

Our model scaffolds on recurrent neural network
(RNN) language models (Mikolov et al., 2010), and
recent variants that exploit multiple levels of linguis-
tic detail (Ji et al., 2015; Lin et al., 2015).

RNN Language Models Let us denote token n in
a sentence t by yt,n ∈ {1 . . . V }, and write yt =
{yt,n}n∈{1...Nt} to indicate the sequence of words in
sentence t. In an RNN language model, the proba-
bility of the sentence is decomposed as,

p(yt) =
Nt∏
n

p(yt,n | yt,<n), (1)

where the probability of each word yt,n is condi-
tioned on the entire preceding sequence of words
yt,<n through the summary vector ht,n−1. This vec-
tor is computed recurrently from ht,n−2 and from
the embedding of the current word, Xyt,n−1 , where
X ∈ RK×V andK is the dimensionality of the word
embeddings. The language model can then be sum-
marized as,

ht,n =f(Xyt,n
,ht,n−1) (2)

p(yt,n | yt,<n) =softmax (Woht,n−1 + bo) , (3)

where the matrix Wo ∈ RV×K defines the output
embeddings, and bo ∈ RV is an offset. The function
f(·) is a deterministic non-linear transition function.
It typically takes an element-wise non-linear trans-
formation (e.g., tanh) of a vector resulting from the
sum of the word embedding and a linear transforma-
tion of the previous hidden state.

The model as described thus far is identical to the
recurrent neural network language model (RNNLM)
of Mikolov et al. (2010). In this paper, we replace
the above simple hidden state units with the more
complex Long Short-Term Memory units (Hochre-
iter and Schmidhuber, 1997), which have consis-
tently been shown to yield much stronger perfor-
mance in language modeling (Pham et al., 2014).
For simplicity, we still use the term RNNLM in re-
ferring to this model.

Document Context Language Model One draw-
back of the RNNLM is that it cannot propagate long-
range information between the sentences. Even if
we remove sentence boundaries, long-range infor-
mation will be attenuated by repeated application of
the non-linear transition function. Ji et al. (2015)
propose the Document Context Language Model
(DCLM) to address this issue. The core idea is to
represent context with two vectors: ht,n, represent-
ing intra-sentence word-level context, and ct, rep-
resenting inter-sentence context. These two vectors

333

y t−1,N t−1−2 y t−1, N t−1−1 y t−1, N t−1
y t ,1 y t ,2

z t

y t ,3

Figure 1: A fragment of our model with latent variable zt, which only illustrates discourse information flow from sentence (t− 1)

to t. The information from sentence (t− 1) affects the distribution of zt and then the words prediction within sentence t.

p(yt,n+1 | zt, yt,<n, yt−1) = g
(

W(zt)
o ht,n︸ ︷︷ ︸

relation-specific

intra-sentential context

+ W(zt)
c ct−1︸ ︷︷ ︸

relation-specific

inter-sentential context

+ b(zt)
o︸︷︷︸

relation-specific

bias

)
(4)

Figure 2: Per-token generative probabilities in the discourse relation language model

are then linearly combined in the generation func-
tion for word yt,n,

p(yt,n | yt,<n,y<t)
= softmax (Woht,n−1 + Wcct−1 + bo) , (5)

where ct−1 is set to the last hidden state of the pre-
vious sentence. Ji et al. (2015) show that this model
can improve language model perplexity.

3 Discourse Relation Language Models

We now present a probabilistic neural model over
sequences of words and shallow discourse relations.
Discourse relations zt are treated as latent variables,
which are linked with a recurrent neural network
over words in a latent variable recurrent neural net-
work (Chung et al., 2015).

3.1 The Model

Our model (see Figure 1) is formulated as a two-step
generative story. In the first step, context informa-
tion from the sentence (t−1) is used to generate the
discourse relation between sentences (t− 1) and t,

p(zt | yt−1) = softmax (Uct−1 + b) , (6)

where zt is a random variable capturing the dis-
course relation between the two sentences, and ct−1

is a vector summary of the contextual information
from sentence (t − 1), just as in the DCLM (Equa-
tion 5). The model maintains a default context vec-
tor c0 for the first sentences of documents, and treats
it as a parameter learned with other model parame-
ters during training.

In the second step, the sentence yt is generated,
conditioning on the preceding sentence yt−1 and the
discourse relation zt:

p(yt | zt,yt−1) =
Nt∏
n

p(yt,n | yt,<n,yt−1, zt), (7)

The generative probability for the sentence yt de-
composes across tokens as usual (Equation 7). The
per-token probabilities are shown in Equation 4, in
Figure 2. Discourse relations are incorporated by pa-
rameterizing the output matrices W(zt)

o and W(zt)
c ;

depending on the discourse relation that holds be-
tween (t − 1) and t, these matrices will favor dif-
ferent parts of the embedding space. The bias term
b

(zt)
o is also parametrized by the discourse relation,

so that each relation can favor specific words.
Overall, the joint probability of the text and dis-

course relations is,

p(y1:T , z1:T) =
T∏
t

p(zt | yt−1)× p(yt | zt,yt−1).

(8)

If the discourse relations zt are not observed, then
our model is a form of latent variable recurrent neu-
ral network (LVRNN). Connections to recent work
on LVRNNs are discussed in § 6; the key difference
is that the latent variables here correspond to linguis-
tically meaningful elements, which we may wish to
predict or marginalize, depending on the situation.

Parameter Tying As proposed, the Discourse Re-
lation Language Model has a large number of pa-
rameters. Let K, H and V be the input dimension,

334

hidden dimension and the size of vocabulary in lan-
guage modeling. The size of each prediction matrix
W(z)

o and W(z)
c is V ×H; there are two such matri-

ces for each possible discourse relation. We reduce
the number of parameters by factoring each of these
matrices into two components:

W(z)
o = Wo ·V(z), W(z)

c = Wc ·M(z), (9)

where V(z) and M(z) are relation-specific compo-
nents for intra-sentential and inter-sentential con-
texts; the size of these matrices is H × H , with
H � V . The larger V × H matrices Wo and Wc

are shared across all relations.

3.2 Inference
There are two possible inference scenarios: in-
ference over discourse relations, conditioning on
words; and inference over words, marginalizing over
discourse relations.

Inference over Discourse Relations The prob-
ability of discourse relations given the sentences
p(z1:T | y1:T) is decomposed into the product of
probabilities of individual discourse relations condi-
tioned on the adjacent sentences

∏
t p(zt | yt,yt−1).

These probabilities are computed by Bayes’ rule:

p(zt | yt,yt−1) =
p(yt | zt,yt−1)× p(zt | yt−1)∑
z′ p(yt | z′,yt−1)× p(z′ | yt−1)

.

(10)
The terms in each product are given in Equations 6

and 7. Normalizing involves only a sum over a small
finite number of discourse relations. Note that infer-
ence is easy in our case because all words are ob-
served and there is no probabilistic coupling of the
discourse relations.

Inference over Words In discourse-informed lan-
guage modeling, we marginalize over discourse re-
lations to compute the probability of a sequence of
sentence y1:T , which can be written as,

p(y1:T) =
T∏
t

∑
zt

p(zt | yt−1)× p(yt | zt,yt−1),

(11)
because the word sequences are observed, decou-
pling each zt from its neighbors zt+1 and zt−1.
This decoupling ensures that we can compute the

overall marginal likelihood as a product over local
marginals.

3.3 Learning

The model can be trained in two ways: to maximize
the joint probability p(y1:T , z1:T), or to maximize
the conditional probability p(z1:T | y1:T). The joint
training objective is more suitable for language mod-
eling scenarios, and the conditional objective is bet-
ter for discourse relation prediction. We now de-
scribe each objective in detail.

Joint likelihood objective The joint likelihood
objective function is directly adopted from the joint
probability defined in Equation 8. The objective
function for a single document with T sentences or
utterances is,

`(θ) =
T∑
t

log p(zt | yt−1)

+
Nt∑
n

log p(yt,n | yt,<n,yt−1, zt), (12)

where θ represents the collection of all model pa-
rameters, including the parameters in the LSTM
units and the word embeddings.

Maximizing the objective function `(θ) will
jointly optimize the model on both language lan-
guage and discourse relation prediction. As such,
it can be viewed as a form of multi-task learn-
ing (Caruana, 1997), where we learn a shared rep-
resentation that works well for discourse relation
prediction and for language modeling. However, in
practice, the large vocabulary size and number of to-
kens means that the language modeling part of the
objective function tends to dominate.

Conditional objective This training objective is
specific to the discourse relation prediction task, and
based on Equation 10 can be written as:

`r(θ) =
T∑
t

log p(zt | yt−1) + log p(yt | zt,yt−1)

− log
∑
z′
p(z′ | yt−1)× p(yt | z′,yt−1)

(13)
The first line in Equation 13 is the same as `(θ),

but the second line reflects the normalization over all

335

possible values of zt. This forces the objective func-
tion to attend specifically to the problem of maxi-
mizing the conditional likelihood of the discourse
relations and treat language modeling as an auxil-
iary task (Collobert et al., 2011).

3.4 Modeling limitations

The discourse relation language model is carefully
designed to decouple the discourse relations from
each other, after conditioning on the words. It
is clear that text documents and spoken dialogues
have sequential discourse structures, and it seems
likely that modeling this structure could improve
performance. In a traditional hidden Markov model
(HMM) generative approach (Stolcke et al., 2000),
modeling sequential dependencies is not difficult,
because training reduces to relative frequency es-
timation. However, in the hybrid probabilistic-
neural architecture proposed here, training is al-
ready expensive, due to the large number of param-
eters that must be estimated. Adding probabilis-
tic couplings between adjacent discourse relations
〈zt−1, zt〉 would require the use of dynamic pro-
gramming for both training and inference, increas-
ing time complexity by a factor that is quadratic in
the number of discourse relations. We did not at-
tempt this in this paper; we do compare against a
conventional HMM on the dialogue act prediction
task in § 5.

Ji et al. (2015) propose an alternative form of
the document context language model, in which the
contextual information ct impacts the hidden state
ht+1, rather than going directly to the outputs yt+1.
They obtain slightly better perplexity with this ap-
proach, which has fewer trainable parameters. How-
ever, this model would couple zt with all subsequent
sentences y>t, making prediction and marginaliza-
tion of discourse relations considerably more chal-
lenging. Sequential Monte Carlo algorithms offer a
possible solution (de Freitas et al., ; Gu et al., 2015),
which may be considered in future work.

4 Data and Implementation

We evaluate our model on two benchmark datasets:
(1) the Penn Discourse Treebank (Prasad et al.,
2008, PDTB), which is annotated on a corpus of
Wall Street Journal acticles; (2) the Switchboard di-

alogue act corpus (Stolcke et al., 2000, SWDA),
which is annotated on a collections of phone con-
versations. Both corpora contain annotations of dis-
course relations and dialogue relations that hold be-
tween adjacent spans of text.

The Penn Discourse Treebank (PDTB) provides
a low-level discourse annotation on written texts. In
the PDTB, each discourse relation is annotated be-
tween two argument spans, Arg1 and Arg2. There
are two types of relations: explicit and implicit.
Explicit relations are signalled by discourse mark-
ers (e.g., “however”, “moreover”), and the span of
Arg1 is almost totally unconstrained: it can range
from a single clause to an entire paragraph, and
need not be adjacent to either Arg2 nor the dis-
course marker. However, automatically classifying
these relations is considered to be relatively easy,
due to the constraints from the discourse marker it-
self (Pitler et al., 2008). In addition, explicit rela-
tions are difficult to incorporate into language mod-
els which must generate each word exactly once. On
the contrary, implicit discourse relations are anno-
tated only between adjacent sentences, based on a
semantic understanding of the discourse arguments.
Automatically classifying these discourse relations
is a challenging task (Lin et al., 2009; Pitler et al.,
2009; Rutherford and Xue, 2015; Ji and Eisenstein,
2015). We therefore focus on implicit discourse re-
lations, leaving to the future work the question of
how to apply our modeling framework to explicit
discourse relations. During training, we collapse all
relation types other than implicit (explicit, ENTREL,
and NOREL) into a single dummy relation type,
which holds between all adjacent sentence pairs that
do not share an implicit relation.

As in the prior work on first-level discourse re-
lation identification (e.g., Park and Cardie, 2012),
we use sections 2-20 of the PDTB as the training
set, sections 0-1 as the development set for param-
eter tuning, and sections 21-22 for testing. For pre-
processing, we lower-cased all tokens, and substi-
tuted all numbers with a special token “NUM”. To
build the vocabulary, we kept the 10,000 most fre-
quent words from the training set, and replaced low-
frequency words with a special token “UNK”. In
prior work that focuses on detecting individual rela-
tions, balanced training sets are constructed so that

336

there are an equal number of instances with and
without each relation type (Park and Cardie, ; Biran
and McKeown, 2013; Rutherford and Xue, 2014).
In this paper, we target the more challenging multi-
way classification problem, so this strategy is not ap-
plicable; in any case, since our method deals with
entire documents, it is not possible to balance the
training set in this way.

The Switchboard Dialog Act Corpus (SWDA)
is annotated on the Switchboard Corpus of human-
human conversational telephone speech (Godfrey et
al., 1992). The annotations label each utterance
with one of 42 possible speech acts, such as AGREE,
HEDGE, and WH-QUESTION. Because these speech
acts form the structure of the dialogue, most of them
pertain to both the preceding and succeeding utter-
ances (e.g., AGREE). The SWDA corpus includes
1155 five-minute conversations. We adopted the
standard split from Stolcke et al. (2000), using 1,115
conversations for training and nineteen conversa-
tions for test. For parameter tuning, we randomly
select nineteen conversations from the training set
as the development set. After parameter tuning, we
train the model on the full training set with the se-
lected configuration. We use the same preprocessing
techniques here as in the PDTB.

4.1 Implementation

We use a single-layer LSTM to build the recur-
rent architecture of our models, which we im-
plement in the CNN package.1 Our implemen-
tation is available on https://github.com/
jiyfeng/drlm. Some additional details follow.

Initialization Following prior work on RNN ini-
tialization (Bengio, 2012), all parameters except
the relation prediction parameters U and b are ini-
tialized with random values drawn from the range
[−√6/(d1 + d2),

√
6/(d1 + d2)], where d1 and d2

are the input and output dimensions of the parame-
ter matrix respectively. The matrix U is initialized
with random numbers from [−10−5, 10−5] and b is
initialized to 0.

Learning Online learning was performed using
AdaGrad (Duchi et al., 2011) with initial learning

1https://github.com/clab/cnn

rate λ = 0.1. To avoid the exploding gradient prob-
lem, we used norm clipping trick with a threshold of
τ = 5.0 (Pascanu et al., 2012). In addition, we used
value dropout (Srivastava et al., 2014) with rate 0.5,
on the input X, context vector c and hidden state h,
similar to the architecture proposed by Pham et al.
(2014). The training procedure is monitored by the
performance on the development set. In our experi-
ments, 4 to 5 epochs were enough.

Hyper-parameters Our model includes two tun-
able hyper-parameters: the dimension of word rep-
resentation K, the hidden dimension of LSTM unit
H . We consider the values {32, 48, 64, 96, 128} for
both K and H . For each corpus in experiments, the
best combination of K and H is selected via grid
search on the development set.

5 Experiments

Our main evaluation is discourse relation prediction,
using the PDTB and SWDA corpora. We also eval-
uate on language modeling, to determine whether
incorporating discourse annotations at training time
and then marginalizing them at test time can im-
prove performance.

5.1 Implicit discourse relation prediction on
the PDTB

We first evaluate our model with implicit discourse
relation prediction on the PDTB dataset. Most of the
prior work on first-level discourse relation predic-
tion focuses on the “one-versus-all” binary classifi-
cation setting, but we attack the more general four-
way classification problem, as performed by Ruther-
ford and Xue (2015). We compare against the fol-
lowing methods:

Rutherford and Xue (2015) build a set of feature-
rich classifiers on the PDTB, and then augment
these classifiers with additional automatically-
labeled training instances. We compare against
their published results, which are state-of-the-art.

Ji and Eisenstein (2015) employ a recursive neural
network architecture. Their experimental setting
is different, so we re-run their system using the
same setting as described in § 4.

337

Model Accuracy Macro F1

Baseline
1. Most common class 54.7 —

Prior work
2. (Rutherford and Xue, 2015) 55.0 38.4
3. (Rutherford and Xue, 2015) 57.1 40.5

with extra training data
4. (Ji and Eisenstein, 2015) 56.4 40.0
Our work - DRLM
5. Joint training 57.1 40.5
6. Conditional training 59.5∗ 42.3
∗ significantly better than lines 2 and 4 with p < 0.05

Table 1: Multiclass relation identification on the first-level

PDTB relations.

Results As shown in Table 1, the conditionally-
trained discourse relation language models (DRLM)
outperforms all alternatives, on both metrics. While
the jointly-trained DRLM is at the same level as the
previous state-of-the-art, conditional training on the
same model provides a significant additional advan-
tage, indicated by a binomial test.

5.2 Dialogue Act tagging

Dialogue act tagging has been widely studied in both
NLP and speech communities. We follow the setup
used by Stolcke et al. (2000) to conduct experiments,
and adopt the following systems for comparison:

Stolcke et al. (2000) employ a hidden Markov
model, with each HMM state corresponding to a
dialogue act.

Kalchbrenner and Blunsom (2013) employ a
complex neural architecture, with a convolutional
network at each utterance and a recurrent net-
work over the length of the dialog. To our knowl-
edge, this model attains state-of-the-art accuracy
on this task, outperforming other prior work such
as (Webb et al., 2005; Milajevs and Purver, 2014).

Results As shown in Table 2, the conditionally-
trained discourse relation language model (DRLM)
outperforms all competitive systems on this task. A
binomial test shows the result in line 6 is signifi-
cantly better than the previous state-of-the-art (line
4). All comparisons are against published results,
and Macro-F1 scores are not available. Accuracy

1. Model Accuracy

Baseline
2. Most common class 31.5

Prior work
3. (Stolcke et al., 2000) 71.0
4. (Kalchbrenner and Blunsom,
2013)

73.9

Our work - DRLM
5. Joint training 74.0
6. Conditional training 77.0∗
∗ significantly better than line 4 with p < 0.01

Table 2: The results of dialogue act tagging.

is more reliable on this evaluation, since no single
class dominates, unlike the PDTB task.

5.3 Discourse-aware language modeling
As a joint model for discourse and language model-
ing, DRLM can also function as a language model,
assigning probabilities to sequences of words while
marginalizing over discourse relations. To deter-
mine whether discourse-aware language modeling
can improve performance, we compare against the
following systems:

RNNLM+LSTM This is the same basic architec-
ture as the RNNLM proposed by (Mikolov et al.,
2010), which was shown to outperform a Kneser-
Ney smoothed 5-gram model on modeling Wall
Street Journal text. Following Pham et al. (2014),
we replace the Sigmoid nonlinearity with a long
short-term memory (LSTM).

DCLM We compare against the Document Context
Language Model (DCLM) of Ji et al. (2015). We
use the “context-to-output” variant, which is iden-
tical to the current modeling approach, except that
it is not parametrized by discourse relations. This
model achieves strong results on language model-
ing for small and medium-sized corpora, outper-
forming RNNLM+LSTM.

Results The perplexities of language modeling on
the PDTB and the SWDA are summarized in Ta-
ble 3. The comparison between line 1 and line
2 shows the benefit of considering multi-sentence
context information on language modeling. Line
3 shows that adding discourse relation information

338

PDTB SWDA

Model K H PPLX K H PPLX

Baseline
1. RNNLM 96 128 117.8 128 96 56.0
2. DCLM 96 96 112.2 96 96 45.3
Our work
3. DRLM 64 96 108.3 128 64 39.6

Table 3: Language model perplexities (PPLX), lower is better.

The model dimensions K and H that gave best performance on

the dev set are also shown.

yields further improvements for both datasets. We
emphasize that discourse relations in the test doc-
uments are marginalized out, so no annotations are
required for the test set; the improvements are due
to the disambiguating power of discourse relations
in the training set.

Because our training procedure requires discourse
annotations, this approach does not scale to the large
datasets typically used in language modeling. As a
consequence, the results obtained here are somewhat
academic, from the perspective of practical language
modeling. Nonetheless, the positive results here mo-
tivate the investigation of training procedures that
are also capable of marginalizing over discourse re-
lations at training time.

6 Related Work

This paper draws on previous work in both discourse
modeling and language modeling.

Discourse and dialog modeling Early work on
discourse relation classification utilizes rich, hand-
crafted feature sets (Joty et al., 2012; Lin et al.,
2009; Sagae, 2009). Recent representation learn-
ing approaches attempt to learn good representations
jointly with discourse relation classifiers and dis-
course parsers (Ji and Eisenstein, 2014; Li et al.,
2014). Of particular relevance are applications of
neural architectures to PDTB implicit discourse re-
lation classification (Ji and Eisenstein, 2015; Zhang
et al., 2015; Braud and Denis, 2015). All of these
approaches are essentially classifiers, and take su-
pervision only from the 16,000 annotated discourse
relations in the PDTB training set. In contrast, our
approach is a probabilistic model over the entire text.

Probabilistic models are frequently used in dia-

log act tagging, where hidden Markov models have
been a dominant approach (Stolcke et al., 2000). In
this work, the emission distribution is an n-gram
language model for each dialogue act; we use a
conditionally-trained recurrent neural network lan-
guage model. An alternative neural approach for di-
alogue act tagging is the combined convolutional-
recurrent architecture of Kalchbrenner and Blunsom
(2013). Our modeling framework is simpler, rely-
ing on a latent variable parametrization of a purely
recurrent architecture.

Language modeling There are an increasing
number of attempts to incorporate document-level
context information into language modeling. For ex-
ample, Mikolov and Zweig (2012) introduce LDA-
style topics into RNN based language modeling.
Sordoni et al. (2015) use a convolutional structure
to summarize the context from previous two utter-
ances as context vector for RNN based language
modeling. Our models in this paper provide a uni-
fied framework to model the context and current sen-
tence. Wang and Cho (2015) and Lin et al. (2015)
construct bag-of-words representations of previous
sentences, which are then used to inform the RNN
language model that generates the current sentence.
The most relevant work is the Document Context
Language Model (Ji et al., 2015, DCLM); we de-
scribe the connection to this model in § 2. By adding
discourse information as a latent variable, we attain
better perplexity on held-out data.

Latent variable neural networks Introducing la-
tent variables to a neural network model increases
its representational capacity, which is the main goal
of prior efforts in this space (Kingma and Welling,
2014; Chung et al., 2015). From this perspective,
our model with discourse relations as latent vari-
ables shares the same merit. Unlike this prior work,
in our approach, the latent variables carry a lin-
guistic interpretation, and are at least partially ob-
served. Also, these prior models employ continuous
latent variables, requiring complex inference tech-
niques such as variational autoencoders (Kingma
and Welling, 2014; Burda et al., 2016; Chung et al.,
2015). In contrast, the discrete latent variables in our
model are easy to sum and maximize over.

339

7 Conclusion

We have presented a probabilistic neural model
over sequences of words and shallow discourse re-
lations between adjacent sequences. This model
combines positive aspects of neural network ar-
chitectures with probabilistic graphical models: it
can learn discriminatively-trained vector representa-
tions, while maintaining a probabilistic representa-
tion of the targeted linguistic element: in this case,
shallow discourse relations. This method outper-
forms state-of-the-art systems in two discourse rela-
tion detection tasks, and can also be applied as a lan-
guage model, marginalizing over discourse relations
on the test data. Future work will investigate the
possibility of learning from partially-labeled train-
ing data, which would have at least two potential ad-
vantages. First, it would enable the model to scale up
to the large datasets needed for competitive language
modeling. Second, by training on more data, the
resulting vector representations might support even
more accurate discourse relation prediction.

Acknowledgments

Thanks to Trevor Cohn, Chris Dyer, Lingpeng Kong,
and Quoc V. Le for helpful discussions, and to the
anonymous reviewers for their feedback. This work
was supported by a Google Faculty Research award
to the third author. It was partially performed dur-
ing the 2015 Jelinek Memorial Summer Workshop
on Speech and Language Technologies at the Uni-
versity of Washington, Seattle, and was supported
by Johns Hopkins University via NSF Grant No IIS
1005411, DARPA LORELEI Contract No HR0011-
15-2-0027, and gifts from Google, Microsoft Re-
search, Amazon and Mitsubishi Electric Research
Laboratory.

References
Yoshua Bengio. 2012. Practical recommendations for

gradient-based training of deep architectures. In Neu-
ral Networks: Tricks of the Trade, pages 437–478.
Springer.

Or Biran and Kathleen McKeown. 2013. In Proceed-
ings of the Association for Computational Linguistics
(ACL), pages 69–73, Sophia, Bulgaria.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classi-

fication. In Proceedings of Empirical Methods for
Natural Language Processing (EMNLP), pages 2201–
2211, Lisbon, September.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov.
2016. Importance weighted autoencoders. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Rich Caruana. 1997. Multitask learning. Machine learn-
ing, 28(1):41–75.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Neural Information Processing Systems (NIPS),
Montréal.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

João FG de Freitas, Mahesan Niranjan, Andrew H. Gee,
and Arnaud Doucet. Sequential monte carlo methods
to train neural network models. Neural computation,
12(4):955–993.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the Association for Com-
putational Linguistics (ACL), pages 334–343, Beijing,
China.

Jenny Rose Finkel, Christopher D Manning, and An-
drew Y Ng. 2006. Solving the problem of cascading
errors: Approximate bayesian inference for linguis-
tic annotation pipelines. In Proceedings of Empirical
Methods for Natural Language Processing (EMNLP),
pages 618–626.

John J Godfrey, Edward C Holliman, and Jane McDaniel.
1992. Switchboard: Telephone speech corpus for re-
search and development. In ICASSP, volume 1, pages
517–520. IEEE.

Shixiang Gu, Zoubin Ghahramani, and Richard E Turner.
2015. Neural adaptive sequential monte carlo. In Neu-
ral Information Processing Systems (NIPS), Montréal.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation
learning for text-level discourse parsing. In Proceed-
ings of the Association for Computational Linguistics
(ACL), Baltimore, MD.

340

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributional seman-
tics for discourse relations. Transactions of the Asso-
ciation for Computational Linguistics (TACL), June.

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer,
and Jacob Eisenstein. 2015. Document con-
text language models. In International Conference
on Learning Representations, Poster Paper, volume
abs/1511.03962.

Shafiq Joty, Giuseppe Carenini, and Raymond Ng. 2012.
A novel discriminative framework for sentence-level
discourse analysis. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP).

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
convolutional neural networks for discourse composi-
tionality. In Proceedings of the Workshop on Continu-
ous Vector Space Models and their Compositionality,
pages 119–126, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Diederik P Kingma and Max Welling. 2014. Auto-
encoding variational bayes. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the International Conference on Machine
Learning (ICML).

Jiwei Li, Rumeng Li, and Eduard Hovy. 2014. Recursive
deep models for discourse parsing. In Proceedings of
Empirical Methods for Natural Language Processing
(EMNLP).

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the penn
discourse treebank. In Proceedings of Empirical
Methods for Natural Language Processing (EMNLP),
pages 343–351, Singapore.

Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou,
and Sheng Li. 2015. Hierarchical recurrent neural
network for document modeling. In Proceedings of
Empirical Methods for Natural Language Processing
(EMNLP), pages 899–907, Lisbon, September.

Christopher D. Manning. 2016. Computational linguis-
tics and deep learning. Computational Linguistics,
41(4).

Tomas Mikolov and Geoffrey Zweig. 2012. Context de-
pendent recurrent neural network language model. In
Proceedings of Spoken Language Technology (SLT),
pages 234–239.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048.

Dmitrijs Milajevs and Matthew Purver. 2014. Investi-
gating the contribution of distributional semantic in-
formation for dialogue act classification. In Proceed-
ings of the 2nd Workshop on Continuous Vector Space
Models and their Compositionality (CVSC), pages 40–
47.

Joonsuk Park and Claire Cardie. Improving implicit dis-
course relation recognition through feature set opti-
mization. In Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 108–112, Seoul, South Korea, July. As-
sociation for Computational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063.

Vu Pham, Théodore Bluche, Christopher Kermorvant,
and Jérôme Louradour. 2014. Dropout improves re-
current neural networks for handwriting recognition.
In Frontiers in Handwriting Recognition (ICFHR),
2014 14th International Conference on, pages 285–
290. IEEE.

Emily Pitler, Mridhula Raghupathy, Hena Mehta, Ani
Nenkova, Alan Lee, and Aravind Joshi. 2008. Eas-
ily identifiable discourse relations. In Proceedings of
the International Conference on Computational Lin-
guistics (COLING), pages 87–90, Manchester, UK.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic sense prediction for implicit discourse rela-
tions in text. In Proceedings of the Association for
Computational Linguistics (ACL), Suntec, Singapore.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0. In
Proceedings of LREC.

Attapol T Rutherford and Nianwen Xue. 2014. Discov-
ering implicit discourse relations through brown clus-
ter pair representation and coreference patterns. In
Proceedings of the European Chapter of the Associ-
ation for Computational Linguistics (EACL).

Attapol Rutherford and Nianwen Xue. 2015. Improving
the inference of implicit discourse relations via classi-
fying explicit discourse connectives. pages 799–808,
May–June.

Kenji Sagae. 2009. Analysis of discourse structure with
syntactic dependencies and data-driven shift-reduce
parsing. In Proceedings of the 11th International Con-
ference on Parsing Technologies (IWPT’09), pages
81–84, Paris, France, October. Association for Com-
putational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.

341

In Proceedings of Empirical Methods for Natural Lan-
guage Processing (EMNLP), Seattle, WA.

Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan. 2015. A neural network
approach to context-sensitive generation of conversa-
tional responses. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL), Denver, CO, May.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for
automatic tagging and recognition of conversational
speech. Computational linguistics, 26(3):339–373.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. pages 384–394.

Tian Wang and Kyunghyun Cho. 2015. Larger-
context language modelling. arXiv preprint
arXiv:1511.03729.

Nick Webb, Mark Hepple, and Yorick Wilks. 2005. Di-
alogue act classification based on intra-utterance fea-
tures. In Proceedings of the AAAI Workshop on Spo-
ken Language Understanding.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2012.
Discourse structure and language technology. Journal
of Natural Language Engineering, 1.

Jason D Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dialog
systems. Computer Speech & Language, 21(2):393–
422.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi
Prasad, Christopher Bryant, and Attapol T Rutherford.
2015. The CoNLL-2015 shared task on shallow dis-
course parsing. In Proceedings of the Conference on
Natural Language Learning (CoNLL).

Biao Zhang, Jinsong Su, Deyi Xiong, Yaojie Lu, Hong
Duan, and Junfeng Yao. 2015. Shallow convolu-
tional neural network for implicit discourse relation
recognition. In Proceedings of Empirical Methods for
Natural Language Processing (EMNLP), pages 2230–
2235, Lisbon, September.

342

Proceedings of NAACL-HLT 2016, pages 343–352,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Questioning Arbitrariness in Language:
a Data-Driven Study of Conventional Iconicity

Ekaterina Abramova
Radboud University Nijmegen
e.abramova@ftr.ru.nl

Raquel Fernández
University of Amsterdam

raquel.fernandez@uva.nl

Abstract

This paper presents a data-driven investiga-
tion of phonesthemes, phonetic units said to
carry meaning associations, thus challenging
the traditionally assumed arbitrariness of lan-
guage. Phonesthemes have received a subs-
tantial amount of attention within the cogni-
tive science literature on sound iconicity, but
nevertheless remain a controversial and un-
derstudied phenomenon. Here we employ
NLP techniques to address two main ques-
tions: How can the existence of phonesthemes
be tested at a large scale with quantitative
methods? And how can the meaning arguably
carried by a phonestheme be induced auto-
matically from word embeddings? We develop
novel methods to make progress on these
fronts and compare our results to previous
work, obtaining substantial improvements.

1 Introduction

It has long been held in linguistics that since the
same concept can be expressed with words whose
forms do not resemble each other (e.g., English dog
vs. Italian cane vs. German Hund), there is no in-
trinsic link between how words sound and what they
mean. This feature—arbitrariness—is often con-
sidered a hallmark of human language (Saussure,
1916; Hockett, 1959). At the same time, how-
ever, over the last decades, mounting evidence from
psycholinguistic studies (Markel and Hamp, 1960;
Ohala, 1984; Fordyce, 1989) has shown that speak-
ers do in fact associate words that contain a particu-
lar form with certain meaning—that is, there is a de-
gree of iconicity in language in addition to arbitrari-

ness, which has been claimed to benefit language
learning (Monaghan and Christiansen, 2006; Mon-
aghan et al., 2014).

Non-arbitrary form-meaning associations come in
two basic varieties: primary iconicity (also called
‘true’) and secondary (or ‘conventional’) iconicity.
In the former, the sound is thought to directly re-
semble the meaning, as in onomatopoeia.1 In the lat-
ter, the relationship is a statistical regularity accord-
ing to which words that share similar sounds tend to
be also similar in meaning, such as a large propor-
tion of English words that end with the sound /-æS/
(e.g., crash, slash, mash, trash, dash) being related
to destructive action or collision (Hutchins, 1998).
The phonetic units that exhibit conventional mean-
ing regularities of this latter kind are called phon-
esthemes and are the focus of the present paper. In
particular, we investigate two main questions: (1)
how can the existence of phonesthemes be tested at
a large scale by means of a data-driven method? and
(2) how can the meaning arguably conveyed by a
phonestheme be derived automatically?

Phonesthemes are traditionally distinguished
from morphemes in being non-compositional. That
is, unthinkable can be thought of as being com-
posed of morphemes un- (meaning not), think, and
-able (meaning capable of), all contributing to the
overall meaning of “incapable of being thought”
and susceptible of being combined with other units
with predictable semantic effects (e.g., un-drink-
able, think-er). On the other hand, crash is not con-

1Although, the relationship can still be modified by phonetic
features of a particular language, e.g., the rooster says cock-a-
doodle-doo in English but kikiriki in German.

343

sidered to be formed compositionally from cr- and
-ash, since these components do not possesses an
easily identifiable independent meaning that can be
combined productively with other morphemes.

Because phonesthemes challenge defining fea-
tures of language such as arbitrariness and compo-
sitionality, they remain a rather controversial and
poorly understood phenomenon. To a large extent,
this is due to methodological issues. Early evi-
dence for the existence of phonesthemes consisted
primarily in linguists pointing out instances of in-
tuitive correlations between a phonetic unit and the
meaning of words containing that unit (Marchand,
1959; Reid, 1967), while early psycholinguistic ex-
periments attempted to elicit meaning definitions for
predefined lists of (real or nonsense) words shar-
ing a phonetic unit traditionally considered to be a
phonestheme (Fordyce, 1989; Abelin, 1999; Mag-
nus, 2000). More systematic studies have subse-
quently been carried out by Hutchins (1998) and
Bergen (2004), but overall the phenomenon of con-
ventional linguistic iconicity as reflected in phon-
esthemes remains largely understudied, certainly
within the computational linguistics community.

In this paper, we investigate phonesthemes by an-
alyzing their orthographic correlates in a large cor-
pus of written English, leveraging word embeddings
constructed with word2vec and made available by
Baroni et al. (2014). In particular, we make the fol-
lowing contributions:

• We develop a stricter test than previously done in
the literature for deciding whether a unit exhibits
conventional iconicity.

• We propose a new unsupervised method to induce
the meaning conveyed by a phonesthemic unit.

• We evaluate our meaning induction method with
new automatic evaluation techniques and com-
pare its performance to a WordNet-based method
proposed by Abramova et al. (2013), obtaining a
very substantial improvement.

• We additionally evaluate our automatically de-
rived meanings with human judgments collected
via a crowdsourcing experiment.

We believe phonesthemes deserve thorough inves-
tigation for both theoretical and practical reasons.
Theoretically, adding more data-driven methods can

substantially enhance work in linguistics and psy-
cholinguistics. Within computational linguistics it-
self, cross-fertilization with computational morphol-
ogy (Wang et al., 2012; Marelli and Baroni, 2015),
is an exciting avenue to be pursued. With respect
to potential applications of automatic phonestheme
meaning induction, creative brand naming (Klink,
2000; Özbal and Strapparava, 2012), sentiment anal-
ysis (Sokolova and Bobicev, 2009) and construc-
tion of more appropriate language teaching materi-
als (Imai et al., 2008) are viable possibilities.

2 Related Work

Psycholinguistic studies on the nature of phones-
themes have shown that people tend to associate cer-
tain sounds with a particular meaning. Such stud-
ies were conducted on different languages, employ-
ing different methods and exhibiting various degrees
of scale and systematicity (Fordyce, 1989; Abelin,
1999; Magnus, 2000; Hutchins, 1998). Recently,
it has also been shown that phonesthemes affect
online implicit language processing (Bergen, 2004)
and language learning (Parault and Schwanenflugel,
2006).

What also emerged from these studies is that
phonesthemes are not a homogeneous phenomenon.
They can vary in terms of the number of words that
contain a given phonestheme, their frequencies, the
strength of their association with the core meaning
of a phonestheme (for example measured as an av-
erage of human ratings for all the words that com-
prise the given phonesthemic cluster) and the regu-
larity of that association (what proportion of words
in the whole cluster are highly related to the pre-
dicted meaning). However, psycholinguistic data
is to some extent ambiguous on how these features
of phonesthemes affect their productivity, learnabil-
ity and their effect on language processing, which
could partly be due the methods being employed.
For example, in order to determine the regularity of
sound-meaning association, Bergen (2004) consults
word definitions in Websters 7th collegiate dictio-
nary and counts how many of those words bear the
required meaning for a given phonestheme. The pro-
cedure requires an intuitive judgment from the ex-
perimenter in determining the meaning of a phones-
theme and estimating whether a given word has that

344

meaning, and as a result is prone to experimenter
bias and does not allow for large-scale testing. Find-
ing a more automatic method for assessing phones-
theme features and determining their meaning could
thus alleviate this type of research liabilities.

Otis and Sagi (2008) and Abramova et al. (2013)
are two studies that attempted to test for the exis-
tence of phonesthemes in a corpus-based automatic
manner. For both the guiding question was: are
words that contain a given phonetic unit, thought to
be a phonestheme, more semantically similar than
would be expected by chance? Using distributional
models they compared the average cosine similar-
ity of the vectors that correspond to phonestheme-
bearing words to similarly sized groups of random
words. Both studies found support for a sizable
proportion of phonetic units tested. However, it
could still be questioned whether the comparison
was sufficiently strict, given that sets of random
words which do not overlap in form have a priori
lower chance of being semantically related than sets
of words that share a phonestheme. Therefore, in the
first part of our study (Section 4) we present a stricter
validation method for candidate phonesthemes that
also includes considerations related to morphologi-
cal diversity, which were ignored in previous work.

Abramova et al. (2013) presented the first at-
tempt to automatically assign meaning to sets of
phonestheme-bearing words. The authors viewed
the task as an instance of unsupervised ontology ac-
quisition in the style of Widdows (2003) and used
WordNet to assign over-arching labels to phones-
themic groups of words. While the approach was
moderately successful in inducing WordNet labels
that were in the direction predicted by the literature
for a few phonesthemes (e.g., gl-containing words
were assigned light-related labels), most phones-
themes did not receive meaningful labels according
to the meanings typically associated with phones-
themes in the sound iconicity literature. The authors
surmise that the failure could be due to the nature
of WordNet, e.g., that it reflects only one type of
semantic relation (hypernymy) which might not ex-
haust the links between words that share a phones-
theme. In Section 5, we present a different approach
to phonestheme meaning induction that exploits the
properties of word embeddings in a fully unsuper-
vised manner and yields substantially better results.

3 Data

Candidate phonesthemes. Following the studies
of Hutchins (1998), we compile a list of possible
phonesthemes of interest and their respective seman-
tic glosses (more on the latter in Section 5). We will
refer to these units as “candidate phonesthemes” be-
cause they all have been considered phonesthemes
by previous qualitative studies and our aim is to
investigate whether their alleged phenesthemic sta-
tus is warranted quantitatively. Specifically, we fo-
cus on two-consonant units in word-initial position,
which we will often call prefixes.2 We focus on the
16 prefix candidate phonesthemes listed in Table 1.
Since we work with orthographic correlates of pho-
netic units, we restrict ourselves to prefixes that have
clear orthographic–phonetic mappings, discarding
prefixes that allow for variation, such as sc-/sk-.3

bl- cl- cr- dr- fl- gl - gr- sl-
sm- sn- sp- st- sw- tr- tw- wr-

Table 1: Candidate phonesthemes considered.

Word embeddings. For our experiments, we use
existing, high-quality word embeddings created and
made available by Baroni et al. (2014).4 We use
the best performing model amongst those tested by
Baroni and colleagues, which has been constructed
with word2vec5 using the CBOW approach pro-
posed by Mikolov et al. (2013). The model contains
400-dimension vectors generated by considering the
300K most frequent word tokens (without lemma-
tization) in a large corpus comprising the English
Wikipedia, the web-based corpus ukWaC (Baroni et
al., 2009), and the BNC (Burnard, 2007).

Unfamiliar or very technical words are unlikely
to contribute to the formation of sound-meaning
associations (Hutchins, 1998). Accordingly, from
the 300K target words present in the distributional
model, we discard those that are not recognized by a

2Recall, however, that they do not correspond to morpholog-
ical prefixes.

3Such alternation-susceptible prefixes are excluded from all
analyses, including the baseline clusters introduced later on in
Section 4.

4http://clic.cimec.unitn.it/composes/
semantic-vectors.html

5https://code.google.com/p/word2vec/

345

comprehensive off-the-shelf English spell-checking
dictionary. This results in a substantial reduction of
the target vocabulary: 61,122 tokens remain after the
filtering.6 We use this restricted set of words and
corresponding embeddings in all our experiments.

4 Phonestheme Validation

The aim of the first experiment is to investigate
which of the candidate prefixes in Table 1 have
phonesthemic character and thus evince conven-
tional iconicity.

4.1 Methods

For a prefix to exhibit conventional iconicity, the
words sharing that prefix must be semantically simi-
lar, while being morphologically diverse—i.e., their
semantic relatedness must stem from their shared
sound (as captured by the prefix’s orthographic
form), and not from their sharing of a common mor-
pheme.

Semantic similarity factors. We start by assess-
ing the degree of semantic similarity exhibited by
all the words in the vocabulary that share a can-
didate phonestheme, which we refer to as candi-
date phonesthemic clusters. Our aim is to conduct
a stricter test than previously done in the litera-
ture. Therefore, rather than comparing candidate
phonesthemic clusters to sets of random words, as
done by Otis and Sagi (2008) and Abramova et al.
(2013), we compare them to words that share a ran-
dom two-consonant prefix that is non-phonesthemic,
i.e., not present in our list of candidate phones-
themes. Our vocabulary contains a total of 307 non-
phonesthemic two-consonant prefixes. We refer to
the sets of words sharing these prefixes as baseline
clusters. For our subsequent analyses we use only
191 baseline clusters which contain between 10 and
2000 words. Naturally, such baseline clusters will
contain words that are morphologically and hence
semantically related, which offers a more challeng-
ing baseline.

6In particular, we use the spell-checking Python library
PyEnchant for English; see https://pythonhosted.org/

pyenchant/api/enchant.html. Many of the terms re-
moved with this filtering mechanism correspond to non-words
or named entities present in the corpus.

In our first similarity test, we compute cosine sim-
ilarities for all possible pairs of words within ev-
ery phonesthemic and baseline cluster. We then run
191 independent-samples one-tailed Welch’s t-tests
for each candidate phonestheme, comparing its pair-
wise similarity to the pair-wise similarity of each
of the baseline clusters. For each candidate phon-
esthemic cluster, we record how many t-tests indi-
cated significantly higher similarity than the base-
line (using a Bonferroni-corrected threshold of α =
.05/191) as well as the effect size (Cohen’s d) of the
successful t-tests. Based on the binomial distribu-
tion (with α=.05), we obtain a significance thresh-
old of 108—we hence judge a candidate prefix to ex-
hibit significantly higher similarity than the baseline
if more than 108 out of 191 t-tests are successful.

Our second similarity test is a check on the over-
all semantic cohesiveness of the candidate phones-
themic clusters. We calculate the average of all the
pairwise similarities within our 191 baseline clus-
ters. We then compare the average pairwise simi-
larity of each candidate phonesthemic cluster to the
distribution of the average similarity of the baseline
clusters. We expect a positive correlation between
the number of successful t-test per candidate phon-
estheme and their average similarity.

Morphological diversity factors. Since high se-
mantic similarity could be due to the presence of a
large proportion of morphologically related words
rather than to a sound-meaning association, we want
to balance similarity-based factors with considera-
tions about the morphological diversity of the word
clusters we investigate. In general, the larger the size
of a cluster, the higher the chance for morphological
diversity and the lower the chance for finding high
semantic cohesiveness. Hence, we would expect a
negative correlation between cluster size and seman-
tic similarity.

In previous studies (Hutchins, 1998; Otis and
Sagi, 2008) the impact of morphology is counter-
acted by manually removing morphologically re-
lated words before testing for semantic cohesive-
ness. Since one of our aims is to minimize manual
intervention, we instead take into account morpho-
logical relatedness at the validation phase. To that
end, we implement a crude lemmatization procedure
and use the ratio between the number of words and

346

the number of lemmas in a cluster to estimate mor-
phological diversity.7

The higher this ratio, the lower the morphological
diversity—with the maximum value being equal to
the size of the cluster when all words are reducible to
a single lemma. We calculate this proxy of morpho-
logical diversity for candidate phonesthemic clusters
and baseline clusters.

Validation constraints. Given the factors de-
scribed above, we judge a candidate prefix to be a
phonestheme if all the following conditions hold:
• pairwise semantic similarity is significantly

higher than the baseline (according to our first se-
mantic similarity analysis test)
• average effect size (Cohen’s d) of pairwise simi-

larity tests is at least 0.2
• average semantic similarity is higher than 2 stan-

dard errors above the average baseline similarity
(µ = 0.1260, SE = 0.0038)
• ratio words/lemmas is lower than 3 standard er-

rors above the average ratio calculated for base-
line clusters (µ = 2.93, SE = 0.0615)

We have chosen each of the thresholds to be reason-
ably strong but not too restrictive since we rely on
a combination of constraints. We deemed an aver-
age effect size of 0.2 sufficient given the strictness
of our comparison method. The average semantic
similarity of the phonesthemic cluster was required
to be at least 2 standard errors above average similar-
ity of the baseline clusters to approximate the con-
ventional one-tailed alpha level of 0.025. Finally,
a stricter threshold of 3 standard errors was chosen
for the lemma ratio just to exclude cases of prefixes
that have abnormally low morphological diversity.
A stricter condition (requiring high diversity) does
not seem justified since there is no reason to expect
phonestheme-bearing words to be more morpholog-
ically diverse than average. The candidate phones-
theme was judged to be significant when all con-
straints were simultaneously satisfied.

7Since our data consists of word embeddings (generaliz-
ing over contexts), an off-the-shelf lemmatizer is not effective.
Instead we implement a lemmatizer dictionary based on the
raw and lemmatized versions of the British National Corpus
(Burnard, 2007). The lemma is retrieved if a given word is in
the dictionary. Otherwise, we apply two state-of-the-art stem-
mers, first Lancaser, then Porter (this order was chosen after
qualitative examination of a few examples).

4.2 Results

We apply the validation methods to our data. As
a sanity check, we test whether the information en-
coded in the word embeddings is consistent with the
data used in previous experiments: Indeed, the av-
erage similarity of the 16 candidate prefixes tested
is positively correlated with the human ratings for
semantic cohesiveness collected by Hutchins (1998)
(r = .46), and with the similarity values reported by
Otis and Sagi (2008) (r = .68) and Abramova et al.
(2013) (r = .58).8

As predicted, the correlation between the average
number of successful t-tests and average similarity
is high (r = .93), suggesting that both methods are
equally valid for evaluating semantic cohesiveness
of phonesthemic clusters. Cluster size (both raw and
as the number of lemmas) is negatively correlated
with all semantic similarity measures, i.e. average
pairwise similarity, average number of successful t-
tests, and average effect size (r ≈ −.7). This is con-
sistent with the experimental finding by Hutchins
(1998), who obtained lower human ratings for larger
clusters of words.

Regarding evidence for conventional iconicity,
the following six prefixes meet all our validation
constraints: bl-, gl-, sm-, sn-, sw-, and tw-. Of the
remaining 10 prefixes tested, 3 fail all constraints
(cl-, cr-, tr-), 3 fail only the morphological diversity
constraint (gr-, sp-, st-), and the rest fail some com-
bination of constraints.9 The 6 validated prefixes are
a proper subset of the candidate phonesthemes val-
idated according to the less strict methods used in
earlier approaches: Otis and Sagi (2008) found sup-
port for dr- and wr- in addition to our 6 supported
phonesthemes and Abramova et al. (2013) discarded
only cr-, sp-, and tr- amongst our 16 candidates.
This shows that our proposed validation procedure
provides a compatible as well as stricter test for evi-
dence of phonesthemic conventional iconicity.

5 Phonestheme Meaning Induction

The quantitative results presented so far show that,
according to our validation constraints, some can-

8Recall that each of these studies uses a different corpus.
9Supplementary material including full details of the val-

idation results for all candidate phonesthemes is available at
http://tinyurl.com/phonesthemes-naacl2016.

347

bl- to blow, swell, inflate; or to be round, swollen, or globular in shape bloat, blob, blow
gl- having to do with light or with vision; or something visually salient glow, glitter, glimmer
sm- a belittling, insulting, or pejorative term smirk, smother, smug
sn- related to the nose, or breathing; also snobbishness, inquisitiveness snout, sniff, sneeze
sw- to oscillate, undulate, or move rhythmically to and fro sway, swing, swoosh
tw- to turn, distort, entangle, or oscillate; or the result of such an action twist, twitch, tweak

Table 2: Meaning glosses from Hutchins (1998, pp. 66–70) for the six validated phonesthemic prefixes, with example words.

didate phonesthemes do have phonesthemic charac-
ter: they are present in words that are semantically
similar while not being highly morphologically re-
lated. But what is the ‘meaning’ that these phonetic
units convey? In this section, we aim at investigating
whether the kind of meanings that have been infor-
mally proposed for these units in the sound iconic-
ity literature can be derived using fully unsupervised
methods.

In addition, we present ways for automatically
evaluating the derived meanings, and finally conduct
a human evaluation experiment via crowdsourcing.

5.1 Methods

Gold standard. We construct a set of gold stan-
dard meaning labels for each validated phonestheme
by taking as a starting point the informal glosses
provided by Hutchins (1998), who, in turn, com-
piled them by inspecting previous literature by Firth
(1930), Marchand (1959), Wescott (1971) and oth-
ers. The glosses for our validated phonesthemes are
given in Table 2.10 From each gloss, we extract the
content words (ignoring words that bear the given
phonestheme to avoid circular results) and manually
discard words that play only an instrumental role in
the definition. For example, in the following gloss
for the phonestheme sn-, we keep the words in italics
and discard the rest: “related to the nose, or breath-
ing; or by metaphorical extension to snobbishness,
inquisitiveness”. Since the resulting lists of words
are to some extent arbitrary (derived from intuitions
of a single scholar), we extend them by manually
adding synonyms of each of the initial seed words

10The semantic glosses for the remaining candidate
phonesthemes can be found at http://tinyurl.com/

phonesthemes-naacl2016.

until each phonestheme is associated with 25 gold
labels.11

Meaning induction. We generate an abstract
meaning representation for a phonestheme by com-
puting the centroid of the phonestheme-bearing
word cluster. Our method for inducing the core
meaning conveyed by a phonestheme is then very
simple: We extract the nearest neighbors of the
phonestheme centroid, with the constraint that these
neighboring words cannot be members of the clus-
ter themselves (i.e., must not exhibit the prefix in
question). This method outputs an ordered set of
words or meaning labels, which we can then evalu-
ate against the gold standard labels.

As described in Section 2, the only previous
attempt at automatically deriving the meaning of
phonesthemes is due to Abramova et al. (2013).
Their approach is inspired by the work of Widdows
(2003) on ontology acquisition and it consists in
assigning to a phonesthemic cluster the WordNet
synsets that subsume as many as possible of the clus-
ter words as closely as possible (i.e., within as few
as possible intervening levels in the WordNet hier-
archy). As discussed in that paper, this method does
not only have the disadvantage of relying on a hand-
crafted ontology. Other shortcomings include Word-
Net’s limited coverage in terms of vocabulary and
type of semantic relations considered (mostly, hy-
ponymy and synonymy).

For comparison purposes, we apply the Word-
Net meaning induction method of Abramova et al.
(2013) and compare its performance to the unsuper-
vised centroid method we propose.

11We consult an online edition of Roget’s thesaurus
(thesaurus.com) and retrieve only the synonyms that corre-
spond to the relevant sense of a seed word, e.g., light in the
sense of illuminated, not in the sense of blond.

348

Test against random words (higher is better)

●

●

●
●

●

●

0.
0

0.
5

1.
0

1.
5

ef
fe

ct
 s

iz
e

bl− gl− sm− sn− sw− tw−

● centroid
wordnet

Label ranking (lower is better)

●

●

●

●

●
●

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

co
rr

el
at

io
n

co
ef

fic
ie

nt

bl− gl− sm− sn− sw− tw−

● centroid
wordnet

Figure 1: Evaluation of meaning induction methods. Left: only labels induced for prefixes above the horizontal line are significantly

better than random labels. Right: negative coefficient scores shown below the line indicate better labels at the top of the list.

Automatic evaluation measures. Abramova et al.
(2013) only offer an informal qualitative evaluation
of their WordNet-based meaning labels. Here we
propose two complementary ways of quantitatively
evaluating induced phonesthemic meanings.

For our first meaning label evaluation test, we
use a Monte Carlo analysis to determine whether
generated labels are closer in vector space to gold
labels than random sets of words. More specifi-
cally, for each phonesthemic cluster, we compute
the generated–gold similarities, i.e., pairwise cosine
similarities between all the generated labels and the
gold set. We then create 100 sets of words, each
composed of 25 words randomly drawn from the vo-
cabulary and compute the random–gold similarities,
i.e., pairwise cosine similarities between these sets
of random words and the gold set. Next, we run
100 independent-samples one-tailed Welch’s t-tests
recording how many t-tests indicated significantly
higher generated-gold similarity than random-gold
(using a Bonferroni-corrected threshold of α =
.05/100). We also record the effect sizes (Cohen’s
d) of the successful t-tests. We repeat the proce-
dure 3 times and take the average of these measures.
Based on the binomial distribution (with α = .05
and p = .5), we judge obtaining at least 59 success-
ful t-tests to indicate that the generated labels are
better than random baseline at capturing the phones-
themic meaning.

Our second evaluation test exploits the fact that

both our centroid method and the WordNet method
output ordered sets of labels (from more to less suit-
able). We are interested in testing whether the gen-
erated meaning labels are more similar to the gold
labels the closer they are to the top of the list. To that
end, we again compute the pairwise average similar-
ity of each generated label with the gold label set and
look at the correlation of that measure with the po-
sition k of the generated label. We expect similarity
to decrease as k increases: Hence a strongly neg-
ative correlation indicates that the method retrieves
the best labels first.

5.2 Results

Automatic analysis. We compare the meaning la-
bels induced with our unsupervised centroid method
to those generated with the WordNet method. An
overview of the results can be seen in Figure 1. Re-
garding the first label evaluation test (generated–
gold similarities vs. random–gold similarities; left
plot in the figure), centroid overwhelmingly outper-
forms WordNet: Our method obtains significant re-
sults with high effect size for all phonestheme pre-
fixes considered, while with the WordNet method
only the labels derived for gl- are significantly more
similar to the gold standard than random words.12

Regarding the order-sensitive evaluation measure

12In line with the informal evaluation by Abramova et al.
(2013), who find that their meaning labels only seem to make
sense for gl-.

349

(ranking of induced labels, right plot in Figure 1),
with the centroid method we obtain negative corre-
lations for all phonesthemes, although rather weak
for sw- tw-, and sm-. This shows that the top in-
duced labels tend to be closer to the gold meaning.
Although the WordNet method again obtains results
that are poorer overall, there are strong negative cor-
relations for two phonesthemes: gl- and tw-.

Taken together, the results indicate that the Word-
Net method might be able to generate a few of good
labels at the top of the list, especially when these
labels are associated with the phonestheme-bearing
words by hypernymy (e.g., the top gl- labels are
brightness, flash, radiance, lightness, look). How-
ever, the remaining labels are mostly generic con-
cepts such as entity and object, which do not pro-
duce significant results when compared as a group
to the gold labels. The centroid method produces
better labels overall as well as better labels at the
top of the list. For example, the top gl- labels are
shimmered, twinkled, satiny but it is also able to cap-
ture the meaning of other phonesthemes: the pejora-
tive sm- receives stunk and leered as the top two and
twisting and oscillating tw-’s top label is waggled.

Human evaluation. In addition to the automatic
label evaluation procedures we have developed, we
test our induced meaning labels against human judg-
ments. What we aim at testing here is whether the
semantic closeness to the gold standard meaning that
we have been able to detect in vector space can ac-
tually be perceived by speakers.

We conducted a data collection study using the
crowdsourcing platform CrowdFlower.13 To prepare
the stimuli, for each of the six validated phones-
themes we selected the 10 most frequent gold la-
bels,14 the 10 top labels induced with our centroid
method, and 10 words randomly drawn from the vo-
cabulary, with a BNC frequency of at least 100 to
try to minimize the presence of words possibly un-
known to the participants. The 100 cut-off is justi-
fied given that the average frequency of the gold la-
bels is not significantly higher than the average fre-
quency of all words above this threshold (t = 1.876,
p < 0.05).

13http://www.crowdflower.com/
14According to the BNC frequency lists: https://www.

kilgarriff.co.uk/bnc-readme.html

Prefix AvgCount Stats

bl- 5.53 t(29) = 1.35
gl- 6.57 t(29) = 4.37**

sm- 5.93 t(29) = 2.04*
sn- 6.7 t(29) = 4.12**
sw- 4.93 t(29) = −0.18
tw- 7.8 t(29) = 5.66**

Table 3: Results of human evaluation: avg. number of times an

induced label was selected (N=30). *=p<0.05, **=p<0.001

An annotation item consisted of the set of gold
words and 10 pairs of induced-vs-random labels
(randomized in order). The participants were asked
to judge which of the words in each pair was more
related to the set of gold words.15 We constructed
10 annotation items per phonestheme (including the
same top 10 induced labels but paired with different
random words) and for each annotation item we col-
lected judgments from three different subjects (thus
N = 30 items per phonestheme).

To analyze the results, we counted how many
times an automatically induced label was selected
as more similar to the gold label set than a random
word. We performed a t-test with an alternative hy-
pothesis that the mean number of selected induced
labels per item is greater than 5 (i.e., greater than
chance since there were 10 pairs to be judged per
item). Automatically induced labels for 4 out of 6
phonesthemes (gl-, sm-, sn- and tw-) were judged to
be related to the gold meaning to a higher degree
than random words. Detailed results are in Table 3.

The fact that we obtain significant results indi-
cates that our generated labels are meaningful not
only according to automatic evaluation measures
but also in terms of what speakers can perceive.
However, the pattern of which phonesthemic labels
receive better human judgments is somewhat less
clear. For example, the appropriateness of the gl-
labels is highly significant according to human judg-
ment as well as both automatic tests (effect size and
average similarity correlation with k). At the same
time, while the sw- labels achieve a high effect size
(see left plot in Figure 1), they are not judged signif-

15A screenshot of the instructions given to the par-
ticipants can be found at http://tinyurl.com/

phonesthemes-naacl2016.

350

icant in our human study. The pattern is reversed for
tw-. Whether this exposes a real difference in sen-
sitivity to phonesthemic meanings in human judg-
ments compared to vector-based methods, remains
an open question.

6 Conclusions

The analysis we have presented in this paper con-
firms that the connection between sound and mean-
ing is not always entirely arbitrary and shows that
this can be detected using the properties of word em-
beddings. We find, in line with previous computa-
tional and psycholinguistic studies, that words that
share certain phonetic prefixes without being mor-
phologically related are more semantically similar
that would be expected by chance. In particular, our
phonestheme validation procedure is stricter com-
pared to previous work since we use sets of words
that share a random two-consonant prefix as base-
line and, importantly, take into account morpholog-
ical relatedness. According to our more principled
and stricter constraints, the following six consonant
prefixes exhibit symptoms of conventional sound
iconicity: bl-, gl-, sm-, sn-, sw-, and tw-. The val-
idation method we employ could serve as a start-
ing point for discovering new phonesthemes. For
example, we could inquire whether any of the two-
consonant clusters that we consider a baseline is in
fact a previously unrecognized phonestheme.

The second aspect we have addressed concerns
the automatic induction of the meaning conveyed by
a phonestheme. Up to now, the arguable meanings
of phonesthemes have been approximated infor-
mally by scholars (Hutchins, 1998; Bergen, 2004).
To make progress on this front, we have proposed
a fully unsupervised meaning induction method that
relies on extracting semantic nearest neighbors of a
phonesthemic cluster centroid in vector space. We
have shown that this method achieves substantially
better results than the WordNet-based method of our
previous work (Abramova et al., 2013), generating
meaning labels that are closer to the meanings pro-
posed in the theoretical literature. For a subset of
phonesthemes (4 out of 6: gl-, sm-, sn- and tw-),
the higher suitability of the centroid-based meaning
labels (as compared to random words) was also de-
tected by human evaluators. Although there is ob-

viously room for improvement, we think that these
results are very promising given that this is the first
data-driven study addressing this problem in an un-
supervised manner.

References
Åsa Abelin. 1999. Studies in sound symbolism. Ph.D.

thesis, Göteborg: Göteborg University.
Ekaterina Abramova, Raquel Fernández, and Federico

Sangati. 2013. Automatic labeling of phonesthemic
senses. In Proceedings of the 35th Annual Conference
of the Cognitive Science Society, pages 1696–1701.
Cognitive Science Society.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The wacky wide web: a
collection of very large linguistically processed web-
crawled corpora. Language resources and evaluation,
43(3):209–226.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of ACL-2014, volume 1,
pages 238–247.

Benjamin K. Bergen. 2004. The psychological reality of
phonaesthemes. Language, 80(2):290–311.

Lou Burnard, editor. 2007. Reference Guide for the
British National Corpus (XML Edition). Oxford Uni-
verstity Computing Services.

John R. Firth. 1930. Speech. Ernest Benn, London.
James Forrest Fordyce. 1989. Studies in sound symbol-

ism with special reference to English. University Mi-
crofilm International.

Charles F. Hockett. 1959. Animal “languages” and hu-
man language. Human Biology, 31(1):32–39.

Sharon S. Hutchins. 1998. The psychological reality,
variability, and compositionality of English phones-
themes. Ph.D. thesis, Atlanta: Emory University.

Mutsumi Imai, Sotaro Kita, Miho Nagumo, and Hiroyuki
Okada. 2008. Sound symbolism facilitates early verb
learning. Cognition, 109(1):54–65.

Richard R. Klink. 2000. Creating brand names with
meaning: The use of sound symbolism. Marketing
Letters, 11:5–20.

Margaret Magnus. 2000. What’s in a word? Evidence
for phonosemantics. Ph.D. thesis, Trondheim, Nor-
way: University of Trondheim.

Hans Marchand. 1959. Phonetic symbolism in en-
glish word formations. Indogermanische Forschun-
gen, 64:146–168.

Marco Marelli and Marco Baroni. 2015. Affixation in
semantic space: Modeling morpheme meanings with

351

compositional distributional semantics. Psychological
Review, in press.

Norman N. Markel and Eric P. Hamp. 1960. Connotative
meanings of certain phoneme sequences. Studies in
Linguistics, 15(1):47–61.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NIPS, pages 3111–3119.

Padraic Monaghan and Morten H. Christiansen. 2006.
Why form-meaning mappings are not entirely arbi-
trary in language. Proceedings of the 28th annual con-
ference of the Cognitive Science Society, pages 1838–
1843.

Padraic Monaghan, Richard C. Shillcock, Morten H.
Christiansen, and Simon Kirby. 2014. How arbitrary
is language? Philosophical Transactions of the Royal
Society of London B: Biological Sciences, 369(1651).

John J. Ohala. 1984. An ethological perspective on com-
mon Cross-Language utilization of fo of voice1. Pho-
netica, 41:1–16.

Katya Otis and Eyal Sagi. 2008. Phonaesthemes: A
corpus-based analysis. In Proceedings of the 30th An-
nual Meeting of the Cognitive Science Society, pages
65–70.

Gözde Özbal and Carlo Strapparava. 2012. A computa-
tional approach to the automation of creative naming.
In Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers -
Volume 1, ACL ’12, pages 703–711, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Susan J Parault and Paula J Schwanenflugel. 2006.
Sound-symbolism: A piece in the puzzle of word
learning. Journal of Psycholinguistic Research,
35(4):329–351.

David Reid. 1967. Sound Symbolism. T&A Constable.
Ferdinand de Saussure. 1916. Course in general linguis-

tics.
Marina Sokolova and Victoria Bobicev. 2009. Classifi-

cation of emotion words in russian and romanian lan-
guages. In RANLP, pages 416–420.

Hsueh-Cheng Wang, Li-Chuan Hsu, Yi-Min Tien, and
Marc Pomplun. 2012. Estimating semantic trans-
parency of constituents of english compounds and
two-character chinese words using latent semantic
analysis. In Proceedings of CogSci.

Roger Wescott. 1971. Linguistic iconism. Language,
47:416–428.

Dominic Widdows. 2003. Unsupervised methods for de-
veloping taxonomies by combining syntactic and sta-
tistical information. In Proc. HLT-NAACL.

352

Proceedings of NAACL-HLT 2016, pages 353–362,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Distinguishing Literal and Non-Literal Usage of German Particle Verbs

Maximilian Köper Sabine Schulte im Walde
Institut für Maschinelle Sprachverarbeitung

Universität Stuttgart, Germany
{maximilian.koeper,schulte}@ims.uni-stuttgart.de

Abstract

This paper provides a binary, token-based
classification of German particle verbs (PVs)
into literal vs. non-literal usage. A random
forest improving standard features (e.g., bag-
of-words; affective ratings) with PV-specific
information and abstraction over common
nouns significantly outperforms the major-
ity baseline. In addition, PV-specific classifi-
cation experiments demonstrate the role of
shared particle semantics and semantically
related base verbs in PV meaning shifts.

1 Introduction

Automatic detection of non-literal expressions (in-
cluding metaphors and idioms) is critical for many
natural language processing (NLP) tasks such as
information extraction, machine translation, and
sentiment analysis. For this reason, the last decade
has seen an increase in research on identifying
literal vs. non-literal meaning (Birke and Sarkar,
2006; Birke and Sarkar, 2007; Li and Sporleder,
2009; Sporleder and Li, 2009; Turney et al., 2011;
Shutova et al., 2013; Tsvetkov et al., 2014), as well
as the establishment of workshops on metaphori-
cal language in NLP.1

In this paper, we explore the prediction of lit-
eral vs. non-literal language usage of a compu-
tationally challenging class of multiword expres-
sions: German particle verbs (PVs) such as an-
lachen (laugh at) are compositions of a base verb

1sites.google.com/site/metaphorinnlp2016/

(BV) such as lachen (smile/laugh) and a verb par-
ticle such as an. German PVs are highly produc-
tive (Springorum et al., 2013b; Springorum et al.,
2013a), and the particles are notoriously ambigu-
ous (Lechler and Roßdeutscher, 2009; Haselbach,
2011; Springorum, 2011). Furthermore, the par-
ticles often trigger (regular) meaning shifts when
they combine with base verbs (Springorum et al.,
2013b), so the resulting PVs represent frequent
cases of non-literal meaning. The contributions of
this paper are as follows:

1. We present a random forest classifier that cor-
rectly identifies 86.8% of literal vs. non-literal
language usage within a novel dataset of 6436
annotated sentences, in comparison to a ma-
jority baseline of 64.9%.

2. We successfully incorporate salient PV-
specific features and noun clusters in
addition to standard bag-of-words features
and affective ratings.

3. We demonstrate that PVs with semantically
similar particles and semantically similar
base verbs can predict each others’ literal vs.
non-literal language usage.

4. We illustrate the potential and the limits of
the most salient classification features in pre-
dicting PV non-literal language usage.

In the remainder of this paper we describe pre-
vious work on non-literal language identification
and computational models of German particle
verbs (Section 2), before we introduce our dataset

353

on German particle verbs (Section 3), the particle
verb features (Section 4), and the experiments, re-
sults and analyses (Section 5).

2 Related Work

Previous work relevant to this paper includes re-
search on identifying non-literal language usage,
and computational work on (German) particle
verb meaning.

Identification of non-literal language usage:
Birke and Sarkar (2006), Birke and Sarkar (2007), Li
and Sporleder (2009) and Sporleder and Li (2009)
performed binary token-based classifications for
English datasets, relying on various contextual in-
dicators. Birke & Sarkar exploited seed sets of
literal vs. non-literal sentences, and used distri-
butional similarity to classify English verbs. Li
& Sporleder defined two models of text cohesion
(a cohesion chain and a cohesion graph) to clas-
sify V+NP and V+PP combinations. Shutova et
al. (2013) performed both metaphor identification
and interpretion (by paraphrasing), focusing on
English verbs. She relied on a seed set of annotated
metaphors and standard verb and noun cluster-
ing, to classify literal vs. metaphorical verb senses.
Gedigian et al. (2006) also predicted metaphorical
meanings of English verb tokens, however heav-
ily relying on manual rather than unsupervised
data (i.e. labeled sentences and PropBank anno-
tation) and a maximum entropy classifier. Turney
et al. (2011) assumed that metaphorical word us-
age is correlated with the degree of abstractness
of the word’s context, and classified word senses
in a given context as either literal or metaphori-
cal. Their targets were adjective–noun combina-
tions and verbs. Tsvetkov et al. (2014) presented
a language-independent approach to metaphor
identification. They used affective ratings, Word-
Net categories and vector-space word representa-
tions to train a metaphor-detecting classifier on
English samples, and then applied it to a different
target language using bilingual dictionaries.

Computational research on particle verbs was
initially concerned with the automatic acquisition
of particle verbs from corpora (Baldwin and Villav-
icencio, 2002; Baldwin, 2005; Villavicencio, 2005).

Afterwards, the main focus has been on modelling
the degree of compositionality of particle verbs as
based on distributional features (McCarthy et al.,
2003; Baldwin et al., 2003; Bannard, 2005). All
these approaches were type-based, and predicting
the compositionality was mainly concerned with
PV–BV similarity, not taking the contribution of the
particle into account. In cases where the particle
semantics was respected (such as Bannard (2005)),
the results were disappointing because modelling
particle senses is still an unsolved problem.

Regarding German particle verbs, there has also
been a focus on modelling PV compositionality
(Kühner and Schulte im Walde, 2010; Bott and
Schulte im Walde, 2014; Bott and Schulte im
Walde, 2015). As in English, the approaches were
all type-based and mainly concerned with PV–BV
similarity. Another line of research categorized
particle meanings by relating formal semantic def-
initions to automatic classifications (Rüd, 2012;
Springorum et al., 2012). Furthermore, Springo-
rum et al. (2013b) recently provided a corpus-
based study on regular meaning shift conditions
for German particle verbs.

3 Particle Verb Dataset

We selected 165 particle verbs across 10 parti-
cles, based on previous experiments and datasets
that incorporated German particle verbs with reg-
ular meaning shifts, various degrees of ambigu-
ity, and across frequency ranges (Springorum et
al., 2013b; Springorum et al., 2013a; Bott and
Schulte im Walde, 2015). For the 165 PVs, we ran-
domly extracted 50 sentences from DECOW14AX,
a German web corpus containing 12 billion to-
kens (Schäfer and Bildhauer, 2012; Schäfer, 2015).
The sentences were morphologically annotated
and parsed using SMOR (Faaß et al., 2010), Mar-
MoT (Müller et al., 2013) and the MATE depen-
dency parser (Bohnet, 2010). Combining part-
of-speech and dependency information, we were
able to reliably sample both separated and non-
separated PV occurrences (“Der Ast bricht ab”
vs. “Der Ast ist abgebrochen”).

Three German native speakers with a linguis-
tic background annotated each of the 8128 sen-

354

tences2 on a 6-point scale [0,5], ranging from
clearly literal (0) to clearly non-literal (5) usage.
The total agreement of the annotators on all six
categories was 43%, Fleiss’ κ = 0.35. Dividing
the scale into two disjunctive ranges with three
categories each ([0,2] and [3,5]), the total agree-
ment of the annotators on the two categories was
79%, Fleiss’ κ = 0.70. In the experiments we used
the binary-class distinction, and disregarded all
cases of disagreement. This final dataset com-
prises 6436 sentences: 4174 literal and 2262 non-
literal uses across 159 particle verbs and 10 parti-
cles.3 Figure 1 shows the distribution of literal and
non-literal sentences across the particles.

durch mit auf zu an aus vor ein ab nach
0%

20%

40%

60%

80%

100%

91.7%

45% 40.3% 37.7% 36.7% 34.5% 33.3% 29.9% 25.1% 20.4%

8.3%

55% 59.7% 62.3% 63.3% 65.6% 66.7% 70.1% 74.9% 79.6%

Literal Non-Literal

Figure 1: Lit/Non-lit distribution across particles.

4 Particle Verb Features

Our feature space includes standard features to
detect non-literal language uses (bags-of-words
and affective ratings) as well as PV-specific fea-
tures and abstraction over common nouns.

4.1 Unigrams

As a standard feature in vector space models, we
used all words in the particle verb sentences, i.e., a
bag-of-words model relying on unigrams. We ex-
pected this standard information to be useful, be-
cause some words such as the abstract noun Hoff-
nung (hope) and the concrete noun Geld (money)
frequently occur with non-literal rather than literal
language usage:

1. (non-lit.) “Die Hoffnung keimte früh auf.”
That hope arose (lit: sprouted) early.

2. (non-lit.) “Er versucht das Geld abzugraben.”
He tries to demand (lit: dig off) the money.

2Some PVs appeared < 50 times in the corpus.
3The dataset is accessible from http://www.ims.

uni-stuttgart.de/data/pv_nonlit.

To overcome data sparseness, we did not use
the unigrams as individual features (|V | = feature
space), but implemented this feature as the out-
put of a text-classifier. We relied on the Multino-
mial Naive Bayes (MNB) classifier by McCallum
and Nigam (1998). While the classifier was de-
signed for document classification, we considered
a sentence as a document and the possible class
outcomes were literal and non-literal.

Noun Clusters Because of the severe data sparse-
ness in our PV feature sets, we performed noun
generalization and applied the generalized infor-
mation to all nouns in our PV contexts. Using all
approx. 430000 nouns that appeared >100 times
in the DECOW14AX corpus, we applied k-Means
clustering with k ∈ [2,10000]. As an alternative
to the standard unigrams, we then replaced every
noun in the PV sentences with its corresponding
cluster tag.

4.2 Affective Ratings

Previous work on detecting non-literal language
often makes use of psycholinguistic attributes,
namely abstractness and concreteness ratings
(Turney et al., 2011), and imageability ratings
(Tsvetkov et al., 2014). Words with high abstract-
ness ratings refer to entities that cannot be per-
ceived with our senses; a large subset of which
are non-visual (i.e., receive low imageability). It
has been shown that non-literal expressions tend
to occur with abstract words (dark humor versus
dark hair). We thus expected affective ratings to
be useful for particle verbs as well:

1. (lit.) “Den Lippenstift kannst du dir ab-
schminken.” You can remove the lipstick.

2. (non-lit.) “‘Den Job kannst du dir ab-
schminken.” You can forget about the job.

We reimplemented the algorithm from (Turney
and Littman, 2003) to create large-scale abstract-
ness and imageability ratings for German (Köper
and Schulte im Walde, 2016). Based on these rat-
ings, we defined the following (partially redun-
dant) features for the PV sentential contexts:

1. Rating of the PV subject

2. Rating of the PV object

355

3. Average rating of all nouns (excluding proper
names)

4. Average rating of all proper names

5. Average rating of all verbs, excluding the PV

6. Average rating of all adjectives

7. Average rating of all adverbs

While features 3–7 have been adopted from (Tur-
ney et al., 2011), features 1–2 represent additional,
PV-specific features.

4.3 Distributional Fit of PV, BV and Context

Particle verbs with a meaning shift are non-
compositional regarding their base verbs. We thus
implemented a PV-specific feature that measures
the distributional fit of PVs and their BVs in the
PV contexts. For example, looking at the follow-
ing two PV sentences containing the BV klingen
(to sound), the context of the first, literal sentence
fits well to the BV meaning, but the context of the
second, non-literal sentence does not. The distri-
butional fit of the BV in the literal context should
therefore be high, but the distributional fit of the
BV in the non-literal context should be low.

1. (lit.) “Der Ton der Gitarre klingt aus.”
The tone of the guitar fades.

2. (non-lit.) “Den Abend lassen wir mit Wein
ausklingen.” We end the evening with wine.

To measure the distributional fit of PVs and BVs
to PV contexts, we created 400-dimensional word
representations using the hyperwords toolkit (Levy
et al., 2015) and the DECOW14AX corpus. We re-
lied on a symmetrical window of size 3 and applied
positive pointwise mutual (PPMI) feature weight-
ing together with singular value decomposition
(SVD). Based on the word representations, we cal-
culated cosine similarities between the PVs and
their contexts, and likewise between the respec-
tive BVs and the PV contexts. The contexts we
used were the same seven dimensions we used for
the affective ratings (cf. Section 4.2). For exam-
ple, regarding the sentence “Die Katze springt auf
den Tisch” (The cat jumps on the table), we calcu-
lated the distributional similarity between the PV

”aufspringen” and the subject ”Katze”, and the dis-
tributional similarity between the BV ”springen”
and the subject ”Katze”, etc. Each PV–context and
each BV–context dimension represents an individ-
ual feature.

5 Classification Experiments

In this section, we present a series of binary clas-
sification experiments to distinguish literal and
non-literal PV usage. Section 5.1 presents the main
experiments comparing our features in a global
classification setup, and Section 5.2 presents PV-
specific additional experiments that zoom into the
role of particle types and into the role of semanti-
cally related PVs and BVs. Section 5.3 provides a
qualitative analysis of the features.

5.1 Main Experiments

We used a random forest with multiple (in our case
100) random decision trees,4 with each tree voting
for an overall classification result. The unigram in-
formation was represented by stacking the output
of a multinomial naive bayes text classifier as a sin-
gle feature into the random forest. For all machine
learning algorithms we relied on the WEKA toolkit
(Witten et al., 2011).

The experiments were performed in two modes,
(a) without knowledge of the particle (i.e., the indi-
vidual particle was not provided as a feature), and
(b) with explicit knowledge of the particle. In this
way, we could identify the contribution of the par-
ticle.

The classification results are shown in Table 1.
We report on the feature type, and on the size5

of the feature set f . We further present literal
and non-literal f-scores F1, and accuracy with and
without particle knowledge. We compare against
the majority baseline (literal). The right-most
columns indicate whether the differences in per-
formance are statistically significant, using the χ2

4Experiments with other classification methods showed
similar but inferior performance. Simple Logistic Regression
performed 2nd best.

5Remember from Section 4.1 that the unigram information
is based on all tokens (12427) but we implemented the uni-
grams as a single feature (using the output of a classifier), thus
the combined setting is only based on 22 features.

356

Feature Type | f | Lit. F1 Non-Lit. F1 Acc. Acc.+P

1 Majority Baseline 0 78.7 0.0 64.9 -
2 Unigram 12427 83.2 55.5 75.6 76.5
3 Unigram + NN Clusters 6305 81.6 66.7 76.3 79.3
4 AC Ratings 7 81.3 60.7 74.7 76.3
5 IMG Ratings 7 77.5 48.1 68.6 71.6
6 Distributional Fit 14 83.0 61.8 76.5 80.2
7 Comb. (2+4+6) 22 88.6 77.1 84.8 86.6
8 Comb. (3+4+6) + NN Clusters 22 88.8 77.3 85.0 86.8

(a) Results across feature types and their combinations.

1 2 3 4 5 6 7 8

1
2 */*
3 */* -/∗
4 */* -/- ◦/*
5 */* */* */* */*
6 */* */* -/- ◦/* */*
7 */* */* */* */* */* */*
8 */* */* */* */* */* */* -/-

(b) Statistical significance of differences Acc/Acc +P .

Table 1: Main classification results.

test and ∗ for p < 0.001 and ◦ for p < 0.05 to mark
significance.

The results demonstrate that the classification
results across all feature types are significantly bet-
ter than the majority baseline. The single best
performing feature type (cf. lines 1–6) is the un-
igram information; in combination with the par-
ticle information (+P), the distributional PV/BV–
context fit is best. Combining the best feature
types (2+4+6) once more improves the results, and
ditto when adding noun cluster information.6 We
can also see that abstractness (AC) ratings outper-
form imageability (IMG) ratings.

So overall, the best performing feature set
successfully combines unigrams that incorporate
clusters for noun generalization; abstractness rat-
ings; and PV-specific information regarding the
distributional PV/BV–context fit and knowledge
about the particle. This setup correctly classifies
literal sentences with an f-score of 88.8 and non-
literal sentences with an f-score of 77.3; overall ac-
curacy is 86.8 over a baseline of 64.9.

It is difficult to compare our results against
previous approaches on different datasets and
in different languages. Regarding the closest
approaches to our work, Tsvetkov et al. (2014)
report an accuracy score of 82.0 using 10-fold
cross-validation on a training dataset with a ma-
jority baseline of 59.2, combining multiple lexi-
cal semantic features on a dataset of 1609 En-
glish subject–verb–object triples. Birke and Sarkar
(2007) trained a single classifier for each of twenty-
five verbs in the English TROFI verb dataset and
reported only an average f-score: 64.9 against a

6The best cluster analysis in our experiments contained
750 noun clusters.

majority baseline of 62.9. Turney et al. (2011) ob-
tained an average f-score of 63.9 and addition-
ally report an accuracy score of 73.4 on the same
dataset, using abstractness ratings.

In contrast to our work, the two approaches by
Birke and Sarkar (2007) and Turney et al. (2011)
treated each group of sentences for a given tar-
get verb as a separate learning problem, while we
learn one classifier across different verbs. Our
method 4 (AC Ratings) can be considered a Ger-
man re-implementation of the approach by Tur-
ney et al. (2011). In comparison to the results of
previous work, our approach can safely be consid-
ered state-of-the-art.

5.2 PV-Specific Experiments

5.2.1 Incorporating Standard Measures of
Multiword Idiomaticity

One traditional line of research to identify type-
based multiword collocations or idiomatic expres-
sions relies on the association strength between
the multiword parts (Evert and Krenn, 2001; Krenn
and Evert, 2001; Stevenson et al., 2004): The
stronger the association between the parts of a
multiword expression (as determined by raw fre-
quency, some variant of mutual information, etc.),
the stronger the collocation/idiomaticity of the
combination of the parts. Based on this assump-
tion, we calculated the association strength be-
tween PVs and their contextual subjects/objects,
using local mutual information (LMI), cf. Evert
(2005). The LMI scores were based on type-based
frequency counts in the DECOW14AX corpus and
added as features to the respective contexts, as-
suming that large LMI scores indicate non-literal
PV usage.

357

Adding the LMI values to the overall best fea-
ture set from the main experiments decreased ac-
curacy from 86.8 → 86.0. Using the LMI associ-
ation strength values of the PV–subject and PV–
object pairs by themselves provided slightly but
non-significantly better results in comparison to
the majority baseline: 65.9 > 64.9.7 Manual inves-
tigations revealed that verb–noun pairs with high
LMI scores represent collocations in many cases,
but the collocations are not only used in non-
literal language but also in literal language, e.g.,
”Sendung ausstrahlen” (“broadcast a program”).

5.2.2 Non-Literality across Particles

In order to explore the predicability of literal vs.
non-literal uses with respect to specific particles,
we trained the best classifier from the main exper-
iments on all particle verbs with particle X and ap-
plied the classifier to all particle verbs with particle
Y . Our hypothesis was that pairs of particles with
similar ambiguities might predict each other bet-
ter than pairs with different particle meanings.

This PV-specific setup could also be applied
within a PV group with the same particle: We
trained the classifier on all PVs with particle X ex-
cept for one, and then applied the trained classi-
fier to the missing PV with particle X . The setup
was repeated for all PVs with particle X , and the
average accuracy was calculated.

Figure 2 provides the results as a heat map, with
red indicating high and blue indicating low accu-
racy scores. The vertical particles on the left corre-
spond to the training particles, and the horizontal
particles at the bottom correspond to the test par-
ticles. The bottom line shows the majority base-
line. For example, training a classifier on ”ein” PVs
and evaluating it on ”aus” PVs results in an accu-
racy of 76.56, which is significantly better (∗∗∗ for
p < 0.001) than the baseline for ”aus” (65.55).

The diagonal in the heat map (showing the
within-particle setup) provides particularly high
accuracy scores, so the PVs with the same parti-
cle predict (non-)literality within the group very
well. This demonstrates that the meanings and
the meaning shifts across PVs with the same par-
ticle (e.g., aufdecken and auftischen) are quite reg-

7We also experimented with the other five contextual fea-
ture dimensions, but the results were even worse.

ular. A comparably strong prediction is found be-
tween ”vor” (before/in front of) and ”nach” (af-
ter/behind), with both particles carrying highly
similar temporal and local senses. Other exam-
ples of strongly related antonymous particle pairs
are ”auf”/”zu”, ”ein”/”aus”, and ”aus”/”an”. Exam-
ples of strongly related synonymous particle pairs
are ”an”/”ein”, and ”aus”/”zu”. ”durch” correlates
poorly with all other particles, which is probably
due to the few sentences we collected from the
corpus. ”mit” also correlates poorly with all other
particles, because it is the only particle with little
ambiguity. So overall, the heat map corresponds to
intuitions about semantic relatedness across par-
ticle pairs.

74.88

79.83

72.64

77.02

76.03

36.2

75.95

41.57

74.71

75.62

63.72

63.29

70.11

77.63

76.53

74.02

44.73

70.41

57.07

64.99

71.11

70.21

59.73

74.54

79.43

85.19

81.85

52.85

79.68

41.88

59.91

65.99

66.67

65.55

72.92

76.19

77.22

81.98

46.22

76.56

52.85

68.53

68.35

68.44

91.73

56.39

57.14

79.7

62.41

95.49

79.7

8.27

8.27

10.53

55.64

70.07

80.27

80.27

83.5

82.31

44.39

85.88

43.71

71.94

75.68

78.06

55.03

50.26

52.38

43.92

51.85

47.09

48.68

88.36

65.61

60.32

65.61

79.62

73.96

73.21

70.57

78.49

27.92

70.94

55.47

82.64

75.47

70.57

66.67

79.17

80.56

77.78

79.17

41.67

66.67

72.22

83.33

95.83

75

62.29

71.38

83.84

79.8

82.15

45.45

80.13

67

68.01

69.02

91.25

64.85

73.9

76.12

78.57

78.17

45.8

76.2

48.9

66.69

69.42

69.13

Maj.B.

ab

an

auf

aus

durch

ein

mit

nach

vor

zu

ab an auf aus durch ein mit nach vor zu Avg.
Test Particle

Tr
ai

n
in

g
P

ar
ti

cl
e

25 50 75

Accuracy

** **

**

*

**

*

*

*

*

*

χ2 test : ∗ ∗ ∗ for p < 0.001, and ∗∗ for p < 0.01 and ∗ for p < 0.05.

Figure 2: Train a classifier on PVs with particle X
and test it on PVs with particle Y .

5.2.3 Non-Literality across Particle Verbs

An even more fine-grained experiment setting
explored the predictability of a specific particle
verb based on the classifier trained on a differ-
ent particle verb. Our hypothesis was that pairs
of PVs that predict each other particularly well
share some meaning aspects, either (i) because
the training and the test verb share the same BV
(SameBV: abgraben:aufgraben), or (ii) the PVs are
synonymous according to the German Duden8

8http://www.duden.de

358

dictionary (PVSyn: auftragen:auftischen), or (iii)
because the BVs of two PVs with identical particles
are synonymous according to the Duden (BVSyn:
aufreissen:aufplatzen).

Figure 3 shows the f-scores for predicting liter-
ality and non-literality across the three settings, in
comparison to the main experiments (”All”). The
number of PV pairs in the settings and the majority
accuracy for these PV pairs are also provided, be-
cause the experiment sets differ in size. We can see
that PVs with the same BV (SameBV) predict each
other’s classifications well regarding literal but not
regarding non-literal sentences. This behaviour il-
lustrates the contribution of the particle to the PV
meaning: The same BVs with different particles
potentially differ strongly, if the particles do not
agree on one or more senses. Synonymous PVs
(PVSyn) predict each other as well in literal as in
non-literal cases. Since the PVs in all cases are sup-
posed to have the same meaning, this behaviour
is also reasonable. An increase in both literal and
non-literal F1 is reached for PV pairs with the same
particle and synonymous BVs (BVSyn), because
the BVs are supposed to carry the same meaning,
and the identical particles trigger similar mean-
ing shifts. Overall, the experiment demonstrates
that synonymous verbs undergo similar meaning
shifts, and that a particle initiates similar meaning
shifts when applied to synonymous BVs.

●●●●●●●●●●●●

●

●●●●0.00

0.25

0.50

0.75

1.00

All BVSyn PVSyn SameBV

Lit. F1 Non−Lit. F1

Pairs 22 650 51 104 276

Figure 3: Prediction for semantically related PVs.

5.3 Indicators of Non-Literality

In the final part of the paper, we perform a quali-
tative analysis of the most salient features.

5.3.1 Information Gain

First of all, we looked into the feature space by
computing the information gain within the best
random forest classifier. The information gain (I-
Gain) provides the improvement in information
entropy regarding our feature space and the class
labels, as defined by equation (1).

I-Gain(Class,Feat) = H(Class)−H(Class|Feat) (1)

The information gain does not take feature in-
teraction into account, but determines the im-
portance of the individual features. Applying this
method reveals the three most salient features:
unigrams (0.31), abstractness ratings of the con-
text nouns (0.17), and distributional fit of the
base verbs (0.11). The information gain therefore
confirms our results from the main experiments,
where these three features worked best.

In addition, we noticed that for all features
higher weights were given to dimensions that de-
pend on nouns (such as the common nouns in the
PV contexts, and the subject and object nouns),
in comparison to proper names, verbs, adjectives
and adverbs. For example, the abstractness ratings
of the adverbs were ranked second lowest with a
score of 0.005, and the distributional fit between
BVs and adjectives was ranked last with a zero
score, indicating that this feature provides no ad-
ditional information for our dataset.

5.3.2 Distributional Fit

We now take a look at the distributional fit fea-
ture, which was the best performing feature in
the main experiments, when combined with par-
ticle knowledge. Figure 4 focusing on the distribu-
tional fit between BVs and common nouns (as de-
termined third best by the information gain) con-
firms that the feature is helpful in distinguishing
literal vs. non-literal PV sentences across particles:
The medians in the boxplots for literal sentences
are clearly above those for non-literal sentences.
The plots confirm that BVs can be exploited to
identify compositional uses of PVs (which in turn
refer to literal usage).

Looking into individual PVs confirms that this
feature distinguishes well between the literal and
non-literal sentences. On the other hand, we also

359

find PVs where this feature is not able to iden-
tify non-literal language use. Figure 5 presents the
boxplots with cosine values for aufblühen (blos-
som out) and auflodern (burn up), where the
feature works well, in comparison to absaufen
(drown), where the feature cannot distinguish
(non-)literal language usage.

0.0

0.2

0.4

0.6

0.8

ab an auf aus durch ein mit nach vor zu
Particle

Si
m

. B
V

+
 A

vg
.N

N

Literal Non−Literal

Figure 4: Distributional fit of BVs and context
nouns in (non-)literal sentences across particles.

0.0

0.2

0.4

0.6

0.8

absaufen aufblühen auflodern

Si
m

ila
ri

ty
 B

V
−

N
N

Literal Non−Literal

Figure 5: Example PVs and their distributional fit
of BVs and context nouns in (non-)literal use.

5.3.3 Abstractness of Contexts

Finally, we take a look at the abstractness fea-
ture, which was also among the best performing
features in the main experiments, and which is
generally assumed to represent a salient indicator
of non-literal language usage. Figure 6 focusing
on the abstractness of common nouns in the PV
sentences9 (as determined second best by the in-
formation gain) confirms that the feature is also
helpful in distinguishing literal vs. non-literal PV
sentences across particles: Again, the medians in
the boxplots for literal sentences are clearly above
those for non-literal sentences. The plots confirm

9High values indicate concreteness.

that contextual abstractness is a salient indicator
of non-literal language usage.

0.0

2.5

5.0

7.5

10.0

ab an auf aus durch ein mit nach vor zu
Particle

A
bs

/
C

on
c

R
at

in
g

Literal Non−Literal

Figure 6: Average abstractness ratings of context
nouns in (non-)literal sentences across particles.

Looking into individual PVs again confirms that
this feature distinguishes well between the literal
and non-literal sentences but also that there are
PVs where this feature is not able to identify non-
literal language use. Figure 7 presents the box-
plots with abstractness ratings for anstauen (ac-
cumulate) and durchsickern (leak through), where
the feature works well, in comparison to antanzen
(waltz in) and especially ausklingen (fade/finish),
where the feature cannot distinguish (non-)literal
language usage.

2

4

6

8

anstauen antanzen ausklingen durchsickern

A
bs

/
C

on
c

R
at

in
g

av
g.

N
N

Literal Non−Literal

Figure 7: Example PVs and their average abstract-
ness ratings of context nouns in (non-)literal use.

Two example sentences where the abstractness
feature goes wrong for a good reason are as fol-
lows. In (1) ”Aber wir sollten doch um fünf zum Es-
sen antanzen.” (But we should show up (lit: waltz
in) for dinner at five), the context nouns are con-
crete (we; dinner) but the language usage is non-
literal. In contrast, in (2) ”Ich liebe Emotionen, de-
shalb summen alle mit.” (I love emotions, there-

360

fore everyone hums along), the object noun in the
sentence is highly abstract (emotion), but the lan-
guage usage is literal. These examples illustrate
that contextual abstractness is not a perfect indi-
cator of non-literal language usage.

6 Conclusion

We presented a classifier that predicts literal vs.
non-literal language usage for German particle
verbs, a semantically challenging type of multi-
word expressions. The classifier significantly out-
performed the baseline by improving standard
features with noun clusters and a PV-specific dis-
tributional fit feature. PV-specific experiments in-
dicated that PVs whose particles share aspects of
ambiguity and which incorporate semantically re-
lated BVs seem to undergo similar meaning shifts.

7 Acknowledgements

The research was supported by the DFG Col-
laborative Research Centre SFB 732 (Maximil-
ian Köper) and the DFG Heisenberg Fellowship
SCHU-2580/1 (Sabine Schulte im Walde).

References

Timothy Baldwin and Aline Villavicencio. 2002. Ex-
tracting the Unextractable: A Case Study on Verb
Particles. In Proceedings of the 6th Conference on
Computational Natural Language Learning, pages
98–104, Taipei, Taiwan.

Timothy Baldwin, Colin Bannard, Takaaki Tanaka, and
Dominic Widdows. 2003. An Empirical Model of
Multiword Expression Decomposability. In Proceed-
ings of the ACL Workshop on Multiword Expressions:
Analysis, Acquisition and Treatment, pages 89–96,
Sapporo, Japan.

Timothy Baldwin. 2005. Deep Lexical Acquisition of
Verb–Particle Constructions. Computer Speech and
Language, 19:398–414.

Collin Bannard. 2005. Learning about the Meaning
of Verb–Particle Constructions from Corpora. Com-
puter Speech and Language, 19:467–478.

Julia Birke and Anoop Sarkar. 2006. A Clustering Ap-
proach for the Nearly Unsupervised Recognition of
Nonliteral Language. In Proceedings of the 11th Con-
ference of the European Chapter of the ACL, pages
329–336, Trento, Italy.

Julia Birke and Anoop Sarkar. 2007. Active Learn-
ing for the Identification of Nonliteral Language.

In Proceedings of the Workshop on Computational
Approaches to Figurative Language, pages 21–28,
Rochester, NY.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proceed-
ings of the 23rd International Conference on Compu-
tational Linguistics, pages 89–97, Beijing, China.

Stefan Bott and Sabine Schulte im Walde. 2014. Opti-
mizing a Distributional Semantic Model for the Pre-
diction of German Particle Verb Compositionality. In
Proceedings of the 9th International Conference on
Language Resources and Evaluation, pages 509–516,
Reykjavik, Iceland.

Stefan Bott and Sabine Schulte im Walde. 2015.
Exploiting Fine-grained Syntactic Transfer Features
to Predict the Compositionality of German Particle
Verbs. In Proceedings of the 11th Conference on Com-
putational Semantics, pages 34–39, London, UK.

Stefan Evert and Brigitte Krenn. 2001. Methods for the
Qualitative Evaluation of Lexical Association Mea-
sures. In Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics, pages
188–195, Toulouse, France.

Stefan Evert. 2005. The Statistics of Word Co-
Occurrences: Word Pairs and Collocations. Ph.D.
thesis, Institut für Maschinelle Sprachverarbeitung,
Universität Stuttgart.

Gertrud Faaß, Ulrich Heid, and Helmut Schmid. 2010.
Design and Application of a Gold Standard for Mor-
phological Analysis: SMOR in Validation. In Proceed-
ings of the 7th International Conference on Language
Resources and Evaluation, pages 803–810, Valletta,
Malta.

Matt Gedigian, John Bryant, Srini Narayanan, and Bra-
nimir Ciric. 2006. Catching Metaphors. In Proceed-
ings of the 3rd Workshop on Scalable Natural Lan-
guage Understanding, pages 41–48, New York City,
NY.

Boris Haselbach. 2011. Deconstructing the Meaning
of the German Temporal Verb Particle ’nach’ at the
Syntax-Semantics Interface. In Proceedings of Gen-
erative Grammar in Geneva, pages 71–92, Geneva,
Switzerland.

Maximilian Köper and Sabine Schulte im Walde. 2016.
Automatically generated affective norms of abstract-
ness, arousal, imageability and valence for 350000
german lemmas. In Proceedings of the 10th Interna-
tional Conference on Language Resources and Evalu-
ation, Portorož, Slovenia.

Brigitte Krenn and Stefan Evert. 2001. Can we do better
than Frequency? A Case Study on Extracting PP-Verb
Collocations. In Proceedings of the ACL Workshop on
Collocations, pages 39–46, Toulouse, France.

361

Natalie Kühner and Sabine Schulte im Walde. 2010.
Determining the Degree of Compositionality of Ger-
man Particle Verbs by Clustering Approaches. In
Proceedings of the 10th Conference on Natural Lan-
guage Processing, pages 47–56, Saarbrücken, Ger-
many.

Andrea Lechler and Antje Roßdeutscher. 2009. German
Particle Verbs with auf. Reconstructing their Com-
position in a DRT-based Framework. Linguistische
Berichte, 220:439–478.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015.
Improving Distributional Similarity with Lessons
learned from Word Embeddings. Transactions of
the Association for Computational Linguistics, 3:211–
225.

Linlin Li and Caroline Sporleder. 2009. Classifier Com-
bination for Contextual Idiom Detection Without La-
belled Data. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 315–323, Singapore.

Andrew McCallum and Kamal Nigam. 1998. A Com-
parison of Event Models for Naive Bayes Text Clas-
sification. In Proceedings of the AAAI Workshop on
Learning for Text Categorization.

Diana McCarthy, Bill Keller, and John Carroll. 2003. De-
tecting a Continuum of Compositionality in Phrasal
Verbs. In Proceedings of the ACL Workshop on Mul-
tiword Expressions: Analysis, Acquisition and Treat-
ment, pages 73–80, Sapporo, Japan.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient Higher-Order CRFs for Morpholog-
ical Tagging. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 322–332, Seattle, WA, USA.

Stefan Rüd. 2012. Untersuchung der distributionellen
Eigenschaften der Lesarten der Partikel ’auf ’ mit-
tels Clustering-Methoden. Master’s thesis, Insti-
tut für Maschinelle Sprachverarbeitung, Universität
Stuttgart.

Roland Schäfer and Felix Bildhauer. 2012. Building
Large Corpora from the Web Using a New Efficient
Tool Chain. In Proceedings of the 8th International
Conference on Language Resources and Evaluation,
pages 486–493, Istanbul, Turkey.

Roland Schäfer. 2015. Processing and Querying Large
Web Corpora with the COW14 Architecture. In Pi-
otr Bański, Hanno Biber, Evelyn Breiteneder, Marc
Kupietz, Harald Lüngen, and Andreas Witt, editors,
Proceedings of the 3rd Workshop on Challenges in the
Management of Large Corpora, pages 28 – 34.

Ekaterina Shutova, Simone Teufel, and Anna Korhonen.
2013. Statistical Metaphor Processing. Computa-
tional Linguistics, 39(2):301–353.

Caroline Sporleder and Linlin Li. 2009. Unsupervised
Recognition of Literal and Non-Literal Use of Id-
iomatic Expressions. In Proceedings of the 12th Con-
ference of the European Chapter of the ACL, pages
754–762, Athens, Greece.

Sylvia Springorum, Sabine Schulte im Walde, and An-
tje Roßdeutscher. 2012. Automatic Classification of
German an Particle Verbs. In Proceedings of the 8th
International Conference on Language Resources and
Evaluation, pages 73–80, Istanbul, Turkey.

Sylvia Springorum, Sabine Schulte im Walde, and An-
tje Roßdeutscher. 2013a. Sentence Generation and
Compositionality of Systematic Neologisms of Ger-
man Particle Verbs. Talk at the Conference on Quan-
titative Investigations in Theoretical Linguistics.

Sylvia Springorum, Jason Utt, and Sabine Schulte im
Walde. 2013b. Regular Meaning Shifts in German
Particle Verbs: A Case Study. In Proceedings of the
10th International Conference on Computational Se-
mantics, pages 228–239, Potsdam, Germany.

Sylvia Springorum. 2011. DRT-based Analysis of the
German Verb Particle "an". Leuvense Bijdragen,
97:80–105.

Suzanne Stevenson, Afsaneh Fazly, and Ryan North.
2004. Statistical Measures of the Semi-Productivity
of Light Verb Constructions. In Proceedings of the
2nd Workshop on Multiword Expressions: Integrating
Processing, pages 1–8, Barcelona, Spain.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman, Eric
Nyberg, and Chris Dyer. 2014. Metaphor Detection
with Cross-Lingual Model Transfer. In Proceedings of
the 52nd Annual Meeting of the Association for Com-
putational Linguistics, pages 248–258.

Peter D. Turney and Michael L. Littman. 2003. Mea-
suring Praise and Criticism: Inference of Semantic
Orientation from Association. ACM Transactions on
Information Systems, 21(4):315–346.

Peter Turney, Yair Neuman, Dan Assaf, and Yohai Co-
hen. 2011. Literal and Metaphorical Sense Identi-
fication through Concrete and Abstract Context. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 680–690, Ed-
inburgh, UK.

Aline Villavicencio. 2005. The Availability of Verb-
Particle Constructions in Lexical Resources: How
much is enough? Computer Speech and Language,
19:415–432.

Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data
Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann Publishers.

362

Proceedings of NAACL-HLT 2016, pages 363–373,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Phrasal Substitution of Idiomatic Expressions

Changsheng Liu and Rebecca Hwa
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260, USA

{changsheng,hwa}@cs.pitt.edu

Abstract

Idioms pose a great challenge to natural lan-
guage understanding. A system that can auto-
matically paraphrase idioms in context has ap-
plications in many NLP tasks. This paper pro-
poses a phrasal substitution method to replace
idioms with their figurative meanings in literal
English. Our approach identifies relevant re-
placement phrases from an idiom’s dictionary
definition and performs appropriate grammat-
ical and referential transformations to ensure
that the idiom substitution fits seamlessly into
the original context. The proposed method has
been evaluated both by automatic metrics and
human judgments. Results suggest that high
quality paraphrases of idiomatic expressions
can be achieved.

1 Introduction

An idiom is a combination of words that has a fig-
urative meaning which differs from its literal mean-
ing. Idioms pose a great challenge to many NLP
tasks, such as machine translation, word sense dis-
ambiguation, and sentiment analysis (Volk, 1998;
Korkontzelos et al., 2013; Zanzotto et al., 2010;
Williams et al., 2015). Previous work (Salton et
al., 2014) has shown that a typical statistical ma-
chine translation system might achieve only half of
the BLEU score (Papineni et al., 2002) on sentences
that contain idiomatic expressions than on those that
do not. Idioms are also problematic for second lan-
guage learners. In a pilot study we have surveyed
seven non-native speakers on 100 Tweets containing
idioms; we have found that, on average, the partici-

pants had trouble understanding 70% of them due to
the inclusion of idioms.

This work explores the possibility of automati-
cally replacing idiomatic expressions in sentences.
The full pipeline of a successful system has to solve
many problems. First, it has to determine that an
expression is, in fact, being used as an idiom in
a sentence (Fazly et al., 2009; Korkontzelos et al.,
2013; Sporleder and Li, 2009). Moreover, the sys-
tem has to sense disambiguate the idiom – it has to
pick the correct interpretation when more than one
is possible. Second, it has to generate an appropriate
phrasal replacement for the idiom using literal En-
glish. Third, it has to ensure that the replacement
phrase will fit seamlessly back into the original sen-
tence. This paper focuses on the second and third
problem, which have not been studied as extensively
in previous works.

We propose to extract the phrasal replacement for
an idiom from its definition, assuming the existence
of an up-to-date dictionary of broad coverage and
high quality.1 Because a typical definition is quite
long, it cannot directly serve as a replacement for the
idiom. A major challenge of our work is in identi-
fying the right nugget to extract from the definition.
Another major challenge is the smooth integration
of the substitution phrase into the sentence. We con-
sider both grammatical fluency as well as references
resolution in our automatic Post-Editing technique.
These phrasal challenges set our goals apart from
related work on lexical simplification and substitu-
tion (Specia et al., 2012; Jauhar and Specia, 2012;
McCarthy, 2002; McCarthy and Navigli, 2007) and

1This work uses TheFreeDictionary.com.

363

from general sentence simplification (Wubben et al.,
2012; Siddharthan, 2014; Zhu et al., 2010; Coster
and Kauchak, 2011) methods.

We validate the plausibility of the proposed meth-
ods with empirical experiments on a manually an-
notated corpus.2 Results from both automatic eval-
uations and user studies show that the proposed ap-
proach can generate high-quality paraphrases of sen-
tences containing idiomatic expressions. A success-
ful idiom paraphrase generator may not only bene-
fit non-native speakers, but may also facilitate other
NLP applications.

2 Background

The main idea of this work is to produce a fluent
and meaningful paraphrase of the original sentence
similar to how a human non-native reader might ap-
proach the problem. Suppose the reader encounters
the following sentence:

Sentence: This kind of language really
barfs me out and gets my blood up.3

If they do not understand the expression gets my
blood up, they may look it up in a dictionary:

Definition: Fig. to get someone or oneself
angry. (Fixed order.)4

Then they might try to reconcile the definition with
the context of the sentence and arrive at:

Paraphrased : This kind of language re-
ally barfs me out and gets me angry.

In the example above, only a portion of the full
definition is needed. One possible way to iden-
tify this relevant nugget is to apply sentence com-
pression techniques (McDonald, 2006; Siddharthan,
2011; Štajner et al., 2013; Filippova et al., 2015;
Filippova and Strube, 2008; Narayan and Gardent,
2014; Cohn and Lapata, 2009). However, all these
methods have been developed for standard texts with
complete sentences, and it is not clear whether they
are suited to dictionary definitions. Consider Ta-
ble 1, in which a corpus of 1000 randomly selected

2https://github.com/liucs1986/idiom_
corpus

3https://twitter.com/ezzwanaezwnd/
status/231992426548559872

4http://idioms.thefreedictionary.com/
get+blood+up

Corpus Average length Punctuation density

CLspoken 17 2.16
CLwritten 18 2.07
Definition 12 2.86

Table 1: Some statistics over normal text corpora and an idiom

definition corpus.

idiom definitions is compared with samples from
two normal text corpora (CLwritten and CLspoken)
used by Clarke and Lapata (2008). The CLwritten
corpus comes from written sources in the British
National Corpus and the American News Text cor-
pus; the CLspoken corpus comes from transcribed
broadcast news stories. We see that on average,
definitions are shorter than complete sentences; ar-
guably, each word in a definition carries more in-
formation. The density of punctuation per sentence
shows that definitions are more fragmented. These
factors are problematic for sentence compression
techniques that rely heavily on the syntactic parse
trees of complete, well-formed sentences (Cohn and
Lapata, 2009; Narayan and Gardent, 2014). One re-
cent compression method that does not rely as heav-
ily on syntax is the work of Filippova et al. (2015).
However, their approach requires a training set of
considerable size, which is not practical for the do-
main of idiom definitions. The most likely to suc-
ceed text compression method for our domain is the
work of McDonald (2006) as they only use syntac-
tic information as soft evidence to compress target
sentences. We choose this method as a comparative
baseline in our experimental evaluation.

After obtaining an appropriately shortened defini-
tion, get someone angry, more operations are needed
to properly replace the idiom with it in the origi-
nal sentence. First, we need to convert get to gets
to make the tense consistent. Second, we need
to resolve the reference someone to the appropri-
ate person in the context of the original sentence:
me. These operations are important to fit the short-
ened definition seamlessly into the original context,
which will be covered in the Post Editing section.

3 Our Method

As outlined in the previous section, our proposed
method consists of two components: substitution

364

generation and post editing.

3.1 Substitution Generation
This component aims to extract relevant replace-
ment phrases from an idiom’s dictionary defini-
tion. Rather than using generic sentence compres-
sion techniques, we argue that the taxonomy of a
definition follows certain conventions that can be
exploited. In most definitions, the core meaning is
presented first; it is then optionally followed by ad-
ditional information that supports, explains, and/or
exemplifies the main point. The relationship be-
tween the core meaning and different types of ad-
dition information is akin to relationships between
nucleus and surrounding sentences as described by
the rhetorical structure theory (Mann and Thomp-
son, 1988). Using a development set of idiom def-
inition, we have identified four types of additional
information:

Type Example
Coordination to discover or apprehend some-

one with something
Reason to be feeling happy because you

are satisfied with your life
Supplement time is very important.(Used es-

pecially when time is limited)
Example to apply thick soapsuds to some-

thing, such as part of the body

Table 2: Different types of additional information.

Below, we present two methods for extracting the
core meaning from a full definition. We first con-
sider a rule-based approach, under the assumption
that definitions can be fully described by a small set
of regular patterns. We also present a supervised
machine-learning approach, showing that these reg-
ular patterns do not have to be predefined, thus open-
ing up for possibilities of adapting the method to dif-
ferent dictionaries and languages.

3.1.1 A Rule-based Method
Analyzing the development set, we observe that

additional information are often signaled by a small
sets of lexical cues5; we call them boundary words.

5We have identified 23 words and punctuation marks: and,
or, because, since, ’cause, especially, if, for example, for in-
stance, such as, e.g., i.e., etc., in particular, like, particularly,

Using these boundary words and some shallow syn-
tactic features6, we have hand-crafted a small set of
rules to pare down the definition. Below are five
main types of rules:

1. Delete coordinated phrase after the word
”or” or ”and”. We consider that phrase to be
an equivalent alternative and discard it.

2. Delete subordinate clause after ”because” or
”since”. The subordinate clause is used to elab-
orate the reason for a fact or event.

3. Delete the clause after words such as ”so
that”, ”when”, ”if” and ”especially”. These
are often extraneous supplemental information.

4. Delete sentence after words such as ”for in-
stance”, ”e.g.”, etc.. The clause following
these words usually gives further examples.

5. Delete sentences in bracket. This is often just
supplemental information.

If multiple rules are applicable, we start from the
rule that covers the widest range first, then to rules
covering smaller ranges. After all these steps, if the
output has more than one sentence, we always keep
the first sentence for simplicity.

There is also a case of keyword ambiguity with
respect to the word ”as:” it could signal an explana-
tion (like ”because”) or an example (like ”such as”).
Because TheFree Dictionary rarely use ”as” by itself
to signal an explanation, we have only encoded the
”such as” sense in our rule-set to avoid the ambigu-
ity.

3.1.2 A ML-based Method
Not every definition follows the schema expected

by the rule-based system. To generalize the patterns,
we cast substitution generation as a binary classifi-
cation problem. The most straightforward way is to
decide whether each word in a definition should be
deleted or kept, but this will degrade the sequential
fluency of the shortened definition.

A better alternative is to segment the definition
into syntactic chunks such as non-embedded NP,
VP, ADJP, ADVP and PP phrases using off-the-shelf

namely, viz. , specifically, so that, when, (,).
6These are obtained by using the shallow parser in Natu-

ral Language Tool Kit (NLTK) (Bird, 2006) and the parts-of-
speech tagger in Stanford Parser (De Marneffe et al., 2006).

365

shallow parsers (e.g., NLTK). Chunks have been
shown to minimize the generation of discontinuous
sentences in previous works in machine translation
(Zhang et al., 2007; Watanabe et al., 2003). We ap-
ply a trained binary Support Vector Machine (SVM)
classifier to each chunk to predict whether it should
be kept or discarded. The shortened definition con-
sists of only chunks that are kept.

Lexical and syntactical features are extracted
from definition chunks as well as the sentence con-
taining the original idiom. We have also incorpo-
rated features that related previous works have found
to be beneficial (Štajner et al., 2013; Narayan and
Gardent, 2014). The following is a brief description
of our feature set.

Features from the Sentence: These features en-
code the syntactic context of the idiom. One feature
is the constituent label of the entire idiom from the
sentence’s full parse. It aims to show the big picture
of the grammatical function of the idiom in the orig-
inal sentence. Another feature is the part-of-speech
(POS) tag of the word preceding the idiom. These
features help to select definition chunks that fit bet-
ter into the sentence context in which the idiom is
used. Due to data sparsity and overfitting concerns,
we do not extract lexical features from the sentences.

Features from the Definition: These features en-
code the syntactic information extracted from all the
chunks that made up the definition. In addition to
chunking, we also apply a full parser on the defini-
tion to obtain its dependency and constituency tree.
Although the parse trees may not be reliable enough
to serve as hard constraints, they offer useful syn-
tactic information as soft evidences. For example,
the dependency tree helps us to identify the head
word of every chunk (denoted here as wh). The con-
stituency tree helps us to determine whether wh is a
node in a subordinate clause (subtree with its root la-
beled as ’SBAR’). This feature is useful because two
adjacent chunks in a relative clause tend to be kept
or discarded together. We also include features in-
dicating the relation of the typed dependency of the
chunks. Thus, if a verb chunk is kept, its arguments
are also likely to be kept. Other features includes
whether wh is the root, whether wh is the leaf node
in the dependency tree. Since certain adjacent words
tend to be discarded or kept together, we reinforce
this property by adding a bigram POS feature of wh

to encode its context. Additionally, we extract var-
ious surface features from the chunks such as their
lengths, their positions in the definition, POS of wh,
etc. Some definitions are very long and have several
sub-sentences, while a good shortened definition is
usually extracted from one sub-sentence. Thus, we
have also included a feature indicating whether the
definition has more than one sub-sentence, and if the
definition has more than one sub-sentence, whether
the chunk is in the first sub-sentence.

Features adapted from the Rule-Based
method: These include: whether the chunk con-
tains a boundary word, whether the preceding
word of the chunk is a boundary word, whether the
following word of the chunk is a boundary word,
whether the chunk is in a bracket.

3.2 Post Editing

To ensure that the shortened definition is a fluent re-
placement for the idiom in the context of the original
sentence, we must make grammatical adjustments,
resolve references, and smooth over the replacement
boundaries.

3.2.1 Grammatical Adjustments
We perform several agreement checks. For exam-

ple, when replacing a noun phrase idiom, we need
to make sure that the grammatical number of the re-
placement phrase agrees with how it is used in the
sentence. Similarly, when replacing a verb phrase
idiom, we need to perform verb tense, person and
number agreement checks, such as converting get
someone angry to gets someone angry in the exam-
ple mentioned in Section 2.

3.2.2 Reference Resolution
Reference expression is common in definition of

idiom. For example, the idiom see eye to eye has a
shortened definition of they agree with each other.
The referent they has to be resolved when we sub-
stitute the idiom with it. The general reference
resolution problem is a long-standing challenge in
NLP (Mitkov, 1998; Hobbs, 1978; Hobbs, 1979);
even in the limited context of our idiom substitution
problem, it is not trivial. While regular expression
matching may work for idioms that contain simple
slot replacements (e.g., the idiom lather something
up with the definition to apply thick soapsuds to

366

something), further analyses on the idiom’s senten-
tial context are necessary for many idioms (e.g., see
eye to eye has no obvious slot).

Typical reference expressions in a definition in-
clude something, someone, somebody, you, they,
which often refer to noun phrases (NPs) in and
around the idiom in the sentence. When the sentence
context contains multiple NPs, we need to choose
the right one to resolve the reference. To do so,
we rely on two commonly used factors: recency and
syntactic agreement (Lappin and Leass, 1994). Sim-
ilar to the work of Siddharthan (2006), we extract
all NPs in the original sentence with their agree-
ment types and grammatical functions; for each NP,
we assign it a score with equal weights of recency
and syntactic factors. We choose the NP that satisfy
the agreements and grammatical functions with the
highest score, breaking ties by selecting the closest
NP. When no contextual NP is suitable, we replace
the reference expression with generics such as ”it,”
”people,” or ”person” instead.

There is one subtle difference between reference
resolution in our work and typical cases. In addi-
tion to deriving the correct interpretation of a ref-
erence expression, our system has to actually insert
the referent to the shortened definition and make the
paraphrased sentence grammatical. This means that
we need to make the appropriate PRP (personal pro-
noun) and PRP$ (possessive pronouns) conversions.
Consider the example from Section 2 again. the
someone in the shortened definition is initially re-
solved to my in the original sentence, but to make the
substitution grammatical, it has to be transformed to
me. In addition, special processing is also needed
when the substitution is in the form of subordinate
clause. For example:

Tweet: Maybe if the NFL stopped treating
him as such, he wouldn’t act like a prima
Donna.7

Substitution: someone who demands to
be treated in a special way8

Although someone refers to he in the original sen-
tence, no pronoun substitution is plausible. There-
fore, someone is replaced by a generic expression,

7https://twitter.com/KingKylino/status/
678931385608966144

8http://idioms.thefreedictionary.com/a+
prima+donna

”a person.”

3.2.3 Boundary Smoothing
Boundary smoothing is the last step of the Post-

Editing process to improve the fluency of the result-
ing sentence. We rely on a standard n-gram language
model to evaluate the ”smoothness” of the transi-
tions between the original sentence and the substi-
tution phrase. For the left boundary, we begin by
checking the bigram probability of the word imme-
diately before the substitution and the first word of
the substitution. If it is 0, we would drop the first
word and recheck until we find a bigram with non-
zero probability or until we have reached the fourth
word, whichever occurs first. If a non-zero bigram
cannot be found within the first three words, we sub-
stitute the original shortened definition as is, without
any word deletion. The range of three word is cho-
sen based on our analysis of the development set. A
mirror image process is applied to the right bound-
ary. The language model is trained via NLTK using
the Brown corpus9.

4 Evaluation

To determine the performance of the definition
shortening methods and post editing operations, we
have carried out two experiments. The first (Section
4.2) evaluates the quality of the substitution gen-
eration methods; we also argument the evaluation
with statistical analysis of post-editing as a reference
for future work. The second (Section 4.3) evaluates
whether the resulting paraphrased sentence is gram-
matical and preserves the original meaning.

4.1 Corpus

To evaluate our method on real data, we chose to
select Tweets that contain idioms. The reasons are
twofold. First, the inspiration for our problem for-
mulation was to help non-native speakers under-
stand social media contents. The limited context
of a Tweet makes it harder for someone who does
not know an embedded idiom to induce its meaning
from the rest of the text. Second, Tweet are self-
contained, making the paraphrase task as well as
its evaluation (by human judges) more stand-alone.
The short context limits the set of mentioned en-

9http://www.hit.uib.no/icame/brown/bcm.html

367

Dataset Agree
MEDavg

Disagree Total

Training 32.9% 3.25 2.18
Testing 36.9% 3.42 2.15
All data 34.8% 3.33 2.17

Table 3: Agreement between the two annotators. MEDavg rep-

resents the average minimum edit distance (by word).

tities, which helps with pronoun resolution; other-
wise, we foresee no significant hurdles in applying
our system to regular sentences.

To build the dataset, we randomly selected 200
idioms (100 for train and 100 for test) and automat-
ically collected tweets in which they appeared using
the query API10. There were six idioms for which
no exact match was found; so we included the usage
examples from TheFreeDictionary.com instead. We
presented these sentences along with each idiom’s
definition and asked a volunteer native speaker (An-
notator #1) to manually shorten the definition. Af-
ter filtering out sentences that do not exemplify the
idioms11, we had a total of 88 instances for train-
ing and 84 for testing. Next, a near-native speaker
(Annotator #2) also performed the same task so that
we may compute the inter-annotator agreement. The
shortened definitions from Annotator #1 are used as
the gold standard.

Table 3 shows the agreement between two annota-
tors. The overall average edit distance is 2.17 words;
since the average length of the definitions is about
twelve words long (cf. Table 1), the annotators have
significant overlaps with each other (the Cohen’s
kappa is 0.64, suggesting that the inter-annotator
agreement is within an acceptable range (Viera et al.,
2005)). However, although the annotators extracted
the exact same phrase 34.8% of the times, in gen-
eral they do not completely agree. Some people may
select more words to convey a more precise mean-
ing while others sacrifice some precision in meaning
for a greater fluency. Thus, in addition to measuring
against the gold standard (Annotator #1) using au-
tomatic metrics, we also need to perform a human

10https://dev.twitter.com/rest/public/
search

11For example, ”the bitter end” was used in reference to the
name of a club.

evaluation to directly judge the qualities of the para-
phrases.

4.2 Automatic evaluation
In this experiment, we compare different approaches
for substitution generation using automatic metrics.
We wish to determine: 1) How well does each
method replicate human annotators’ phrasal extrac-
tions? 2) Do we need specialized methods for ex-
tracting core meanings from idiom definitions? 3) Is
the ML-based method more general and flexible?

The training data contains 88 definitions for a to-
tal of 645 chunks that have been labeled as “keep”
or “discard” according to the gold standards. The
test data consists of 84 unique idioms used in tweets.
The evaluation metric is the minimum edit distance
of each proposed substitution from the gold stan-
dard. We also calculate the compression rate, the ra-
tio between numbers of tokens kept with total num-
bers of tokens in original sentence.

We compare our proposed methods with McDon-
ald (2006). Specifically we use an adapted version
described in Filippova et al. (2015). We also imple-
mented two simpler baselines:
Equal-POS: Extract those words from the definition
that have the same POS tags as the idiom. For exam-
ple, if the idiom consists of a VB and an NN, then
the first two words tagged as VB and NN in the def-
inition are returned as the substitution. When POS
matching fails, the whole definition is returned.
First-Six: Always return the first six words. We
choose six because the average length of the gold
standard extractions from the training set is six
words long.

From the results presented in Table 4, we see that
the problem of extracting the core explanation from
a long definition is not trivial. The average mini-
mum edit distances from the gold standard are high
for the two simple baselines (6.29 for First-Six, 4.92
for Equal-POS). The text compression baseline, Mc-
Donald, is only a little better, at 4.86. Because the
proposed methods are developed especially for id-
iom definitions, they are closer to the gold stan-
dard. Considering the inter-annotator agreement as
an upper-bound (with an average minimum edit dis-
tance of 2.15 for the test set), the ML-based ap-
proach comes the closest to the upper-bound (with
an average distance of 2.75).

368

Method Agree
MEDavg Compression Rate

Disagree Total

First-Six 0% 6.29 6.29 37%
Equal-POS 6.0% 5.10 4.92 49%
McDonald 6.0% 5.14 4.86 22%
Rule-Based 23.8% 4.04 3.27 59%
ML-based 25.0% 3.5 2.75 51%

Table 4: A comparison of different substitution generation methods with gold standard. MEDavg denotes the average minimum

edit distance of the method’s extraction from the gold standard.

Figure 1: A distribution of edit distances for individual in-

stances.

Figure 1 plots a distribution of each method’s
minimum edit distances for the instances in the test
set. While the rule-based approach has a similar dis-
tribution as the trained classifier, it is almost always
slightly worse. We see that half of the extractions
based on the keep/discard classification are within
a one word difference from the gold standard, and
there are fewer than five instances for which the edit
distance is at least 10; in contrast, the rule-based ap-
proach has fewer cases of (nearly) perfect matches
and more cases of large mismatches (with the ex-
ception of an edit distance of 9). These results sug-
gest that specialized methods are necessary for pro-
cessing idiom definitions and that an ML-based ap-
proach is more general and flexible.

We have also measured the compression rate (CR)
of each method; however, this may not be an appro-
priate metric for our domain in the sense that lower
is not necessarily better. The CR of gold standard is

Method Grammaticality Meaning

McDonald 3.74 3.32
Def Rule-Based 4.92 4.71

ML-based 4.79 4.68

McDonald 3.44 3.27
Sen Rule-Based 4.25 4.31

ML-based 4.61 4.64
Table 5: Human evaluation of the different methods in terms of

the grammaticality and meaning preservation. In Def only the

shortened definition are evaluated; in Sen the final paraphrased

sentences are evaluated.

45%, while the ML-based method is 51%. Although
the McDonald method has the lowest CR, at 22%, it
is lower than that of the gold standard; this suggests
that its approach is too aggressive.

To evaluate the contribution of the post-editing
component, we have performed data analyses on
each step individually: grammatical adjustment, ref-
erence resolution and boundary smoothing (using
the outputs of the ML-based method). In terms
of grammatical adjustments, there are two cases of
noun number adjustment and five verb related ad-
justment.

In terms of reference resolution, we need to ad-
dress not only the typical reference expressions, but
also special cases relating to PRP and PRP$ conver-
sions and subordinate clauses that was discussed in
section 3.2.2. We have found fifteen cases of typi-
cal reference resolution and nine special cases, out
of which, seven were related to subordinate clause
(cf. Example 2 in Table 6). Finally, there are three
cases for which reference expression cannot be re-
solved due to the lack of an appropriate noun phrase
(cf. Example 5 in Table 6).

369

Sentence French and British police are working in harness to solve the problem.
Definition if two or more people work in harness, they work together to achieve something
ML-based French and British police are working together to solve the problem.
Rule-Based French and British police are working together to achieve it to solve the problem.
McDonald French and British police are working to achieve to solve the problem.

Sentence Don’t buy a pig in a poke.
Definition something that you buy without knowing if it is good or not
ML-based Don’t buy something without knowing if it is good.
Rule-Based Don’t buy something that you buy without knowing if it is good.
McDonald Don’t buy without is good.

Sentence Band-Aid solutions for a homeless Senate worker.
Definition a temporary solution to a problem, or something that seems to be a solution but has no

real effect
ML-based Temporary solutions for a homeless Senate worker.
Rule-Based Temporary solutions to a problem for a homeless Senate worker.
McDonald Or to be a for a homeless Senate worker.

Sentence I’ve said all I had to say, the ball is in your court .
Definition if the ball is in someone’s court, they have to do something before any progress can be

made in a situation.
ML-based I’ve said all I had to say, you have to do something.
Rule-Based I’ve said all I had to say, you have to do something before any progress can be made in

a situation.
McDonald I’ve said all I had to say, do before can made.

Sentence I had to spill my guts about the broken window.
Definition to tell someone all about yourself, especially your problems
ML-based I had to tell me all about myself about the broken window .
Rule-Based I had to tell me all about myself about the broken window .
McDonald I had to tell about the broken window .

Table 6: Example of paraphrased sentences. The underlined pronouns in Examples 4&5 have to be resolved. Example 5 shows a

failure of reference resolution.

With respect to boundary smoothing, there are
many more cases of left boundary smoothing than
right boundary smoothing (39 vs. 2 cases). Al-
though many of the left boundary cases simply in-
volve deleting the word ”to” from the shortened def-
initions, some boundary smoothing cases do address
the more severe redundancy disfluencies (cf. Exam-
ple 1 in Table 6).

4.3 Human evaluation

Minimum edit distance to the gold standard can-
not fully indicate the grammaticality and meaning
preservation of the extracted phrase. In this exper-
iment, we follow standard human evaluation proce-

dures (McDonald, 2006) to verify our findings from
the first experiment. The results will answer two
questions: 1) Are the shortened definitions gram-
matical and are they representative of the core mean-
ings? 2) Are the final paraphrased sentences gram-
matical and do they retain their original meanings?

We used the same 84 idioms which were the test
set in the automatic evaluation. Four native speak-
ers were recruited to evaluate the grammaticality
and meaning of the shortened definitions and para-
phrased sentences on a five-point scale. Each person
took approximately 90 minutes to finish the study.
We did not evaluate the simple baselines (First-Six
and Equal-POS) because their qualities were obvi-

370

ously low; including them may bias the human sub-
jects to give inflated scores to the better methods.
The results are presented in Table 5.

In terms of shortening the definition, the rule-
based method obtains the highest scores in both
grammaticality and meaning; this is because it tends
to be relatively conservative. The compression rate
is 59%, while the ML-based method is 51%. Keep-
ing more words in the definition reduces the chance
of introducing grammar error and meaning loss;
however, a longer definition makes poorer substitu-
tion in the full sentence because it introduces redun-
dancy and thwarts post-editing efforts. This is val-
idated in our experimental results – in terms of the
paraphrased sentences, the rule-based method is out-
performed by the ML-based method, which achieves
the best result, with 4.61 in grammaticality and 4.64
in meaning.

Table 6 shows some typical examples of the para-
phrases produced using substitution generation from
the ML-based method, the rule-based method, and
the McDonald method followed by processing with
the proposed post-editing techniques. The first ex-
ample features the effect of boundary smoothing.
The shortened definition from the ML-based method
is work together to. Direct replacement into the orig-
inal sentence creates a disfluent bigram ”working
work”, which has a probability of 0; thus the first
word in the shortened definition (work) is deleted au-
tomatically. Similarly, the word to is deleted for the
right boundary. In the third example, an automatic
grammar adjustment is applied during substitution:
a temporary solution is converted to Temporary so-
lutions to keep the number consistent. In the forth
example, the reference they is successfully resolved
to you in the definition. The fifth example features
a challenging rare case that results in a failed refer-
ence resolution.

Shortening the definition is a trade off between
length and meaning. In these examples, the rule-
based method keeps as many words as possible from
the definition and leads to redundancy in the final
output. It has a negative impact on the readabil-
ity of the paraphrase. The McDonald method is
too aggressive for short text such as definition, so
the outputs are often discontinuous. The ML-based
method offers a reasonable balance between length
and meaning, and produces paraphrases that people

seem to prefer.

5 Conclusion

We have proposed a phrasal substitution method for
paraphrasing idiomatic expressions. Our system ex-
tracts the core meaning of an idiom from its dictio-
nary definition and replaces the idiom with it. Em-
pirical evaluations shows that the proposed method
produces grammatical paraphrases that preserves the
idioms’ meanings, and it outperforms other methods
such as sentence compression. In the future, we will
explore the uses of the idiom paraphrases in NLP
applications such as machine translation and intelli-
gent tutor for second-language learners.

Acknowledgments

We would like to thank Ric Crabbe, Xiaobing Shi
and Huichao Xue for the helpful discussions and
suggestions. We also would like to thank the anony-
mous reviewers for their feedback.

371

References

Steven Bird. 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL on Interactive
presentation sessions, pages 69–72. Association for
Computational Linguistics.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research, pages 399–429.

Trevor Anthony Cohn and Mirella Lapata. 2009. Sen-
tence compression as tree transduction. Journal of Ar-
tificial Intelligence Research, pages 637–674.

William Coster and David Kauchak. 2011. Learning to
simplify sentences using wikipedia. In Proceedings of
the workshop on monolingual text-to-text generation,
pages 1–9. Association for Computational Linguistics.

Marie-Catherine De Marneffe, Bill MacCartney, Christo-
pher D Manning, et al. 2006. Generating typed de-
pendency parses from phrase structure parses. In Pro-
ceedings of LREC, volume 6, pages 449–454.

Afsaneh Fazly, Paul Cook, and Suzanne Stevenson.
2009. Unsupervised type and token identification
of idiomatic expressions. Computational Linguistics,
35(1):61–103.

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. INLG ’08: Proceed-
ings of the Fifth International Natural Language Gen-
eration Conference, pages 25–32.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence Compression by Deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 360–
368.

Jerry R Hobbs. 1978. Resolving pronoun references.
Lingua, 44(4):311–338.

Jerry R Hobbs. 1979. Coherence and coreference. Cog-
nitive science, 3(1):67–90.

Sujay Kumar Jauhar and Lucia Specia. 2012. Uow-shef:
Simplex–lexical simplicity ranking based on contex-
tual and psycholinguistic features. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics-Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Pro-
ceedings of the Sixth International Workshop on Se-
mantic Evaluation, pages 477–481. Association for
Computational Linguistics.

Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo
Zanzotto, and Chris Biemann. 2013. Semeval-2013
task 5: Evaluating phrasal semantics. In Second Joint
Conference on Lexical and Computational Semantics
(* SEM), volume 2, pages 39–47.

Shalom Lappin and Herbert J Leass. 1994. An algorithm
for pronominal anaphora resolution. Computational
linguistics, 20(4):535–561.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse, 8(3):243–281.

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In Pro-
ceedings of the 4th International Workshop on Seman-
tic Evaluations, pages 48–53. Association for Compu-
tational Linguistics.

Diana McCarthy. 2002. Lexical substitution as a task for
wsd evaluation. In Proceedings of the ACL-02 work-
shop on Word sense disambiguation: recent successes
and future directions-Volume 8, pages 109–115. Asso-
ciation for Computational Linguistics.

Ryan T McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In Proc. of
EACL-06, pages 297–304.

Ruslan Mitkov. 1998. Robust pronoun resolution with
limited knowledge. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computa-
tional Linguistics-Volume 2, pages 869–875. Associa-
tion for Computational Linguistics.

Shashi Narayan and Claire Gardent. 2014. Hybrid Sim-
plification using Deep Semantics and Machine Trans-
lation. Acl, pages 435–445.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311–318. Association for Computa-
tional Linguistics.

Giancarlo D Salton, Robert J Ross, and John D Kelleher.
2014. An Empirical Study of the Impact of Idioms on
Phrase Based Statistical Machine Translation of En-
glish to Brazilian-Portuguese. The Third Workshop
on Hybrid Approaches to Translation (HyTra 2014).

Advaith Siddharthan. 2006. Syntactic simplification and
text cohesion. Research on Language & Computation,
4(1):77–109.

Advaith Siddharthan. 2011. Text simplification using
typed dependencies: a comparison of the robustness
of different generation strategies. Proceedings of the
13th European Workshop on Natural Language Gen-
eration, (September):2–11.

Advaith Siddharthan. 2014. A survey of research on text
simplification. International Journal of Applied Lin-
guistics, 165(2):259–298.

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihalcea.
2012. Semeval-2012 task 1: English lexical simplifi-
cation. In Proceedings of the First Joint Conference

372

on Lexical and Computational Semantics-Volume 1:
Proceedings of the main conference and the shared
task, and Volume 2: Proceedings of the Sixth Interna-
tional Workshop on Semantic Evaluation, pages 347–
355. Association for Computational Linguistics.

Caroline Sporleder and Linlin Li. 2009. Unsupervised
recognition of literal and non-literal use of idiomatic
expressions. In Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 754–762. Association for
Computational Linguistics.

Anthony J Viera, Joanne M Garrett, et al. 2005. Under-
standing interobserver agreement: the kappa statistic.
Fam Med, 37(5):360–363.

Martin Volk. 1998. The automatic translation of idioms.
machine translation vs. translation memory systems.
Machine Translation: Theory, Applications, and Eval-
uation, An Assessment of the State-of-the-art, St. Au-
gustin, Gardez Verlag.

Sanja Štajner, Biljana Drndarevı́c, and Horacio Saggion.
2013. Corpus-based sentence deletion and split deci-
sions for Spanish text simplification. Computacion y
Sistemas, 17(2):251–262.

Taro Watanabe, Eiichiro Sumita, and Hiroshi G Okuno.
2003. Chunk-based statistical translation. In Proceed-
ings of the 41st Annual Meeting on Association for
Computational Linguistics-Volume 1, pages 303–310.
Association for Computational Linguistics.

Lowri Williams, Christian Bannister, Michael Arribas-
Ayllon, Alun Preece, and Irena Spasić. 2015. The
role of idioms in sentiment analysis. Expert Systems
with Applications.

Sander Wubben, Antal Van Den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 1015–1024.
Association for Computational Linguistics.

Fabio Massimo Zanzotto, Ioannis Korkontzelos,
Francesca Fallucchi, and Suresh Manandhar. 2010.
Estimating linear models for compositional dis-
tributional semantics. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics, pages 1263–1271. Association for Computational
Linguistics.

Yuqi Zhang, Richard Zens, and Hermann Ney. 2007.
Chunk-level reordering of source language sentences
with automatically learned rules for statistical ma-
chine translation. In Proceedings of the NAACL-HLT
2007/AMTA Workshop on Syntax and Structure in Sta-
tistical Translation, pages 1–8. Association for Com-
putational Linguistics.

Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych.
2010. A monolingual tree-based translation model for

sentence simplification. In Proceedings of the 23rd
international conference on computational linguistics,
pages 1353–1361. Association for Computational Lin-
guistics.

373

Proceedings of NAACL-HLT 2016, pages 374–379,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Leverage Financial News to Predict Stock Price Movements
Using Word Embeddings and Deep Neural Networks

Yangtuo Peng and Hui Jiang
Department of Electrical Engineering and Computer Science,

York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
emails: tim@cse.yorku.ca, hj@cse.yorku.ca

Abstract

Financial news contains useful information on
public companies and the market. In this pa-
per we apply the popular word embedding
methods and deep neural networks to lever-
age financial news to predict stock price move-
ments in the market. Experimental results
have shown that our proposed methods are
simple but very effective, which can signifi-
cantly improve the stock prediction accuracy
on a standard financial database over the base-
line system using only the historical price in-
formation.

1 Introduction

In the past few years, deep neural networks (DNNs)
have achieved huge successes in many data mod-
elling and prediction tasks, ranging from speech
recognition, computer vision to natural language
processing. In this paper, we are interested in apply-
ing the powerful deep learning methods to financial
data modelling to predict stock price movements.

Traditionally neural networks have been used to
model stock prices as time series for the forecast-
ing purpose, such as in (Kaastra and Boyd, 1991;
Adya and Collopy, 1991; Chan et al., 2000; Skabar
and Cloete, 2002; Zhu et al., 2008). In these earlier
work, due to the limited training data and computing
power available back then, normally shallow neural
networks were used to model various types of fea-
tures extracted from stock price data sets, such as
historical prices, trading volumes, etc, in order to
predict future stock yields and market returns.

More recently, in the community of natural lan-
guage processing, many methods have been pro-
posed to explore additional information (mainly on-
line text data) for stock forecasting, such as financial
news (Xie et al., 2013; Ding et al., 2014), twitter
sentiments (Si et al., 2013; Si et al., 2014), finan-
cial reports (Lee et al., 2014). For example, (Xie
et al., 2013) has proposed to use semantic frame
parsers to generalize from sentences to scenarios to
detect the roles of specific companies (positive or
negative), where support vector machines with tree
kernels are used as predictive models. On the other
hand, (Ding et al., 2014) has proposed to use various
lexical and syntactic constraints to extract event fea-
tures for stock forecasting, where they have inves-
tigated both linear classifiers and deep neural net-
works as predictive models.

In this paper, we propose to use the recent word
embedding methods (Mikolov et al., 2013b; Liu et
al., 2015; Chen et al., 2015) to select features from
on-line financial news corpora, and employ deep
neural networks (DNNs) to predict the future stock
movements based on the extracted features. Exper-
imental results have shown that the features derived
from financial news are very useful and they can
significantly improve the prediction accuracy over
the baseline system that only relies on the historical
price information.

2 Our Approach

In this paper, we use deep neural networks (DNNs)
as our predictive models, which provide us with
the advantage of easily combining various types of
features from different domains with the minimum

374

pre-processing and normalization effort. The DNN
model takes as input the features extracted from
both historical price information and on-line finan-
cial news to predict the stock movements in the fu-
ture (either up or down) (Peng and Jiang, 2015).

2.1 Deep Neural Networks

The structure of DNNs used in this paper is a con-
ventional multi-layer perceptron with many hidden
layers. An L-layer DNN consisting of L− 1 hidden
nonlinear layers and one output layer. The output
layer is used to model the posterior probability of
each output target. In this paper, we use the rectified
linear activation function, i.e., f(x) = max(0, x), to
compute from activations to outputs in each hidden
layer, which are in turn fed to the next layer as in-
puts. For the output layer, we use the softmax func-
tion to compute posterior probabilities between two
nodes, standing for stock-up and stock-down.

2.2 Features from historical price data

In this paper, for each target stock on a target date,
we choose the previous five days’ closing prices
and concatenate them to form an input feature vec-
tor for DNNs: P = (pt−5, pt−4, pt−3, pt−2, pt−1),
where t denotes the target date, and pm denotes
the closing price on the date m. We then normal-
ize all prices by the mean and variance calculated
from all closing prices of this stock in the train-
ing set. In addition, we also compute first and sec-
ond order differences among the five days’ closing
prices, which are appended as extra feature vec-
tors. For example, we compute the first order differ-
ence as follows: ∆P = (pt−4, pt−3, pt−2, pt−1) −
(pt−5, pt−4, pt−3, pn−2). In the same way, the
second order difference is calculated by taking
the difference between two adjacent values in
each ∆P : ∆∆P = (∆Pt−3,∆Pt−2,∆Pt−1) −
(∆Pt−4,∆Pt−3,∆Pt−2). Finally, for each target
stock on a particular date, the feature vector repre-
senting the historical price information consists of
P , ∆P and ∆∆P .

2.3 Financial news features

In order to extract fixed-size features suitable to
DNNs from financial news corpora, we need to pre-
process the text data. For all financial articles, we
first split them into sentences. We only keep those

sentences that mention at least a stock name or a
public company. Each sentence is labelled by the
publication date of the original article and the men-
tioned stock name. It is possible that multiple stocks
are mentioned in one sentence. In this case, this
sentence is labeled several times for each mentioned
stock.

We then group these sentences by the publication
dates and the underlying stock names to form the
samples. Each sample contains a list of sentences
that were published on the same date and mention
the same stock or company. Moreover, each sam-
ple is labelled as positive (“price-up”) or negative
(“price-down”) based on its next day’s closing price
consulted from the CRSP financial database (Booth,
2012). In the following, we introduce our method to
extract three types of features from each sample.

(1) Bag of keywords (BoK): We first select
the keywords based on the recent word embedding
methods in (Mikolov et al., 2013a; Mikolov et al.,
2013b). Using the popular word2vec method 1, we
first compute the vector representations for all words
occurring in the training set. Secondly, we manu-
ally select a small set of seed words, namely, nine
seed words of {surge, rise, shrink, jump, drop, fall,
plunge, gain, slump} in this work, which are be-
lieved to have a strong indication to the stock price
movements. Next, we will repeat an iterative search-
ing process to collect other useful keywords. In each
iteration, we compute the cosine distance between
other words occurring in the training set and each
seed word. The cosine distance represents the simi-
larity between two words in the word vector space.
For example, based on the pre-calculated word vec-
tors, we have found other words, such as rebound,
decline, tumble, slowdown, climb, which are very
close to at least one of the above seed words. The top
10 most similar words are chosen and added back
into the set of seed words at the end of each itera-
tion. The updated seed words will be used to repeat
the searching process again to find another top 10
most similar words, the size of the seed words will
increase as we repeat the procedure. In this way, we
have searched all words occurring in training set and
finally selected 1,000 words (including the nine ini-
tial seed words) as the keywords for our prediction

1https://code.google.com/p/word2vec/

375

task. In this iterative process to collect keywords, we
have found that the final set of the derived keywords
is usually very similar as long as we start from a
small set of seed words that all strongly indicate the
stock price movements.

Finally, a 1000-dimension feature vector, called
bag-of-keywords or BoK, is generated for each sam-
ple. Each dimension of the BoK vector is the TFIDF
score computed for each selected keyword from the
whole training corpus.

(2) Polarity score (PS): We further compute so-
called polarity scores (Turney and Littman, 2003;
Turney and Pantel, 2010) to measure how each key-
word is related to stock movements and how each
keyword applies to a target stock in each sentence.
To do this, we first compute the point-wise mutual
information for each keyword w:

PMI(w, pos) = log
freq(w, pos)×N

freq(w)× freq(pos)
,

where freq(w, pos) denotes the frequency of the
keyword w occurring in all positive samples, N de-
notes the total number of samples in the training set,
freq(w) denotes the total number of keyword w oc-
curring in the whole training set and freq(pos) de-
notes the total number of positive samples in the
training set. Furthermore, we calculate the polarity
score for each keyword w as:

PS(w) = PMI(w, pos)− PMI(w, neg).

Obviously, the above polarity score PS(w) measures
how each keyword is related to stock movements (ei-
ther positively or negatively) and by how much.

Next, for each sentence in all samples, we need
to detect how each keyword is related to the men-
tioned stock. To do this, we use the Stanford parser
(Marneffe et al., 2006) to detect whether the target
stock is a subject of the keyword or not. If the target
stock is the direct object of the keyword, we assume
the keyword is oppositely related to the underlying
stock. As a result, we need to flip the sign of the
polarity score. Otherwise, if the target stock is the
subject of the keyword, we keep the keyword’s po-
larity score as it is. For example, in a sentence like
“Apple slipped behind Samsung and Microsoft in a
2013 customer experience survey from Forrester Re-
search”, which contains an identified keyword slip.

Based on the parsing result, we know Apple is the
subject of slip while Samsung and Microsoft are the
object of slip. Therefore, if this sentence is used as a
sample for Apple, the above polarity score of slip is
directly used. However, if this sentence is used as a
sample for Samsung or Microsoft, the polarity score
of slipped is flipped by multiplying −1. Finally, the
resultant polarity scores are multiplied to the TFIDF
scores to generate another 1000-dimension feature
vector for each sample.

(3) Category tag (CT): During the preprocess-
ing of the financial news data, we have discovered
that certain type of events are frequently described
in the financial news, and the stock price will change
significantly after the publication of such financial
news. In order to discover the impact of these spe-
cific events on the stock price, we further define
a list of categories that may indicate the specific
events or activities of a public company, which we
call as category tags. In this paper, the defined cat-
egory tags include: new-product, acquisition, price-
rise, price-drop, law-suit, fiscal-report, investment,
bankrupt, government, analyst-highlights. Each cat-
egory is first manually assigned with a few words
that are closely related to the category. For exam-
ple, we have chosen released, publish, presented,
unveil as a list of seed words for the category new-
product, which indicates the company’s announce-
ment of new products. Similarly, we use the above
word embedding model to automatically expand the
word list by searching for more words that have
closer cosine distances with the selected seed words.
At last, we choose the top 100 words to assign to
each category tag.

After we have collected all key words for each
category, for each sample, we count the total number
of occurrences of all words under each category, and
then we take the logarithm to obtain a feature vector
as V = (logN1, logN2, logN3, ..., logNc), where
Nc denotes the total number of times the words in
category c appear in the sample. In the case where
Nc is zero, it is replaced by a large negative number,
for example -99.0 in this work.

2.4 Predicting Unseen Stocks via Correlation
Graph

There are a large number of stocks trading in the
market. However, we normally can only find a

376

Figure 1: Illustration of a part of correlation graph

fraction of them mentioned in daily financial news.
Hence, for each date, the above method can only
predict those stocks mentioned in the news. In this
section, we propose a new method to extend to pre-
dict more stocks that may not be directly mentioned
in the financial news. Here we propose to use a stock
correlation graph, shown in Figure 1, to predict
those unseen stocks. The stock correlation graph is
an undirected graph, where each node represents a
stock and the arc between two nodes represents the
correlation between these two stocks. In this way, if
some stocks in the graph are mentioned in the news
on a particular day, we first use the above method to
predict these mentioned stocks. Afterwards, the pre-
dictions are propagated along the arcs in the graph
to generate predictions for those unseen stocks.

(1) Build the graph: We choose the top 5,000
stocks from the CRSP database (Booth, 2012) to
construct the correlation graph. At each time, any
two stocks in the collection are selected to align their
closing prices based on the related dates (between
2006/01/01 - 2012/12/31), and we only keep the
stock pairs that have an overlapped trading period
of at least 252 days (number of trading days in one
year). Then we calculate the correlation coefficients
between the closing prices of these two stocks. The
computed correlation coefficients (between −1 and
1) are attached to the arc connecting these two stocks
in the graph, indicating their price correlation. The
correlation coefficients are calculated for all stock
pairs from the collection of 5,000 stocks. In this pa-
per, we only keep the arcs with an absolute correla-
tion value greater than 0.8, all other edges are con-
sidered to be unreliable and pruned from the graph.

(2) Predict unseen stocks: In order to predict

price movements of unseen stocks, we first take the
prediction results of those mentioned stocks from
the DNN outputs, by which we construct a 5000-
dimension vector x. The value of each dimension in
this vector is set to indicate the probability of price
moving up or down. For the dimensions correspond-
ing to the stocks that are mentioned in the financial
news, we set the values using the prediction outputs
of the DNN. Since the DNN has two outputs, each
of which represents the probabilities of two cate-
gories, i.e. stock price moving up or down. If a
sample is recognized as price-up, we set this dimen-
sion as its probability. Otherwise, if it is recognized
as price-down, we set this dimension as its probabil-
ity multiplied by −1.0. Next, we set zeros for all
other dimensions corresponding to unseen stocks.
The graph propagation process can be mathemati-
cally represented as a matrix multiplication:

x′ = Ax

where A is a symmetric 5000-by-5000 matrix de-
noting all arc correlation weights in the graph. Of
course, this graph propagation may be repeated for
several times until the prediction x′ converges.

3 Dataset

The financial news data we used in this paper are
provided by (Ding et al., 2014), which contains
106,521 articles from Reuters and 447,145 from
Bloomberg. The news articles were published in the
time period from October 2006 to December 2013.
The historical stock security data are obtained from
the Centre for Research in Security Prices (CRSP)
database (Booth, 2012), which is published by the
Chicago Business School and is widely used in the
financial modelling. The CRSP database is properly
adjusted for all special price events such as stock
splits as well as dividend yields. We only use the
security data from 2006 to 2013 to match the time
period of the financial news. Base on the samples’
publication dates, we split the dataset into three sets:
a training set (all samples between 2006-10-01 and
2012-12-31), a validation set (2013-01-01 and 2013-
06-15) and a test set (2013-06-16 to 2013-12-31).
The training set contains 65,646 samples, the vali-
dation set contains 10,941 samples, and the test set
contains 9,911 samples.

377

4 Experiments

4.1 Stock Prediction using DNNs
In the first set of experiments, we use DNNs to
predict stock price movements based on a variety
of features, namely producing a polar prediction of
the price movement on next day (either price-up or
price-down). Here we have trained a set of DNNs
using different combinations of feature vectors and
found that the DNN structure of 4 hidden layers
(with 1024 hidden nodes in each layer) yields the
best performance in the validation set. We use the
historical price feature alone to create the baseline
and various features derived from the financial news
are added on top of it. We measure the final perfor-
mance by calculating the error rate on the test set. As
shown in Table 1, the features derived from financial
news can significantly improve the prediction accu-
racy and we have obtained the best performance (an
error rate of 43.13%) by using all the features dis-
cussed in Sections 2.2 and 2.3. We have also applied
the structured event features proposed in (Ding et
al., 2014) to our samples and the result is also listed
in Table 1, which shows that our proposed features
produce better performance in predicting a pool of
individual stock prices.

feature combination error rate
price 48.12%
price + BoK 46.02%
price + BoK + PS 43.96%
price + BoK + CT 45.86%
price + PS 45.00%
price + CT 46.10%
price + PS +CT 46.03%
price + BoK + PS + CT 43.13%
structured events (Ding et al., 2014) 44.79%

Table 1: Stock prediction error rates on the test set.

4.2 Predict Unseen Stocks via Correlation
Here we group all outputs from DNNs based on the
dates of all samples on the test set. For each date, we
create a vector x based on the DNN prediction re-
sults for all observed stocks and zeros for all unseen
stocks, as described in section 2.4. Then, the vector
is propagated through the correlation graph to gener-
ate another set of stock movement prediction. Dur-

Figure 2: Predict unseen stocks via correlation

ing the propagation, we compute the results from
different iterations by multiplying the vector with
the correlation matrix (x′ = Ax). Our experimen-
tal results show that the prediction accuracy stops
to increase after the 4th iteration. After the propa-
gation converges, we may apply a threshold on the
propagated vector to prune all low-confidence pre-
dictions. The remaining ones may be used to pre-
dict some stocks unseen on the test set. The predic-
tion of all unseen stocks is compared with the actual
stock movement on next day. Experimental results
are shown in Figure 2, where the left y-axis denotes
the prediction accuracy and the right y-axis denotes
the percentage of stocks predicted out of all 5000 per
day under various pruning thresholds. For example,
using a large threshold (0.9), we may predict with an
accuracy of 52.44% on 354 extra unseen stocks per
day, in addition to predicting only 110 stocks per day
on the test set.

5 Conclusion

In this paper, we have proposed a simple method to
leverage financial news to predict stock movements
based on the popular word embedding and deep
learning techniques. Our experiments have shown
that the financial news is very useful in stock pre-
diction and the proposed methods can improve the
prediction accuracy on a standard financial data set.

Acknowledgement

This work is partially supported by a Discovery
Grant and an Engage Grant from Natural Sciences
and Engineering Research Council (NSERC) of
Canada.

378

References

Monica Adya and Fred Collopy. 1991. How effective are
neural networks at forecasting and prediction? a re-
view and evaluation. Journal of Forecasting, 17:481–
495.

Chicago Booth. 2012. CRSP Data Description Guide for
the CRSP US Stock Database and CRSP US Indices
Database. Center for Research in Security Prices, The
University of Chicago Graduate School of Business.

Man-Chung Chan, Chi-Cheong Wong, and Chi-Chung
Lam. 2000. Financial time series forecasting by neu-
ral network using conjugate gradient learning algo-
rithm and multiple linear regression weight initializa-
tion. Computing in Economics and Finance, 61.

Zhigang Chen, Wei Lin, Qian Chen, Xiaoping Chen,
Si Wei, Xiaodan Zhu, and Hui Jiang. 2015. Revisit-
ing word embedding for contrasting meaning. In Pro-
ceedings of the 53th Annual Meeting of the Association
for Computational Linguistics (ACL). Association for
Computational Linguistics.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2014. Using structured events to predict stock price
movement: An empirical investigation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1415–
1425. Association for Computational Linguistics.

Iebeling Kaastra and Milton Boyd. 1991. Designing a
neural network for forecasting financial and economic
time series. Neurocomputing, 10:215–236.

Heeyoung Lee, Mihai Surdeanu, Bill Maccartney, and
Dan Jurafsky. 2014. On the importance of text anal-
ysis for stock price prediction. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC).

Quan Liu, Hui Jiang, Si Wei, Zhenhua Ling, and Yu Hu.
2015. Learning semantic word embeddings based on
ordinal knowledge constraints. In Proceedings of the
53th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). Association for Computa-
tional Linguistics.

Marie-Catherine Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of LREC.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of ICLR Work-
shop.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NIPS, pages 3111–3119.

Yangtuo Peng and Hui Jiang. 2015. Leverage fi-
nancial news to predict stock price movements us-
ing word embeddings and deep neural networks. In
arXiv:1506.07220.

Jianfeng Si, Arjun Mukherjee, Bing Liu, Qing Li, Huayi
Li, and Xiaotie Deng. 2013. Exploiting topic based
twitter sentiment for stock prediction. In Proceedings
of the 51st Annual Meeting of the Association for Com-
putational Linguistics (ACL), pages 24–29. Associa-
tion for Computational Linguistics.

Jianfeng Si, Arjun Mukherjee, Bing Liu, Sinno Jialin Pan,
Qing Li, and Huayi Li. 2014. Exploiting social rela-
tions and sentiment for stock prediction. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1139–
1145. Association for Computational Linguistics.

Andrew Skabar and Ian Cloete. 2002. Neural networks,
financial trading and the efficient markets hypothesis.
In Proc. of the Twenty-Fifth Australasian Computer
Science Conference (ACSC).

Peter D. Turney and Michael L. Littman. 2003. Mea-
suring praise and criticism: Inference of semantic
orientation from association. ACM Trans. Inf. Syst.,
21(4):315–346.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1):141–
188.

Boyi Xie, Rebecca Passonneau, Leon Wu, and
Germán G. Creamer. 2013. Semantic frames to pre-
dict stock price movement. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 873–883. Association
for Computational Linguistics.

Xiaotian Zhu, Hong Wang, Li Xu, and Huaizu Li. 2008.
Predicting stock index increments by neural networks:
The role of trading volume under different horizons.
Expert Systems with Applications, 34:3043–3054.

379

Proceedings of NAACL-HLT 2016, pages 380–386,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Grammatical error correction using neural machine translation

Zheng Yuan and Ted Briscoe
The ALTA Institute

Computer Laboratory
University of Cambridge

{zy249,ejb}@cam.ac.uk

Abstract

This paper presents the first study using neu-
ral machine translation (NMT) for grammati-
cal error correction (GEC). We propose a two-
step approach to handle the rare word problem
in NMT, which has been proved to be useful
and effective for the GEC task. Our best NMT-
based system trained on the CLC outperforms
our SMT-based system when testing on the
publicly available FCE test set. The same sys-
tem achieves an F0.5 score of 39.90% on the
CoNLL-2014 shared task test set, outperform-
ing the state-of-the-art and demonstrating that
the NMT-based GEC system generalises ef-
fectively.

1 Introduction

Grammatical error correction (GEC) is the task
of detecting and correcting grammatical errors in
text written by non-native English writers. Un-
like building machine learning classifiers for spe-
cific error types (e.g. determiner or preposition er-
rors) (Tetreault and Chodorow, 2008; Rozovskaya
and Roth, 2011; Dahlmeier and Ng, 2011), the
idea of ‘translating’ a grammatically incorrect sen-
tence into a correct one has been proposed to handle
all error types simultaneously (Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014). Sta-
tistical machine translation (SMT) has been suc-
cessfully used for GEC, as demonstrated by the
top-performing systems in the CoNLL-2014 shared
task (Ng et al., 2014).

Recently, several neural machine translation
(NMT) models have been developed with promis-
ing results (Kalchbrenner and Blunsom, 2013; Cho

et al., 2014; Sutskever et al., 2014; Bahdanau et
al., 2014). Unlike SMT, which consists of com-
ponents that are trained separately and combined
during decoding (i.e. the translation model and lan-
guage model) (Koehn, 2010), NMT learns a single
large neural network which inputs a sentence and
outputs a translation. NMT is appealing for GEC as
it may be possible to correct erroneous word phrases
and sentences that have not been seen in the train-
ing set more effectively (Luong et al., 2015). NMT-
based systems thus may help ameliorate the lack of
large error-annotated learner corpora for GEC.

However, NMT models typically limit vocabu-
lary size on both source and target sides due to the
complexity of training (Sutskever et al., 2014; Bah-
danau et al., 2014; Luong et al., 2015; Jean et al.,
2015). Therefore, they are unable to translate rare
words, and out-of-vocabulary (OOV) words are re-
placed with UNK symbol. This problem is more se-
rious for GEC as non-native text contains not only
rare words (e.g. proper nouns), but also misspelled
words (i.e. spelling errors). By replacing all the
OOV words with the same UNK symbol, useful in-
formation is discarded, resulting in systems that are
not able to correct misspelled words or even keep
some of the error-free original words, as in the fol-
lowing examples (OOV words are underlined):

Original sentence

... I am goign to make a plan ...

System hypothesis

... I am UNK to make a plan ...

Gold standard

380

... I am going to make a plan ...

Original sentence

I suggest you visit first the cathedral of “ Le Seu
d’Mrgell ” because it is the most emblematic
building in the area .

System hypothesis

I suggest you visit first the cathedral of “ Le
UNK UNK ” because it is the most UNK build-
ing in the area .

Gold standard

I suggest you visit first the cathedral of “ Le Seu
d’Mrgell ” because it is the most emblematic
building in the area . (unchanged)

Inspired by the work of Luong et al. (2015), we
propose a similar but much simpler two-step ap-
proach to address the rare word problem: rather than
annotating the training data with alignment infor-
mation, we apply unsupervised alignment models to
find the sources of the words in the target sentence.
Once we know the source words that are responsible
for the unknown target words, a word level transla-
tion model learnt from parallel sentences is used to
translate these source words.

This paper makes the following contributions.
First, we present the first study using NMT for GEC,
outperforming the state-of-the-art. Second, we pro-
pose a two-step approach to address the rare word
problem in NMT for GEC, which we show yields a
substantial improvement. Finally, we report results
on two well-known publicly available test sets that
can be used for cross-system comparisons.

2 Neural machine translation

NMT systems apply the so-called encoder-decoder
mechanism proposed by Cho et al. (2014) and
Sutskever et al. (2014). An encoder reads and en-
codes an entire source sentence x = (x1, x2, ..., xT)
into a vector c:

c = q(h1, h2, ..., hT) (1)

where a hidden state ht at time t is defined as:

ht = f(xt, ht−1) (2)

A decoder then outputs a translation y =
(y1, y2, ..., yT ′) by predicting the next word yt based
on the encoded vector c and all the previously pre-
dicted words {y1, y2, ..., yt−1}:

p(y) =
T ′∏
t=1

p(yt|{y1, y2, ..., yt−1}, c) =
T ′∏
t=1

g(yt−1, st, c)

(3)
where st is the hidden state of the decoder.
Different neural network models have been

proposed, for example, Kalchbrenner and Blun-
som (2013) proposed a hybrid of a recurrent neural
network (RNN) and a convolutional neural network,
Sutskever et al. (2014) used a Long Short-Term
Memory (LSTM) model, Cho et al. (2014) proposed
a similar but simpler gated RNN model, and Bah-
danau et al. (2014) introduced an attentional-based
architecture.

In this work, we use the RNNsearch model of
Bahdanau et al. (Bahdanau et al., 2014), which con-
tains a bidirectional RNN as an encoder and an
attention-based decoder. The bidirectional RNN en-
coder has a forward and a backward RNN. The for-
ward RNN reads the source sentence from the first
word to the last, and the backward RNN reads the
source sentence in reverse order. By doing this,
it captures both historical and future information.
The attention-based model allows the decoder to fo-
cus on the most relevant information in the source
sentence, rather than remembering the entire source
sentence.

3 Handling rare words

The rare word problem in NMT has been noticed by
(Sutskever et al., 2014; Bahdanau et al., 2014; Lu-
ong et al., 2015; Jean et al., 2015). Jean et al. (2015)
proposed a method based on importance sampling
that uses a very large target vocabulary without in-
creasing training complexity. However, no matter
how large the target vocabulary size is, there are still
OOV words. We also notice that in GEC, the source
side vocabulary size is much larger than that of the
target side as there are many incorrect words in the
source (e.g. spelling mistakes and word form errors)
(see Section 4.1). Luong et al. (2015) introduced
three new annotation strategies to annotate the train-
ing data, so that unknown words in the output can be

381

traced back to their origins. The training data was
first re-annotated using the output of a word align-
ment algorithm. NMT systems were then built using
this new data. Finally, information about the OOV
words in the target sentence and their corresponding
words in the source sentence was extracted from the
NMT systems and used in a post-processing step to
translate these OOV words using a dictionary.

We propose a similar two-step approach: 1) align-
ing the unknown words (i.e. UNK tokens) in the tar-
get sentence to their origins in the source sentence
with an unsupervised aligner; 2) building a word
level translation model to translate those words in
a post-processing step. In order to locate the source
words that are responsible for the unknown target
words, we apply unsupervised aligners directly and
use only the NMT model output instead of first
re-annotating training data, and then building new
NMT models using this newly annotated data as pro-
posed by Luong et al. (2015). Our approach is much
simpler as we avoid re-annotating any data and train
only one NMT model. Due to the nature of error cor-
rection (i.e. both source and target sentences are in
the same language), most words translate as them-
selves, and errors are often similar to their correct
forms. Thus, unsupervised aligners can be success-
fully used to align the unknown target words. Two
automatic alignment tools are used: GIZA++ (Och
and Ney, 2003) and METEOR (Banerjee and Lavie,
2005). GIZA++ is an implementation of IBM Mod-
els 1-5 (Brown et al., 1993) and a Hidden-Markov
alignment model (HMM) (Vogel et al., 1996), which
can align two sentences from any languages. Un-
like GIZA++, METEOR aligns two sentences from
the same language. The latest METEOR 1.5 only
supports a few languages, and English is one of
them. METEOR identifies not only words with ex-
act matches, but also words with identical stems,
synonyms, and unigram paraphrases. This is use-
ful for GEC as it can deal with word form, noun
number, and verb form corrections that share iden-
tical stems, as well as word choice corrections with
synonyms or unigram paraphrases. To build a word
level translation model for translating the source
words that are responsible for the target unknown
words, we need word-aligned data. The IBM Mod-
els are used to learn word alignment from parallel
sentences.

4 Experiments

4.1 Dataset

We use the publicly available FCE dataset (Yan-
nakoudakis et al., 2011), which is a part of the
Cambridge Learner Corpus (CLC) (Nicholls, 2003).
The FCE dataset contains 1,244 scripts produced by
learners taking the First Certificate in English (FCE)
examination between 2000 and 2001. The texts have
been manually annotated by linguists using a taxon-
omy of approximately 80 error types. The publicly
available FCE dataset contains about 30,995 pairs
of parallel sentences for training (approx. 496,567
tokens on the target side) and about 2,691 pairs of
parallel sentences for testing (approx. 41,986 tokens
on the target side). Since the FCE training set is
too small to build good MT systems, we add train-
ing examples extracted from the CLC. Overall, there
are 1,965,727 pairs of parallel sentences in our train-
ing set. The source side contains 28,823,615 words
with 248,028 unique words, and the target side con-
tains 29,219,128 words with 143,852 unique words.
As we can see, the source side vocabulary size is
much larger than that of the target side. Training
and test data is pre-processed using RASP (Briscoe
et al., 2006).

4.2 Evaluation

System performance is evaluated using three au-
tomatic evaluation metrics: I-measure (Felice and
Briscoe, 2015), M2 Scorer (Dahlmeier and Ng,
2012) and GLEU (Napoles et al., 2015). In the
I-measure, an Improvement (I) score is computed
by comparing system performance with that of a
baseline which leaves the original text uncorrected
(i.e. the source). The M2 Scorer was the official
scorer in the CoNLL shared tasks (Ng et al., 2013;
Ng et al., 2014), with F0.5 being the reported met-
ric in the 2014 edition. GLEU is a simple variant
of BLEU (Papineni et al., 2002), which shows better
correlation with human judgments on the CoNLL-
2014 shared task test set.

4.3 SMT baseline

Following previous work (e.g. Brockett et al. (2006),
Yuan and Felice (2013)), we build a phrase-based
SMT error correction system as the baseline. Pi-
align (Neubig et al., 2011) is used to create a phrase

382

translation table. In addition to default features,
we add character-level Levenshtein distance to each
mapping in the phrase table as proposed by Fe-
lice et al. (2014). Decoding is performed using
Moses (Koehn et al., 2007). The language model
used during decoding is built from the corrected
sentences in the learner corpus, to make sure that
the final system outputs fluent English sentences.
The IRSTLM Toolkit (Federico et al., 2008) is used
to buid a 5-gram language model with modified
Kneser-Ney smoothing (Kneser and Ney, 1995).

4.4 NMT training details
Our training procedure and hyper-parameters for the
NMT system are similar to those used by Bahdanau
et al. (2014). We train models with sentences of
length up to 100 words, which covers about 99.96%
of all the training examples. In terms of vocabulary
size, we limit the target vocabulary size to 30K, and
experiment with three different source vocabulary
sizes: 30K, 50K and 80K.1 Each model is trained
for approximately 5 days using a Tesla K20 GPU.

The output sentences from the NMT systems are
aligned with their source sentences using GIZA++.
In addition, alignment information learnt by ME-
TEOR is used by GIZA++ during aligning. All the
UNK tokens in the output sentences are replaced
with the translation of the source words that are re-
sponsible for those UNK tokens. The translation
is performed using a word level model learnt from
IBM Model 4.

4.5 Results
From the results in Table 1, we can see that NMT-
based systems alone are not able to achieve compa-
rable results to an SMT-based system. It is proba-
bly because of the rare word problem, as increasing
the source side vocabulary size helps. The perfor-
mance of the best NMT system alone (NMT 80K-
30K), without replacing UNK tokens, is still worse
than the SMT baseline. When we replace the UNK
tokens in the NMT output, using GIZA++ for un-
known word alignment improves the system per-
formance for all three NMT systems in all three
evaluation metrics. We can see that our proposed
approach is more useful for NMT systems trained

1Preliminary experiments show that increasing the source
side vocabulary size is more useful than target side.

System GLEU F0.5 (M2) I-measure
Source 60.39 0 0
SMT baseline 70.15 52.90 2.87
NMT-based systems
NMT 30K-30K 69.04 46.10 -1.30
+ GIZA++ 70.89 52.79 3.89
+ METEOR 71.16 53.49 3.94
NMT 50K-30K 68.95 46.78 -1.14
+ GIZA++ 70.31 52.02 2.86
+ METEOR 70.40 52.35 2.89
NMT 80K-30K 70.02 49.17 -1.04
+ GIZA++ 71.18 53.48 2.40
+ METEOR 71.18 53.49 2.41

Table 1: System performance on the FCE test set (in percent-

ages). The results of our best system are marked in bold.

on a small source side vocabulary (e.g. 30K) than
a large vocabulary (e.g. 50K, 80K). The larger the
vocabulary size, the smaller the gain after replac-
ing UNK tokens. The introduction of the METEOR
alignment information to GIZA++ yields further im-
provements. Our best system (NMT 30K-30K +
GIZA++ + METEOR) achieves an F0.5 score of
53.49%, an I score of 3.94%, and a GLEU score
of 71.16%, outperforming the SMT baseline in all
three evaluation metrics.

Comparing the output of the SMT baseline with
that of the NMT system reveals that there are some
learner errors which are missed by the SMT system
but are captured by the NMT system. One possi-
ble reason is that the phrase-based SMT system is
trained on surface forms and therefore unaware of
syntactic structure. In order to make a correction,
it has to have seen the exact correction rule in the
training data. Since the NMT system does not rely
on any correction rules, in theory, it should be able
to make any changes as long as it has seen the words
in the training data. For example:

Original sentence

There are kidnaps everywhere and not all of the
family can afford the ransom ...

SMT hypothesis

There are kidnaps everywhere and not all of the
families can afford the ransom ...

NMT hypothesis

383

There are kidnappings everywhere and not all
of the families can afford the ransom ...

Gold standard

There are kidnappings everywhere and not all
of the families can afford the ransom ...

The SMT system fails to correct the word form er-
ror as the correction rule (kidnaps→ kidnappings) is
not in the SMT phrase table learnt from the training
data. Since these two words (kidnaps and kidnap-
pings) have been seen in the training data, the NMT
system corrects this error successfully.

5 CoNLL-2014 shared task

The CoNLL-2014 shared task on grammatical er-
ror correction required participating systems to cor-
rect all errors present in learner English text. The
official training and test data comes from the Na-
tional University of Singapore Corpus of Learner
English (NUCLE) (Dahlmeier et al., 2013). F0.5
was adopted as the evaluation metric, as reported by
the M2 Scorer. In order to test how well our sys-
tem generalises, we apply our best system trained on
the CLC to the CoNLL-2014 shared task test data
directly without adding the NUCLE training data
or tuning for the NUCLE. The state-of-the-art F0.5
score was reported by Susanto et al. (2014) after the
shared task. By combining the outputs from two
classification-based systems and two SMT-based
systems, they achieved an F0.5 score of 39.39%. Re-
sults of the uncorrected baseline, our best NMT-
based system, Susanto et al. (2014)’s system and the
top three systems in the shared task are presented
in Table 2. We can see that our NMT-based sys-
tem outperforms the top three teams, achieving the
highest F0.5, I and GLEU scores. It also outperforms
the state-of-the-art combined system from Susanto
et al. (2014). Our system achieves the best F0.5 score
of 39.90% even though it is not trained on the NU-
CLE data. This result shows that our system gen-
eralises well to other datasets. We expect these re-
sults might be further improved by retokenising the
test data to be consistent with the tokenisation of the
CLC.2

2The NUCLE data was preprocessed using the NLTK
toolkit, whereas the CLC was tokenised with RASP.

System GLEU F0.5 (M2) I-measure
Source 64.19 0 0
Our NMT-based system
30K-30K + GIZA++ + ME-
TEOR

65.59 39.90 -3.11

Top 3 systems in CoNLL-2014
CAMB (Felice et al., 2014) 64.32 37.33 -5.58
CUUI (Rozovskaya et al., 2014) 64.64 36.79 -3.91
AMU (Junczys-Dowmunt and
Grundkiewicz, 2014)

64.56 35.01 -3.31

State-of-the-art
Susanto et al. (2014) n/a 39.39 n/a

Table 2: System performance on the CoNLL-2014 test set with-

out alternative answers (in percentages).

6 Conclusions

We have shown that NMT can be successfully ap-
plied to GEC once we address the rare word prob-
lem. Our proposed two-step approach for UNK re-
placement has been proved to be effective, and to
provide a substantial improvement. We have de-
veloped an NMT-based system that generalises well
to another dataset. Our NMT system achieves an
F0.5 score of 53.49%, an I score of 3.94%, and a
GLEU score of 71.16% on the publicly available
FCE test set, outperforming an SMT-based system
in all three metrics. When testing on the official
CoNLL-2014 test set without alternative answers,
our system achieves an F0.5 score of 39.90%, out-
performing the current state-of-the-art. In future
work, we would like to explore other ways to ad-
dress the rare word problem in NMT-based GEC,
such as incorporating the soft-alignment information
generated by the attention-based decoder, or using
character-based models instead of word-based ones.

Acknowledgements

We would like to thank Cambridge English Lan-
guage Assessment and Cambridge University Press
for granting us access to the CLC for research
purposes as well as the anonymous reviewers for
their comments and suggestions. We acknowledge
NVIDIA for an Academic Hardware Grant. This
work also used the Wilkes GPU cluster at the Uni-
versity of Cambridge High Performance Comput-
ing Service, provided by Dell Inc., NVIDIA and
Mellanox, and part funded by STFC with indus-
trial sponsorship from Rolls Royce and Mitsubishi
Heavy Industries.

384

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR,
abs/1409.0473.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with improved
correlation with human judgments. In Proceedings of
the ACL Workshop on Intrinsic and Extrinsic Evalu-
ation Measures for Machine Translation and/or Sum-
marization, pages 65–72.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006.
The second release of the RASP system. In Proceed-
ings of the COLING/ACL 2006 Interactive Presenta-
tion Sessions, pages 77–80.

Chris Brockett, William B. Dolan, and Michael Gamon.
2006. Correcting ESL errors using phrasal SMT tech-
niques. In Proceedings of the COLING/ACL 2006,
pages 249–256.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Computational Linguistics, 19(2):263–311.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical
Machine Translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1724–1734.

Daniel Dahlmeier and Hwee Tou Ng. 2011. Gram-
matical error correction with alternating structure op-
timization. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics,
pages 915–923.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better evalu-
ation for grammatical error correction. In Proceedings
of the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 568–572.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner en-
glish: the NUS Corpus of Learner English. In Pro-
ceedings of the 8th Workshop on Innovative Use of
NLP for Building Educational Applications, pages 22–
31.

Marcello Federico, Nicola Bertoldi, and Mauro Cettolo.
2008. IRSTLM: an open source toolkit for handling
large scale language models. In Proceedings of the 9th
Annual Conference of the International Speech Com-
munication Association, pages 1618–1621.

Mariano Felice and Ted Briscoe. 2015. Towards a stan-
dard evaluation method for grammatical error detec-

tion and correction. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 578–587.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the 18th Confer-
ence on Computational Natural Language Learning:
Shared Task, pages 15–24.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On Using Very Large Target
Vocabulary for Neural Machine Translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 1–10.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU system in the CoNLL-2014 shared
task: grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the 18th Conference on Computational
Natural Language Learning: Shared Task, pages 25–
33.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Continuous Translation Models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for M-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 181–
184.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the ACL on Inter-
active Poster and Demonstration Sessions, pages 177–
180.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the Rare
Word Problem in Neural Machine Translation. In Pro-
ceedings of the ACL-IJCNLP, pages 11–19.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing, pages 588–593.

385

Graham Neubig, Taro Watanabe, Eiichiro Sumita, Shin-
suke Mori, and Tatsuya Kawahara. 2011. An unsuper-
vised model for joint phrase alignment and extraction.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 632–641.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction. In
Proceedings of the Seventeenth Conference on Com-
putational Natural Language Learning: Shared Task,
pages 1–12.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task on
grammatical error correction. In Proceedings of the
18th Conference on Computational Natural Language
Learning: Shared Task, pages 1–14.

Diane Nicholls. 2003. The Cambridge Learner Corpus
- error coding and analysis for lexicography and ELT.
In Proceedings of the Corpus Linguistics 2003 Confer-
ence, pages 572–581.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Alla Rozovskaya and Dan Roth. 2011. Algorithm selec-
tion and model adaptation for ESL correction tasks. In
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 924–933.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan
Roth, and Nizar Habash. 2014. The Illinois-Columbia
System in the CoNLL-2014 Shared Task. In Proceed-
ings of the 18th Conference on Computational Natural
Language Learning: Shared Task, pages 34–42.

Hendy Raymond Susanto, Peter Phandi, and Tou Hwee
Ng. 2014. System combination for grammatical error
correction. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 951–962.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
In Advances in Neural Information Processing Sys-
tems, pages 3104–3112.

Joel R. Tetreault and Martin Chodorow. 2008. The ups
and downs of preposition error detection in ESL writ-
ing. In Proceedings of the 22nd International Confer-
ence on Computational Linguistics, volume 1, pages
865–872.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of the 16th International Con-
ference on Computational linguistics, volume 2, pages
836–841.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical machine
translation. In Proceedings of the 17th Conference on
Computational Natural Language Learning: Shared
Task, pages 52–61.

386

Proceedings of NAACL-HLT 2016, pages 387–392,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multimodal Semantic Learning from Child-Directed Input

Angeliki Lazaridou
University of Trento

angeliki.lazaridou@unitn.it

Grzegorz Chrupała
Tilburg University

g.chrupala@uvt.nl

Raquel Fernández
University of Amsterdam

raquel.fernandez@uva.nl

Marco Baroni
University of Trento

marco.baroni@unitn.it

Abstract

Children learn the meaning of words by being
exposed to perceptually rich situations (lin-
guistic discourse, visual scenes, etc). Current
computational learning models typically sim-
ulate these rich situations through impover-
ished symbolic approximations. In this work,
we present a distributed word learning model
that operates on child-directed speech paired
with realistic visual scenes. The model inte-
grates linguistic and extra-linguistic informa-
tion (visual and social cues), handles referen-
tial uncertainty, and correctly learns to asso-
ciate words with objects, even in cases of lim-
ited linguistic exposure.

1 Introduction

Computational models of word learning typically
approximate the perceptual context that learners are
exposed to through artificial proxies, e.g., represent-
ing a visual scene via a collection of symbols such
as cat and dog, signaling the presence of a cat,
a dog, etc. (Yu and Ballard, 2007; Fazly et al.,
2010, inter alia).1 While large amounts of data
can be generated in this way, they will not display
the complexity and richness of the signal found in
the natural environment a child is exposed to. We
take a step towards a more realistic setup by intro-
ducing a model that operates on naturalistic images
of the objects present in a communicative episode.
Inspired by recent computational models of mean-
ing (Bruni et al., 2014; Kiros et al., 2014; Silberer

1See Kádár et al. (2015) for a recent review of this line of
work, and another learning model using, like ours, real visual
input.

and Lapata, 2014), that integrate distributed linguis-
tic and visual information, we build upon the Multi-
modal Skip-Gram (MSG) model of Lazaridou et al.
(2015). and enhance it to handle cross-referential
uncertainty. Moreover, we extend the cues com-
monly used in multimodal learning (e.g., objects in
the environment) to include social cues (e.g., eye-
gaze, gestures, body posture, etc.) that reflect speak-
ers’ intentions and generally contribute to the un-
folding of the communicative situation (Stivers and
Sidnell, 2005). As a first step towards developing
full-fleged learning systems that leverage all signals
available within a communicative setup, in our ex-
tended model we incorporate information regarding
the objects that caregivers are holding.

2 Attentive Social MSG Model

Like the original MSG, our model learns multimodal
word embeddings by reading an utterance sequen-
tially and making, for each word, two sets of pre-
dictions: (a) the preceding and following words, and
(b) the visual representations of objects co-occurring
with the utterance. However, unlike Lazaridou et al.
(2015), we do not assume we know the right object
to be associated with a word. We consider instead
a more realistic scenario where multiple words in
an utterance co-occur with multiple objects in the
corresponding scene. Under this referential uncer-
tainty, the model needs to induce word-object as-
sociations as part of learning, relying on current
knowledge about word-object affinities as well as on
any social clues present in the scene.

Similar to the standard skipgram, the model’s pa-
rameters are context word embeddings W′ and tar-

387

get word embeddings W. The model aims at opti-
mizing these parameters with respect to the follow-
ing multi-task loss function for an utterance w with
associated set of objects U :

L(w,U) =
T∑
t=1

(`ling(w, t) + `vis(wt, U)) (1)

where t ranges over the positions in the utterance w,
such that wt is tth word. The linguistic loss function
is the standard skip-gram loss (Mikolov et al., 2013).
The visual loss is defined as:

`vis(wt, U) =
S∑
s=1

λα(wt,us)g(wt,us)

+(1− λ)h(us)g(wt,us)
(2)

where wt stands for the column of W corresponding
to word wt, us is the vector associated with object
Us, and g the penalty function

g(wt,us) =
∑
u′

max(0, γ − cos(wt,us)

+ cos(wt,u′)),
(3)

which is small when projections to the visual space
wt of words from the utterance are similar to the
vectors representing co-occurring objects, and at the
same time they are dissimilar to vectors u′ repre-
senting randomly sampled objects. The first term in
Eq. 2 is the penalty g weighted by the current word-
object affinity α, inspired by the “attention” of Bah-
danau et al. (2015). If α is set to a constant 1, the
model treats all words in an utterance as equally rel-
evant for each object. Alternatively it can be used to
encourage the model to place more weight on words
which it already knows are likely to be related to a
given object, by defining it as the (exponentiated)
cosine similarity between word and object normal-
ized over all words in the utterance:

α(wt,us) =
exp(cos(wt,us))∑
r exp(cos(wr,us))

(4)

The second term of Eq. 2 is the penalty weighted by
the social salience h of the object, which could be
based on various cues in the scene. In our experi-
ments we set it to 1 if the caregiver holds the object,
0 otherwise.

We experiment with three versions of the model.
With λ = 1 and α frozen to 1, the model reduces

let me have that

ahhah whats this

what does mom look like with the hat on

do i look pretty good with the hat on

Figure 1: Fragment of the IFC corpus where symbolic labels

ring and hat have been replaced by real images. Red frames

mark objects being touched by the caregiver.

to the original MSG, but now trained with referen-
tial uncertainty. The Attentive MSG sets λ = 1
and calculates α(wt,us) using Equation 4 (we use
the term “attentive” to emphasize the fact that, when
processing a word, the model will pay more atten-
tion to the more relevant objects). Finally, Attentive
Social MSG further sets λ = 1

2 , boosting the impor-
tance of socially salient objects.

All other hyperparameters are set to the values
found by Lazaridou et al. (2015) to be optimal af-
ter tuning, except hidden layer size that we set to
200 instead of 300 due to the small corpus (see Sec-
tion 3). We train the MSG models with stochastic
gradient descent for one epoch.

3 The Illustrated Frank et al. Corpus

Frank et al. (2007) present a Bayesian cross-
situational learning model for simulating early word
learning in first language acquisition. The model
is tested on a portion of the Rollins section of the
CHILDES Database (MacWhinney, 2000) consist-
ing of two transcribed video files (me03 and di06),
of approximately 10 minutes each, where a mother
and a pre-verbal infant play with a set of toys. By in-
specting the video recordings, the authors manually
annotated each utterance in the transcripts with a list
of object labels (e.g., ring, hat, cow) correspond-
ing to all midsize objects judged to be visible to the
infant while the utterance took place, as well as vari-
ous social cues. The dataset includes a gold-standard
lexicon consisting of 36 words paired with 17 object
labels (e.g., hat=hat, pig=pig, piggie=pig).2

2http://langcog.stanford.edu/materials/

nipsmaterials.html

388

Aiming at creating a more realistic version of
the original dataset, akin to simulating a real visual
scene, we replaced symbolic object labels with ac-
tual visual representations of objects. To construct
such visual representations, we sample for each ob-
ject 100 images from the respective ImageNet (Deng
et al., 2009) entry, and from each image we ex-
tract a 4096-dimensional visual vector using the
Caffe toolkit (Jia et al., 2014), together with the pre-
trained convolutional neural network of Krizhevsky
et al. (2012).3 These vectors are finally averaged to
obtain a single visual representation of each object.
Concerning social cues, since infants rarely follow
the caregivers’ eye gaze but rather attend to objects
held by them (Yu and Smith, 2013), we include in
our corpus only information on whether the care-
giver is holding any of the objects present in the
scene. Note however that this signal, while infor-
mative, can also be ambiguous or even misleading
with respect to the actual referents of a statement.
Figure 1 exemplifies our version of the corpus, the
Illustrated Frank et al. Corpus (IFC).

Several aspects make IFC a challenging dataset.
Firstly, we are dealing with language produced in an
interactive setting rather than written discourse. For
example, compare the first sentence in the Wikipedia
entry for hat (“A hat is a head covering”) to the third
utterance in Figure 1, corresponding to the first oc-
currence of hat in our corpus. Secondly, there is
a large amount of referential uncertainty, with up
to 7 objects present per utterance (2 on average)
and with only 33% of utterances explicitly includ-
ing a word directly associated with a possible ref-
erent (i.e., not taking into account pronouns). For
instance, the first, second and last utterances in Fig-
ure 1 do not explicitly mention any of the objects
present in the scene. This uncertainty also extends
to social cues: only in 23% of utterances does the
mother explicitly name an object that she is holding
in her hands. Finally, models must induce word–
object associations from minimal exposure to input
rather than from large amounts of training data. In-
deed, the IFC is extremely small by any standards:
624 utterances making up 2,533 words in total, with
8/37 test words occurring only once.

3To match the hidden layer size, we average every k =
4096/200 original non-overlapping visual dimensions into a sin-
gle dimension.

Model Best-F
MSG .64 (.04)
AttentiveMSG .70 (.04)
AttentiveSocialMSG .73 (.03)
ASMSG+shuffled visual vectors .65 (.06)
ASMSG+randomized sentences .59 (.03)
BEAGLE .55
PMI .53
Bayesian CSL .54
BEAGLE+PMI .83

Table 1: Best-F results for the MSG variations and alternative

models on word-object matching. For all MSG models, we re-

port Best-F mean and standard deviation over 100 iterations.

4 Experiments

We follow the evaluation protocol of Frank et al.
(2007) and Kievit-Kylar et al. (2013). Given 37 test
words and the corresponding 17 objects (see Table
2), all found in the corpus, we rank the objects with
respect to each word. A mean Best-F score is then
derived by computing, for each word, the top F score
across the precision-recall curve, and averaging it
across the words. MSG rankings are obtained by di-
rectly ordering the visual representations of the ob-
jects by cosine similarity to the MSG word vectors.

Table 1 reports our results compared to those
in earlier studies, all of which did not use ac-
tual visual representations of objects but rather ar-
bitrary symbolic IDs. Bayesian CSL is the orig-
inal Bayesian cross-situational model of Frank et
al. (2007), also including social cues (not limited,
like us, to mother’s touch). BEAGLE is the best
semantic-space result across a range of distributional
models and word-object matching methods from
Kievit-Kylar et al. (2013). Their distributional mod-
els were trained in a batch mode, and by treating ob-
ject IDs as words so that standard word-vector-based
similarity methods could be used to rank objects
with respect to words. Plain MSG is outperforming
nearly all earlier approaches by a large margin. The
only method bettering it is the BEAGLE+PMI com-
bination of Kievit-Kylar et al. (PMI measures direct
co-occurrence of test words and object IDs). The
latter was obtained through a grid search of all pos-
sible model combinations performed directly on the
test set, and relied on a weight parameter optimized
on the corpus by assuming access to gold annotation.

389

It is thus not comparable to the untuned MSG.

Plain MSG, then, performs remarkably well, even
without any mechanism attempting to track word-
object matching across scenes. Still, letting the
model pay more attention to the objects currently
most tightly associated to a word (AttentiveMSG)
brings a large improvement over plain MSG, and
a further improvement is brought about by giv-
ing more weight to objects touched by the mother
(AttentiveSocialMSG). As concrete examples, plain
MSG associated the word cow with a pig, whereas
AttentiveMSG correctly shifts attention to the cow.
In turn, AttentiveSocialMSG associates to the right
object several words that AttentiveMSG wrongly
pairs with the hand holding them, instead.

One might fear the better performance of our
models might be due to the skip-gram method be-
ing superior to the older distributional semantic ap-
proaches tested by Kievit-Kylar et al. (2013), in-
dependently of the extra visual information we ex-
ploit. In other words, it could be that MSG has sim-
ply learned to treat, say, the lamb visual vector as
an arbitrary signature, functioning as a semantically
opaque ID for the relevant object, without exploit-
ing the visual resemblance between lamb and sheep.
In this case, we should obtain similar performance
when arbitrarily shuffling the visual vectors across
object types (e.g., consistently replacing each occur-
rence of the lamb visual vector with, say, the hand
visual vector). The lower results obtained in this
control condition (ASMSG+shuffled visual vector)
confirm that our performance boost is largely due to
exploitation of genuine visual information.

Since our approach is incremental (unlike the vast
majority of traditional distributional models that op-
erate on batch mode), it can in principle exploit
the fact that the linguistic and visual flows in the
corpus are meaningfully ordered (discourse and vi-
sual environment will evolve in a coherent man-
ner: a hat appears on the scene, it’s there for a
while, in the meantime a few statements about hats
are uttered, etc.). The dramatic quality drop in the
ASMSG+randomized sentences condition, where
AttentiveSocialMSG was trained on IFC after ran-
domizing sentence order, confirms the coherent sit-
uation flow is crucial to our good performance.

word
gold 17 objects 5.1K objects

object nearest r nearest r
bunny bunny bunny 1 bunny 1
cows cow cow 1 lea 7
duck duck duck 1 mallard 4

duckie duck duck 1 mallard 3
kitty kitty book 2 bookcase 66

lambie lamb lamb 1 lamb 1
moocows cow cow 1 ranch 4

rattle rattle rattle 1 rattle 1

Table 2: Test words occurring only once in IFC, together

with corresponding gold objects, AttentiveSocialMSG top vi-

sual neighbours among the test items and in a larger 5.1K-

objects set, and ranks of gold object in the two confusion sets.

Minimal exposure. Given the small size of the in-
put corpus, good performance on the word-object
association already counts as indirect evidence that
MSG, like children, can learn from small amounts of
data. In Table 2 we take a more specific look at this
challenge by reporting AttentiveSocialMSG perfor-
mance on the task of ranking object visual represen-
tations for test words that occurred only once in IFC,
considering both the standard evaluation set and a
much larger confusion set including visual vectors
for 5.1K distinct objects (those of Lazaridou et al.
(2015)). Remarkably, in all but one case, the model
associates the test word to the right object from the
small set, and to either the right object or another
relevant visual concept (e.g., a ranch for moocows)
when the extended set is considered. The exception
is kitty, and even for this word the model ranks the
correct object as second in the smaller set, and well
above chance for the larger one. Our approach, just
like humans (Trueswell et al., 2013), can often get a
word meaning right based on a single exposure to it.

Generalization. Unlike the earlier models relying
on arbitrary IDs, our model is learning to associate
words to actual feature-based visual representations.
Thus, once the model is trained on IFC, we can
test its generalization capabilities to associate known
words with new object instances that belong to the
right category. We focus on 19 words in our test set
corresponding to objects that were normed for visual
similarity to other objects by Silberer and Lapata
(2014). Each test word was paired with 40 ImageNet
pictures evenly divided between images of the gold

390

object (not used in IFC), of a highly visually simi-
lar object, of a mildly visually similar object and of
a dissimilar one (for duck: duck, chicken, finch and
garage, respectively). The pictures were represented
by vectors obtained with the same method outlined
in Section 3, and were ranked by similarity to a test
word AttentiveSocialMSG representation.

Average Precision@10 for retrieving gold object
instances is at 62% (chance: 25%). In the major-
ity of cases the top-10 intruders are instances of
the most visually related concepts (60% of intrud-
ers, vs. 33% expected by chance). For example, the
model retrieves pictures of sheep for the word lamb,
or bulls for cow. Intriguingly, this points to classic
overextension errors that are commonly reported in
child language acquisition (Rescorla, 1980).

5 Related Work

While there is work on learning from multimodal
data (Roy, 2000; Yu, 2005, a.o.) as well as work
on learning distributed representations from child-
directed speech (Baroni et al., 2007; Kievit-Kylar
and Jones, 2011, a.o.), to the best of our knowledge
ours is the first method which learns distributed rep-
resentations from multimodal child-directed data.
For example, in comparison to Yu (2005)’s model,
our approach (1) induces distributed representations
for words, based on linguistic and visual context,
and (2) operates entirely on distributed represen-
tations through similarity measures without posit-
ing a categorical level on which to learn word-
symbol/category-symbol associations. This leads to
rich multimodal conceptual representations of words
in terms of distributed multimodal features, while in
Yu’s approach words are simply distributions over
categories. It is therefore not clear how Yu’s ap-
proach could capture phenomena such as predicting
appearance from a verbal description or representing
abstract words–all tasks that our model is at least in
principle well-suited for. Note also that Frank et al.
(2007)’s Bayesian model we compare against could
be extended to include realistic visual data in a sim-
ilar vein to Yu’s, but it would then have the same
limitations.

Our work is also related to research on reference
resolution in dialogue systems, such as Kennington
and Schlangen (2015). However, unlike Kennington

and Schlangen, who explicitly train an object recog-
nizer associated with each word of interest, with at
least 65 labeled positive training examples per word,
our model does not have any comparable form of
supervision and our data exhibits much lower fre-
quencies of object and word (co-)occurrence. More-
over, reference resolution is only an aspect of what
we do: Besides being able to associate a word with a
visual extension, our model is simultaneously learn-
ing word representations that allow us to deal with a
variety of other tasks—for example, as mentioned
above, guessing the appearance of the object de-
noted by a new word from a purely verbal descrip-
tion, grouping concepts into categories by their sim-
ilarity, or having both abstract and concrete words
represented in the same space.

6 Conclusion

Our very encouraging results suggest that multi-
modal distributed models are well-suited to simu-
lating human word learning. We think the most
pressing issue to move ahead in this direction is to
construct larger corpora recording the linguistic and
visual environment in which children acquire lan-
guage, in line with the efforts of the Human Spee-
chome Project (Roy, 2009; Roy et al., 2015). Having
access to such data will enable us to design agents
that acquire semantic knowledge by leveraging all
available cues present in multimodal communicative
setups, such as learning agents that can automati-
cally predict eye-gaze (Recasens∗ et al., 2015) and
incorporate this knowledge into the semantic learn-
ing process.

Acknowledgments

We thank Marco Marelli for useful advice and Brent
Kievit-Kylar for help implementing the Best-F mea-
sure. We acknowledge the European Network on In-
tegrating Vision and Language for a Short-Term Sci-
entific Mission grant, awarded to Raquel Fernández
to visit the University of Trento.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR Conference Track, San Diego, CA. Published

391

online: http://www.iclr.cc/doku.php?id=
iclr2015:main.

Marco Baroni, Alessandro Lenci, and Luca Onnis. 2007.
ISA meets Lara: An incremental word space model for
cognitively plausible simulations of semantic learning.
In Proceedings of the ACL Workshop on Cognitive As-
pects of Computational Language Acquisition, pages
49–56.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Arti-
ficial Intelligence Research, 49:1–47.

Jia Deng, Wei Dong, Richard Socher, Lia-Ji Li, and
Li Fei-Fei. 2009. Imagenet: A large-scale hierarchi-
cal image database. In Proceedings of CVPR, pages
248–255, Miami Beach, FL.

Afsaneh Fazly, Afra Alishahi, and Suzanne Steven-
son. 2010. A probabilistic computational model of
cross-situational word learning. Cognitive Science,
34:1017–1063.

Michael Frank, Noah Goodman, and Joshua Tenenbaum.
2007. A Bayesian framework for cross-situational
word-learning. In Proceedings of NIPS, pages 457–
464, Vancouver, Canada.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Convo-
lutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093.

Ákos Kádár, Afra Alishahi, and Grzegorz Chrupała.
2015. Learning word meanings from images of nat-
ural scenes. Traitement Automatique des Langues.
In press, preprint available at http://grzegorz.
chrupala.me/papers/tal-2015.pdf.

Casey Kennington and David Schlangen. 2015. Sim-
ple learning and compositional application of percep-
tually grounded word meanings for incremental refer-
ence resolution. In Proceedings of the Conference for
the Association for Computational Linguistics (ACL).

Brent Kievit-Kylar and Michael Jones. 2011. The Se-
mantic Pictionary project. In Proceedings of CogSci,
pages 2229–2234, Austin, TX.

Brent Kievit-Kylar, George Kachergis, and Michael
Jones. 2013. Naturalistic word-concept pair learn-
ing with semantic spaces. In Proceedings of CogSci,
pages 2716–2721, Berlin, Germany.

Ryan Kiros, Ruslan Salakhutdinov, and Richard Zemel.
2014. Unifying visual-semantic embeddings with
multimodal neural language models. In Proceed-
ings of the NIPS Deep Learning and Representa-
tion Learning Workshop, Montreal, Canada. Pub-
lished online: http://www.dlworkshop.org/
accepted-papers.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.
2012. ImageNet classification with deep convolutional

neural networks. In Proceedings of NIPS, pages 1097–
1105, Lake Tahoe, Nevada.

Angeliki Lazaridou, Nghia The Pham, and Marco Baroni.
2015. Combining language and vision with a multi-
modal skip-gram model. In Proceedings of NAACL,
pages 153–163, Denver, CO.

Brian MacWhinney. 2000. The CHILDES Project: Tools
for analyzing talk. Lawrence Erlbaum Associates, 3rd
edition.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. http://arxiv.org/abs/
1301.3781/.

Adria Recasens∗, Aditya Khosla∗, Carl Vondrick, and
Antonio Torralba. 2015. Where are they looking? In
Advances in Neural Information Processing Systems
(NIPS). ∗ indicates equal contribution.

Leslie Rescorla. 1980. Overextension in early language
development. Journal of Child Language, 7(2):321–
335.

Brandon C. Roy, Michael C. Frank, Philip DeCamp,
Matthew Miller, and Deb Roy. 2015. Predicting the
birth of a spoken word. Proceedings of the National
Academy of Sciences, 112(41):12663–12668.

Deb Roy. 2000. A computational model of word learn-
ing from multimodal sensory input. In Proceedings
of the International Conference of Cognitive Modeling
(ICCM2000), Groningen, Netherlands.

Deb Roy. 2009. New horizons in the study of child lan-
guage acquisition. In Proceedings of Interspeech.

Carina Silberer and Mirella Lapata. 2014. Learning
grounded meaning representations with autoencoders.
In Proceedings of ACL, pages 721–732, Baltimore,
Maryland.

Tanya Stivers and Jack Sidnell. 2005. Introduction: Mul-
timodal interaction. Semiotica, pages 1–20.

John Trueswell, Tamara Medina, Alon Hafri, and Lila
Gleitman. 2013. Propose but verify: Fast mapping
meets cross-situational word learning. Cognitive Psy-
chology, 66(1):126–156.

Chen Yu and Dana H. Ballard. 2007. A unified model of
early word learning: Integrating statistical and social
cues. Neurocomputing, 70(13-15):2149–2165.

Chen Yu and Linda B. Smith. 2013. Joint attention with-
out gaze following: human infants and their parents
coordinate visual attention to objects through eye-hand
coordination. PLoS ONE, 8(11).

C. Yu. 2005. The emergence of links between lexical ac-
quisition and object categorization: A computational
study. Connection Science, 17(3):381–397.

392

Proceedings of NAACL-HLT 2016, pages 393–399,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Recurrent Support Vector Machines For Slot Tagging In Spoken Language
Understanding

Yangyang Shi and Kaisheng Yao and Hu Chen and Dong Yu
Yi-Cheng Pan and Mei-Yuh Hwang

Microsoft
{yanshi,kaisheng.yao,huch,dong.yu,ycpan,mehwang}@microsoft.com

Abstract

We propose recurrent support vector machine
(RSVM) for slot tagging. This model is a combi-
nation of the recurrent neural network (RNN) and
the structured support vector machine. RNN extracts
features from the input sequence. The structured
support vector machine uses a sequence-level dis-
criminative objective function. The proposed model
therefore combines the sequence representation ca-
pability of an RNN with the sequence-level discrim-
inative objective. We have observed new state-of-
the-art results on two benchmark datasets and one
private dataset. RSVM obtained statistical significant
4% and 2% relative average F1 score improvement
on ATIS dataset and Chunking dataset, respectively.
Out of eight domains in Cortana live log dataset,
RSVM achieved F1 score improvement on seven do-
mains. Experiments also show that RSVM signif-
icantly speeds up the model training by skipping
the weight updating for non-support vector training
samples, compared against training using RNN with
CRF or minimum cross-entropy objectives.

1 Introduction
One of the key tasks in natural language understanding
(Hemphill et al., 1990a; He and Young, 2003; De Mori,
2007; Dinarelli et al., 2008; Wang et al., 2005) is slot tag-
ging that labels user queries with semantic tags. It is a
sequence labeling problem that transcribes a sequence of
observations X = [x(1),x(2), ...,x(M)] to a sequence of
discrete labels Y = [y(1),y(2), ...,y(M)]. For example, in
the query “show me flights from Seattle to Boston”, the
words “Seattle” and “Boston” should be labeled, respec-
tively, as the from-city-name slot and the to-city-name
slot.

Recently recurrent neural networks (RNNs) and their
variants achieved state-of-the-art performances on slot
tagging tasks (Yao et al., 2013; Yao et al., 2014b; Yao
et al., 2014a; Graves, 2012; Shi et al., 2015; Mesnil et al.,

2015; Peng and Yao, 2015). One direction to improve the
sequence labeling is to strengthen the model memoriza-
tion capability by designing dedicated special structures,
for example, using long-short-term-memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997; Graves et al.,
2013; Yao et al., 2014a), gated RNN and RNN with ex-
ternal memory (RNN-em) (Peng and Yao, 2015). The
other direction is to optimize the sequence-level discrim-
ination criterion. For example, recurrent conditional ran-
dom fields (RCRFs) (Yao et al., 2014b) is trained to opti-
mize the sequence conditional likelihood rather than min-
imizing frame level cross-entropy applied in conventional
RNN based sequence labeling (Prez-ortiz et al., 2001; Yao
et al., 2013; Mikolov et al., 2010; Shi et al., 2015; Mesnil
et al., 2015).

In this paper, we propose recurrent support vector ma-
chines (RSVMs) to improve the discrimination ability of
RNNs. Different from RCRFs and conventional RNNs
that in essence apply the multinomial logistic regression
on the output layer, RSVMs optimize the sequence-level
max-margin training criterion used by structured support
vector machines (Tsochantaridis et al., 2005) on the out-
put layer of RNNs. There are several advantages of using
sequence-level max-margin training over maximum like-
lihood or minimum cross-entropy. Firstly, the sequence-
level max-margin criterion is a global un-normalized cri-
terion in which there is no computation cost for normal-
ization. Secondly, using max-margin training, only train-
ing samples from support vectors generate non zero er-
rors. In other words, model training can be sped up
by skipping the weight updating for non-support vector
training samples. Finally, as proven in (Vapnik, 1995),
margin maximization is equivalent to minimization of an
upper bound on the generalization errors. Max-margin
training has no assumption about the model distribution.
To use maximum likelihood or minimum cross-entropy,
it assumes that the model distribution is peaked. How-
ever, especially in natural language processing where the
ambiguity is ubiquitous, this assumption does not hold.

393

For example, “seven eleven” can be labeled as time tag
or place name (super market name) tag. The conditional
probability of tag given “seven eleven” should not be
sharp for time or place name.

Recently, SVM is also applied on top of a deep neu-
ral network for speech recognition (Zhang et al., 2015).
In their work, a cutting-plane algorithm (Joachims et
al., 2009) is used, which is computationally expensive
for speech recognition tasks. In this paper, we use
the stochastic gradient descent algorithm (SGD) (Pana-
giotakopoulos and Tsampouka, 2013) for model train-
ing. The loss function is critical to the sequence level
max-margin training criterion, which defines the mar-
gin. In this paper, we apply the sequence level hard loss
function rather than traditional Hamming loss function
(Nguyen and Guo, 2007). In sequence level hard loss
function, the wrong sequence is assigned loss one with-
out considering the number of wrong slot labels in the se-
quence. In the experiments on two bench mark datasets,
namely the ATIS (Airline Travel Information Systems)
dataset (Hemphill et al., 1990b; Yao et al., 2014b) and
the CoNLL 2000 Chunking dataset 1, and private Cortana
live log dataset, RSVMs outperformed previous results.

2 Recurrent Support Vector Machines

In this section, we propose RSVM that uses the struc-
tured SVM algorithm (Tsochantaridis et al., 2005) to es-
timate the weights for RNN and label transition probabil-
ities based on the entire training sequence. The training
objective in RSVM is the following constrained optimiza-
tion.

min
W,A

1
2
||W ||22 +

1
2
||A||22 +C

K

∑
k=1

ζk

s.t. f (Y (k)∗)+ζk ≥ f (Y (k))+L(Y (k)) ∀Y (k) (1)
L(Y (k))≥ 0 ∀Y (k) (2)
ζk ≥ 0 (3)

where

f (Y (k)) =
T

∑
t=1

ayk(t−1)yk(t) +W T
yk(t)H(t) (4)

where C is regularization weight for empirical loss. Y (k)

represents the slot label sequence y(k)(1 : T) for train-
ing sample X (k). Y (k)∗ is the ground truth slot sequence
y(k)∗(1 : T) for X (k). ay(k)(t−1)y(k)(t) is one element in ma-
trix A, representing the weight for the slot label transition
features from y(k)(t − 1) to y(k)(t). L(Y (k)) defines the
loss function of a possible slot label sequence for a train-
ing sample X (k) , which is actually used as a margin to

1See http://www.cnts.ua.ac.be/conll2000/chunking.

separate the score f (Y (k)∗) for ground truth slot label se-
quence with all other possible slot sequences in Eq. (1).
ζ (k) is the slack variable that penalize the slot label se-
quence that violates the margin constraint.

The constrained optimization problem can be trans-
formed to an unconstrained optimization problem as

min
W,A

F(W,A) =
1

2C
||W ||22 +

1
2C

||A||22

+
K

∑
k=1

[max
Y (k) ̸=Y (k)∗

(
f (Y (k))+L(Y (k))

)− f (Y (k)∗)]+. (5)

where [x]+ is the Hinge function that maps x to zero when
x is smaller than zero, otherwise [x]+ = x.

The loss function L(Y (k)) is critical to the structured
SVM training. The following two types of loss functions
have been investigated:

L(Y (k)) =
T

∑
t=1

1
(
y(k)(t) ̸= y(k)∗(t)

)
(6)

L(Y (k)) = 1
(
y(k)(1 : T) ̸= y(k)∗(1 : T)

)
(7)

Eq. (6) is Hamming loss that is applied by (Nguyen and
Guo, 2007) for structured SVM sequence labeling. Eq. (7)
is sequence level hard loss function that always give loss
one to wrong slot label sequences no matter how many
words are labeled with wrong slot labels. In our experi-
ment, we find that the margin defined by Eq. (7) gives the
best performance.

2.1 Training Procedure For Recurrent Support
Vector Machines

Fig. 1 depicts the architecture of RSVM that can be viewed
as the conventional RNN unrolled over the sequence x(1 :
T). For each single training sample x(1 : T), a forward in-
ference and a backward learning are carried out to sweep
over the network shown in Fig. 1.

In the forward inference, an unnormalized slot score
vector y(t) is computed based on each word input x(t) and
its corresponding auxiliary feature Cx(t). The word input
and auxiliary feature are encoded in one-hot representa-
tion. As shown in Fig. 1, a slot label lattice is generated
for the training sample x(1 : T). Using Viterbi algorithm,
two best slot label sequences Y (k)top

and Y (k)second
are de-

rived from the lattice. In the decoding phase, only the
best slot label sequence is computed.

In backward learning, the sub-gradient (Ratliff et al.,
2007) are calculated to update the weights for RSVMs.
When Y (k)top ̸= Y (k)∗ the sub-gradient is

∂ζk

∂θ
=

∂ f (Y (k)top
)

∂θ
− ∂ f (Y (k)∗)

∂θ
. (8)

When Y (k)top
= y(k)∗ and y(k)∗−Y (k)second

< L(Y (k)), the

394

sub-gradient is

∂ζk

∂θ
=

∂ f (Y (k)second
)

∂θ
− ∂ f (Y (k)∗)

∂θ
. (9)

When Y (k)top
= Y (k)∗ and y(k)∗−Y (k)second ≥ L(Y (k)), the

subgradient is zero. Our experiment show that the RSVM
training can be substantially sped up by skipping the
backward weight updating for non-support vector train-
ing samples that obtain zero subgradient.

In Eq. (8) and (9), θ represents the weights in RSVMs.
Specifically, the weights W , A, U and V are updated using
sequence level mini-batch method. The weights O con-
necting hidden layers are updated using Backpropagation
Through Time (BPTT) (Werbos, 1990).

h(0) h(1) h(T)...

x(0) cx(0) x(1) cx(1) x(T) cx(T)

...

U V

W

O

1

2

m

...

1

2

m

...

1

2

m

...

y(0) y(1) y(T)
A

Figure 1: Recurrent support vector machines for slot tagging. U is the
weight matrix connecting the word input to the hidden layer, V is the
weight matrix connecting auxiliary feature input to the hidden layer,
O is the weight matrix connecting previous hidden state to the current
hidden state and W is the weight matrix connecting the hidden layer
to the output layer. A represents the weight for slot label transition
features.

3 Experiments
3.1 Data
To evaluate performances of the proposed model, three
sets of experiments were conducted. The first set of ex-
periments are based on ATIS dataset (Hemphill et al.,
1990b; Yao et al., 2014b). There are 893 queries from
ATIS-III, Nov93 and Dec94 for testing, and 4978 utter-
ances from the rest of ATIS-III and ATIS-II used for train-
ing. The training data contains 127 unique slot tags.

The second dataset used in the experiment is CoNLL
2000 Chunking dataset. Chunking is also called shallow
parsing that assigns syntactic labels to segments of a se-
quence of words. Chunking and slot tagging are typi-
cal sequence labeling problems. In this paper, we use
the chunking task to further verify the performance of
the proposed RSVM model. In the CoNLL 2000 Chunk-
ing task, the training data are from sections 15-18 of
WSJ data and the test data are from section 20. In
the training data, there are 220663 tokens with 19123
unique words and additional 45 different types of Part-
Of-Speech (POS).

The last dataset is Cortana live log dataset which
is constituted by 8 domains, namely alarm, calender,
communication, note, ondevice, places, reminder and
weather. In total, there are 71 slots. There are 42506
queries used for training and 5290 queries for testing.
The data distribution is described in Table. 1. The last
column of Table. 1 shows the average query length (the
number of words in one query) on different domains.

domain train test length
alarm 3816 452 4.3
calendar 4138 475 4.5
communication 9551 1262 3.8
note 829 139 4.6
ondevice 4384 572 2.4
places 6167 753 4.7
reminder 5359 720 4.1
weather 8270 917 3.4

Table 1: Cortana live log data distribution.

3.2 Settings

In this paper, we use a predefined maximum iteration
number to terminate the training. The learning rate is dy-
namically adjusted using AdaGrad (Duchi et al., 2011).

In all the experiments, we set the hidden layer size to
300 and initial learning rate to 0.1. In RSVMs, the sur-
rounding two words of the current word are used as auxil-
iary feature which is represented as bag of words. We set
the maximum iteration to 20 for ATIS and 30 for Chunk-
ing and Cortana live log. For each dataset, we trained
10 models with the same parameter settings except using
different random initialization.

3.3 Results on ATIS

ATIS is a well studied benchmark dataset. Table. 2 gives
the slot tagging F1 scores achieved by different models
in the literature, using the same data settings. There are
three blocks in Table. 2. The top block gives the F1 score
obtained by CRF and simple RNN. The middle block gives
the results obtained by applying advanced RNN architec-
tures such as LSTM, Gated RNN and RNN with external
memories (RNN-em) (Peng and Yao, 2015). These ad-
vanced RNNs improves RNN by enhancing its memory
(sequence representation capability). The bottom block
gives results using the proposed RSVMs.

The bottom part gives F1 scores of the proposed RSVM
method. We show results generated by 10 models with
different random seeds. The average F1 score of RSVM
is similar to the best score of RNN-em. F1 score distri-
bution of 10 RSVM models gets significant improvement
over the average score of RNN-em (z-test p− value =
0.0002 << 0.05). Fundamentally, the proposed RSVM

395

model F1(%)
CRF (Mesnil et al., 2015) 92.9
DBN (Deoras and Sarikaya, 2013) 93.2
RNN (Yao et al., 2013) 94.1
RNN-Jordan(Mesnil et al., 2015) 94.3
RNN-embed(Xu and Sarikaya, 2013) 94.4
RNN-joint (Shi et al., 2015) 94.6
RNN-hybrid(Mesnil et al., 2015) 95.1
deep-LSTM (Yao et al., 2014a) 95.0
GRNN-max(Peng and Yao, 2015) 94.7
RNN-em-min(Peng and Yao, 2015) 94.7
RNN-em-average(Peng and Yao, 2015) 95.0
RNN-em-max(Peng and Yao, 2015) 95.2
RSVM-min 94.9
RSVM-average 95.2
RSVM-max 95.5

Table 2: F1 score (in %) for slot tagging on ATIS achieved by different
models using only lexical feature. ”-min”, ”-max”, and ”-average” each
denotes mininum, maximum and average F1 scores for a corresponding
method.

is based on simple RNN. Comparing LSTM and RNN-
em, the proposed model has simpler topology. Note that
in (Yao et al., 2014a) and (Peng and Yao, 2015), their
advanced models are trained using local normalization
method without using sequence level optimization. So
the superiority of the proposed RSVM may come from
the sequence training and the powerful discriminant ca-
pability of SVM. Applying the proposed RSVM method
to LSTM or other advanced RNN can be a promising di-
rection for future work.

3.4 Results on CoNLL 2000 Chunking

Table. 3 gives the F1 scores of different models on
CoNLL 2000 chunking experiment. To our best knowl-
edge, the first neural network (NN) based chunking model
is proposed in (Collobert et al., 2011). Using four basic
natural language processing tasks, namely POS tagging,
chunking, name entity recognition and semantic role la-
beling, they demonstrate the ability of NN to discover hid-
den representations. In their work, only simple input fea-
ture is used. There is not any task-specific feature en-
gineering work in their proposed system. Their model
purely relies on the NN feature representation that are
learned from large amount of unlabeled data. As shown
in Table. 3, their system performs better than all the pre-
vious systems on CoNLL 2000 chunking dataset.

The performance of Bidirectional LSTM (BLSTM),
RCRF and the proposed RSVM on chunking task fur-
ther confirms the conclusion in (Collobert et al., 2011)
that NN is able to discover the internal representations
that are useful for different natural language processing
tasks. Additionally, the results of BLSTM, RCRF and

RSVM, indicate that RNNs have better capabilities to dis-
cover the sequence representation than NN. The average
F1 score of RCRF and RSVM are 94.9% and 95.0%, re-
spectively. Comparing the F1 score distribution, RSVM
achieves the significant improvement over RCRF (paired
t-test p− value = 0.012 < 0.05). As shown in Table. 3,
replacing the CRF objective function with structured SVM
max-margin criterion could generate further improve-
ment. The average performance of RSVM is better than
the best result of RCRF shown in the table.

model F1(%)
SVM (Kudo and Matsumoto, 2000) 93.5
gen-Winnow(Zhang et al., 2001) 93.9
SVM (Kudo and Matsumoto, 2001) 93.9
CRF (McDonald et al., 2005) 94.3
CRF (Sun et al., 2008) 94.3
CRF (Sha and Pereira, 2005) 94.4
NN (Collobert et al., 2011) 94.5
BLSTM (Wang et al., 2015) 94.6
RCRF-min 94.7
RCRF-average 94.9
RCRF-max 94.9
RSVM-min 94.7
RSVM-average 95.0
RSVM-max 95.1

Table 3: F1 score (in %) for chunking on CoNLL 2000 shared task
using different models. All these models use word features as well as
POS features. ”-min”, ”-max”, and ”-average” each denotes minimum,
maximum and average F1 scores for a corresponding method.

3.5 Results on Internal Live dataset
In this section, we compare different slot models on dif-
ferent domains based on Cortana live log data.

Table. 4 compares the F1 score on CRF, RNN, RCRF,
joint-RNN and the proposed RSVM on alarm, calendar,
communication, and note. Table. 5 presents the F1 score
of different models on the rest domains. “RNN” denotes
the Elman type of RNN for slot tagging which uses current
word information, previous slot output information and
context window information (surrounding four words)
(Yao et al., 2013). “RCRF” represents the RCRF slot tag-
ging models that use the same feature as “RNN” (Yao et
al., 2014b). “joint-RNN” (Shi et al., 2015) also uses the
same features as “RNN” and “RCRF”. However, “joint-
RNN” implicitly makes use of query domain, intent and
slot information by training the domain classifier, intent
classifier and slot labeling jointly via multi-task learning.

Overall, the proposed RSVM obtains significant im-
provement over CRF, RNN,RCRF and joint-RNN on alarm,
communication, note and reminder (z-test p− value <
5E − 5). On the calendar, places and weather, RSVM
achieves similar performance as joint-RNN. Even joint-

396

RNN is built on the basis of conventional RNN using local
normalization, it actually takes the sequence representa-
tion information implicitly from domain and intent clas-
sification. However, in ondevice domain, RCRF performs
the best and the proposed RSVM model performs even
worse than CRF. We notice that, in ondevice model, user
queries tend to be short, with on average 2.4 words in a
query, shown in Table. 1. Also the loss function in the
proposed model only uses the top and the second most
hypothesis, which may be less informative, especially
with short sentences, as compared to using all hypothe-
sis in RCRF.

model alarm calen commu note
CRF 93.2 93.7 91.6 76.5
RNN 93.8 95.2 92.5 77.0
RCRF 93.9 95.9 93.2 76.9
joint-RNN 94.9 96.4 92.9 74.9
RSVM-min 95.8 95.8 93.3 86.9
RSVM-aver 95.9 96.3 93.9 88.3
RSVM-max 96.2 96.6 94.9 89.7

Table 4: F1 score comparison on different slot tagging models on
alarm, calendar, communication and note.

model ondev place remin weath
CRF 98.2 87.5 93.3 95.7
RNN 98.4 88.4 90.5 95.0
RCRF 98.8 88.3 91.9 94.6
joint-RNN 98.6 90.6 92.4 96.7
RSVM-min 97.4 88.2 94.3 96.2
RSVM-aver 97.7 89.7 94.5 96.6
RSVM-max 97.9 90.8 95.1 96.8

Table 5: F1 score comparison on different slot tagging models on on-
device, places, reminder and weather.

Table. 6 gives the overall performance comparison of
different models in internal live log dataset using the
weighted average F1 score over all domains. In this ta-
ble, we can find that the proposed RSVM on average can
achieve 0.6% and 0.7% F1 score improvement over joint-
RNN and RCRF, respectively.

3.6 Training Speed Up In RSVM

Using max-margin criteria, backward weight updating
only happens to support vector samples. While using
cross-entropy or maximum likelihood based training cri-
teria, backward weight updating has to sweep over the
whole training data. Fig. 2 shows that RSVM can substan-
tially speed up the model training by skipping the back-
ward weight updating for non-support vector samples. As
depicted in Fig. 2, RSVM only executes backward weight
updating for 337 training samples (7% of whole training
data) at epoch 20.

model F1(%)
CRF 92.6
RNN 92.8
RCRF 93.9
joint-RNN 94.0
RSVM-min 94.0
RSVM-average 94.6
RSVM-max 95.2

Table 6: The weighted average F1 score of different slot tagging models
over all the domains.

4977

4023

2809

2060
1701

1426
12131086

900 827 702 626 562 492 478 411 381 362 317 337

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
ra

in
in

g
 s

a
m

p
le

s

Training Epoch

RSVM RCRF

Figure 2: Training sample usage comparison for RSVM and RCRF on
ATIS data in backward weight updating in each training epoch.

4 Conclusions

We have proposed a recurrent support vector machine
(RSVM) which applies the structured SVM on top of the
conventional RNN for slot tagging. Different from pre-
vious RNN sequence training approaches that use max-
imum conditional likelihood as objective function, the
proposed method uses sequence level max-margin crite-
rion with hard loss function. The model is trained to dis-
criminate the score of ground-truth slot sequences with
respect to other competing slot sequences by a margin.
Viterbi algorithm is used in decoding to select a slot se-
quence that gives the largest score. To verify the perfor-
mance of the proposed method, three datasets, namely
ATIS dataset, CoNLL 2000 Chunking dataset and Cor-
tana live log dataset, were used. The proposed RSVM
achieved a new state-of-the-art performances on these
datasets. In addition, RSVM showed substantial training
speed up by skipping the weight updating for non-support
vector training samples. On ATIS data, after 20 epoches,
backward weight updating only happened for almost 7%
of whole training samples.

The proposed RSVM is built on top of conventional
RNN structure. Though RSVM doesn’t have advanced
topology used in LSTM and RNN-em, it achieves com-
parable or better performances. Therefore, the improve-
ment comes from its sequence level max-margin crite-
rion. For future works, we plan to apply the structured
SVM on top of other advanced models.

397

References
Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen,

Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of Machine
Learning Research, 12:2493–2537.

Renato De Mori. 2007. Spoken language understanding: a
survey. In The Proceedings of IEEE Workshop on Automatic
Speech Recognition Understanding, pages 365–376.

Anoop Deoras and Ruhi Sarikaya. 2013. Deep belief network
based semantic taggers for spoken language understanding.
In ISCA Interspeech. ISCA, September.

Marco Dinarelli, Alessandro Moschitti, and Giuseppe Riccardi.
2008. Joint generative and discriminative models for spo-
ken language understanding. In The Proceeding of Spoken
Language Technology Workshop, pages 61–64.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive
subgradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 12:2121–
2159.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hin-
ton. 2013. Speech recognition with deep recurrent neural
networks. In The Proceedings of IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages
6645–6649.

Alex Graves. 2012. Supervised Sequence Labelling with Re-
current Neural Networks, volume 385. Springer.

Yulan He and S. Young. 2003. A data-driven spoken lan-
guage understanding system. In The Proceedings of Auto-
matic Speech Recognition and Understanding, pages 583–
588.

Charles T. Hemphill, John J. Godfrey, and George R. Dodding-
ton. 1990a. The atis spoken language systems pilot corpus.
In The Proceedings of the DARPA Speech and Natural Lan-
guage Workshop, pages 96–101.

Charles T. Hemphill, John J. Godfrey, and George R. Dodding-
ton. 1990b. The atis spoken language systems pilot corpus.
In The Proceedings of the Workshop on Speech and Natural
Language, pages 96–101.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-
term memory. Neural Comput., 9(8):1735–1780.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.
2009. Cutting-plane training of structural svms. Machine
Learning, 77(1):27–59.

Taku Kudo and Yuji Matsumoto. 2000. Use of support vec-
tor learning for chunking identification. In The proceedings
of Conference on Natural Language Learning (CoNLL) and
Second Learning Language In Logic WorkShop.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with support
vector machines. In The Proceedings of the Second Meeting
of the North American Chapter of the Association for Com-
putational Linguistics on Language Technologies, pages 1–8.

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005.
Flexible text segmentation with structured multilabel clas-
sification. In The Proceedings of the Conference on Hu-
man Language Technology and Empirical Methods in Nat-
ural Language Processing, pages 987–994.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Ben-
gio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry Heck,
Gokhan Tur, Dong Yu, and Geoffrey Zweig. 2015. Using

recurrent neural networks for slot filling in spoken language
understanding. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, pages 530–539.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernocký,
and Sanjeev Khudanpur. 2010. Recurrent neural network
based language model. In The Proceedings of Interspeech,
pages 1045–1048.

Nam Nguyen and Yunsong Guo. 2007. Comparisons of se-
quence labeling algorithms and extensions. International
Conference on Machine Learning, pages 681–688.

Constantinos Panagiotakopoulos and Petroula Tsampouka.
2013. The stochastic gradient descent for the primal l1-svm
optimization revisited. CoRR.

Baolin Peng and Kaisheng Yao. 2015. Recurrent neural net-
works with external memory for language understanding.
CoRR, abs/1506.00195.

Juan Antonio Prez-ortiz, Mikel L. Forcada, and Departament
De Llenguatges I Sistemes. 2001. Part-ofspeech tagging
with recurrent neural networks. In The Proceedings of the
International Joint Conference on Neural Networks.

Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinke-
vich. 2007. (online) subgradient methods for structured pre-
diction. In Eleventh International Conference on Artificial
Intelligence and Statistics (AIStats).

Fei Sha and Fernando Pereira. 2005. Shallow parsing with con-
ditional random fields. In The Proceedings of the Conference
of the North American Chapter of the Association for Com-
putational Linguistics and Human Language Technologies.

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan, Mei-
Yuh Hwang, and Baolin Peng. 2015. Contextual spoken
language understanding using recurrent neural networks. In
The Proceedings of International Conference on Acoustics,
Speech and Signal Processing.

Xu Sun, Louis-Philippe Morency, Daisuke Okanohara, and
Jun’ichi Tsujii. 2008. Modeling latent-dynamic in shallow
parsing: A latent conditional model with improved inference.
In The Proceedings of the 22Nd International Conference on
Computational Linguistics - Volume 1, COLING ’08, pages
841–848.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann,
and Yasemin Altun. 2005. Large margin methods for struc-
tured and interdependent output variables. Journal Of Ma-
chine Learning Research, 6:1453–1484.

Vladimir N. Vapnik. 1995. The Nature of Statistical Learning
Theory.

Ye-Yi Wang, Li Deng, and Alex Acero. 2005. Spoken language
understanding — an introduction to the statistical frame-
work. IEEE Signal Processing Magazine, 22(5):16–31.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and Hai Zhao.
2015. A unified tagging solution: Bidirectional LSTM re-
current neural network with word embedding. CoRR.

P.J. Werbos. 1990. Backpropagation through time: what it does
and how to do it. The Proceedings of the IEEE, 78(10):1550–
1560.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional neural net-
work based triangular CRF for joint intent detection and slot
filling. In The Proceedings of IEEE Workshop on Automatic
Speech Recognition and Understanding, pages 78–83.

Kaisheng Yao, Geoffrey Zweig, Mei-Yuh Hwang, Yangyang
Shi, and Dong Yu. 2013. Recurrent neural networks for

398

language understanding. In The Proceedings of Interspeech,
pages 2524–2528.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey
Zweig, and Yangyang Shi. 2014a. Spoken language un-
derstanding using long short-term memory neural networks.
In The Proceedings of IEEE workshop on Spoken Language
Technology, pages 189–194.

Kaisheng Yao, Baolin Peng, Geoffrey Zweig, Dong Yu, Xiao-
long Li, and Feng Gao. 2014b. Recurrent conditional ran-
dom field for language understanding. In The Proceedings
of International Conference of Acoustic, Speech and Signal
Processing, pages 4105–4109.

Tong Zhang, Fred Damerau, and David Johnson. 2001. Text
chunking based on a generalization of winnow. Journal of
Machine Learning Research, 2:615–637.

Shi-Xiong Zhang, Chaojun Liu, Kaisheng Yao, and Yifan Gong.
2015. Deep neural support vector machines for speech
recognition. In The Proceedings of IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages
4275 – 4279, April.

399

Proceedings of NAACL-HLT 2016, pages 400–410,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Expectation-Regulated Neural Model for Event Mention Extraction

Ching-Yun Chang and Zhiyang Teng and Yue Zhang
Singapore University of Technology and Design

8 Somapah Road, Singapore 487372
{chingyun chang, yue zhang}@sutd.edu.sg

zhiyang teng@mymail.sutd.edu.sg

Abstract

We tackle the task of extracting tweets that
mention a specific event from all tweets that
contain relevant keywords, for which the main
challenges include unbalanced positive and
negative cases, and the unavailability of man-
ually labeled training data. Existing meth-
ods leverage a few manually given seed events
and large unlabeled tweets to train a classi-
fier, by using expectation regularization train-
ing with discrete ngram features. We pro-
pose a LSTM-based neural model that learns
tweet-level features automatically. Compared
with discrete ngram features, the neural model
can potentially capture non-local dependen-
cies and deep semantic information, which are
more effective for disambiguating subtle se-
mantic differences between true event men-
tions and false cases that use similar word-
ing patterns. Results on both tweets and fo-
rum posts show that our neural model is more
effective compared with a state-of-the-art dis-
crete baseline.

1 Introduction

A Distributed Denial of Service (DDoS) attack em-
ploys multiple compromised systems to interrupt or
suspend services of a host connected to the Internet.
Victims are often high-profile web servers such as
banks or credit card payment gateways, and there-
fore a single attack may cause considerable loss.
The aim of this paper is to build an automatic system
which can extract DDoS event mentions from social
media, a timely information source for events taking
place around the world, so that the mined emerging

incidents can serve as early DDoS warnings or signs
for Internet service providers.

Ritter et al. (2015) proposed the first work to ex-
tract cybersecurity event mentions from raw Twitter
stream. They investigated three different event cat-
egories, namely DDoS attacks, data breaches and
account hijacking, by tracking the keywords ddos,
breach and hacked, respectively. Not all tweets con-
taining the keywords describe events. For example,
the tweet “give me paypall or i will tell my mum
and ddos u” shows a metaphor rather than a DDoS
event. As a result, the event mention extraction
task involves a classification task that filters out true
events from all tweets that contain event keywords.
Two main challenges exist for this task. First, the
numbers of positive and negative examples are typ-
ically unbalanced. In our datasets, only about 22%
of the tweets that contain the term ddos are men-
tions to DDoS attack events. Second, there is typ-
ically little manual annotation available. Ritter et
al. (2015) tackled the challenges by weakly super-
vising a classification model with a small number of
human-provided seed events.

In particular, Ritter et al. exploit expectation
regularization (ER; Mann and McCallum (2007))
for semi-supervised learning from large amounts
of raw tweets that contain the event keyword.
They show that the ER approach outperforms semi-
supervised expectation-maximization and one-class
support vector machine on the task. They build
a logistic regression classifier, using few human-
labeled seed events and domain knowledge on the
ratio between positive and negative examples for
ER in training. Results show that the regulariza-

400

tion method was effective on classifying unbalanced
datasets.

Ritter et al. use manually-defined discrete fea-
tures. However, the event mention extraction task
is highly semantic-driven, and simple textual pat-
terns may suffer limitations in representing subtle
semantic differences between true event mentions
and false cases with similar word patterns. Recently,
deep learning received increasing research attention
in the NLP community (Bengio, 2009; Mikolov et
al., 2013; Pennington et al., 2014; Kalchbrenner
et al., 2014; Vo and Zhang, 2015). One important
advantage of deep learning is automatic representa-
tion learning, which can effectively encodes syntac-
tic and information about words, phrases and sen-
tences in low-dimensional dense vectors.

In this paper we exploit a deep neural model for
event mention extraction, using word embeddings
and a novel LSTM-based neural network structure
to automatically obtain features for a tweet. Results
on two human-annotated datasets show that the pro-
posed LSTM-based representation yields significant
improvements over Ritter et al. (2015).

2 Related Work

In terms of scope, our work falls into the area of in-
formation extraction from social media (Guo et al.,
2013; Li et al., 2015). The proposed event men-
tion extraction system is domain-specific, similar to
works that aim at detecting categorized events such
as disaster outbreak (Sakaki et al., 2010; Neubig
et al., 2011; Li and Cardie, 2013) and cybersecu-
rity events (Ritter et al., 2015). Such work typi-
cally trains semi-supervised classifiers to determine
events of interest due to the limitation of annotated
data. On the other hand, a few studies devote to open
domain event extraction (Benson et al., 2011; Rit-
ter et al., 2012; Petrović et al., 2010; Diao et al.,
2012; Chierichetti et al., 2014; Li et al., 2014; Qiu
and Zhang, 2014), in which an event category is not
predefined, and clustering models are applied to au-
tomatically induce event types.

In terms of method, the proposed model is in
line with recent methods on deep learning for neu-
ral feature representations, which have seen success
in some NLP tasks (Collobert and Weston, 2008;
Collobert et al., 2011; Chen and Manning, 2014).

Competitive results have been obtained in sentiment
analysis (Kalchbrenner et al., 2014; Kim, 2014;
Socher et al., 2013b), semantic relation classifica-
tion (Hashimoto et al., 2013; Liu et al., 2015), and
question answering (Dong et al., 2015; Iyyer et
al., 2014). In addition, deep learning models have
shown promising results on syntactic parsing (Dyer
et al., 2015; Zhou et al., 2015) and machine trans-
lation (Cho et al., 2014). Compared to syntactic
problems, semantic tasks see relatively larger im-
provements by using neural architectures, possible
because of the capability of neural features in bet-
ter representing semantic information, which is rel-
atively more difficult to capture by discrete indicator
features. We consider event mention extraction as a
semantic-heavy task and demonstrate that it can ben-
efit significantly from neural feature representations.

3 Baseline

We take the method of Ritter et al. (2015) as a base-
line. Given a tweet containing the keyword ddos, the
task is to determine whether a DDoS attack event is
mentioned in the tweet. A logistic regression classi-
fier is used, which is trained by maximum-likelihood
with ER on unlabeled tweets, and automatically gen-
erated positive examples from a few seed events.

3.1 Seed Events

Ritter et al. (2015) manually pick seed events, repre-
sented as (ENTITY, DATE) tuples, and treated tweets
published on DATE referencing ENTITY as positive
training instances. For example, (GitHub, 2013 July
29)1 is defined as a seed DDoS event, and the tweet
“@amosie GitHub is experiencing a large DDos
https://t.co/cqEIR6Rz6t” posted on 2013 July 29 is
seen as an event mention since it contains the EN-
TITY GitHub as well as matches the DATE 2013 July
29. Those tweets with the word ddos but not match-
ing any seed events are grouped as unlabeled data.

3.2 Sparse Feature Representation

Each tweet is represented by a sparse binary vec-
tor for feature extraction, where the features con-
sist of bi- to five-grams containing a name entity
or the event keyword. For better generalization, all

1https://status.github.com/messages/2013-07-29

401

NE: GitHub keyword: DDoS
USR NE JJ DDoS
NE is DDoS URL
USR NE is DT JJ DDoS
NE is experiencing JJ DDoS URL
USR NE is experiencing experiencing DT JJ DDoS
NE is experiencing DT DT JJ DDoS URL
USR NE is experiencing DT is experiencing DT JJ DDoS
NE is experiencing DT JJ experiencing DT JJ DDoS URL

Table 1: Features of a tweet by Ritter et al. (2015).

words other than common nouns and verbs are re-
placed with their part-of-speech (POS) tags. Ta-
ble 1 shows an example of contextual features ex-
tracted from the tweet “@amosie GitHub is experi-
encing a large DDos https://t.co/cqEIR6Rz6t”. As
can be seen from the table, the features contain shal-
low wording patterns from a tweet, which are local
to a 5-word window. In contrast, the observed aver-
age tweet length is 16 words, with the longest tweet
containing 48 words, which is difficult to fully rep-
resent using only a local window. Our neural model
addresses the limitations by learning global tweet-
level syntactic and semantic features automatically.

3.3 Logistic Regression Classification with
Expectation Regularization

With the feature vector ~fs ∈ Rd defined for a given
tweet s, the probability of s being an event mention
is defined as:

pθ(y = 1|s) =
1

1 + e−~θ ~fs
(1)

where ~θ ∈ Rd is a weight vector.
Given a set of event mentions M =
〈m1,m2, ...,mj〉 and a set of unlabeled instances
U = 〈u1, u2, ..., uk〉, Ritter et al. (2015) train an ER
model that maximizes the log-likelihood of positive
data while keeping the conditional probabilities on
unlabeled data consistent with the human-provided
expectations. The objective function is defined as:

O(θ;M,U) =
∑
m∈M

log pθ(y = 1|m)︸ ︷︷ ︸
Log Likelihood

− λU∆(p̃, p̂Uθ)︸ ︷︷ ︸
Expectation Regularization

− λL
2‖θ‖2︸ ︷︷ ︸

L2 Regularization

(2)

The expectation regularization term ∆(p̃, p̂Uθ) is de-
fined as the KL divergence between the model’s pos-
terior predictions on unlabeled data, p̂Uθ , and the
human-provided label expectation priors, p̃:

∆(p̃, p̂Uθ) = D(p̃||p̂Uθ)

= p̃ log
p̃

p̂Uθ
+ (1− p̃) log

1− p̃
1− p̂Uθ

(3)

4 Distant Seed Event Extraction

We follow Ritter et al. (2015), using a set of seed
events and large raw tweets for ER. However, we
take a fully-automated approach to find seed events,
since manual listing of seed DDoS events can be a
costly and time consuming process, and requires a
certain level of expert knowledge.

We leverage news articles to collect seed events,
representing events as (ENTITY, DATE RANGE) tu-
ples. The ENTITY in our seed events is defined as
a name entity that appears in either the assailant
or victim role of an attack event labeled by frame-
semantic parsing, and the DATE RANGE is a date
window around the news publication date. We use a
date window rather than a definite news publication
date because news articles are not always published
on the day a DDoS attack happened. Some examples
are given in Figure 1.

We parse DDoS attack news collected from
http://www.ddosattacks.net2 with a state-of-the-art
frame-semantic parsing system (SEMAFOR; Das et
al. (2010)). Tweets are gathered using the Twitter
Streaming API3 with a case-insensitive track key-
word ddos. Name entities are extracted from both
news articles and tweets using a Twitter-tuned NLP
pipeline (Ritter et al., 2011).4

Table 2 shows two example DDoS attack news,
where the ENTITY values are included in the vic-
tim roles, RBS, Ulster Bank, GovCERT and FBI in
the first news, and Essex in the second. It is worth
noting that the DDoS attack on RBS, Ulster Bank
and Natwest was actually on 2015 July 31. The cor-
relation between tweet mentions and news reports
are shown in Figure 1, where each bar indicates the

2Most of the articles are about DDoS attack events, while
a smaller number discusses the nature of DDoS attacks and re-
lated issues.

3https://dev.twitter.com/streaming/overview
4https://github.com/aritter/twitter nlp

402

News Title DDoS Attacks Take Down RBS, Ulster
Bank, and Natwest Online Systems

Date 2015 August 02
Sentences But as can be seen from the attacks against

RBS, NatWest, and Ulster Bank, and the
warnings from GovCERT.ch and the FBI,
these attacks are coming back into vogue
again.

News Title Bored Brazilian skiddie claims DDoS
against Essex Police

Date 2015 September 04
Sentences A teenager from Brazil has claimed respon-

sibility for a distributed denial of service
(DDoS) attack on Essex Police’s website,
following a similar attack on another force
earlier this week.
They added: “Officers investigating the sus-
pected denial of service attack on the Essex
Police website ... are liaising with other law
enforcement agencies to identify any inves-
tigative leads”

Table 2: Example news sentences where victim roles
are in italic and ENTITY is in bold.

Figure 1: Visualization of the numbers of tweets
mentioning Ulster bank (on the left) and Essex (on
the right) around the news publication dates.

number of tweets (y-axis) containing a certain EN-
TITY posted on a certain DATE (x-axis). Accord-
ing to these, we used a 11-day (-3,7) window cen-
tered at the news publication date for extracting pos-
itive training instances. Experiments show that our
method can find seed events with 97% accuracy.

5 Neural Event Mention Extraction

The overall structure of our representation learning
model is shown in Figure 2. Given a tweet, two
LSTM models (Section 5.1) are used to capture its
sequential semantic information in the left-to-right
and right-to-left directions, respectively. For deep

Figure 2: Architecture of the proposed neural tweet
representation model.

Figure 3: LSTM-based text embedding for word
vectors x1, x2, . . . , xn.

semantic representation, each LSTM model can in-
clude multiple stacked layers. Neural pooling (Sec-
tion 5.2) is performed on each LSTM layer to ex-
tract rich features. Finally, features from the left-
to-right and right-to-left components are combined
using neural tensors (Section 5.3), and the resulting
features are used as inputs to a feed-forward neural
network for classification (Section 5.4).

5.1 LSTM Models
The main goal of our neural model is to find dense
vector representations for tweets, which are effec-
tive features for event mention extraction. Starting
from word embeddings (Mikolov et al., 2013; Pen-
nington et al., 2014), a natural way of modeling a
tweet is to treat it as a sequence and use a recur-
rent neural network (RNN) structure (Pearlmutter,
1989). LSTM (Hochreiter and Schmidhuber, 1997)
is a variant of RNNs, which is better at exploit-
ing long range context thanks to purpose-built units
called memory blocks to store history information.

403

LSTM has shown improvements over conventional
RNN in many NLP tasks (Jozefowicz et al., 2015;
Graves et al., 2013b; Cho et al., 2014).

A typical LSTM memory block consists of three
gates (i.e. input, forget and output), which con-
trol the flow of information, and a memory cell to
store the temporal state of the network (Gers et al.,
2000). While traditionally the values of gates are
decided by the input and hidden states in a RNN,
we take a variation with peephole connections (Gers
and Schmidhuber, 2000), which allows gates in the
same memory block to learn from the current cell
state. In addition, to simplify model complexity, we
use coupled forget and input gates (Cho et al., 2014).

Figure 3 illustrates the memory block used for our
tweet representation. The network unit activations
for input xt at time step t are defined by the follow-
ing set of equations:

Gates at step t:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi) (4)

ft = 1− it (5)

ot = σ(Woxxt +Wohht−1 +Wocct + bo) (6)

Cell:
ct = ft ⊗ ct−1

+ it ⊗ tanh(Wcxxt +Wchht−1 + bc in)
(7)

Hidden State:

ht = ot ⊗ tanh(ct) (8)

The W terms in Equations 4–7 are the weight matri-
ces (Wic and Woc are diagonal weight matrices for
peephole connections); the b terms denote bias vec-
tors; σ is the logistic sigmoid function; and ⊗ com-
putes element-wise multiplication of two vectors. it,
ft and ot are input, forget and output gates, respec-
tively; ct stores the cell state, and ht is the output of
the current memory block.

Inputs For the inputs x1, x2, ..., xn, we learn
50-dimension word representations using the skip-
gram algorithm (Mikolov et al., 2013). The train-
ing corpus was collected from the tweet archive
site, and a total of 604,926,764 tweets were used.
Each tweet was tokenized using a tweet-adapted to-
kenizer (Owoputi et al., 2013), and stopwords and
punctuations are removed. The trained model con-
tains 5,251,332 words.

Layers Recent research has shown that both
RNNs and LSTMs can benefit from depth in
space (Graves et al., 2013a; Graves et al., 2013b;
Sak et al., 2014; Sak et al., 2015). A deep LSTM
is built by stacking multiple LSTM layers, with the
output sequence of one layer forming the input se-
quence for the next, as shown in Figure 2. At each
time step the input goes through multiple non-linear
layers, which progressively build up higher level
representations from the current level. In our tweet
representation model, we embody a deep LSTM ar-
chitecture with up to 3 layers.

5.2 Pooling
Given a LSTM and an input sequence x1, x2, ..., xn,
using the last state hn as features is a basic repre-
sentation strategy for the sequence. Apart from this
approach, another common feature extraction strat-
egy is to apply pooling (Boureau et al., 2011) over
all the states h1, h2, ..., hn to capture the most char-
acteristic information. Pooling extracts fixed dimen-
sional features from h1, h2, ..., hn, which has vari-
able length. In our model we consider different pool
strategies, including max, average and min poolings.
For convenience of writing, we refer to the basic fea-
ture strategy also as basic pooling in later sections.
When there are multiple LSTM layers, the features
consist of the pooling results from each layer, con-
catenated to give a single vector.

5.3 Neural Tensor Network for Feature
Combination

Given the pooling methods, we extract features
rf and rb for the forward and backward multi-
layer LSTMs, respectively. Inspired by Socher et
al. (2013a), we use a neural tensor network (NTN)
to combine the bi-directional rf and rb ∈ Rd. The
network can be formalized as follows:

V = tanh(rTf T
[1:q] rb +Wntn

[
rf
rb

]
+ bntn) (9)

where T [1:q] ∈ Rd×d×q is a tensor, Wntn ∈ Rq×2d

and bntn ∈ Rq are the weight matrix and bias vector,
respectively, as that in the standard form of a neural
network. The bilinear tensor product rTf T

[1:q] rb is
a vector v ∈ Rq, where each entry is computed by
one slice of the tensor:

vi = rTf T
[i] rb (i = 1, 2, . . . , q) (10)

404

1. NSA site went down due to ‘internal error’, not DDoS at-
tack, agency claims http://t.co/B7AzoLPsKf< isn’t that the
same thing

2. NSA denies DDOS attack took place on website, claims in-
ternal error http://t.co/WW7uFM4Xk5

3. @HostingSocial True Shikha,Enterprises are at a greater
risk with increased DDoS attacks & #cloud solns need to
take measures for prevention

Table 3: The three false positives in the 100 auto-
matically extracted mentions, where EVENT ENTI-
TIES are in bold.

The NTN combined features are concatenated,
and fed into a tanh hidden layer. The output of the
layer, ~fs, becomes the final representation of a tweet,
and is used to compute the probability of the tweet
being an event mention, as shown in Equation 1.

5.4 Classification
The final classifier of the neural network model is
Equation 1, consistent with the baseline model. As
a result, ER is applied in the same way as Equa-
tion 2. The main difference between our model and
the baseline is in the definition of ~fs, the former be-
ing a deep neural network and the latter being man-
ual features. Consequently, Equation 1 can be re-
garded as a softmax layer in our deep neural model,
for which all the features and parameters are trained
automatically and consistently.

For training, the parameters are initialized uni-
formly within the interval [−a,a], where

a =

√
6

Hk +Hk+1
(11)

Hk and Hk+1 are the numbers of rows and columns
of the parameter, respectively (Glorot and Bengio,
2010). The parameters are learned using stochas-
tic gradient descent with momentum (Rumelhart et
al., 1988). The model is trained by 500 iterations,
in each of which unlabeled instances are randomly
sampled so that the same numbers of positives and
unlabeled data are used.

6 Experiments and Results

6.1 Data
We streamed tweet with the track kayword ddos
for five months from April 13 to September 13,

Training Dev Test Dark Web Test
Positive 930 43 160 82

Negative – 157 640 318
Unlabeled 127,774 – – –

Table 4: Statistics of the datasets.

2015. In addition, we extracted tweets containing
the word ddos from a tweet archive5 in the period
from September 2011 to September 2014. Using
the distant seed event extraction scheme described
in Section 4, a total number of 930 mentions cover-
ing 45 ENTITY were automatically derived. In order
to examine whether the automatically-collected in-
stances are true positives and hence form a useful
training set, an author of this paper annotated 100
extracted mentions finding that that 3 are false pos-
itives, as listed in Table 3. The result suggests that
the automatically extracted mentions are reliable.

The remaining tweets were randomly split into
a 200-instance development set, a 800-instance test
set, and an unlabeled training set.6 Both the develop-
ment and test sets were annotated by a human judge
and an author of this paper. The inter-annotator
agreement on the binary labeled 1000 instances was
measured by using Fleiss’ kappa (Fleiss et al., 2013),
and the score, which is 0.85 for the data, represents
almost perfect agreement according to Landis and
Koch (1977). There were 47 out of the 1,000 tweets
that received different labels, for which another hu-
man judge made the final decision.

To test the applicability of the proposed men-
tion extraction system on other domains, we col-
lected 400 sentences containing the keyword ddos
from dark web. Again each sentence was annotated
by two human judges, and the third person made
the final decision on conflicting cases. The inter-
annotator agreement kappa score on this dataset is
0.85, consistent with the tweet annotation. Table 4
presents the statistics of the datasets.

6.2 Evaluation

We follow Ritter et al. (2015) and evaluate the
performance by the area under the precision-recall
curve (AUC), where precision is the fraction of re-
trieved instances that are event mentions, and re-

5https://archive.org/details/twitterstream
6http://people.sutd.edu.sg/˜yue zhang/pub/naacl16.cyc.zip

405

basic max avg min
1-LSTM-layer+concat 0.41 0.39 0.38 0.39
1-LSTM-layer+NTN 0.43 0.43 0.44 0.42
2-LSTM-layer+NTN 0.44 0.42 0.44 0.44
3-LSTM-layer+NTN 0.45 0.47 0.46 0.46

Table 5: AUCs of different model architectures.

call is the fraction of gold event mention instances
that are retrieved. Precision-recall (PR) curves offer
informative pictures on the classification of unbal-
anced classes (Davis and Goadrich, 2006).

6.3 Development Experiments

For the proposed model, we empirically set the
LSTM output vector ht, the NTN output V , and the
size of the hidden layer to 32.7 For the ER model,
the human-provided label expectation prior p̃ is set
to 0.22 since the percentage of positives in the de-
velopment set is 22%, and the parameter λU is set to
one-tenth of the positive training data.8

6.3.1 Feature Combination
We first test whether using a NTN to combine

the bi-directional representations can give a better
performance compared to simply concatenating the
two representation vectors. Table 5 gives AUCs of
one-layer basic, max, avg and min pooling strategies
tested on the tweet development set. We can see that
all the four different pooling strategies perform bet-
ter when the NTN combination is used. As a result,
for the following experiments we only consider us-
ing NTNs to combine bi-directional representations.

Next we observe the effect of using different num-
bers of LSTM layers in our model. AUCs of basic,
max, avg and min pooling strategies with respect to
1, 2 and 3 LSTM layers are presented in Table 5.
In most of the cases, the performance of the model
increases when the LSTM architecture goes deeper,
and we build our final models using 3 LSTM layers.

6.3.2 Pooling Strategies
In the previous experiments, max pooling

achieves the highest AUC with the architecture 3-
LSTM-layer+NTN, we are interested in whether

7The hidden layer size is chosen by comparing development
test scores using the sizes of 16, 32 and 64.

8Mann and McCallum (2007) found that λU does not require
tuning for different data set.

Pooling AUC
max+avg 0.48
max+min 0.50
max+basic 0.51
max+basic+min 0.50
max+basic+min+avg 0.47

Table 6: AUCs of different pooling methods.

Figure 4: Development PR curves.

combining max with other pooling strategies would
further increase the performance. Table 6 summa-
rizes the AUC of various combinations, according
to which we choose max+basic for final tests.

Finally, we test the performance of sparse fea-
ture representations as used in the model of Ritter
et al. (2015). Figure 4 shows the PR curves of the
sparse representation and the best setting max+basic
evaluated on the development set. The AUC of
using sparse representation is 0.30 while that of
the max+basic model is 0.51. The runtime perfor-
mances of training with sparse feature representa-
tions and neural feature representations are 276.17
and 1137.87 seconds, respectively, running on a sin-
gle thread of an Intel Core i7-4790 3.60GHz CPU.

6.4 Final Test

Figure 5 presents the PR curves of the baseline
sparse feature representation and the final neural
model evaluated on the datasets, and Table 7 gives
the AUC for these test-set evaluations. From the
curves we can see that the sparse representation is
comparatively less efficient in picking out negative
examples, since at a lower recall the model does not
gain a higher precision. In contrast, LSTM-based
representation demonstrates a better trade-off be-
tween recall and precision. We do not have a strong
intuition on why the performance on dark web test
set is better than that on tweet test set for the pro-
posed model.

406

Discrete Baseline Model (Ritter et al., 2015) LSTM-based Model
Top 5:
N|0.9|0.0 They dealt with the ddos attacks with grace and confidence.
P|0.9|1.0 Thank you.And now, this is my hypothesis, only is a personal

thinking, my thought of what happening (or something similar, at
least): I think that Agora is under DDOS attacks constantly, maybe
for another markets (probably Nucleus if I had to bet for one: right
now they have the monopoly, practically, it’s one of the three and more
knowns and used DM’s now (Agora, Nucleus, and Middle-Earth, at
least this is my thought) all the vendors of Agora are going to Nucleus
too and all publishing their listings there.

N|0.9|0.8 But it was basically explaining how the DDOS attacks on SR
earlier in the year were the NSA triangulating its position by measuring
PING return times and likes.

N|0.9|0.1 unforgiven I remember from sr2, many of the sr2 fanboys were
all for DDOS attacks on Agora and tormarket if people remember.

N|0.8|0.2 you know things be stressful for admins and dev team right
now :/keep your heads up guys, the work you do is the front line of
our revolution for personal freedoms being regained.everyone here is
a freedom fighter, you guys are our captainsthank you ALL for this
wonderful community and sense of freedom you have brought us!so
get this DDoS attack under control and keep on truckin!!!

Top 5:
P|0.7|1.0 Until we have proof I don’t think we can say who is respon-

siblemaybe it wasnt tor market who did the ddos, but check this
out:http://silkroad5v7dywlc.onion/index.php?topic=8598.0maybe they
did initate the ddos in the hopes of proving that their site is superior
because they ”fended off” a ddos attack faster than SRTM is super
sketchy!

P|0.7|1.0 what’s the status?you find it in the first post i set it to
GREEN/ORANGE as the site is still under DDOS attack but temporar-
ily accessable.greets

P|0.7|1.0 It seems their idea of a “hack” is a DDoS attack on the server
(which does indeed go on right now, and as all DoS attacks, can result
in denial of service) and a brute-force attack on the login system to try
to find out users’ passwords.

P|0.6|1.0 One of the other markets (Nucleus) is paying some blackhat to
DDOS most of the other markets, it’s all over Reddit.Support here is
asleep, I don’t know how you can run a market with a daily uptime of
25%.I agree with OP.

P|0.7|1.0 He also said he was involved in helping DPR hack into Tormar-
ket’s database and launch the DDoS against the Russian cyberattackers.

Bottom 5:
N|0.5|0.0 I only words I could understand were ”DDoS” and ”Bastard”.
N|0.5|0.9 In general, it seems like they have set the site up to accom-

modate all parties: escrow, vendor ratings, buyer ratings, quick wallet
transactions, etc.Guess we’ll see how they deal with the growing pains,
DDOS, & hack attempts that will certainly come their way in the near
future.

N|0.5|0.0 Please ddos him.
N|0.5|0.0 Next fucking day, ddos dildos and damage....LEGs wares hit

my drop while the market was still floundering like guppies on hot
concrete, yeah, that’s why.

N|0.5|0.2 child pornography, spamm, DDOS etc.

Bottom 5:
N|0.5|0.0 I only words I could understand were ”DDoS” and ”Bastard”.
N|0.9|0.0 They dealt with the ddos attacks with grace and confidence.
N|0.5|0.0 DDOS IS PURE BULLSHIT.
N|0.5|0.0 can you guys ddos this guy?
N|0.5|0.0 The DDoS has nothing to do with this problem.

Table 8: Top 5 and bottom 5 ranked dark web sentences as determined by the baseline and the proposed
LSTM-based model. Format: class label|baseline score|neural score.

(a) Tweet test set. (b) Dark web test set.

Figure 5: Final PR curves.

6.5 Analysis

Table 8 shows the top 5 and bottom 5 ranked dark
web sentences9 as scored by the baseline and the
proposed LSTM-based model, respectively. For
each sentence, the human judgment (P for event
mentions and N for non-event mentions) is given,

9The sentence boundary was detected by NLTK PunktSen-
tenceTokenizer.

Tweet Dark Web
Ritter et al. (2015) 0.31 0.30
max+basic+3-LSTM-layer+NTN 0.40 0.59

Table 7: Final AUCs.

followed by the probability values output by the
baseline and the proposed system.

Only one of the top five most probable event-
mentioning sentences as decided by the baseline is
true positive. On the other hand, all of the top five
sentences indicated by the proposed model are true
positives. We investigate the contextual features that
contribute to the false positive case “They dealt with
the ddos attacks with grace and confidence.” deter-
mined by the baseline, and find that the patterns “DT
ddos”, “ddos attack|NN”, “DT ddos attack|NN IN”
and “IN DT ddos” are ranked 2nd, 18th, 111th, 127th

among the 15,355 contextual patterns, respectively,
which have relatively high weights but only carry

407

(a) Tweet test set. (b) Dark web test set.

Figure 6: Probability distributions on the test sets.

limited information. In contrast, the LSTM-based
model can capture global syntactic and semantic fea-
tures other than words surrounding ddos to distin-
guish mentions from non-mentions. From the table
we can see that those high-confidence sentences de-
termined by the LSTM-based model are more infor-
mative compared with those lower ranked sentences.

Figure 6 presents the probability distributions of
positive and negative test cases as obtained by the
baseline (x-axis) and the LSTM-based model (y-
axis), respectively. It can be seen from the fig-
ures that the probabilities determined by the LSTM-
based model are scattered between 0.0 and 1.0,
while those by the baseline are gathered between
0.5 and 0.9, which shows that the proposed neural
model can achieve better confidence on classifying
event mentions. This demonstrates its stronger dif-
ferentiating power as compared with discrete indi-
cator features, as hypothesized in the introduction.
In addition, for the proposed model a large portion
of true positives (N) are close to the top in both test
sets, while more negatives (×) gather at the bottom
of the dark web test set plot, compared to that in
the tweet test set. As for the baseline model, many
negatives locate around the horizontal centre, with
a probability of 0.5, in the tweet test set, which ex-
plains why the baseline is relatively less effective on
the precision-recall trade-off.

7 Conclusion

We investigated LSTM-based text representation for
event mention extraction, finding that automatic fea-
tures from the deep neural network largely improve
the sparse representation method on the task. The
model performance can further benefit by exploiting
deep LSTM structures and tensor combination of bi-

directional features. Results on tweets and dark web
forum posts show the effectiveness of the method.

Acknowledgments

We would like to thank Geoffrey Williams for data
annotation, Lin Li for data processing, and anony-
mous reviewers for their informative comments. Yue
Zhang is the corresponding author.

References

Yoshua Bengio. 2009. Learning deep architectures for
AI. Foundations and trends R© in Machine Learning,
2(1):1–127.

Edward Benson, Aria Haghighi, and Regina Barzilay.
2011. Event discovery in social media feeds. In Pro-
ceedings of the Annual Meeting of the ACL, pages
389–398, Portland, Oregon.

Y-Lan Boureau, Nicolas Le Roux, Francis Bach, Jean
Ponce, and Yann LeCun. 2011. Ask the locals: multi-
way local pooling for image recognition. In ICCV,
IEEE International Conference on, pages 2651–2658.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the Conference on EMNLP,
pages 740–750.

Flavio Chierichetti, Jon Kleinberg, Ravi Kumar, Moham-
mad Mahdian, and Sandeep Pandey. 2014. Event de-
tection via communication pattern analysis. In Inter-
national AAAI Conference on Weblogs and Social Me-
dia.

Kyunghyun Cho, Bart Van Merriënboer, Çalar Gülçehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using RNN encoder-decoder for statistical ma-
chine translation. In Proceedings of the Conference on
EMNLP, pages 1724–1734, Doha, Qatar.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of the 25th ICML, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Human Language Technologies: The An-
nual Conference of NAACL, pages 948–956, Los An-
geles, California.

408

Jesse Davis and Mark Goadrich. 2006. The relationship
between precision-recall and ROC curves. In Proceed-
ings of the 23rd ICML, pages 233–240, Pittsburgh,
Pennsylvania.

Qiming Diao, Jing Jiang, Feida Zhu, and Ee-Peng Lim.
2012. Finding bursty topics from microblogs. In Pro-
ceedings of the Annual Meeting of the ACL, pages
536–544, Jeju Island, South Korea.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.
Question answering over freebase with multi-column
convolutional neural networks. In Proceedings of the
Annual Meeting of the ACL and the 7th International
Joint Conference on NLP, pages 260–269.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term mem-
ory. In Proceedings of the Annual Meeting of the ACL
and the 7th International Joint Conference on NLP,
pages 334–343.

Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik.
2013. Statistical methods for rates and proportions.
Wiley-Interscience, 3 edition.

Felix Gers and Jürgen Schmidhuber. 2000. Recurrent
nets that time and count. In Neural Networks, 2000.
IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, pages 189–194.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation, 12(10):2451–2471.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In International conference on artificial in-
telligence and statistics, pages 249–256.

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013a. Hybrid speech recognition with deep
bidirectional LSTM. In ASRU, 2013 IEEE Workshop
on, pages 273–278.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013b. Speech recognition with deep recur-
rent neural networks. In ICASSP, 2013 IEEE Interna-
tional Conference on, pages 6645–6649.

Weiwei Guo, Hao Li, Heng Ji, and Mona T Diab. 2013.
Linking tweets to news: A framework to enrich short
text data in social media. In Proceedings of the Annual
Meeting of the ACL, pages 239–249.

Kazuma Hashimoto, Makoto Miwa, Yoshimasa Tsu-
ruoka, and Takashi Chikayama. 2013. Simple cus-
tomization of recursive neural networks for semantic
relation classification. In EMNLP, pages 1372–1376.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neu-
ral network for factoid question answering over para-
graphs. In Proceedings of the Conference on EMNLP,
pages 633–644.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An empirical exploration of recurrent network
architectures. In Proceedings of the 32nd ICML.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the ACL.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the Conference
on EMNLP, pages 1746–1751, Doha, Qatar.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Jiwei Li and Claire Cardie. 2013. Early stage
influenza detection from Twitter. arXiv preprint
arXiv:1309.7340.

Jiwei Li, Alan Ritter, Claire Cardie, and Eduard Hovy.
2014. Major life event extraction from twitter based
on congratulations/condolences speech acts. In Pro-
ceedings of the Conference on EMNLP, pages 1997–
2007, Doha, Qatar.

Hao Li, Heng Ji, and Lin Zhao. 2015. Social event
extraction: Task, challenges and techniques. In Pro-
ceedings of the IEEE/ACM International Conference
on ASONAM, pages 526–532.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and
Houfeng Wang. 2015. A dependency-based neural
network for relation classification. In Proceedings of
the Annual Meeting of the ACL and the 7th Interna-
tional Joint Conference on NLP, pages 285–290, Bei-
jing, China.

Gideon S Mann and Andrew McCallum. 2007. Simple,
robust, scalable semi-supervised learning via expecta-
tion regularization. In Proceedings of the 24th ICML,
pages 593–600.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop at
ICLR.

Graham Neubig, Masato Hagiwara, and Koji Murakami.
2011. Safety information mining — what can NLP do
in a disaster —. In Proceedings of the 5th Interna-
tional Joint Conference on NLP, pages 965–973.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A Smith. 2013.
Improved part-of-speech tagging for online conversa-
tional text with word clusters. In Proceedings of the
Conference of NAACL.

409

Barak A Pearlmutter. 1989. Learning state space trajec-
tories in recurrent neural networks. Neural Computa-
tion, 1(2):263–269.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the Conference on
EMNLP, pages 1532–1543.

Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with application
to twitter. In Human Language Technologies: The An-
nual Conference of NAACL.

Likun Qiu and Yue Zhang. 2014. ZORE: A syntax-based
system for Chinese open relation extraction. In Pro-
ceedings of the Conference on EMNLP, pages 1870–
1880, Doha, Qatar.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An exper-
imental study. In Proceedings of the Conference on
EMNLP, pages 1524–1534.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter. In
Proceedings of ACM SIGKDD, pages 1104–1112.

Alan Ritter, Evan Wright, William Casey, and Tom
Mitchell. 2015. Weakly supervised extraction of com-
puter security events from twitter. In Proceedings of
the 24th International Conference on World Wide Web,
pages 896–905.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling, 5:3.

Hasim Sak, Andrew Senior, and Françoise Beaufays.
2014. Long short-term memory recurrent neural net-
work architectures for large scale acoustic modeling.
In Proceedings of the Annual Conference of INTER-
SPEECH.

Hasim Sak, Andrew Senior, Kanishka Rao, Ozan Irsoy,
Alex Graves, Françoise Beaufays, and Johan Schalk-
wyk. 2015. Learning acoustic frame labeling for
speech recognition with recurrent neural networks.
In ICASSP, 2015 IEEE International Conference on,
pages 4280–4284.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes twitter users: real-time event
detection by social sensors. In Proceedings of the
international conference on WWW, pages 851–860.
ACM.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013a. Reasoning with neural tensor
networks for knowledge base completion. In NIPS,
pages 926–934.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013b. Recursive deep models for

semantic compositionality over a sentiment treebank.
In Proceedings of the conference on EMNLP.

Duy-Tin Vo and Yue Zhang. 2015. Deep learning for
event-driven stock prediction. In Proceedings of IJ-
CAI, BueNos Aires, Argentina, August.

Hao Zhou, Yue Zhang, and Jiajun Chen. 2015. A
neural probabilistic structured-prediction model for
transition-based dependency parsing. In Proceedings
of the Annual Meeting of the ACL, pages 1213–1222.

410

Proceedings of NAACL-HLT 2016, pages 411–416,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Agreement on Target-bidirectional Neural Machine Translation

Lemao Liu, Masao Utiyama, Andrew Finch, Eiichiro Sumita
National Institute of Information and Communications Technology (NICT)

3-5 Hikari-dai, Seika-cho, Soraku-gun, Kyoto, Japan
{lmliu,first.last}@nict.go.jp

Abstract

Neural machine translation (NMT) with re-
current neural networks, has proven to be an
effective technique for end-to-end machine
translation. However, in spite of its promis-
ing advances over traditional translation meth-
ods, it typically suffers from an issue of unbal-
anced outputs, that arise from both the nature
of recurrent neural networks themselves, and
the challenges inherent in machine translation.
To overcome this issue, we propose an agree-
ment model for neural machine translation and
show its effectiveness on large-scale Japanese-
to-English and Chinese-to-English translation
tasks. Our results show the model can achieve
improvements of up to 1.4 BLEU over the
strongest baseline NMT system. With the help
of an ensemble technique, this new end-to-end
NMT approach finally outperformed phrase-
based and hierarchical phrase-based Moses
baselines by up to 5.6 BLEU points.

1 Introduction

Recurrent neural network (RNN) has achieved great
successes on several structured prediction tasks
(Graves, 2013; Watanabe and Sumita, 2015; Dyer
et al., 2015), in which RNNs are required to make
a sequence of dependent predictions. One of its ad-
vantages is that an unbounded history is available to
enrich the context for the prediction at the current
time-step.

Despite its successes, recently, (Liu et al., 2016)
pointed out that the RNN suffers from a fundamental
issue of generating unbalanced outputs: that is to say
the suffixes of its outputs are typically worse than the

prefixes. This is due to the fact that later predictions
directly depend on the accuracy of previous pre-
dictions. They empirically demonstrated this issue
on two simple sequence-to-sequence learning tasks:
machine transliteration and grapheme-to-phoneme
conversion.

On the more general sequence-to-sequence learn-
ing task of machine translation (MT), neural ma-
chine translation (NMT) based on RNNs has re-
cently become an active research topic (Sutskever
et al., 2014; Bahdanau et al., 2014). Compared to
those two simple tasks, MT involves in much larger
vocabulary and frequent reordering between input
and output sequences. This makes the prediction at
each time-step far more challenging. In addition,
sequences in MT are much longer, with averaged
length of 36.7 being about 5 times longer than that
in grapheme-to-phoneme conversion. Therefore, we
believe that the history is more likely to contain in-
correct predictions and the issue of unbalanced out-
puts may be more serious. This hypothesis is sup-
ported later (see Table 1 in §4.1), by an analysis that
shows the quality of the prefixes of translation hy-
potheses is much higher than that of the suffixes.

To address this issue for NMT, in this paper we
extend the agreement model proposed in (Liu et al.,
2016) to the task of machine translation. Its key
idea is to encourage the agreement between a pair
of target-directional (left-to-right and right-to-left)
NMT models in order to produce more balanced
translations and thus improve the overall translation
quality. Our contribution is two-fold:

• We introduce a simple and general method to
address the issue of unbalanced outputs for

411

NMT (§3). This method is robust without any
extra hyperparameters to tune and is easy to im-
plement. In addition, it is general enough to be
applied on top of any of the existing RNN trans-
lation models, although it was implemented on
top of the model in (Bahdanau et al., 2014) in
this paper.

• We provide an empirical evaluation of the tech-
nique on large scale Japanese-to-English and
Chinese-to-English translation tasks. The re-
sults show our model can generate more bal-
anced translation results, and achieves substan-
tial improvements (of up to 1.4 BLEU points)
over the strongest NMT baseline (§4). With
the help of an ensemble technique, our new
end-to-end NMT gains up to 5.6 BLEU points
over phrase-based and hierarchical phrase-
based Moses (Koehn et al., 2007) systems. 1

2 Overview of Neural Machine Translation

Suppose x = 〈x1, x2, · · · , xm〉 denotes a source
sentence, y = 〈y1, y2, · · · , yn〉 denotes a target sen-
tence. In addition, let x<t = 〈x1, x2, · · · , xt−1〉
denote a prefix of x. Neural Machine Translation
(NMT) directly maps a source sentence into a tar-
get within a probabilistic framework. Formally, it
defines a conditional probability over a pair of se-
quences x and y via a recurrent neural network as
follows:

p(y | x; θ) =
n∏
t=1

p(yt | y<t,x; θ)

=
n∏
t=1

softmax
(
g(ht)

)
[yt]

(1)

where θ is the set of model parameters; ht denotes
a hidden state (i.e. a vector) of y at timestep t; g
is a transformation function from a hidden state to a
vector with dimension of the target-side vocabulary
size; softmax is the softmax function, and [i] de-
notes the ith component in a vector.2 Furthermore,

1The absolute gains of our model can be expected to be fur-
ther increased by applying the well-known techniques in (Jean
et al., 2015; Luong et al., 2015) that address the problems pre-
sented by unknown words, but these techniques are beyond the
scope of this paper.

2In that sense, yt in Eq.(1) also denotes the index of this
word in its vocabulary.

ht = f(ht−1, c(x, y<t)) is defined by a recurrent
function over both the previous hidden state ht−1

and the context c(x, y<t). 3 Note that both ht and
c(x, y<t) have dimension d for all t.

In this paper, we develop our model on top of the
neural machine translation approach of (Bahdanau
et al., 2014), and we refer the reader this paper for a
complete description of the model, for example, the
definitons of f and c. The proposed method could
just as easily been implemented on top of any other
RNN models such as that in (Sutskever et al., 2014).

3 Agreement on Target-bidirectional NMT

In this section, we extend the method in (Liu et al.,
2016) to address this issue of unbalanced outputs for
NMT. The key idea is to: 1) train two kinds of NMT,
i.e. one generating targets from left-to-right while
the other from right-to-left; 2) encourage the agree-
ment between them by joint search.

3.1 Training
The training objective function for our agreement
(or joint) model is formalized as follows:

` =
∑
〈x,y〉

log p(y | x; θ1) + log p(yr | x; θ2) (2)

where yr = 〈yn, yn−1 · · · , y1〉 is the reverse of se-
quence y; p(y | x; θ1) denotes the left-to-right
model with parameters θ1, while p(yr | x; θ2) de-
notes the right-to-left model with parameters θ2, as
defined in Eq.(1); and 〈x,y〉 ranges over a given
training dataset. Following (Bahdanau et al., 2014),
we employ AdaDelta (Zeiler, 2012) to minimize the
loss `.

Note that, in parallel to our efforts, Cheng et al.
(2016) has explored the agreement idea for NMT
close to ours. However, unlike their work on the
agreement between source and target sides in the
spirit of the general idea in (Liang et al., 2006), we
focus on the agreement between left and right di-
rections on the target side oriented to the natural is-
sue of NMT itself. Although our model is orthogo-
nal to theirs, one of our advantage is that our model
does not rely on any additional hyperparameters to

3Both hidden states and context vectors are dependent on the
model parameter θ, but we remove it from the expressions here
for simplicity.

412

encourage agreement, given that tuning such hyper-
parameters for NMT is too costly.

3.2 Approximate Joint Search

Given a source sentence x and model parameters
〈θ1, θ2〉, decoding can be formalized as follows:

ŷ = argmax
y

p(y | x; θ1)× p(yr | x; θ2)

As pointed out by (Liu et al., 2016), it is NP-hard
to perform an exact search, and so we adapt one of
their approximate search methods for the machine
translation scenario. The basic idea consists of two
steps: 1) run beam search for forward and reverse
models independently to obtain two k-best lists; 2)
re-score the union of two k-best lists using the joint
model to find the best candidate. We refer to the
reader to (Liu et al., 2016) for further details.

4 Experiments

We conducted experiments on two challenging
translation tasks: Japanese-to-English (JP-EN) and
Chinese-to-English (CH-EN), using case-insensitive
BLEU for evaluation.

For the JP-EN task, we use the data from NTCIR-
9 (Goto et al., 2011): the training data consisted
of 2.0M sentence pairs, The development and test
sets contained 2K sentences with a single referece,
respectively. For the CH-EN task, we used the
data from the NIST2008 Open Machine Translation
Campaign: the training data consisted of 1.8M sen-
tence pairs, the development set was nist02 (878 sen-
tences), and the test sets are were nist05 (1082 sen-
tences), nist06 (1664 sentences) and nist08 (1357
sentences).

Four baselines were used. The first two were
the conventional state-of-the-art translation systems,
phrase-based and hierarchical phrase-based systems,
which are from the latest version of well-known
Moses (Koehn et al., 2007) and are respectively de-
noted as Moses and Moses-hier. The other two were
neural machine translation systems implemented us-
ing the open source NMT toolkit (Bahdanau et al.,
2014):4 left-to-right NMT (NMT-l2r) and right-to-
left NMT (NMT-r2l). The proposed joint model

4See https://github.com/lisa-groundhog/GroundHog/tree/
master/experiments/nmt.

Systems Prefix Suffix
NMT-l2r 29.4 25.4
NMT-r2l 26.2 26.7
NMT-J 29.5 28.6

Table 1: Quality of 5-word prefixes and suffices of translations

in the JP-EN test set, evaluated using partial BLEU.

(NMT-J) was also implemented using NMT (Bah-
danau et al., 2014).

We followed the standard pipeline to train and
run Moses. GIZA++ (Och and Ney, 2000) with
grow-diag-final-and was used to build the translation
model. We trained 5-gram target language models
using the training set for JP-EN and the Gigaword
corpus for CH-EN, and used a lexicalized distortion
model. All experiments were run with the default
settings except for a distortion-limit of 12 in the JP-
EN experiment, as suggested by (Goto et al., 2013).5

To alleviate the negative effects of randomness, the
final reported results are averaged over five runs of
MERT.

To ensure a fair comparison, we employed the
same settings for all NMT systems. Specifically,
except for the maximum sequence length (seqlen,
which was to 80), and the stopping iteration which
was selected using development data, we used the
default settings set out in (Bahdanau et al., 2014) for
all NMT-based systems: the dimension of word em-
bedding was 620, the dimension of hidden units was
1000, the batch size was 80, the source and target
side vocabulary sizes were 30000, and the beam size
for decoding was 12. Training was conducted on a
single Tesla K80 GPU, and it took about 6 days to
train a single NMT system on our large-scale data.

4.1 Results and Analysis on the JP-EN Task

In §1, it was claimed that NMT generates unbal-
anced outputs. To demostrate this, we have to eval-
uate the partial translations, which is not trivial (Liu
and Huang, 2014). Inspired by (Liu and Huang,
2014), we employ the idea of partial BLEU rather
than potential BLEU, as there is no future string
concept during NMT decoding. In addition, since
the lower n-gram (for example, 1-gram) is easier to
be aligned to the uncovered words in source side,

5This configuration achieved the significant improvements
over the default setting on JP-EN.

413

Systems dev test
Moses 27.9 29.4

Moses-hier 28.6 30.2
NMT-l2r 31.5 32.4
NMT-r2l 31.5 32.6
NMT-J 33.0 34.1

NMT-l2r-5 32.6 33.7
NMT-r2l-5 33.0 34.3
NMT-J-5 33.8 35.0

NMT-l2r-10 32.5 33.6
NMT-r2l-10 33.0 34.2

Table 2: BLEU comparison of the proposed model NMT-Joint

with three baselines on JP-EN task.

which might negatively affect the absolute statis-
tics of evaluation,6 we employ the partial 4-gram as
the metric to evaluate the quality of partial transla-
tions (both prefixes and suffixes). In Table 1, we
can see that the prefixes are of higher quality than
the suffixes for a single left-to-right model (NMT-
l2r). In contrast to this, it can be seen that our joint
model (NMT-J) that includes one left-to-right and
one right-to-left model, successfully addresses this
issue, producing balanced outputs.

Table 2 shows the main results on the JP-EN task.
From this table, we can see that, although a sin-
gle NMT model (either left-to-right or right-to-left)
comfortably outperforms the Moses and Moses-hier
baselines, our simple NMT-J (with one l2r and one
r2l NMT model) obtain gains of 1.5 BLEU points
over a single NMT. In addition, the more power-
ful joint model NMT-J-5, which is an ensemble of
five l2r and five r2l NMT models, gains 0.7 BLEU

points over the strongest NMT ensemble NMT-r2l-
5, i.e. an ensemble of five r2l NMT models. The en-
semble of joint models achieved considerable gains
of 5.6 and 4.8 BLEU points over the state-of-the-art
Moses and Moses-hier, respectively. To the best of
our knowlege, it is the first time that an end-to-end
neural machine translation system has achieved such
improvements on the very challenging task of JP-EN

translation.

6In training SMT (Liu and Huang, 2014), we update weights
towards higher BLEU translations and thus we care more about
the relative statistics of BLEU; but in this paper, we care more
about the absolute statistics, in order to show how severe the
problem of unbalanced outputs is.

Systems nist05 nist06 nist08
Moses 35.4 33.7 25.0

Moses-hier 35.6 33.8 25.3
NMT-l2r 34.2 34.9 27.7
NMT-r2l 34.0 34.1 26.9
NMT-J 36.8 36.9 28.5

NMT-l2r-5 37.0 37.5 28.2
NMT-r2l-5 36.9 37.1 27.3
NMT-J-5 37.5 38.9 28.8

Table 3: BLEU comparison of the proposed model NMT-Joint

with baselines on CH-EN task.

One might argue that our NMT-J-5 contained ten
NMT models in total, while the NMT-l2r-5 or NMT-
r2l-5 only used five models, and thus such a com-
parison is unfair. Therefore, we integrated ten NMT
models into the NMT-r2l-10 ensemble. In Table 2,
we can see that NMT-r2l-10 is not necessarily better
than NMT-r2l-5, which is consistent with the find-
ings reported in (Zhou et al., 2002).

4.2 Results on the CH-EN Task

Table 3 shows the comparison between our method
and the baselines on the CH-EN task.7 The results
were similar in character to the results for JP-EN.
The proposed joint model (NMT-J-5) consistently
outperformed the strongest neural baseline (NMT-
l2r-5), an ensemble of five l2r NMT models, on
all the test sets with gains up to 1.4 BLEU points.
Furthermore, our model again achieved substantial
gains over the Moses and Moses-hier systems, in the
range 1.9∼5.2 BLEU points, depending on the test
set.

5 Related Work

Target-bidirectional transduction techniques were
pioneered in the field of machine translation (Watan-
abe and Sumita, 2002; Finch and Sumita, 2009;
Zhang et al., 2013). They used the techniques for
traditional SMT models, under the IBM framework
(Watanabe and Sumita, 2002) or the feature-driven
linear models (Finch and Sumita, 2009; Zhang et al.,
2013). However, the target-bidirectional techniques

7We did not run NMT-l2r-10 and NMT-r2l-10, because it
is too time-consuming to train 10 NMT models on both target
directions and especially NMT-r2l-10 is not necessarily better
than NMT-r2l-5 as shown in Table 2.

414

we have developed for the unified neural network
framework, target a pressing need directly motivated
by a fundamental issue suffered by recurrent neural
networks.

Target-directional neural network models have
also been successfully employed in (Devlin et al.,
2014). However, their approach was concerned with
feedforward networks, which can not make full use
of rich contextual information. As a result, their
models could only be used as features (i.e. submod-
els) to augment traditional translation techniques in
contrast to the end-to-end neural network framework
for machine translation in our proposal.

Our approach is related to that in (Bengio et al.,
2015) in some sense. Both approaches can allevi-
ate the mismatch between the training and testing
stages: the history predictions are always correct in
training while may be incorrect in testing. Bengio
et al. (2015) introduce noise into history predictions
in training to balance the mistmatch, while we try to
make the history predictions in testing as accurate as
those in training by using of two directional models.
Therefore, theirs focuses on this problem from the
view of training instead of both modeling and train-
ing as ours, but it is possible and promising to apply
their approach to optimize our joint model.

6 Conclusion

In this paper, we investigate the issue of unbalanced
outputs suffered by recurrent neural networks, and
empirically show its existence in the context of ma-
chine translation. To address this issue, we pro-
pose an easy to implement agreement model that
extends the method of (Liu et al., 2016) from sim-
ple sequence-to-sequence learning tasks to machine
translation.

On two challenging JP-EN and CH-EN transla-
tion tasks, our approach was empirically shown to
be effective in addressing the issue; by generating
balanced outputs, it was able to consistently outper-
form a respectable NMT baseline on all test sets,
delivering gains of up to 1.4 BLEU points. To put
these results in the broader context of machine trans-
lation research, our approach (even without special
handling of unknown words) achieved gains of up to
5.6 BLEU points over strong phrase-based and hier-
archical phrase-based Moses baselines, with the help

of an ensemble technique.

Acknowledgments

We would like to thank the three anonymous review-
ers for helpful comments and suggestions. In addi-
tion, we would like to thank Rico Sennrich for fruit-
ful discussions.

References
[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2014. Neural machine
translation by jointly learning to align and translate.
CoRR, abs/1409.0473.

[Bengio et al.2015] Samy Bengio, Oriol Vinyals,
Navdeep Jaitly, and Noam Shazeer. 2015. Scheduled
sampling for sequence prediction with recurrent
neural networks. In Advances in Neural Information
Processing Systems, pages 1171–1179.

[Cheng et al.2016] Yong Cheng, Shiqi Shen, Zhongjun
He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
2016. Agreement-based joint training for bidirectional
attention-based neural machine translation. CoRR,
abs/1512.04650.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,
Zhongqiang Huang, Thomas Lamar, Richard
Schwartz, and John Makhoul. 2014. Fast and
robust neural network joint models for statistical
machine translation. In Proceedings of ACL.

[Dyer et al.2015] Chris Dyer, Miguel Ballesteros, Wang
Ling, Austin Matthews, and Noah A. Smith. 2015.
Transition-based dependency parsing with stack long
short-term memory. In Proceedings of ACL-IJCNLP.

[Finch and Sumita2009] Andrew Finch and Eiichiro
Sumita. 2009. Bidirectional phrase-based statistical
machine translation. In Proceedings of EMNLP.

[Goto et al.2011] Isao Goto, Bin Lu, Ka-Po Chow, Ei-
ichiro Sumita, and Benjamin K. Tsou. 2011.
Overview of the patent machine translation task at the
NTCIR-9 workshop. In Proceedings of NTCIR-9.

[Goto et al.2013] Isao Goto, Masao Utiyama, Eiichiro
Sumita, Akihiro Tamura, and Sadao Kurohashi. 2013.
Distortion model considering rich context for statisti-
cal machine translation. In Proceedings of ACL.

[Graves2013] Alex Graves. 2013. Generating sequences
with recurrent neural networks. CoRR.

[Jean et al.2015] Sébastien Jean, Kyunghyun Cho,
Roland Memisevic, and Yoshua Bengio. 2015. On
using very large target vocabulary for neural machine
translation. In Proceedings of ACL-IJCNLP.

[Koehn et al.2007] P. Koehn, H. Hoang, A. Birch,
C. Callison-Burch, M. Federico, N. Bertoldi,

415

B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer,
O. Bojar, A. Constantin, and E. Herbst. 2007. Moses:
open source toolkit for statistical machine translation.
In Proceedings of ACL: Demonstrations.

[Liang et al.2006] Percy Liang, Ben Taskar, and Dan
Klein. 2006. Alignment by agreement. In Proceed-
ings of HLT-NAACL.

[Liu and Huang2014] Lemao Liu and Liang Huang.
2014. Search-aware tuning for machine translation. In
Proceedings of EMNLP.

[Liu et al.2016] Lemao Liu, Andrew Finch, Masao
Utiyama, and Eiichiro Sumita. 2016. Agreement
on target-bidirectional lstms for sequence-to-sequence
learning. In Proceedings of AAAI.

[Luong et al.2015] Thang Luong, Ilya Sutskever, Quoc
Le, Oriol Vinyals, and Wojciech Zaremba. 2015.
Addressing the rare word problem in neural machine
translation. In Proceedings of ACL-IJCNLP.

[Och and Ney2000] Franz Josef Och and Hermann Ney.
2000. Improved statistical alignment models. In Pro-
ceedings of ACL, pages 440–447.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. V Le. 2014. Sequence to sequence learning
with neural networks. In Proceedings of NIPS.

[Watanabe and Sumita2002] Taro Watanabe and Eiichiro
Sumita. 2002. Bidirectional decoding for statistical
machine translation. In Proceeding of COLING.

[Watanabe and Sumita2015] Taro Watanabe and Eiichiro
Sumita. 2015. Transition-based neural constituent
parsing. In Proceedings of ACL-IJCNLP.

[Zeiler2012] Matthew D. Zeiler. 2012. ADADELTA: an
adaptive learning rate method. CoRR.

[Zhang et al.2013] Hui Zhang, Kristina Toutanova, Chris
Quirk, and Jianfeng Gao. 2013. Beyond left-to-right:
Multiple decomposition structures for smt. In HLT-
NAACL, pages 12–21.

[Zhou et al.2002] Zhi-Hua Zhou, Jianxin Wu, and Wei
Tang. 2002. Ensembling neural networks: Many
could be better than all. Artif. Intell.

416

Proceedings of NAACL-HLT 2016, pages 417–422,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Psycholinguistic Features for Deceptive Role Detection in Werewolf ∗

Codruta Girlea
University of Illinois

Urbana, IL 61801, USA
girlea2@illinois.edu

Roxana Girju
University of Illinois

Urbana, IL 61801, USA
girju@illinois.edu

Eyal Amir
University of Illinois

Urbana, IL 61801, USA
eyal@illinois.edu

Abstract

We tackle the problem of identifying decep-
tive agents in highly-motivated high-conflict
dialogues. We consider the case where we
only have textual information. We show the
usefulness of psycho-linguistic deception and
persuasion features on a small dataset for the
game of Werewolf. We analyse the role of
syntax and we identify some characteristics of
players in deceptive roles.

1 Introduction

Deception detection has gained some attention in the
NLP community (Mihalcea and Strapparava, 2009;
Ott et al., 2011; Jindal and Liu, 2008). The focus has
mostly been on detecting insincere reviews or argu-
ments. However, there has been little work (Hung
and Chittaranjan, 2010) in detecting deception and
manipulation in dialogues.

When the agents involved in a dialogue have con-
flicting goals, they are often motivated to use decep-
tion and manipulation in order to reach those goals.
Examples include trials and negotiations. The high
motivation for using deception and the possiblity of
tracking the effects on participants throughout the
dialogue sets this problem apart from identifying de-
ception in nonce text fragment where motivation is
not immediately relevant.

The Werewolf game is an instance of such a di-
alogue where people are motivated to deceive and

∗This research was partially funded owing to a collabora-
tion between Adobe Research and the University of Illinois.
We thank Julia Hockenmaier, Dan Roth, Dafna Shahaf, Walter
Chang, Trung Bui, and our reviewers for their helpful comments
and feedback.

manipulate in order to reach their goals. The setting
is a village where at least one of the villagers is se-
cretly a werewolf. Each night, a villager falls prey
to the werewolves. Each day, the remaining villagers
discuss to find the most likely werewolf to execute.

Players are assigned roles that define their goals
and available actions. For our purpose, all roles
are collapsed together as either werewolf or non-
werewolf. There are other important roles in Were-
wolf, such as seer, vigilante, etc, the goals and avail-
able actions of which are not the focus of this paper.
(Barnwell, 2012) provides a broader description of
the game and roles.

Each player only knows her own role, as assigned
by an impartial judge who overlooks the game. The
players with a werewolf role learn each other’s roles
in the first round of the game. Every round, they pick
another non-werewolf player to be removed from the
game. This happens during a night phase, and is
hidden from the other players. The judge announces
the identity and role of the removed player.

All players are then allowed to remove one other
player from the game before the next night phase.
They discuss and vote during a day phase. The non-
werewolves are motivated to remove the werewolves
from the game. The werewolves are motivated to
hide their roles, as in every round there is a majority
of non-werewolves. Any time werewolves become
a majority, they win the game. Any time all were-
wolves are eliminated, they lose the game.

In this paper we define the task as binary clas-
sification of deceptive and non-deceptive roles in
Werewolf. Werewolf roles are deceptive, as they
rely on deception to win the game, whereas all the

417

other roles are nondeceptive (Hung and Chittaran-
jan, 2010). For our purpose, all these roles are col-
lapsed together according to whether they help the
werewolves or not. We consider all the utterances of
each player in each game as one distinct instance.

This is a first step towards building a model of
deception in the Werewolf game, and more generally
in scenarios where deception can be used to achieve
goals. The model can then be used to predict future
actions, e.g. the vote outcomes in Werewolf.

We show that by analyzing this dialogue genre we
can gain some insights into the dynamics of manip-
ulation and deception. These insights would then be
useful in detecting hidden intentions and predicting
decisions in important, real-life scenarios.

2 Previous Work

There has been little work on deception detection in
written language and most of it has focused on either
discriminating between sincere and insincere argu-
ments (Mihalcea and Strapparava, 2009) or opinion
spam (Ott et al., 2011; Jindal and Liu, 2008). One
method of data collection has been to ask subjects to
argue for both sides of a debate (Mihalcea and Strap-
parava, 2009). While lies about one’s beliefs are also
present, the manipulative behaviour and the motiva-
tion are missing. Since none of the previous work
focuses on dialogue, the change in participants’ be-
liefs, intentions, and plans reflected in the interac-
tion between players is also absent.

More related is the work of (Hung and Chittaran-
jan, 2010), who recorded a total of 81.17 hours of
people playing the Werewolf game, and used pho-
netic features to detect werewolves. While their re-
sults are promising, our focus is on written text only.

We have also been inspired by psycho-linguistic
studies of deception detection (Porter and Yuille,
1996) as well as by psycho-linguistic research on
persuasive or powerless language (Greenwald et al.,
1968; Hosman, 2002; Sparks and Areni, 2008). We
build upon findings from both of these lines of re-
search, as Werewolf players use both deception, to
hide their roles and intentions, and persuasion, to
manipulate other players’ beliefs and intentions.

3 Experiments

3.1 Data
The raw data consists of 86 game transcripts col-
lected by Barnwell (Barnwell, 2012). The tran-
scripts have an average length of 205 messages per
transcript, including judge comments.

In the transcripts, the judge is a bot, which means
there is a small fixed set of phrases it uses to make
announcements. As part of the system, the judge
knows all the roles as they are assigned. It reveals
those roles in an annoucement as follows: every time
a player is removed from the game, their role is made
known; and the roles of the remaining players are
revealed after the game is concluded.

We automatically extracted role assignments by
looking for phrases such as was a, is a, turns out
to have been, carried wolfsbane. We manually
checked the assignments and found the werewolf
roles were correctly assigned for 72 out of the 86
transcripts. The remaining 14 games end before they
should because the judge bot breaks down. How-
ever, the players do reveal their own roles after the
game ends. By looking at their comments, we man-
ually annotated these remaining games.

All the utterances from each player in each tran-
script translate to one data instance. The label is 1 or
0, for whether the player is or isn’t a werewolf. We
do not consider the judge as part of the data. The
resulting data set consists of 701 instances, of which
116 are instances of a werewolf role.

Given the small size and the skewed distribution
of the dataset, we balanced the data with resampling
so that we have enough instances to learn from.

3.2 Features
3.2.1 Psycholinguistic Features

(Tausczik and Pennebaker, 2010) suggest word
count and use of negative emotions, motion, and
sense words are indicative of deception.

We counted the negative emotion words using
the MPQA subjectivity lexicon of (Wilson et al.,
2005). We also experimented with the NRC word-
emotion association lexicon of (Mohammad and
Yang, 2011), but found the MPQA lexicon to per-
form better. Since we didn’t have access to LIWC
(Tausczik and Pennebaker, 2010), we used manually
created lists of motion (arrive, run, walk) and sense

418

(see, sense, appearance) words. The lists are up to
50 words long. We also considered the number of
verbs, based on our intuition that heavy use of verbs
can be associated to motion. However, we don’t ex-
pect the number of motion words to be as impor-
tant in our domain. This is because deception in the
Werewolf game does not refer to a fabricated story
that other players have to be convinced to believe,
but rather to hiding one’s identity and intentions.

(Tausczik and Pennebaker, 2010) also talk about
honesty features : number of exclusion words (but,
without, exclude, except, only, just, either) and num-
ber of self references (we used a list of first per-
son singular pronoun forms). They claim that cog-
nitive complexity is also correlated with honesty.
This is because maintaining the coherence of a fab-
ricated story is cognitively taxing. Cognitive com-
plexity manifests in the use of: long words (longer
than 6 letters), exclusion words (differentiating be-
tween competing solutions), conjunctions, disjunc-
tions, connectives (integrating different aspects of a
task), and cognitive words (think, plan, reason).

(Porter and Yuille, 1996) observe that for highly
motivated deception, people use longer utterances,
more self references, and more negative statements.
We used those as features, as the average number of
words per utterance and the number of dependencies
of type negation from the Stanford parser.

Another set of features cited by (Porter and Yuille,
1996) comes for ex-polygrapher Sapir’s training
program for police investigators. He notes that liars
use too many unneeded connectors, and display de-
viations in pronoun usage – most of the times by
avoiding first-person singular. This seems to con-
tradict the discussion on highly motivated decep-
tion (Porter and Yuille, 1996), and is aligned with
(Tausczik and Pennebaker, 2010)’s findings. It is
possible that the natural tendency of a liar is to
avoid self references (e.g. due to cognitive disso-
nance), but that a strong motivation can cause one to
purposefully act against this tendency, ignoring any
mental discomfort it may cause. In our experiments,
we didn’t observe any tendency of werewolf to ei-
ther avoid or increase use of self references.

There are differences in language when used to
recount a true memory versus a false one (reality
monitoring) (Porter and Yuille, 1996). In this con-
text, a true memory means a memory of reality, i.e.

of a story that actually happened, whereas a false
memory is a mental representation of a fabricated
story. People talking about a true memory tend to
focus on the attributes of the stimulus that generated
the memory (e.g. shape, location, color), whereas
people talking about a false memory tend to use
more cognitive words (e.g. believe, think, recall)
and hedges (e.g. kind of, maybe, a little). An ex-
planation is that the process of fabricating a story
engages reasoning more than it does memory, and
people tend to resist committing to a lie. We used
the noun and adjective count as a rough approxima-
tion of the number of stimulus attributes, as adjec-
tives and nouns in prepositional phrases can be used
to enrich a description, e.g. of a memory. However,
it is important to note that Werewolf players do not
actively lie, in the sense that the discussion does not
involve events not directly accessible to all players.
Therefore it’s impossible for players to lie about the
course of events, so there is no false memory to re-
count.

Another characteristic of the game is that the
werewolves actively try to persuade other players
that their intentions are not harmful. (Hosman,
2002) notes that language complexity is indicative
of persuasive power. A measure of language com-
plexity is the type-token ratio (TTR). On the other
hand, hesitations (um, er, uh), hedges (sort of, kind
of, almost), and polite forms are markers of power-
less language (Sparks and Areni, 2008). We did not
find any polite forms in our data, the context being a
game where players adopt a familiar tone.

The complete list of features is as follows (words
are stemmed): TTR (type-token ratio), number of
hesitations, number of negative emotions, number of
words, number of words longer than 6 letters, num-
ber of self references, number of negations, num-
ber of hedges (50 hedge words), number of cogni-
tive words (50 words), number of motion words (20
words), number of sense words (17 words), number
of exclusion words, number of connectors (preposi-
tions and conjunctions), number of pronouns, num-
ber of adjectives, number of nouns, number of verbs,
number of conjunctions, number of prepositions.

3.2.2 POS and Syntactic Features
Following the intuition that cognitive complexity

can also be reflected in sentence structure, we de-

419

cided to look beyond lexical level for markers of de-
ception and persuasion and experimented with POS
and syntactic features. We used the Stanford POS
parser (Lee et al., 2011) to extract part of speech la-
bels as well as dependencies and production rules.

The syntactic features are based on both con-
stituency and dependency parses, i.e. both produc-
tion rules and dependency types.

3.3 Results
We used Weka and 10-fold cross-validation. We ex-
perimented with: logistic regression (LR, 108 ridge),
SVM, Naive Bayes, perceptron, decision trees (DT),
voted perceptron (VP), and random forest (RF).

The results are summarized in Table 1. DT and
LR performed best among basic classifiers. DT out-
performs LR, and the ensemble methods (VP and
RF) far outperform both. An explanation is that
there are deeper nonlinear dependencies between
features. We believe such dependencies are worth
further investigation beyond the scope of this paper.
We plan to address this in future work.

In Table 1, we underlined the results for the two
best basic classifiers, since we further analyze the
features for these. Given space constraints, ensem-
ble methods (VP and RF) are left to future work
as analyzing the features and interactions based on
their internal structure needs special attention.

Table 2 summarizes the feature selection results.
We used Weka’s feature selection. The selected
features (with a positive/negative association with a
deceptive role) were: number of words (negative);
number of pronouns, adjectives, nouns (positive).

In order to observe each feature’s individual con-
tribution, we also performed manual feature selec-
tion, removing one feature at a time. Removing the
following features improved or did not affect the
performance, increasing the F1 score from 64.9 to
66.1 : number of self references, number of adjec-
tives, number of long words, number of conjunc-
tions or of connectors (but not both), number of cog-
nitive words, number of pronouns.

3.4 POS and Syntactic Features
We repeated the experiments with POS tags as fea-
tures (POS model), and then with syntactic fea-
tures, i.e. dependency types and production rules
(POS+dep, POS+con, and POS+syn models). For

Model Acc. F1 Prec. Rec. AUC
SVM 57.2 56.2 58.9 57.2 57.9
Perc 62.77 62.6 63.5 62.8 67
LR 64.91 64.9 65.1 64.9 66.8
NB 55.92 53.7 58.9 55.9 68.6
DT 84.45 84.4 84.9 84.5 87.4
VP 65.34 62.2 70.7 65.3 65.6
RF 90.87 90.8 91.2 90.9 98.1

Table 1: Werewolf classification: Perc - Perceptron, LR - Lo-

gistic Regression, NB - Naive Bayes, DT - Decision Tree, VP -

Voted Perceptron, RF - Random Forest

Model Acc. F1 Prec. Rec. AUC
bfs 64.91 64.9 65.1 64.9 66.8
afs 62.625 62.4 62.6 63.4 63.4
mfs 66.76 66.8 66.9 66.8 68.9

Table 2: Experimental results using logistic regression:

bfs - baseline feature set; afs - model on a subset of features

generated with CFS-BFS feature selection; mfs - model on a

manually selected subset of features

each model, the baseline feature set is the set of psy-
cholinguistic features used in the previous section.
The subsequent models use both the baseline fea-
tures and the syntactic features, e.g. POS+con uses
lexical-level psycholinguistic features, POS tags,
and production rules. We also used tf-idf weighting.

Table 3 suggests that production rules highly im-
prove performance. An explanation is that com-
plex syntax reflects cognitive complexity. For ex-
ample, the utterance: Player A said that I was inno-
cent, which I know to be true has many subordinates
(SBAR nodes , SBAR → IN S, SBAR → WHNP
S), whereas Anyone feeling particularly lupine? has
elliptical structure (missing S → NP VP). There is
also overlap with lexical features (IN nodes).

4 Discussion and Conclusions

Inspecting the decision tree, we found that most
non-werewolf players used few words, no connec-
tors, and no negations. Most werewolves use more
words, adjectives, few negative emotion words, and
not many words greater than 6 letters. Some were-
wolves use sense words and few negative emotion
words, whereas others use no sense words and few
or no hedges, self references, or cognitive words.

420

Feature set Acc. F1 Prec. Rec. AUC
baseline 64.91 64.9 65.1 64.9 66.8
POS 67.33 67.3 67.3 67.3 72.1
POS+dep 76.87 76.8 76.9 76.9 79.9
POS+con 90.59 90.6 90.8 90.6 92.1
POS+syn 91.58 91.6 91.8 91.6 91.2
POS+syn
(tf-idf) 92.287 92.3 92.3 92.3 91.8

Table 3: POS and Syntactic Features (Logistic Regression):
baseline - lexical psycholinguistic features, also used in subse-

quent models together with new features; POS - POS features;

dep - dependency features; con - constituency features (produc-

tion rules); syn - syntactic features; POS+dep/con/syn - POS

and dependency/constituency/syntactic features

The conclusion is that werewolves are more
verbose and moderately emotional, whereas non-
werewolves are usually quiet, non-confrontational
players. Werewolves also use moderately complex
language, which can be explained by the fact that
they are both actively trying to persuade other play-
ers, and under the cognitive load of constantly ad-
justing their plans to players’ comments, and main-
taining a false image of themselves and others.

This aligns with previous findings on low cogni-
tive complexity for maintaining a lie (Tausczik and
Pennebaker, 2010) and verbosity for highly moti-
vated deception (Porter and Yuille, 1996).

Inspecting the odds ratios (OR) of the features in
the logistic regression classifier, we found the fol-
lowing features to be most relevant: TTR (3.49),
number of hesitations (0.91), number of negative
emotions (1.16), number of motion words (1.25),
number of sense words (0.76), number of exclusions
(1.31), number of connectors (0.92), number of con-
junctions (0.92), number of prepositions (1.32).

On the connection between werewolf roles and
persuasion, TTR is indicative of persuasive power as
well as of a werewolf, and the number of hesitations
is a marker of powerless language, and is negatively
associated with a werewolf role.

The fact that the number of prepositions is in-
dicative of a werewolf role aligns with Sapir’s find-
ings, whereas the positive influence of negative
emotion and motion words and the negative influ-
ence of connectors and conjunctions is as predicted

by (Tausczik and Pennebaker, 2010). However,
(Tausczik and Pennebaker, 2010) cite the number of
sense words as highly associated with deception and
the number of exclusions, with honesty. We found
that in our case these associations are reversed.

One possible explanation regarding the number of
sense words can be the fact that seeing, a family
of sense words, is overloaded in this data set, since
seer is a legitimate game role, with actions (seeing)
that carry a specific meaning. Another explanation
is that, since the transcripts are from online game,
there is no actual sensing involved.

As for the number of exclusions, (Tausczik and
Pennebaker, 2010) list it as a marker of cognitive
complexity, which should be affected by any attempt
to maintain a false story. But here most players do
not actively lie, so there is no false story to maintain,
and therefore no toll on cognitive complexity.

Another observation is that features suggested for
highly motivated deception (longer utterances, more
self references, and more negations) are not impor-
tant for this data set. It is possible that we do not
have highly motivated deception, since any motiva-
tion is mitigated by the context, which is a game.
This suggests that deception in dialogue contexts as
well as game contexts is different than in the story-
telling contexts analyzed in previous work in psy-
cholinguistics (Hosman, 2002; Porter and Yuille,
1996). On the other hand, identity concealment is
different than other kinds of highly motivated decep-
tion – in this particular case it might be more helpful
to appear logical, rather than emotional.

In this paper we presented a simple model to serve
as a baseline for further models of deception de-
tection in dialogues. We did not consider word se-
quence, player interaction, individual characteristics
of players, or non-literal meaning. However, the
data set is too small for any more complex models.
We believe our results shed light on some mecha-
nisms of deception in the Werewolf game in particu-
lar, and of deception and manipulation in dialogues
in general. We plan to collect more data on which
we can employ richer models that also take into ac-
count utterance sequence and dialogue features.

421

References

Brendan Barnwell. 2012. brenbarn.net. http://www.
brenbarn.net/werewolf/. [Online; accessed
1-April-2016].

Anthony G. Greenwald, Rosita Daskal Albert, Dallas
Cullen, Robert Love, and Joseph Sakumura Who
Have. 1968. Cognitive learning, cognitive response
to persuasion, and attitude change. pages 147–170.
Academic Press.

M. A. Hall. 1998. Correlation-based Feature Subset Se-
lection for Machine Learning. Ph.D. thesis, University
of Waikato, Hamilton, New Zealand.

Lawrence A. Hosman. 2002. Language and persuasion.
In James Price Dillard and Michael Pfau, editors, The
Persuasion Handbook: Developments in Theory and
Practice. Sage Publications.

Hayley Hung and Gokul Chittaranjan. 2010. The idiap
wolf corpus: Exploring group behaviour in a compet-
itive role-playing game. In Proceedings of the 18th
ACM International Conference on Multimedia, MM
’10, pages 879–882, New York, NY, USA. ACM.

Nitin Jindal and Bing Liu. 2008. Opinion spam and anal-
ysis. In Proceedings of the Conference on Web Search
and Web Data Mining (WSDM), pages 219–230.

Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2011.
Stanford’s multi-pass sieve coreference resolution sys-
tem at the conll-2011 shared task. In Proceedings of
the CoNLL-2011 Shared Task.

Rada Mihalcea and Carlo Strapparava. 2009. The lie
detector: Explorations in the automatic recognition
of deceptive language. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers, ACLShort
’09, pages 309–312, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Saif M Mohammad and Tony Wenda Yang. 2011. Track-
ing sentiment in mail: how genders differ on emotional
axes. In Proceedings of the 2nd Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis (ACL-HLT 2011, pages 70–79.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Han-
cock. 2011. Finding deceptive opinion spam by any
stretch of the imagination. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
309–319, Portland, Oregon, USA, June. Association
for Computational Linguistics.

Stephen Porter and John C. Yuille. 1996. The language
of deceit: An investigation of the verbal clues to de-
ception in the interrogation context. Law and Human
Behavior, 20(4):443–458.

John R. Sparks and Charles S. Areni. 2008. Style versus
substance: Multiple roles of language power in persua-
sion. Journal of Applied Social Psychology, 38(1):37–
60.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: Liwc and computer-
ized text analysis methods. Journal of language and
social psychology, 29(1):24–54.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association
for Computational Linguistics.

422

Proceedings of NAACL-HLT 2016, pages 423–427,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Individual Variation in the Choice of Referential Form

Thiago Castro Ferreira and Emiel Krahmer and Sander Wubben
Tilburg center for Cognition and Communication (TiCC)

Tilburg University
The Netherlands

{tcastrof,e.j.krahmer,s.wubben}@uvt.nl

Abstract

This study aims to measure the variation be-
tween writers in their choices of referential
form by collecting and analysing a new and
publicly available corpus of referring expres-
sions. The corpus is composed of referring
expressions produced by different participants
in identical situations. Results, measured in
terms of normalized entropy, reveal substan-
tial individual variation. We discuss the prob-
lems and prospects of this finding for auto-
matic text generation applications.

1 Introduction

Automatic text generation is the process of automat-
ically converting data into coherent text - practical
applications range from weather reports (Goldberg
et al., 1994) to neonatal intensive care reports (Portet
et al., 2009). One important way to achieve co-
herence in texts is by generating appropriate refer-
ring expressions throughout the text (Krahmer and
van Deemter, 2012). In this generation process,
the choice of referential form is a crucial task (Re-
iter and Dale, 2000): when referring to a person
or object in a text, should the system use a proper
name (“Phillip Anschutz”), a definite description
(“the American entrepreneur”) or a pronoun (“he”)?

Despite the large amount of algorithms developed
for deciding upon the form of a referring expression
(Callaway and Lester, 2002; Greenbacker and Mc-
Coy, 2009; Gupta and Bandopadhyay, 2009; Orăsan
and Dornescu, 2009; Greenbacker et al., 2010), it
is difficult to know how well these algorithms actu-
ally perform. Typically, such algorithms are eval-

uated against a corpus of human written texts, pre-
dicting what form each reference should have in a
given context. Now consider a situation in which
the algorithm predicts that a reference should be a
description, while this same reference is a pronoun
in the corpus text. Should this count as an error?
The answer is: it depends. The use of a pronoun
does not necessarily mean that the use of a descrip-
tion is incorrect. In fact, other writers might have
used a description as well.

In general, corpora of referring expressions have
only one gold standard referential form for each sit-
uation, while different writers may conceivably vary
in the referential form they would use. This compli-
cates the development and evaluation of text gener-
ation algorithms, since these will typically attempt
to predict the corpus gold standard, which may not
always be representative of the choices of different
writers. Although recent work in text generation has
explored individual variation in the content deter-
mination of definite descriptions (Viethen and Dale,
2010; Ferreira and Paraboni, 2014), to the best of
our knowledge this has not been systematically ex-
plored for choosing referential forms.

In this paper, we collect and analyze a new cor-
pus to address this issue. In the collection, we pre-
sented different writers with texts in which all ref-
erences to the main topic of the text have been re-
placed with gaps. The task of the participants was
to fill each of those gaps with a reference to the
topic. In the analysis, we estimated to what extent
different writers agree with each other in terms of
normalized entropy. In addition, we study whether
this variation depends on the text genre, compar-

423

ing encyclopedic texts with news and product re-
ports. Moreover, we discuss the implications of
our findings for automatic text generation, exploring
whether factors such as syntactic structure, referen-
tial status and recency affect the variation between
the writers’ choices. The annotated corpus is made
publicly available1.

2 Data Gathering

2.1 Material

For our study, we used 36 English texts, equally
distributed over three different genres: news texts,
reviews of commercial products and encyclopedic
texts. The encyclopedic texts were selected from the
GREC corpus (Belz et al., 2010), which is a standard
corpus for testing and evaluating models for choice
of referential form. The news and review texts were
selected from the AQUAINT-2 corpus2 and the SFU
Review corpus (Konstantinova et al., 2012), respec-
tively.

Note that, depending on the genre, texts may ad-
dress different kinds of topics. For instance, the
news texts usually are about a person, a company or
a group; the product reviews may be about a book, a
movie or a phone; and the encyclopedic texts about
a mountain, a river or a country. In all texts, all ex-
pressions referring to the topic were replaced with
gaps, which the participants should fill in.

2.2 Participants

Participants were recruited through CrowdFlower3.
78 participants completed the survey. 53 were fe-
male and 25 were male. Their average age was 37
years old. Most were native speakers (73 partici-
pants) or fluent in English (5 participants).

2.3 Procedure

The participants were first presented with an intro-
duction to the experiment, explaining the procedure
and asking their consent. Next, they were asked for
their age, demographic information and English lan-
guage proficiency. After this, participants were ran-
domly assigned to a list, containing 9 texts (3 per
genre).

1http://ilk.uvt.nl/˜tcastrof/vareg
2http://catalog.ldc.upenn.edu/LDC2008T25
3http://www.crowdflower.com/

The task of the participants was to fill in each gap
with a reference to the topic of the text. To inform
the participants about the entities, a short description
- extracted from the Wikipedia page about the topic
- was provided before each text.

Participants were encouraged to fill in the gaps
according to their preferences, so that they felt the
texts would be easy to understand. We made sure
that participants did not fill all the gaps in a text with
only one referring expression (to avoid copy/paste
behaviour). Participants could also not leave any gap
empty (they were instructed to use the “-” symbol
for empty references).

2.4 Annotation
The first author of this study annotated the referring
expressions produced by participants for referential
form, syntactic position, referential status, and re-
cency. Coding was straightforward, and the few dif-
ficult cases were resolved in discussions between the
co-authors.

The referring expressions were assigned to one
of five forms: proper names (“Philip Anschutz, 66,
will have no trouble keeping busy.”); pronouns (“It
is the highest peak [...]”, “Huffman, who spoke at the
sentencing phase [...]”); definite descriptions (“[...]
the Russian President defended the country’s con-
tribution [...]”); demonstratives (“You’ll probably
have screaming kids who want to see this movie.”);
and empty references (“He rarely grants on-the-
record media interviews and seldom allows him-
self to be photographed.”).

Following the GREC Project scheme (Belz et
al., 2010), referring expressions were annotated for
three syntactic positions: subject noun phrases, ob-
ject noun phrases, and genitive noun phrases that
function as determiners (Google’s stock). Referen-
tial status refers to whether a referring expression is
a first mention to the topic (new) or not (old). We
annotated this at the level of the text, paragraph and
sentence, so that a reference can be new in para-
graph, but old in the text. Recency, finally, is the dis-
tance between a given referring expression and the
last, previous reference to the same topic, measured
in terms of number of words within a paragraph. If
the referring expression was the first mention to the
topic in the paragraph, its recency is set to 0.

In total, 10,977 referring expressions were col-

424

News Review Encyclopedia

0.3

0.4

0.5

Figure 1: Average entropy per gap as a function of
text genre. The error bars represent the 95% confi-
dence intervals.

lected in 563 referential gaps. 3,682 were annotated
as proper names, 4,662 as pronouns, 768 as defi-
nite descriptions, 318 as demonstratives and 158 as
empty references. The remaining 1,389 were ruled
out of the corpus, since they did not consist of a ref-
erence to the target entity or changed the meaning of
the original sentence.

2.5 Analysis
We measured variation between participants’
choices for each gap, using the normalized entropy
measure, defined in Equation 1, where X corre-
sponds to the references in a given gap, and n = 5
the number of referential forms annotated.

H(X) = −
n=5∑
i=1

p(xi) log(p(xi))
log(n)

(1)

The measure ranges from 0 to 1, where 0 indicates
the complete agreement among the participants for a
particular referential form, and 1 indicates the com-
plete variation among their choices.

3 Results

Figure 1 presents the main result, depicting the
amount of individual variation in referential forms,
measured in terms of entropy, as a function of text
genre. The averaged entropies are significantly
higher than 0 for all three genres according to a
Wilcoxon signed-rank test (News: V = 20, 910.0,
p < .001; Reviews: V = 11, 476.0, p < .001; and
Encyclopedic texts: V = 10, 153.0, p < .001). This
clearly shows that different writers can vary substan-
tially in their choices for a referential form. Com-

paring the three different genres, we find that writ-
ers’ choices of referential form varied most in review
texts and least in news texts, with encyclopedic texts
sandwiched in between (Kruskal-WallisH = 70.73,
p < .001).

In comparison with the original texts, 44% of the
referring expressions produced by the writers differ
from the original ones in a same referential gap. Fur-
thermore, the form of the original referring expres-
sions differs from the major choice of the writers in
38% of the referential gaps.

To get a better understanding of factors poten-
tially influencing individual variation, we investigate
the effects of three linguistic factors: syntactic posi-
tion, referential status and recency. Figure 2 depicts
the average entropies for each of these.

Comparing the three syntactic positions, Figure
2a suggests that the highest variation is found when
writers need to choose referential forms in the ob-
ject position of a sentence, whereas the lowest vari-
ation is found for references that function as a gen-
itive noun phrase determiner (Kruskal-Wallis H =
52.53, p < .001).

Figure 2b depicts individual variation in the
choice of referential form for old and new references
in the text, paragraph and sentence. The data sug-
gests a higher amount of individual variation when
writers need to refer to a topic already mentioned in
the text rather than a first mention (Mann-Whitney
U = 3, 916.0, p < .001), presumably because for a
topic which is new in the text, writers were more
likely to agree to use proper names (91% of the
choices). Looking at old and new references within
paragraphs reveals no significant differences in in-
dividual variation (Mann-Whitney U = 32, 669.5,
p < .094). At the sentence level, finally, there is
more individual variation for references to a new
topic than for references to a previously mentioned
one (Mann-Whitney U = 21, 873.0, p < .001).
When writers referred to a previously mentioned ref-
erent in the sentence, they tended to agree on the use
of a pronoun (76% of the choices).

Figure 2c shows the individual variation in ref-
erential form as a function of recency. Except for
the relatively nearby intervals (between 0 and 10
words, and between 11 and 20 words), the data sug-
gests that when the distance between two consecu-
tive references gets larger, the variation among writ-

425

Subject Object Genitive

0.3

0.4

0.5

(a) Syntactic position

Text Paragraph Sentence

0.2

0.4

New Old

(b) Referential status

0/10 10/20 20/30 30/40 40/∞

0.3

0.4

0.5

(c) Recency

Figure 2: Average entropy per gap as a function of: (2a) syntactic position, (2b) referential status, (2c)
recency. Error bars represent 95% confidence intervals. In Figure 2c, the bars represent the average entropies
for the group of references where the most recent prior reference is 10 or less words away, between 11 and
20 words, between 21 and 30 words, between 31 and 40 words and more than 40 words away.

ers’ choices increases (Kruskal-Wallis H = 35.31,
p < .001).

4 Discussion

In this paper, we studied individual variation in the
choice of referential form by collecting a new (and
publicly available) dataset in which different partic-
ipants (writers) were asked to refer to the same ref-
erent throughout a text. This was done for differ-
ent genres (news, product review and encyclopedic
texts) by measuring the variation between partici-
pants in terms of normalized entropy. If participants
would all use the same referential form in the same
gap, we would expect entropy values of 0 (no indi-
vidual variation), but instead we found a clearly dif-
ferent pattern in all three text genres. Moreover, we
also saw a considerably difference in form among
the original referring expressions and the ones gen-
erated by the participants. This reveals that sub-
stantial individual variation between writers exists
in terms of referential form.

To get a better understanding of which factors in-
fluence individual variation, we analysed to what
extent three linguistic factors had an impact on the
entropy scores: syntactic position, referential status
and recency. We found a higher amount of individ-
ual variation when writers had to choose referential
forms in the direct object position, referring to pre-
viously mentioned topics in the text and first men-
tioned ones in the sentence, and references that were
relatively distant from the most recent antecedent

reference to the same topic.
These findings can be related to theories of refer-

ence involving the salience of a referent (Gundel et
al., 1993; Grosz et al., 1995, among others). Bren-
nan (1995), for example, argued that references in
the role of the subject of a sentence are more likely
to be salient than references in the role of the object.
Chafe (1994), to give a second example, pointed out
that references to previously mentioned referents in
the discourse and ones that are close to their an-
tecedent are more likely to be salient than references
to new referents or ones that are distant from their
antecedents. Note, incidentally, that none of these
earlier studies address the issue of individual varia-
tion in referential form.

Arguably, the amount of individual variation is
even larger than the data reported here suggest. To
illustrate this, consider, for instance, that different
participants referred to Phillip Frederick Anschutz -
the main topic of one of the texts used - as Phillip
Frederick Anschutz, Mr. Phillip Frederick Anschutz,
Anschutz, Mr. Anschutz and Phillip Anschutz. Even
though these all have the same referential form
(proper names), there is also a lot of variation within
this category. Indeed, it would be interesting in fu-
ture research to explore which factors account for
this within-form variation.

The current findings are important for automatic
text generation algorithms in two ways. First, they
are beneficial for developers of text generation sys-
tems, since they allow for a better understanding of

426

the range of variation that is possible in referring ex-
pression generation. Second, they allow for a more
principled evaluation of algorithms predicting ref-
erential form. In fact, the collected corpus paves
the way for developing models which predict fre-
quency distributions over referential forms, rather
than merely predicting a single form in particular
context (as current models do).

Acknowledgments

This work has been supported by the National Coun-
cil of Scientific and Technological Development
from Brazil (CNPq).

We would also like to thank the members of the
JUGO group from TiCC by their insightful com-
ments on the manuscript.

References
Anja Belz, Eric Kow, Jette Viethen, and Albert Gatt.

2010. Empirical methods in natural language gen-
eration. chapter Generating Referring Expressions
in Context: The GREC Task Evaluation Challenges,
pages 294–327. Springer-Verlag, Berlin, Heidelberg.

Susan E. Brennan. 1995. Centering attention in
discourse. Language and Cognitive Processes,
10(2):137–167.

Charles B. Callaway and James C. Lester. 2002.
Pronominalization in generated discourse and dia-
logue. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02,
pages 88–95, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Wallace L. Chafe. 1994. Discourse, Consciousness, and
Time: The Flow and Displacement of Conscious Expe-
rience in Speaking and Writing. University of Chicago
Press.

Thiago Castro Ferreira and Ivandré Paraboni. 2014. Re-
ferring expression generation: Taking speakers prefer-
ences into account. In Petr Sojka, Aleš Horák, Ivan
KopeČek, and Karel Pala, editors, Text, Speech and
Dialogue, volume 8655 of Lecture Notes in Computer
Science, pages 539–546. Springer International Pub-
lishing.

Eli Goldberg, Norbert Driedger, and Richard I. Kittredge.
1994. Using natural-language processing to produce
weather forecasts. IEEE Expert: Intelligent Systems
and Their Applications, 9(2):45–53, April.

Charles F Greenbacker and Kathleen F McCoy. 2009.
Feature selection for reference generation as informed
by psycholinguistic research. In Proceedings of the

CogSci 2009 Workshop on Production of Referring Ex-
pressions (PRE-Cogsci 2009).

Charles F. Greenbacker, Nicole L. Sparks, Kathleen F.
McCoy, and Che-Yu Kuo. 2010. Udel: Refining a
method of named entity generation. In Proceedings
of the 6th International Natural Language Generation
Conference, INLG ’10, pages 239–240, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Barbara J. Grosz, Scott Weinstein, and Aravind K. Joshi.
1995. Centering: A framework for modeling the
local coherence of discourse. Comput. Linguist.,
21(2):203–225.

Jeanette K Gundel, Nancy Hedberg, and Ron Zacharski.
1993. Cognitive status and the form of referring ex-
pressions in discourse. Language, pages 274–307.

Samir Gupta and Sivaji Bandopadhyay. 2009. Junlg-
msr: A machine learning approach of main sub-
ject reference selection with rule based improvement.
In Proceedings of the 2009 Workshop on Language
Generation and Summarisation, UCNLG+Sum ’09,
pages 103–104, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Natalia Konstantinova, Sheila C. M. de Sousa, Noa
P. Cruz Dı́az, Manuel J. Maña López, Maite Taboada,
and Ruslan Mitkov. 2012. A review corpus annotated
for negation, speculation and their scope. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC-2012), Istan-
bul, Turkey, May 23-25, 2012, pages 3190–3195.

Emiel Krahmer and Kees van Deemter. 2012. Compu-
tational generation of referring expressions: A survey.
Computational Linguistics, 38(1):173–218.

Constantin Orăsan and Iustin Dornescu. 2009. Wlv:
A confidence-based machine learning method for the
grec-neg’09 task. In Proceedings of the 2009 Work-
shop on Language Generation and Summarisation,
UCNLG+Sum ’09, pages 107–108, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Franois Portet, Ehud Reiter, Albert Gatt, Jim Hunter, So-
mayajulu Sripada, Yvonne Freer, and Cindy Sykes.
2009. Automatic generation of textual summaries
from neonatal intensive care data. Artificial Intelli-
gence, 173(78):789 – 816.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge University
Press, New York, NY, USA.

Jette Viethen and Robert Dale. 2010. Speaker-dependent
variation in content selection for referring expression
generation. In Proceedings of the Australasian Lan-
guage Technology Association Workshop 2010, pages
81–89, Melbourne, Australia, December.

427

Proceedings of NAACL-HLT 2016, pages 428–434,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Joint Learning Templates and Slots for Event Schema Induction

Lei Sha, Sujian Li, Baobao Chang, Zhifang Sui
Key Laboratory of Computational Linguistics, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University
Collaborative Innovation Center for Language Ability, Xuzhou 221009 China

shalei, lisujian, chbb, szf@pku.edu.cn

Abstract

Automatic event schema induction (AESI)
means to extract meta-event from raw text,
in other words, to find out what types (tem-
plates) of event may exist in the raw text and
what roles (slots) may exist in each event type.
In this paper, we propose a joint entity-driven
model to learn templates and slots simultane-
ously based on the constraints of templates
and slots in the same sentence. In addition,
the entities’ semantic information is also con-
sidered for the inner connectivity of the enti-
ties. We borrow the normalized cut criteria in
image segmentation to divide the entities into
more accurate template clusters and slot clus-
ters. The experiment shows that our model
gains a relatively higher result than previous
work.

1 Introduction

Event schema is a high-level representation of a
bunch of similar events. It is very useful for the tra-
ditional information extraction (IE)(Sagayam et al.,
2012) task. An example of event schema is shown in
Table 1. Given the bombing schema, we only need
to find proper words to fill the slots when extracting
a bombing event.

There are two main approaches for AESI task.
Both of them use the idea of clustering the poten-
tial event arguments to find the event schema. One
of them is probabilistic graphical model (Chamber-
s, 2013; Cheung, 2013). By incorporating tem-
plates and slots as latent topics, probabilistic graphi-
cal models learns those templates and slots that best
explains the text. However, the graphical models

Bombing Template
Perpetrator: person
Victim: person
Target: public
Instrument: bomb

Table 1: The event schema of bombing event in MUC-4, it has

a bombing template and four main slots

considers the entities independently and do not take
the interrelationship between entities into account.
Another method relies on ad-hoc clustering algo-
rithms (Filatova et al., 2006; Sekine, 2006; Cham-
bers and Jurafsky, 2011). (Chambers and Jurafsky,
2011) is a pipelined approach. In the first step, it us-
es pointwise mutual information(PMI) between any
two clauses in the same document to learn events,
and then learns syntactic patterns as fillers. How-
ever, the pipelined approach suffers from the error
propagation problem, which means the errors in the
template clustering can lead to more errors in the s-
lot clustering.

This paper proposes an entity-driven model which
jointly learns templates and slots for event schema
induction. The main contribution of this paper are
as follows:

• To better model the inner connectivity between
entities, we borrow the normalized cut in image
segmentation as the clustering criteria.

• We use constraints between templates and be-
tween slots in one sentence to improve AESI
result.

428

Sentence
A car bomb exploded in front of the U.S. embassy residence

in the Peruvian capital

entity 1 entity 2entity 1

entity 3

Entity Representation

Entity 1: h=bomb, p=explode, d=subject,
 f={hyper={explosive, weaponry...} sentence=5, passage=41}

Entity 2: h=residence, p=explode, d=prep_in_front_of,
 f={hyper={diplomatic building...} sentence=5, passage=41}

Entity 3: h=capital, p=explode, d=prep_in,
 f={hyper={center, federal government...} sentence=5,
 passage=41}

Figure 1: An entity example

2 Task Definition

Our model is an entity-driven model. This mod-
el represents a document d as a series of entities
Ed = {ei|i = 1, 2, · · · }. Each entity is a quadruple
e = (h, p, d, f). Here, h represents the head word
of an entity, p represents its predicate, and d repre-
sents the dependency path between the predicate and
the head word, f contains the features of the entity
(such as the direct hypernyms of the head word),
the sentence id where e occurred and the document
id where e occurred. A simple example is Fig 1.

Our ultimate goal is to assign two labels, a slot
variable s and a template variable t, to each entity.
After that, we can summarize all of them to get event
schemas.

3 Automatic Event Schema Induction

3.1 Inner Connectivity Between Entities
We focus on two types of inner connectivity: (1) the
likelihood of two entities to belong to the same tem-
plate; (2) the likelihood of two entities to belong to
the same slot;

3.1.1 Template Level Connectivity
It is easy to understand that entities occurred n-

ear each other are more likely to belong to the same
template. Therefore, (Chambers and Jurafsky, 2011)
uses PMI to measure the correlation of two words
in the same document, but it cannot put two words
from different documents together. In the Bayesian
model of (Chambers, 2013), p(predicate) is the key
factor to decide the template, but it ignores the fact
that entities occurring nearby should belong to the

same template. In this paper, we try to put two mea-
sures together. That is, if two entities occurred n-
earby, they can belong to the same template; if they
have similar meaning, they can also belong to the
same template. We use PMI to measure the distance
similarity and use word vector (Mikolov et al., 2013)
to calculate the semantic similarity.

A word vector can well represent the meaning of
a word. So we concatenate the word vector of the
j-th entity’s head word and its predicate, denoted as
vechp(i). We use the cosine distance coshp(i, j) to
measure the difference of two vectors.

Then we can get the template level connectivity
formula as shown in Eq 1. The PMI(i, j) is cal-
culated by the head words of entity mention i and
j.

WT (i, j) = PMI(i, j) + coshp(i, j) (1)

3.1.2 Slot Level Connectivity
If two entities can play similar role in an event,

they are likely to fill the same slot. We know that if
two entities can play similar role, their head words
may have the same hypernyms. We only consider
the direct hypernyms here. Also, their predicates
may have similar meaning and the entities may have
the same dependency path to their predicate. There-
fore, we give the factors equal weights and add them
together to get the slot level similarity.

WS(i, j) = cosp(i, j) + δ(dependi = dependj)
+ δ(hypernymi ∩ hypernymj ̸= ϕ)

(2)
Here, the δ(·) has value 1 when the inner expression
is true and 0 otherwise. The “hypernym” is derived
from Wordnet(Miller, 1995), so it is a set of direct
hypernyms. If two entities’ head words have at least
one common direct hypernym, then they may belong
to the same slot. And again cosp(i, j) represents the
cosine distance between the predicates’ word vector
of entity i and entity j.

3.2 Template and Slot Clustering Using
Normalized Cut

Normalized cut intend to maximize the intra-class
similarity while minimize the inter class similarity,
which deals well with the connectivity between en-
tities.

We represent each entity as a point in a high-
dimension space. The edge weight between two

429

points is their template level similarity / slot level
similarity. Then the larger the similarity value is,
the more likely the two entities (point) belong to the
same template / slot, which is also our basis intu-
ition.

For simplicity, denote the entity set as E =
{e1, · · · , e|E|}, and the template set as T . We
use the |E| × |T | partition matrix XT to repre-
sent the template clustering result. Let XT =
[XT1 , · · · , XT|T |], where XTl

is a binary indicator
for template l(Tl).

XT (i, l) =

{
1 ei ∈ Tl

0 otherwise
(3)

Usually, we define the degree matrix DT as:
DT (i, i) =

∑
j∈E WT (i, j), i = 1, · · · , |E|. Obvi-

ously, DT is a diagonal matrix. It contains infor-
mation about the weight sum of edges attached to
each vertex. Then we have the template clustering
optimization as shown in Eq 4 according to (Shi and
Malik, 2000).

max ε1(XT) =
1
|T |

|T |∑
l=1

XT
Tl

WT XTl

XT
Tl

DT XTl

s.t. XT ∈ {0, 1}|E|×|T | XT 1|T | = 1|E|

(4)

where 1|E| represents the |E| × 1 vector of all 1’s.
For the slot clustering, we have a similar opti-

mization as shown in Eq 5.

max ε2(XS) =
1
|S|

|S|∑
l=1

XT
Sl

WSXSl

XT
Sl

DSXSl

s.t. XS ∈ {0, 1}|E|×|S| XS1|S| = 1|E|

(5)

where S represents the slot set, XS is the slot clus-
tering result with XS = [XS1 , · · · , XS|S|], where
XSl

is a binary indicator for slot l(Sl).

XS(i, l) =

{
1 ei ∈ Sl

0 otherwise
(6)

3.3 Joint Model With Sentence Constraints
For event schema induction, we find an important
property and we name it “Sentence constraint”. The
entities in one sentence often belong to one template
but different slots.

The sentence constraint contains two types of
constraint, “template constraint” and “slot constrain-
t”.

1. Template constraint: Entities in the same sen-
tence are usually in the same template. Hence
we should make the templates taken by a sen-
tence as few as possible.

2. Slot constraint: Entities in the same sentence
are usually in different slots. Hence we should
make the slots taken by a sentence as many as
possible.

Based on these consideration, we can add an extra
item to the optimization object. Let Nsentence be the
number of sentences. Define Nsentence × |E| matrix
J as the sentence constraint matrix, the entries of J
is as following:

J(i, j) =

{
1 ei ∈ Sentencej

0 otherwise
(7)

Easy to show, the product GT = JT XT represents
the relation between sentences and templates. In ma-
trix GT , the (i, j)-th entry represents how many en-
tities in sentence i are belong to Tj .

Using GT , we can construct our objective. To rep-
resent the two constraints, the best objective we have
found is the trace value: tr(GT GT

T). Each entry on
the diagonal of matrix GT GT

T is the square sum of
all the entries in the corresponding line in GT , and
the larger the trace value is, the less templates the
sentence would taken. Since tr(GT GT

T) is the sum
of the diagonal elements, we only need to maximize
the value tr(GT GT

T) to meet the template constraint.
For the same reason, we need to minimize the value
tr(GSGT

S) to meet the slot constraint.
Generally, we have the following optimization ob-

jective:

ε3(XT , XS) =
tr

(
XT

T JJT XT

)
tr

(
XT

S JJT XS

) (8)

The whole joint model is shown in Eq 9. The de-

430

tailed derivation1 is shown in the supplement file.

XT , XS = argmax
XT ,XS

ε1(XT) + ε2(XS) + ε3(XT , XS)

s.t. XT ∈ {0, 1}|E|×|T | XT 1|T | = 1|E|
XS ∈ {0, 1}|E|×|S| XS1|S| = 1|E|

(9)

4 Experiment

4.1 Dataset

In this paper, we use MUC-4(Sundheim, 1991) as
our dataset, which is the same as previous works
(Chambers and Jurafsky, 2011; Chambers, 2013).
MUC-4 corpus contains 1300 documents in the
training set, 200 in development set (TS1, TS2) and
200 in testing set (TS3, TS4) about Latin American
news of terrorism events. We ran several times on
the 1500 documents (training/dev set) and choose
the best |T | and |S| as |T | = 6, |S| = 4. Then
we report the performance of test set. For each doc-
ument, it provides a series of hand-constructed even-
t schemas, which are called gold schemas. With
these gold schemas we can evaluate our results.
The MUC-4 corpus contains six template types:
Attack, Kidnapping, Bombing, Arson, Robbery,
and Forced Work Stoppage, and for each template,
there are 25 slots. Since most previous works do not
evaluate their performance on all the 25 slots, they
instead focus on 4 main slots like Table 1, we will
also focus on these four slots. We use the Stanford
CoreNLP toolkit to parse the MUC-4 corpus.

4.2 Performance

Fig 2 shows two examples of our learned schemas:
Bombing and Attacking. The five words in each s-
lot are the five randomly picked entities from the
mapped slots. The templates and slots that were
joint learned seem reasonable.

Induced schemas need to map to gold schemas
before evaluation. Previous works used two meth-
ods of mapping. The first ignores the schema type,
and simply finds the best performing slot for each
gold template slot. For instance, a perpetrator of a
bombing and a perpetrator of an attack are treated

1At https://github.com/shalei120/ESI 1 2 can the code be
found.

Bombing

Perpetrator Victim Target Instrument

Attack

Perpetrator Victim Target Instrument

El salvador

The guerrillas

The drag mafia

Drug traffickers

The Atlacatl battalion

The police chief

Students

The Peruvian embassy

The diplomat

soldiers

ministry

The embassy

The police station

organization

bridge

explosives

car bomb

dynamite

incendiary bomb

vehicle bomb

troops

criminals

combat

murder

person

driver

soldiers

children

civilians

journalists

organization

helicopter

person

livestock ministray building

vehicles

rifles

weapons

gun

explosives

machinegun

Figure 2: Part of the result

Prec Recall F1
C&J (2011) 0.48 0.25 0.33
Cheung (2013) 0.32 0.37 0.34
Chambers (2013) 0.41 0.41 0.41
Nguyen et al. (2015) 0.36 0.54 0.43
Our Model-SC 0.38 0.68 0.49
Our Model 0.39 0.70 0.50

Table 2: Slot-only mapping comparison to state-of-the-art un-

supervised systems, “-SC” means without sentence constraint

the same. We call this the slot-only mapping eval-
uation. The second approach is to map each tem-
plate t to the best gold template g, and limit the slot
mapping so that only the slots under t can map to
slots under g. We call this the strict template map-
ping evaluation. The slot-only mapping can result in
higher scores since it is not constrained to preserve
schema structure in the mapping.

We compare our results with four works (Cham-
bers and Jurafsky, 2011; Cheung, 2013; Chambers,
2013; Nguyen et al., 2015) as is shown in Table 2
and Table 3. Our model has outperformed all of
the previous methods. The improvement of recall is
due to the normalized cut criteria, which can better
use the inner connectivity between entities. The sen-
tence constraint improves the result one step further.

Note that after adding the sentence constraint, the
slot-only performance has increased a little, but the
strict template mapping performance has increased
a lot as is shown in Table 3. This phenomenon can
be explained by the following facts: We count the

431

Prec Recall F1
Chambers (2013) 0.42 0.27 0.33
Our Model-SC 0.26 0.55 0.35
Our Model 0.33 0.50 0.40

Table 3: strict template mapping comparison to state-of-the-art

unsupervised systems, “-SC” means without sentence constraint

amount of entities which has been assigned different
templates or different slots in “Our Model-SC” and
“Our Model”. Of all the 11465 entities, 2305 enti-
ties has been assigned different templates in the two
methods while only 108 entities has different slots.
This fact illustrates that the sentence constraint can
affect the assignment of templates much more than
the slots. Therefore, the sentence constraint lead-
s largely improvement to the strict mapping perfor-
mance and very little increase to the slot-only per-
formance.

5 Related Works

The traditional information extraction task is to fill
the event schema slots. Many slot filling algorithms
requires the full information of the event schemas
and the labeled corpus. Among them, there are
rule-based method (Rau et al., 1992; Chinchor et
al., 1993), supervised learning method (Baker et al.,
1998; Chieu et al., 2003; Bunescu and Mooney,
2004; Patwardhan and Riloff, 2009; Maslennikov
and Chua, 2007), bootstrapping method (Yangarber
et al., 2000) and cross-document inference method
(Ji and Grishman, 2008). Also there are many semi-
supervised solutions, which begin with unlabeled,
but clustered event-specific documents, and extrac-
t common word patterns as extractors (Riloff and
Schmelzenbach, 1998; Sudo et al., 2003; Riloff et
al., 2005; Patwardhan and Riloff, 2007; Filatova et
al., 2006; Surdeanu et al., 2006)

Other traditional information extraction task
learns binary relations and atomic facts. Models
can learn relations like “Jenny is married to Bob”
with unlabeled data (Banko et al., 2007; Etzioni et
al., 2008; Yates et al., 2007; Fader et al., 2011),
or ontology induction (dog is an animal) and at-
tribute extraction (dogs have tails) (Carlson et al.,
2010a; Carlson et al., 2010b; Huang and Riloff,
2010; Van Durme and Pasca, 2008), or rely on pre-
defined patterns (Hearst, 1992).

Shinyama and Sekine (2006) proposed an ap-
proach to learn templates with unlabeled corpus.
They use unrestricted relation discovery to discover
relations in unlabeled corpus as well as extract their
fillers. Their constraints are that they need redun-
dant documents and their relations are binary over
repeated named entities. (Chen et al., 2011) also ex-
tract binary relations using generative model.

Kasch and Oates (2010), Chambers and Jurafsky
(2008), Chambers and Jurafsky (2009), Balasubra-
manian et al. (2013) captures template-like knowl-
edge from unlabeled text by large-scale learning of
scripts and narrative schemas. However, their struc-
tures are limited to frequent topics in a large corpus.
Chambers and Jurafsky (2011) uses their idea, and
their goal is to characterize a specific domain with
limited data using a three-stage clustering algorith-
m.

Also, there are some state-of-the-art works using
probabilistic graphic model (Chambers, 2013; Che-
ung, 2013; Nguyen et al., 2015). They use the Gibbs
sampling and get good results.

6 Conclusion

This paper presented a joint entity-driven model to
induct event schemas automatically.

This model uses word embedding as well as PMI
to measure the inner connection of entities and us-
es normalized cut for more accurate clustering. Fi-
nally, our model uses sentence constraint to extract
templates and slots simultaneously. The experiment
has proved the effectiveness of our model.

Acknowledgments

This research is supported by National Key Basic
Research Program of China (No.2014CB340504)
and National Natural Science Foundation of China
(No.61375074,61273318). The contact authors of
this paper are Sujian Li and Baobao Chang.

References

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th Internation-
al Conference on Computational Linguistics-Volume

432

1, pages 86–90. Association for Computational Lin-
guistics.

Niranjan Balasubramanian, Stephen Soderland, and
Oren Etzioni Mausam. 2013. Generating coheren-
t event schemas at scale. Proceedings of the Empirical
Methods in Natural Language Processing. ACM.

Michele Banko, Michael J Cafarella, Stephen Soderland,
Matt Broadhead, and Oren Etzioni. 2007. Open infor-
mation extraction from the web. In Proceedings of the
20th international joint conference on Artifical intelli-
gence, pages 2670–2676. Morgan Kaufmann Publish-
ers Inc.

Razvan Bunescu and Raymond J Mooney. 2004. Collec-
tive information extraction with relational markov net-
works. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, page 438.
Association for Computational Linguistics.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka Jr, and Tom M Mitchell.
2010a. Toward an architecture for never-ending lan-
guage learning. In AAAI.

Andrew Carlson, Justin Betteridge, Richard C Wang, Es-
tevam R Hruschka Jr, and Tom M Mitchell. 2010b.
Coupled semi-supervised learning for information ex-
traction. In Proceedings of the third ACM internation-
al conference on Web search and data mining, pages
101–110. ACM.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In ACL,
pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th Inter-
national Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 2-Volume 2, pages 602–
610. Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2011. Template-
based information extraction without the templates.
pages 976–986.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. EMNLP.

Harr Chen, Edward Benson, Tahira Naseem, and Regi-
na Barzilay. 2011. In-domain relation discovery with
meta-constraints via posterior regularization. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 530–540. Association
for Computational Linguistics.

Jackie Chi Kit Cheung. 2013. Probabilistic frame induc-
tion. arXiv preprint arXiv:1302.4813.

Hai Leong Chieu, Hwee Tou Ng, and Yoong Keok Lee.
2003. Closing the gap: Learning-based information

extraction rivaling knowledge-engineering methods.
In Proceedings of the 41st Annual Meeting on Associ-
ation for Computational Linguistics-Volume 1, pages
216–223. Association for Computational Linguistics.

Nancy Chinchor, David D Lewis, and Lynette
Hirschman. 1993. Evaluating message under-
standing systems: an analysis of the third message
understanding conference (muc-3). Computational
linguistics, 19(3):409–449.

Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S Weld. 2008. Open information extrac-
tion from the web. Communications of the ACM,
51(12):68–74.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1535–1545. Association for Computational Linguis-
tics.

Elena Filatova, Vasileios Hatzivassiloglou, and Kathleen
McKeown. 2006. Automatic creation of domain tem-
plates. In Proceedings of the COLING/ACL on Main
conference poster sessions, pages 207–214. Associa-
tion for Computational Linguistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of the
14th conference on Computational linguistics-Volume
2, pages 539–545. Association for Computational Lin-
guistics.

Ruihong Huang and Ellen Riloff. 2010. Inducing
domain-specific semantic class taggers from (almost)
nothing. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
275–285. Association for Computational Linguistics.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL,
pages 254–262.

Niels Kasch and Tim Oates. 2010. Mining script-like
structures from the web. In Proceedings of the NAA-
CL HLT 2010 First International Workshop on For-
malisms and Methodology for Learning by Reading,
pages 34–42. Association for Computational Linguis-
tics.

Mstislav Maslennikov and Tat-Seng Chua. 2007. Auto-
matic acquisition of domain knowledge for informa-
tion extraction. In Proceedings of the Association of
Computational Linguistics (ACL).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret, and
Romaric Besançon. 2015. Generative event schema

433

induction with entity disambiguation. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Internation-
al Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 188–197, Beijing,
China, July. Association for Computational Linguis-
tics.

Siddharth Patwardhan and Ellen Riloff. 2007. Effective
information extraction with semantic affinity patterns
and relevant regions. In EMNLP-CoNLL, volume 7,
pages 717–727.

Siddharth Patwardhan and Ellen Riloff. 2009. A unified
model of phrasal and sentential evidence for informa-
tion extraction. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Process-
ing: Volume 1-Volume 1, pages 151–160. Association
for Computational Linguistics.

Lisa Rau, George Krupka, Paul Jacobs, Ira Sider, and
Lois Childs. 1992. Ge nltoolset: Muc-4 test results
and analysis. In Proceedings of the 4th conference on
Message understanding, pages 94–99. Association for
Computational Linguistics.

Ellen Riloff and Mark Schmelzenbach. 1998. An em-
pirical approach to conceptual case frame acquisition.
In Proceedings of the Sixth Workshop on Very Large
Corpora, pages 49–56.

Ellen Riloff, Janyce Wiebe, and William Phillips. 2005.
Exploiting subjectivity classification to improve in-
formation extraction. In Proceedings of the Nation-
al Conference On Artificial Intelligence, volume 20,
page 1106. Menlo Park, CA; Cambridge, MA; Lon-
don; AAAI Press; MIT Press; 1999.

R Sagayam, S Srinivasan, and S Roshni. 2012. A sur-
vey of text mining: Retrieval, extraction and indexing
techniques. International Journal Of Computational
Engineering Research, 2(5).

Satoshi Sekine. 2006. On-demand information extrac-
tion. In Proceedings of the COLING/ACL on Main
conference poster sessions, pages 731–738. Associa-
tion for Computational Linguistics.

Jianbo Shi and Jitendra Malik. 2000. Normalized cuts
and image segmentation. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 22(8):888–
905.

Yusuke Shinyama and Satoshi Sekine. 2006. Preemp-
tive information extraction using unrestricted relation
discovery. In Proceedings of the main conference on
Human Language Technology Conference of the North
American Chapter of the Association of Computation-
al Linguistics, pages 304–311. Association for Com-
putational Linguistics.

Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman.
2003. An improved extraction pattern representation

model for automatic ie pattern acquisition. In Pro-
ceedings of the 41st Annual Meeting on Association
for Computational Linguistics-Volume 1, pages 224–
231. Association for Computational Linguistics.

Beth Sundheim. 1991. Third message understanding e-
valuation and conference (muc-3): Phase 1 status re-
port. In HLT.

Mihai Surdeanu, Jordi Turmo, and Alicia Ageno. 2006.
A hybrid approach for the acquisition of information
extraction patterns. Adaptive Text Extraction and Min-
ing (ATEM 2006), page 48.

Benjamin Van Durme and Marius Pasca. 2008. Finding
cars, goddesses and enzymes: Parametrizable acquisi-
tion of labeled instances for open-domain information
extraction. In AAAI, volume 8, pages 1243–1248.

Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. 2000. Automatic acquisition
of domain knowledge for information extraction. In
Proceedings of the 18th conference on Computational
linguistics-Volume 2, pages 940–946. Association for
Computational Linguistics.

Alexander Yates, Michael Cafarella, Michele Banko,
Oren Etzioni, Matthew Broadhead, and Stephen
Soderland. 2007. Textrunner: open information ex-
traction on the web. In Proceedings of Human Lan-
guage Technologies: The Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Demonstrations, pages 25–26.
Association for Computational Linguistics.

434

Proceedings of NAACL-HLT 2016, pages 435–440,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Inferring Psycholinguistic Properties of Words

Gustavo Henrique Paetzold and Lucia Specia
Department of Computer Science

University of Sheffield, UK
{ghpaetzold1,l.specia}@sheffield.ac.uk

Abstract
We introduce a bootstrapping algorithm for re-
gression that exploits word embedding mod-
els. We use it to infer four psycholinguis-
tic properties of words: Familiarity, Age of
Acquisition, Concreteness and Imagery and
further populate the MRC Psycholinguistic
Database with these properties. The ap-
proach achieves 0.88 correlation with human-
produced values and the inferred psycholin-
guistic features lead to state-of-the-art results
when used in a Lexical Simplification task.

1 Introduction

Throughout the last three decades, much has been
found on how the psycholinguistic properties of
words influence cognitive processes in the human
brain when a subject is presented with either writ-
ten or spoken forms. A word’s Age of Acquisition
is an example. The findings in (Carroll and White,
1973) reveal that objects whose names are learned
earlier in life can be named faster in later stages of
life. Zevin and Seidenberg (2002) show that words
learned in early ages are orthographically or phono-
logically very distinct from those learned in adult
life.

Other examples of psycholinguistic properties,
such as Familiarity and Concreteness, influence
one’s proficiency in word recognition and text com-
prehension. The experiments in (Connine et al.,
1990; Morrel-Samuels and Krauss, 1992) show that
words with high Familiarity yield lower reaction
times in both visual and auditory lexical decision,
and require less hand gesticulation in order to be de-
scribed. Begg and Paivio (1969) found that humans

are less sensitive to changes in wording made to sen-
tences with high Concreteness words.

When quantified, these aspects can be used as
features for various Natural Language Processing
(NLP) tasks. The Lexical Simplification approach
in (Jauhar and Specia, 2012) is an example. By
combining various collocational features and psy-
cholinguistic measures extracted from the MRC
Psycholinguistic Database (Coltheart, 1981), they
trained a ranker (Joachims, 2002) that reached first
place in the English Lexical Simplification task
at SemEval 2012. Semantic Classification tasks
have also benefited from the use of such features:
by combining Concreteness with other features,
(Hill and Korhonen, 2014) reached the state-of-the-
art performance in Semantic Composition (denota-
tive/connotative) and Semantic Modification (inter-
sective/subsective) prediction.

Despite the evident usefulness of psycholinguis-
tic properties of words, resources describing such
properties are rare. The most extensively developed
resource for English is the MRC Psycholinguistic
Database (Section 2). However, it is far from com-
plete, most likely due to the inherent cost of manu-
ally entering such properties. In this paper we pro-
pose a method to automatically infer these missing
properties. We train regressors by performing boot-
strapping (Yarowsky, 1995) over the existing fea-
tures in the MRC database, exploiting word em-
bedding models and other linguistic resources for
that (Section 3). This approach outperform various
strong baselines (Section 4) and the resulting prop-
erties lead to significant improvements when used in
Lexical Simplification models (Section 5).

435

2 The MRC Psycholinguistic Database

Introduced by Coltheart (1981), the MRC (Machine
Readable Dictionary) Psycholinguistic Database is
a digital compilation of lexical, morphological and
psycholinguistic properties for 150,837 words. The
27 psycholinguistic properties in the resource range
from simple frequency measures (Rudell, 1993) to
elaborate measures estimated by humans, such as
Age of Acquisition and Imagery (Gilhooly and Lo-
gie, 1980). However, despite various efforts to pop-
ulate the MRC Database, these properties are only
available for small subsets of the 150,837 words.

We focus on four manually estimated psycholin-
guistic properties in the MRC Database:

• Familiarity: The frequency with which a word
is seen, heard or used daily. Available for 9,392
words.

• Age of Acquisition: The age at which a word is
believed to be learned. Available for 3,503 words.

• Concreteness: How “palpable” the object the
word refers to is. Available for 8, 228 words.

• Imagery: The intensity with which a word
arouses images. Available for 9,240 words.

All four properties are real values, determined
based on different quantifiable metrics. We focus
on these properties since they have been proven use-
ful and are some of the most scarce in the MRC
Database. As we discussed in Section 1, these prop-
erties have been successfully used in various ap-
proaches for Lexical Simplification and Semantic
Classification, and yet are available for no more than
6% of the words in the MRC Database.

3 Bootstrapping with Word Embeddings

In order to automatically estimate missing psy-
cholinguistic properties in the MRC Database, we
resort to bootstrapping. We base our approach on
that by (Yarowsky, 1995), a bootstrapping algorithm
which aims to learn a classifier over a reduced set of
annotated training instances (or “seeds”). It does so
by performing the following five steps:

1. Initialise training set S with the seeds available.

2. Train a classifier over S.

3. Predict values for a set of unlabelled instances U .

4. Add to S all instances from U for which the pre-
diction confidence c is equal or greater than ζ.

5. If at least one instance was added to S, go to step
2, otherwise, return the resulting classifier.

One critical difference between this approach and
ours is that our task requires regression algorithms
instead of classifiers. In classification, the predic-
tion confidence c is often calculated as the maxi-
mum signed distance between an instance and the
estimated hyperplanes. There is, however, no analo-
gous confidence estimation technique for regression
problems. We address this problem by using word
embedding models.

Embedding models have been proved effective in
capturing linguistic regularities of words (Mikolov
et al., 2013b). In order to exploit these regularities,
we assume that the quality of a regressor’s prediction
on an instance is directly proportional to how similar
the instance is to the ones in the labelled set. Since
the input for the regressors are words, we compute
the similarity between a test word and the words in
the labelled dataset as the maximum cosine similar-
ity between the test word’s vector and the vectors in
the labelled set.

Let M be an embeddings model trained over vo-
cabulary V , S a set of training seeds, ζ a minimum
confidence threshold, sim(w, S,M) the maximum
cosine similarity between wordw and S with respect
to model M , R a regression model, and R(w) its
prediction for word w. Our bootstrapping algorithm
is depicted in Algorithm 1.

Algorithm 1: Regression Bootstrapping
input: M, V, S, ζ;
output: R;

repeat
Train R over S;
for w∈V −S do

if sim(w, S,M)≥ζ then
Add 〈w,R(w)〉 to S;

end
end

until ‖S‖ converges ;

436

We found that 64,895 out of the 150,837 words in
the MRC database were not present in either Word-
Net or our word embedding models. Since our boot-
strappers use features extracted from both these re-
sources, we were only able to predict the Familiarity,
Age of Acquisition, Concreteness and Imagery val-
ues of the remaining 85,942 words in MRC.

4 Evaluation

Since we were not able to find previous work for this
task, in these experiments, we compare the perfor-
mance of our bootstrapping strategy to various base-
lines. For training, we use the Ridge regression algo-
rithm (Tikhonov, 1963). As features, our regressor
uses the word’s raw embedding values, along with
the following 15 lexical features:

• Word’s length and number of syllables, as deter-
mined by the Morph Adorner module of LEXen-
stein (Paetzold and Specia, 2015).

• Word’s frequency in the Brown (Francis and
Kucera, 1979), SUBTLEX (Brysbaert and New,
2009), SubIMDB (Paetzold and Specia, 2016),
Wikipedia and Simple Wikipedia (Kauchak,
2013) corpora.

• Number of senses, synonyms, hypernyms and hy-
ponyms for word in WordNet (Fellbaum, 1998).

• Minimum, maximum and average distance be-
tween the word’s senses in WordNet and the the-
saurus’ root sense.

• Number of images found for word in the Getty
Images database1.

We train our embedding models using word2vec
(Mikolov et al., 2013a) over a corpus of 7 billion
words composed by the SubIMDB corpus, UMBC
webbase2, News Crawl3, SUBTLEX (Brysbaert
and New, 2009), Wikipedia and Simple Wikipedia
(Kauchak, 2013). We use 5-fold cross-validation to
optimise parameters: ζ, embeddings model architec-
ture (CBOW or Skip-Gram), and word vector size
(from 300 to 2,500 in intervals of 200). We include
four strong baseline systems in the comparison:

1http://developers.gettyimages.com/
2http://ebiquity.umbc.edu/resource/html/id/351
3http://www.statmt.org/wmt11/translation-task.html

• Max. Similarity: Test word is assigned the prop-
erty value of the closest word in the training set,
i.e. the word with the highest cosine similarity
according to the word embeddings model.

• Avg. Similarity: Test word is assigned the aver-
age property value of the n closest words in the
training set, i.e. the words with the highest co-
sine similarity according to the word embeddings
model. The value of n is decided through 5-fold
cross validation.

• Simple SVM: Test word is assigned the prop-
erty value as predicted by an SVM regressor
(Smola and Vapnik, 1997) with a polynomial ker-
nel trained with the 15 aforementioned lexical
features.

• Simple Ridge: Test word is assigned the property
value as predicted by a Ridge regressor trained
with the 15 aforementioned lexical features.

• Super Ridge: Identical to Simple Ridge, the only
difference being that it also includes the words
embeddings in the feature set. We note that this
baseline uses the exact same features and regres-
sion algorithm as our bootstrapped regressors.

The parameters of all baseline systems are opti-
mised following the same method as with our ap-
proach. We also measure the correlation between
each of the aforementioned lexical features and the
psycholinguistic properties. For each psycholinguis-
tic property, we create a training and a test set by
splitting the labelled instances available in the MRC
Database in two equally sized portions. All train-
ing instances are used as seeds in our approach. As
evaluation metrics, we use Spearman’s (ρ) and Pear-
son’s (r) correlation. Pearson’s correlation is the
most important indicator of performance: an effec-
tive regressor would predict values that change lin-
early with a given psycholinguistic property.

The results are illustrated in Table 1. While the
similarity-based approaches tend to perform well for
Concreteness and Imagery, typical regressors cap-
ture Familiarity and Age of Acquisition more effec-
tively. Our approach, on the other hand, is con-
sistently superior for all psycholinguistic proper-
ties, with both Spearman’s and Pearson’s correlation

437

Familiarity Age of Acquisition Concreteness Imagery
System ρ r ρ r ρ r ρ r

Word Length -0.238 -0.171 0.501 0.497 -0.170 -0.195 -0.190 -0.193
Syllables -0.168 -0.114 0.464 0.458 -0.207 -0.238 -0.218 -0.224
Freq: SubIMDB 0.798 0.725 -0.679 -0.699 0.048 0.003 0.208 0.170
Freq: SUBTLEX 0.827 0.462 -0.646 -0.251 0.028 0.137 0.187 0.265
Freq: SimpleWiki 0.725 0.488 -0.453 -0.306 0.015 0.145 0.119 0.247
Freq: Wikipedia 0.694 0.283 -0.349 -0.112 -0.076 0.081 0.027 0.134
Freq: Brown 0.706 0.608 -0.380 -0.395 -0.155 -0.214 -0.054 -0.107
Sense Count 0.471 0.363 -0.429 -0.391 0.020 -0.017 0.119 0.059
Synonym Count 0.411 0.336 -0.381 -0.357 -0.036 -0.047 0.070 0.035
Hypernym Count 0.307 0.295 -0.411 -0.387 0.167 0.088 0.268 0.160
Hyponym Count 0.379 0.245 -0.324 -0.196 0.120 0.002 0.196 0.023
Min. Sense Depth -0.347 -0.072 0.366 0.055 0.151 -0.185 0.127 -0.224
Max. Sense Depth -0.021 -0.008 -0.197 -0.196 0.447 0.455 0.415 0.414
Avg. Sense Depth -0.295 -0.256 0.215 0.183 0.400 0.428 0.345 0.347
Img. Search Count 0.544 0.145 -0.325 -0.033 -0.037 -0.073 0.117 -0.059
Max. Similarity 0.406 0.402 0.445 0.443 0.742 0.743 0.618 0.605
Avg. Similarity 0.528 0.527 0.536 0.535 0.826 0.819 0.733 0.707
Simple SVM 0.835 0.815 0.778 0.770 0.548 0.477 0.555 0.528
Simple Ridge 0.832 0.815 0.785 0.778 0.603 0.591 0.620 0.613
Super Ridge 0.847 0.833 0.827 0.820 0.859 0.852 0.813 0.800
Bootstrapping 0.863 0.846 0.871 0.862 0.876 0.869 0.835 0.823

Table 1: Regression correlation scores. In bold are the highest scores within a group (features, baselines, proposed approach), and

underlined the highest scores overall.

scores varying between 0.82 and 0.88. The differ-
ence in performance between the Super Ridge base-
line and our approach confirm that our bootstrapping
algorithm can in fact improve on the performance of
a regressor.

The parameters used by our bootstrappers, which
are reported below, highlight the importance of pa-
rameter optimization in out bootstrapping strategy:
its performance peaked with very different configu-
rations for most psycholinguistic properties:

• Familiarity: 300 word vector dimensions with a
Skip-Gram model, and ζ=0.9.

• Age of Acquisition: 700 word vector dimensions
with a CBOW model, and ζ=0.7.

• Concreteness: 1,100 word vector dimensions
with a Skip-Gram model, and ζ=0.7.

• Imagery: 1,100 word vector dimensions with a
Skip-Gram model, and ζ=0.7.

Interestingly, frequency in the SubIMDB corpus4,
composed of over 7 million sentences extracted from
subtitles of “family” movies and series, has good lin-
ear correlation with Familiarity and Age of Acquisi-
tion, much higher than any other feature. For Con-
creteness and Imagery, on the other hand, the results
suggest something different: the further a word is
from the root of a thesaurus, the most likely it is to
refer to a physical object or entity.

5 Psycholinguistic Features for LS

Here we assess the effectiveness of our bootstrap-
pers in the task of Lexical Simplification (LS). As
shown in (Jauhar and Specia, 2012), psycholinguis-
tic features can help supervised ranking algorithms
capture word simplicity. Using the parameters de-
scribed in Section 4, we train bootstrappers for
these two properties using all instances in the MRC
Database as seeds. We then train three rankers with
(W) and without (W/O) psycholinguistic features:

4http://ghpaetzold.github.io/subimdb

438

• Horn (Horn et al., 2014): Uses an SVM ranker
trained on various n-gram probability features.

• Glavas (Glavaš and Štajner, 2015): Ranks can-
didates using various collocational and semantic
metrics, and then re-ranks them according to their
average rankings.

• Paetzold (Paetzold and Specia, 2015): Ranks
words according to their distance to a decision
boundary learned from a classification setup in-
ferred from ranking examples. Uses n-gram fre-
quencies as features.

We use data from the English Lexical Simplifica-
tion task of SemEval 2012 to assess systems’ per-
formance. The goal of the task is to rank words
in different contexts according to their simplicity.
The training and test sets contain 300 and 1,710 in-
stances, respectively. The official metric from the
task – TRank (Specia et al., 2012) – is used to mea-
sure systems’ performance. As discussed in (Paet-
zold, 2015), this metric best represents LS perfor-
mance in practice. The results in Table 2 show that
the addition of our features lead to performance in-
creases with all rankers. Performing F-tests over the
rankings estimated for the simplest candidate in each
instance, we have found these differences to be sta-
tistically significant (p < 0.05). Using our features,
the Paetzold ranker reaches the best published re-
sults for the dataset, significantly superior to the best
system in SemEval (Jauhar and Specia, 2012).

TRank
Ranker W/O W
Best SemEval - 0.602
Horn 0.625 0.635
Glavas 0.623 0.636
Paetzold 0.653 0.657

Table 2: Results on SemEval 2012 LS task dataset

6 Conclusions

Overall, the proposed bootstrapping strategy for re-
gression has led to very positive results, despite
its simplicity. It is therefore a cheap and reliable
alternative to manually producing psycholinguistic
properties of words. Word embedding models have
proven to be very useful in bootstrapping, both as

surrogates for confidence predictors and as regres-
sion features. Our findings also indicate the use-
fulness of individual features and resources: word
frequencies in the SubIMDB corpus have a much
stronger correlation with Familiarity and Age of Ac-
quisition than previously used corpora, while the
depth of a word’s in a thesaurus hierarchy correlates
well with both its Concreteness and Imagery.

In future work we plan to employ our boot-
strapping solution in other regression problems, and
to further explore potential uses of automatically
learned psycholinguistic features.

The updated version of the MRC resource can be
downloaded from http://ghpaetzold.github.io/data/
BootstrappedMRC.zip.

References
Ian Begg and Allan Paivio. 1969. Concreteness and im-

agery in sentence meaning. Journal of Verbal Learn-
ing and Verbal Behavior, 8(6):821–827.

Marc Brysbaert and Boris New. 2009. Moving beyond
kučera and francis: A critical evaluation of current
word frequency norms and the introduction of a new
and improved word frequency measure for american
english. Behavior research methods, 41:977–990.

John B Carroll and Margaret N White. 1973. Word
frequency and age of acquisition as determiners of
picture-naming latency. The Quarterly Journal of Ex-
perimental Psychology, 25(1):85–95.

Max Coltheart. 1981. The mrc psycholinguistic
database. The Quarterly Journal of Experimental Psy-
chology, 33(4):497–505.

Cynthia M Connine, John Mullennix, Eve Shernoff, and
Jennifer Yelen. 1990. Word familiarity and frequency
in visual and auditory word recognition. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 16(6):1084.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

W Nelson Francis and Henry Kucera. 1979. Brown cor-
pus manual. Brown University.

Kenneth J Gilhooly and Robert H Logie. 1980. Age-
of-acquisition, imagery, concreteness, familiarity, and
ambiguity measures for 1,944 words. Behavior Re-
search Methods & Instrumentation, 12(4):395–427.

Goran Glavaš and Sanja Štajner. 2015. Simplifying lexi-
cal simplification: Do we need simplified corpora? In
Proceedings of the 53rd ACL.

Felix Hill and Anna Korhonen. 2014. Concreteness and
subjectivity as dimensions of lexical meaning. In Pro-
ceedings of ACL, pages 725–731.

439

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a Lexical Simplifier Using Wikipedia.
In Proceedings of the 52nd ACL, pages 458–463.

S. Jauhar and L. Specia. 2012. Uow-shef: Simplex–
lexical simplicity ranking based on contextual and psy-
cholinguistic features. In Proceedings of the 1st Se-
mEval, pages 477–481.

Thorsten Joachims. 2002. Optimizing search engines us-
ing clickthrough data. In Proceedings of the 8th ACM,
pages 133–142.

David Kauchak. 2013. Improving text simplification lan-
guage modeling using unsimplified text data. In Pro-
ceedings of the 51st ACL, pages 1537–1546.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746–
751.

Palmer Morrel-Samuels and Robert M Krauss. 1992.
Word familiarity predicts temporal asynchrony of
hand gestures and speech. Journal of Experimen-
tal Psychology: Learning, Memory, and Cognition,
18(3):615.

Gustavo Henrique Paetzold and Lucia Specia. 2015.
Lexenstein: A framework for lexical simplification. In
Proceedings of The 53rd ACL.

Gustavo Henrique Paetzold and Lucia Specia. 2016. Un-
supervised lexical simplification for non-native speak-
ers. In Proceedings of The 30th AAAI.

Gustavo Henrique Paetzold. 2015. Reliable lexical sim-
plification for non-native speakers. In Proceedings of
the 2015 NAACL Student Research Workshop.

Allan P. Rudell. 1993. Frequency of word usage and per-
ceived word difficulty: Ratings of Kuera and Francis
words. Behavior Research Methods.

Alex Smola and Vladimir Vapnik. 1997. Support vector
regression machines. Advances in neural information
processing systems, 9:155–161.

Lucia Specia, Sujay Kumar Jauhar, and Rada Mihalcea.
2012. Semeval-2012 task 1: English lexical simplifi-
cation. In Proceedings of the 1st SemEval, pages 347–
355.

Andrey Tikhonov. 1963. Solution of incorrectly formu-
lated problems and the regularization method. In So-
viet Math. Dokl., volume 5, pages 1035–1038.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In Proceed-
ings of the 33rd annual meeting on Association for
Computational Linguistics, pages 189–196. Associa-
tion for Computational Linguistics.

Jason D Zevin and Mark S Seidenberg. 2002. Age of ac-
quisition effects in word reading and other tasks. Jour-
nal of Memory and language, 47(1):1–29.

440

Proceedings of NAACL-HLT 2016, pages 441–446,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Intra-Topic Variability Normalization based on Linear Projection for Topic
Classification

Quan Liu†, Wu Guo†, Zhen-Hua Ling†, Hui Jiang‡, Yu Hu†§
† National Engineering Laboratory for Speech and Language Information Processing

University of Science and Technology of China, Hefei, Anhui, China
‡ Department of Electrical Engineering and Computer Science

York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
§ iFLYTEK Research, Hefei, China

emails: quanliu@mail.ustc.edu.cn, guowu@ustc.edu.cn, zhling@ustc.edu.cn
hj@cse.yorku.ca, yuhu@iflytek.com

Abstract

This paper proposes a variability normaliza-
tion algorithm to reduce the variability be-
tween intra-topic documents for topic classi-
fication. Firstly, an optimization problem is
constructed based on linear variability remov-
able assumption. Secondly, a new feature s-
pace for document representation is found by
solving the optimization problem with kernel
principle component analysis (KPCA). Final-
ly, effective feature transformation is taken
through linear projection. As for experiments,
state-of-the-art SVM and KNN algorithm are
adopted for topic classification respectively.
Experimental results on a free-style conversa-
tional corpus show that the proposed variabili-
ty normalization algorithm for topic classifica-
tion achieves 3.8% absolute improvement for
micro-F1 measure.

1 Introduction

Topic classification is now faced with the problem of
enormous variability between documents due to the
exponential growth of free-style unstructured texts
in recent years. This paper treats variability as d-
ifferences between text documents and aims at re-
ducing the intra-topic document variability for bet-
ter topic classification. There are various factors
to cause the intra-topic variability problem, such as
the different language usages of different persons
(Chambers, 1995; Fillmore et al., 2014). In free-
style conversations experimented in this paper, d-
ifferent people would use very different words to
express their opinions. Therefore, documents in a

same topic could be quite different because of the
intra-topic variability problem.

In this work, we are interested in finding a ro-
bust document representation strategy to address the
intra-topic variability problem. Traditional method
represents document by a high-dimensional TF-IDF
vector based on the bag-of-word approach (Salton
and McGill, 1986; Salton and Buckley, 1988). How-
ever, the TF-IDF feature reveals little semantic sim-
ilarity information between terms, which would
increase the differences between intra-topic docu-
ments when different words are used. Beyond the
TF-IDF strategy, there are two class of techniques,
i.e., unsupervised technique and supervised tech-
nique for document representations. The unsuper-
vised technique includes some latent semantic anal-
ysis methods. The typical method is Latent Se-
mantic Indexing (LSI) while the features estimated
by LSI are linear combinations of the original fea-
tures (Deerwester et al., 1990; Wang et al., 2013).
Meanwhile, the popular Latent Dirichlet Allocation
(Blei et al., 2003; Morchid et al., 2014) algorithm
was proposed to represent document by a generative
probabilistic model (Blei et al., 2003). Moreover,
in recent years, many neural network based meth-
ods have been investigated for document represen-
tations (Hinton and Salakhutdinov, 2006; Srivasta-
va et al., 2013; Le and Mikolov, 2014). For exam-
ple, in (Le and Mikolov, 2014), a model called para-
graph vector was designed to represent each docu-
ment by a dense vector while the vector is trained
by predicting all words in the corresponding doc-
ument. On the other hand, supervised technique
for document representation includes some discrim-

441

inative approaches, e.g., Linear Discriminant Anal-
ysis (Berry et al., 1995; Chakrabarti et al., 2003;
Torkkola, 2004) and supervised latent semantic in-
dexing (Sun et al., 2004; Chakraborti et al., 2007;
Bai et al., 2009). Meanwhile, some improved lin-
ear analysis methods were proposed for encoding
documents with a reliable similarity information (Y-
ih et al., 2011; Chang et al., 2013). However, all
those works for document representation paid little
attention to the variability of intra-topic documents.
Therefore, they could hardly solve the intra-topic
variability problem in a direct way.

This paper makes a preliminary investigation to
deal with the intra-topic variability problem. The
main purpose of this work is to find a new feature
space with minimized intra-topic variability. An
objective criterion is constructed for optimization.
Mathematically, we make use of the topic label in-
formation of the training set to create a weighting
matrix, and then sum over all the differences of
intra-topic documents. Then a robust feature space
with minimized intra-topic variability is generated
by solving the optimization problem with effective
KPCA based algorithm. Finally, we accomplish the
variability normalization operations for the baseline
features. We also employ the linear discriminant
analysis as a supplementary algorithm. As for exper-
iments, state-of-the-art SVM and KNN algorithms
are employed for topic classification. System per-
formances are evaluated on a challenging free-style
conversational database.

The rest of this paper is organized as follows. In
section 2, we introduce the proposed variability nor-
malization algorithm for topic classification in de-
tail. After it, section 3 presents experimental set-
up and results. Finally, conclusions and future work
would be given in section 4.

2 Variability Normalization Algorithm

2.1 Motivation for variability normalization

This work aims to find a robust document repre-
sentation strategy for topic classification. The pro-
posed algorithm is motivated by the Nuisance At-
tribute Projection (NAP) algorithm in speaker veri-
fication field (Solomonoff et al., 2005; Solomonoff
et al., 2007). We firstly make a linear variability re-
movable assumption for document representation.

Mathematically, given a document, it could be de-
noted by a column vector x with dimensionality of
d as follows

x = xt + xv (1)

where xt denotes the useful signal information in
current document, xv stands for the remaining noise.
It is very difficult to model the noise signal in a
document since it could come from various sources.
Therefore, in this paper, we focus on the noise cre-
ated by the variability among intra-topic documents.
Our goal is to find a new document representation
through linear projection:

x̃ = Px (2)

where P is the projection matrix. Since the goal
of this paper is not dimensionality reduction, the
dimensionality of the new document representation
is the same as the source document representation.
Therefore, the size of P is d×d. This paper propos-
es to learn P by minimizing the following intra-topic
variability

Q =
∑
i,j

wij‖P(xi − xj)‖2 (3)

where wij is the i-th row and j-th column element
of a weighting matrix W created in this work. The
matrix is determined by the topic label information
of training set as follows

wij =

{
1 if xi and xj belong to a same topic
0 othervise

(4)

2.2 Variability normalization algorithm

For deriving the variability normalization algorithm,
we follow the work of (Solomonoff et al., 2007) and
re-write the projection matrix P by the variability
space (denoted as a unit vector v here) as follows

P = I− vvT (5)

where I is a (d × d) dimensional identity matrix.
Combining (3) and (5), we get

Q =
∑
i,j

wij(‖xi − xj‖2 − (vT(xi − xj))2). (6)

442

Since the first part of Q in (6) is independent on v,
we discard it and create the final criterion

Q = −
∑
i,j

wij(vT(xi − xj))2). (7)

Unfolding (7) by linear operation, we get

Q = 2vTX · (W − diag(W · 1)) ·XTv. (8)

where X denotes the training set matrix, each row
of X represents one document vector, 1 is a vec-
tor with all elements equal to 1. Minimizing (8) is
equivalent to solving the flowing eigenvalue decom-
position problem

X · (diag(W · 1)−W)XTv = λv. (9)

Here we apply the idea of KPCA (Solomonoff et al.,
2007; Schölkopf et al., 1997) to solve (9). Denoting
v by a new vector Xu, finding u turns to solving a
generalized eigenvalue problem in kernel space as

KZKu = λKu
K = XTX
Z = diag(W · 1)−W.

(10)

The variability space is then constructed by selecting
a set of eigenvectors corresponding to the d1 largest
eigenvalues.

U = [u1,u2, ...,ud1] (11)

Finally, a (d × d) projection matrix is obtained by
combining (5), (11) and v = Xu.

Based on this variability normalization algorithm,
the baseline document vectors could be transformed
to a new feature space with minimized intra-topic
variability. The main procedure to implement intra-
topic variation normalization could be divided into
the following steps:

• Generate sample matrix X using the whole n
documents of training set.

• Construct weighting matrix W according to (4)
with the use of topic label information.

• Estimate a projection matrix P by solving the
aforementioned eigenvalue problem.

• Transform all documents to new feature space
through linear projection according to (2).

It should be noticed that after making feature
transformation by the proposed variability normal-
ization algorithm, the dimensionality of document
representation has not been changed. This is dif-
ferent with all the existing dimensionality reduction
methods since our goal is to re-define the feature
representation space for topic document representa-
tion. To prove the effectiveness of the proposed al-
gorithm, this paper presents experimental results on
a challenging conversational dataset.

3 Experiments

In this section, we evaluate the proposed variability
normalization method in a typical topic classifica-
tion problem. We will firstly introduce the exper-
imental setup, including dataset, evaluation criteria
and system description. After it, all the experimen-
tal results would be reported in detail.

3.1 Experimental setup

3.1.1 Dataset
The data set used in this paper is the text tran-

scripts of free-style conversational speech database,
Fisher English corpus released by LDC, which con-
tains 11699 recorded conversations (Cieri et al.,
2004). This corpus is collected from 40 different
topics, and each document includes relatively a dis-
tinct topic (e.g. “Comedy”, “Smoking”, “Terroris-
m”, etc.) as well as topics covering similar sub-
ject areas (e.g. “Airport Security”, “Bioterrorism”,
“Issues in the Middle East”). This paper randomly
chooses 60 documents and 50 documents per topic
for the training set and testing set respectively. An-
other 50 documents for each topic are randomly se-
lected to for the development set.

3.1.2 Evaluation criteria
We use two types of criteria to make a compre-

hensive evaluations for this work. The first evalu-
ation creterion is F1 measure corresponding to the
recall and precision rates for a typical classification
system. In detail, we would report micro-average
F1 and macro-average F1 results. In consideration
of topic classification is similar to topic verification,
we choose equal error rate (EER) to be the second
criterion, which is the equal value of miss probabil-
ity and false probability.

443

3.1.3 System description

Module Methods
Text processing stop-word removal, stemming
Representation TF-IDF feature
Classification KNN, SVM algorithm
Table 1: Baseline system modules for topic classification.

This paper constructs several systems for compar-
ison. The configurations of our baseline system are
shown in Table 1. Porter algorithm (Porter, 1980)
is adopted for word stemming after stop-words re-
moval. Then a vocabulary with 19534 unique words
is determined according to the occurrence frequency
information of training set. Documents in the base-
line system are represented by using the popular TF-
IDF term weighting strategy (Salton and Buckley,
1988). Two popular algorithms SVM and KNN are
used for classification separately. The SVM classi-
fication is implemented using the LIBSVM toolkit
(Chang and Lin, 2011).

Based on the baseline system, descriptions of oth-
er systems are given as below.

(1) LSI: documents are represented in latent se-
mantic space estimated by the LSI algorithm (Deer-
wester et al., 1990) based on the baseline features.

(2) LDA: document features are transformed by
linear discriminant analysis. We select 50 eigenvec-
tors for the low dimensional feature space.

(3) VarNorm: document features are transformed
from the baseline TF-IDF vectors by the approach
proposed in this paper. We select 60 eigenvectors
for generating the project matrix.

(4) VarNorm-LDA: system combined VarNorm
with LDA, which employs feature transformation
operations twice on the original TF-IDF document
features. The number of eigenvectors for VarNorm
and LDA are set to 60 and 50 respectively.

All the parameters suggested in this paper are
tuned on the development set. However, the eigen-
vector number is not restricted to 50 or 60. It is rec-
ommended to set the eigenvector num from 45 to 75
since we have 40 topics for experiments.

3.2 Experimental Results
3.2.1 Variability normalization performance

According to (3), we compare the intra-topic vari-
ability for the baseline and the VarNorm system. The

difference for variability calculation is whether to
use the projection matrix P or not. Figure 1 shows
the intra-topic variability on 40 topics of the train-
ing set. The vertical axis represents the variabili-
ty for each topic, while the horizontal axis stands
for 40 topics in the conversation corpus. As we can
see clearly, the variability of baseline system is high.
After conducting variability normalization, it could
be reduced effectively.

0

5

10

15

20

25

30

35

EN
G

0
1

EN
G

0
2

EN
G

0
3

EN
G

0
4

EN
G

0
5

EN
G

0
6

EN
G

0
7

EN
G

0
8

EN
G

0
9

EN
G

1
0

EN
G

1
1

EN
G

1
2

EN
G

1
3

EN
G

1
4

EN
G

1
5

EN
G

1
6

EN
G

1
7

EN
G

1
8

EN
G

1
9

EN
G

2
0

EN
G

2
1

EN
G

2
2

EN
G

2
3

EN
G

2
4

EN
G

2
5

EN
G

2
6

EN
G

2
7

EN
G

2
8

EN
G

2
9

EN
G

3
0

EN
G

3
1

EN
G

3
2

EN
G

3
3

EN
G

3
4

EN
G

3
5

EN
G

3
6

EN
G

3
7

EN
G

3
8

EN
G

3
9

EN
G

4
0

Intra-topic variability statistic

Baseline system Variability removal

Figure 1: Variability normalization performance.

After making detailed analysis, we find for the
topic ENG06, the theme is “Hypothetical Situations:
Perjury – Do either of you think that you would com-
mit perjury for a close friend or family member?”,
the variability among documents from this topic is
largest in the whole corpus. However, for the top-
ic ENG13, “Movies: Do each of you enjoy going to
the movies in a theater, or would you rather rent a
movie and stay home? What was the last movie that
you saw? Was it good or bad and why?”, the vari-
ability is the lowest. This is the difference between
common topics and infrequent topics. Since people
would use various words to express their ideas, it
is reasonable to find the variability problem is more
serious for infrequent topics than common topics.

3.2.2 Classification Results using KNN
Experimental results using KNN classification al-

gorithm are given in Table 2. The results show
that, compared to the baseline system, the variabil-
ity normalization system VarNorm achieves 2% ab-
solute F1 improvement, and 29% relative improve-
ment for EER. When taking the variability remov-
ing as a preliminary process, and employing LDA as
the secondary transformation, the system VarNorm-
LDA achieves the best performance. The EER is im-

444

Table 2: Classification results using KNN algorithm
System EER macro-F1 micro-F1

Baseline 6.10 84.72 83.15
LSI 4.25 86.24 85.45
LDA 4.49 88.94 88.15
VarNorm 4.30 86.46 85.60
VarNorm-LDA 2.51 90.29 90.00

Table 3: Classification results using SVM algorithm
System EER macro-F1 micro-F1

Baseline 3.40 88.86 88.40
LSI 3.35 89.59 89.25
LDA 3.05 90.81 90.55
VarNorm 2.90 91.04 90.80
VarNorm-LDA 2.50 92.28 92.15

proved by 65% relatively, and the micro-F1 measure
is improved by 6.85% absolutely. The reason for this
performance is straightforward. Since the proposed
algorithm effectively reduce the differences among
intra-topic documents, the LDA algorithm would be
more easier and effective to maximize the ratio of
between-class-variance to within-class-variance.

3.2.3 Classification Results using SVM
Similarly, the experimental results using SVM

classification algorithm are shown in Table 3. The
baseline performance is better than system us-
ing KNN algorithm. The improvements achieved
by LSI in KNN sytem almost vanish here, while
the VarNorm system keeps its improvement. The
VarNorm system even works better than the LDA
system, with nearly 15% relative improvement on
EER, and 3.4% absolute improvement on micro-
F1 measure. The best results are obtained by the
VarNorm-LDA system. There are 36% relative im-
provement for EER, and 3.75% absolute improve-
ment for micro-F1 measure.

4 Conclusions and Future Work

In this paper, we investigated the intra-topic vari-
ability problem for topic classification. The major
contribution of this work is that we proposed a ef-
fective variability normalization approach for robust
document representation. An optimization problem
was constructed after making a linear variability re-
movable assumption. In order to take a deep insight

into the performance of the proposed variability nor-
malization algorithm, we conducted experiments on
a challenge free-style conversation corpus. Experi-
mental results based on the SVM and KNN classifi-
cation algorithm all confirmed the robustness of the
proposed approach. As a conclusion, the variability
normalization algorithm could be used as a front-end
feature transformation strategy, and we also suggest
to combine it with linear discriminant analysis algo-
rithm or some other algorithms to further improve
system performances.

Further study will investigate the adaptive meth-
ods for constructing robust feature spaces. We
would also combine this work with more document
representations methods as well. Moreover, it would
be very interesting to extend and combine our work
to some novel unsupervised machine learning tech-
niques, like the work of (Zhang and Jiang, 2015)
while they proposed a model for high-dimensional
data by combineing a linear orthogonal projection
and a finite mixture model under a unified genera-
tive modeling framework.

Acknowledgments

This work was supported in part by the Science and
Technology Development of Anhui Province, Chi-
na (Grants No. 2014z02006) and the Fundamental
Research Funds for the Central Universities (Grant
No. WK2350000001). At the same time, we want to
give special thanks to the anonymous reviewers for
their insightful comments as well as suggestions.

References

Bing Bai, Jason Weston, David Grangier, Ronan
Collobert, Kunihiko Sadamasa, Yanjun Qi, Olivier
Chapelle, and Kilian Weinberger. 2009. Supervised
semantic indexing. In Proceedings of the 18th ACM
conference on Information and knowledge manage-
ment, pages 187–196. ACM.

Michael W Berry, Susan T Dumais, and Gavin W
O’Brien. 1995. Using linear algebra for intelligent
information retrieval. SIAM review, 37(4):573–595.

D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022.

Soumen Chakrabarti, Shourya Roy, and Mahesh V
Soundalgekar. 2003. Fast and accurate text classifica-

445

tion via multiple linear discriminant projections. The
VLDB Journal, 12(2):170–185.

Sutanu Chakraborti, Rahman Mukras, Robert Lothian,
Nirmalie Wiratunga, Stuart NK Watt, and David J
Harper. 2007. Supervised latent semantic indexing
using adaptive sprinkling. In IJCAI, pages 1582–1587.

Jack K Chambers. 1995. Sociolinguistic theory. Black-
well.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST),
2(3):27.

Kai-Wei Chang, Wen-tau Yih, and Christopher Meek.
2013. Multi-relational latent semantic analysis. In
EMNLP, pages 1602–1612.

C. Cieri, D. Miller, and K. Walker. 2004. The Fisher
corpus: a resource for the next generations of speech-
to-text. In LREC, pages 69–71.

S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. 1990. Indexing by latent
semantic analysis. JASIS, 41(6):391–407.

Charles J Fillmore, Daniel Kempler, and William SY
Wang. 2014. Individual differences in language a-
bility and language behavior. Academic Press.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006.
Reducing the dimensionality of data with neural net-
works. Science, 313(5786):504–507.

Quoc V Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.

Mohamed Morchid, Richard Dufour, and Georges
Linares. 2014. A lda-based topic classification ap-
proach from highly imperfect automatic transcriptions.
LREC14.

Martin F Porter. 1980. An algorithm for suffix stripping.
Program, 14(3):130–137.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–523.

Gerard Salton and Michael J McGill. 1986. Introduction
to modern information retrieval.

B. Schölkopf, A. Smola, and KR. Müller. 1997. Ker-
nel principal component analysis. In Artificial Neural
Networks-ICANN’97, pages 583–588. Springer.

Alex Solomonoff, William M Campbell, and Ian Board-
man. 2005. Advances in channel compensation for
svm speaker recognition. In ICASSP, pages 629–632.

A. Solomonoff, W. M. Campbell, and C. Quillen. 2007.
Nuisance attribute projection. Speech Communica-
tion.

Nitish Srivastava, Ruslan R Salakhutdinov, and Geof-
frey E Hinton. 2013. Modeling documents with
deep boltzmann machines. arXiv preprint arX-
iv:1309.6865.

Jian-Tao Sun, Zheng Chen, Hua-Jun Zeng, Yu-Chang Lu,
Chun-Yi Shi, and Wei-Ying Ma. 2004. Supervised
latent semantic indexing for document categorization.
In Data Mining, 2004. ICDM’04. Fourth IEEE Inter-
national Conference on, pages 535–538. IEEE.

K. Torkkola. 2004. Discriminative features for text doc-
ument classification. Formal Pattern Analysis & Ap-
plications, 6(4):301–308.

Quan Wang, Jun Xu, Hang Li, and Nick Craswell. 2013.
Regularized latent semantic indexing: A new approach
to large-scale topic modeling. ACM Transactions on
Information Systems (TOIS), 31(1):5.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In CoNLL,
pages 247–256. Association for Computational Lin-
guistics.

Shiliang Zhang and Hui Jiang. 2015. Hybrid orthogonal
projection and estimation (hope): A new framework to
probe and learn neural networks. arXiv preprint arX-
iv:1502.00702.

446

Proceedings of NAACL-HLT 2016, pages 447–453,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Shift-Reduce CCG Parsing using Neural Network Models

Bharat Ram Ambati and Tejaswini Deoskar and Mark Steedman
Institute for Language, Cognition and Computation

School of Informatics, University of Edinburgh
bharat.ambati@ed.ac.uk, {tdeoskar,steedman}@inf.ed.ac.uk

Abstract

We present a neural network based shift-
reduce CCG parser, the first neural-network
based parser for CCG. We also study the im-
pact of neural network based tagging mod-
els, and greedy versus beam-search parsing,
by using a structured neural network model.
Our greedy parser obtains a labeled F-score
of 83.27%, the best reported result for greedy
CCG parsing in the literature (an improve-
ment of 2.5% over a perceptron based greedy
parser) and is more than three times faster.
With a beam, our structured neural network
model gives a labeled F-score of 85.57%
which is 0.6% better than the perceptron based
counterpart.

1 Introduction

Shift-reduce parsing is interesting for practical real-
world applications like parsing the web, since pars-
ing can be achieved in linear time. Although
greedy parsers are fast, accuracies of these parsers
are typically much lower than graph-based parsers.
Conversely, beam-search parsers achieve accura-
cies comparable to graph-based parsers (Zhang and
Nivre, 2011) but are much slower than their greedy
counterparts. Recently, Chen and Manning (2014)
have showed that fast and accurate parsing can be
achieved using neural network based parsers. Im-
proving their work, Weiss et al. (2015) presented a
structured neural network model which gave state-
of-the-art results for English dependency parsing.

There has been increasing interest in Combina-
tory Categorial Grammar (CCG) (Steedman, 2000)
parsing due to the simplicity of its interface between

syntax and semantics. In addition to predicate-
argument structure, CCG captures the unbounded
dependencies found in grammatical constructions
like relativization, coordination, etc. We present a
neural network based shift-reduce CCG parser, the
first neural network based parser for CCG. We first
adapt Chen and Manning (2014)’s shift-reduce de-
pendency parser for CCG parsing. We then develop
a structured neural network model based on Weiss et
al. (2015), in order to explore the impact of a beam-
search on the parser. We also analyze the impact
of neural network taggers (for both POS-tagging
and CCG supertagging) as compared to maximum
entropy taggers. Our greedy neural network parser
achieves unlabeled and labeled F-scores of 89.78%
and 83.27% respectively, an improvement of around
2.5% over a perceptron based greedy parser, and is
more than three times faster. Due to its relevance for
large-scale parsing, we make this parser available
for public usage. By using a beam search, our
structured neural network model gave even better
results of 91.95% and 85.57% unlabeled and labeled
F-scores respectively. To the best of our knowledge,
ours is the first neural network based parser for
CCG and also the first work on exploring neural
network taggers for shift-reduce CCG parsing.

2 Related Work

2.1 CCG Parsers

Due to the availability of English CCGbank (Hock-
enmaier and Steedman, 2007), several wide-
coverage CCG parsers have been developed (Hock-
enmaier and Steedman, 2002; Clark and Curran,
2007; Auli and Lopez, 2011; Zhang and Clark,

447

2011; Lewis and Steedman, 2014a). While the ma-
jority of CCG parsers are chart-based (Clark and
Curran, 2007; Lewis and Steedman, 2014a), there
has been some work on shift-reduce CCG pars-
ing (Zhang and Clark, 2011; Xu et al., 2014; Am-
bati et al., 2015). Zhang and Clark (2011) used
a global linear model trained discriminatively with
the averaged perceptron (Collins, 2002) and beam
search for their shift-reduce CCG parser. A depen-
dency model for shift-reduce CCG parsing using
a dynamic oracle technique (Goldberg and Nivre,
2012) was developed by Xu et al. (2014). Am-
bati et al. (2015) presented an incremental algorithm
for transition based CCG parsing which introduced
two novel revealing actions to overcome the conse-
quences of the greedy nature of the previous parsers.

2.2 Neural Network Parsers
Neural Network parsers are attracting interest for
both speed and accuracy. There has been some
work on neural networks for constituent based
parsing (Collobert, 2011; Socher et al., 2013;
Watanabe and Sumita, 2015). Chen and Man-
ning (2014) developed a neural network architecture
for dependency parsing. This parser was fast and
accurate, parsing around 1000 sentences per second
and achieving an unlabeled attachment score of
92.0% on the standard Penn Treebank test data for
English. Chen and Manning (2014)’s parser used a
feed forward neural network. Several improvements
were made to this architecture in terms of using
Long Short-Term Memory (LSTM) networks (Dyer
et al., 2015), deep neural networks (Weiss et al.,
2015) and structured neural networks (Weiss et al.,
2015; Zhou et al., 2015; Alberti et al., 2015).

3 Our Neural Network Parser (NNPar)

The architecture of our neural network based
shift-reduce CCG parser is similar to that of Chen
and Manning (2014). We present the details of the
network and the model settings in this section. We
also discuss our structured neural network model.

3.1 Architecture
Figure 1 shows the architecture of our neural net-
work parser. There are three layers in the parser:
input, hidden and output layers. We first extract dis-
crete features like words, POS-tags and CCG su-

Figure 1: Our Neural Network Architecture
(adapted from Chen and Manning (2014)).

pertags from the parser configuration. For each of
these discrete features we obtain a continuous vec-
tor representation in the form of their corresponding
embeddings and use them in the input layer. Fol-
lowing Chen and Manning (2014), we use a cube
activation function and softmax for output layer.

3.2 Feature and Model Settings

We extract features from a) top four nodes in the
stack, b) next four nodes in the input and c) left and
right children of the top two nodes in the stack. We
obtain words and POS-tags of all these 12 nodes. In
case of CCG supertags, in addition to the CCG cate-
gories of the nodes in the stack (top four nodes, left
and right children of top two nodes), we also obtain
the lexical head categories for the top two nodes. We
use a special token ‘NULL’ if a feature is not present
in the parser configuration. So, in total we have 34
features: 12 word, 12 POS-tag and 10 CCG supertag
features. For each of these 34 features we obtain
their corresponding embeddings. We use Turian em-
beddings of dimensionality 50 (Turian-50)1. For the
words which are not in the word embeddings dictio-
nary, embeddings of ‘-UNKNOWN-’ token are used
as a backoff. For POS-tags and CCG supertags, the
parameters are randomly initialized with values be-
tween -0.01 and 0.01.

Our input layer is a 34 (feature templates) X 50
(embedding size) dimensional vector. We use 200

1Lewis and Steedman (2014b) explored different publicly
available word embeddings (Mnih and Hinton, 2009; Turian et
al., 2010; Collobert et al., 2011; Mikolov et al., 2013) for CCG
supertagging and showed that Turian-50 gave best results.

448

hidden units in the the hidden layer. For the output
layer we compute softmax probabilities only for
the actions which are possible in a particular parser
configuration instead of all the actions. We use the
training settings of Chen and Manning (2014) for
our parser. The training objective is to minimize
the cross-entropy loss with an l2-regularization and
the training error derivatives are backpropagated
during training. For optimization we use AdaGrad
(Duchi et al., 2011). 10−8 and 0.01 are the values
for regularization parameter and Adagrad initial
learning rate respectively. Parameters that give the
best labeled F-score on the development data are
used for testing data.

3.3 Structured Neural Network

Chen and Manning (2014)’s parser is a greedy parser
and it is not straight forward to add a beam during
training into their parser. As a way of introducing a
beam, Weiss et al. (2015) presented a structured per-
ceptron training for the neural network parser. They
first pre-trained their neural network model. For the
final layer, they trained a structured perceptron using
beam search decoding which takes the neural net-
work hidden and output layers as the input. This
method, known as a structured neural network, gave
the state-of-the-art results for English dependency
parsing. In addition to using a softmax for the output
layer, we also applied this structured neural network
approach for our experiments using a beam. Unlike
Weiss et al. (2015)’s neural network architecture,
which consists of two hidden layers with 2048 hid-
den units each, we use the Chen and Manning (2014)
style architecture described in the previous sections.

3.4 Comparison to Chen and Manning (2014)

Our neural network parser differs from Chen and
Manning (2014) in a number of respects. We use
CCG supertags in the input layer rather than depen-
dency labels. For word embeddings, we use Turian
embeddings (Turian et al., 2010) whereas they use
Collobert et al. (2011). We have a slightly smaller
set of 34 feature templates as compared to their 48
templates. Our parser has 2296 actions when instan-
tiated by specific categorial types: 1285 Shift,
340 Reduce-Left, 593 Reduce-Right and
78 Reduce-Unary actions. In comparison, Chen
and Manning (2014) have a much smaller number

of actions (35 for CoNLL and 91 for Stanford
dependencies). Because there are many more CCG
categories (∼ 500) compared to dependency labels,
there are relatively more operations in a CCG parser.

4 Experiments and Results

We first compare our neural network parser
(NNPar)2 with a perceptron based parser in the
greedy settings. Then we analyze the impact of
beam using neural network (NNPar) and structured
neural network (Structured NNPar) models.

The perceptron based parser is a re-
implementation of Zhang and Clark (2011)’s
parser (Z&C*). A global linear model trained with
the averaged perceptron (Collins, 2002) is used
for this parser and an early-update (Collins and
Roark, 2004) strategy is used during training. In
the greedy setting (beam=1), when the predicted
action differs from the gold action, decoding stops
and weights are updated accordingly. When a beam
is used (beam=16), weights are updated when the
gold parse configuration falls out of the beam. For
Z&C*, the feature set of Zhang and Clark (2011),
which comprises of 64 feature templates is used.
For NNPar, the 34 feature templates described in
section 3.2 are used. We employ an arc-standard
style shift-reduce algorithm for CCG parsing,
similar to Zhang and Clark (2011), for all our
experiments.

4.1 Data and Settings

We use the standard CCGbank training (sections 02
− 21), development (section 00) and testing (section
23) splits for our experiments. All the experiments
are performed using automatic POS-tags and CCG
supertags. We compare performance using two
types of taggers: maximum entropy and neural
network based taggers (NNT). The C&C taggers 3

(Clark and Curran, 2004) are used for maximum en-
tropy taggers. For neural network taggers, SENNA
tagger4 (version 3.0) (Collobert et al., 2011) is used

2We used Chen and Manning (2014)’s classifier for imple-
menting our NNPar

3http://svn.ask.it.usyd.edu.au/trac/
candc/wiki

4http://ronan.collobert.com/senna/

449

for POS-tagging and EasyCCG tagger5 (Lewis and
Steedman, 2014a) is used for supertagging. Both
these taggers use a feed-forward neural network
architecture with a single hidden layer similar to our
NNPar architecture.

In the case of POS-tags, we consider the first best
tag given by the POS tagger. For CCG supertags, we
use a multitagger which gives n-best supertags for a
word. Following Zhang and Clark (2011) and Xu
et al. (2014), only during training, the gold CCG
lexical category is added to the list of supertags for
a word if it is not present in the list assigned by the
multitagger.

4.2 Greedy Setting

In this section, we compare the performance of
perceptron (Z&C*) and neural network (NNPar)
parsers in the greedy setting. Table 1 presents the
unlabeled F-score (UF), labeled F-score (LF) and
lexical category accuracy (Cat.) for the Z&C* and
NNPar on the CCGbank development data.

NNPar outperformed Z&C* on all the metrices.
There is an improvement of 2.14% in UF and 2.4%
in LF, when both the parsers used maximum-entropy
(C&C) taggers. We also experimented with the re-
vealing based incremental algorithm of Ambati et al.
(2015). Neural network parser gave better results
than the perceptron parser for the incremental algo-
rithm as well. Using the incremental algorithm, our
NNPar obtained UF and LF of 89.08% and 81.07%
which is 0.3% and 1.6% respectively lower than the
results with the non-incremental algorithm. So, for
the rest of the experiments we use non-incremental
parsing algorithm of Z&C*.

Using neural network based taggers (NNT) didn’t
give any improvement for Z&C* in the greedy
settings. Performance of NNT is slightly lower
than C&C tagger which could be the reason for
this (Lewis and Steedman, 2014a). But for NNPar,
NNT improved the performance over C&C by
0.7%. Lewis and Steedman (2014a) and Xu et
al. (2015) showed improvements in the performance
of C&C, a graph based parser, by using neural
network taggers. Our result with NNPar is in line
with theirs and shows that neural network taggers

5http://homepages.inf.ed.ac.uk/s1049478/
easyccg.html

can improve the performance of shift-reduce CCG
parsers as well. We obtained final unlabeled and
labeled F-scores of 90.09% and 83.33% respec-
tively on the development data. To the best of our
knowledge these are the best reported results for
greedy shift-reduce CCG parsing.

Model Tagger UF LF Cat.
Z&C* C&C 87.24 80.25 91.09
Our NNPar C&C 89.38 82.65 91.72
Z&C* NNT 87.00 79.78 90.52
Our NNPar NNT 90.09 83.33 92.03

Table 1: Performance of greedy CCG parsers on
CCGbank development data (Sec. 00).

4.3 Beam Search
We next analyze the impact of beam-search on the
various parsers. For Z&C* and Structured NNPar,
we use a beam of size 16 both during training and
testing; for NNPar, a beam (of 16) can be used only
during testing. Table 2 presents the results using a
beam size of 16. Results are presented with a beam
of size 16 to enable direct comparison with Zhang
and Clark (2011), since our parsing algorithm is sim-
ilar to theirs.

The top 3 rows of the table show the results of our
experiments and the last 2 rows contain published
results of Zhang and Clark (2011) and Xu et
al. (2014). Using a beam improved the performance
of both the perceptron and neural network parsers.
Since NNPar uses a beam only during testing, there
is only slight improvement in the f-score. Using a
structured neural network gave a significant boost
in performance. Structured NNPar is better than
NNPar on all the metrices which shows that Struc-
tured NNPar is a stronger model than NNPar. We
obtained a final LF of 85.69% on the development
data which is 1.3% better than the Z&C*, the
structured perceptron counter part, and 1.1% better
than NNPar. This is the best published result on the
development data for shift-reduce CCG parsing.
4.4 Final Test Results
Table 3 presents the results for the final test data.
The top 2 rows of the table present the results in
the greedy settings. The middle 3 rows of the table
show the results with a beam. The last 2 rows give
the published results of Zhang and Clark (2011)

450

Model Beam UF LF Cat.

Z&C* 1 87.28 80.78 91.44
Our NNPar 1 89.78 83.27 91.89
Z&C* 16 91.28 85.00 92.79
Our NNPar 16 91.14 84.44 92.22
Our Structured NNPar 16 91.95 85.57 92.86
Zhang and Clark (2011) 16 - 85.48 92.77
Xu et al. (2014) 128 - 86.00 92.75

Table 3: Results on CCGbank test data (Sec. 23).

Model UF LF Cat.
Z&C* 91.17 84.34 92.42
Our NNPar 91.46 84.55 92.35
Our Structured NNPar 92.19 85.69 93.02
Zhang and Clark (2011) 85.00 92.77
Xu et al. (2014) 85.18 92.75

Table 2: Impact of the beam on CCGbank develop-
ment data (Sec. 00).

and Xu et al. (2014). With the greedy setting, our
NNPar outperformed Z&C* by around 2.5%, ob-
taining 89.78% and 83.27% UF and LF respectively.
These are the best reported result for greedy shift-
reduce CCG parsing.

In the case of the beam search parsers, we
achieved final best scores of 91.95% in UF and
85.57% in LF with our Structured NNPar. Struc-
tured NNPar gave improvements of 1.1% over the
NNPar and 0.6% over the structured perceptron
model, Z&C*. Structured NNPar gets better cate-
gory accuracy, but lower LF than Xu et al.(2014).
Note however that we use a much smaller beam size
of 16 (similar to Z&C) as compared to theirs (128).
Increasing the beam size improved the accuracy but
significantly reduced the parsing speed. Testing with
a beam of size 128 gave 0.2% improvement in la-
belled F-score but slowed the parser by ten times.

4.5 Speed

Beam-search parsers are more accurate than greedy
parsers but are very slow. With neural network mod-
els we can build parsers which give a nice trade-off
between speed and accuracy. Table 4 present the
speed comparison for both Z&C* and our NNPar
in greedy settings. NNPar is much faster, pars-
ing 350 sentences per second compared to Z&C*

which parses 110 sentences per second. Parsers with
a beam of size 16 parse around 10 sentences per
second and parsers with a beam of size 128 parse
around 1 sentence per second. These numbers don’t
include POS tagging and supertagging time.

Model Sentences/Second

Z&C* 110
NNPar 350

Table 4: Speed comparison of perceptron and neural
network based greedy parsers.

5 Conclusion

We presented the first neural network based shift-
reduce parsers for CCG, a greedy and a beam-
search parser. On the standard CCGbank test data,
we achieved a labeled F-score of 85.57% with our
structured neural network parser, an improvement of
0.6% over the structured perceptron parser (Z&C*).
Our greedy parser gets UF and LF of 89.78% and
83.27% respectively, the best reported results for a
greedy CCG parser, and is more than three times
faster. In future we plan to explore more sophis-
ticated tagging and parsing models like deep neu-
ral networks (Weiss et al., 2015), recurrent neu-
ral networks (Dyer et al., 2015), and bi-directional
LSTMs (Lewis et al., 2016) for shift-reduce CCG
parsing.

The parser code can be downloaded at
https://github.com/bharatambati/tranccg.

Acknowledgments

We thank Mike Lewis, Greg Coppola and Siva
Reddy for helpful discussions. We also thank the
three anonymous reviewers for their useful sugges-
tions. This work was supported by ERC Advanced

451

Fellowship 249520 GRAMPLUS and EU IST Cog-
nitive Systems IP Xperience.

References

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved Transition-Based Parsing
and Tagging with Neural Networks. In Proceedings
of the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1354–1359, Lisbon,
Portugal, September.

Bharat Ram Ambati, Tejaswini Deoskar, Mark Johnson,
and Mark Steedman. 2015. An Incremental Algo-
rithm for Transition-based CCG Parsing. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 53–63,
Denver, Colorado, May–June.

Michael Auli and Adam Lopez. 2011. A Comparison
of Loopy Belief Propagation and Dual Decomposition
for Integrated CCG Supertagging and Parsing. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 470–480, Portland, Oregon, USA,
June.

Danqi Chen and Christopher Manning. 2014. A Fast and
Accurate Dependency Parser using Neural Networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar, October.

Stephen Clark and James R. Curran. 2004. The Impor-
tance of Supertagging for Wide-Coverage CCG Pars-
ing. In Proceedings of Coling 2004, pages 282–288,
Geneva, Switzerland, Aug 23–Aug 27. COLING.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33:493–552.

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of the 42nd Meeting of the Association for Com-
putational Linguistics (ACL’04), Main Volume, pages
111–118, Barcelona, Spain, July.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Natural
Language Processing, pages 1–8, July.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural Lan-
guage Processing (Almost) from Scratch. Journal of
Machine Learning Research, 12:2493–2537.

Ronan Collobert. 2011. Deep learning for efficient dis-
criminative parsing. In International Conference on
Artificial Intelligence and Statistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China, July.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Or-
acle for Arc-Eager Dependency Parsing. In Proceed-
ings of COLING 2012, pages 959–976, Mumbai, In-
dia, December. The COLING 2012 Organizing Com-
mittee.

Julia Hockenmaier and Mark Steedman. 2002. Gener-
ative Models for Statistical Parsing with Combinatory
Categorial Grammar. In Proceedings of 40th Annual
Meeting of the Association for Computational Lin-
guistics, pages 335–342, Philadelphia, Pennsylvania,
USA, July.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Dependency
Structures Extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Mike Lewis and Mark Steedman. 2014a. A* CCG Pars-
ing with a Supertag-factored Model. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, October.

Mike Lewis and Mark Steedman. 2014b. Improved CCG
parsing with Semi-supervised Supertagging. Transac-
tions of the Association for Computational Linguistics
(TACL), 2:327–338.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG Parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, San Diego, California, June.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Proceedings of Workshop
at ICLR.

Andriy Mnih and Geoffrey Hinton. 2009. A Scalable Hi-
erarchical Distributed Language Model. In Advances
in Neural Information Processing Systems, volume 21,
pages 1081–1088.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with Compositional

452

Vector Grammars. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 455–465, Sofia,
Bulgaria, August.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 384–394, Uppsala,
Sweden, July.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based Neural Constituent Parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 1169–1179, Beijing, China,
July.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Network
Transition-Based Parsing. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 323–333, Beijing, China, July.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014.
Shift-Reduce CCG Parsing with a Dependency Model.
In Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 218–227, Baltimore, Maryland,
June.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG Supertagging with a Recurrent Neural Network.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 250–255,
Beijing, China, July.

Yue Zhang and Stephen Clark. 2011. Shift-Reduce CCG
Parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 683–692, Port-
land, Oregon, USA, June.

Yue Zhang and Joakim Nivre. 2011. Transition-based
Dependency Parsing with Rich Non-local Features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 188–193, Portland, Ore-
gon, USA.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun Chen.
2015. A Neural Probabilistic Structured-Prediction
Model for Transition-Based Dependency Parsing. In

Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1213–1222,
Beijing, China, July.

453

Proceedings of NAACL-HLT 2016, pages 454–459,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Online Multilingual Topic Models with Multi-Level Hyperpriors

Kriste Krstovski†,§, David A. Smith‡ and Michael J. Kurtz †
†Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

§College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA
‡College of Computer and Information Science, Northeastern University, Boston, MA

kkrstovski@cfa.harvard.edu, dasmith@ccs.neu.edu, kurtz@cfa.harvard.edu

Abstract

For topic models, such as LDA, that use
a bag-of-words assumption, it becomes es-
pecially important to break the corpus into
appropriately-sized “documents”. Since the
models are estimated solely from the term
cooccurrences, extensive documents such as
books or long journal articles lead to diffuse
statistics, and short documents such as forum
posts or product reviews can lead to sparsity.
This paper describes practical inference pro-
cedures for hierarchical models that smooth
topic estimates for smaller sections with hy-
perpriors over larger documents. Importantly
for large collections, these online variational
Bayes inference methods perform a single
pass over a corpus and achieve better perplex-
ity than “flat” topic models on monolingual
and multilingual data. Furthermore, on the
task of detecting document translation pairs
in large multilingual collections, polylingual
topic models (PLTM) with multi-level hyper-
priors (mlhPLTM) achieve significantly better
performance than existing online PLTM mod-
els while retaining computational efficiency.

1 Introduction

Bag of words models simplify the representation of
documents by discarding grammatical information
and simply relying on document-level word cooc-
currence statistics. Topic models, such as latent
Dirichlet allocation (LDA) (Blei et al., 2003), use
this representation. A major drawback of the bag
of words representation, especially in collections
of large documents, is that the word co-occurrence
statistics are computed on a document level and

as such they do not capture the effect of words
co-occurring close to each other versus words co-
occurring further apart.

One alternative approach to longer documents
that has received attention in the past has been to
directly model local—i.e., Markov—dependencies
among tokens. For example, the topical n-gram
model (TNG) introduced by Wang et al. (2007)
models unigram and n-gram phrases as mixture of
topics based on the nearby word context. More
recently, Jameel & Lam (2013) proposed an LDA
extension that uses word sequence information to
generate topic distribution over n-grams and per-
forms topic segmentation using segment and para-
graph information. While these and many other ap-
proaches offer a better and more realistic modeling
of word sequences, they don’t model topical varia-
tions across document sections either in mono- or
multilingual collections.

In this paper, we focus on hierarchical models for
improving topic models of long documents. In the
past, document-topic based hierarchical prior struc-
tures have been explored for LDA. For example,
Wallach et al. (2009) showed that Gibbs sampling
implementation of asymmetric Dirichlet priors pro-
vide better modeling of documents, across the whole
collection, compared to the original LDA approach.
More recently, Kim et al. (2013) introduced tiLDA,
a topic model of monolingual document collections
with nested hierarchies. In order to achieve reason-
able performance over large document collections
with deep hierarchies, tiLDA utilizes parallel vari-
ational Bayes (VB) inference. While VB is known
to converge faster than Gibbs sampling, and paral-

454

lel implementations are even faster, they, as with
Gibbs sampling, still require multiple iterations over
the whole collection besides the overhead of paral-
lelizing the model parameters. Furthermore these
approaches focus on monolingual collections.

We propose an online VB inference approach for
topic models that captures the document specific ef-
fect of local and long range word co-occurrence by
modeling individual document sections using multi-
level Dirichlet prior structure. The proposed models
assign Dirichlet priors to individual document sec-
tions that are coupled by a document level hierarchi-
cal Dirichlet prior which facilitates explicit model-
ing of the variation in topics across documents in
mono- and multilingual collections. This in turn
streamlines the use of topic models in collections
of large documents where there is a predetermined
section structure. Our contribution is twofold: (1)
we present an online VB inference approach for
topic models with multi-level Dirchlet prior struc-
ture and more importantly (2) introduce a polylin-
gual topic model (PLTM) with multi-level hyperpri-
ors (mlhPLTM) which is capable of efficiently mod-
eling topical variations across document sections in
large multilingual collections.

2 Efficient Multi-level Hyperpriors

The original LDA model and its multilingual vari-
ant, PLTM, use symmetric Dirichlet priors over the
document-topic distributions θd and topic-word dis-
tributions ϕk which means that the concentration pa-
rameter α of the Dirichlet distribution is fixed and
that the base measure u across all topics is uni-
form. Symmetric Dirichlet priors assume that all
documents in the collection are drawn from the same
family of distributions. This assumption is not suit-
able for collections of documents that cover a di-
verse set of topics. In the past this issue has been
addressed with asymmetric priors where the base
measures are non-uniform. One way to assign asym-
metric priors to individual documents is to treat the
base measures vector u as a hidden variable and
assign a symmetric Dirichlet prior to it which cre-
ates a hierarchical Dirichlet prior structure over all
document-topic distributions in the collection. This
approach was used by Wallach et al. (2009). Unlike
Wallach et al. (2009), who use a single document-

w

d
N1

S

D

1

wz
NL

1

L L

T

. . .

. . .s

D

d

N1

s

S
NL

1

1

T

L

L

T

.d

u

s

z

D





TN

N

D


T

sd

wzsd

d s

d s

d

z z

z

s 



S

u

S

Figure 1: mlhLDA: Graphical representation (left); Free
variational parameters for the online VB approximation
(right).

topic distribution θd, we introduce section-topic dis-
tributions θs. The existing symmetric Dirichlet prior
over θd creates a hierarchical Dirichlet prior over θs
(θ = θd, θs1 , θs2 , ..., θsS):

p(θ|αdu, αs) ∝ p(θd|αdu)
∏
s

p(θs|αsθd) (1)

In this setting the most widely used approach for es-
timating θd is Minka’s (2000) fixed-point iteration
approach which is also used in (Kim et al., 2013).
Instead we use a more efficient approach for estimat-
ing the Dirichlet-multinomial hyperparameters by
approximating the digamma differences in Minka’s
approach which was showcased in (Wallach, 2008)
to be more efficient. Figure 1 shows the graphical
model representation (left) of our model, which we
refer to as multi-level hyperpriors LDA (mlhLDA),
along with the free variational parameters for ap-
proximating the posteriors (right).

2.1 Inference using Online VB

Due to its ease of implementation, the most widely
used approach for inferring LDA posterior distri-
butions is Gibbs sampling (Griffiths and Steyvers,
2004). For example, this approach was used by
Wallach et al. (2009) and was originally used for
PLTM. On the other hand the VB approach (Blei et
al., 2003) offers more efficient computation but as
in the case of Gibbs sampling requires iterating over
the whole collection multiple times (e.g. Kim et al.
(2013)). More recently Hoffman et al. (2010) in-
troduced online LDA (oLDA) that relies on online
stochastic optimization and requires a single pass
over the whole collection. The same approach was
also extended to PLTM (oPLTM) (Krstovski and
Smith, 2013). In our work we also utilize online VB
to implement multi-level hyperprior (mlh) structure
in LDA and PLTM. Similar to batch VB, in online

455

VB locally optimal values of the free variational pa-
rameters γ and φ, which are used to approximate
the posterior θ and z, are computed in the E step
of the algorithm but on a batch b of documents di
(rather than the whole collection D as in the case of
batch VB) while holding the topic-word variational
parameter λ fixed. In the M step, λ is updated using
stochastic gradient algorithm by first computing the
optimal values of λ̃ using the batch optimal values of
φb: λ̃kw = η+ D

|b|
∑|b|

i=1 ndiwφ
di
wk. This value is then

combined with value of λ computed on the previous
batch through weighted average:

λbkw ← (1− ρb)λb−1
kw + ρbλ̃kw (2)

When computing the section-topic variational pa-
rameters we follow the proof of the lower bound
which was derived by Kim et al. (2013). This lower
bound, which is looser than the original VB Evi-
dence Lower Bound (ELBO), allows for the batch
VB approach to be used with asymmetric priors.
More specifically, given the document-topic varia-
tional parameter γdk in the E step of our online VB
approach the update for the section-topic variational
parameter γsk becomes:

γsk = αs(
γdk∑
k γdk

) +
∑
w

nsw φ
s
wk (3)

3 Online PLTM with multi-level Dirichlet
Priors

Given an aligned multilingual document tuple,
PLTM assumes that: (1) there exists a single tuple-
specific distribution across topics and (2) sets of lan-
guage specific topic-word distributions. Each word
is generated from a language- and topic-specific
multinomial distribution ϕlk as selected by the topic
assignment variable zln:

wln ∼ p
(
wln | zln, ϕlk

)
(4)

We extend this model by introducing sections spe-
cific topic distributions θs across the different lan-
guages in the tuple which are coupled by the tuple
specific document-topic distribution θd.

Given a collection of document tuples d where
each tuple contains l documents that are translations
of each other in different languages, mlhPLTM as-
sumes the following generative process. For each
language l in the collection the model first gener-
ates a set of k ∈ {1, 2, ...,K} topic-word distribu-

w

d
N1

S

D

1

wz
NL

1

L L

T

. . .

. . .s

D

d

N1

s

S
NL

1

1

T

L

L

T

.d

u

s

z

D





TN

N

D


T

sd

wzsd

d s

d s

d

z z

z

s 



S

u

S

Figure 2: mlhPLTM: Graphical model representation.

w

d
N1

S

D

1

wz
NL

1

L L

T

. . .

. . .s

D

d

N1

s

S
NL

1

1

T

L

L

T

.d

u

s

z

D





TN

N

D


T

sd

wzsd

d s

d s

d

z z

z

s 



S

u

S

Figure 3: mlhPLTM: Graphical representation of the free
variational parameters for the online VB approximation.

tions, ϕlk which are drawn from a Dirichlet prior
with language specific hyperparameter βl: ϕlk ∼
Dirichlet(βl). For each document dl with sd sec-
tions in tuple d, mlhPLTM then assumes the follow-
ing generative process:

•Choose θd ∼ Dir.(αd)
• For each section sd in document tuple d:

•Choose θs ∼ Dir.(αsθd)
– For each language l in section s:
∗ For each word w in section sld:
·Choose a topic z ∼Multi.(θls)
·Choose a word w ∼Multi.(ϕlz)

Figure 2 shows the graphical representation of mlh-
PLTM. The free variational parameters for the on-
line VB approximation of the posteriors are shown
in Figure 3.

4 Modeling Sections in Scientific Articles

We explore the ability of mlhLDA to model vari-
ations across document sections found in scientific
articles using a collection of journal articles from
the Astrophysics Data System (ADS) (Kurtz et al.,
2000). Our collection consists of 130k training ar-
ticles (888,346 sections) and a held-out set of 8,078
articles (54,502 sections). Figure 4 shows an exam-
ple mlhLDA representation of an ApJ article with
100 topics. Shown on the top is the inferred topic
representation of the whole document (θd) which, in
the mlhLDA model, serves as a prior for the section-
topic distributions (θs). Shown on the bottom are ex-

456

1. INTRODUCTION
 Blazars are an intriguing class of active galactic nuclei
(AGNs), dominated by non-thermal radiation over the entire
electromagnetic spectrum. Their emission extends from
radio to TeV energies with a broadband spectral energy
distribution (SED) typically described by two main
components, the first peaking from IR to X-ray energy range
in which blazars are the most commonly detected
extragalactic sources ...

7. SUMMARY AND DISCUSSION
We have presented the infrared characterization of a sample
of blazars detected in the γ-ray. In order to perform our
selection, we considered all the blazars in the ROMA-
BZCAT catalog (Massaro et al. 2010) that are associated
with a γ-ray source in the 2FGL (The Fermi-LAT
Collaboration 2011). Then, we searched for infrared
counterparts in the WISE archive adopting the same criteria
described in Massaro et al. ...

Rank Topic=33 Topic=19 Topic=49

1 spectral aperture measured

2 amplification measured uncertainties

3 isotropic total catalog

4 dropout exposure matching

5 competition position estimated

6 caustic ratio respectively

7 detected selected final

8 antenna color cathode

9 function spread total

10 color objects limit

Rank Topic=21 Topic=49 Topic=91

1 entanglement measured ferroelectric

2 color uncertainties population

3 distance catalog rational

4 magnitude matching fraction

5 accretion estimated starburst

6 similar respectively shielding

7 modulus final similar

8 objects cathode emitting

9 right total reputation

10 parameters limit respectively

...

Figure 4: mlhLDA representation of the ApJ article “In-
frared Colors of the Gamma-Ray Detected Blazers”.

amples of 2 article sections (out of 7), their inferred
topic distributions along with the top 10 words for
each of the top 3 section topics.

50 200 400 600 800 1000 1500 2000
50

100

150

200

250

300

350

400

of Topics [K]

P
e

rp
le

x
it

y

oLDA

mlhLDA

5 6 7 8 9 10 11
300

350

400

450

500

550

600

650

700

Time [log(sec)]

P
e

rp
le

x
it

y

 batch VB

oLDA

mlhLDA

T=5

T=10

T=20

T=30

T=50

T=70
T=90

T=100

T=5

T=10

T=20

T=30

T=50

T=70

T=90
T=100

T=5

T=10

T=20

T=30

T=70
T=50

T=90
T=100

Figure 5: oLDA vs. mlhLDA: perplexity comparison
(left); speed vs. perplexity comparisons with batch VB
(right).

The left side of Figure 5 shows the held-out per-
plexity comparison between oLDA and mlhLDA
across 13 different topic configurations. For this
set of experiments we used the above training set
of 130k articles and the set of 8,078 held-out arti-
cles. From these comparisons we clearly see the ad-
vantage of using the multi-level Dirchlet prior struc-
ture. Another way of evaluating topic models is
through an extrinsic evaluation task which was not
available for this collection. In the case of oLDA, ar-
ticle sections were treated as individual documents.
In the original oLDA1 implementation the per doc-
ument concentration parameter αd was set to 1

K
which we also use in our case for both the sym-
metric θd and asymmetric θs (same goes for PLTM

1http://www.cs.princeton.edu/˜mdhoffma

and mlhPLTM). Since in our case we perform rel-
ative comparison between oLDA and mlhLDA we
weren’t concerned with experimenting with differ-
ent concentration parameters but we rather used the
default one implemented in oLDA.

With a random subset of 10k training and 1k held-
out articles we compared the performance of oLDA
and mlhLDA with the original batch VB2 implemen-
tation of Blei et al. (2003). Unlike the implemen-
tations of oLDA and mlhLDA which are written in
Python the original VB algorithm is written in C and
requires multiple iterations over the whole collec-
tion. The right side of Figure 5 shows the speed (in
natural log scale) vs. perplexity comparison across
the three models.

5 Modeling and Retrieving Speeches in
Europarl Sessions

We compared the modeling performance of oPLTM
and mlhPLTM on a subset of the English-Spanish
Europarl collection (Koehn, 2005). The subset
consists of ∼64k training pairs of English-Spanish
speeches that are translations of each other which
originate from 374 sessions of the European Par-
liament (Europarl) and a test set of ∼14k speech
translation pairs from 112 sessions. With oPLTM
we modeled individual speech pairs while with mlh-
PLTM we utilized the session hierarchy and mod-
eled pairs of speeches as document sections. Com-
parisons were performed intrinsically (using per-
plexity) and extrinsically on a cross-language infor-
mation retrieval (CLIR) task. This task, along with
the Europarl subset, have been previously defined by
Mimno et al. (2009) and used across other publica-
tions (Platt et al., 2010; Krstovski and Smith, 2013).
Given a query English speech, the CLIR task is to re-
trieve its Spanish translation equivalent. It involves
performing comparison across topic representations
of all Spanish speeches using Jensen-Shannon diver-
gence and sorting the results. Models are evaluated
using precision at rank one (P@1). Figure 6 shows
the CLIR task performance comparisons results us-
ing 13 different topic configurations. We performed
comparisons across three different settings of the
concentration parameters αd and αs (αd=αs= 1

K , 0.4
and 1.0).

2http://www.cs.princeton.edu/˜blei/lda-c

457

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Topics [K]

P
@

1

oPLTM (alpha=0.4)

oPLTM (alpha=1.0)

oPLTM (alpha=1/K)

mlhPLTM (alpha=0.4)

mlhPLTM (alpha=1.0)

mlhPLTM (alpha=1/K)

Figure 6: oPLTM vs. mlhPLTM: Performance com-
parison on the CLIR task using chronological order-
ing of sessions across different hyperparameter settings,
αd=αs= 1

K , 0.4 and 1.0 .

Across the different concentration parameter val-
ues and across the 13 different topic configurations
we observe that the performance of oPLTM fluc-
tuates as we increase the numbers of topics. On
the other hand, across the three different concen-
tration parameter settings, mlhPLTM performance
is very steady and tends to increase with the num-
ber of topics. Across the different topic configura-
tions both models provide the best performance with
αd = αs = 0.4. Setting the concentration parame-
ters to 1

K gives the overall worst performance.

In our initial experiments we unintentionally re-
ordered our set of training Europarl sessions based
on two digit years which was different from the
experimental setup in (Mimno et al., 2009) and
(Krstovski and Smith, 2013) where the order of the
presentation data (Europarl speeches) was chrono-
logical. This emphasized the fact that in online VB,
order of presentation of documents plays an impor-
tant role especially in the training step where the
model learns the per topic-word distributions. Fig-
ure 7 shows the performance comparison results be-
tween oPLTM and mlhPLTM when documents in
the training and test steps are ordered numerically.
In our initial experimental setup concentration pa-
rameters where set to αd = αs = 1

K . To the left is
the perplexity comparison between the two models.
The CLIR task performance comparisons results are
shown on the right. Unordered mlhPLTM achieves
high P@1 after 2,000 topics. While it takes much
longer in terms of the number of topics unordered
mlhPLTM ultimately achieves similar performance
results as ordered mlhPLTM.

50 200 400 600 800 1000 1500 2000
400

600

800

1000

1200

1400

1600

1800

of Topics [K]

P
e

rp
le

x
it

y

oPLTM (English)

mlhPLTM (English)

oPLTM (Spanish)

mlhPLTM (Spanish)

50 200 400 600 800 1,000 2,000

0.4

0.5

0.6

0.7

0.8

0.9

1

of Topics [K]

P
@

1

 oPLTM

mlhPLTM

Figure 7: oPLTM vs. mlhPLTM: perplexity comparison
(left); performance comparison on the CLIR task (right).
Documents were presented out of chronological order
and thus performance is lower, especially for oPLTM.

6 Conclusion

We presented online topic models with multi-level
Dirichlet prior structure that provide better model-
ing of topical variations across document sections in
mono- and multilingual collections. We showed that
documents with rich sub-document level structure
could be modeled with higher likelihood compared
to regular online LDA and PLTM models while of-
fering the same efficiency. Furthermore on the task
of retrieving document translations we showed that
mlhPLTM achieves significantly better retrieval re-
sults compared to online PLTM.

Acknowledgments

This work was supported in part by the Harvard-
Smithsonian CfA predoctoral fellowship, in part by
the Center for Intelligent Information Retrieval and
in part by NSF grant #IIS-0910884. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect those of the sponsor.

References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. JMLR, 3:993–1022.

T. L. Griffiths and M. Steyvers. 2004. Finding scien-
tific topics. Proceedings of the National Academy of
Sciences, 101(Suppl. 1):5228–5235.

Matthew Hoffman, David Blei, and Francis Bach. 2010.
Online learning for latent Dirichlet allocation. In
NIPS, pages 856–864.

Shoaib Jameel and Wai Lam. 2013. An unsupervised
topic segmentation model incorporating word order.
In SIGIR, pages 203–212.

458

Do-Kyum Kim, Geoffrey Voelker, and Lawrence K. Saul.
2013. A variational approximation for topic modeling
of hierarchical corpora. In ICML, pages 55–63.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT Summit, pages
79–86.

Kriste Krstovski and David A. Smith. 2013. Online
polylingual topic models for fast document translation
detection. In WMT, pages 252–261.

Michael J. Kurtz, Guenther Eichhorn, Alberto Acco-
mazzi, Carolyn S. Grant, Stephen S. Murray, and
Joyce M. Watson. 2000. The nasa astrophysics data
system: Overview. Astronomy and Astrophysics Sup-
plement Series, 143:41–59.

David Mimno, Hanna Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In EMNLP, pages 880–889.

Thomas P. Minka. 2000. Estimating a dirichlet distribu-
tion. Technical report, MIT.

John Platt, Kristina Toutanova, and Wen tau Yih. 2010.
Translingual document representations from discrimi-
native projections. In EMNLP, pages 251–261.

Hanna M. Wallach, David Mimno, and Andrew McCal-
lum. 2009. Rethinking LDA: Why priors matter. In
NIPS, pages 1973–1981.

Hanna M. Wallach. 2008. Structured Topic Models for
Language. Ph.D. thesis, University of Cambridge.

Xuerui Wang, Andrew McCallum, and Xing Wei. 2007.
Topical n-grams: Phrase and topic discovery, with an
application to information retrieval. In ICDM, pages
697–702.

459

Proceedings of NAACL-HLT 2016, pages 460–466,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

STransE: a novel embedding model of entities and relationships
in knowledge bases

Dat Quoc Nguyen1, Kairit Sirts1, Lizhen Qu2 and Mark Johnson1

1 Department of Computing, Macquarie University, Sydney, Australia
dat.nguyen@students.mq.edu.au, {kairit.sirts, mark.johnson}@mq.edu.au

2 NICTA, ACT 2601, Australia
lizhen.qu@nicta.com.au

Abstract

Knowledge bases of real-world facts about
entities and their relationships are useful re-
sources for a variety of natural language pro-
cessing tasks. However, because knowledge
bases are typically incomplete, it is useful to
be able to perform link prediction, i.e., pre-
dict whether a relationship not in the knowl-
edge base is likely to be true. This paper com-
bines insights from several previous link pre-
diction models into a new embedding model
STransE that represents each entity as a low-
dimensional vector, and each relation by two
matrices and a translation vector. STransE is
a simple combination of the SE and TransE
models, but it obtains better link prediction
performance on two benchmark datasets than
previous embedding models. Thus, STransE
can serve as a new baseline for the more com-
plex models in the link prediction task.

1 Introduction

Knowledge bases (KBs), such as WordNet (Fell-
baum, 1998), YAGO (Suchanek et al., 2007), Free-
base (Bollacker et al., 2008) and DBpedia (Lehmann
et al., 2015), represent relationships between en-
tities as triples (head entity, relation, tail entity).
Even very large knowledge bases are still far from
complete (Socher et al., 2013; West et al., 2014).
Link prediction or knowledge base completion sys-
tems (Nickel et al., 2015) predict which triples not
in a knowledge base are likely to be true (Taskar et
al., 2004; Bordes et al., 2011). A variety of differ-
ent kinds of information is potentially useful here,

including information extracted from external cor-
pora (Riedel et al., 2013; Wang et al., 2014a) and
the other relationships that hold between the enti-
ties (Angeli and Manning, 2013; Zhao et al., 2015).
For example, Toutanova et al. (2015) used informa-
tion from the external ClueWeb-12 corpus to signif-
icantly enhance performance.

While integrating a wide variety of information
sources can produce excellent results, there are sev-
eral reasons for studying simpler models that di-
rectly optimize a score function for the triples in
a knowledge base, such as the one presented here.
First, additional information sources might not be
available, e.g., for knowledge bases for specialized
domains. Second, models that don’t exploit external
resources are simpler and thus typically much faster
to train than the more complex models using addi-
tional information. Third, the more complex mod-
els that exploit external information are typically
extensions of these simpler models, and are often
initialized with parameters estimated by such sim-
pler models, so improvements to the simpler mod-
els should yield corresponding improvements to the
more complex models as well.

Embedding models for KB completion associate
entities and/or relations with dense feature vectors
or matrices. Such models obtain state-of-the-art per-
formance (Nickel et al., 2011; Bordes et al., 2011;
Bordes et al., 2012; Bordes et al., 2013; Socher et
al., 2013; Wang et al., 2014b; Guu et al., 2015) and
generalize to large KBs (Krompa et al., 2015). Ta-
ble 1 summarizes a number of prominent embedding
models for KB completion.

Let (h, r, t) represent a triple. In all of the models

460

Model Score function fr(h, t) Opt.

SE ‖Wr,1h−Wr,2t‖`1/2 ; Wr,1, Wr,2 ∈ Rk×k SGD

Unstructured ‖h− t‖`1/2 SGD

TransE ‖h + r− t‖`1/2 ; r ∈ Rk SGD

DISTMULT h>Wrt ; Wr is a diagonal matrix ∈ Rk×k AdaGrad

NTN u>r tanh(h>Mrt + Wr,1h + Wr,2t + br) ; ur , br ∈ Rd; Mr ∈ Rk×k×d; Wr,1, Wr,2 ∈ Rd×k L-BFGS

TransH ‖(I− rpr>p)h + r− (I− rpr>p)t‖`1/2 ; rp, r ∈ Rk ; I: Identity matrix size k × k SGD

TransD ‖(I + rph>p)h + r− (I + rpt>p)t‖`1/2 ; rp, r ∈ Rd ; hp, tp ∈ Rk ; I: Identity matrix size d× k AdaDelta

TransR ‖Wrh + r−Wrt‖`1/2 ; Wr ∈ Rd×k ; r ∈ Rd SGD

Our STransE ‖Wr,1h + r−Wr,2t‖`1/2 ; Wr,1, Wr,2 ∈ Rk×k; r ∈ Rk SGD

Table 1: The score functions fr(h, t) and the optimization methods (Opt.) of several prominent embedding models
for KB completion. In all of these the entities h and t are represented by vectors h and t ∈ Rk respectively.

discussed here, the head entity h and the tail entity
t are represented by vectors h and t ∈ Rk respec-
tively. The Unstructured model (Bordes et al., 2012)
assumes that h ≈ t. As the Unstructured model
does not take the relationship r into account, it can-
not distinguish different relation types. The Struc-
tured Embedding (SE) model (Bordes et al., 2011)
extends the unstructured model by assuming that h
and t are similar only in a relation-dependent sub-
space. It represents each relation r with two matri-
ces Wr,1 and Wr,2 ∈ Rk×k, which are chosen so
that Wr,1h ≈ Wr,2t. The TransE model (Bordes et
al., 2013) is inspired by models such as Word2Vec
(Mikolov et al., 2013) where relationships between
words often correspond to translations in latent fea-
ture space. The TransE model represents each rela-
tion r by a translation vector r ∈ Rk, which is cho-
sen so that h + r ≈ t.

The primary contribution of this paper is that
two very simple relation-prediction models, SE and
TransE, can be combined into a single model, which
we call STransE. Specifically, we use relation-
specific matrices Wr,1 and Wr,2 as in the SE model
to identify the relation-dependent aspects of both h
and t, and use a vector r as in the TransE model
to describe the relationship between h and t in this
subspace. Specifically, our new KB completion
model STransE chooses Wr,1, Wr,2 and r so that
Wr,1h + r ≈ Wr,2t. That is, a TransE-style rela-
tionship holds in some relation-dependent subspace,
and crucially, this subspace may involve very dif-
ferent projections of the head h and tail t. So Wr,1

and Wr,2 can highlight, suppress, or even change the

sign of, relation-specific attributes of h and t. For
example, for the “purchases” relationship, certain
attributes of individuals h (e.g., age, gender, mari-
tal status) are presumably strongly correlated with
very different attributes of objects t (e.g., sports car,
washing machine and the like).

As we show below, STransE performs better than
the SE and TransE models and other state-of-the-art
link prediction models on two standard link predic-
tion datasets WN18 and FB15k, so it can serve as
a new baseline for KB completion. We expect that
the STransE will also be able to serve as the basis
for extended models that exploit a wider variety of
information sources, just as TransE does.

2 Our approach

Let E denote the set of entities and R the set of re-
lation types. For each triple (h, r, t), where h, t ∈ E
and r ∈ R, the STransE model defines a score func-
tion fr(h, t) of its implausibility. Our goal is to
choose f such that the score fr(h, t) of a plausi-
ble triple (h, r, t) is smaller than the score fr′(h′, t′)
of an implausible triple (h′, r′, t′). We define the
STransE score function f as follows:

fr(h, t) = ‖Wr,1h + r−Wr,2t‖`1/2

using either the `1 or the `2-norm (the choice is made
using validation data; in our experiments we found
that the `1 norm gave slightly better results). To
learn the vectors and matrices we minimize the fol-
lowing margin-based objective function:

461

L =
∑

(h,r,t)∈G
(h′,r,t′)∈G′

(h,r,t)

[γ + fr(h, t)− fr(h′, t′)]+

where [x]+ = max(0, x), γ is the margin hyper-
parameter, G is the training set consisting of correct
triples, and G′(h,r,t) = {(h′, r, t) | h′ ∈ E , (h′, r, t) /∈
G} ∪ {(h, r, t′) | t′ ∈ E , (h, r, t′) /∈ G} is the set
of incorrect triples generated by corrupting a correct
triple (h, r, t) ∈ G.

We use Stochastic Gradient Descent (SGD) to
minimize L, and impose the following constraints
during training: ‖h‖2 6 1, ‖r‖2 6 1, ‖t‖2 6 1,
‖Wr,1h‖2 6 1 and ‖Wr,2t‖2 6 1.

3 Related work

Table 1 summarizes related embedding models for
link prediction and KB completion. The models
differ in the score functions fr(h, t) and the algo-
rithms used to optimize the margin-based objective
function, e.g., SGD, AdaGrad (Duchi et al., 2011),
AdaDelta (Zeiler, 2012) and L-BFGS (Liu and No-
cedal, 1989).

DISTMULT (Yang et al., 2015) is based on a
Bilinear model (Nickel et al., 2011; Bordes et al.,
2012; Jenatton et al., 2012) where each relation is
represented by a diagonal rather than a full matrix.
The neural tensor network (NTN) model (Socher et
al., 2013) uses a bilinear tensor operator to repre-
sent each relation. Similar quadratic forms are used
to model entities and relations in KG2E (He et al.,
2015) and TATEC (Garcia-Duran et al., 2015b).

The TransH model (Wang et al., 2014b) asso-
ciates each relation with a relation-specific hyper-
plane and uses a projection vector to project en-
tity vectors onto that hyperplane. TransD (Ji et al.,
2015) and TransR/CTransR (Lin et al., 2015b) ex-
tend the TransH model using two projection vec-
tors and a matrix to project entity vectors into a
relation-specific space, respectively. TransD learns
a relation-role specific mapping just as STransE, but
represents this mapping by projection vectors rather
than full matrices, as in STransE. Thus STransE can
be viewed as an extension of the TransR model,
where head and tail entities are associated with their
own project matrices, rather than using the same ma-
trix for both, as in TransR and CTransR.

Dataset #E #R #Train #Valid #Test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071

Table 2: Statistics of the experimental datasets used in
this study (and previous works). #E is the number of
entities, #R is the number of relation types, and #Train,
#Valid and #Test are the numbers of triples in the training,
validation and test sets, respectively.

Recently, Lao et al. (2011), Neelakantan et al.
(2015), Gardner and Mitchell (2015), Luo et al.
(2015), Lin et al. (2015a), Garcia-Duran et al.
(2015a) and Guu et al. (2015) showed that rela-
tion paths between entities in KBs provide richer in-
formation and improve the relationship prediction.
Nickel et al. (2015) reviews other approaches for
learning from KBs and multi-relational data.

4 Experiments

For link prediction evaluation, we conduct experi-
ments and compare the performance of our STransE
model with published results on the benchmark
WN18 and FB15k datasets (Bordes et al., 2013). In-
formation about these datasets is given in Table 2.

4.1 Task and evaluation protocol

The link prediction task (Bordes et al., 2011; Bordes
et al., 2012; Bordes et al., 2013) predicts the head or
tail entity given the relation type and the other entity,
i.e. predicting h given (?, r, t) or predicting t given
(h, r, ?) where ? denotes the missing element. The
results are evaluated using the ranking induced by
the score function fr(h, t) on test triples.

For each test triple (h, r, t), we corrupted it by
replacing either h or t by each of the possible en-
tities in turn, and then rank these candidates in as-
cending order of their implausibility value computed
by the score function. Following the protocol de-
scribed in Bordes et al. (2013), we remove any cor-
rupted triples that appear in the knowledge base, to
avoid cases where a correct corrupted triple might
be ranked higher than the test triple. We report the
mean rank and the Hits@10 (i.e., the proportion of
test triples in which the target entity was ranked in
the top 10 predictions) for each model. Lower mean
rank or higher Hits@10 indicates better link predic-
tion performance.

462

Following TransR/CTransR (Lin et al., 2015b),
TransD (Ji et al., 2015), TATEC (Garcia-Duran et
al., 2015b), RTransE (Garcia-Duran et al., 2015a)
and PTransE (Lin et al., 2015a), we used the en-
tity and relation vectors produced by TransE (Bor-
des et al., 2013) to initialize the entity and relation
vectors in STransE, and we initialized the relation
matrices with identity matrices. Following Wang et
al. (2014b), Lin et al. (2015b), He et al. (2015), Ji
et al. (2015) and Lin et al. (2015a), we applied the
“Bernoulli” trick for generating head or tail entities
when sampling incorrect triples. We ran SGD for
2,000 epochs to estimate the model parameters. Fol-
lowing Bordes et al. (2013) we used a grid search on
validation set to choose either the l1 or l2 norm in the
score function f , as well as to set the SGD learning
rate λ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}, the
margin hyper-parameter γ ∈ {1, 3, 5} and the num-
ber of vector dimensions k ∈ {50, 100}. The lowest
mean rank on the validation set was obtained when
using the l1 norm in f on both WN18 and FB15k,
and when λ = 0.0005, γ = 5, and k = 50 for
WN18, and λ = 0.0001, γ = 1, and k = 100 for
FB15k.

4.2 Main results

Table 3 compares the link prediction results of
our STransE model with results reported in prior
work, using the same experimental setup. The
first twelve rows report the performance of mod-
els that do not exploit information about alterna-
tive paths between head and tail entities. The next
two rows report results of the RTransE and PTransE
models, which are extensions of the TransE model
that exploit information about relation paths. The
last row presents results for the log-linear model
Node+LinkFeat (Toutanova and Chen, 2015) which
makes use of textual mentions derived from the large
external ClueWeb-12 corpus.

It is clear that Node+LinkFeat with the additional
external corpus information obtained best results. In
future work we plan to extend the STransE model
to incorporate such additional information. Table 3
also shows that models RTransE and PTransE em-
ploying path information achieve better results than
models that do not use such information. In terms of
models not exploiting path information or external
information, the STransE model scores better than

Method WN18 FB15k
MR H10 MR H10

SE (Bordes et al., 2011) 985 80.5 162 39.8
Unstructured (Bordes et al., 2012) 304 38.2 979 6.3
TransE (Bordes et al., 2013) 251 89.2 125 47.1
TransH (Wang et al., 2014b) 303 86.7 87 64.4
TransR (Lin et al., 2015b) 225 92.0 77 68.7
CTransR (Lin et al., 2015b) 218 92.3 75 70.2
KG2E (He et al., 2015) 348 93.2 59 74.0
TransD (Ji et al., 2015) 212 92.2 91 77.3
TATEC (Garcia-Duran et al., 2015b) - - 58 76.7
NTN (Socher et al., 2013) - 66.1+ - 41.4+

DISTMULT (Yang et al., 2015) - 94.2+ - 57.7+

Our STransE model 206 93.4 69 79.7
RTransE (Garcia-Duran et al., 2015a) - - 50 76.2
PTransE (Lin et al., 2015a) - - 58 84.6
NLFeat (Toutanova and Chen, 2015) - 94.3 - 87.0

Table 3: Link prediction results. MR and H10 denote
evaluation metrics of mean rank and Hits@10 (in %), re-
spectively. “NLFeat” abbreviates Node+LinkFeat. The
results for NTN (Socher et al., 2013) listed in this table
are taken from Yang et al. (2015) since NTN was origi-
nally evaluated on different datasets. The results marked
with + are obtained using the optimal hyper-parameters
chosen to optimize Hits@10 on the validation set; trained
in this manner, STransE obtains a mean rank of 244 and
Hits@10 of 94.7% on WN18, while producing the same
results on FB15k.

the other models on WN18 and produces the highest
Hits@10 score on FB15k. Compared to the closely
related models SE, TransE, TransR, CTransR and
TransD, STransE does better than these models on
both WN18 and FB15k.

Following Bordes et al. (2013), Table 4 analyzes
Hits@10 results on FB15k with respect to the re-
lation categories defined as follows: for each rela-
tion type r, we computed the averaged number ah of
heads h for a pair (r, t) and the averaged number at
of tails t for a pair (h, r). If ah < 1.5 and at < 1.5,
then r is labeled 1-1. If ah ≥ 1.5 and at < 1.5, then
r is labeled M-1. If ah < 1.5 and at ≥ 1.5, then r is
labeled as 1-M. If ah ≥ 1.5 and at ≥ 1.5, then r is
labeled as M-M. 1.4%, 8.9%, 14.6% and 75.1% of
the test triples belong to a relation type classified as
1-1, 1-M, M-1 and M-M, respectively.

Table 4 shows that in comparison to prior models
not using path information, STransE obtains high-
est Hits@10 result for M-M relation category at
(80.1%+83.1%)/2 = 81.6%. In addition, STransE

463

Method Predicting head h Predicting tail t
1-1 1-M M-1 M-M 1-1 1-M M-1 M-M

SE 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
Unstr. 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
CTransR 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8
KG2E 92.3 94.6 66.0 69.6 92.6 67.9 94.4 73.4
TransD 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2
TATEC 79.3 93.2 42.3 77.2 78.5 51.5 92.7 80.7
STransE 82.8 94.2 50.4 80.1 82.4 56.9 93.4 83.1

Table 4: Hits@10 (in %) by the relation category on
FB15k. “Unstr.” abbreviates Unstructured.

also performs better than TransD for 1-M and M-1
relation categories. We believe the improved per-
formance of the STransE model is due to its use of
full matrices, rather than just projection vectors as
in TransD. This permits STransE to model diverse
and complex relation categories (such as 1-M, M-1
and especially M-M) better than TransD and other
similiar models. However, STransE is not as good
as TransD for the 1-1 relations. Perhaps the ex-
tra parameters in STransE hurt performance in this
case (note that 1-1 relations are relatively rare, so
STransE does better overall).

5 Conclusion and future work

This paper presented a new embedding model for
link prediction and KB completion. Our STransE
combines insights from several simpler embed-
ding models, specifically the Structured Embedding
model (Bordes et al., 2011) and the TransE model
(Bordes et al., 2013), by using a low-dimensional
vector and two projection matrices to represent each
relation. STransE, while being conceptually sim-
ple, produces highly competitive results on standard
link prediction evaluations, and scores better than
the embedding-based models it builds on. Thus it
is a suitable candidate for serving as future baseline
for more complex models in the link prediction task.

In future work we plan to extend STransE to ex-
ploit relation path information in knowledge bases,
in a manner similar to Lin et al. (2015a), Garcia-
Duran et al. (2015a) or Guu et al. (2015).

Acknowledgments

This research was supported by a Google award
through the Natural Language Understanding Fo-
cused Program, and under the Australian Re-
search Council’s Discovery Projects funding scheme
(project number DP160102156).

NICTA is funded by the Australian Government
through the Department of Communications and the
Australian Research Council through the ICT Centre
of Excellence Program. The first author is supported
by an International Postgraduate Research Scholar-
ship and a NICTA NRPA Top-Up Scholarship.

References
Gabor Angeli and Christopher Manning. 2013. Philoso-

phers are Mortal: Inferring the Truth of Unseen
Facts. In Proceedings of the Seventeenth Conference
on Computational Natural Language Learning, pages
133–142.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A Col-
laboratively Created Graph Database for Structuring
Human Knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, pages 1247–1250.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning Structured Em-
beddings of Knowledge Bases. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, pages 301–306.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. A Semantic Matching Energy
Function for Learning with Multi-relational Data. Ma-
chine Learning, 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran,
Jason Weston, and Oksana Yakhnenko. 2013.
Translating Embeddings for Modeling Multi-relational
Data. In Advances in Neural Information Processing
Systems 26, pages 2787–2795.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Christiane D. Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Alberto Garcia-Duran, Antoine Bordes, and Nicolas
Usunier. 2015a. Composing Relationships with
Translations. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 286–290.

464

Alberto Garcia-Duran, Antoine Bordes, Nicolas Usunier,
and Yves Grandvalet. 2015b. Combining Two And
Three-Way Embeddings Models for Link Prediction in
Knowledge Bases. CoRR, abs/1506.00999.

Matt Gardner and Tom Mitchell. 2015. Efficient and Ex-
pressive Knowledge Base Completion Using Subgraph
Feature Extraction. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1488–1498.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing Knowledge Graphs in Vector Space. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 318–
327.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. 2015.
Learning to Represent Knowledge Graphs with Gaus-
sian Embedding. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowl-
edge Management, pages 623–632.

Rodolphe Jenatton, Nicolas L. Roux, Antoine Bordes,
and Guillaume R Obozinski. 2012. A latent factor
model for highly multi-relational data. In Advances
in Neural Information Processing Systems 25, pages
3167–3175.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge Graph Embedding via Dy-
namic Mapping Matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pages 687–696.

Denis Krompa, Stephan Baier, and Volker Tresp. 2015.
Type-Constrained Representation Learning in Knowl-
edge Graphs. In Proceedings of the 14th International
Semantic Web Conference, pages 640–655.

Ni Lao, Tom Mitchell, and William W. Cohen. 2011.
Random Walk Inference and Learning in a Large Scale
Knowledge Base. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 529–539.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. DBpedia - A
Large-scale, Multilingual Knowledge Base Extracted
from Wikipedia. Semantic Web, 6(2):167–195.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling Rela-
tion Paths for Representation Learning of Knowledge
Bases. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 705–714.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015b. Learning Entity and Relation Em-
beddings for Knowledge Graph Completion. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence Learning, pages 2181–2187.

D. C. Liu and J. Nocedal. 1989. On the Limited Memory
BFGS Method for Large Scale Optimization. Mathe-
matical Programming, 45(3):503–528.

Yuanfei Luo, Quan Wang, Bin Wang, and Li Guo.
2015. Context-Dependent Knowledge Graph Embed-
ding. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1656–1661.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 746–751.

Arvind Neelakantan, Benjamin Roth, and Andrew Mc-
Callum. 2015. Compositional Vector Space Models
for Knowledge Base Completion. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 156–166.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A Three-Way Model for Collective
Learning on Multi-Relational Data. In Proceedings of
the 28th International Conference on Machine Learn-
ing, pages 809–816.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Ev-
geniy Gabrilovich. 2015. A Review of Relational Ma-
chine Learning for Knowledge Graphs. Proceedings
of the IEEE, to appear.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation Extraction with
Matrix Factorization and Universal Schemas. In Pro-
ceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 74–
84.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning With Neural Ten-
sor Networks for Knowledge Base Completion. In Ad-
vances in Neural Information Processing Systems 26,
pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. YAGO: A Core of Semantic Knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, pages 697–706.

Ben Taskar, Ming fai Wong, Pieter Abbeel, and Daphne
Koller. 2004. Link Prediction in Relational Data. In

465

Advances in Neural Information Processing Systems
16, pages 659–666.

Kristina Toutanova and Danqi Chen. 2015. Observed
Versus Latent Features for Knowledge Base and Text
Inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung
Poon, Pallavi Choudhury, and Michael Gamon. 2015.
Representing Text for Joint Embedding of Text and
Knowledge Bases. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1499–1509.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014a. Knowledge Graph and Text Jointly Em-
bedding. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1591–1601.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014b. Knowledge Graph Embedding by
Translating on Hyperplanes. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, pages 1112–1119.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shao-
hua Sun, Rahul Gupta, and Dekang Lin. 2014.
Knowledge Base Completion via Search-based Ques-
tion Answering. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web, pages 515–526.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding Entities and Relations
for Learning and Inference in Knowledge Bases. In
Proceedings of the International Conference on Learn-
ing Representations.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. CoRR, abs/1212.5701.

Yu Zhao, Sheng Gao, Patrick Gallinari, and Jun Guo.
2015. Knowledge Base Completion by Learn-
ing Pairwise-Interaction Differentiated Embeddings.
Data Mining and Knowledge Discovery, 29(5):1486–
1504.

466

Proceedings of NAACL-HLT 2016, pages 467–472,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

An Unsupervised Model of Orthographic Variation
for Historical Document Transcription

Dan Garrette
Computer Science & Engineering

University of Washington
dhg@cs.washington.edu

Hannah Alpert-Abrams
Comparative Literature Program

University of Texas at Austin
halperta@gmail.com

Abstract

Historical documents frequently exhibit ex-
tensive orthographic variation, including ar-
chaic spellings and obsolete shorthand. OCR
tools typically seek to produce so-called diplo-
matic transcriptions that preserve these vari-
ants, but many end tasks require transcriptions
with normalized orthography. In this paper,
we present a novel joint transcription model
that learns, unsupervised, a probabilistic map-
ping between modern orthography and that
used in the document. Our system thus pro-
duces dual diplomatic and normalized tran-
scriptions simultaneously, and achieves a 35%
relative error reduction over a state-of-the-art
OCR model on diplomatic transcription, and a
46% reduction on normalized transcription.

1 Introduction

Optical Character Recognition (OCR) for historical
texts, a challenging problem due to unknown fonts
and deteriorating documents, is made even more dif-
ficult by the fact that orthographic conventions in-
cluding spelling, accent usage, and shorthands have
not been consistent across the history of printing.
For this reason, modern language models (LMs)
yield poor performance when trying to recognize
characters on the pages of these documents. Further-
more, transcription of the actual printed characters
may not always be the most desirable output.

Greg (1950) describes two types of transcription:
one that preserves variants and typographical er-
rors, and another that records the substantive con-
tent, with this noise removed. Though in 1950 the
substantive version was the norm, today these have

become two distinct but equally valid tasks. Diplo-
matic transcription, the standard in contemporary
OCR, preserves the variants of the document valu-
able to book historians and linguists. Normalized
or modernized transcription recovers the substantive
content, producing a text that adheres to modern
standards. Normalized transcriptions are easier for
users to read, and make large collections of histori-
cal texts indexable and searchable (Driscoll, 2006).

The current ideal for digital editions of histori-
cal texts has been described as a combination of
diplomatic and normalized transcription (Pierazzo,
2014). This is generally achieved with a pipeline:
first OCR is used to transcribe the document, then an
(often manual) post-hoc normalization is performed.
However, such a pipeline will result in cascading er-
rors from OCR mistakes, and fails to make use of
knowledge about modern language during the initial
transcription. Additionally, post-processing tools
are typically cumbersome language-specific, hand-
built systems (Baron and Rayson, 2008; Burns,
2013; Hendrickx and Marquilhas, 2011).

In this work, we introduce a novel OCR model
designed to jointly produce both diplomatic and nor-
malized transcriptions. The model is an extension of
Berg-Kirkpatrick et al.’s (2013) Ocular, the state of
the art in historical OCR. Ocular’s innovative abil-
ity to handle the material challenges of OCR (un-
known fonts, uneven inking, etc.) depends on its use
of a character n-gram LM. Our model improves the
quality of Ocular’s transcriptions by automatically
learning a probabilistic mapping between the LM,
which is trained on modern text, and the unique or-
thography of the document. This results in both an

467

improved orthographically-correct diplomatic tran-
scription and a modern-style normalized transcrip-
tion. To our knowledge, this represents the first
OCR system that jointly produces both diplomatic
and normalized transcriptions.

We evaluate our model on a multilingual collec-
tion of books exemplifying a high degree of ortho-
graphic variation. For diplomatic transcription, our
unsupervised joint model achieves an error reduc-
tion of 35% over the baseline Ocular system with-
out support for orthographic variation, and nearly
matches the error rate of an approach proposed by
earlier work that uses a hand-constructed ruleset of
orthographic rewrites. However, for the new task of
normalized transcription, we achieve a 46% error re-
duction over the baseline, as well as a 28% reduction
over the hand-built ruleset approach.

2 Data

The Primeros Libros corpus dataset introduced in
our previous work consists of multilingual (Span-
ish/Latin/Nahuatl) books printed in Mexico in the
1500s (Garrette et al., 2015). The original dataset in-
cludes gold diplomatic transcriptions of pages from
five books of different time periods, regions, lan-
guages, and fonts. We additionally include two new
monolingual Spanish Primeros Libros books anno-
tated with both diplomatic and normalized transcrip-
tions. Spanish-only texts were needed in order to
find language-competent annotators skilled enough
to create the more challenging normalized transcrip-
tions. We used each of the seven books in isolation
since they each have a different font. For each book,
we used 20 pages for training and 10 for testing. For
two of the books, an additional 10 pages were held
out for tuning hyperparameters with grid search.

To produce the Spanish and Latin LMs, we used
texts from Project Gutenberg; these documents were
written during the target historical period, but all fol-
low modernization standards including substitution
for obsolete characters and expansion of shorthand.
These texts were chosen because they are a realis-
tic sample set that is freely and publicly available.
In the Nahuatl case, scarce online resources made it
necessary to supplement Project Gutenberg text with
that from a private collection.

sp. sp. sp. sp.l0 l5

u r a nc0 c5

v r ãg0 g5

|

v r ã

Language

LM char

Glyph char

Typesetting

Rendering

Figure 1: Our generative OCR model with the new
glyph layer (bolded). The Spanish (sp.) n-gram lan-
guage model (LM) generates a sequence of charac-
ters according to standard Spanish spellings, uran
in this case, from the word procurando which may
be written procvrãdo. Language-specific character-
replacement probabilities are used to generate a
glyph char from each LM char, producing vrã and
a zero-width (elided) n. Finally, the model generates
a bounding box and right-side padding (the typeset-
ting) and a pixel-rendering of the glyph character.

3 Model

We extend Ocular, the generative model of Berg-
Kirkpatrick et al. (2013), and its EM training pro-
cedure, to support our unsupervised approach to
jointly modeling both diplomatic and normalized
transcription. Ocular works by modeling the op-
eration of a hand press in order to learn unknown
fonts in the presence of the visual noise of the print-
ing process: uneven inking and spacing in particular.
Briefly, Ocular’s generative story is as follows. First,
a sequence of language states `i is generated accord-
ing to P LANG(`i | `i−1), where `i−1 and `i may only
differ on the start of a word. For each state, a charac-
ter ci is generated according to its language-specific
n-gram LM: P CHAR

`i
(ci | ci−n+1 ... ci−1). Next, a

state’s typesetting ti, consisting of a character’s
bounding box, vertical offset, and between-character
padding, is generated according to P TYPE(ti | ci).
Finally, the character image is rendered as a pixel-
matrix inside the bounding box: P REND(xi | ci, ti).1

A major downside to the Ocular model is that ren-
1See previous work for fuller detail including how a typeset-

ting is composed of its parts, and how pixels are generated.

468

char sub. char sub. elision accent drop doubled typo
(c→ q) (s→ long s) (que→ q̃) (ó→ o) (c→ cc) (e→ r)

Original image
Baseline trans. qual eña á ól confideracion peccados Primeraminte
Our diplomatic trans. qual esta aq̃l consideracion peccados Primeramrnte
Our normalized trans. cual esta aquel consideración pecados Primeramente

Table 1: Examples of automatic diplomatic and normalized transcriptions taken from actual system output.

dered image xi is always generated directly from
LM character ci, resulting in transcription errors
when printed characters don’t follow the spellings
in the LM. Our model (Figure 1) adds an additional
layer to the generative model that de-couples the LM
from the rendering by allowing the LM-generated
character ci to be replaced by a possibly different
glyph character gi which is rendered instead.

For the generative story of our new model, we
again begin by generating pairs (`i, ci). However,
instead of typesetting ci, we generate a distinct
glyph character gi as its replacement, according to
P GLYPH
`i

(gi | ci). Orthographic substitution patterns
are language-specific, and thus P GLYPH is as well. Fi-
nally, we typeset and render gi (instead of ci) using
P TYPE(ti | gi) and P REND(xi | gi, ti).

We follow the previous Ocular work for the defi-
nitions of P LANG, P CHAR

`i
, P TYPE, and P REND. We de-

fine the new conditional distribution P GLYPH
`i

, spec-
ifying the probability of rendering g when the LM
generated c, given that the language is `, as follows:

P GLYPH
` (g | c) =

{
(1–κ) + κ · p(g | c, `) if g = c

κ · p(g | c, `) else

Constant κ defines a Bernoulli parameter specifying
the fixed probability of deterministically choosing to
render ci directly (i.e., gi = ci). We set κ = 0.9 to
bias the model away from substitutions in general.
The remaining (1 − κ) probability mass is then di-
vided among all potential output glyph characters.

Table 1 shows some of the common substitution
patterns that our model addresses. For a direct ren-
dering of ci, a letter substitution, or the dropping of
an accent, gi will be a simple character drawn from
the language’s set of valid characters (each language
may have a different set of permitted characters, e.g.
accented letters). In order to support the tilde-elision
shorthand, we permit gi to be a tilde-annotated ver-
sion of ci, and for doubled letters, we permit gi to be

cici, for which we typeset and render ci twice. Fi-
nally, to allow for elided letters, including the drop-
ping of a line-break hyphen, we allow gi to be a spe-
cial ELISION glyph that renders only as a zero-width
space character.

The parameters of the glyph substitution model
are learned in an unsupervised fashion as part of Oc-
ular’s EM procedure via a hard parameter update:

p(g | c, `) =
freq(`, c, g) + 1∑
g′(freq(`, c, g′) + 1)

where freq(`, c, g) is the number of times in the
training iteration that the model chose to replace c
with g in a word (automatically) determined to be of
language `. The +1 term is Laplace smoothing.

To guide the model and improve efficiency, we
employ a number of constraints governing which
kinds of substitutions are valid. Among these, we
stipulate that substitutions must be letter-to-letter,
diacritics may only be added to lowercase letters,
only s can replace long-s, and elision-tilde-marked
letters must be followed by one or more elisions.

4 Experiments

As a first baseline, we compare against Ocular with
no orthographic variation handling, in which char-
acters generated by the LM are rendered directly.

As a second baseline, we compare to our previ-
ous work, which improved Ocular’s diplomatic tran-
scription accuracy by introducing orthographic vari-
ation directly into the LM with hand-constructed
language-specific orthographic rules to rewrite the
LM training data prior to n-gram estimation (Gar-
rette et al., 2015). However, this rule-based pre-
processing approach is inadequate in many ways.
First, annotators do not know the full range of or-
thographic variations, or their frequencies, in each
document, and it is impossible to write rules to han-
dle typos. Furthermore, a highly language-proficient

469

Original image
Baseline trans. dias fuplicar faltro alaba tı́ pues Nefuxpo
Our diplomatic trans. *dı́as suplicar *saliio alabã ti pues *Jesuxpo
Our normalized trans. dı́as *súplicar *salió *alabar *te pues *Jesuxpo
Gold diplomatic trans. dias suplicar saluo alabã ti pues Jesu xp̃o
Gold normalized trans. dı́as suplicar salvo alaban ti pues Jesu Cristo

Table 2: Actual system outputs containing transcription errors. Our incorrect outputs are starred (*).

Orthographic Diplomatic Normalized
variation strategy CER WER CER WER

No handling 13.2 45.7 17.4 47.6
Hand-written rules 8.5 30.8 13.1 37.9
Unsupv. joint model 8.6 32.7 9.5 27.6

Table 3: Experimental results for both Diplomatic
(preserving variation) and Normalized (modern or-
thography) transcription tasks. Results given as both
character error rate (CER, including punctuation)
and word error rate (WER, without punctuation).

annotator is required, which is not always feasible
with, e.g, rare indigenous languages.

Each baseline model has a single output, evalu-
ated against both diplomatic and normalized gold.

Our source code and evaluation data are freely
available at https://github.com/tberg12/ocular and
https://github.com/dhgarrette/ocr-evaluation-data.

5 Results and Discussion

Our results are shown in Table 3 and some correct
example system outputs can be seen in Table 1.

Our model’s accuracy in producing diplomatic
transcriptions is substantially better than baseline
Ocular performance, yielding a 35% relative char-
acter error rate reduction. Further, our model’s
diplomatic transcription accuracy is comparable to
the LM replacement-rule approach of our previous
work, but achieves this result with only unsuper-
vised learning, as opposed to expert-produced rules.
We can see in Table 4 that our model is able to
discover and apply appropriate probabilities to rel-
evant substitution rules. For the new normalized-
transcription task, even larger gains were achieved:
a 46% relative error reduction over Ocular, and a
28% reduction over the rule-based approach.

c g freq(sp., c, g) P GLYPH
spanish(g | c)

- ELIDED 52 0.0881
ó o 31 0.0526
s s (long s) 325 0.0352
q q̃ 9 0.0222
n ELIDED 57 0.0136
v u 55 0.0129
o õ 20 0.0091
c cc 23 0.0028

Table 4: A sample of high-probability Spanish sub-
stitution rules learned by our unsupervised model.

5.1 Error Analysis

Table 2 displays a sample of errors in our system
output. (1) The word dı́as is printed without an ac-
cent though it has one in modern Spanish. Our sys-
tem is unable to distinguish between a dot and an
accent above the i, and thus it opts to output the
accented version since it is preferred by the LM.
(2) The word suplicar does not have any accents in
modern Spanish, but the model is over-eager in this
case and attempts to revive an accent where there
should not be one. (3) The word salvo is printed
here as the variant saluo, but its under-inking leaves
the u in disconnected pieces, resembling a pair of
i characters. The LM model believes this to be the
(valid) word salió with the accent dropped and the
i doubled. (4) The model guesses incorrectly that the
elision at the end of alabã is an r since alabar is a
valid word. (5) The model correctly recognizes that
the letters ti are printed, but the LM believes the nor-
malized form is te even though te pues is not valid
Spanish, perhaps because te puedo is a very com-
mon phrase and the six-gram context isn’t enough
to make that distinction. (6) Finally, there are some
special idiomatic shorthands that our model is sim-
ply unable to understand because they have no clear

470

Original Image

Diplomatic
de las dos que se siguen en las quales apro
uecha mucho acostũbrar el anima á se le-
pantar hazia arriba ponese aqui vn modo
el qual parece más cõforme á lo q̃ se sigue

Normalized
de las dos que se siguen en las quales
aprovecha mucho acostumbrar el ánima á se
levantar hacia arriba pónese aquı́ un modo
el cual parece más conforme á lo que se sigue

Table 5: A document excerpt along with actual
system outputs for both diplomatic and normalized
transcriptions. Note that the normalization recovers
the first line’s missing line-break hyphen, allowing
the full word aprovecha to be reassembled.

connection to what they are replacing. Here, xp̃o
(from Greek letters chi rho) is shorthand for Cristo.

6 Conclusion

In this paper we presented a novel unsupervised
OCR model for the joint production of diplomatic
(variant-preserving) and normalized transcriptions
of historical documents. The model is able to auto-
matically learn a probabilistic mapping from a LM
trained on modern text to the orthographic variants
present in the document. This has the dual result of
both considerably improving diplomatic transcrip-
tion accuracy, while also enabling the model to si-
multaneously produce a normalized transcription.

Our model has the potential to significantly im-
pact the work of scholars and librarians who wish
to make digital texts easier to read, index, search,
and study. Our approach also has the fortunate side-
effect of producing metadata about orthographic
variation in printed documents that may be valu-
able to scholars of book history. With our model,
we are able to automatically induce sets of variation

patterns used by printers, and the locations in the
texts where those variants appear, without the need
for labor-intensive page-by-page reading. Further,
these induced mappings have probabilities attached,
and are not simple rulebanks like those used in exist-
ing normalization work (Garrette et al., 2015; Baron
and Rayson, 2008). Table 4, above, shows a sam-
ple of rules and their frequencies that resulted from
training our model on Spanish documents.

Finally, our work helps to bridge the gap between
historical text and mainline NLP. Orthographic vari-
ation lowers the accuracy of NLP tools due to high
out-of-vocabulary rates and mismatched morpho-
logical features (Piotrowski, 2012). This is espe-
cially true when these tools are trained on the mod-
ern texts of the standard corpora used in NLP (Yang
and Eisenstein, 2016). Normalization of historical
texts have been shown to improve the quality of,
for example, taggers (Rayson et al., 2007; Yang
and Eisenstein, 2016) and parsers (Rayson et al.,
2007). These techniques mirror those applied to the
processing of text in social media, such as Twitter,
where there is a high degree of slang and shorthand
(Gimpel et al., 2011; Eisenstein, 2013; Yang and
Eisenstein, 2013). Most approaches train off-the-
shelf NLP tools on modern text and then apply nor-
malization techniques to historical texts to transform
them into something resembling the modern train-
ing input (Scheible et al., 2011). A joint model such
as ours that automatically learns orthographic varia-
tions while training the NLP model might overcome
some of the limitations of using such a pipeline ap-
proach.

Acknowledgments

We would like to thank Stephanie Wood, Kelly
McDonough, Albert Palacios, Adam Coon, Sergio
Romero, and Kent Norsworthy for their input, ad-
vice, and assistance on this project. We would also
like to thank Taylor Berg-Kirkpatrick, Dan Klein,
and Luke Zettlemoyer for their valuable feedback on
earlier drafts of this paper. This work is supported in
part by a Digital Humanities Implementation Grant
from the National Endowment for the Humanities
for the project Reading the First Books: Multilin-
gual, Early-Modern OCR for Primeros Libros.

471

References
Alistair Baron and Paul Rayson. 2008. VARD2: A tool

for dealing with spelling variation in historical cor-
pora. In Proceedings of The Postgraduate Conference
in Corpus Linguistics.

Taylor Berg-Kirkpatrick and Dan Klein. 2014. Improved
typesetting models for historical OCR. In ACL.

Taylor Berg-Kirkpatrick, Greg Durrett, and Dan Klein.
2013. Unsupervised transcription of historical docu-
ments. In Proceedings of ACL.

Philip R. Burns. 2013. MorphAdorner v2: A Java
library for the morphological adornment of English
language texts. https://morphadorner.
northwestern.edu/morphadorner/
download/morphadorner.pdf.

Arthur P. Dempster, Nan M. Laird, and Donald. B. Ru-
bin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 39.

Thomas G. Dolan. 2012. The Primeros Libros Project.
The Hispanic Outlook in Higher Education, 22:20–22,
March.

M. J. Driscoll. 2006. Electronic textual editing: Levels
of transcription. In Lou Burnard, Katherine O’Brien
O’Keeffe, and John Unsworth, editors, Electronic Tex-
tual Editing. Modern Language Association.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of NAACL.

Dan Garrette, Hannah Alpert-Abrams, Taylor Berg-
Kirkpatrick, and Dan Klein. 2015. Unsupervised
code-switching for multilingual historical document
transcription. In Proceedings of NAACL.

Kevin Gimpel, Nathan Schneider, Brendan OConnor, Di-
panjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, , and
Noah A. Smith. 2011. Part-of-speech tagging for
twitter: annotation, features, and experiments. In Pro-
ceedings of ACL.

W. W. Greg. 1950. The rationale of copy-text. Studies in
Bibliography, 3:19–36.

Iris Hendrickx and Rita Marquilhas. 2011. From old
texts to modern spellings: An experiment in automatic
normalisation. Journal of Language Technology and
Computational Linguistics, 26(2):65–76.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing.

Elena Pierazzo. 2014. Digital documentary editions and
the Others. Scholarly Editing, 35:1–23.

Michael Piotrowski. 2012. Natural language processing
for historical texts. Synthesis Lectures on Human Lan-
guage Technologies, 5:1–157.

Primeros Libros. 2010. Los Primeros Libros de las
Américas: Impresos Americanos del siglo XVI en las
bibliotecas del mundo. http://primeroslibros.org/.

Paul Rayson, Dawn Archer, Alistair Baron, Jonathan
Culpeper, and Nicholas Smith. 2007. Tagging the
bard: Evaluating the accuracy of a modern POS tagger
on early modern English corpora. In Corpus Linguis-
tics Conference.

Silke Scheible, Richard J Whitt, Martin Durrell, and Paul
Bennett. 2011. Evaluating an ‘off-the-shelf’ POS-
tagger on early modern German text. In Proceedings
of the 5th ACL-HLT Workshop on Language Technol-
ogy for Cultural Heritage, Social Sciences, and Hu-
manities.

Yi Yang and Jacob Eisenstein. 2013. A log-linear model
for unsupervised text normalization. In Proceedings
of EMNLP.

Yi Yang and Jacob Eisenstein. 2016. Part-of-speech tag-
ging for historical English. In Proceedings of NAACL.

472

Proceedings of NAACL-HLT 2016, pages 473–482,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bidirectional RNN for Medical Event Detection in Electronic Health Records

Abhyuday N Jagannatha1, Hong Yu1,2

1 University of Massachusetts, MA, USA
2 Bedford VAMC and CHOIR, MA, USA

abhyuday@cs.umass.edu , hong.yu@umassmed.edu

Abstract

Sequence labeling for extraction of medical
events and their attributes from unstructured
text in Electronic Health Record (EHR) notes
is a key step towards semantic understand-
ing of EHRs. It has important applications
in health informatics including pharmacovig-
ilance and drug surveillance. The state of
the art supervised machine learning models in
this domain are based on Conditional Random
Fields (CRFs) with features calculated from
fixed context windows. In this application, we
explored recurrent neural network frameworks
and show that they significantly outperformed
the CRF models.

1 Introduction

EHRs report patient’s health, medical history and
treatments compiled by medical staff at hospitals. It
is well known that EHR notes contain information
about medical events including medication, diagno-
sis (or Indication), and adverse drug events (ADEs)
etc. A medical event in this context can be described
as a change in patient’s medical status. Identifying
these events in a structured manner has many im-
portant clinical applications such as discovery of ab-
normally high rate of adverse reaction events to a
particular drug, surveillance of drug efficacy, etc. In
this paper we treat EHR clinical event detection as a
task of sequence labeling.

Sequence labeling in the context of machine
learning refers to the task of learning to predict a la-
bel for each data-point in a sequence of data-points.
This learning framework has wide applications in

many disciplines such as genomics, intrusion detec-
tion, natural language processing, speech recogni-
tion etc. However, sequence labeling in EHRs is a
challenging task. Unlike text in the open domain,
EHR notes are frequently noisy, containing incom-
plete sentences, phrases and irregular use of lan-
guage. In addition, EHR notes incorporate abundant
abbreviations, rich medical jargons, and their varia-
tions, which make recognizing semantically similar
patterns in EHR notes difficult. Additionally, dif-
ferent events exhibit different patterns and possess
different prevalences. For example, while a medi-
cation comprises of at most a few words of a noun,
an ADE (e.g., “has not felt back to his normal self”)
may vary to comprise of a significant part of a sen-
tence. While medication information is frequently
described in EHRs, ADEs are typically rare events.

Rule-based and learning-based approaches have
been developed to identify and extract informa-
tion from EHR notes (Haerian et al., 2012), (Xu
et al., 2010), (Friedman et al., 1994), (Aronson,
2001), (Polepalli Ramesh et al., 2014). Learning-
based approaches use sequence labeling algorithms
like Conditional Random Fields (Lafferty et al.,
2001), Hidden Markov Models (Collier et al.,
2000), and Max-entropy Markov Models (McCal-
lum et al., 2000). One major drawback of these
graphical models is that the label prediction at any
time point only depends on its data instance and the
immediate neighboring labels.

While this approach performs well in learning the
distribution of the output labels, it has some limi-
tations. One major limitation is that it is not de-
signed to learn from dependencies which lie in the

473

surrounding but not quite immediate neighborhood.
Therefore, the feature vectors have to be explicitly
modeled to include the surrounding contextual in-
formation. Traditionally, bag of words representa-
tion of surrounding context has shown reasonably
good performance. However, the information con-
tained in the bag of words vector is very sensitive
to context window size. If the context window is
too short, it will not include all the information. On
the other hand if the context window is too large, it
will compress the vital information with other irrel-
evant words. Usually a way to tackle this problem
is to try different context window sizes and use the
one that gives the highest validation performance.
However, this method cannot be easily applied to
our task, because different medical events like med-
ication, diagnosis or adverse drug reaction require
different context window sizes. For example, while
a medication can be determined by a context of two
or three words containing the drug name, an adverse
drug reaction would require the context of the entire
sentence. As an example, this is a sentence from one
of the EHRs, “The follow-up needle biopsy results
were consistent with bronchiolitis obliterans, which
was likely due to the Bleomycin component of his
ABVD chemo”. In this sentence, the true labels are
Adverse Drug Event(ADE) for “bronchiolitis oblit-
erans” and Drugname for “ABVD chemo”. However
the ADE , “bronchiolitis obliterans” could be miss-
labeled as just another disease or symptom, if the
entire sentence is not taken into context.

Recent advancements in Recurrent Neural Net-
works (RNNs) have opened up new avenues of
research in sequence labeling. Traditionally, re-
current neural networks have been hard to train
through Back-Propagation, because learning long
term dependencies using simple recurrent neurons
lead to problems like exploding or vanishing gra-
dients (Bengio et al., 1994), (Hochreiter et al.,
2001). Recent approaches have modified the sim-
ple neuron structure in order to learn dependencies
over longer intervals more efficiently. In this study,
we evaluate the performance of two such neural net-
works, namely, Long Short Term Memory (LSTM)
and Gated Recurrent Units (GRU).

Timely identification of new drug toxicities is an
unresolved clinical and public health problem, cost-
ing people’s lives and billions of US dollars. In this

study, we empirically evaluated LSTM and GRU on
EHR notes, focusing on the clinically important task
of detecting medication, diagnosis, and adverse drug
event. To our knowledge, we are the first group re-
porting the uses of RNN frameworks for information
extraction in EHR notes.

2 Related Work

Medication and ADE detection is an important NLP
task in biomedicine. Related existing NLP ap-
proaches can be grouped into knowledge or rule-
based, supervised machine learning, and hybrid ap-
proaches. For example, Hazlehurst et al. (2005) de-
veloped MediClass, a knowledge-based system that
deploys a set of domain-specific logical rules for
medical concept extraction. Wang et al. (2015)
, Humphreys et.al. (1993) and others map EHR
notes to medical concepts to an external knowledge
resource using hybrid rule-based and syntactic pars-
ing approaches. Gurulingappa et al. (2010) detect
two medical entities (disease and adverse events) in
a corpus of annotated Medline abstracts. In contrast,
our work uses a corpus of actual medical notes and
detects additional events and attributes.

Rochefort et al. (2015) developed document clas-
sifiers to classify whether a clinical note contains
deep venous thromboembolisms and pulmonary em-
bolism. Haerian et al. (2012) applied distance
supervision to identify terms (e.g., including “sui-
cidal”, “self harm”, and “diphenhydramine over-
dose”) associated with suicide events. Zuofeng Li
et al. (2010) extracted medication information us-
ing CRFs.

Many named entity recognition systems in the
biomedical domain have been driven by the Shared
tasks of BioNLP (Kim et al., 2009), BioCreAtivE
(Hirschman et al., 2005) i2b2 shared NLP tasks
(Li et al., 2009) and ShARe/CLEF evaluation tasks
(Pradhan et al., 2014). The best performing clinical
NLP systems for named entity recognition includes
Tang et al (2013) which applied CRF and structured
SVM.

Neural Network models like Convolutional Neu-
ral Networks and Recurrent Neural Networks
(LSTM, GRU) have recently been been success-
fully used to tackle various sequence labeling prob-
lems in NLP. Collobert (2011) used Convolutional

474

Labels Annotations Avg. Words /
Annotations

ADE 905 1.51
Indication 1988 2.34
Other SSD 26013 2.14
Severity 1928 1.38
Drugname 9917 1.20
Duration 562 2.17
Dosage 3284 2.14
Route 1810 1.14
Frequency 2801 2.35

Table 1: Annotation statistics for the corpus.

Neural Network for sequence labeling problems like
POS tagging, NER etc. . Later, Huang et al.
(2015) achieved comparable or better scores using
bi-directional LSTM based models.

3 Dataset

The annotated corpus contains 780 English EHR
notes or 613,593 word tokens (an average of 786
words per note) from cancer patients who have been
diagnosed with hematological malignancy. Each
note was annotated by at least two annotators with
inter-annotator agreement of 0.93 kappa. The anno-
tated events and attributes and their instances in the
annotated corpus are shown in Table 1.

The annotated events can be broadly divided into
two groups, Medication, and Disease. The Medica-
tion group contains Drugname, Dosage, Frequency,
Duration and Route. It corresponds to information
about medication events and their attributes. The at-
tributes (Route, Frequency, Dosage, and Duration)
of a medication (Drug name) occur less frequently
than the Drugname tag itself, because few EHRs re-
port complete attributes of an event.

The Disease group contains events related to dis-
eases (ADE, Indication, Other SSD) and their at-
tributes (Severity). An injury or disease can be la-
beled as ADE, Indication, or Other SSD depending
on the semantic context. It is marked as ADE if it is
the side effect of a drug. It is marked as Indication
if it is being diagnosed currently by the doctor and
a medication has been prescribed for it. Any sign,
symptom or disease that does not fall into the afore-
mentioned two categories is labeled as Other SSD.
Other SSD is the most common label in our corpus,
because it is frequently used to label conditions in

the past history of the patient.
For each note, we removed special characters that

do not serve as punctuation and then split the note
into sentences using regular expressions.

4 Methods

4.1 Long Short Term Memory
Long Short Term Memory Networks (Hochreiter
and Schmidhuber, 1997) are a type of Recurrent
Neural Networks (RNNs). RNNs are modifications
of feed-forward neural networks with recurrent con-
nections. In a typical NN, the neuron output at time
t is given by:

yti = σ(Wixt + bi) (1)

Where Wi is the weight matrix, bi is the bias term
and σ is the sigmoid activation function. In an RNN,
the output of the neuron at time t − 1 is fed back
into the neuron. The new activation function now
becomes:

yti = σ(Wixt + Uiy
t−1
i + bi) (2)

Since these RNNs use the previous outputs as recur-
rent connections, their current output depends on the
previous states. This property remembers previous
information about the sequence, making them use-
ful for sequence labeling tasks. RNNs can be trained
through back-propagation through time. Bengio et
al. (1994) showed that learning long term depen-
dencies in recurrent neural networks through gradi-
ent decent is difficult. This is mainly because the
back-propagating error can frequently “blow-up” or
explode which makes convergence infeasible, or it
can vanish which renders the network incapable of
learning long term dependencies (Hochreiter et al.,
2001).

In contrast, LSTM networks were proposed as so-
lutions for the vanishing gradient problem and were
designed to efficiently learn long term dependencies.
LSTMs accomplish this by keeping an internal state
that represents the memory cell of the LSTM neu-
ron. This internal state can only be read and written
through gates which control the information flowing
through the cell state. The updates of various gates
can be computed as:

it = tanh(Wxixt +Whiht−1) (3)

475

Figure 1: Sequence Labeling model for LSTM network

ft = σ(Wxfxt +Whfht−1) (4)

ot = σ(Wxoxt +Whoht−1) (5)

Here it , ft and ot denote input, forget and output
gate respectively. The forget and input gate deter-
mine the contributions of the previous output and
the current input, in the new cell state ct. The output
gate controls how much of ct is exposed as the out-
put. The new cell state ct and the output ht can be
calculated as follows:

ct = ft�ct−1 + it� tanh(Wxcxt+Whcht−1) (6)

ht = ot � tanh(ct) (7)

The cell state stores relevant information from the
previous time-steps. It can only be modified in an
additive fashion via the input and forget gates. Sim-
plistically, this can be viewed as allowing the error
to flow back through the cell state unchecked till it
back propagates to the time-step that added the rele-
vant information. This nature allows LSTM to learn
long term dependencies.

We use LSTM cells in the Neural Network setup
shown in figure 1. Here xk,yk are the input word,
and the predicted label for the kth word in the sen-
tence. The embedding layer contains the word vec-
tor mapping from words to dense n-dimensional
vector representations. We initialize the embedding
layer at the start of the training with word vectors

calculated on the larger data corpus described in sec-
tion 4.4. This ensures that words which are not seen
frequently in the labeled data corpus still have a rea-
sonable vector representation. This step is necessary
because our unlabeled corpus is much larger than the
labeled one.

The words are mapped into their corresponding
vector representations and fed into the LSTM layer.
The LSTM layer consists of two LSTM chains, one
propagating in the forward direction and other in the
backward direction. We concatenate the output from
the two chains to form a combined representation of
the word and its context. This concatenated vector
is then fed into a feed-forward neuron with Softmax
activation function. The Softmax activation function
normalizes the outputs to produce probability like
outputs for each label type j as follows:

P (lt = j|ut) =
exp(utWj)∑K
k=1 exp(utWk)

(8)

Here lt and ut are the label and the concatenated
vector for each time step t. The most likely label
at each word position is selected. The entire net-
work is trained through back-propagation. The em-
bedding vectors are also updated based on the back-
propagated errors.

4.2 Gated Recurrent Units

Gated Recurrent Unit (GRU) is another type of re-
current neural network which was recently proposed
for the purposes of Machine Translation by Cho et.
al. (2014). Similar to LSTMs, Gated Recurrent
Units also have an additive mechanism to update the
cell state, with the current update. However, GRUs
have a different mechanism to create the update. The
candidate activation h̃t is computed based on the
previous cell state and the current input .

h̃t = σ(Wxhxt +Whh(rt � ht−1)) (9)

Here rt is the reset gate and it controls the use of
previous cell state while calculating the input acti-
vation. The reset gate itself is also computed based
on the previous cell activation ht−1 and the current
candidate activation .

r̃t = σ(Wxrxt +Whrht−1) (10)

476

Models Recall Precision F-score
CRF-nocontext 0.6562 0.7330 0.6925
CRF-context 0.6806 0.7711 0.7230
LSTM-sentence 0.8024 0.7803 0.7912
GRU-sentence 0.8013 0.7802 0.7906
LSTM-document 0.8050 0.7796 0.7921
GRU-document 0.8126 0.7938 0.8031

Table 2: Cross validated micro-average of Precision, Recall and

F-score for all medical tags

The current cell state or activation is a linear combi-
nation of previous cell activation and the candidate
activation.

ht = (1− zt)� ht−1 + zt � h̃t (11)

Here, zt is the update gate which decides how much
contribution the candidate activation and the previ-
ous cell state should have in the cell activation. The
update gate is computed using the following equa-
tion:

zt = (Whzht−1 +Wxzxt) (12)

Gated recurrent units have some fundamental differ-
ences with LSTM. For example, there is no mech-
anism like the output gate which controls the expo-
sure of the cell activation, instead the entire current
cell activation is used as output. The mechanisms
for using the previous output for the calculation of
the current activation are also very different. Re-
cent experiments (Chung et al., 2014), (Jozefow-
icz et al., 2015) comparing both these architectures
have shown GRUs to have comparable or sometimes
better performance than LSTM in several tasks with
long term dependencies.

We use GRU with the same Neural Network struc-
ture as shown in Figure 1 by replacing the LSTM
nodes with GRU. The embedding layer used here is
also initialized in a similar fashion as the LSTM net-
work.

4.3 The Baseline System
CRFs have been widely used for sequence labeling
tasks in NLP. CRFs model the complex dependence
of the outputs in a sequence using Probabilistic
Graphical Models. Probabilistic Graphical Models
represent relationships between variables through a
product of factors where each factor is only influ-
enced by a smaller subset of the variables. A par-

ticular factorization of the variables provides a spe-
cific set of independence relations enforced on the
data. Unlike Hidden Markov Models which model
the joint p(x, y), CRFs model the posterior probabil-
ity p(y|x) directly. The conditional can be written as
a product of factors as follows:

p(y|x) =
1

Z(x)

T∏
t=1

ψt(yt, yt−1, xt) (13)

Here Z is the partition function used for normaliza-
tion, ψt are the local factor functions.

CRFs are fed the word inputs and their corre-
sponding skip-gram word embedding (section 4.4).
To compare CRFs with RNN, we add extra context
feature for each word. This is done because our aim
is to show that RNNs perform better than CRFs us-
ing context windows. This extra feature consists of
two vectors that are bag of words representation of
the sentence sections before and after the word re-
spectively. We add this feature to explicitly provide
a mechanism that is somewhat similar to the sur-
rounding context that is generated in a Bi-directional
RNN as shown in Figure 1. This CRF model is re-
ferred to as CRF-context in our paper. We also eval-
uate a CRF-nocontext model, which trains a CRF
without the context features.

The tagging scheme used with both CRF models
is BIO (Begin, Inside and Outside). We did not use
the more detailed BILOU scheme (Begin, Inside,
Last, Outside, Unit) due to data sparsity in some of
the rarer labels.

4.4 Skip-Gram Word Embeddings

We use skip-gram word embeddings trained through
a shallow neural network as shown by Mikolov et
al., (2013) to initialize the embedding layer of the
RNNs. This embedding is also used in the baseline
CRF model as a feature. The embeddings are trained
on a large unlabeled biomedical dataset, compiled
from three sources, the English Wikipedia, an un-
labeled EHR corpus, and PubMed Open Access ar-
ticles. The English Wikipedia consists of text ex-
tracted from all the articles of English Wikipedia
2015. The unlabeled EHR corpus contains 99,700
electronic health record notes. PubMed Open Ac-
cess articles are obtained by extracting the raw text
from all openly available PubMed articles. This

477

Figure 2: Change in F-score for RNN models with respect to

CRF-context (baseline). The values below the plotted bars rep-

resent the baseline f-scores for each class label.

combined raw text corpus contains more than 3 bil-
lion word tokens. We convert all words to lowercase
and use a context window of 10 words to train a 200
dimensional skip gram word embedding.

5 Experiments and Evaluation Metrics

For each word, the models were trained to predict
either one of the nine medically relevant tags de-
scribed in section 3, or the Outside label. The CRF
tagger was run in two modes. The first mode (CRF–
nocontext) used only the current word and its cor-
responding skip-gram representation. The second
mode (CRF– context) used the extra context feature
described in section 4.3. The extra features are ba-
sically the bag of words representation of the pre-
ceding and following sections of the sentence. The
first mode was used to compare the performance of
CRF and RNN models when using the same input
data. It also serves as a method of contrasting with
CRF’s performance when context features are ex-
plicitly added. CRF Tagger uses L-BFGS optimizer
with L2- regularization.

The RNN frameworks are trained on sentence
level and document level. The sentence level neural
networks are fed only one sentence at a time. This
means that the LSTM and GRU states are only pre-
served and propagated within a sentence. The net-
works cell states are re-initialized before each sen-

tence. The document level neural networks are fed
one document at a time, so they can learn context
cues that reside outside of the sentence boundary.
We use 100 dimensional hidden layer for each di-
rectional RNN chain. Since we use bi-directional
LSTMs and GRUs, this essentially amounts to a
200 dimensional recurrent hidden layer. The hidden
layer activation functions for both RNN models are
tanh. Output of this hidden layer is fed into a Soft-
max output layer which emits probabilities for each
of the nine medical labels and the Outside label. We
use categorical cross entropy as the objective func-
tion. Similar to the CRF implementation, the Neural
Net cost function also contains an L2-regularization
component. We also use dropout (Srivastava et al.,
2014) as an additional measure to avoid over-fitting.
Fifty percent dropout is used to manipulate the in-
puts to the RNN and the Softmax layer. We use
AdaGrad (Duchi et al., 2011) to optimize the net-
work cost.

We use ten-fold cross validation to calculate the
performance metric for each model. The dataset is
divided at the note level. We separate out 10 % of
the training set to form the validation set. This vali-
dation set is used to evaluate the different parameter
combinations for CRF and RNN models. We em-
ploy early stopping to terminate the training run if
the validation error increases consistently. We use a
maximum of 40 epochs to train each network. The
batch sizes used were kept constant at 128 for sen-
tence level RNNs and 16 for document level RNNs.

We report micro-averaged recall, precision and f-
score. We use exact phrase matching to calculate the
evaluation score for our experiments. Each phrase
labeled by the learned models is considered a true
positive only if it matches the exact true boundary
of the phrase and correctly labels all the words in
the phrase.

We use CRFsuite (Okazaki, 2007) for implement-
ing the CRF tagger. We use Lasagne to setup the
Neural Net framework. Lasagne1 is a machine learn-
ing library focused towards neural networks that is
build on top of Theano (Bergstra et al., 2010).

1https://github.com/Lasagne/Lasagne

478

Figure 3: Heat-maps of Confusion Matrices of each method for the different class Labels. Rows are reference and columns are

predictions. The value in cell (i, j) denotes the percentage of words in label i that were predicted as label j.

6 Results

Table 2 shows the micro averaged scores for each
method. All RNN models significantly outperform
the baseline (CRF-context). Compared to the base-
line system, our best system (GRU-document) im-
proved the recall (0.8126), precision (0.7938) and F-
score (0.8031) by 19% , 2% and 11 % respectively.
Clearly the improvement in recall contributes more
to the overall increase in system performance. The
performance of different RNN models is almost sim-
ilar, except for the GRU model which exhibits an F-
score improvement of at least one percentage point
over the rest.

The changes (gain or loss) in label wise F-score
for each RNN model relative to the baseline CRF-
context method are plotted in Figure 2. GRU-
document exhibits the highest gain overall in six of
the nine tags: indication or diagnosis, route, du-
ration, severity, drug name, and other SSD. For
indication, its gain is about 0.19, a near 50% in-
crease over the baseline. While the overall sys-
tem performance of GRU-sentence, LSTM-sentence
and LSTM-document are very similar, they do ex-
hibit somewhat varied performance for different la-
bels. The sentence level models clearly outperform
the document level RNNs (both GRU and LSTM)
for ADE and Dosage. Additionally, GRU sentence
model shows the highest gain in ADE f-score.

Figure 3 shows the word level confusion matrix of
different models for each label. Each cell shows the
percentage of word tokens in row label i that were
classified as column label j. The consistent increase
of diagonal entries of RNN models for all ten labels,
indicates an increase in the overall system accuracy
when compared to the baseline. The most densely
populated column in this figure is the Outside col-
umn, which denotes percentage of words that were
erroneously labeled as Outside.

Figure 4 shows the change in average F-scores for
each method with changing percentage of training
data used. The setup for training, development and
test data is kept the same as the ten-fold cross valida-
tion setup mentioned in Section 5. Only the training
data is randomly down-sampled to achieve the re-
duced training data size. The figure shows that Re-
current Neural Network models perform better than
traditional CRF models even with smaller training
data sizes.

7 Discussion

We already discussed in the previous section how
improved recall seems to be the major reason behind
improvements in the RNN F-score. This trend can
be observed in Figure 3 where RNN models lead to
significant decreases in confusion values present in
Outside column.

479

Figure 4: Change in F-score for all sentence models with re-

spect to increasing training data size.

Further examination of Figure 3 shows two ma-
jor sources of error in the CRF systems. The largest
source of error is caused by confusing the relevant
medical words as Outside (false negatives) and vice
versa (false positives). The extent of false positives
is not clear from Figure 3, but can be estimated if one
takes into account that even a 1 % confusion in the
Outside row represents about 5000 words. The sec-
ond largest source of error is the confusion among
ADE, Indication and Other SSD labels. As we dis-
cuss in the following paragraphs, RNNs manage to
significantly reduce both these type of errors.

The large improvement in recall of all labels for
RNN models seems to suggest that RNNs are able
to recognize a larger set of relevant patterns than
CRF baselines. This supports our hypothesis that
learning dependencies with variable context ranges
is crucial for our task of medical information ex-
traction from EHR notes. This is also evident from
the reduced confusion among ADE, Indication and
Other SSD. Since these tags share a common vocab-
ulary of Sign, Symptom and Disease Names, identi-
fying the underlying word or phrase is not enough
to distinguish between the three. Use of relevant
patterns from surrounding context is often needed
as a discriminative cue. Consequently, ADE, Indi-
cation confusion values in the Other SSD column
for RNNs exhibit significant decreases when com-
pared to CRF-nocontext and CRF-context. We also
see large improvements in detecting Duration, Fre-
quency and Severity. The vocabulary of these la-
bels often lack specific medical jargon terms. Ex-

amples of these labels include “seven days”, “one
week” for duration, “some”, “small”, “no signifi-
cant” for severity and “as needed”, “twice daily” for
frequency. Therefore, they are most likely to be con-
fused with Outside label. This is indeed the case, as
they have the highest confusion values in the Out-
side column of CRF-nocontext. Including context
in CRF improves the performance, but not as much
as RNN models which decrease the confusion by al-
most half or more in all cases. For example, GRU-
document only confuses Frequency as an unlabeled
word about 6.1 % of the time as opposed to 31 %
and 19 % for CRF-nocontext and CRF-context re-
spectively.

Document level models benefit by using context
from outside the sentence. Since the label Indica-
tion requires the most use of surrounding context, it
is clear that its performance would improve by us-
ing information from several sentences. Indications
are diseases that are diagnosed by the medical staff,
and the entire picture of the diagnosis is usually dis-
tributed across multiple sentences. Analysis of ADE
is more complicated. Several ADE instances in a
sentence also contain explicit cues similar to “sec-
ondary to” and “caused by”. When coupled with
Drugnames this is enough to classify the ADE. Sen-
tence level models might depend more on these local
cues which leads to improved performance. Docu-
ment models, on the other hand, have to recognize
patterns from a larger context, using a very small
dataset (total ADE annotations are just 905) which
is quite difficult.

The LSTM-document model does not show the
same improvement over the sentence models as
GRU-document. One possible reason for this might
be the simpler recurrence structure of GRU neuron
as compared to LSTM. Since there are only 780
document sequences in the dataset, the GRU model
with a smaller number of trainable parameters might
learn faster than LSTM. It is possible that with a
larger dataset, LSTM might perform comparable to
or better than GRU. However, our experiments with
reducing the hidden layer size of LSTM-document
model to control for the number of trainable param-
eters did not produce any significant improvements.

Moreover, figure 4 seems to indicate that there is
not much difference between the performances of
LSTM and GRU with different data sizes. However

480

it is clearly surprising that RNN models with a larger
number of parameters can still perform better than
CRF models on smaller dataset sizes. This might be
because the embedding layer, which contributes to
a very large section of the trainable parameters, is
initialized with a suitably good estimate using skip-
gram word embeddings described in section 4.4.

8 Conclusion

We have shown that RNNs models like LSTM and
GRU are valuable tools for extracting medical events
and attributes from noisy natural language text of
EHR notes. We believe that the significant im-
provement provided by gated RNN models is due
to their ability to remember information across dif-
ferent range of dependencies as and when required.
As mentioned previously in the introduction, this is
very important for our task because different labels
have different contextual dependencies. CRF mod-
els with hand crafted features like bag of words rep-
resentation, use fixed context windows and lose a lot
of information in the process.

RNNs are excellent in extracting relevant patterns
from sequence data. However, they do not explic-
itly enforce constraints or dependencies over the
output labels. We believe that adding a probabilis-
tic graphical model framework for structured output
prediction would further improve the performance
of our system. This experiment remains as our fu-
ture work.

Acknowledgments

We thank the UMassMed annotation team, including
Elaine Freund, Wiesong Liu and Steve Belknap, for
creating the gold standard evaluation set used in this
work. We also thank the anonymous reviewers for
their comments and suggestions.

This work was supported in part by the grant
5U01CA180975 from the National Institutes of
Health (NIH). We also acknowledge the support
from the United States Department of Veterans Af-
fairs (VA) through Award 1I01HX001457. The con-
tents of this paper do not represent the views of the
NIH, VA or United States Government.

References
Alan R Aronson. 2001. Effective mapping of biomed-

ical text to the UMLS Metathesaurus: the MetaMap
program. In Proceedings of the AMIA Symposium,
page 17.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learn-
ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166, March.

James Bergstra, Olivier Breuleux, Frdric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expres-
sion compiler. Proceedings of the Python for Scientific
Computing Conference (SciPy).

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Proper-
ties of Neural Machine Translation: Encoder-Decoder
Approaches. ArXiv e-prints, 1409:arXiv:1409.1259,
September.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. arXiv:1412.3555 [cs], December. arXiv:
1412.3555.

N. H Collier, C. Nobata, and J. Tshjii. 2000. Ex-
tracting the names of genes and gene products with
a hidden markov model. Proceedings of the 18th In-
ternational Conference on Computational Linguistics
(COLING’2000), pages 201–7.

Ronan Collobert, Jason Weston, Lon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Lindberg Da, Humphreys Bl, and McCray At. 1993. The
Unified Medical Language System. Methods of infor-
mation in medicine, 32(4):281–291, August.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

C Friedman, P O Alderson, J H Austin, J J Cimino, and
S B Johnson. 1994. A general natural-language text
processor for clinical radiology. Journal of the Ameri-
can Medical Informatics Association, 1(2):161–174.

Harsha Gurulingappa, Roman Klinger, Martin Hofmann-
Apitius, and Juliane Fluck. 2010. An Empirical Eval-
uation of Resources for the Identification of Diseases
and Adverse Effects in Biomedical Literature. In 2nd
Workshop on Building and evaluating resources for
biomedical text mining (7th edition of the Language
Resources and Evaluation Conference).

481

K Haerian, H Salmasian, and C Friedman. 2012.
Methods for Identifying Suicide or Suicidal Ideation
in EHRs. AMIA Annual Symposium Proceedings,
2012:1244–1253, November.

Brian Hazlehurst, H. Robert Frost, Dean F. Sittig, and
Victor J. Stevens. 2005. MediClass: A System for
Detecting and Classifying Encounter-based Clinical
Events in Any Electronic Medical Record. Journal
of the American Medical Informatics Association :
JAMIA, 12(5):517–529.

L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia.
2005. Overview of BioCreAtIvE: critical assessment
of information extraction for biology. BMC Bioinfor-
matics, 6 Suppl 1:S1.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation,
9(8):1735–1780.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jr-
gen Schmidhuber. 2001. Gradient Flow in Recurrent
Nets: the Difficulty of Learning Long-Term Dependen-
cies.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF Models for Sequence Tagging.
arXiv:1508.01991 [cs], August. arXiv: 1508.01991.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever.
2015. An Empirical Exploration of Recurrent Net-
work Architectures. pages 2342–2350.

J. D Kim, T. Ohta, S. Pyysalo, Y. Kano, and J. Tsu-
jii. 2009. Overview of BioNLP’09 shared task on
event extraction. In Proceedings of the Workshop on
BioNLP: Shared Task, pages 1–9.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional Random Fields: Proba-
bilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International
Conference on Machine Learning, ICML ’01, pages
282–289, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Z Li, Y Cao, L Antieau, S Agarwal, Q Zhang, and H Yu.
2009. Extracting Medication Information from Pa-
tient Discharge Summaries. In Third i2b2 Shared-Task
Workshop.

Z. Li, F. Liu, L. Antieau, Y. Cao, and H. Yu. 2010.
Lancet: a high precision medication event extraction
system for clinical text. Journal of the American Med-
ical Informatics Association, 17(5):563–567.

Andrew McCallum, Dayne Freitag, and Fernando C. N.
Pereira. 2000. Maximum Entropy Markov Models
for Information Extraction and Segmentation. In Pro-
ceedings of the Seventeenth International Conference
on Machine Learning, pages 591–598. Morgan Kauf-
mann Publishers Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representations

of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems,
pages 3111–3119.

Naoaki Okazaki. 2007. CRFsuite: a fast implementation
of Conditional Random Fields (CRFs).

Balaji Polepalli Ramesh, Steven M Belknap, Zuofeng Li,
Nadya Frid, Dennis P West, and Hong Yu. 2014.
Automatically Recognizing Medication and Adverse
Event Information From Food and Drug Adminis-
trations Adverse Event Reporting System Narratives.
JMIR Medical Informatics, 2(1):e10, June. 00001.

Sameer Pradhan, Nomie Elhadad, Brett R. South, David
Martinez, Lee Christensen, Amy Vogel, Hanna Suomi-
nen, Wendy W. Chapman, and Guergana Savova.
2014. Evaluating the state of the art in disorder
recognition and normalization of the clinical narrative.
Journal of the American Medical Informatics Associa-
tion: JAMIA, August. 00002.

Christian M. Rochefort, Aman D. Verma, Tewodros
Eguale, Todd C. Lee, and David L. Buckeridge. 2015.
A novel method of adverse event detection can ac-
curately identify venous thromboembolisms (VTEs)
from narrative electronic health record data. Jour-
nal of the American Medical Informatics Association:
JAMIA, 22(1):155–165, January.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res., 15(1):1929–
1958, January.

Buzhou Tang, Yonghui Wu, Min Jiang, Joshua C. Denny,
and Hua Xu. 2013. Recognizing and Encoding Disor-
der Concepts in Clinical Text using Machine Learning
and Vector Space Model. 00004.

Chang Wang, Liangliang Cao, and Bowen Zhou. 2015.
Medical Synonym Extraction with Concept Space
Models. arXiv:1506.00528 [cs], June. arXiv:
1506.00528.

H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Wait-
man, and J. C. Denny. 2010. MedEx: a medication
information extraction system for clinical narratives. J
Am Med Inform Assoc, 17:19–24. 1.

482

Proceedings of NAACL-HLT 2016, pages 483–487,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

The Sensitivity of Topic Coherence Evaluation
to Topic Cardinality

Jey Han Lau1,2 and Timothy Baldwin2

1 IBM Research
2 Dept of Computing and Information Systems,

The University of Melbourne
jeyhan.lau@gmail.com, tb@ldwin.net

Abstract

When evaluating the quality of topics gener-
ated by a topic model, the convention is to
score topic coherence — either manually or
automatically — using the top-N topic words.
This hyper-parameter N , or the cardinality
of the topic, is often overlooked and selected
arbitrarily. In this paper, we investigate the
impact of this cardinality hyper-parameter on
topic coherence evaluation. For two auto-
matic topic coherence methodologies, we ob-
serve that the correlation with human ratings
decreases systematically as the cardinality in-
creases. More interestingly, we find that per-
formance can be improved if the system scores
and human ratings are aggregated over several
topic cardinalities before computing the cor-
relation. In contrast to the standard practice
of using a fixed value of N (e.g. N = 5 or
N = 10), our results suggest that calculating
topic coherence over several different cardi-
nalities and averaging results in a substantially
more stable and robust evaluation. We release
the code and the datasets used in this research,
for reproducibility.1

1 Introduction

Latent Dirichlet Allocation (“LDA”: Blei et al.
(2003)) is an approach to document clustering,
in which “topics” (multinomial distributions over
terms) and topic allocations (multinomial distribu-
tions over topics per document) are jointly learned.
When the topic model output is to be presented

1https://github.com/jhlau/
topic-coherence-sensitivity

to humans, optimisation of the number of topics
is a non-trivial problem. In the seminal paper of
Chang et al. (2009), e.g., the authors showed that —
contrary to expectations — extrinsically measured
topic coherence correlates negatively with model
perplexity. They introduced the word intrusion task,
whereby a randomly selected “intruder” word is in-
jected into the top-N words of a given topic and
users are asked to identify the intruder word. Low
reliability in identifying the intruder word indicates
low coherence (and vice versa), based on the in-
tuition that the more coherent the topic, the more
clearly the intruder word should be an outlier.

Since then, several methodologies have been in-
troduced to automate the evaluation of topic coher-
ence. Newman et al. (2010) found that aggregate
pairwise PMI scores over the top-N topic words
correlated well with human ratings. Mimno et al.
(2011) proposed replacing PMI with conditional
probability based on co-document frequency. Ale-
tras and Stevenson (2013) showed that coherence
can be measured by a classical distributional similar-
ity approach. More recently, Lau et al. (2014) pro-
posed a methodology to automate the word intrusion
task directly. Their results also reveal the differences
between these methodologies in their assessment of
topic coherence.

A hyper-parameter in all these methodologies is
the number of topic words, or its cardinality. These
methodologies evaluate coherence over the top-N
topic words, where N is selected arbitrarily: for
Chang et al. (2009), N = 5, whereas for Newman et
al. (2010), Aletras and Stevenson (2013) and Lau et
al. (2014), N = 10.

483

The germ of this paper came when using the
automatic word intrusion methodology (Lau et al.,
2014), and noticing that introducing one extra word
to a given topic can dramatically change the accu-
racy of intruder word prediction. This forms the ker-
nel of this paper: to better understand the impact of
the topic cardinality hyper-parameter on the evalua-
tion of topic coherence.

To investigate this, we develop a new dataset with
human-annotated coherence judgements for a range
of cardinality settings (N = {5, 10, 15, 20}). We
experiment with the automatic word intrusion (Lau
et al., 2014) and discover that correlation with hu-
man ratings decreases systematically as cardinality
increases. We also test the PMI methodology (New-
man et al., 2010) and make the same observation.
To remedy this, we show that performance can be
substantially improved if system scores and human
ratings are aggregated over different cardinality set-
tings before computing the correlation. This has
broad implications for topic model evaluation.

2 Dataset and Gold Standard

To examine the relationship between topic cardinal-
ity and topic coherence, we require a dataset that has
topics for a range of cardinality settings. Although
there are existing datasets with human-annotated co-
herence scores (Newman et al., 2010; Aletras and
Stevenson, 2013; Lau et al., 2014; Chang et al.,
2009), these topics were annotated using a fixed car-
dinality setting (e.g. 5 or 10). We thus develop a new
dataset for this experiment.

Following Lau et al. (2014), we use two do-
mains: (1) WIKI, a collection of 3.3 million English
Wikipedia articles (retrieved November 28th 2009);
and (2) NEWS, a collection of 1.2 million New York
Times articles from 1994 to 2004 (English Giga-
word). We sub-sample approximately 50M tokens
(100K and 50K articles for WIKI and NEWS respec-
tively) from both domains to create two smaller doc-
ument collections. We then generate 300 LDA top-
ics for each of the sub-sampled collection.2

There are two primary approaches to assessing
topic coherence: (1) via word intrusion (Chang et

2The sub-sampled document collections are lemmatised us-
ing OpenNLP and Morpha (Minnen et al., 2001) before topic
modelling.

Domain N
5 10 15 20

WIKI 2.42 (±0.54) 2.37 (±0.53) 2.35 (±0.51) 2.29 (±0.50)
NEWS 2.49 (±0.53) 2.46 (±0.53) 2.42 (±0.51) 2.39 (±0.51)

Table 1: Mean rating across differentN (numbers in
parentheses denote standard deviations)

Cardinality Pair WIKI NEWS
5 vs. 10 0.834 0.849
5 vs. 15 0.777 0.834
5 vs. 20 0.826 0.815
10 vs. 15 0.841 0.876
10 vs. 20 0.853 0.854
15 vs. 20 0.831 0.871

Mean 0.827 0.850

Table 2: Correlation between different pairwise car-
dinality settings.

al., 2009); and (2) by directly measuring observed
coherence (Newman et al., 2010; Lau et al., 2014).
With the first method, Chang et al. (2009) injects
an intruder word into the top-5 topic words, shuffles
the topic words, and sets the task of selecting the
single intruder word out of the 6 words. In prelimi-
nary experiments, we found that the word intrusion
task becomes unreasonably difficult for human an-
notators when the topic cardinality is high, e.g. when
N = 20. As such, we use the second approach as
the means for generating our gold standard, asking
users to judge topic coherence directly over different
topic cardinalities.3

To collect the coherence judgements, we used
Amazon Mechanical Turk and asked Turkers to rate
topics in terms of coherence using a 3-point ordi-
nal scale, where 1 indicates incoherent and 3 very
coherent (Newman et al., 2010). For each topic
(600 topics in total) we experiment with 4 cardinal-
ity settings: N = {5, 10, 15, 20}. For example, for
N = 5, we display the top-5 topic words for coher-
ence judgement.

For annotation quality control, we embed a bad
topic generated using random words into each HIT.
Workers who fail to consistently rate these bad top-
ics low are filtered out.4 On average, we collected

3This is not a major limitation, however, as Lau et al. (2014)
found a strong correlation between the judgements generated by
the two methodologies.

4We filter workers who rate bad topics with a rating > 1 in
more than 30% of their HITs.

484

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
10

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
15

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
20

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
15

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
20

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Cardinality = 15

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ar

di
an

lit
y

=
20

Figure 1: Scatter plots of human ratings for different pairwise cardinality settings for the WIKI topics.

approximately 9 ratings per topic in each cardinality
setting (post-filtered), from which we generate the
gold standard via the arithmetic mean.

To understand the impact of cardinality (N) on
topic coherence, we analyse: (a) the mean topic rat-
ing for each N (Table 1), and (b) the pairwise Pear-
son correlation coefficient between the same topics
for different values of N (Table 2).

Coherence decreases slightly but systematically
as N increases, suggesting that users find topics
less coherent (but marginally more consistently in-
terpretable, as indicated by the slight drop in stan-
dard deviation) when more words are presented in
a topic. The strong pairwise correlations, however,
indicate that the ratings are relatively stable across
different cardinality settings.

To better understand the data, in Figure 1 we
present scatter plots of the ratings for all pair-
wise cardinality settings (where a point represents
a topic). Note the vertical lines for x = 3.0 (cf. the
weaker effect of horizontal lines for y = 3.0), in par-
ticular for the top 3 plots where we are comparing
N = 5 against higher cardinality settings. This im-
plies that topics that are rated as perfectly coherent
(3.0) for N = 5 exhibit some variance in coherence
ratings whenN increases. Intuitively, it means that a
number of perfectly coherent 5-word topics become
less coherent as more words are presented.

3 Automated Method — Word Intrusion

Lau et al. (2014) proposed an automated approach to
the word intrusion task. The methodology computes
pairwise word association features for the top-N
words, and trains a support vector regression model
to rank the words. The top-ranked word is then se-
lected as the predicted intruder word. Note that even
though it is supervised, no manual annotation is re-
quired as the identity of the true intruder word is
known. Following the original paper, we use as fea-
tures normalised PMI (NPMI) and two conditional
probabilities (CP1 and CP2), computed over the full
collection of WIKI (3.3 million articles) and NEWS

(1.2 million articles), respectively. We use 10-fold
cross validation to predict the intruder words for all
topics.

To generate an intruder for a topic, we select
a random word that has a low probability (P <
0.0005) in the topic but high probability (P > 0.01)
in another topic. We repeat this ten times to gen-
erate 10 different intruder words for a topic. The 4
cardinalities of a given topic share the same set of
intruder words.

To measure the coherence of a topic, we compute
model precision, or the accuracy of intruder word
prediction. For evaluation we compute the Pearson
correlation coefficient r of model precisions and hu-
man ratings for each cardinality setting. Results are
summarised in Table 3.

485

Domain N
In-domain Out-of-Domain
Features Features

WIKI

5 0.46 0.66
10 0.41 0.54∗

15 0.32∗ 0.51∗

20 0.33∗ 0.43∗

Avg 0.46 0.65

NEWS

5 0.45∗ 0.65
10 0.40∗ 0.60∗

15 0.38∗ 0.54∗

20 0.43∗ 0.47∗

Avg 0.50 0.65

Table 3: Pearson correlation between system model
precision and human ratings across different values
of N for word intrusion. ‘∗’ denotes statistical sig-
nificance compared to aggregate correlation.

Each domain has 2 sets of correlation figures,
based on in-domain and out-of-domain features. In-
domain (out-of-domain) features are word associ-
ation features computed using the same (different)
domain as the topics, e.g. when we compute coher-
ence of WIKI topics using word association features
derived from WIKI (NEWS).

The correlations using in-domain features are in
general lower than for out-of-domain features. This
is due to idiosyncratic words that are closely related
in the collection, e.g. remnant Wikipedia markup
tags. The topic model discovers them as topics and
the word statistics derived from the same collection
supports the association, but these topics are gen-
erally not coherent, as revealed by out-of-domain
statistics. This result is consistent with previous
studies (Lau et al., 2014).

We see that correlation decreases systematically
as N increases, implying that N has high impact on
topic coherence evaluation and that if a single value
of N is to be used, a lower value is preferable.

To test whether we can leverage the additional in-
formation from the different values of N , we aggre-
gate the model precision values and human ratings
per-topic before computing the correlation (Table 3:
Cardinality = “Avg”). We also test the significance
of difference for each N with the aggregate correla-
tion using the Steiger Test (Steiger, 1980); they are
marked with ‘∗’ in the table.5

5The test measures if the aggregate correlation is signifi-
cantly higher (p < 0.1) than a non-aggregate correlation using
a one-tailed test.

Domain N
In-domain Out-of-Domain
Features Features

WIKI

5 0.02 0.59∗

10 −0.05∗ 0.58∗

15 0.00 0.56∗

20 0.06 0.55∗

Avg 0.00 0.63

NEWS

5 0.22∗ 0.62∗

10 0.27∗ 0.68∗

15 0.35 0.68∗

20 0.35 0.65∗

Avg 0.31 0.71

Table 4: Pearson correlation between system topic
coherence and human ratings across different values
of N for NPMI. “∗” denotes statistical significance
compared to aggregate correlation.

The correlation improves substantially. In fact,
for NEWS using in-domain features, the correlation
is higher than that of any individual cardinality set-
ting. This observation suggests that a better ap-
proach to automatically computing topic coherence
is to aggregate coherence scores over different cardi-
nality settings, and that it is sub-optimal to evaluate
a topic by only assessing a single setting of N . In-
stead, we should repeat it several times, varying N .

4 Automated Method — NPMI

The other mainstream approach to evaluating topic
coherence is to directly measure the average pair-
wise association between the top-N words. New-
man et al. (2010) found PMI to be the best associa-
tion measure, and later studies (Aletras and Steven-
son, 2013; Lau et al., 2014) found that normalised
PMI (NPMI: Bouma (2009)) improves PMI further.

To see if the benefit of aggregating coherence
measures over several cardinalities transfers across
to other methodologies, we test the NPMI method-
ology. We compute the topic coherence using the
full collection of WIKI and NEWS, respectively, for
varying N . Results are presented in Table 4.

The in-domain features perform much worse, es-
pecially for the WIKI topics. NPMI assigns very
high scores to several incoherent topics, thereby re-
ducing the correlation to almost zero. These top-
ics consist predominantly of Wikipedia markup tags,
and the high association is due to word statistics id-
iosyncratic to the collection.

Once again, aggregating the topic coherence over

486

multiple N values boosts results further. The cor-
relations using aggregation and out-of-domain fea-
tures again produce the best results for both WIKI

and NEWS.
It is important to note that, while these find-

ings were established based on manual annotation of
topic coherence, for practical applications, topic co-
herence would be calculated in a fully-unsupervised
manner (averaged over different topic cardinalities),
without the use of manual annotations.

5 Conclusion

We investigate the impact of the cardinality of topic
words on topic coherence evaluation. We found that
human ratings decrease systematically when cardi-
nality increases, although pairwise correlations are
relatively high. We discovered that the performance
of two automated methods — word intrusion and
pairwise NPMI — can be substantially improved
if the system scores and human ratings are aggre-
gated over several cardinality settings before com-
puting the correlation. Contrary to the standard prac-
tice of using a fixed cardinality setting, our findings
suggest that we should assess topic coherence using
several cardinality settings and then aggregate over
them. The human-judged coherence ratings, along
with code to compute topic coherence, are available
online.

6 Acknowledgements

This research was supported in part by funding from
the Australian Research Council.

References
Nikos Aletras and Mark Stevenson. 2013. Evaluating

topic coherence using distributional semantics. In Pro-
ceedings of the Tenth International Workshop on Com-
putational Semantics (IWCS-10), pages 13–22, Pots-
dam, Germany.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Gosse Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. In Proceedings
of the Biennial GSCL Conference, pages 31–40, Pots-
dam, Germany.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L.
Boyd-Graber, and David M. Blei. 2009. Reading tea

leaves: How humans interpret topic models. In Ad-
vances in Neural Information Processing Systems 21
(NIPS-09), pages 288–296, Vancouver, Canada.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the EACL
(EACL 2014), pages 530–539, Gothenburg, Sweden.

David Mimno, Hanna Wallach, Edmund Talley, Miriam
Leenders, and Andrew McCallum. 2011. Optimizing
semantic coherence in topic models. In Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2011), pages 262–272,
Edinburgh, UK.

Guido Minnen, John Carroll, and Darren Pearce. 2001.
Applied morphological processing of English. Natu-
ral Language Engineering, 7(3):207–223.

David Newman, Jey Han Lau, Karl Grieser, and Timothy
Baldwin. 2010. Automatic evaluation of topic coher-
ence. In Proceedings of Human Language Technolo-
gies: The 11th Annual Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL HLT 2010), pages 100–108, Los An-
geles, USA.

James H. Steiger. 1980. Tests for comparing elements of
a correlation matrix. Psychological Bulletin, 87:245–
251.

487

Proceedings of NAACL-HLT 2016, pages 488–493,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Transition-Based Syntactic Linearization with Lookahead Features

Ratish Puduppully †∗, Yue Zhang ‡, Manish Shrivastava †
†Kohli Center on Intelligent Systems (KCIS),

International Institute of Information Technology, Hyderabad (IIIT Hyderabad)
‡Singapore University of Technology and Design

ratish.surendran@research.iiit.ac.in yue zhang@sutd.edu.sg
m.shrivastava@iiit.ac.in

Abstract

It has been shown that transition-based meth-
ods can be used for syntactic word order-
ing and tree linearization, achieving signifi-
cantly faster speed compared with traditional
best-first methods. State-of-the-art transition-
based models give competitive results on ab-
stract word ordering and unlabeled tree lin-
earization, but significantly worse results on
labeled tree linearization. We demonstrate that
the main cause for the performance bottle-
neck is the sparsity of SHIFT transition actions
rather than heavy pruning. To address this is-
sue, we propose a modification to the stan-
dard transition-based feature structure, which
reduces feature sparsity and allows lookahead
features at a small cost to decoding efficiency.
Our model gives the best reported accuracies
on all benchmarks, yet still being over 30
times faster compared with best-first-search.

1 Introduction

Word ordering is the abstract language modeling
task of making a grammatical sentence by ordering a
bag of words (White, 2004; Zhang and Clark, 2015;
De Gispert et al., 2014; Bohnet et al., 2010; Filip-
pova and Strube, 2007; He et al., 2009), which is
practically relevant to text-to-text applications such
as summarization (Wann et al., 2009) and machine
translation (Blackwood et al., 2010). Zhang (2013)
built a discriminative word ordering model, which
takes a bag of words, together with optional POS
and dependency arcs on a subset of input words, and

∗Part of the work was done when the author was a visiting
student at Singapore University of Technology and Design.

yields a sentence together with its dependency parse
tree that conforms to input syntactic constraints. The
system is flexible with respect to input constraints,
performing abstract word ordering when no con-
straints are given, but gives increasingly confined
outputs when more POS and dependency relations
are specified. It has been applied to syntactic lin-
earization (Song et al., 2014) and machine transla-
tion (Zhang et al., 2014).

One limitation of Zhang (2013) is relatively low
time efficiency, due to the use of time-constrained
best-first-search (White and Rajkumar, 2009) for de-
coding. In practice, the system can take seconds to
order a bag of words in order to obtain reasonable
output quality. Recently, Liu et al. (2015) proposed
a transition-based model to address this issue, which
uses a sequence of state transitions to build the out-
put. The system of Liu et al. (2015) achieves signifi-
cant speed improvements without sacrificing accura-
cies when working with unlabeled dependency trees.
With labeled dependency trees as input constraints,
however, the system of Liu et al. (2015) gives much
lower accuracies compared with Zhang (2013).

While the low accuracy can be attributed to heavy
pruning, we show that it can be mitigated by modi-
fying the feature structure of the standard transition-
based framework, which scores the output transi-
tion sequence by summing the scores of each tran-
sition action. Transition actions are treated as an
atomic output component in each feature instance.
This works effectively for most structured prediction
tasks, including parsing (Zhang and Clark, 2011a).
For word ordering, however, transition actions are
significantly more complex and sparse compared

488

with parsing, which limits the power of the tradi-
tional feature model.

We instead break down complex actions into
smaller components, merging some components
into configuration features which reduces sparsity in
the output action and allows flexible lookahead fea-
tures to be defined according to the next action to
be applied. On the other hand, this change in the
feature structure prevents legitimate actions to be
scored simultaneously for each configuration state,
thereby reducing decoding efficiency. Experiments
show that our method is slightly slower compared
with Liu et al. (2015), but achieves significantly bet-
ter accuracies. It gives the best results for all stan-
dard benchmarks, being over thirty times faster than
Zhang (2013). The new feature structures can be ap-
plied to other transition-based systems also.

2 Transition-based linearization

Liu et al. (2015) uses a transition-based model for
word ordering, building output sentences using a se-
quence of state transitions. Instead of scoring out-
put syntax trees directly, it scores the transition ac-
tion sequence for structural disambiguation. Liu et
al.’s transition system extends from transition-based
parsers (Nivre and Scholz, 2004; Chen and Man-
ning, 2014), where a state consists of a stack to hold
partially built outputs. Transition-based parsers use
a queue to maintain input word sequences. How-
ever, for word ordering, the input is a set without
order. Accordingly, Liu et al. uses a set to maintain
the input. The transition actions are:
• SHIFT-Word-POS, which removes Word from

the set, assigns POS to it and pushes it onto the
stack as the top word S0;
• LEFTARC-LABEL, which removes the second

top of stack S1 and builds a dependency arc
S1

LABEL←−−−−− S0;
• RIGHTARC-LABEL, which removes the top

of stack S0 and builds a dependency arc
S1

LABEL−−−−−→ S0.
Using the state transition system, the bag of
words {John, loves, Mary} can be ordered by
(SHIFT-John-NNP, SHIFT-loves-VBZ, LEFTARC-
SBJ, SHIFT-Mary-NNP, RIGHTARC-OBJ).

Liu et al. (2015) use a discriminative perceptron
model with beam search (Zhang and Clark, 2011a),

Unigrams
S0w; S0p; S0,lw; S0,lp; S0,rw; S0,rp;
S0,l2w; S0,l2p; S0,r2w; S0,r2p;
S1w; S1p; S1,lw; S1,lp; S1,rw; S1,rp;
S1,l2w; S1,l2p; S1,r2w; S1,r2p;
Bigram
S0wS0,lw; S0wS0,lp; S0pS0,lw; S0pS0,lp;
S0wS0,rw; S0wS0,rp; S0pS0,rw; S0pS0,rp;
S1wS1,lw; S1wS1,lp; S1pS1,lw; S1pS1,lp;
S1wS1,rw; S1wS1,rp; S1pS1,rw; S1pS1,rp;
S0wS1w; S0wS1p; S0pS1w; S0pS1p

Trigram
S0wS0pS0,lw; S0wS0,lwS0,lp; S0wS0pS0,lp;
S0pS0,lwS0,lp; S0wS0pS0,rw; S0wS0,lwS0,rp;
S0wS0pS0,rp; S0pS0,rwS0,rp;
S1wS1pS1,lw; S1wS1,lwS1,lp; S1wS1pS1,lp;
S1pS1,lwS1,lp; S1wS1pS1,rw; S1wS1,lwS1,rp;
S1wS1pS1,rp; S1pS1,rwS1,rp;
Linearization
w0; p0; w−1w0; p−1p0; w−2w−1w0; p−2p−1p0;
S0,lwS0,l2w; S0,lpS0,l2p; S0,r2wS0,rw; S0,r2pS0,rp;
S1,lwS1,l2w; S1,lpS1,l2p; S1,r2wS1,rw; S1,r2pS1,rp;

Table 1: Base feature templates.

designing decoding algorithms that accommodate
flexible constraints. The features include word(w),
pos(p) and dependency label(l) information of words
on the stack (S0, S1, ... from the top). For example,
the word on top of stack is S0w and the POS of the
stack top is S0p. The full set of feature templates
can be found in Table 2 of Liu et al. (2015), repro-
duced here in Table 1. These templates are called
configuration features. When instantiated, they are
combined with each legal output action to score the
action. Therefore, actions are atomic in feature in-
stances.

Formally, given a configuration C, the score of a
possible action a is calculated as:

Score(a) = ~θ · ~Φ(C, a),

where ~θ is the model parameter vector of the model
and ~Φ(C, a) denotes a sparse feature vector that con-
sists of features with configuration and action com-
ponents i.e ~Φ(C, a) is sparse. ~θ has to be loaded for
each a.

For efficiency considerations and following
transition-based models, Liu et al. (2015) scores
all possible actions given a configuration simultane-
ously. This is effectively the same as formulating the

489

score into

Score(a) = ~θa · ~Φ(C), a ∈ A.
Here A is the full set of actions and ~Φ(C) is fixed,
and ~θa for all a can be loaded simultaneously. In
a hash-based parameter model, it significantly im-
proves the time efficiency.

3 Feature structure modification

3.1 Two limitations of the baseline model

There are two major limitations in the feature struc-
ture of Liu et al. (2015). First, the SHIFT actions,
which consist of the word to shift and its POS, are
highly sparse. Since the action is combined with all
configuration features, there will be no active feature
for disambiguating the shift actions for OOV words.
This issue does not exist in transition-based parsers
because words are not a part of their transition ac-
tions. Second, input constraints are not leveraged by
the feature model. Although the dependency rela-
tions of the word to shift can be given as inputs, they
are used only as constraints to the decoder, but not
as features to guide the shift action. Such lookahead
information on the to-be-shifted word can be highly
useful for disambiguation.

For example, consider the bag of words {John,
loves, Mary}. Without constraints, both ‘John loves
Mary’ and ‘Mary loves John’ are valid word order-
ing results. However, given the constraint (John,
SBJ, loves), the correct answer is reduced to the
former. The first action to build the two examples
are (SHIFT-John-NNP) and (SHIFT-Mary-NNP), re-
spectively. According to Liu et al.’s feature model,
there is no feature to disambiguate the first SHIFT

action if both ‘John’ and ‘Mary’ are OOV words.
The system has to maintain both hypotheses and rely
on the search algorithm to disambiguate them after
the dependency arcs (John, SBJ, loves) and (Mary,
OBJ, loves) are built. However, given the syntac-
tic constraint that ‘John’ is the subject, the disam-
biguation can be done right when performing the
first SHIFT action. This requires the dependency arc
label to be extracted for the word to shift e.g.(John,
Mary), which is a lookahead feature. In addition, the
OOV word ‘John’ must be excluded from the feature
instance, which implies that the SHIFT-John-NNP
action must be simplified.

set of label and POS of child nodes of L
Lcls;Lclns;Lcps;Lcpns;
S0wLcls;S0pLcls;S1wLcls;S1pLcls;
S0wLclns;S0pLclns;S1wLclns;S1pLclns;
S0wLcps;S0pLcps;S1wLcps;S1pLcps;
S0wLcpns;S0pLcpns;S1wLcpns;S1pLcpns;
set of label and POS of siblings of L
Lsls;Lslns;Lsps;Lspns;
S0wLsls;S0pLsls;S1wLsls;S1pLsls;
S0wLslns;S0pLslns;S1wLslns;S1pLslns;
S0wLsps;S0pLsps;S1wLsps;S1pLsps;
S0wLspns;S0pLspns;S1wLspns;S1pLspns;
parent label, POS and word of L
LpsLlp; LpsLpp; LpsLwp;
S0wLpsLlp;S0pLpsLlp;S1wLpsLlp;S1pLpsLlp;
S0wLpsLpp;S0pLpsLpp;S1wLpsLpp;S1pLpsLpp;
S0wLpsLwp;S0pLpsLwp;S1wLpsLwp;S1pLpsLwp;
set of label and POS of child nodes of S0

Scls;Sclns;Scps;Scpns;
S0wScls;S0pScls;S1wScls;S1pScls;
S0wSclns;S0pSclns;S1wSclns;S1pSclns;
S0wScps;S0pScps;S1wScps;S1pScps;
S0wScpns;S0pScpns;S1wScpns;S1pScpns;
set of label and POS of siblings of S0

Ssls;Sslns;Ssps;Sspns;
S0wSsls;S0pSsls;S1wSsls;S1pSsls;
S0wSslns;S0pSslns;S1wSslns;S1pSslns;
S0wSsps;S0pSsps;S1wSsps;S1pSsps;
S0wSspns;S0pSspns;S1wSspns;S1pSspns;
parent label and POS of S0

SpsSlp; SpsSpp;
S0wSpsSlp;S0pSpsSlp;S1wSpsSlp;S1pSpsSlp;
S0wSpsSpp;S0pSpsSpp;S1wSpsSpp;S1pSpsSpp;

Table 2: Lookahead feature templates

As a second example, information about depen-
dents can also be useful for disambiguating SHIFT

actions. In the above case, the fact that the subject
has not been shifted onto the stack can be a useful
indicator for not shifting the verb ‘loves’ onto the
stack in the beginning. Inspired by the above, we
exploit a range of lookahead features from syntactic
constraints.

3.2 New feature structure for SHIFT actions

We modify the feature structure of Liu et al. (2015)
by breaking down the SHIFT-Word-POS action into
three components, namely SHIFT, Word and POS,
using only the action type SHIFT as the output ac-
tion component in feature instances, while combin-

490

no pos 50% pos all pos no pos 50% pos all pos no pos 50% pos all pos
no dep no dep no dep 50% dep 50% dep 50% dep all dep all dep all dep

BL SP BL SP BL SP BL SP BL SP BL SP BL SP BL SP BL SP
Z13 42.9 4872 43.4 4856 44.7 4826 50.5 4790 51.4 4737 52.2 4720 73.3 4600 74.7 4431 76.3 4218
L15 47.5 155 47.9 119 48.8 74 54.8 132 55.2 91 56.2 41 77.8 40 79.1 28 81.1 22
Ours 48.0 175 49.0 156 51.5 148 59.0 144 62.0 160 67.1 171 82.8 62 86.2 68 89.9 70

Table 3: Development partial-tree linearization results. BL – BLEU score; SP – number of milliseconds per
sentence. Z13 – best-first system of Zhang (2013) and L15 – transition-based system of Liu et al. (2015).

ing Word and POS with other configuration features
to form a set of lookahead features.

For example, consider the configuration feature
S0w, which captures the word on the top of the
stack. Under the feature structure of Liu et al., it is
combined with each possible action to form features
for scoring the action. As a result, for scoring the
action SHIFT-Lw-Lp, S0w is instantiated into S0w-
SHIFT-Lw-Lp, where Lw is the word to shift and
Lp is its POS. Under our new feature structure, the
action component is reduced to SHIFT only, while
Lw and Lp should be used in lookahead features.
Now a effectively equivalent configuration feature
to Liu et al.’s S0w is S0w-Lw-Lp, with the looka-
head Lw and Lp. It gives S0w-Lw-Lp-SHIFT when
combined with the action SHIFT.

This new feature structure reformulates the SHIFT

action features only. The LEFTARC/ RIGHTARC ac-
tions remain LEFTARC/ RIGHTARC-LABEL since
they are not sparse. Note that the change is in the
action features rather than the actions themselves.
Given the bag of words {John, loves, Mary}, the ac-
tion SHIFT-John-NNP is still different from the ac-
tion SHIFT-Mary-NNP. However, the action compo-
nent of the features becomes SHIFT only, and the
words John/ Mary must be used as lookahead con-
figuration features for their disambiguation.

The new feature structure can reduce feature spar-
sity by allowing lookahead features without word
information. For example, a configuration feature
S0w-Lp, which contains only the stack top word and
the POS of the lookahead word, can still fire even
if the word to shift is OOV, thereby disambiguating
OOV words of different POS. In addition, the looka-
head Lw and Lp do not have to be combined with
every other configuration feature, as with Liu et al.
(2015), thereby allowing more flexible feature com-
bination and a leaner model.

3.3 The new features

The new feature structure includes two types of fea-
tures. The first is the same feature set as Liu et al.
(2015), but with the SHIFT action component not
having Word and POS information. We call this type
of features as base features. The second is a set
of lookahead features, which are shown in Table 2.
Here Lcls represents set of arc labels on child nodes
(of the word L to shift) that have been shifted on
to the stack, Lclns represents set of labels on child
nodes that have not been shifted, Lsls the label set
of shifted sibling nodes, Lslns the label set of un-
shifted sibling nodes, Lcps the POS set of shifted
child nodes, Lcpns the POS set of unshifted child
nodes, Lsps the POS set of shifted sibling nodes and
Lspns the POS set of unshifted sibling nodes. Lps
is a binary feature indicating if the parent has been
shifted. Llp represents label on the parent, Lpp POS
of parent and Lwp the parent word form. We define
similar lookahead features for S0. These features are
instantiated only for SHIFT actions.

The new feature structure prevents all possible ac-
tions from being scored simultaneously, because the
lookahead Word and POS are now in configuration
features, rather than output actions, making it neces-
sary to score the shifting of different words or POS
separately. This leads to reduced search speed. Nev-
ertheless, our experiments show that they give a de-
sirable tradeoff between efficiency and accuracy.

Note that the new features are much less than a
full Cartesian product of lookahead features and the
original features. This is a result of manual feature
engineering, which allows similar accuracies to be
achieved using a much smaller model, thereby in-
creasing the time efficiency.

491

unlabeled labeled
no pos all pos all pos all pos
no dep no dep all dep all dep

W09 - 33.7 - -
Z11 - 40.1 - -
Z13 44.7 46.8 76.2 89.3
L15 49.4 50.8 82.3 82.9
This paper 50.5 53.0 91.0 91.8

Table 4: Final results. W09 – Wann et al. (2009),
Z11 – Zhang and Clark (2011b)

4 Experiments

Following previous work we conduct experiments
on the Penn TreeBank (PTB), using Wall Street
Journal sections 2-21 for training, 22 for develop-
ment and 23 for testing. Gold-standard dependency
trees are derived from bracketed sentences using
Penn2Malt, and base noun phrases are treated as a
single word. The BLEU score is used to evaluate
the performance of linearization.

Table 4 shows a difference in scores between
transition-based linearization system of Liu et al.
(2015) (L15) and best-first system of Zhang (2013)
(Z13). L15 performs better for word ordering with
unlabeled dependency arcs, but poorly for the task
of labeled syntactic linearization.

Table 3 shows a series of development experi-
ments comparing our system with Z13 and L15.
We vary the amount of input syntactic constraints
by randomly sampling from POS and dependency
labels of the development set. Our system gives
consistently higher accuracies when compared with
both Z13 and L15. Compared to L15, the increase
in scores for unconstrained word ordering is due to
the introduction of reduced feature sparsity. The im-
provements on tree linearization tasks involving par-
tial to full dependency constraints are also due to
lookahead features that leverage tree information to
reduce ambiguity early. Though slower than L15,
our system is over 30 times faster compared to Z13.

We compare final test scores with previous meth-
ods in the literature in Table 4. Our system im-
proves upon the previous best scores by 8.7 BLEU
points for the task of unlabeled syntactic lineariza-
tion. For the task of labeled syntactic linearization,
we achieve the score of 91.8 BLEU points, the high-
est results reported so far.

Table 5 contains examples of fully constrained

Fully constrained output
ref. The spinoff also will compete with Fujitsu
L15 The spinoff with Fujitsu compete also will
Ours The spinoff also will compete with Fujitsu
ref. Dr. Talcott led a team of researchers from

the National Cancer Institute .
L15 a team of researchers from the National

Cancer Institute led Dr. Talcott .
Ours Dr. Talcott led a team of researchers from

the National Cancer Institute .

Table 5: Example outputs.

output . In the first example ‘will’ is the ROOT node
with two child nodes ‘also’ and ‘compete’. Looka-
head feature for child dependency labels Lcls, Lclns
on the node ‘will’ can help order the segment ‘also
will compete’ correctly in our system. Without such
features, the system of L15 yields an output that
starts with ‘The spinoff with Fujitsu’ which is locally
fluent, but leaving the words ‘also’ and ‘will’ diffi-
cult to handle. In the second example, ‘Dr. Talcott’
is OOV. Hence system of L15 is not able to score it
and thus order it correctly. Our system makes use of
both POS and dependency label of ‘Dr. Talcott’ to
order it correctly.

5 Conclusion

We identified a feature sparsity issue in state-of-the-
art transition-based word ordering, proposing a so-
lution by redefining the feature structure and intro-
ducing lookahead features. The new method gives
the best accuracies on a set of benchmarks, which
show that transition-based methods are a fast and
accurate choice for syntactic linearization. Future
work include the testing of this model in a lineariza-
tion shared task (Belz et al., 2011) and investigating
the integration of large scale training data (Zhang et
al., 2012; Liu and Zhang, 2015).

We release our source code under GPL at
https://github.com/SUTDNLP/ZGen/
releases/tag/v0.2.

Acknowledgments

We thank Yijia Liu for helpful discussions and for
sharing the Latex templates and the anonymous re-
viewers for their constructive comments. This work
was supported by the Singapore Ministry of Educa-
tion (MOE) AcRF Tier 2 grant T2MOE201301.

492

References

Anja Belz, Michael White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and evalu-
ation results. In Proceedings of the 13th European
workshop on natural language generation, pages 217–
226. Association for Computational Linguistics.

Graeme Blackwood, Adrià De Gispert, and William
Byrne. 2010. Fluency constraints for minimum bayes-
risk decoding of statistical machine translation lattices.
In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 71–79. Associa-
tion for Computational Linguistics.

Bernd Bohnet, Leo Wanner, Simon Mille, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level realizer.
In Proceedings of the 23rd International Conference
on Computational Linguistics, pages 98–106. Associ-
ation for Computational Linguistics.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), 1:740–750.

A De Gispert, M Tomalin, and W Byrne. 2014. Word or-
dering with phrase-based grammars. 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics 2014, EACL 2014, pages 259–
268.

Katja Filippova and Michael Strube. 2007. Gener-
ating constituent order in german clauses. In An-
nual Meeting-Association for Computational Linguis-
tics, volume 45, page 320.

Wei He, Haifeng Wang, Yuqing Guo, and Ting Liu. 2009.
Dependency based chinese sentence realization. In
Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP: Volume 2, pages 809–816.

Jiangming Liu and Yue Zhang. 2015. An empirical com-
parison between n-gram and syntactic language mod-
els for word ordering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 369–378, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Yijia Liu, Yue Zhang, Wanxiang Che, and Bing Qin.
2015. Transition-based syntactic linearization. In
NAACL HLT 2015, The 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Denver, Colorado, USA, May 31 - June 5, 2015, pages
113–122.

Joakim Nivre and Mario Scholz. 2004. Deterministic
dependency parsing of english text. In Proceedings
of the 20th international conference on Computational
Linguistics, page 64. Association for Computational
Linguistics.

Linfeng Song, Yue Zhang, Kai Song, and Qun Liu.
2014. Joint morphological generation and syntactic
linearization. Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 1522–
1528.

Stephen Wann, Mark Dras, Robert Dale, and Cécile Paris.
2009. Improving grammaticality in statistical sentence
generation: Introducing a dependency spanning tree
algorithm with an argument satisfaction model. In
Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 852–860.

Michael White and Rajakrishnan Rajkumar. 2009. Per-
ceptron reranking for ccg realization. In Proceedings
of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 1-Volume 1, pages
410–419. Association for Computational Linguistics.

Michael White. 2004. Reining in ccg chart realiza-
tion. In Natural Language Generation, pages 182–
191. Springer Berlin Heidelberg.

Yue Zhang and Stephen Clark. 2011a. Syntactic process-
ing using the generalized perceptron and beam search.
Computational linguistics, 37(1):105–151.

Yue Zhang and Stephen Clark. 2011b. Syntax-based
grammaticality improvement using ccg and guided
search. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
1147–1157. Association for Computational Linguis-
tics.

Yue Zhang and Stephen Clark. 2015. Discriminative
syntax-based word ordering for text generation. Com-
putational Linguistics, 41(3):503–538.

Yue Zhang, Graeme Blackwood, and Stephen Clark.
2012. Syntax-based word ordering incorporating a
large-scale language model. In Proceedings of the
13th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 736–746.
Association for Computational Linguistics.

Yue Zhang, Kai Song, Linfeng Song, Jingbo Zhu, and
Qun Liu. 2014. Syntactic smt using a discriminative
text generation model. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 177–182, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Yue Zhang. 2013. Partial-tree linearization: generalized
word ordering for text synthesis. In Proceedings of the
Twenty-Third international joint conference on Artifi-
cial Intelligence, pages 2232–2238. AAAI Press.

493

Proceedings of NAACL-HLT 2016, pages 494–498,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Recurrent Neural Networks Approach
for Estimating the Quality of Machine Translation Output

Hyun Kim
Creative IT Engineering,

Pohang University of Science and
Technology (POSTECH),

Pohang, Republic of Korea
hkim.postech@gmail.com

Jong-Hyeok Lee
Computer Science and Engineering,
Pohang University of Science and

Technology (POSTECH),
Pohang, Republic of Korea
jhlee@postech.ac.kr

Abstract

This paper presents a novel approach using
recurrent neural networks for estimating the
quality of machine translation output. A se-
quence of vectors made by the prediction
method is used as the input of the final recur-
rent neural network. The prediction method
uses bi-directional recurrent neural network
architecture both on source and target sen-
tence to fully utilize the bi-directional quality
information from source and target sentence.
Our experiments show that the proposed re-
current neural networks approach achieves a
performance comparable to the existing state-
of-the-art models for estimating the sentence-
level quality of English-to-Spanish transla-
tion.

1 Introduction

Estimating the quality of machine translation
output, called quality estimation (QE) (Specia
et al., 2009; Blatz et al., 2004), is to pre-
dict quality scores/categories for unseen machine-
translated sentences without reference translations
at various granularity levels (sentence-level/word-
level/document-level). Quality estimation is of
growing importance in the field of machine transla-
tion (MT) since MT systems are widely used and the
quality of each machine-translated sentence is able
to vary considerably.

Previous research on QE, addressed as a re-
gression/classification problem to compute quality
scores/categories, has mainly focused on feature ex-
traction and feature selection. Feature extraction is

to find the relevant features, such as baseline fea-
tures (Specia et al., 2013) and latent semantic index-
ing (LSI) based features (Langlois, 2015), captur-
ing various aspects of quality from source and target
sentences1 and external resources. Feature selection
is to select the best features by using selection al-
gorithms, such as Gaussian processes (Shah et al.,
2015) and heuristic (González-Rubio et al., 2013),
among already extracted features. Finding desirable
features has played a key role in the QE research.

In this paper we present a recurrent neural net-
works approach for estimating the quality of ma-
chine translation output at sentence level, which
does not require manual effort for finding the best
relevant features. The remainder of this paper is or-
ganized as follows. In Section 2, we propose a re-
current neural networks approach using a sequence
of vectors made by the prediction method as input
for quality estimation. And we describe the pre-
diction method using bi-directional recurrent neural
networks architecture in Section 3. In Section 4, we
report evaluation results, and conclude our paper in
Section 5.

2 Recurrent Neural Networks Approach
for Estimating Quality Score

Because recurrent neural networks (RNNs) have the
strength for handling sequential data (Goodfellow et
al., 2015), we apply RNNs to estimate the quality
score of translation.

The input of the final RNN is a sequence of vec-
tors that have quality information about whether tar-

1In this paper, a ’target sentence’ means the machine-
translated sentence from a source sentence.

494

 POSTECH

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑅𝑅𝑅𝑅𝑅𝑅
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

[𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟏𝟏]

𝒗𝒗𝟏𝟏 𝒗𝒗𝟐𝟐 𝒗𝒗𝒋𝒋 𝒗𝒗𝑻𝑻𝒚𝒚 ⋯ ⋯

𝑸𝑸𝑸𝑸 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

𝐸𝐸𝑦𝑦𝑦𝑦1 𝐸𝐸𝑦𝑦𝑦𝑦2 𝐸𝐸𝑦𝑦𝑦𝑦𝑗𝑗 𝐸𝐸𝑦𝑦𝑦𝑦𝑇𝑇𝑦𝑦 ⋯ ⋯

𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝒋𝒋 𝒔𝒔𝑻𝑻𝒚𝒚

⋯

⋯

⋯

⋯

𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝒋𝒋 𝒔𝒔𝑻𝑻𝒚𝒚

𝒒𝒒𝒚𝒚𝒋𝒋 𝒒𝒒𝒚𝒚𝟏𝟏 𝒒𝒒𝒚𝒚𝟐𝟐 𝒒𝒒𝒚𝒚𝑻𝑻𝒚𝒚 ⋯ ⋯

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (𝐱𝐱)
𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑖𝑖 𝑥𝑥𝑇𝑇𝑥𝑥 ⋯ ⋯

𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 (𝐲𝐲)
𝑦𝑦1 𝑦𝑦2 𝑦𝑦𝑗𝑗 𝑦𝑦𝑇𝑇𝑦𝑦 ⋯ ⋯

𝑐𝑐𝑗𝑗 𝑐𝑐1 𝑐𝑐2 𝑐𝑐𝑇𝑇𝑦𝑦 ⋯ ⋯

𝑡𝑡𝑗𝑗 𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑇𝑇𝑦𝑦 ⋯ ⋯

𝐸𝐸𝑥𝑥𝑥𝑥1 𝐸𝐸𝑥𝑥𝑥𝑥2 𝐸𝐸𝑥𝑥𝑥𝑥𝑖𝑖 𝐸𝐸𝑥𝑥𝑥𝑥𝑇𝑇𝑥𝑥 ⋯ ⋯

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝒊𝒊 𝒉𝒉𝑻𝑻𝒙𝒙

⋯

⋯

⋯

⋯

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐 𝒉𝒉𝒊𝒊 𝒉𝒉𝑻𝑻𝒙𝒙

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑅𝑅𝑅𝑅𝑅𝑅
 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

[𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟐𝟐]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

[𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐]

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

(𝑅𝑅𝑅𝑅𝑅𝑅)
ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐬𝐬 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

Figure 1: An illustration of the proposed recurrent neural networks model for quality estimation

get words in a target sentence are properly translated
from a source sentence. We will refer to this se-
quence of vectors as quality vectors (qy1 , ... , qyTy

).

Each quality vector qyj

2 has the quality information
about how well a target word yj in a target sentence
y = (y1, ... , yT y

) is translated from a source sen-
tence3 x = (x1, ... , xT x

). Quality vectors are gen-
erated from the prediction method (of Section 3).

To predict a quality estimation score (QE score)
as an HTER score (Snover et al., 2006) in [0,1] for
each target sentence, a logistic sigmoid function is
used such that

QE score(y,x)
= QE score′(qy1 , ... , qyT y

)

= σ(W>
QE

s)

(1)

where s is a summary unit of the whole quality vec-
tors and WQE ∈ Rr. r is the dimensionality of sum-
mary unit.

To get the summary unit s, the hidden state vj em-
ploying p gated hidden units for the target word yj
is computed by

vj = f(qyj
, vj−1) . (2)

The gated hidden unit (Cho et al., 2014) for the ac-
tivation function f is used to learn long-term depen-

21 5 j 5 Ty where Ty is the length of target sentence.
3Source(Target) sentence consists of 1-of-Kx(Ky) coded

word vectors. Kx(Ky) is the vocabulary sizes of source(target)
language.

dencies of translation qualities for target words. We
consider the QE score as the integrated/condensed
value reflecting the sequential quality information
of sequential target words. Because the last hidden
state vT y

is a summary of the sequential quality vec-
tors, we fix the summary unit s to the last hidden
state vT y

.

3 Prediction method using Bi-directional
RNN Architecture to Make Quality
Vectors

In this section, we detail the ways to get the quality
vectors (qy1 , ... , qyTy

) for computing QE score.

Since the training data for QE4 are not enough to
use a neural networks approach for making quality
vectors, we use an alternative based on large-scale
parallel corpora such as Europarl. We modify the
word prediction method of RNN Encoder-Decoder
(Cho et al., 2014) using parallel corpora to make the
quality vectors.

In subsection 3.1, we describe the underlying
word prediction method of RNN Encoder-Decoder.
We i) extend the prediction method to use the ad-
ditional backward RNN architecture on target sen-
tence in subsection 3.2 and ii) modify to get the qual-
ity vectors (qy1 , ... , qyTy

) in subsection 3.3.

4These data, provided in WMT Quality Estimation Shared
Task, consist of source sentences, target sentences, and quality
scores.

495

Figure 1 is the graphical illustration of the pro-
posed RNNs approach.

3.1 Word Prediction Method of RNN
Encoder-Decoder

RNN Encoder-Decoder proposed by Cho et al.
(2014) is able to predict the target word yj given
a source sentence x and all preceding target words
{y1, ..., yj−1} by using a softmax function. And it
is extended by Bahdanau et al. (2015) to use infor-
mation of relevant source words for predicting the
target word yj such that

p(yj |{y1, ..., yj−1},x)
= g(yj−1, ~sj−1, cj) .

(3)

g is a nonlinear function predicting the probabil-
ity of yj . ~sj−1 is the hidden state of the forward
RNN on target sentence and contains information
of preceding target words {y1, ... , yj−1 }. cj is the
context vector which means relevant parts of source
sentence associated with the target word yj . ~sj−1

and yj−1 are related to all preceding target words
{y1, ..., yj−1}, and cj is related to x in the word pre-
diction function of (3).

3.2 Additional Backward RNN Architecture on
Target Sentence

Bahdanau et al. (2015) introduce bi-directional
RNN architecture only on source sentence to ex-
tend RNN Encoder-Decoder. In our proposed QE
model, bi-directional RNN architecture is used both
on source and target sentence. By applying bi-
directional RNN architecture both on source and tar-
get sentence, we can fully and bi-directionally uti-
lize source and target sentence for predicting target
words, such that

p(yj |y=yj ,x)
= g([yj−1; yj+1], [~sj−1;

�
sj+1], cj)

=
exp(y>j Wo1

Wo2
tj)∑Ky

k=1
exp(y>kWo1

Wo2
tj)

,

(4)

which is the extended version of (3) using the addi-
tional backward RNN architecture.5

5The additional backward RNN on target sentence use the
context vectors shared by the forward RNN on target sentence.

To reflect further all following target words
{yj+1, ... , yT y

} when predicting the target word yj ,
the hidden state �

sj+1 of the backward RNN and the
next target word yj+1 are added. [~sj−1;

�
sj+1] and

[yj−1; yj+1] are related to y=yj
6, and cj is related to

x in the word prediction function of (4).
Wo1

∈ RKy×q and Wo2
∈ Rq×l are weight ma-

trices of softmax function. Ky is the vocabulary
sizes of target language and q is the dimensionality
of quality vectors. l is the dimensionality of maxout
units such that

tj = [max{t̃j,2k−1, t̃j,2k}]>k=1,...,l , (5)

where t̃j,k is the k-th element of a vector t̃j . And

t̃j = S′o[~sj−1;
�
sj+1] + V ′o [Eyyj−1;Eyyj+1] +Cocj ,

(6)
where S′o ∈ R2l×2n, V ′o ∈ R2l×2m, and Co ∈
R2l×2n. Ey ∈ Rm×Ky is the word embedding ma-
trix on target sentence. m and n are the dimensional-
ity of word embedding and hidden states of forward
and backward RNNs. The hidden state �

sj+1 of the
backward RNN and next target word yj+1 are used
in (6).7

From the extended prediction method of (4), the
probability of the target word yj is computed by us-
ing information of relevant source words in source
sentence x and all target words y=yj surrounding the
target word yj in target sentence.

3.3 Quality Vectors on Target Sentence
Word prediction method predicts the probability of
target words as a number between 0 and 1. But
we want to get quality vectors of q-dimensionality
which have the more intrinsic quality information
for target words.

To make quality vectors, we regard that the prob-
ability of the target word yj involves the quality in-
formation about whether the target word yj in target
sentence is properly translated from source sentence.
Thus, by decomposing the softmax function8 of (4),

6y=yj = {y1, ... , yj−1, yj+1, ... , yT y
}

7Original t̃j (Bahdanau et al., 2015) is
t̃j = So~sj−1 + VoEyyj−1 + Cocj .

8In this softmax function, the bias term is not used for the
simplicity of deriving the quality vectors. Generally, bias terms
are visually omitted in other equations to make the equations
uncluttered.

496

Wo1
Wo2

tj








...
yj
...

Figure 2: Weight matrices (Wo1
and Wo2

) of softmax function

and maxout unit tj for the target word yj

rowyj
(Wo1

) ◦ [Wo2
tj]>


...
yj ◦ []
...

Figure 3: The ways of computing the quality vector qy
j

(◦ is

an element-wise multiplication)

the quality vector qyj
for the target word yj is com-

puted by

qyj
=
[
rowyj

(Wo1
) ◦ [Wo2

tj]>
]>
, (7)

where ◦ is an element-wise multiplication. All of
quality information about possible Ky target words
at position j of target sentence is encoded in tj .
Thus, by decoding tj , we are able to get quality vec-
tor qyj

for the target word yj ∈ RKy at position j
of target sentence. Figure 2 and 3 show the ways to
compute the quality vector qyj

.

4 Experiments

The proposed RNNs approach was evaluated on the
WMT15 Quality Estimation Shared Task9 at sen-
tence level of English-Spanish.

We trained10 the proposed model through a two-
step process. First, by using English-Spanish paral-
lel corpus of Europarl v7 (Koehn, 2005), we trained
bi-directional RNNs having 1000 hidden units on
source and target sentence to make quality vectors.
Next, by using the training set of WMT15 QE task,
to predicte QE scores we trained the final RNN that

9http://www.statmt.org/wmt15/quality-
estimation-task.html

10Stochastic gradient descent (SGD) algorithm with adaptive
learning rate (Adadelta) (Zeiler, 2012) is used to train the pro-
posed model.

System ID MAE ↓ RMSE ↓
• RTM-DCU/RTM-FS+PLS-SVR 0.1325 0.1748
• LORIA/17+LSI+MT+FILTRE 0.1334 0.1735
• RTM-DCU/RTM-FS-SVR 0.1335 0.1768
• LORIA/17+LSI+MT 0.1342 0.1745

Bi-RNN 0.1359 0.1765
• UGENT-LT3/SCATE-SVM 0.1371 0.1745

Baseline SVM 0.1482 0.1913

Table 1: Proposed approach (Bi-RNN) results and official re-

sults for the scoring variant of WMT15 Quality Estimation

Shared Task at sentence level. A total of 5 tied official winning

systems are indicated by a •. Two standard metrics is used:

Mean Average Error (MAE) as a primary metric, and Root of

Mean Squared Error (RMSE) as a secondary metric (Bojar et

al., 2015).

System ID DeltaAvg ↑ Spearman’s ρ ↑
• LORIA/17+LSI+MT+FILTRE 6.51 0.36
• LORIA/17+LSI+MT 6.34 0.37
• RTM-DCU/RTM-FS+PLS-SVR 6.34 0.37
• RTM-DCU/RTM-FS-SVR 6.09 0.35

Bi-RNN 6.08 0.33
Baseline SVM 2.16 0.13

Table 2: Proposed approach (Bi-RNN) results and official re-

sults for the ranking variant of WMT15 Quality Estimation

Shared Task at sentence level. A total of 4 tied official win-

ning systems are indicated by a •. DeltaAvg metric is used as a

primary metric (Bojar et al., 2015).

use the quality vectors generated in previous step as
the input and have 100 hidden units.

Table 1 and 2 present the results of the proposed
approach (Bi-RNN) and the official results for the
scoring and ranking11 variants of the WMT15 Qual-
ity Estimation Shared Task at sentence level. At
both variants of the task, the proposed RNNs ap-
proach achieved the performance over the baseline
performance. Also our experiments showed that the
performance of the proposed RNNs approach is in-
cluded to the best performance group (at the scoring
variant of Table 1) or is close to the best performance
group (at the ranking variant of Table 2).

5 Conclusion

This paper proposed a recurrent neural networks ap-
proach using quality vectors for estimating the qual-
ity of machine translation output at sentence level.

11The ranking variant of the QE task measures how close a
proposed ranking of target translations from best to worst is to
the true ranking.

497

This approach does not require manual effort for
finding the best relevant features which the previous
QE research has mainly focused on.

To make quality vectors we used an alterna-
tive prediction method based on large-scale paral-
lel corpora, because the QE training data were not
enough. By extending the prediction method to use
bi-directional RNN architecture both on source and
target sentence, we were able to fully utilize the bi-
directional quality information from source and tar-
get sentence for quality estimation.

The proposed RNNs approach achieved a per-
formance comparable to the existing state-of-the-art
models at sentence-level QE. Our experiments have
showed that RNNs approach is a meaningful step for
QE research. Applying RNNs approach to word-
level QE and studying other ways to make quality
vectors better are remained for the future study.

Acknowledgments

This research was supported by the MSIP (Ministry
of Science, ICT and Future Planning), Korea, un-
der the ”ICT Consilience Creative Program” (IITP-
2015-R0346-15-1007) supervised by the IITP (Insti-
tute for Information & communications Technology
Promotion)

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004. Confidence estimation for
machine translation. In Proceedings of the 20th in-
ternational conference on Computational Linguistics,
page 315. Association for Computational Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp, Philipp
Koehn, Varvara Logacheva, Christof Monz, Matteo
Negri, Matt Post, Carolina Scarton, Lucia Specia, and
Marco Turchi. 2015. Findings of the 2015 workshop
on statistical machine translation. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion, pages 1–46, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014).

Jesús González-Rubio, J Ramón Navarro-Cerdán, and
Francisco Casacuberta. 2013. Dimensionality reduc-
tion methods for machine translation quality estima-
tion. Machine translation, 27(3-4):281–301.

Ian Goodfellow, Aaron Courville, and Yoshua Bengio.
2015. Deep learning. Book in preparation for MIT
Press.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5,
pages 79–86. Citeseer.

David Langlois. 2015. Loria system for the wmt15
quality estimation shared task. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 323–329, Lisbon, Portugal, September. Associ-
ation for Computational Linguistics.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2015.
A bayesian non-linear method for feature selection
in machine translation quality estimation. Machine
Translation, pages 1–25.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine translation
in the Americas, pages 223–231.

Lucia Specia, Marco Turchi, Nicola Cancedda, Marc
Dymetman, and Nello Cristianini. 2009. Estimating
the sentence-level quality of machine translation sys-
tems. In 13th Conference of the European Association
for Machine Translation, pages 28–37.

Lucia Specia, Kashif Shah, José GC De Souza, and
Trevor Cohn. 2013. Quest-a translation quality es-
timation framework. In ACL (Conference System
Demonstrations), pages 79–84. Citeseer.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

498

Proceedings of NAACL-HLT 2016, pages 499–505,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Symmetric Patterns and Coordinations:
Fast and Enhanced Representations of Verbs and Adjectives

Roy Schwartz,1 Roi Reichart,2
1Institute of Computer Science, The Hebrew University

2Faculty of Industrial Engineering and Management, Technion, IIT
{roys02|arir}@cs.huji.ac.il roiri@ie.technion.ac.il

Ari Rappoport1

Abstract

State-of-the-art word embeddings, which are
often trained on bag-of-words (BOW) con-
texts, provide a high quality representation of
aspects of the semantics of nouns. However,
their quality decreases substantially for the
task of verb similarity prediction. In this paper
we show that using symmetric pattern contexts
(SPs, e.g., “X and Y”) improves word2vec
verb similarity performance by up to 15% and
is also instrumental in adjective similarity pre-
diction. The unsupervised SP contexts are
even superior to a variety of dependency con-
texts extracted using a supervised dependency
parser. Moreover, we observe that SPs and
dependency coordination contexts (Coor) cap-
ture a similar type of information, and demon-
strate that Coor contexts are superior to other
dependency contexts including the set of all
dependency contexts, although they are still
inferior to SPs. Finally, there are substantially
fewer SP contexts compared to alternative rep-
resentations, leading to a massive reduction in
training time. On an 8G words corpus and a 32
core machine, the SP model trains in 11 min-
utes, compared to 5 and 11 hours with BOW
and all dependency contexts, respectively.

1 Introduction

In recent years, vector space models (VSMs) have
become prominent in NLP. VSMs are often eval-
uated by measuring their ability to predict human
judgments of lexical semantic relations between
pairs of words, mostly association or similarity.
While many datasets for these tasks are limited to

pairs of nouns, the recent SimLex999 word similar-
ity dataset (Hill et al., 2014) also consists of sim-
ilarity scores for verb and adjective pairs. State-of-
the-art VSMs such as word2vec skip-gram (w2v-SG,
(Mikolov et al., 2013a)) and GloVe (Pennington et
al., 2014) excel at noun-related tasks. However, their
performance substantially decreases on verb similar-
ity prediction in SimLex999, and their adjective rep-
resentations have rarely been evaluated (Section 2).

In this paper we show that a key factor in the re-
duced performance of the w2v-SG model on verb
representation is its reliance on bag-of-words (BOW)
contexts: contexts of the represented words that con-
sist of words in their physical proximity. We investi-
gate a number of alternative contexts for this model,
including various dependency contexts, and show
that simple, automatically acquired symmetric pat-
terns (SPs, e.g., “X or Y”, (Hearst, 1992; Davidov
and Rappoport, 2006)) are the most useful contexts
for the representation of verbs and also adjectives.
Moreover, the SP-based model is much more com-
pact than the alternatives, making its training an or-
der of magnitude faster.

In particular, we train several versions of the w2v-
SG model, each with a different context type, and
evaluate the resulting word embeddings on the task
of predicting the similarity scores of the verb and
adjective portions of SimLex999. Our results show
that SP contexts (SG-SP) obtain the best results on
both tasks: Spearman’s ρ scores of 0.459 on verbs
and 0.651 on adjectives. These results are 15.2%
and 4.7% better than BOW contexts and 7.3% and
6.5% better than all dependency contexts (DepAll).
Moreover, the number of SP contexts is substantially

499

smaller than the alternatives, making it extremely
fast to train: 11 minutes only on an 8G word cor-
pus using a 32 CPU core machine, compared to 5
and 11 hours for BOW and DepAll, respectively.

Recently, Schwartz et al. (2015) presented a
count-based VSM that utilizes SP contexts (SRR15).
This model excels on verb similarity, outperform-
ing VSMs that use other contexts (e.g., BOW and
DepAll) by more than 20%. In this paper we show
that apart from its SP contexts, the success of SRR15
is attributed in large to its explicit representation of
antonyms (live/die); turning this feature off reduces
its performance to be on par with SG-SP. As op-
posed to Schwartz et al. (2015), we keep our VSM
fixed across experiments (w2v-SG), changing only
the context type. This allows us to attribute our im-
proved results to one factor: SP contexts.

We further observe that SP contexts are tightly
connected to syntactic coordination contexts (Coor,
Section 3). Following this observation, we compare
the w2v-SG model with three dependency-based
context types: (a) Coor contexts; (b) all dependency
links (DepAll); and (c) all dependency links exclud-
ing Coor links (CoorC).1 Our results show that
training with Coor contexts is superior to training
with the other context types, leading to improved
similarity prediction of 2.7-4.1% and 4.3-6.9% on
verbs and adjectives respectively.

These results demonstrate the prominence of
Coor contexts in verb and adjective representation:
these contexts are even better than their combination
with the rest of the dependency-based contexts (the
DepAll contexts). Nonetheless, although Coor con-
texts are extracted using a supervised dependency
parser, they are still inferior to SP contexts, extracted
automatically from plain text (Section 3), by 4.6%
and 2.2% for verb and adjective pairs.

2 Background

Word Embeddings for Verbs and Adjectives. A
number of evaluation sets consisting of word pairs
scored by humans for semantic relations (mostly as-
sociation and similarity) are in use for VSM evalua-
tion. These include: RG-65 (Rubenstein and Good-
enough, 1965), MC-30 (Miller and Charles, 1991),
WordSim353 (Finkelstein et al., 2001), MEN (Bruni

1Coor ∪ CoorC = DepAll, Coor ∩ CoorC = ∅

et al., 2014) and SimLex999 (Hill et al., 2014).2

Nouns are dominant in almost all of these
datasets. For example, RG-65, MC-30 and Word-
Sim353 consist of noun pairs almost exclusively. A
few datasets contain pairs of verbs (Yang and Pow-
ers, 2006; Baker et al., 2014). The MEN dataset, al-
though dominated by nouns, also contains verbs and
adjectives. Nonetheless, the human judgment scores
in these datasets reflect relatedness between words.
In contrast, the recent SimLex999 dataset (Hill et al.,
2014) contains word similarity scores for nouns (666
pairs), verbs (222 pairs) and adjectives (111 pairs).
We use this dataset to study the effect of context type
on VSM performance in a verb and adjective simi-
larity prediction task.

Context Type in Word Embeddings. Most
VSMs (e.g., (Collobert et al., 2011; Mikolov et al.,
2013b; Pennington et al., 2014)) define the context
of a target word to be the words in its physical prox-
imity (bag-of-words contexts). Dependency con-
texts, consisting of the words connected to the tar-
get word by dependency links (Grefenstette, 1994;
Padó and Lapata, 2007; Levy and Goldberg, 2014),
are another well researched alternative. These works
did not recognize the importance of syntactic coor-
dination contexts (Coor).

Patterns have also been suggested as VSM con-
texts, but mostly for representing pairs of words
(Turney, 2006; Turney, 2008). While this approach
has been successful for extracting various types of
word relations, using patterns to represent single
words is useful for downstream applications. Re-
cently, Schwartz et al. (2015) explored the value of
symmetric pattern contexts for word representation,
an idea this paper develops further.

A recently published approach (Melamud et al.,
2016) also explored the effect of the type of con-
text on the performance of word embedding models.
Nonetheless, while they also explored bag-of-words
and dependency contexts, they did not experiment
with SPs or coordination contexts, which we find to
be most useful for predicting word similarity.

Limitations of Word Embeddings. Recently, a
few papers examined the limitations of word em-
bedding models in representing different types of se-

2For a comprehensive list see: wordvectors.org/

500

mantic information. Levy et al. (2015) showed that
word embeddings do not capture semantic relations
such as hyponymy and entailment. Rubinstein et
al. (2015) showed that while state-of-the-art embed-
dings are successful at capturing taxonomic infor-
mation (e.g., cow is an animal), they are much less
successful in capturing attributive properties (ba-
nanas are yellow). In (Schwartz et al., 2015), we
showed that word embeddings are unable to distin-
guish between pairs of words with opposite mean-
ings (antonyms, e.g., good/bad). In this paper we
study the difficulties of bag-of-words based word
embeddings in representing verb similarity.

3 Symmetric Patterns (SPs)

Lexico-syntactic patterns are templates of text that
contain both words and wildcards (Hearst, 1992),
e.g., “X and Y” and “X for a Y”. Pattern instances
are sequences of words that match a given pattern,
such that concrete words replace each of the wild-
cards. For example, “John and Mary” is an instance
of the pattern “X and Y”. Patterns have been shown
useful for a range of tasks, including word relation
extraction (Lin et al., 2003; Davidov et al., 2007),
knowledge extraction (Etzioni et al., 2005), senti-
ment analysis (Davidov et al., 2010) and authorship
attribution (Schwartz et al., 2013).

Symmetric patterns (SPs) are lexico-syntactic pat-
terns that comply to two constraints: (a) Each pat-
tern has exactly two wildcards (e.g., X or Y); and
(b) When two words (X,Y) co-occur in an SP, they
are also likely to co-occur in this pattern in oppo-
site positions, given a large enough corpus (e.g., “X
or Y” and “Y or X”). For example, the pattern “X
and Y” is symmetric as for a large number of word
pairs (e.g., (eat,drink)) both members are likely to
occur in both of its wildcard positions (e.g., “eat and
drink”, “drink and eat”).

SPs have shown useful for tasks such as word
clustering (Widdows and Dorow, 2002; Davidov
and Rappoport, 2006), semantic class learning
(Kozareva et al., 2008) and word classification
(Schwartz et al., 2014). In this paper we demonstrate
the value of SP-based contexts in vector representa-
tions of verbs and adjectives. The rationale behind
this context type is that two words that co-occur in
an SP tend to take the same semantic role in the sen-

tence, and are thus likely to be similar in meaning
(e.g., “(John and Mary) sang”).

SP Extraction. Many works that applied SPs in
NLP tasks employed a hand-crafted list of patterns
(Widdows and Dorow, 2002; Dorow et al., 2005;
Feng et al., 2013). Following Schwartz et al. (2015)
we employ the DR06 algorithm (Davidov and Rap-
poport, 2006), an unsupervised algorithm that ex-
tracts SPs from plain text. We apply this algorithm
to our corpus (Section 4) and extract 11 SPs: “X and
Y”, “X or Y”, “X and the Y”, “X or the Y”, “X or
a Y”, “X nor Y”, “X and one Y”, “either X or Y”,
“X rather than Y”, “X as well as Y”, “from X to Y”.
A description of the DR06 algorithm is beyond the
scope of this paper; the interested reader is referred
to (Davidov and Rappoport, 2006).

SP Contexts. We generate SP contexts by taking
the co-occurrence counts of pairs of words in SPs.
For example, in the SP token “boys and girls”, the
term girls is taken as an SP context of the word boys,
and boys is taken as an SP context of girls.

We do not make a distinction between the differ-
ent SPs. E.g., “boys and girls” and “boys or girls”
are treated the same. However, we distinguish be-
tween left and right contexts. For example, we gen-
erate different contexts for the word girls, one for
left-hand contexts (“girls and boys”) and another for
right-hand contexts (“boys and girls”).

SPs and Coordinations. SPs and syntactic coor-
dinations (Coors) are intimately related. For exam-
ple, of the 11 SPs extracted in this paper by the DR06
algorithm (listed above), the first eight represent co-
ordination structures. Moreover, these SPs account
for more than 98% of the SP instances in our corpus.
Indeed, due to the significant overlap between SPs
and Coors, the former have been proposed as a sim-
ple model of the latter (Nakov and Hearst, 2005).3

Despite their tight connection, SPs sometimes
fail to properly identify the components of Coors.
For example, while SPs are instrumental in captur-
ing shallow Coors, they fail in capturing coordina-
tion between phrases. Consider the sentence John

3Note though that the exact syntactic annotation of coordi-
nation is debatable both in the linguistic community (Tesnière,
1959; Hudson, 1980; Mel’čuk, 1988) and also in the NLP com-
munity (Nilsson et al., 2006; Schwartz et al., 2011; Schwartz et
al., 2012).

501

walked and Mary ran: the SP “X and Y” captures
the phrase walked and Mary, while the Coor links
the heads of the connected phrases (“walked” and
“ran”). SPs, on the other hand, can go beyond Coors
and capture other types of symmetric structures like
“from X to Y” and “X rather than Y”.

Our experiments reveal that both SPs and Coors
are highly useful contexts for verb and adjective rep-
resentation, at least with respect to word similarity.
Interestingly, Coor contexts, extracted using a super-
vised dependency parser, are less effective than SP
contexts, which are extracted from plain text.

4 Experiments

Model. We keep the VSM fixed throughout our
experiments, changing only the context type. This
methodology allows us to evaluate the impact of dif-
ferent contexts on the VSM performance, as context
choice is the only modeling decision that changes
across experimental conditions.

Our VSM is the word2vec skip-gram model (w2v-
SG, Mikolov et al. (2013a)), which obtains state-of-
the-art results on a variety of NLP tasks (Baroni et
al., 2014). We employ the word2vec toolkit.4 For all
context types other than BOW we use the word2vec
package of (Levy and Goldberg, 2014),5 which aug-
ments the standard word2vec toolkit with code that
allows arbitrary context definition.

Experimental Setup. We experiment with the
verb pair (222 pairs) and adjective pair (111 pairs)
portions of SimLex999 (Hill et al., 2014). We re-
port the Spearman ρ correlation between the ranks
derived from the scores of the evaluated models and
the human scores provided in SimLex999.6

We train the w2v-SG model with five different
context types: (a) BOW contexts (SG-BOW); (b)
all dependency links (SG-DepAll) (c) dependency-
based coordination contexts (i.e., those labeled with
conj, SG-Coor); (d) all dependency links except
for coordinations (SG-CoorC); and (e) SP contexts.
Our training corpus is the 8G words corpus gener-

4https://code.google.com/p/word2vec/
5https://bitbucket.org/yoavgo/word2vecf
6Model scores are computed in the standard way: applying

the cosine similarity metric to the vectors learned for the words
participating in the pair.

Model Verb Adj. Noun Time #Cont.
SG-BOW 0.307 0.604 0.501 320 13G

SG-DepAll 0.386 0.586 0.499 551 14.5G
SG-Coor 0.413 0.629 0.428 23 550M

SG-CoorC 0.372 0.56 0.494 677 14G
SG-SP 0.459 0.651 0.415 11 270M

SRR15 0.578 0.663 0.497 — 270M
SRR15− 0.441 0.68 0.421 — 270M

Table 1:
Spearman’s ρ scores on the different portions of
SimLex999. The top part presents results for the
word2vec skip-gram model (w2v-SG) with various
context types (see text). The bottom lines present
the results of the count SP-based model of Schwartz
et al. (2015), with (SRR15) and without (SRR15−)
its antonym detection method. The two rightmost
columns present the run time of the w2v-SG mod-
els in minutes (Time) and the number of context in-
stances used by the model (#Cont.).10 For each Sim-
Lex999 portion, the score of the best w2v-SG model
across context types is highlighted in bold font.

ated by the word2vec script.7

Models (b)-(d) require the dependency parse trees
of the corpus as input. To generate these trees, we
employ the Stanford POS Tagger (Toutanova et al.,
2003)8 and the stack version of the MALT parser
(Nivre et al., 2009).9 The SP contexts are generated
using the SPs extracted by the DR06 algorithm from
our training corpus (see Section 3).

For BOW contexts, we experiment with three win-
dow sizes (2, 5 and 10) and report the best results
(window size of 2 across conditions). For depen-
dency based contexts we follow the standard con-
vention in the literature: we consider the immedi-
ate heads and modifiers of the represented word.
All models are trained with 500 dimensions, the de-
fault value of the word2vec script. Other hyper-
parameters were also set to the default values of the
code packages.

Results. Table 1 presents our results. The SG-SP
model provides the most useful verb and adjective
representations among the w2v-SG models. Com-
pared to BOW (SG-BOW), the most commonly used

7code.google.com/p/word2vec/source/
browse/trunk/demo-train-big-model-v1.sh

8nlp.stanford.edu/software/tagger.shtml
9http://www.maltparser.org/index.html

502

context type, SG-SP results are 15.2% and 4.7%
higher on verbs and adjectives respectively. Com-
pared to dependency links (SG-DepAll), the im-
provements are 7.3% and 6.5%. For completeness,
we compare the models on the noun pairs portion,
observing that SG-BOW and SG-DepAll are∼8.5%
better than SG-SP. This indicates that different word
classes require different representations.

The results for SG-Coor, which is trained with
syntactic coordination (Coor) contexts, show that
these contexts are superior to all the other depen-
dency links (SG-CoorC) by 4.1% and 6.9% on verbs
and adjectives. Importantly, comparing the SG-
Coor model to the SG-DepAll model, which aug-
ments the Coor contexts with the other syntactic de-
pendency contexts, reveals that SG-DepAll is ac-
tually inferior by 2.7% and 4.3% in Spearman ρ
on verbs and adjectives respectively. Interestingly,
Coor contexts, which are extracted using a super-
vised parser, are still inferior by 4.6% and 2.2% to
SPs, which capture similar contexts but are extracted
from plain text.

Table 1 also shows the training times of the vari-
ous w2v-SG models on a 32G memory, 32 CPU core
machine. SG-SP and SG-Coor, which take 11 min-
utes and 23 minutes respectively to train, are sub-
stantially faster than the other w2v-SG models. For
example, they are more than an order of magnitude
faster than SG-BOW (320 minutes) and SG-CoorC

(677 minutes). This is not surprising, as there are
far fewer SP contexts (270M) and Coor contexts
(550M) than BOW contexts (13G) and CoorC con-
texts (14G) (#Cont. column).

Finally, the performance of the SG-SP model is
still substantially inferior to the SRR15 SP-based
model (Schwartz et al., 2015). As both models use
the same SP contexts, this result indicates that other
modeling decisions in SRR15 lead to its superior
performance. We show that this difference is mostly
attributed to one feature of SRR15: its method for
detecting antonym pairs (good/bad). Indeed, the
SRR15 model without its antonym detection method
(SRR15−) obtains a Spearman ρ of 0.441, compared
to 0.459 of SG-SP on verb pairs. For adjectives,
however, SRR15− is 1.7% better than SRR15, in-

10We compare the w2v-SG models training time only. SRR15
and SRR15− are count-based models and have no training step.

creasing the difference from SG-SP to 2.9%.11

5 Conclusions

We demonstrated the effectiveness of symmetric
pattern contexts in word embedding induction. Ex-
periments with the word2vec model showed that
these contexts are superior to various alternatives
for verb and adjective representation. We further
pointed at the connection between symmetric pat-
terns and syntactic coordinations. We showed that
coordinations are superior to other syntactic con-
texts, but are still inferior to symmetric patterns, al-
though the extraction of symmetric patterns requires
less supervision.

Future work includes developing a model that
successfully combines the various context types ex-
plored in this paper. We are also interested in
the representation of other word classes such as
adverbs for which no evaluation set currently ex-
ists. Finally, the code for generating the SG-SP
embeddings, as well as the vectors experimented
with in this paper, are released and can be down-
loaded from http://www.cs.huji.ac.il/
∼roys02/papers/sp_sg/sp_sg.html

Acknowledgments

This research was funded (in part) by the Intel Col-
laborative Research Institute for Computational In-
telligence (ICRI-CI), the Israel Ministry of Science
and Technology Center of Knowledge in Machine
Learning and Artificial Intelligence (Grant number
3-9243). The second author was partially funded
by the Microsoft/Technion research center for elec-
tronic commerce and the Google faculty research
award.

References

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcatego-
rization acquisition. In Proc. of EMNLP.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proc. of ACL.

11We report results for our reimplementation of SRR15 and
SRR15−.

503

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. JAIR.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR, 12:2493–2537.

Dmitry Davidov and Ari Rappoport. 2006. Efficient un-
supervised discovery of word categories using sym-
metric patterns and high frequency words. In Proc.
of ACL-COLING.

Dmitry Davidov, Ari Rappoport, and Moshe Koppel.
2007. Fully unsupervised discovery of concept-
specific relationships by web mining. In Proc. of ACL.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using twitter hashtags
and smileys. In Proc. of COLING.

Beate Dorow, Dominic Widdows, Katarina Ling, Jean-
Pierre Eckmann, Danilo Sergi, and Elisha Moses.
2005. Using Curvature and Markov Clustering in
Graphs for Lexical Acquisition and Word Sense Dis-
crimination.

Oren Etzioni, Michael Cafarella, Doug Downey, Ana-
Maria Popescu, Tal Shaked, Stephen Soderland,
Daniel S Weld, and Alexander Yates. 2005. Unsuper-
vised named-entity extraction from the web: An exper-
imental study. Artificial intelligence, 165(1):91–134.

Song Feng, Jun Seok Kang, Polina Kuznetsova, and Yejin
Choi. 2013. Connotation lexicon: A dash of sentiment
beneath the surface meaning. In Proc. of ACL.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The concept
revisited. In Proc. of WWW.

Gregory Grefenstette. 1994. Explorations in automatic
thesaurus discovery. Boston: Kluwer.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proc. of COLING
– Volume 2.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. arXiv:1408.3456 [cs.CL].

Richard A. Hudson. 1980. Arguments for a Non-
transformational Grammar. Chicago: University of
Chicago Press.

Zornitsa Kozareva, Ellen Riloff, and Eduard Hovy. 2008.
Semantic class learning from the web with hyponym
pattern linkage graphs. In Proc. of ACL-HLT.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proc. of ACL.

Omer Levy, Steffen Remus, Chris Biemann, and Ido Da-
gan. 2015. Do supervised distributional methods re-
ally learn lexical inference relations? In Proc. of
NAACL.

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou.
2003. Identifying synonyms among distributionally
similar words. In Proc. of IJCAI.

Oren Melamud, David McClosky, Siddharth Patwardhan,
and Mohit Bansal. 2016. The role of context types and
dimensionality in learning word embeddings. In Proc.
of NAACL.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositionality.
In Proc. of NIPS.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proc. of NAACL-HLT.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes.

Preslav Nakov and Marti Hearst. 2005. Using the web as
an implicit training set: application to structural ambi-
guity resolution. In Proc. of HLT-EMNLP.

Jens Nilsson, Joakim Nivre, and Johan Hall. 2006.
Graph transformations in data-driven dependency
parsing. In Proc. of ACL-COLING.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with on-
line reordering. In Proc. of IWPT.

Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Compu-
tational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proc. of EMNLP.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communications
of the ACM.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari Rap-
poport. 2015. How well do distributional models cap-
ture different types of semantic knowledge? In Proc.
of ACL.

Roy Schwartz, Omri Abend, Roi Reichart, and Ari Rap-
poport. 2011. Neutralizing linguistically problematic
annotations in unsupervised dependency parsing eval-
uation. In Proc. of ACL-HLT.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012.
Learnability-based syntactic annotation design. In
Proc. of COLING.

Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe
Koppel. 2013. Authorship attribution of micro-
messages. In Proc. of EMNLP.

504

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2014.
Minimally supervised classification to semantic cat-
egories using automatically acquired symmetric pat-
terns. In Proc. of COLING.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proc. of CoNLL.

Lucien Tesnière. 1959. Éléments de syntaxe structurale.
Paris: K1incksieck.

Kristina Toutanova, Dan Klein, Christopher D Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proc. of
NAACL.

Peter D. Turney. 2006. Similarity of semantic relations.
Computational Linguistics.

Peter D. Turney. 2008. A uniform approach to analo-
gies, synonyms, antonyms, and associations. In Proc.
of COLING.

Dominic Widdows and Beate Dorow. 2002. A graph
model for unsupervised lexical acquisition. In Proc.
of COLING.

Dongqiang Yang and David M. W. Powers. 2006. Verb
similarity on the taxonomy of wordnet. In Proc. of
GWC.

505

Proceedings of NAACL-HLT 2016, pages 506–514,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Breaking the Closed World Assumption in Text Classification

Geli Fei and Bing Liu
Department of Computer Science
University of Illinois at Chicago
gfei2@uic.edu, liub@cs.uic.edu

Abstract

Existing research on multiclass text classifica-
tion mostly makes the closed world assump-
tion, which focuses on designing accurate
classifiers under the assumption that all test
classes are known at training time. A more re-
alistic scenario is to expect unseen classes
during testing (open world). In this case, the
goal is to design a learning system that classi-
fies documents of the known classes into their
respective classes and also to reject docu-
ments from unknown classes. This problem is
called open (world) classification. This paper
approaches the problem by reducing the open
space risk while balancing the empirical risk.
It proposes to use a new learning strategy,
called center-based similarity (CBS) space
learning (or CBS learning), to provide a novel
solution to the problem. Extensive experi-
ments across two datasets show that CBS
learning gives promising results on multiclass
open text classification compared to state-of-
the-art baselines.

1 Introduction

With the rapid growth of online information, text
classifiers have become one of the most important
tools for people to track and organize information.
And the emergence of social media platforms has
brought increasing diversity and dynamics to the
Web. Many social science researchers rely on the
collected online user generated content to carry out
research on different social phenomenon. In this
case, multiclass text classifiers are widely used to
gather information of several topics of interest.
However, most existing research on multiclass text
classification makes the closed world assumption,
meaning that all the test classes have been seen in
training. However, in a more realistic scenario

where people use a multiclass classifier to collect
information of several topics from a data source
that covers a much broader range of topics, it is
normal to break the closed world assumption and
to see the arrival of documents from unknown
classes that have never been seen in training. In
this case, a multiclass classifier should not always
assign a document to one of the known classes. In-
stead, it should identify unknown classes of docu-
ments and label them as unknown or reject. This is
called open (world) classification.

More precisely, in the traditional multiclass
classification setting, the learner assumes a fixed
set of classes Y = {C1, C2, …, Cm}, and the task is
to construct a 𝑚-class classifier using the training
data. The resulting classifier is tested/applied on
the data from only the m classes. While in open
classification, we allow the classifier to predict la-
bels/classes from the set of C1, C2, …, Cm, Cm+1
classes, where the (m+1)th class Cm+1 represents the
unknown which covers documents of all unknown
or unseen classes or topics. In other words, every
test instance may be predicted to belong to either
one of the known classes yi ∈ 𝑌 , or Cm+1 (un-
known).

It is thus not sufficient for a classifier to just re-
turn the most likely class label among the m known
classes. An option to reject must be provided. An
obvious approach to predicting the class label
𝑦 ∈ 𝑌 ∪ {𝐶!!!} for an n-dimensional data point
𝑥 ∈ 𝑅! is to incorporate a posterior probability es-
timator 𝑝(𝑦|𝑥) and a decision threshold into an ex-
isting multiclass learning algorithm (Kwok, 1999;
Fumera and Roli, 2002; Huang et al., 2006; Bravo
et al., 2008). There are many reasons this tech-
nique would not achieve good results in open clas-
sification. As we will discuss in the following sec-
tions, one of the most important reasons is that the
underlying classifier is not robust or is not in-

506

formed enough to reject unseen classes of docu-
ments due to its significant open space risk.

Traditional multiclass learners optimize only on
the known classes under the closed world assump-
tion, while a potential learner for open classifica-
tion has to optimize for both the known classes and
for the unknown classes. Some recent research in
the field of computer vision studied the problem,
which they call open set recognition (Scheirer et
al., 2013; 2014; Jain et al., 2014) for facial recog-
nition. Classic learners define and optimize over
empirical risk, which is measured on the training
data. For open classification, it is crucial to consid-
er how to extend the model to capture the risk of
the unknown by preventing overgeneralization or
overspecialization. In order to tackle this problem,
Scheirer et al. (2013) introduced the concept of
open space risk and formulated an extension of ex-
isting one-class and binary SVMs to address the
open classification problem. However, as we will
see in section 3, their proposed method is weak as
the positively labeled open space is still an infinite
area.

In this work, we propose a solution to reduce the
open space risk while also balancing the empirical
risk for open classification. Intuitively, given a
positive class of documents, our open space for the
positive class is considered as the space that is suf-
ficiently far from the center of the positive docu-
ments. In the multiclass classification setting, each
of the m target classes is surrounded by a ball cov-
ering the positively labeled (the target class) area,
while any document falling outside of all the m
balls is considered belonging to the unknown class.

Recent work by Fei and Liu (2015) proposed a
new learning strategy called center-based similari-
ty space learning (CBS learning) to deal with the
problem of covariate shift in binary classification.
We found that it is also suitable for open classifica-
tion. Instead of conducting learning in the tradi-
tional document space (or D-space) with n-gram
features, CBS learning learns in a similarity space.
Unlike SVM learning in D-space that bounds the
positive class only by an infinite half-space formed
with the decision hyperplane, which has a huge
open space risk, CBS learning finds a closed
boundary for the positive class covering only a fi-
nite area, which is a spherical area in the original
D-space and thus reduce the open space risk signif-
icantly. While discussing CBS learning, we will al-
so describe the underlying assumptions made by it

which were not stated in our earlier paper (Fei and
Liu, 2015). Our final multiclass classifier is called
cbsSVM (based on SVM).

To the best of our knowledge, this is the first at-
tempt to study multiclass open classification in text
from the open space risk management perspective.
Our experiments show that cbsSVM for multiclass
open classification produces superior classifiers to
existing state-of-the art methods.

2 Related Work

Compared to research on multiclass classification
with the closed world assumption, there is relative-
ly less work on open classification. In this section,
we review related work on one-class classification,
SVM decision score calibration, and others.

One-class classifiers, which only rely on posi-
tive training data, are natural starting solutions to
the multiclass open classification task. One-class
SVM (Scholkopf et al., 2001) and SVDD (Tax and
Duin, 2004) are two representative one-class clas-
sifiers. One-class SVM treats the origin in the fea-
ture space as the only member of the negative
class, and maximizes the margin with respect to it.
SVDD tries to place a hypersphere with the mini-
mum radius around almost all the positive training
points. It has been shown that the use of Gaussian
kernel makes SVDD and One-class SVM equiva-
lent, and the results reported in (Khan and Madden,
2014) demonstrate that SVDD and One-class SVM
are comparable when the Gaussian kernel is ap-
plied. However, as no negative training data is
used, one-class classifiers have trouble producing
good separations. We will see in Section 4 that
their results are poor.

This work is also related to using thresholded
probabilities for rejection. As the decision score
produced by SVM is not a probability distribution,
several techniques have been proposed to convert a
raw decision score to a calibrated probability out-
put (Platt, 2000; Zadrozny and Elkan, 2002; Duan
and Keerthi, 2005; Huang et al., 2006; Bravo et al.,
2008). Usually a parametric distribution is as-
sumed for the underlying distribution, and raw
scores are mapped based on the learned model. A
variation of Platt’s (2000) approach is the most
widely used probability estimator for SVM score
calibration. It fits a sigmoid function to the SVM
scores during training. Provided with a threshold, a
test instance can be rejected if the highest probabil-

507

ity of this instance belonging to a class is lower
than the threshold in multiclass open classification
settings.

Recently, researchers in computer vision
(Scheirer et al., 2013; 2014; Jain et al., 2014) made
some attempts to solve open classification (which
they call open set recognition) for visual learning
from new angles. Scheirer et al. (2013) introduced
the concept of open space risk, and defined it as a
relative measure. The proposed model reduces the
open space risk by replacing the half-space of a bi-
nary linear classifier with a positive region bound-
ed by two parallel hyperplanes. While the positive-
ly labeled region for a target class is reduced com-
pared to the half-space in the traditional linear
SVM, their open space risk is still infinite. In (Jain
et al., 2014), the authors proposed to use Extreme
Value Theory (EVT) to estimate the unnormalized
posterior probability of inclusion for each class by
fitting a Weibull distribution over the positive class
scores from a 1-vs-rest multiclass RBF SVM clas-
sifier. Scheirer et al. (2014) introduced the Com-
pact Abating Probability (CAP) model, which ex-
plains how thresholding the probabilistic output of
RBF One-class SVM manages the open space risk.
Using the probability output from RBF one-class
SVM as a conditioner, the authors combine RBF
One-class SVM and a Weibull-calibrated SVM
similar to the one in (Jain et al., 2014). For both
methods (Jain et al., 2014; Scheirer et al., 2014),
decision thresholds need to be chosen based on the
prior knowledge of the ratio of unseen classes in
testing, which is a weakness of the methods.

Dalvi et al. (2013) proposed Exploratory Learn-
ing in the multiclass semi-supervised learning
(SSL) setting. In their work, an “exploratory” ver-
sion of expectation-maximization (EM) is pro-
posed to extend traditional multiclass SSL meth-
ods, which deals with the scenario when the algo-
rithm is given seeds from only some of the classes
in the data. It automatically explores different
numbers of new classes in the EM iterations. The
underlying assumption is that a new class should
be introduced to hold an instance 𝑥 when the prob-
ability of 𝑥 belonging to the existing classes is
close to uniform. This is quite different from our
work. First, it works in the semi-supervised setting
and assumes that test data is available during train-
ing. Second, it only focuses on improving accuracy
on the classes with seed examples.

3 Proposed Method

In this section, we propose our solution for the
open classification problem. First we discuss our
strategy to reduce the open space risk while bal-
ancing the empirical risk of the training data. Then
we apply a recently proposed SVM-based learning
strategy (Fei and Liu, 2015), which yields the same
risk management strategy. We will also discuss its
underlying assumptions, which was not addressed
in the original paper of Fei and Liu (2015). Lastly,
we will show why the proposed solution works for
open classification.

3.1 Open Space Risk Formulation

Consider the risk formulation by Scheirer et al.
(2013), where apart from the empirical risk, there
is risk in labeling the open space (space away from
positive training examples) as “positive” for any
known class. Due to lack of information on a clas-
sification function on the open space, open space
risk is approximated by a relative Lebesgue meas-
ure (Shackel, 2007). Let 𝑆! be a large ball of radius
𝑟! that contains both the positively labeled open
space 𝑂 and all of the positive training examples;
and let 𝑓 be a measurable classification function
where 𝑓! 𝑥 = 1 for recognition of class 𝑦 of in-
terest and 𝑓! 𝑥 = 0 otherwise. The probabilistic
open space risk 𝑅! 𝑓 of function 𝑓 for a class 𝑦 is
defined as the fraction (in terms of Lebesgue
measure) of positively labeled open space com-
pared to the overall measure of positively labeled
space (which includes the space close to the posi-
tive examples).

𝑅! 𝑓 =
𝑓! 𝑥 𝑑𝑥!

𝑓! 𝑥 𝑑𝑥!!

The above definition indicates that the more we
label open space as positive, the greater open space
risk is. However, it does not suggest how to speci-
fy the positively labeled open space 𝑂.

In this work, we formulate 𝑂 as the positively
labeled area that is sufficiently far from the center
of the positive training examples. Let 𝐵!! 𝑐𝑒𝑛!
be a closed ball of radius 𝑟! centered around the
center of positive class 𝑦 (𝑐𝑒𝑛!), which ideally
contains all positive examples of class 𝑦; 𝑆! be a
larger ball 𝐵!! 𝑐𝑒𝑛! of radius 𝑟! with the same

508

center 𝑐𝑒𝑛!. Let classification function 𝑓! 𝑥 = 1
when 𝑥 ∈ 𝐵!! 𝑐𝑒𝑛! , and 𝑓! 𝑥 = 0 otherwise.
Also let ℎ be the positive half space defined by a
binary SVM decision hyperplane Ω obtained using
positive and negative training examples, and let the
size of ball 𝐵!! be bounded by Ω, 𝐵!!⋂ℎ = 𝐵!! .
We define open space as

𝑂 = 𝑆! − 𝐵!! 𝑐𝑒𝑛!

where radius 𝑟! needs to be determined from the
training data for each known positive class.

This open space formulation greatly reduces the
open space risk compared to traditional SVM and
1-vs-Set Machine in (Scheirer et al., 2013). For
traditional SVM, whose classification function
𝑓!!"# 𝑥 = 1 when 𝑥 ∈ ℎ, and positive open space
being approximately ℎ − 𝐵!! 𝑐𝑒𝑛! , which is only
bounded by the SVM decision hyperplane Ω. For
1-vs-Set Machine in (Scheirer et al., 2013), whose
classification function 𝑓!!!!"!!"# 𝑥 = 1 when
𝑥 ∈ 𝑔 , where 𝑔 is a slab area with thickness 𝛿
bounded by two parallel hyperplanes Ω and Ψ
(Ψ ∥Ω) in ℎ. And its positive open space is ap-
proximately 𝑔 − 𝐵!! 𝑐𝑒𝑛! . Given open space
formulations of traditional SVM and 1-vs-Set Ma-
chine, we can see that both methods label an un-
limited area as positively labeled space, while our
formulation reduces it to a bounded spherical area.

Given the above open space definition, the ques-
tion is how to estimate radius 𝑟! for the positive
class. We show that the center-based similarity
space learning (CBS learning) recently proposed in
(Fei and Liu, 2015) is suitable for the purpose. It
was original proposed to deal with the negative co-
variate shift problem in binary text classification.

Below, we first introduce CBS learning and then
discuss why it is suitable for our problem, as well
as its underlying assumptions.

3.2 Center-Based Similarity Space Learning

We now discuss CBS learning for binary text clas-
sification. Let D = {(d1, y1), (d2, y2), …, (dn, yn)}
be the set of training examples, where di is the fea-
ture vector (e.g., with unigram features) represent-
ing a document di and yi ∈ {1, -1} is its class label.
This feature vector is called a document space vec-
tor (ds-vector). Traditional classification directly
uses D to build a binary classifier. CBS learning

transforms each ds-vector di (no change to its class)
to a center-based similarity space feature vector
(CBS vector) cbs-vi. Each feature in the CBS vec-
tor is a similarity between a center cj of the positive
class documents and di. CBS learning can use mul-
tiple document space representations or feature
vectors (e.g., one based on unigrams and one based
on bigrams) to represent each document, which re-
sults in multiple centers for the positive documents.
There can also be multiple document similarity
functions used to compute similarity values. The
detailed learning technique is as follows.

For a document di in D, we have a set Ri of p ds-
vectors Ri = {𝐱!! , 𝐱!! , …, 𝐱!! }. Each ds-vector 𝐱!!
denotes one document space representation of the
document di, e.g., unigram representation or bi-
gram representation. Then the center of positive
training documents can be computed, which is rep-
resented as a set of 𝑝 centroids C = {c1, c2, …, cp},
each of which corresponds to one document space
representation in Ri. Rocchio method in infor-
mation retrieval (Rocchio, 1971; Manning et al.
2008) is used to compute each center cj (a vector),
which uses the corresponding ds-vectors of all
training positive and negative documents.

𝐜! =
𝛼
𝐷!

𝐱!!

𝐱!!
−

𝛽
|𝐷 − 𝐷!|

𝐱!!

𝐱!!!!∈!!!!!!∈!!

where 𝐷! is the set of documents in the positive
class and |.| is the size function. 𝛼 and 𝛽 are pa-
rameters, which are usually set empirically. It is
reported that using tf-idf representation, 𝛼 = 16
and 𝛽 = 4 usually work quite well (Buckley et al.
1994). The subtraction is used to reduce the influ-
ence of those terms that are not discriminative (i.e.,
terms appearing in both classes).

Based on Ri for any document di in both training
and testing and the previously computed set C of
centers using the training data, we can transform a
document di from its document space representa-
tions Ri to one center-based similarity vector cbs-vi
by applying a similarity function 𝑆𝑖𝑚 on each ele-
ment 𝐱!! of Ri and its corresponding center 𝐜! in C.

cbs-vi = Sim(Ri, C)

Sim has a set of similarity measures. Each measure
mj is applied to p document representations 𝐱!! in Ri
and their corresponding centers 𝐜! in C to generate
p similarity features (cbs-features) in cbs-vi.

509

For ds-features, we use unigrams and bigrams
with tf-idf weighting as two document representa-
tions. We also adopt the five similarity measures in
(Fei and Liu, 2015) to gauge the similarity of two
vectors. Based on these measures, we produce 10
CBS features to represent a document in the CBS
space.

3.3 Why does CBS learning work?

Given the open space definition in Section 3.1, our
goal is to estimate the radius 𝑟! of the positively
labeled space for the positive class. Now we ex-
plain how CBS learning gives an estimate of 𝑟!.

Due to learning in the similarity space with
similarities as features, CBS learning generates a
boundary based on similarities to separate the posi-
tive and negative training data in the similarity
space, which is essentially a ball encompassing the
positive training data in the original document
space. In other words, instead of explicitly mini-
mizing the positively labeled open space risk, CBS
learning approximates the radius 𝑟! by learning a
score based on similarities in the similarity space,
which is equivalent to a limited spherical area in
the original document space. The generated model
thus not only limits the positively labeled open
space on the positive side of Ω (SVM decision hy-
perplane), but also balances the empirical risk from
the positive and negative training examples. In
fact, 𝑟! is approximately the distance from the cen-
ter of positive class to Ω measured in similarities.
Figure 1 illustrates the point. The positively la-
beled/classified region produced by CBS learning
is the circle in the original document space, while
SVM learning produces a half space bounded by
its decision line, which is approximately the tan-
gent line of the circle. Note that as multiple simi-
larity features are used, the spherical area is
formed by an integrated similarity produced by
SVM, which combines all similarity features.

In order for the method to work well for our
multiclass classification, ideally two assumptions
should be made about the data. First, the target

classes of documents are generated by a mixture
model, where each mixture component is respon-
sible for each class of documents. Secondly, after
feature normalization each target class of docu-
ments is generated by a Gaussian distribution,
where the Gaussian mean resides at the center of
the class, and its 𝑛×𝑛 covariance matrix has equal
eigenvalues so that the positive class can have a
spherical shape boundary or a ball. Note that we do
not make any assumptions about data from non-
target classes.

3.4 Multiclass Open Classification

The preceding discussion is based on binary open
classification. We follow the standard technique of
combining a set of 1-vs-rest binary classifiers to
perform multiclass classification with a rejection
option for unknown. The SVM scores for each
classifier are first converted to probabilities based
on a variation of Platt’s (2000) algorithm, which is
supported in LIBSVM (Chang and Lin, 2011). Let
𝑃 𝑦|𝐱 be a probably estimate, where 𝑦 ∈ 𝑌 is a
class label and 𝐱 is a feature vector, and let 𝜆 be
the decision threshold (usually 0.5). Let 𝑌 be the
set of known classes, 𝐶!!! be the unknown class,
and 𝑦∗ is the final predicted class for x. The final
classifier (called cbsSVM) uses this following for
classification.

𝑦∗ =
𝑎𝑟𝑔𝑚𝑎𝑥!∈𝑌𝑃 𝑦|𝐱 𝑖𝑓 𝑃 𝑦∗|𝐱 ≥ 𝜆
𝐶𝑚+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4 Experiments

In this section, we show the results of the proposed
method cbsSVM and compare it extensively with
state-of-the-art baselines across two datasets.

4.1 Baselines

1-vs-Rest multiclass SVM (1-vs-rest-SVM). This
is the standard 1-vs-Rest multiclass SVM with
Platt Probability Estimation (Platt, 2000), and it is
implemented based on LIBSVM1 (version 3.20)
(Chang and Lin, 2011). It works in the same way
as the proposed cbsSVM (Section 3.4) except that it
uses the document space classification. Linear ker-
nel is used as it is shown by many researchers that
linear SVM performs the best for text classification

1 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

Figure 1: CBS learning reduces open space risk.

510

(Joachims, 1998; Colas and Brazdil, 2006).

1-vs-Set Machine (1-vs-set-linear). For this base-
line (Scheirer et al., 2013), we use all the default
parameter settings in the original paper. That is, the
near and far plane pressures are set at 𝑝! = 1.6 and
𝑝! = 4 respectively; regularization constant
𝜆! = 1 and no explicit hard constraints are used on
the training error (𝛼 = 0,𝛽 = 1).

W-SVM (wsvm-linear and wsvm-rbf). These two
baselines combine RBF one-class SVM with bina-
ry SVM (Scheirer et al., 2014). Both linear kernel
and RBF kernel are tested. For thresholding the
output, two parameters 𝛿! and 𝛿! are required. We
set 𝛿! = 0.001, which is used to adjust what data
the one-class SVM considers to be related. 𝛿! is a
required decision threshold not only for W-SVM,
but also for the next two baselines (PI-SVM, PI-
OSVM). Two ways of setting 𝛿! were suggested
by the authors. We set it as the prior probability of
the number of unseen classes during evaluation
(testing). An alternative way is to set it based on an
openness score computed using the number of
training and testing classes. We tried both methods
and found the former gave better results.

PI-SVM (Pi-svm-linear and Pi-svm-rbf). This
baseline is from (Jain et al., 2014), which estimates
the probability of inclusion based on the output of
binary SVMs. Two kernels are tested. As stated
above, the threshold 𝛿 is set as the prior probability
of the number of unseen classes in test.

PI-OSVM (Pi-osvm-linear and Pi-osvm-rbf). Sim-
ilar to PI-SVM, PI-OSVM (Jain et al., 2014) uses a
multiclass one-class SVM before fitting an Ex-
treme Value Theory distribution to estimate the
probability of inclusion. Again, two kernel func-
tions are tested and the prior probability of the
number of unseen classes is used to set 𝛿. As PI-
OSVM is a variant of the traditional one-class
SVM, we do not use one-class SVM as a baseline.

Exploratory Seeded K-Means (Exploratory-
EM). In (Dalvi et al., 2013), three well-known
multiclass semi-supervised learning methods were
extended under the exploratory EM framework.
We compare with exploratory version of Seeded
K-Means due to its superior performance on
20newsgroup dataset. We also applied the criteria
that work the best in the original paper for creating
new classes and for model selection, i.e., the

MinMax criterion and the AICc criterion. Note that
ExploratoryEM works in the semi-supervised set-
ting and uses both the training and test data as la-
beled and unlabeled data in training. As more than
one new class can be introduced during training,
for comparison we lump together all instances as-
signed to new classes as being rejected (unknown).
In the experiments, we set the max number of it-
erations to be 50. Little changes in results are
shown after 50 iterations.

All documents use tf-idf term weighting scheme
with no feature selection. Source code for different
baselines (1-vs-Set Machine 2 , W-SVM and PI-
SVM3, and Exploratory learning4) was provided by
the authors of their original papers.

4.2 Datasets

We perform evaluation using two publically avail-
able datasets: 20-newsgroup (Rennie, 2008) and
Amazon reviews (Jindal and Liu, 2008). The 20-
newsgroup data contains 20 non-overlapping clas-
ses with a total of 18828 documents. The Amazon
reviews dataset has review documents of 50 types
of products or domains. Each type of product has
1000 reviews. For each class in both datasets, we
randomly sampled 70% of documents for training,
and the rest 30% for testing. Although product re-
views are used for experiments, we do not perform
sentiment classification. Instead, we still perform
the traditional topic based classification. That is,
given a review, the system decides what type of
product the review is about.

4.3 Experiment settings

Following that in (Jain et al., 2013) and (Dalvi et
al., 2013), we conduct open world cross-validation
style analysis, holding out some classes in training
and mixing them back during testing, and varying
the number of training and test classes. Since for a
given dataset, the number (percentage) of training
classes 𝑚 and the number of test classes 𝑛 can
vary, there are many ways to generate a train-test
partition. We report our results using 10 random
train-test partitions for each dataset. We vary the
number of test classes for Amazon (10, 20, 30, 40,
50), and for 20-newsgroup (10, 20). We use 25%,

2 https://github.com/Vastlab/liblinear.git
3 https://github.com/ljain2/libsvm-openset
4 http://www.cs.cmu.edu/~bbd/ExploreEM_package.zip

511

50%, 75% and 100% of the test classes in training.
When 100% of test classes are used in training,

the problem reduces to the closed world classifica-
tion. As most of our baselines such as W-SVM, PI-
OSVM and PI-SVM all use prior knowledge to set
decision threshold to 0 in the closed world setting,
for fair comparison, we also set the threshold to 0
for both 1-vs-rest-SVM and our proposed cbsSVM
for closed world classification. By doing this, we
always assign a known class label to a test in-
stance. For Exploratory Seeded K-Means, we use
an option supported in the exploratory learning
package that does not allow any new classes to be
introduced in learning.

For each train-test partition, we first compute
precision, recall and F1 score for each class and
then macro-average the results across all classes.

Final results are given by averaging the results of
10 random train-test partitions. Due to space limits,
we will only show F1 scores in the paper.

For all the methods that use the RBF kernel, the
parameters are tuned via cross validation on the
training data, yielding (𝐶 = 5, 𝛾 = 0.2) for Ama-
zon and (𝐶 = 10, 𝛾 = 0.5) for 20-newsgroup.

4.4 Results and Discussion

We now show all the results. Results for Amazon
is given in Tables 1 to 5, and for 20-newsgroup are
given in Tables 6 and 7. As we can see, in most
situations (23 of 28 settings) our proposed cbsSVM
method performs the best. Even when 100% of the
test classes are used for training (the traditional
closed world classification), cbsSVM still performs

 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
cbsSVM 0.450 0.715 0.775 0.873 0.566 0.695 0.695 0.760 0.565 0.645 0.630 0.686
1-vs-rest-SVM 0.219 0.658 0.715 0.817 0.466 0.610 0.616 0.688 0.463 0.568 0.545 0.627
ExploratoryEM 0.386 0.647 0.704 0.854 0.571 0.561 0.573 0.691 0.500 0.511 0.569 0.659
1-vs-set-linear 0.592 0.698 0.700 0.697 0.506 0.560 0.589 0.620 0.462 0.511 0.542 0.585
wsvm-linear 0.603 0.694 0.698 0.702 0.553 0.618 0.625 0.641 0.521 0.574 0.578 0.598
wsvm-rbf 0.246 0.587 0.701 0.792 0.397 0.502 0.574 0.701 0.372 0.444 0.502 0.651
Pi-osvm-linear 0.207 0.590 0.662 0.731 0.453 0.531 0.589 0.629 0.428 0.510 0.553 0.605
Pi-osvm-rbf 0.061 0.142 0.137 0.148 0.143 0.079 0.058 0.050 0.108 0.047 0.043 0.047
Pi-svm-linear 0.600 0.695 0.701 0.705 0.547 0.620 0.628 0.644 0.520 0.575 0.581 0.602
Pi-svm-rbf 0.245 0.590 0.718 0.774 0.396 0.546 0.675 0.714 0.379 0.517 0.629 0.680

 Table 1: Amazon 10 Domains. Table 2: Amazon 20 Domains. Table 3: Amazon 30 Domains.

 25% 50% 75% 100% 25% 50% 75% 100%
cbsSVM 0.541 0.633 0.619 0.650 0.557 0.615 0.586 0.634

1-vs-rest-SVM 0.463 0.543 0.515 0.584 0.460 0.533 0.502 0.568
ExploratoryEM 0.467 0.496 0.562 0.628 0.348 0.467 0.534 0.618
1-vs-set-linear 0.429 0.489 0.526 0.558 0.420 0.483 0.514 0.551
wsvm-linear 0.499 0.554 0.560 0.565 0.488 0.545 0.549 0.559

wsvm-rbf 0.351 0.402 0.464 0.609 0.317 0.367 0.436 0.584
Pi-osvm-linear 0.413 0.483 0.533 0.571 0.403 0.489 0.535 0.578

Pi-osvm-rbf 0.078 0.043 0.047 0.049 0.066 0.039 0.047 0.050
Pi-svm-linear 0.497 0.554 0.563 0.568 0.487 0.546 0.551 0.562

Pi-svm-rbf 0.371 0.505 0.602 0.634 0.360 0.509 0.632 0.630

 Table 4: Amazon 40 Domains. Table 5: Amazon 50 Domains.

 25% 50% 75% 100% 25% 50% 75% 100%
cbsSVM 0.417 0.769 0.796 0.855 0.593 0.701 0.720 0.852

1-vs-rest-SVM 0.246 0.722 0.784 0.828 0.552 0.683 0.682 0.807
ExploratoryEM 0.648 0.706 0.733 0.852 0.555 0.633 0.713 0.864
1-vs-set-linear 0.678 0.671 0.659 0.567 0.497 0.557 0.550 0.577
wsvm-linear 0.666 0.666 0.665 0.679 0.563 0.597 0.602 0.677

wsvm-rbf 0.320 0.523 0.675 0.766 0.365 0.469 0.607 0.773
Pi-osvm-linear 0.300 0.571 0.668 0.770 0.438 0.534 0.640 0.757

Pi-osvm-rbf 0.059 0.074 0.032 0.026 0.143 0.029 0.022 0.009
Pi-svm-linear 0.666 0.667 0.667 0.680 0.563 0.599 0.603 0.678

Pi-svm-rbf 0.320 0.540 0.705 0.749 0.370 0.494 0.680 0.767

 Table 6: 20-newsgroup 10 Domains. Table 7: 20-newsgroup 20 Domains.

512

the best in almost all settings (6 out of 7) except
for 20-newsgroup with 20 classes. In this case, it
lost to ExploratoryEM by 1.12%. In fact, it is un-
fair to compare cbsSVM with ExploratoryEM be-
cause ExploratoryEM uses the test data in training.

We also analyzed the cases where our technique
does not perform well. By comparing Table 1 and
Table 6, we see that our method loses to 1-vs-set-
linear, wsvm-linear and Pi-svm-linear on both da-
tasets when training on 2 classes (25%) and testing
on 10 classes, though in other cases training on
25% known classes can still yield good results. By
inspecting the results, we found that in both set-
tings our technique achieves very high recall but
low precision on the known classes, while achieves
high precision but low recall on the unknown clas-
ses. After careful investigation, we found this is
caused by the relatively poor approximation of ra-
dius 𝑟! when positive and negative training exam-
ples are far apart.

To verify the cause, we conducted more experi-
ments on the 20-newsgroup data using the same
setting (10 classes for test and 2 for training). The
10 classes are listed in Table 8. We show the re-
sults for two sets of experiments. In each set of the
experiments, we keep one known class unchanged
in training and select different classes as the se-
cond class. We show how the results change on the
unchanged class as well as the unknown (reject)

classes. Table 9 gives the precision, recall, and F1
score for comp.windows.x and for the unknown
classes. Similarly, Table 10 gives the results for
rec.motorcycles and for the unknown classes. The
first column in both tables are the different second
classes used in training. We can see that in both
sets of experiments, the precision and F1 score on
the unchanged known classes (comp.windows.x
and rec.motorcycles) are better when a more simi-
lar class (closer in distance) is selected in training.
In particular, comp.windows.x achieves the best re-
sult when comp.os.ms-windows.misc is the second
known class, and rec.motorcycles achieves the best
result when rec.autos is the second known class.
This is because the radius 𝑟! for each positively
labeled space is determined based on the distance
between the positive and negative training exam-
ples. As related classes are closer in distance, a
tighter boundary with smaller 𝑟! can be learned.
However, our results show in the cases when only
2 known classes are available, a tight boundary is
harder to achieve for either class for cbsSVM.

5 Conclusion

In this paper, we proposed to study the problem of
multiclass open text classification. In particular, we
investigated the problem via reducing the open
space risk, and proposed a solution based on cen-

rec.motorcycles comp.graphics comp.os.ms-windows.misc alt.atheism comp.sys.mac.hardware
comp.windows.x misc.forsale comp.sys.ibm.pc.hardware rec.autos rec.sport.baseball

Table 8: 10 domains for testing.

 comp.windows.x Unknown (reject)
 Prec. Recall F1 Prec. Recall F1
rec.motorcycles 0.260 0.963 0.410 0.972 0.168 0.287
comp.graphics 0.380 0.850 0.525 0.966 0.482 0.643
comp.sys.mac.hardware 0.286 0.972 0.442 0.977 0.356 0.522
comp.os.ms-windows.misc 0.418 0.877 0.567 0.976 0.513 0.672
misc.forsale 0.244 0.959 0.389 0.966 0.201 0.334
rec.autos 0.226 0.979 0.367 0.976 0.162 0.277

Table 9: Results on comp.windows.x and unknown classes.

 rec.motorcycles Unknown (reject)
 Prec. Recall F1 Prec. Recall F1
comp.sys.mac.hardware 0.284 0.956 0.438 0.962 0.198 0.328
rec.autos 0.459 0.892 0.606 0.974 0.470 0.634
comp.windows.x 0.260 0.963 0.410 0.972 0.168 0.287
comp.graphics 0.289 0.953 0.444 0.964 0.177 0.299
comp.sys.ibm.pc.hardware 0.284 0.953 0.438 0.958 0.169 0.288
alt.atheism 0.194 0.973 0.324 0.980 0.333 0.498

Table 10: Results on rec.motorcycles and unknown classes.

513

ter-based similarity space learning. The solution
reduced the positive labeled area from an infinite
space to a finite space compared to previous work.
This markedly reduces the open space risk. With
extensive experiments across two public multiclass
datasets, we demonstrated that the proposed solu-
tion is highly promising. Our future work includes
designing a more robust solution that still works
well when the number of known classes is small.

Acknowledgments
This work was supported in part by a grant from
National Science Foundation (NSF) under grant
no. IIS-1407927, a NCI grant under grant no.
R01CA192240, and a gift from Bosch. The content
of the paper is solely the responsibility of the au-
thors and does not necessarily represent the official
views of the NSF, NCI, or Bosch.

References
Bravo, C., Lobato, J.L., Weber, R., L’Huillier, G. 2008.

A hybrid system for probability estimation in mul-
ticlass problems combining svms and neural net-
works. In: Hybrid Intelligent Systems. pp. 649–654

Chang, C-C. and Lin, C-J. 2011. LIBSVM: a library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, 2:27:1--27:27,
http://www.csie.ntu.edu. tw/~cjlin/libsvm

Colas, F. and Brazdil. P. 2006. Comparison of SVM and
some older classification algorithms in text classifi-
cation tasks. Artificial Intelligence in Theory and
Practice. IFIP International Federation for Infor-
mation Processing, pp. 169-178.

Dalvi, B., Cohen, W. W. and Callan, J. 2013. Explorato-
ry learning. In ECML.

Duan, K.B. and Keerthi, S.S. 2005. Which is the best
multiclass SVM method? An empirical study. In:
Proceedings of the 6th International Conference on
Multiple Classifier Systems. pp. 278–285

Fei, G. and Liu, B. 2015. Social Media Text Classifica-
tion under Negative Covariate Shift. Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, Lisboa, Portugal, 17-21
September.

Fumera, G., and Roli, F. 2002. Support vector machines
with embedded reject option. In: International Work-
shop on Pattern Recognition with Support Vector
Machines (SVM2002). pp. 68–82

Hastie, T. and Tibshirani, R. 1996. Classification by
pairwise coupling. In: Annals of Statistics. pp. 507–
513. MIT Press

Huang, T.K., Weng, R.C., and Lin, C.J. 2006. General-
ized bradley-terry models and multi-class probability

estimates. Journal of Machine Learning Research
85–115

Jain, L. P., Scheirer, W. J., and Boult, T. E. 2014. Multi-
class open set recognition using probability of inclu-
sion. In Proc. ECCV, pages 393-409. Springer.

Jindal, N. and Liu, B. 2008. Opinion Spam and Analy-
sis. Proceedings of the ACM Conference on Web
Search and Data Mining.

Joachims, T. 1998. Text categorization with support vec-
tor machines: Learning with many relevant features.
ECML.

Khan, S. and Madden, M. 2014. One-Class Classifica-
tion: Taxonomy of Study and Review of Techniques.
The Knowledge Engineering Review, 1-30.

Kwok, J.T.Y. 1999. Moderating the outputs of support
vector machine classifiers. IEEE Transactions on
Neural Networks 10(5), 1018–1031

Manning, C. D., Prabhakar R., and Hinrich, S. 2008. In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.

Shackel, N., Bertrand’s Paradox and the Principle of In-
difference. 2007. Philosophy of Science, vol. 74, no.
2, pp. 150–175.

Platt, J. C. 2000. Probabilistic outputs for support vector
machines and comparison to regularized likelihood
methods. In Advances in Large Margin Classifiers, A.
Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
Eds. MIT Press, Cambridge, MA.

Rennie, J. 20-newsgroup dataset. 2008
Rocchio, J. 1971. Relevant feedback in information re-

trieval. In G. Salton (ed.). The smart retrieval system:
experiments in automatic document processing.

Scheirer, W., Rocha A., Sapkota A., and Boult T. E.
Towards open set recognition. 2013. IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 36,
no. 7, pp.1757 -1772

Scheirer, W. J., Jain, L. P., and Boult, T. E. 2014. Proba-
bility models for open set recognition, IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 36,
no. 11, pp.2317 -2324

Scholkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola,
A. J., Williamson, R. C. 2001. Estimating the support
of a high-dimensional distribution. Neural Computa-
tion 13, 1443–1471

Tax, D.M.J., Duin, R.P.W. 2004. Support vector data de-
scription. Machine Learning 54, 45–66

Vapnik, V.N. 1998. Statistical Learning Theory. Wiley-
Interscience

Zadrozny, B. and Elkan, C. 2002. Transforming classi-
fier scores into accurate multiclass probability esti-
mates. In: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pp. 694–699 (2002)

514

Proceedings of NAACL-HLT 2016, pages 515–520,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Sequential Short-Text Classification with
Recurrent and Convolutional Neural Networks

Ji Young Lee∗
MIT

jjylee@mit.edu

Franck Dernoncourt∗
MIT

francky@mit.edu

Abstract
Recent approaches based on artificial neural
networks (ANNs) have shown promising re-
sults for short-text classification. However,
many short texts occur in sequences (e.g., sen-
tences in a document or utterances in a dia-
log), and most existing ANN-based systems
do not leverage the preceding short texts when
classifying a subsequent one. In this work,
we present a model based on recurrent neural
networks and convolutional neural networks
that incorporates the preceding short texts.
Our model achieves state-of-the-art results on
three different datasets for dialog act predic-
tion.

1 Introduction

Short-text classification is an important task in
many areas of natural language processing, includ-
ing sentiment analysis, question answering, or dia-
log management. Many different approaches have
been developed for short-text classification, such
as using Support Vector Machines (SVMs) with
rule-based features (Silva et al., 2011), combin-
ing SVMs with naive Bayes (Wang and Manning,
2012), and building dependency trees with Con-
ditional Random Fields (Nakagawa et al., 2010).
Several recent studies using ANNs have shown
promising results, including convolutional neural
networks (CNNs) (Kim, 2014; Blunsom et al., 2014;
Kalchbrenner et al., 2014) and recursive neural net-
works (Socher et al., 2012).

Most ANN systems classify short texts in iso-
lation, i.e., without considering preceding short

∗ These authors contributed equally to this work.

texts. However, short texts usually appear in se-
quence (e.g., sentences in a document or utter-
ances in a dialog), and therefore using information
from preceding short texts may improve the clas-
sification accuracy. Previous works on sequential
short-text classification are mostly based on non-
ANN approaches, such as Hidden Markov Models
(HMMs) (Reithinger and Klesen, 1997; Stolcke et
al., 2000; Surendran and Levow, 2006), maximum
entropy (Ang et al., 2005), naive Bayes (Lendvai
and Geertzen, 2007), and conditional random fields
(CRFs) (Kim et al., 2010; Quarteroni et al., 2011).

Inspired by the performance of ANN-based sys-
tems for non-sequential short-text classification, we
introduce a model based on recurrent neural net-
works (RNNs) and CNNs for sequential short-text
classification, and evaluate it on the dialog act classi-
fication task. A dialog act characterizes an utterance
in a dialog based on a combination of pragmatic, se-
mantic, and syntactic criteria. Its accurate detection
is useful for a range of applications, from speech
recognition to automatic summarization (Stolcke et
al., 2000). Our model achieves state-of-the-art re-
sults on three different datasets.

2 Model

Our model comprises two parts. The first part gener-
ates a vector representation for each short text using
either the RNN or CNN architecture, as discussed in
Section 2.1 and Figure 1. The second part classifies
the current short text based on the vector representa-
tions of the current as well as a few preceding short
texts, as presented in Section 2.2 and Figure 2.

We denote scalars with italic lowercases (e.g.,

515

Pooling

RNNRNNRNN RNN

Pooling

ConvConvConv Conv

Figure 1: RNN (left) and CNN (right) architectures for generating the vector representation s of a short text x1:`. For CNN, Conv
refers to convolution operations, and the filter height h = 3 is used in this figure.

FF1

S2VS2VS2V

FF1

S2VS2VS2V

FF1 FF1

FF2

FF1

S2VS2VS2V

FF1

FF2FF2

FF1

S2V

FF2

Figure 2: Four instances of the two-layer feedforward ANN used for predicting the probability distribution over the classes zi for
the ith short-text Xi. S2V stands for short text to vector, which is the RNN/CNN architecture that generates si from Xi. From left
to right, the history sizes (d1, d2) are (0, 0), (2, 0), (0, 2) and (1, 1). (0, 0) corresponds to the non-sequential classification case.

k, bf), vectors with bold lowercases (e.g., s, xi),
and matrices with italic uppercases (e.g., Wf). We
use the colon notation vi:j to denote the sequence of
vectors (vi,vi+1, . . . ,vj).

2.1 Short-text representation

A given short text of length ` is represented as the se-
quence of m-dimensional word vectors x1:`, which
is used by the RNN or CNN model to produce the
n-dimensional short-text representation s.

2.1.1 RNN-based short-text representation

We use a variant of RNN called Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997). For the tth word in the short-text, an LSTM
takes as input xt,ht−1, ct−1 and produces ht, ct
based on the following formulas:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(Wfxt + Ufht−1 + bf)
c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c̃t
ot = σ(Woxt + Uoht−1 + bo)
ht = ot � tanh(ct)

where Wj ∈ Rn×m, Uj ∈ Rn×n are weight matri-
ces and bj ∈ Rn are bias vectors, for j ∈ {i, f, c, o}.
The symbols σ(·) and tanh(·) refer to the element-
wise sigmoid and hyperbolic tangent functions, and
� is the element-wise multiplication. h0 = c0 = 0.

In the pooling layer, the sequence of vectors h1:`

output from the RNN layer are combined into a sin-
gle vector s ∈ Rn that represents the short-text, us-
ing one of the following mechanisms: last, mean,
and max pooling. Last pooling takes the last vector,
i.e., s = h`, mean pooling averages all vectors, i.e.,
s = 1

`

∑`
t=1 ht, and max pooling takes the element-

wise maximum of h1:`.

2.1.2 CNN-based short-text representation
Using a filter Wf ∈ Rh×m of height h, a convolu-
tion operation on h consecutive word vectors start-
ing from tth word outputs the scalar feature

ct = ReLU(Wf •Xt:t+h−1 + bf)

where Xt:t+h−1 ∈ Rh×m is the matrix whose ith

row is xi ∈ Rm, and bf ∈ R is a bias. The symbol •
refers to the dot product and ReLU(·) is the element-
wise rectified linear unit function.

We perform convolution operations with n dif-
ferent filters, and denote the resulting features as

516

ct ∈ Rn, each of whose dimensions comes from a
distinct filter. Repeating the convolution operations
for each window of h consecutive words in the short-
text, we obtain c1:`−h+1. The short-text representa-
tion s ∈ Rn is computed in the max pooling layer,
as the element-wise maximum of c1:`−h+1.

2.2 Sequential short-text classification
Let si be the n-dimensional short-text representation
given by the RNN or CNN architecture for the ith

short text in the sequence. The sequence si−d1−d2 : i

is fed into a two-layer feedforward ANN that pre-
dicts the class for the ith short text. The hyperpa-
rameters d1, d2 are the history sizes used in the first
and second layers, respectively.

The first layer takes as input si−d1−d2 : i and out-
puts the sequence yi−d2 : i defined as

yj = tanh

(
d1∑
d=0

W−d sj−d + b1

)
, ∀j ∈ [i− d2, i]

where W0,W−1,W−2 ∈ Rk×n are the weight ma-
trices, b1 ∈ Rk is the bias vector, yj ∈ Rk is the
class representation, and k is the number of classes
for the classification task.

Similarly, the second layer takes as input the se-
quence of class representations yi−d2:i and outputs
zi ∈ Rk:

zi = softmax

 d2∑
j=0

W−j yi−j + b2


where U0, U−1, U−2 ∈ Rk×k and b2 ∈ Rk are the
weight matrices and bias vector.

The final output zi represents the probability dis-
tribution over the set of k classes for the ith short-
text: the jth element of zi corresponds to the proba-
bility that the ith short-text belongs to the jth class.

3 Datasets and Experimental Setup

3.1 Datasets
We evaluate our model on the dialog act classifica-
tion task using the following datasets:

• DSTC 4: Dialog State Tracking Challenge 4 (Kim
et al., 2015; Kim et al., 2016).

• MRDA: ICSI Meeting Recorder Dialog Act Cor-
pus (Janin et al., 2003; Shriberg et al., 2004). The
5 classes are introduced in (Ang et al., 2005).

• SwDA: Switchboard Dialog Act Corpus (Jurafsky
et al., 1997).

For MRDA, we use the train/validation/test splits
provided with the datasets. For DSTC 4 and SwDA,
only the train/test splits are provided.1 Table 1
presents statistics on the datasets.

Dataset |C| |V | Train Validation Test

DSTC 4 89 6k 24 (21k) 5 (5k) 6 (6k)

MRDA 5 12k 51 (78k) 11 (16k) 11 (15k)

SwDA 43 20k 1003 (193k) 112 (23k) 19 (5k)

Table 1: Dataset overview. |C| is the number of classes, |V |
the vocabulary size. For the train, validation and test sets, we
indicate the number of dialogs (i.e., sequences) followed by the
number of utterances (i.e., short texts) in parenthesis.

3.2 Training
The model is trained to minimize the negative log-
likelihood of predicting the correct dialog acts of the
utterances in the train set, using stochastic gradient
descent with the Adadelta update rule (Zeiler, 2012).
At each gradient descent step, weight matrices, bias
vectors, and word vectors are updated. For regular-
ization, dropout is applied after the pooling layer,
and early stopping is used on the validation set with
a patience of 10 epochs.

4 Results and Discussion

To find effective hyperparameters, we varied one hy-
perparameter at a time while keeping the other ones
fixed. Table 2 presents our hyperparameter choices.

Hyperparameter Choice Experiment Range
LSTM output dim. (n) 100 50 – 1000

LSTM pooling max max, mean, last

LSTM direction unidir. unidir., bidir.

CNN num. of filters (n) 500 50 – 1000

CNN filter height (h) 3 1 – 10

Dropout rate 0.5 0 – 1

Word vector dim. (m) 200, 300 25 – 300

Table 2: Experiments ranges and choices of hyperparameters.
Unidir refers to the regular RNNs presented in Section 2.1.1,
and bidir refers to bidirectional RNNs introduced in (Schuster
and Paliwal, 1997).

We initialized the word vectors with the 300-
dimensional word vectors pretrained with word2vec

1All train/validation/test splits can be found at https://
github.com/Franck-Dernoncourt/naacl2016

517

d1

d2 LSTM CNN
0 1 2 0 1 2

DSTC4
0 63.1 (62.4, 63.6) 65.7 (65.6, 65.7) 64.7 (63.9, 65.3) 64.1 (63.5, 65.2) 65.4 (64.7, 66.6) 65.1 (63.2, 65.9)

1 65.8 (65.5, 66.1) 65.7 (65.3, 66.1) 64.8 (64.6, 65.1) 65.3 (64.1, 65.9) 65.1 (62.1, 66.2) 64.9 (64.4, 65.6)

2 65.7 (65.0, 66.2) 65.5 (64.4, 66.1) 64.9 (64.6, 65.2) 65.7 (64.9, 66.3) 65.8 (65.2, 66.1) 65.4 (64.5, 66.0)

MRDA
0 82.8 (82.4, 83.1) 83.2 (82.9, 83.4) 82.9 (82.4, 83.4) 83.2 (83.0, 83.4) 83.5 (82.9, 84.0) 83.8 (83.4, 84.2)

1 83.2 (82.6, 83.7) 83.8 (83.5, 84.4) 83.6 (83.2, 83.8) 84.6 (84.5, 84.9) 84.6 (84.4, 84.8) 84.1 (83.8, 84.4)

2 84.1 (83.5, 84.4) 83.9 (83.4, 84.7) 83.3 (82.6, 84.2) 84.4 (84.1, 84.8) 84.6 (84.5, 84.7) 84.4 (84.2, 84.7)

SwDA
0 66.3 (65.1, 68.0) 67.9 (66.3, 68.6) 67.8 (66.7, 69.0) 67.0 (65.3, 68.7) 69.1 (68.5, 70.0) 69.7 (69.2, 70.9)

1 68.4 (67.8, 68.8) 67.8 (65.5, 68.9) 67.3 (65.5, 69.5) 69.9 (69.1, 70.9) 69.8 (69.3, 70.6) 69.9 (68.8, 70.6)

2 69.5 (68.9, 70.2) 67.9 (66.5, 69.4) 67.7 (66.9, 68.9) 71.4 (70.4, 73.1) 71.1 (70.2, 72.1) 70.9 (69.7, 71.7)

Table 3: Accuracy (%) on different architectures and history sizes d1, d2. For each setting, we report average (minimum, maximum)
computed on 5 runs. Sequential classification (d1 + d2 > 0) outperforms non-sequential classification (d1 = d2 = 0). Overall,
the CNN model outperformed the LSTM model for all datasets, albeit by a small margin except for SwDA. We also tried gated
recurrent units (GRUs) (Cho et al., 2014) and the basic RNN, but the results were generally lower than LSTM.

on Google News (Mikolov et al., 2013a; Mikolov
et al., 2013b) for DSTC 4, and the 200-dimensional
word vectors pretrained with GloVe on Twit-
ter (Pennington et al., 2014) for MRDA and
SwDA, as these choices yielded the best results
among all publicly available word2vec, GloVe,
SENNA (Collobert, 2011; Collobert et al., 2011)
and RNNLM (Mikolov et al., 2011) word vectors.

The effects of the history sizes d1 and d2 for the
short-text and the class representations, respectively,
are presented in Table 3 for both the LSTM and
CNN models. In both models, increasing d1 while
keeping d2 = 0 improved the performances by 1.3-
4.2 percentage points. Conversely, increasing d2

while keeping d1 = 0 yielded better results, but the
performance increase was less pronounced: incor-
porating sequential information at the short-text rep-
resentation level was more effective than at the class
representation level.

Using sequential information at both the short-
text representation level and the class representa-
tion level does not help in most cases and may even
lower the performances. We hypothesize that short-
text representations contain richer and more gen-
eral information than class representations due to
their larger dimension. Class representations may
not convey any additional information over short-
text representations, and are more likely to propa-
gate errors from previous misclassifications.

Table 4 compares our results with the state-of-the-
art. Overall, our model shows competitive results,
while requiring no human-engineered features. Rig-

orous comparisons are challenging to draw, as many
important details such as text preprocessing and
train/valid/test split may vary, and many studies fail
to perform several runs despite the randomness in
some parts of the training process, such as weight
initialization.

Model DSTC 4 MRDA SwDA

CNN 65.5 84.6 73.1
LSTM 66.2 84.3 69.6

Majority class 25.8 59.1 33.7

SVM 57.0 – –

Graphical model – 81.3 –

Naive Bayes – 82.0 –

HMM – – 71.0

Memory-based Learning – – 72.3

Interlabeler agreement – – 84.0

Table 4: Accuracy (%) of our models and other methods from
the literature. The majority class model predicts the most fre-
quent class. SVM: (Dernoncourt et al., 2016). Graphical model:
(Ji and Bilmes, 2006). Naive Bayes: (Lendvai and Geertzen,
2007). HMM: (Stolcke et al., 2000). Memory-based Learn-
ing: (Rotaru, 2002). All five models use features derived from
transcribed words, as well as previous predicted dialog acts ex-
cept for Naive Bayes. The interlabeler agreement could not be
obtained for MRDA, and DSTC 4 was labeled by a single an-
notator. For the CNN and LSTM models, the presented results
are the test set accuracy of the run with the highest accuracy on
the validation set.

5 Conclusion

In this article we have presented an ANN-based ap-
proach to sequential short-text classification. We
demonstrate that adding sequential information im-

518

proves the quality of the predictions, and the per-
formance depends on what sequential information is
used in the model. Our model achieves state-of-the-
art results on three different datasets for dialog act
prediction.

Acknowledgments

We warmly thank Regina Barzilay, Tommi Jaakkola
and the anonymous reviewers for their helpful feed-
back and suggestions.

References
[Ang et al.2005] Jeremy Ang, Yang Liu, and Elizabeth

Shriberg. 2005. Automatic dialog act segmentation
and classification in multiparty meetings. In ICASSP
(1), pages 1061–1064.

[Blunsom et al.2014] Phil Blunsom, Edward Grefenstette,
Nal Kalchbrenner, et al. 2014. A convolutional neu-
ral network for modelling sentences. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics. Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics.

[Cho et al.2014] Kyunghyun Cho, Bart van Merriënboer,
Dzmitry Bahdanau, and Yoshua Bengio. 2014. On
the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537.

[Collobert2011] Ronan Collobert. 2011. Deep learn-
ing for efficient discriminative parsing. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, number EPFL-CONF-192374.

[Dernoncourt et al.2016] Franck Dernoncourt, Ji Young
Lee, Trung H. Bui, and Hung H. Bui. 2016. Adobe-
MIT submission to the DSTC 4 Spoken Language Un-
derstanding pilot task. In 7th International Workshop
on Spoken Dialogue Systems (IWSDS).

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Janin et al.2003] Adam Janin, Don Baron, Jane Edwards,
Dan Ellis, David Gelbart, Nelson Morgan, Barbara Pe-
skin, Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The ICSI meeting corpus. In Acous-
tics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Confer-
ence on, volume 1, pages I–364. IEEE.

[Ji and Bilmes2006] Gang Ji and Jeff Bilmes. 2006.
Backoff model training using partially observed data:
application to dialog act tagging. In Proceedings of
the main conference on Human Language Technol-
ogy Conference of the North American Chapter of the
Association of Computational Linguistics, pages 280–
287. Association for Computational Linguistics.

[Jurafsky et al.1997] Dan Jurafsky, Elizabeth Shriberg,
and Debra Biasca. 1997. Switchboard SWBD-
DAMSL shallow-discourse-function annotation
coders manual. Institute of Cognitive Science
Technical Report, pages 97–102.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. 2014. A convolu-
tional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188.

[Kim et al.2010] Su Nam Kim, Lawrence Cavedon, and
Timothy Baldwin. 2010. Classifying dialogue acts
in one-on-one live chats. In Proceedings of the 2010
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 862–871. Association for
Computational Linguistics.

[Kim et al.2015] Seokhwan Kim, Luis Fernando D’Haro,
Rafael E. Banchs, Jason Williams, and Matthew Hen-
derson. 2015. Dialog State Tracking Challenge 4:
Handbook.

[Kim et al.2016] Seokhwan Kim, Luis Fernando D’Haro,
Rafael E. Banchs, Jason Williams, and Matthew Hen-
derson. 2016. The Fourth Dialog State Tracking Chal-
lenge. In Proceedings of the 7th International Work-
shop on Spoken Dialogue Systems (IWSDS).

[Kim2014] Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural
Language Processing, pages 1746–1751. Association
for Computational Linguistics.

[Lendvai and Geertzen2007] Piroska Lendvai and Jeroen
Geertzen. 2007. Token-based chunking of turn-
internal dialogue act sequences. In Proceedings of the
8th SIGDIAL Workshop on Discourse and Dialogue,
pages 174–181.

[Mikolov et al.2011] Tomas Mikolov, Stefan Kombrink,
Anoop Deoras, Lukar Burget, and Jan Cernocky.
2011. Rnnlm-recurrent neural network language mod-
eling toolkit. In Proc. of the 2011 ASRU Workshop,
pages 196–201.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space. arXiv
preprint arXiv:1301.3781.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and

519

their compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

[Nakagawa et al.2010] Tetsuji Nakagawa, Kentaro Inui,
and Sadao Kurohashi. 2010. Dependency tree-based
sentiment classification using CRFs with hidden vari-
ables. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
786–794. Association for Computational Linguistics.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. GloVe:
global vectors for word representation. Proceedings
of the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12:1532–1543.

[Quarteroni et al.2011] Silvia Quarteroni, Alexei V
Ivanov, and Giuseppe Riccardi. 2011. Simultaneous
dialog act segmentation and classification from
human-human spoken conversations. In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE
International Conference on, pages 5596–5599. IEEE.

[Reithinger and Klesen1997] Norbert Reithinger and
Martin Klesen. 1997. Dialogue act classification
using language models. In EuroSpeech. Citeseer.

[Rotaru2002] Mihai Rotaru. 2002. Dialog act tagging us-
ing memory-based learning. Term project, University
of Pittsburgh, pages 255–276.

[Schuster and Paliwal1997] Mike Schuster and Kuldip K
Paliwal. 1997. Bidirectional recurrent neural net-
works. Signal Processing, IEEE Transactions on,
45(11):2673–2681.

[Shriberg et al.2004] Elizabeth Shriberg, Raj Dhillon,
Sonali Bhagat, Jeremy Ang, and Hannah Carvey.
2004. The ICSI meeting recorder dialog act (MRDA)
corpus. Technical report, DTIC Document.

[Silva et al.2011] Joao Silva, Luı́sa Coheur, Ana Cristina
Mendes, and Andreas Wichert. 2011. From symbolic
to sub-symbolic information in question classification.
Artificial Intelligence Review, 35(2):137–154.

[Socher et al.2012] Richard Socher, Brody Huval,
Christopher D Manning, and Andrew Y Ng. 2012.
Semantic compositionality through recursive matrix-
vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1201–1211. Association
for Computational Linguistics.

[Stolcke et al.2000] Andreas Stolcke, Klaus Ries, Noah
Coccaro, Elizabeth Shriberg, Rebecca Bates, Daniel
Jurafsky, Paul Taylor, Rachel Martin, Carol Van Ess-
Dykema, and Marie Meteer. 2000. Dialogue act
modeling for automatic tagging and recognition of
conversational speech. Computational linguistics,
26(3):339–373.

[Surendran and Levow2006] Dinoj Surendran and Gina-
Anne Levow. 2006. Dialog act tagging with support
vector machines and hidden markov models. In IN-
TERSPEECH.

[Wang and Manning2012] Sida Wang and Christopher D
Manning. 2012. Baselines and bigrams: Simple, good
sentiment and topic classification. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics: Short Papers-Volume 2, pages
90–94. Association for Computational Linguistics.

[Zeiler2012] Matthew D Zeiler. 2012. Adadelta:
An adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

520

Proceedings of NAACL-HLT 2016, pages 521–526,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Improved Neural Network-based Multi-label Classification
with Better Initialization Leveraging Label Co-occurrence

Gakuto Kurata
IBM Research

gakuto@jp.ibm.com

Bing Xiang
IBM Watson

bingxia@us.ibm.com

Bowen Zhou
IBM Watson

zhou@us.ibm.com

Abstract

In a multi-label text classification task, in
which multiple labels can be assigned to one
text, label co-occurrence itself is informative.
We propose a novel neural network initializa-
tion method to treat some of the neurons in
the final hidden layer as dedicated neurons for
each pattern of label co-occurrence. These
dedicated neurons are initialized to connect
to the corresponding co-occurring labels with
stronger weights than to others. In experi-
ments with a natural language query classifi-
cation task, which requires multi-label clas-
sification, our initialization method improved
classification accuracy without any computa-
tional overhead in training and evaluation.

1 Introduction

In multi-label text classification, one text can
be associated with multiple labels (label co-
occurrence) (Zhang and Zhou, 2014). Since la-
bel co-occurrence itself contains information, we
would like to leverage the label co-occurrence to im-
prove multi-label classification using a neural net-
work (NN). We propose a novel NN initialization
method that treats some of the neurons in the final
hidden layer as dedicated neurons for each pattern
of label co-occurrence. These dedicated neurons
are initialized to connect to the corresponding co-
occurring labels with stronger weights than to oth-
ers. While initialization of an NN is an important
research topic (Glorot and Bengio, 2010; Sutskever
et al., 2013; Le et al., 2015), to the best of our knowl-
edge, there has been no attempt to leverage label co-
occurrence for NN initialization.

To validate our proposed method, we focus on
multi-label Natural Language Query (NLQ) classifi-
cation in a document retrieval system in which users
input queries in natural language and the system re-
turns documents that contain answers to the queries.
For NLQ classification, we first train a model from
training data that contains pairs of queries and cor-
responding one or more than one document labels,
and then predict the appropriate document labels for
new queries with the trained model.

Through experiments with a real-world document
retrieval system and publicly available multi-label
data set, simply and directly embedding label co-
occurrence information into an NN with our pro-
posed method improved accuracy of NLQ classifi-
cation.

2 Related Work

Along with the recent success in NNs (Collobert et
al., 2011; Kim, 2014), NN-based multi-label classi-
fication has been proposed. An NN for NLQ classi-
fication needs to accept queries with variable length
and output their labels. Figure 1 shows a typical NN
architecture (Collobert et al., 2011). This NN first
transforms words in the input query into word em-
beddings (Mikolov et al., 2013), then applies Con-
volutional Neural Network (CNN) and Max-pooling
over time to extract fixed-length feature vectors, and
feed them into the output layer to predict the label
for the query (Collobert and Weston, 2008; Col-
lobert et al., 2011; Yih et al., 2014). To take care
of multi-labels, label co-occurrence has been incor-
porated into loss functions such as pairwise ranking
loss (Zhang and Zhou, 2006). More recently, Nam et

521

al. (2014) reported that binary cross entropy can out-
perform the pairwise ranking loss by leveraging rec-
tified linear units (ReLUs) for nonlinearity (Nair and
Hinton, 2010), AdaGrad for optimization (Duchi et
al., 2011), and dropout for generalization (Srivastava
et al., 2014). Considering the training efficiency and
superior performance, we used the binary cross en-
tropy as one of the baselines in our experiments in
Section 4 in addition to negative log-likelihood and
cross entropy.

Let x denote the feature vector of a query, y be
the vector representation of the label, o be the output
value of the NN, and Θ be the parameters of the NN.
Note that the representation of y differs depending
on the loss function. For simplicity in the following
explanation, assume that we have a finite set of la-
bels Λ = {λ1, λ2, λ3, λ4, λ5} and that a query x has
multiple labels {λ1, λ4}:

Negative Log Probability With minimization of
negative log probability, a single label is assumed.
To circumvent this limitation, we used copy trans-
formation (Tsoumakas et al., 2010) and obtained
two training examples ((x, y(1)), (x, y(2))), where
y(1) = (1, 0, 0, 0, 0) and y(2) = (0, 0, 0, 1, 0). The
loss for each example becomes l(Θ, (x, y(1))) =
− log(o1) and l(Θ, (x, y(2))) = − log(o4), where
softmax activation is used to calculate o in the out-
put layer.

Cross Entropy We assumed multi-labels as prob-
abilistic distribution as y = (0.5, 0, 0, 0.5, 0). The
cross entropy loss for the training example (x,y)
becomes l(Θ, (x, y)) = −y log(o), where softmax
activation is used in the output layer.

Binary Cross Entropy As Nam et al. (2014) in-
dicated, minimizing binary cross entropy is supe-
rior for handling multi-labels. By representing the
target labels as y = (1, 0, 0, 1, 0), the binary cross
entropy loss for the training example (x, y) be-
comes l(Θ, (x,y)) = −∑5

k=1(yk log(ok) + (1 −
yk) log(1 − ok)), where sigmoid activation is used
in the output layer.

3 Proposed Method

In this section, we explain our proposed method in
detail.

…

…

…
…
…

do

smoking

void

life

insurance

Convolution
layer

Hidden
layer

Output
layer

Max-
Pooling

over
time

Word embedding
for each word

Query

…

Figure 1: Neural network for NLQ classification. Proposed

method is applied to the weight matrix between hidden and out-

put layers as detailed in Figure 2.

Hidden layer Output layer

�1
�2
�3

�5

�4

C
0

0
0

0
C

C
C

0
C

Random
initialization

�1 �2 �3 �5�4

{�1,�4}
{�2,�4,�5}

Weight matrix between hidden and output layers
initialized by proposed method

Dedicated
neurons

Label co-occurrence
patterns

Number of units
in hidden layer

Number of labels in output layer

Figure 2: Overview of the proposed method. Label co-

occurrence patterns of {λ1, λ4} and {λ2, λ4, λ5} are used in

weight initialization, as shown in the above. This initialization

corresponds to preparing dedicated neurons for each label co-

occurrence pattern, as shown in the below.

3.1 Weight Initialization Leveraging Label
Co-occurrence

We propose an NN initialization method to treat
some of the neurons in the final hidden layer as
dedicated neurons for each pattern of label co-
occurrence. These dedicated neurons simultane-
ously activate the co-occurring labels. Figure 2
shows the key idea of the proposed method. We first
investigate the training data and list up patterns of
label co-occurrence. Then, for each pattern of la-
bel co-occurrence, we initialize a matrix row so that
the columns corresponding to the co-occurring la-
bels have a constant weight C and the other columns

522

Loss Function 1-best Accuracy Recall@5 Full Accuracy
Negative Log Likelihood 49.75 → 51.27 69.80 → 71.07 47.03 → 48.65

Cross Entropy 50.51 → 52.54 71.32 → 72.08 46.96 → 48.71
Binary Cross Entropy 49.75 → 50.51 70.81 → 71.32 48.09 → 48.34

Table 1: 1-best accuracy, recall@5, and full accuracy for evaluation data using different loss functions (Random initialization →
Proposed initialization). [%]

have a weight of 0, as shown in Figure 2 (above).
Note that the remaining rows that are not associated
with the pattern of label co-occurrence are randomly
initialized. This initialization is equivalent to treat-
ing some of the neurons in the final hidden layer
as dedicated neurons for each pattern of label co-
occurrence, where the dedicated neurons have con-
nections to the corresponding co-occurring labels
with an initialized weight C and to others with an
initialized weight of 0, as shown in Figure 2 (below).
Finally, we conduct normal back-propagation using
one of the loss functions, as discussed in the previ-
ous section. Note that all the connection weights in
the NN including the connection weights between
the dedicated neurons and all labels are updated
through back-propagation.

Since (1) computation of proposed initialization
itself is negligible and (2) computation of back-
propagation and the architecture of NN does not
change with or without the proposed initialization,
our proposed method does not increase computation
in training and evaluation.

3.2 Weight Setting for Dedicated Neurons

For the weight value C for initialization, we used
the upper bound UB of the normalized initializa-
tion (Glorot and Bengio, 2010), which is determined
by the number of units in the final hidden layer nh

and output layer nc as UB =
√

6√
nh+no

. Addition-
ally, we changed this value in accordance with the
frequency of the label co-occurrence patterns in the
training data. The background idea is that the pat-
terns of label co-occurrence that appear frequently
(i.e., the number of queries with this pattern of label
co-occurrence is large) are more important than less
frequent patterns. Assuming that a specific pattern
of label co-occurrence appears in the training data f
times, we try f×UB and

√
f×UB for initialization

to emphasize this pattern.

C 1-best Recall@5 Full
— 50.51 71.32 46.96
UB 52.54 72.08 48.71

f × UB 51.52 70.81 48.39√
f × UB 53.55 72.08 50.04

Table 2: 1-best accuracy, recall@5, and full accuracy for eval-

uation data with changing initialization value C. [%]

4 Experiments

We conducted experiments with the real-world NLQ
classification data and the publicly available data to
confirm the advantage of the proposed method.

4.1 Real-world NLQ classification Data

Experimental Setup We used NLQs for a docu-
ment retrieval system in the insurance domain for
the experiments. Users of the system input queries
in natural language, and the system returns the la-
bels of the documents that contain answers. We used
3, 133 queries for training and 394 queries for eval-
uation, 1, 695 and 158 of which had multiple labels,
respectively. The number of unique document labels
assigned to the training data was 526.

We used the NN shown in Figure 1. The dimen-
sion of word embedding was 100, number of ker-
nels for the CNN was 1, 000, which means 1, 000
units exist in the final hidden layer on top of Max-
pooling over time, and number of output units was
526. We used this NN configuration in common for
all the experiments. The word embedding was pre-
trained with the skip-gram model of word2vec using
the dumped English Wikipedia data and the docu-
ments of the target insurance domain (Mikolov et
al., 2013). The NN except the word embedding layer
was randomly initialized in accordance with the nor-
malized initialization (Glorot and Bengio, 2010).
We used the ReLU for nonlinearity, AdaGrad for op-
timization, and dropout for generalization. We fixed

523

Loss # Survived Neurons Weights-Dedicated Weights-All
Function (# dedicated neurons:252) [Mean / Variance] [Mean / Variance]

Negative Log Likelihood 194 0.251 / 0.004 -0.024 / 0.023
Cross Entropy 197 0.267 / 0.005 -0.017 / 0.021

Binary Cross Entropy 168 0.279 / 0.015 -0.007 / 0.011
Table 3: Investigation of neural network after back-propagation training.

the number of training epochs to 1, 0001.
For the proposed method, we investigated the

1, 695 queries with multiple labels in the training
data and found 252 patterns of label co-occurrence.
We then embedded this information in a 1, 000×526
weight matrix between the final hidden and output
layers. In other words, we treated 252 neurons in
the final hidden layer as dedicated neurons in weight
initialization.

For the hyper-parameter settings, we first tuned
the hyper-parameters including L2-regularization
and learning rate so that the accuracy of the baseline
system with random initialization was maximized.
For the proposed initialization, we used the same
hyper-parameters obtained in the former tuning.

We used three evaluation metrics that are closely
related to the usability of the document retrieval sys-
tem: (1) 1-best accuracy judges if the 1-best result
of a system is included in the correct labels2. (2)
Recall@5 judges if the 5-best results of a system
contain at least one of the correct labels. (3) Full
accuracy investigates the j-best results of a system
and judges if they match the correct labels when j
labels are assigned to the query 3.

Different Loss Functions Table 1 shows the ex-
perimental results using three different loss func-
tions. Comparing the values to the left of the arrows,
which did not use the proposed initialization, supe-
riority of binary cross entropy (Nam et al., 2014)
was confirmed in full accuracy, while cross entropy

1We confirmed that NN training sufficiently saturated after
1, 000 epochs in preliminary experiments. We also compared
the best accuracy achieved in 1, 000 epochs for all experimen-
tal conditions and confirmed that the same improvement was
achieved with the proposed method.

2This metric is comparable with One-error (Tsoumakas et
al., 2010) by 1-best Accuracy = 100 - One-error.

3If a query has three labels, the system needs to return 3-best
results that contain the three correct labels of the query to obtain
100% full accuracy.

was the best in 1-best accuracy in this experiment.
As shown to the right of the arrows, we obtained
improvement for all loss functions with every eval-
uation metric with the proposed method. Overall,
cross entropy training with the proposed initializa-
tion achieved the best in all three metrics, where 1-
best accuracy improvement from 50.51% to 52.54%
was statistically significant (p < 0.05).

Different Weight Initialization Table 2 shows the
results of emphasizing the frequent patterns of la-
bel co-occurrence. We used the cross entropy loss
function, which was the best in the previous exper-
iments. Using

√
f × UB yielded further improve-

ment in 1-best accuracy and full accuracy, though
using f × UB deteriorated in all metrics compared
with UB. This suggests that there is room for im-
provement if we can appropriately emphasize fre-
quent patterns of label co-occurrence.

Analysis on Trained Neural Network We inves-
tigated if the dedicated neurons for patterns of la-
bel co-occurrences still simultaneously activate the
corresponding labels after back-propagation. Table
3 shows the analysis on the NNs trained in the ex-
periments for Table 1. In the # Survived Neurons
columns, we investigated if the dedicated neurons
initialized for the pattern of k-label co-occurrence
still had the k largest weights to the correspond-
ing k labels after back-propagation. Large por-
tions of dedicated neurons “survived” after back-
propagation. In the Weights columns, we calculated
the mean of the connection weights between the
dedicated neurons and corresponding co-occurring
labels and compared them with the mean of all con-
nections in this weight matrix. The trained weights
for the connections between the dedicated neurons
and corresponding co-occurring labels (Weights-
Dedicated) were much stronger than the average
weights (Weights-All). This analysis suggests that
the proposed initialization yields dedicated neurons

524

that simultaneously activate the co-occurring labels
even after back-propagation.

There can be an overlap in label co-occurrence
patterns. One typical case is “A, B” and “A, B,
C”, and another case is “D, E”, “F, G”, and “D,
E, F, G”. While we prepared the dedicated neu-
rons for each co-occurrence pattern before back-
propagation, some overlapped co-occurrences might
be explained by the superset or combination of sub-
sets after back-propagation. Table 3 suggests that
some of the dedicated neurons did not survive af-
ter back-propagation. We confirmed that about half
of the label co-occurrence patterns whose dedicated
neurons did not survive were covered by the patterns
whose neurons survived. “Cover” means that if a
neuron for “A, B” did not survive, a neuron for “A,
B, C” survived, or if a neuron for “D, E, F, G” did not
survive, neurons for “D, E” and “F, G” survived. If
we change the network structure by connecting the
dedicated neurons only to the corresponding units or
preparing the special output units for co-occurring
labels (label powerset (Read, 2008)), this flexibility
might be lost.

4.2 Publicly Available Data

We used multi-label topic categorization data
(RCV1-v2) (Lewis et al., 2004) to validate our
method. We used the same label assignment and the
same training and evaluation data partition with the
LYRL2004 split (Lewis et al., 2004) where 23, 149
training texts and 781, 265 evaluation texts with 103
topic labels are available. We used the bag-of-word
(BoW) feature for each text prepared by Chang and
Lin (2011) whose dimension was 47, 236 and con-
structed a feed-forward NN that has an input layer
that accepts the BoW feature, hidden layer of 2, 000
units, and output layer of 103 output units with the
cross entropy loss function. By embedding the la-
bel co-occurrence information between the hidden
and output layers with the initial weights set to UB,
which corresponded to treating 758 neurons out of
2, 000 hidden units as the dedicated neurons, we im-
proved 1-best accuracy of topic label classification
from 93.95% to 94.60%, which was statistically sig-
nificant (p < 0.001).

To the best of our knowledge, 1-best accuracy

of 94.18% (5.82% one-error)4 (Rubin et al., 2012)
was the best published result with using the standard
LYRL2004 split of RCV1-v2. Our proposed method
has advantages in a sufficiently competitive setup.

5 Conclusion

We proposed an NN initialization method to lever-
age label co-occurrence information. Through ex-
periments using the data of a real-world document
retrieval system and publicly available data, we con-
firmed that our proposed method improved NLQ
classification accuracy. The advantage of the pro-
posed method also includes no computational over-
head during training and evaluation.

When we have large training data, the number
of label co-occurrence patterns can be larger than
that of hidden units. In such a case, one option is
to select an appropriate set of label co-occurrence
patterns with certain criteria such as the frequency
in the training data. Another option is to make a
larger weight matrix using all patterns and then to
reduce its dimension with such as Principal Com-
ponent Analysis (PCA) in advance of NN training.
Our future work also includes setting the initializa-
tion weight in a more sophisticated way and combin-
ing the proposed method with other NN-based meth-
ods (Kim, 2014; Johnson and Zhang, 2015).

Acknowledgments

We would like to show our gratitude to Dr. Ramesh
M. Nallapati of IBM Watson for supporting the ex-
periments. We are grateful to Dr. Yuta Tsuboi, Dr.
Ryuki Tachibana, and Mr. Nobuyasu Itoh of IBM
Research - Tokyo for the fruitful discussion and their
comments on this and earlier versions of the paper.
We thank the anonymous reviewers for their valu-
able comments.

4Randomly selected 75, 000 texts were used for evaluation,
but the results on this subset were confirmed to be almost iden-
tical to those on the full evaluation texts (Rubin et al., 2012).

525

References
Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-

SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2(3):27:1–27:27.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proc. ICML,
pages 160–167. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. AISTATS, pages 249–256.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In Proc. NAACL-HLT, pages 103–
112.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proc. EMNLP, pages 1746–
1751.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hin-
ton. 2015. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint
arXiv:1504.00941.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. RCV1: A new benchmark collection for
text categorization research. The Journal of Machine
Learning Research, 5:361–397.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proc. ICLR.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified lin-
ear units improve restricted boltzmann machines. In
Proc. ICML, pages 807–814.

Jinseok Nam, Jungi Kim, Eneldo Loza Mencı́a, Iryna
Gurevych, and Johannes Fürnkranz. 2014. Large-
scale multi-label text classification―– revisiting neu-
ral networks. In Proc. ECML-PKDD, pages 437–452.

Jesse Read. 2008. A pruned problem transformation
method for multi-label classification. In Proc. NZC-
SRS, pages 143–150.

Timothy N Rubin, America Chambers, Padhraic Smyth,
and Mark Steyvers. 2012. Statistical topic models for
multi-label document classification. Machine learn-
ing, 88(1-2):157–208.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, James Martens, George Dahl, and Geof-
frey Hinton. 2013. On the importance of initializa-
tion and momentum in deep learning. In Proc. ICML,
pages 1139–1147.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vla-
havas. 2010. Mining multi-label data. In Data mining
and knowledge discovery handbook, pages 667–685.
Springer.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proc. ACL, pages 643–648.

Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel
neural networks with applications to functional ge-
nomics and text categorization. IEEE Transactions on
Knowledge and Data Engineering, 18(10):1338–1351.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A review on
multi-label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819–1837.

526

Proceedings of NAACL-HLT 2016, pages 527–533,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning Distributed Word Representations For
Bidirectional LSTM Recurrent Neural Network∗

Peilu Wang1,2†, Yao Qian3, Hai Zhao1‡, Frank K. Soong2, Lei He2, Ke Wu1

1Shanghai Jiao Tong University, Shanghai, China
2Microsoft Research Asia, Beijing, China

3Educational Testing Service Research, CA, USA
peiluwang@163.com, yqian@ets.org, zhaohai@cs.sjtu.edu.cn
{frankkps, helei}@microsoft.com,wuke@cs.sjtu.edu.cn

Abstract

Bidirectional long short-term memory
(BLSTM) recurrent neural network (RNN)
has been successfully applied in many tagging
tasks. BLSTM-RNN relies on the distributed
representation of words, which implies that
the former can be futhermore improved
through learning the latter better. In this
work, we propose a novel approach to learn
distributed word representations by training
BLSTM-RNN on a specially designed task
which only relies on unlabeled data. Our
experimental results show that the proposed
approach learns useful distributed word
representations, as the trained representations
significantly elevate the performance of
BLSTM-RNN on three tagging tasks: part-of-
speech tagging, chunking and named entity
recognition, surpassing word representations
trained by other published methods.

1 Introduction

Distributed word representations represent word
with a real valued vector, which is also referred to

∗The work was partially supported by the National Natural
Science Foundation of China (Grant No. 61170114, and Grant
No. 61272248), the National Basic Research Program of China
(Grant No. 2013CB329401), the Science and Technology Com-
mission of Shanghai Municipality (Grant No. 13511500200),
the European Union Seventh Framework Program (Grant No.
247619), the Cai Yuanpei Program (CSC fund 201304490199,
201304490171), and the art and science interdisciplinary funds
of Shanghai Jiao Tong University, No. 14X190040031, and the
Key Project of National Society Science Foundation of China,
No. 15-ZDA041.

†*Work performed as an intern in speech group, Microsoft
Research Asia

‡Corresponding author

as word embedding. Well learned distributed word
representations have been shown capable of captur-
ing semantic and syntactic regularities (Pennington
et al., 2014a; Mikolov et al., 2013c) and enhanc-
ing neural network model by being used as features
(Collobert and Weston, 2008; Bengio and Heigold,
2014; Wang et al., 2015).

Sequence tagging is a basic structure learning task
for natural language processing. Many primary pro-
cessing tasks over sentence such as word segmen-
tation, named entity recognition and part-of-speech
tagging can be formalized as a tagging task (Zhao
et al., 2006; Huang and Zhao, 2007; Zhao and Kit,
2008b; Zhao and Kit, 2008a; Zhao et al., 2010; Zhao
and Kit, 2011). Recently, many state-of-the-art sys-
tems of tagging related tasks are implemented with
bidirectional long short-term memory (BLSTM) re-
current neural network (RNN), for example, slot
filling (Mesnil et al., 2013), part-of-speech tagging
(Huang et al., 2015), and dependency parsing (Dyer
et al., 2015) etc. All of these systems use distributed
representation of words to involve word level infor-
mation. Better trained word representations would
further improve the state-of-the-art performance of
these tasks which makes it worthy to research the
training methods of word representations.

The existing training methods of word represen-
tation can generally be divided into two classes: 1)
Matrix factorization methods. These methods uti-
lize low-rank approximation to decompose a large
matrix that contains corpus statistics. One typical
work is the latent semantic analysis (LSA) (Deer-
wester et al., 1990) in which the matrix records
“term-document” information, i.e., the rows cor-

527

respond to words, and the columns correspond to
different documents in the corpus. Another work
is hyperspace analogue to language (HAL) (Lund
and Burgess, 1996) which decomposes the matrix
recording “term-term” information, i.e., the rows
correspond to words and columns correspond to the
number of times that a word occurs in the given
context. 2) Window-based methods. This type of
methods learn representations by training a neural
network model to make prediction within local con-
text windows. For example, (Bengio et al., 2003)
learns word representation through a feedforward
neural network language model which predicts a
word given its previous several words. (Collobert
et al., 2011) trains a neural network to judge the va-
lidity of a given context. (Mikolov et al., 2013a)
proposes skip-gram and continuous bag-of-words
(CBOW) models based on a single-layer network ar-
chitecture. The objective of skip-gram model is to
predict the context given the word itself, while the
objective of CBOW is to predict a word given its
context. Aside from these two sets of methods, dis-
tributed representation can also be obtained by train-
ing recurrent neural network (RNN) language model
proposed by (Mikolov et al., 2010) or GloVe model
proposed by (Pennington et al., 2014a) which trains
a log-bilinear model on word-word co-occurrence
counts.

All of these methods suffer from shortcomings
that might limit the quality of trained word distri-
butions. The matrix factorization family only uses
the statistics of co-occurrence counts, disregarding
of the position of word in sentence and word or-
der. The window-based methods only consider local
context, which is incapable of involving information
outside the context window. While RNN language
model theoretically considers all information of the
previous sequence, but fails to involve the informa-
tion of the posterior sequence. The word-word co-
occurence counts that GloVe model relies on also
only include information within a limited sized con-
text window.

In this paper, we propose a novel method to ob-
tain word representation by training BLSTM-RNN
model on a specifically designed tagging task. Since
BLSTM-RNN theoretically involves all information
of input sentence, our approach avoids those short-
ages suffered by most current methods.

We firstly introduce the structure of BLSTM-
RNN used to learn word representations in section
2. Then the tagging task for training BLSTM-RNN
is described in section 3. Experiments are presented
in section 4, followed by conclusion.

2 Model Structure

The structure of BLSTM-RNN to train word rep-
resentation is illustrated in Figure 1. Each input is
composed of a word identity x1

i and additional real-
valued features x2

i . x
1
i is represented with one-hot

representation which is a binary vector with dimen-
sion |V |where V is the vocabulary. The input vector
Ii of the network is computed as:

Ii = W1x
1
i +W2x

2
i

where W1 and W2 are weight matrixes connecting
two layers and are updated with the neural network
during training. W1x

1
i is also known as the dis-

tributed representation of word or word embedding
which is a real-valued vector usually with a much
smaller dimension than x1

i . Distributed represen-
tation trained in other tasks can be easily incorpo-
rated by initializing W1 with these external repre-
sentations.

3 Learning Representation

According to the structure shown in Figure 1, W1

is a matrix of weights that is updated during train-
ing, thus the distributed representations contained
in W1 are learned simultaneously with the train-
ing of BLSTM-RNN on any supervised learning
tasks. However, all such tasks for BLSTM-RNN,
to the best of our knowledge, require labeled data
which is usually too small in size and hard to ob-
tain. In this section, we propose a tagging task spe-
cially for BLSTM-RNN to train distributed repre-
sentations with unlabeled data.

In this method, BLSTM-RNN is applied to per-
form a tagging task with only two types of tags to
predict: incorrect/correct. The input is a sequence
of words which is a normal sentence with several
words replaced by words randomly chosen from vo-
cabulary. The words to be replaced are chosen ran-
domly from the sentence. In practice, we generate a
random number for each word, and a word is chosen
to be replaced if the number is lower than a given

528

x1
i x2

i

Ii input layer

BLSTM RNN hidden layer

oi output layer

W1 W2

Figure 1: BLSTM-RNN for training word representation.

threshold. For those replaced words, their tags are 0
(incorrect) and for those that are not replaced, their
tags are 1 (correct). A simple sample of constructed
corpus is shown in Figure 2. Although it is possible
that some replaced words are also reasonable in the
sentence, they are still considered “incorrect”. Then
BLSTM-RNN is trained to judge which words have
been replaced by minimizing the binary classifica-
tion error on the training corpus. When the network
is trained, W1 contains all trained word representa-
tions. In our experiments, to reduce the vocabulary
V , each letter of input word is transferred to its low-
ercase. The upper case information is kept in an
additional features x2

i which in practice is a three-
dimensional binary vector to indicate if x1

i is full
lowercase, full uppercase or leading with a capital
letter.

Our approach is similar to (Collobert and We-
ston, 2008) and (Gutmann and Hyvärinen, 2012;
Mnih and Teh, 2012; Vaswani et al., 2013). All of
these works introduce randomly sampled words and
train a neural network on a binary classification task,
while (Collobert and Weston, 2008) learns represen-
tations for a feedforward network and (Gutmann and
Hyvärinen, 2012; Mnih and Teh, 2012; Vaswani et
al., 2013) learns normalization parameters instead of
representations.

4 Experiments

4.1 Experimental setup

To construct corpus for training word representa-
tions, we use North American news (Graff, 2008)
which contains about 536 million words as un-
labeled data. The North American news data is
first tokenized with the Penn Treebank tokenizer

script 1. Consecutive digits occurring within a word
are replaced with the symbol “#” . For example,
both words “tel92” and “tel6” are converted into
“tel#”. The vocabulary is limited to the most fre-
quent 100,000 words in North American news cor-
pus (Graff, 2008), plus one single “UNK” sym-
bol for replacing all out of vocabulary words. The
threshold to determine whether a word is replaced is
0.2, which means about 20% tokens in corpus are re-
placed with tokens randomly selected from vocabu-
lary. BLSTM-RNN is implemented based on CUR-
RENNT (Weninger et al., 2014), an open source
GPU-based toolkit of BLSTM-RNN. The dimension
of word representation as well as input layer size of
BLSTM-RNN is 100 and hidden layer size is 128.

Three published methods for training word repre-
sentations are compared: Skip-gram (Mikolov et al.,
2013a), CBOW (Mikolov et al., 2013a) and GloVe
(Pennington et al., 2014a). They are reported su-
perior in capturing meaningful latent structures than
other previous works in (Mikolov et al., 2013a; Pen-
nington et al., 2014a), thus are regarded as the state-
of-the-art approach of training word representations.
We train the Skip-gram and CBOW model using the
word2vec tool (Mikolov et al., 2013b) with a con-
text window size of 10 and 10 negative samples. For
training GloVe, we use the GloVe tool (Pennington
et al., 2014b) with a context window size 10. These
configurations are set by following (Pennington et
al., 2014a). Training corpus, vocabulary and dimen-
sion of word representations are set the same as that
in experiment for training word representations with
BLSTM-RNN2.

1https://www.cis.upenn.edu/˜treebank/
tokenization.html

2Our experimental setup are released at: https://
github.com/PeiluWang/naacl2016_blstmwe

529

Original Sentence:
They seem to be prepared to make . . .

Input Sentence:
They beast to be austere to make . . .

Tag Sequence:
1 0 1 1 0 1 1 . . .

Figure 2: Sample of constructed corpus for training word representations. Two words “seem” and “prepared”
are replaced with words randomly chosen from vocabulary.

Sys POS(Acc.) CHUNK(F1) NER(F1)
BLSTM 96.60 91.71 82.52

BLSTM+CBOW 96.73 92.14 84.37
BLSTM+Skip 96.85 92.45 85.80

BLSTM+GloVe 97.02 93.01 87.33
BLSTM+BLSTMWE 97.26 94.44 88.38

Table 1: Performance of BLSTM-RNN with different representations on three tagging tasks

4.2 Evaluation

The quality of trained distributed representation
is evaluated by the performance of BLSTM-RNN
which uses the trained representations on practical
tasks. The representations which lead to better per-
formance are considered containing more useful la-
tent information and are judged better. The struc-
ture of BLSTM-RNN to test word representations is
the same as that in Figure1. To use trained repre-
sentation, we initialize the weight matrix W1 with
these external representations. For words without
corresponding external representations, their repre-
sentations are initialized with uniformly distributed
random values, ranging from -0.1 to 0.1. Three typ-
ical tagging tasks are used for the evaluation: part-
of-speech tagging (POS), chunking (CHUNK) and
named entity recognition (NER).

• The POS tagging experiment is conducted on
the Wall Street Journal data from Penn Tree-
bank III (Marcus et al., 1993). Training, devel-
opment and test sets are split according to in
(Collins, 2002). Performance is evaluated by
the accuracy of predicted tags on test set.

• CHUNK experiment is conducted on the data
of CoNLL-2000 shared task (Sang and Buch-
holz, 2000). Performance is assessed by the
F1 score computed by the evaluation script re-

leased by the CoNLL-2000 shared task3.

• NER experiment is conducted on the CoNLL-
2003 shared task (Tjong Kim Sang and
De Meulder, 2003). Performance is measured
by the F1 score calculated by the evaluation
script of the CoNLL-2003 shared task 4.

To focus on the effect of word representation, for
all tasks, we use the network with the same hid-
den structure and input features. The size of input
layer is 100, size of BLSTM hidden layer is 128
and output layer size is set as the number of tag
types according to the specific tagging task. Input
features are composed of word identity and three-
dimensional binary vector to indicate if the word is
full lowercase, full uppercase or leading with a cap-
ital letter.

Table 1 presents the performance of BLSTM-
RNN with different distributed representations on
these three tasks. BLSTM is the baseline sys-
tem that does not involve external word representa-
tions. Among all representations, BLSTMWE which
is trained by our approach gets the best performance
on all three tasks. It shows our approach is more
helpful for BLSTM-RNN. Besides, all of the three
published word representations also significantly en-

3http://www.cnts.ua.ac.be/conll2000/
chunking

4http://www.cnts.ua.ac.be/conll2003/ner/

530

Sys POS(Acc.) CHUNK(F1) NER(F1)
BLSTMWE (10M) 96.61 91.91 84.66
BLSTMWE (100M) 97.10 93.86 86.47
BLSTMWE (536M) 97.26 94.44 88.38

Table 2: Performance of BLSTMWE trained on corpora with different size

Skip-gram CBOW GloVe BLSTM RNN
Time (min.) 344 117 127 1393

Table 3: Running time of different training methods

hance BLSTM RNN. It confirms the commonly ac-
cepted notion that word representation is a useful
feature.

4.3 Analysis

Table 2 shows the performance of word rep-
resentations trained on corpora with different
size. BLSTMWE (10M), BLSTMWE (100M) and
BLSTMWE (536M) are word representations respec-
tively trained by BLSTM-RNN on the first 10 mil-
lion words, first 100 million words and all 536 mil-
lion words of the North American news corpus. As
expected, there is a monotonic increase in perfor-
mance as the corpus size increases. This observation
suggests that the result might be further improved by
using even bigger unlabeled data.

Table 3 presents running time with different meth-
ods to train word representations on 536 million
words corpus. BLSTM-RNN is trained on one
NVIDIA Tesla M2090 GPU. The other three meth-
ods are trained on a 12 core, 2.53GHz Intel Xeon
E5649 machine, using 12 threads. Though with the
help of GPU, BLSTM-RNN is still slower than the
other methods. However, it should be noted that
the speed of our approach is acceptable compared
with previous neural network language model based
methods, including (Bengio et al., 2003; Mikolov
et al., 2010; Mnih and Hinton, 2007), as our model
uses a much simpler output layer which only has two
nodes, avoiding the time consuming computation of
the big softmax output layer in language model.

5 CONCLUSION

In this paper, we propose a novel approach to
learn distributed word representations with BLSTM-

RNN. Word representations are implemented as
the layer weights and are obtained as a byproduct
of training BLSTM-RNN on a specially designed
task, thus theoretically involve information of the
whole sentence. The quality of word representations
are evaluated by the performance of BLSTM-RNN
which uses these representations on three tagging
tasks: part-of-speech tagging, chunking and named
entity recognition. In experiments, word representa-
tions trained by our approach outperform the word
representations trained by other published methods.
Our work demonstrates an alternative way to im-
prove BLSTM-RNN’s performance by learning use-
ful word representations.

References

Samy Bengio and Georg Heigold. 2014. Word em-
beddings for speech recognition. In INTERSPEECH,
pages 1053–1057.

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. In Journal of Machine Learning Re-
search (JMLR), volume 3, pages 1137–1155.

Michael Collins. 2002. Discriminative training meth-
ods for Hidden Markov Models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
Empirical Methods in Natural Language Processing
(EMNLP), pages 1–8.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceed-
ings of International Conference on Machine Learning
(ICML), pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.

531

Journal of Machine Learning Research (JMLR),
12:2493–2537.

Scott Deerwester, Susan Dumais, Thomas Landauer,
George Furnas, and Richard Harshman. 1990. Index-
ing by latent semantic analysis. JASIS, 41(6):391–407.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of Association for Computa-
tional Linguistics (ACL), pages 334–343.

David Graff. 2008. North American News Text, Com-
plete LDC2008T15. https://catalog.ldc.
upenn.edu/LDC2008T15.

Michael Gutmann and Aapo Hyvärinen. 2012. Noise-
contrastive estimation of unnormalized statistical
models, with applications to natural image statis-
tics. Journal of Machine Learning Research (JMLR),
13:307–361.

Changning Huang and Hai Zhao. 2007. Chinese word
segmentation: A decade review. Journal of Chinese
Information Processing, 21(3):8–20.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv:1508.01991.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instruments,
& Computers, 28(2):203–208.

Mitchell Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of
English: The Penn Treebank. Computational linguis-
tics (CL), 19(2):313–330.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spoken
language understanding. In INTERSPEECH, pages
3771–3775.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH, pages 1045–1048.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013b. word2vec. https://code.
google.com/p/word2vec/.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeff Dean. 2013c. Distributed representations of
words and phrases and their compositionality. In Pro-
ceedings of Conference on Neural Information Pro-
cessing Systems (NIPS), pages 3111–3119.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of International Conference on Machine
Learning (ICML), pages 641–648.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic language
models. In Proceedings of International Conference
on Machine Learning (ICML), pages 1751–1758.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014a. Glove: Global vectors for word rep-
resentation. In Proceedings of Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–
1543.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014b. GloVe. http://nlp.
stanford.edu/projects/glove/.

Erik Tjong Kim Sang and Sabine Buchholz. 2000. Intro-
duction to the CoNLL-2000 shared task: Chunking.
In Proceedings of Conference on Natural Language
Learning (CoNLL), pages 127–132.

Erik Tjong Kim Sang and Fien De Meulder. 2003. Intro-
duction to the CoNLL-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of Conference on Natural Language Learning
(CoNLL), pages 142–147.

Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and
David Chiang. 2013. Decoding with large-scale neu-
ral language models improves translation. In Proceed-
ings of Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1387–1392.

Peilu Wang, Yao Qian, Frank Soong, Lei He, and Hai
Zhao. 2015. Word embedding for recurrent neural
network based tts synthesis. In Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 4879–4883.

Felix Weninger, Johannes Bergmann, and Björn Schuller.
2014. Introducing CURRENNT–the Munich open-
source CUDA recurrent Neural Network Toolkit.
Journal of Machine Learning Research (JMLR),
16(1):547–551.

Hai Zhao and Chunyu Kit. 2008a. An empirical compar-
ison of goodness measures for unsupervised chinese
word segmentation with a unified framework. In Pro-
ceedings of International Joint Conference on Natural
Language Processing (IJCNLP), volume 1, pages 9–
16.

Hai Zhao and Chunyu Kit. 2008b. Unsupervised seg-
mentation helps supervised learning of character tag-
ging for word segmentation and named entity recog-
nition. In SIGHAN Workshop on Chinese Language
Processing, pages 106–111.

Hai Zhao and Chunyu Kit. 2011. Integrating un-
supervised and supervised word segmentation: The

532

role of goodness measures. Information Sciences,
181(1):163–183.

Hai Zhao, Chang-Ning Huang, and Mu Li. 2006. An im-
proved chinese word segmentation system with condi-
tional random field. In SIGHAN Workshop on Chinese
Language Processing, pages 162–165.

Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang
Lu. 2010. A unified character-based tagging frame-
work for chinese word segmentation. ACM Trans-
actions on Asian Language Information Processing
(TALIP), 9(2):1–32.

533

Proceedings of NAACL-HLT 2016, pages 534–539,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Combining Recurrent and Convolutional Neural Networks
for Relation Classification

Ngoc Thang Vu1,2 and Heike Adel1 and Pankaj Gupta3 and Hinrich Schütze1

1Center for Information and Language Processing, LMU Munich
Oettingenstr. 67, 80538 Munich, Germany

2Institute for Natural Language Processing, University of Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

3Siemens Corporate Technology - Knowledge Modeling and Retrieval
Otto-Hahn-Ring 6, 81739 Munich, Germany

thang.vu@ims.uni-stuttgart.de | heike.adel@cis.lmu.de
gupta.pankaj.ext@siemens.com | inquiries@cislmu.org

Abstract

This paper investigates two different neural
architectures for the task of relation classi-
fication: convolutional neural networks and
recurrent neural networks. For both mod-
els, we demonstrate the effect of different ar-
chitectural choices. We present a new con-
text representation for convolutional neural
networks for relation classification (extended
middle context). Furthermore, we propose
connectionist bi-directional recurrent neural
networks and introduce ranking loss for their
optimization. Finally, we show that combin-
ing convolutional and recurrent neural net-
works using a simple voting scheme is accu-
rate enough to improve results. Our neural
models achieve state-of-the-art results on the
SemEval 2010 relation classification task.

1 Introduction

Relation classification is the task of assigning
sentences with two marked entities to a prede-
fined set of relations. The sentence “We poured
the <e1>milk</e1> into the <e2>pumpkin mix-
ture</e2>.”, for example, expresses the relation
Entity-Destination(e1,e2). While early
research mostly focused on support vector ma-
chines or maximum entropy classifiers (Rink and
Harabagiu, 2010a; Tratz and Hovy, 2010), recent
research showed performance improvements by ap-
plying neural networks (NNs) (Socher et al., 2012;
Zeng et al., 2014; Yu et al., 2014; Nguyen and Gr-
ishman, 2015; Dos Santos et al., 2015; Zhang and
Wang, 2015) on the benchmark data from SemEval
2010 shared task 8 (Hendrickx et al., 2010) .

This study investigates two different types of
NNs: recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs) as well as their
combination. We make the following contributions:

(1) We propose extended middle context, a new
context representation for CNNs for relation classi-
fication. The extended middle context uses all parts
of the sentence (the relation arguments, left of the
relation arguments, between the arguments, right of
the arguments) and pays special attention to the mid-
dle part.

(2) We present connectionist bi-directional RNN
models which are especially suited for sentence clas-
sification tasks since they combine all intermediate
hidden layers for their final decision. Furthermore,
the ranking loss function is introduced for the RNN
model optimization which has not been investigated
in the literature for relation classification before.

(3) Finally, we combine CNNs and RNNs using a
simple voting scheme and achieve new state-of-the-
art results on the SemEval 2010 benchmark dataset.

2 Related Work

In 2010, manually annotated data for relation clas-
sification was released in the context of a SemEval
shared task (Hendrickx et al., 2010). Shared task
participants used, i.a., support vector machines or
maximum entropy classifiers (Rink and Harabagiu,
2010a; Tratz and Hovy, 2010). Recently, their re-
sults on this data set were outperformed by applying
NNs (Socher et al., 2012; Zeng et al., 2014; Yu et
al., 2014; Nguyen and Grishman, 2015; Dos Santos
et al., 2015).

534

Zeng et al. (2014) built a CNN based only on
the context between the relation arguments and ex-
tended it with several lexical features. Kim (2014)
and others used convolutional filters of different
sizes for CNNs. Nguyen and Grishman (2015) ap-
plied this to relation classification and obtained im-
provements over single filter sizes. Dos Santos et al.
(2015) replaced the softmax layer of the CNN with a
ranking layer. They showed improvements and pub-
lished the best result so far on the SemEval dataset,
to our knowledge.

Socher et al. (2012) used another NN architecture
for relation classification: recursive neural networks
that built recursive sentence representations based
on syntactic parsing. In contrast, Zhang and Wang
(2015) investigated a temporal structured RNN with
only words as input. They used a bi-directional
model with a pooling layer on top.

3 Convolutional Neural Networks (CNN)

CNNs perform a discrete convolution on an input
matrix with a set of different filters. For NLP tasks,
the input matrix represents a sentence: Each column
of the matrix stores the word embedding of the cor-
responding word. By applying a filter with a width
of, e.g., three columns, three neighboring words (tri-
gram) are convolved. Afterwards, the results of the
convolution are pooled. Following Collobert et al.
(2011), we perform max-pooling which extracts the
maximum value for each filter and, thus, the most
informative n-gram for the following steps. Finally,
the resulting values are concatenated and used for
classifying the relation expressed in the sentence.

3.1 Input: Extended Middle Context

One of our contributions is a new input representa-
tion especially designed for relation classification.
The contexts are split into three disjoint regions
based on the two relation arguments: the left con-
text, the middle context and the right context. Since
in most cases the middle context contains the most
relevant information for the relation, we want to fo-
cus on it but not ignore the other regions completely.
Hence, we propose to use two contexts: (1) a com-
bination of the left context, the left entity and the
middle context; and (2) a combination of the mid-
dle context, the right entity and the right context.

Due to the repetition of the middle context, we force
the network to pay special attention to it. The two
contexts are processed by two independent convo-
lutional and max-pooling layers. After pooling, the
results are concatenated to form the sentence repre-
sentation. Figure 1 depicts this procedure. It shows
an examplary sentence: “He had chest pain and
<e1>headaches</e1> from <e2>mold</e2> in
the bedroom.” If we only considered the middle
context “from”, the network might be tempted to
predict a relation like Entity-Origin(e1,e2).
However, by also taking the left and right con-
text into account, the model can detect the relation
Cause-Effect(e2,e1). While this could also
be achieved by integrating the whole context into the
model, using the whole context can have disadvan-
tages for longer sentences: The max pooling step
can easily choose a value from a part of the sentence
which is far away from the mention of the relation.
With splitting the context into two parts, we reduce
this danger. Repeating the middle context increases
the chance for the max pooling step to pick a value
from the middle context.

3.2 Convolutional Layer

Following previous work (e.g., (Nguyen and Grish-
man, 2015), (Dos Santos et al., 2015)), we use 2D
filters spanning all embedding dimensions. After
convolution, a max pooling operation is applied that
stores only the highest activation of each filter. We
apply filters with different window sizes 2-5 (multi-
windows) as in (Nguyen and Grishman, 2015), i.e.
spanning a different number of input words.

4 Recurrent Neural Networks (RNN)

Traditional RNNs consist of an input vector, a his-
tory vector and an output vector. Based on the repre-
sentation of the current input word and the previous
history vector, a new history is computed. Then, an
output is predicted (e.g., using a softmax layer). In
contrast to most traditional RNN architectures, we
use the RNN for sentence modeling, i.e., we predict
an output vector only after processing the whole sen-
tence and not after each word. Training is performed
using backpropagation through time (Werbos, 1990)
which unfolds the recurrent computations of the his-
tory vector for a certain number of time steps. To

535

He had chest pains and <e1>headaches</e1> from <e2>mold</e2> in the bedrooms.

... ...

convolution convolution

poolingpooling

sentence representation

concatenation

Figure 1: CNN with extended contexts

avoid exploding gradients, we use gradient clipping
with a threshold of 10 (Pascanu et al., 2012).

4.1 Input of the RNNs
Initial experiments showed that using trigrams as in-
put instead of single words led to superior results.
Hence, at timestep t we do not only give word wt to
the model but the trigram wt−1wtwt+1 by concate-
nating the corresponding word embeddings.

4.2 Connectionist Bi-directional RNNs
Especially for relation classification, the process-
ing of the relation arguments might be easier with
knowledge of the succeeding words. Therefore in
bi-directional RNNs, not only a history vector of
word wt is regarded but also a future vector. This
leads to the following conditioned probability for the
history ht at time step t ∈ [1, n]:

hft = f(Uf · wt + V · hft−1) (1)

hbt = f(Ub · wn−t+1 +B · hbt+1) (2)

ht = f(hbt + hft +H · ht−1) (3)

Thus, the network can be split into three parts:
a forward pass which processes the original sen-
tence word by word (Equation 1); a backward pass
which processes the reversed sentence word by word
(Equation 2); and a combination of both (Equation
3). All three parts are trained jointly. This is also
depicted in Figure 2.

Combining forward and backward pass by adding
their hidden layer is similar to (Zhang and Wang,
2015). We, however, also add a connection to the
previous combined hidden layer with weight H to
be able to include all intermediate hidden layers into
the final decision of the network (see Equation 3).
We call this “connectionist bi-directional RNN”.

h
b

h
b

h
b

relation

h
b

h
b

washer

the

into
went

phone
The

h
b

h
f

The

h
f

h
f

phone
h
f

into

went
h
f

the

h
f

washer

h
h

h
h

h
h

+

+

+

+

+
+

+
+

+

+
+

+

H

H

H

H
H

B

B

B

B
B

V

V

V
V

V

U
b

U
f

U
b

U
b

U
b

U
b

U
b

U
f

U
f

U
f

U
f

U
f

Figure 2: Connectionist bi-directional RNN

In our experiments, we compare this RNN with
uni-directional RNNs and bi-directional RNNs with-
out additional hidden layer connections.

5 Model Training

5.1 Word Representations

Words are represented by concatenated vectors: a
word embedding and a position feature vector.
Pretrained word embeddings. In this study, we
used the word2vec toolkit to train embeddings on an
English Wikipedia from May 2014. We only con-
sidered words appearing more than 100 times and
added a special PADDING token for convolution.
This results in an embedding training text of about
485,000 terms and 6.7 · 109 tokens. During model
training, the embeddings are updated.
Position features. We incorporate randomly ini-
tialized position embeddings similar to Zeng et al.
(2014), Nguyen and Grishman (2015) and Dos San-
tos et al. (2015). In our RNN experiments, we in-
vestigate different possibilities of integrating posi-
tion information: position embeddings, position em-
beddings with entity presence flags (flags indicating
whether the current word is one of the relation argu-
ments), and position indicators (Zhang and Wang,
2015).

5.2 Objective Function: Ranking Loss

Ranking. We applied the ranking loss function pro-
posed in Dos Santos et al. (2015) to train our models.
It maximizes the distance between the true label y+

and the best competitive label c− given a data point

536

x. The objective function is

L = log(1 + exp(γ(m+ − sθ(x)y+)))
+ log(1 + exp(γ(m− + sθ(x)c−)))

(4)

with sθ(x)y+ and sθ(x)c− being the scores for the
classes y+ and c− respectively. The parameter γ
controls the penalization of the prediction errors and
m+ and m− are margins for the correct and incor-
rect classes. Following Dos Santos et al. (2015), we
set γ = 2,m+ = 2.5,m− = 0.5. We do not learn
a pattern for the class Other but increase its differ-
ence to the best competitive label by using only the
second summand in Equation 4 during training.

6 Experiments and Results

We used the relation classification dataset of the
SemEval 2010 task 8 (Hendrickx et al., 2010). It
consists of sentences which have been manually la-
beled with 19 relations (9 directed relations and one
artificial class Other). 8,000 sentences have been
distributed as training set and 2,717 sentences served
as test set. For evaluation, we applied the official
scoring script and report the macro F1 score which
also served as the official result of the shared task.

RNN and CNN models were implemented with
theano (Bergstra et al., 2010; Bastien et al., 2012).
For all our models, we use L2 regularization with a
weight of 0.0001. For CNN training, we use mini
batches of 25 training examples while we perform
stochastic gradient descent for the RNN. The ini-
tial learning rates are 0.2 for the CNN and 0.01 for
the RNN. We train the models for 10 (CNN) and
50 (RNN) epochs without early stopping. As ac-
tivation function, we apply tanh for the CNN and
capped ReLU for the RNN. For tuning the hyperpa-
rameters, we split the training data into two parts:
6.5k (training) and 1.5k (development) sentences.
We also tuned the learning rate schedule on dev.

Beside of training single models, we also report
ensemble results for which we combined the pre-
sented single models with a voting process.

6.1 Performance of CNNs
As a baseline system, we implemented a CNN sim-
ilar to the one described by Zeng et al. (2014). It
consists of a standard convolutional layer with filters
with only one window size, followed by a softmax

CNN F1
Baseline (emb dim: 50) 73.0
+ position features 78.6*
+ multi-windows features map 78.7
+ ranking layer 81.9*
+ extended middle context 82.2
+ increase emb dim to 400 83.9*
ensemble 84.2

Table 1: F1 score of CNN and its components, * indicates

statisticial significance compared to the result in the line above

(z-test, p < 0.05)

layer. As input it uses the middle context. In con-
trast to Zeng et al. (2014), our CNN does not have an
additional fully connected hidden layer. Therefore,
we increased the number of convolutional filters to
1200 to keep the number of parameters comparable.
With this, we obtain a baseline result of 73.0. After
including 5 dimensional position features, the per-
formance was improved to 78.6 (comparable to 78.9
as reported by Zeng et al. (2014) without linguistic
features).

In the next step, we investigate how this result
changes if we successively add further features to
our CNN: multi-windows for convolution (window
sizes: 2,3,4,5 and 300 feature maps each), ranking
layer instead of softmax and our proposed extended
middle context. Table 1 shows the results. Note that
all numbers are produced by CNNs with a compa-
rable number of parameters. We also report F1 for
increasing the word embedding dimensionality from
50 to 400. The position embedding dimensionality
is 5 in combination with 50 dimensional word em-
beddings and 35 with 400 dimensional word embed-
dings. Our results show that especially the ranking
layer and the embedding size have an important im-
pact on the performance.

6.2 Performance of RNNs

As a baseline for the RNN models, we apply a uni-
directional RNN which predicts the relation after
processing the whole sentence. With this model, we
achieve an F1 score of 61.2 on the SemEval test set.

Afterwards, we investigate the impact of differ-
ent position features on the performance of uni-
directional RNNs (position embeddings, position
embeddings concatenated with a flag indicating
whether the current word is an entity or not, and

537

RNN F1
uni-directional (Baseline, emb dim: 50) 61.2
uni-directional + position embs 68.3*
uni-directional + position embs + entity flag 73.1*
uni-directional + position indicators 73.4
bi-directional + position indicators 74.2*
connectionist-bi-directional+position indicators 78.4*
+ ranking layer 81.4*
+ increase emb dim to 400 82.5*
ensemble 83.4

Table 2: F1 score of RNN and its components, * indicates

statisticial significance compared to the result in the line above

(z-test, p < 0.05)

position indicators (Zhang and Wang, 2015)). The
results indicate that position indicators (i.e. artificial
words that indicate the entity presence) perform the
best on the SemEval data. We achieve an F1 score
of 73.4 with them. However, the difference to using
position embeddings with entity flags is not statisti-
cally significant.

Similar to our CNN experiments, we successively
vary the RNN models by using bi-directionality,
by adding connections between the hidden layers
(“connectionist”), by applying ranking instead of
softmax to predict the relation and by increasing the
word embedding dimension to 400.

The results in Table 2 show that all of these vari-
ations lead to statistically significant improvements.
Especially the additional hidden layer connections
and the integration of the ranking layer have a large
impact on the performance.

6.3 Combination of CNNs and RNNs

Finally, we combine our CNN and RNN models us-
ing a voting process. For each sentence in the test
set, we apply several CNN and RNN models pre-
sented in Tables 1 and 2 and predict the class with
the most votes. In case of a tie, we pick one of the
most frequent classes randomly. The combination
achieves an F1 score of 84.9 which is better than the
performance of the two NN types alone. It, thus,
confirms our assumption that the networks provide
complementary information: while the RNN com-
putes a weighted combination of all words in the
sentence, the CNN extracts the most informative n-
grams for the relation and only considers their re-
sulting activations.

Classifier F1
SVM (Rink and Harabagiu, 2010b) 82.2
RNN (Socher et al., 2012) 77.6
MVRNN (Socher et al., 2012) 82.4
CNN (Zeng et al., 2014) 82.7
FCM (Yu et al., 2014) 83.0
bi-RNN (Zhang and Wang, 2015) 82.5
CR-CNN (Dos Santos et al., 2015) 84.1
R-RNN 83.4
ER-CNN 84.2
ER-CNN + R-RNN 84.9

Table 3: State-of-the-art results for relation classification

6.4 Comparison with State of the Art
Table 3 shows the results of our models ER-
CNN (extended ranking CNN) and R-RNN (ranking
RNN) in the context of other state-of-the-art models.
Our proposed models obtain state-of-the-art results
on the SemEval 2010 task 8 data set without making
use of any linguistic features.

7 Conclusion

In this paper, we investigated different features and
architectural choices for convolutional and recurrent
neural networks for relation classification without
using any linguistic features. For convolutional neu-
ral networks, we presented a new context represen-
tation for relation classification. Furthermore, we
introduced connectionist recurrent neural networks
for sentence classification tasks and performed the
first experiments with ranking recurrent neural net-
works. Finally, we showed that even a simple com-
bination of convolutional and recurrent neural net-
works improved results. With our neural models, we
achieved new state-of-the-art results on the SemEval
2010 task 8 benchmark data.

Acknowledgments

Heike Adel is a recipient of the Google European
Doctoral Fellowship in Natural Language Process-
ing and this research is supported by this fellowship.

This research was also supported by Deutsche
Forschungsgemeinschaft: grant SCHU 2246/4-2.

References
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian J. Goodfellow, Arnaud Berg-

538

eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Cı́cero Nogueira Dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proceedings of
ACL. Association for Computational Linguistics.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakow-
icz. 2010. Semeval-2010 task 8: Multi-way classifi-
cation of semantic relations between pairs of nominals.
In Proceedings of the Workshop on SemEval. Associa-
tion for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of EMNLP. Asso-
ciation for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2015. Rela-
tion extraction: Perspective from convolutional neural
networks. In Proceedings of the NAACL Workshop on
Vector Space Modeling for NLP. Association for Com-
putational Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. Understanding the exploding gradient problem.
Computing Research Repository.

Bryan Rink and Sanda Harabagiu. 2010a. Utd: Classi-
fying semantic relations by combining lexical and se-
mantic resources. In Proceedings of the Workshop on
SemEval. Association for Computational Linguistics.

Bryan Rink and Sanda Harabagiu. 2010b. Utd: Classi-
fying semantic relations by combining lexical and se-
mantic resources. In Proceedings of the Workshop on
SemEval, pages 256–259. Association for Computa-
tional Linguistics.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP / CoNLL. Association for Computa-
tional Linguistics.

Stephen Tratz and Eduard Hovy. 2010. Isi: automatic
classification of relations between nominals using a

maximum entropy classifier. In Proceedings of the
Workshop on SemEval. Association for Computational
Linguistics.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE.

Mo Yu, Matthew Gormley, and Mark Dredze. 2014.
Factor-based compositional embedding models. In
Proceedings of the NIPS Workshop on Learning Se-
mantics.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In Proceedings of COL-
ING.

Dongxu Zhang and Dong Wang. 2015. Relation classifi-
cation via recurrent neural network. In ArXiv.

539

Proceedings of NAACL-HLT 2016, pages 540–545,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Building Chinese Affective Resources in Valence-Arousal Dimensions

Liang-Chih Yu1,3, Lung-Hao Lee4, Shuai Hao5, Jin Wang2,3,6, Yunchao He2,3,6,
Jun Hu5, K. Robert Lai2,3 and Xuejie Zhang6

1Department of Information Management, Yuan Ze University, Taiwan
2Department of Computer Science & Engineering, Yuan Ze University, Taiwan

3Innovation Center for Big Data and Digital Convergence Yuan Ze University, Taiwan
4Information Technology Center, National Taiwan Normal University, Taiwan

5School of Software, Nanchang University, Jiangxi, P.R. China
6School of Information Science and Engineering, Yunnan University, Yunnan, P.R. China

Contact: lcyu@saturn.yzu.edu.tw

Abstract

An increasing amount of research has recently
focused on representing affective states as
continuous numerical values on multiple di-
mensions, such as the valence-arousal (VA)
space. Compared to the categorical approach
that represents affective states as several clas-
ses (e.g., positive and negative), the dimen-
sional approach can provide more fine-
grained sentiment analysis. However, affec-
tive resources with valence-arousal ratings are
still very rare, especially for the Chinese lan-
guage. Therefore, this study builds 1) an af-
fective lexicon called Chinese valence-arousal
words (CVAW) containing 1,653 words, and 2)
an affective corpus called Chinese valence-
arousal text (CVAT) containing 2,009 sen-
tences extracted from web texts. To improve
the annotation quality, a corpus cleanup pro-
cedure is used to remove outlier ratings and
improper texts. Experiments using CVAW
words to predict the VA ratings of the CVAT
corpus show results comparable to those ob-
tained using English affective resources.

1 Introduction

Sentiment analysis has emerged as a leading tech-
nique to automatically identify affective infor-
mation from texts (Pang and Lee, 2008; Calvo and
D'Mello, 2010; Liu, 2012; Feldman, 2013). In sen-

timent analysis, affective states are generally rep-
resented using either categorical or dimensional
approaches.

The categorical approach represents affective
states as several discrete classes such as positive,
neutral, negative, and Ekman’s six basic emotions
(e.g., anger, happiness, fear, sadness, disgust and
surprise) (Ekman, 1992). Based on this representa-
tion, various practical applications have been de-
veloped such as aspect-based sentiment analysis
(Schouten and Frasincar, 2016; Pontiki et al.,
2015), Twitter sentiment analysis (Saif et al., 2013;
Rosenthal et al., 2015), deceptive opinion spam de-
tection (Li et al., 2014), and cross-lingual portabil-
ity (Banea et al., 2013; Xu et al., 2015).

The dimensional approach represents affective
states as continuous numerical values in multiple
dimensions, such as valence-arousal (VA) space
(Russell, 1980), as shown in Fig. 1. The valence
represents the degree of pleasant and unpleasant
(i.e., positive and negative) feelings, while the
arousal represents the degree of excitement and
calm. Based on this representation, any affective
state can be represented as a point in the VA coor-
dinate plane. For many application domains (e.g.,
product reviews, political stance detection, etc.), it
can be useful to identify highly negative-arousing
and highly positive-arousing texts because they are
usually of interest to many users and should be
given a higher priority. Dimensional sentiment

540

analysis can accomplish this by recognizing the va-
lence-arousal ratings of texts and ranking them ac-
cordingly to provide more intelligent and fine-
grained services.

In developing dimensional sentiment applica-
tions, affective lexicons and corpora with valence-
arousal ratings are useful resources but few exist,
especially for the Chinese language. Therefore, this
study focuses on building Chinese valence-arousal
resources, including an affective lexicon called the
Chinese valence-arousal words (CVAW) and an
affective corpus called the Chinese valence-arousal
text (CVAT). The CVAW contains 1,653 affective
words annotated with valence-arousal ratings by
five annotators. The CVAT contains 2,009 sen-
tences extracted from web texts annotated with
crowd-sourced valence-arousal ratings. To further
demonstrate the feasibility of the constructed re-
sources, we conduct an experiment to predict the
VA ratings of the CVAT corpus using CVAW
words, and compare its performance to a similar
evaluation of English affective resources.

To our best knowledge, only one previous study
has manually created a small number (162) of Chi-
nese VA words (Wei et al, 2011), and none have
focused on creating Chinese VA corpora. This pi-
lot study thus aims to build such resources to en-
rich the research and development of multi-lingual
sentiment analysis in VA dimensions.

The rest of this paper is organized as follows.
Section 2 introduces existing affective lexicons and
corpora. Section 3 describes the process of build-
ing the Chinese affective resource. Section 4 pre-
sents the analysis results and feasibility evaluation.
Conclusions are finally drawn in Section 5.

2 Related Work

Affective resources are usually obtained by either
self-labeling or manual annotation. In the self-
labeling approach, users proactively provide their
feelings and opinions after browsing the web con-
tent. For example, users may read a news article
and then offer comments. A user can also review
the products available for sale in online stores. In
the manual annotation method, trained annotators
are asked to create affective annotations for specif-
ic language resources for research purposes. Sev-
eral well-known affective resources are introduced
as follows.

SentiWordNet is a lexical resource for opinion
mining, which assigns to each synset of WordNet
three sentiment ratings: positive, negative, and ob-
jective (Esuli and Sebastiani, 2006). Linguistic In-
quiry and Word Count (LIWC) calculates the de-
gree to which people use different categories of
words across a broad range of texts (Pennebaker et
al., 2007). In the LIWC 2007 version, the annota-
tors were asked to note their emotions and thoughts
about personally relevant topics. The Affective
Norms for English Words (ANEW) provides 1,034
English words with ratings in the dimensions of
pleasure, arousal and dominance (Bradley and
Lang, 1999). In addition to these English-language
sentiment lexicons, a few Chinese lexicons have
been constructed. The Chinese LIWC (C-LIWC)
dictionary is a Chinese translation of the LIWC
with manual revisions to fit the practical character-
istics of Chinese usages (Huang et al., 2012). The
NTU Sentiment dictionary (NTUSD) has adopted a
combination of manual and automatic methods to
include positive and negative emotional words (Ku
and Chen, 2007). Among the above affective lexi-
cons, only ANEW is dimensional, providing real-
valued scores for three dimensions, and the others
are categorical, providing information related to
sentiment polarity or intensity.

In addition to lexicon resources, several English-
language affective corpora have been proposed,
such as Movie Review Data (Pang et al. 2002), the
MPQA Opinion Corpus (Wiebe et al., 2005), and
Affective Norms for English Text (ANET) (Brad-
ley and Lang, 2007). In addition, only ANET pro-
vides VA ratings. The above dimensional affective
resources ANEW and ANET have been used for
both word- and sentence-level VA prediction in

neutral positivenegative

Excited

Arousal

Valence

I
High-Arousal,

Positive-Valence

II
High-Arousal,

Negative-Valence

III
Low-Arousal,

Negative-Valence

IV
Low-Arousal,

Positive-Valence
low

high

Delighted

Happy

Content

Relaxed

CalmTired

Bored

Depressed

Tense

Angry

Frustrated

Figure 1: Two-dimensional valence-arousal space.

541

previous studies (Wei et al., 2011; Gökçay et al.,
2012; Malandrakis et al., 2013; Paltoglou et al.,
2013; Yu et al., 2015). In this study, we follow the
manual annotation approach to build a Chinese af-
fective lexicon and corpus in the VA dimensions.

3 Affective Resource Construction

This section describes the process of building Chi-
nese affective resources with valence-arousal rat-
ings, including the CVAW and CAVT.

The CVAW is built on the Chinese affective
lexicon C-LIWC, and then annotated with VA rat-
ings for each word. Five annotators were trained to
rate each word in the valence and arousal dimen-
sions using the Self Assessment Manikin (SAM)
model (Lang, 1980). The SAM model provides af-
fective pictures, which can help annotators in de-
termining more precise labels when rating the
words. The valence dimension uses a nine degree
scale. Values 1 and 9 respectively denote the most
negative and positive degrees of affect. Point 5
means a neutral emotion without specific tendency.
The arousal dimension uses a similar scale to de-
note calm and excitement Using this approach,
each affective word can be annotated with VA rat-
ings (determined by the average rating values pro-
vided by the annotators) to form the CVAW.

To build the CVAT, we first collected 720 web
texts from six different categories: news articles,
political discussion forums, car discussion forums,
hotel reviews, book reviews, and laptop reviews. A
total of 2,009 sentences containing the greatest
number of affective words found in the C-
LIWC lexicon were selected for VA rating. The
Google app engine was then used to implement a
crowdsourcing annotation platform using the SAM
annotation scheme. Volunteer annotators were

asked to rate individual sentences from 1 to 9 in
terms of valence and arousal. Each sentence was
rated by at least 10 annotations. Once the rating
process was finished, a corpus cleanup procedure
was performed to remove outlier ratings and im-
proper sentences (e.g., those containing abusive or
vulgar language). The outlier ratings were identi-
fied if they did not fall into the interval of the mean
plus/minus 1.5 standard deviations. They were then
excluded from the calculation of the average VA
ratings for each sentence.

4 Results

4.1 Analysis Results of CVAW

A total of 1,653 words along with the annotated
VA ratings were included in the CVAW lexicon,
yielding the (mean, standard deviation) = (4.49,
1.81) for valence and (5.48, 1.26) for arousal. To
analyze differences between the annotations, we
compared the VA values rated by each annotator
against their corresponding means across the five
annotators to calculate the error rates using the fol-
lowing metrics.

 Mean Absolute Error (MAE):

1

1 | |
n

i i
i

MAE A A
n =

= −∑ ,

 Root Mean Square Error (RMSE):

()2

1

n

i i
i

RMSE A A n
=

= −∑ ,

where Ai denotes the valence or arousal value of
word i rated by an annotator, iA denotes the mean
valence or arousal of word i calculated over the
five annotators, and n is the total number of words
in the CVAW.

 MAE RMSE

Valence Arousal Valence Arousal
Annotator A 0.4934 1.3479 0.6372 1.6411
Annotator B 0.5972 0.7821 0.7488 0.9929
Annotator C 0.5817 1.1393 0.7423 1.4302
Annotator D 0.5188 0.8226 0.6614 1.0374
Annotator E 0.6258 1.0200 0.7970 1.2700
(Mean, SD) (0.56,0.05) (1.02, 0.21) (0.72, 0.06) (1.27, 0.24)

Table 1: Analysis of error rates of different annotators for building the Chinese VA lexicon.

542

Table 1 shows the error rates of the annotators
in rating the VA values of words in the CVAW.
Overall, for all metrics the error rates of arousal
ratings were greater than those of valence ratings.
In addition, the annotators produced more con-
sistent error rates (around 0.49~0.63 for MAE and
0.64~0.80 for RMSE) in the valence dimension
than those (around 0.78~1.35 for MAE and
0.99~1.64 for RMSE) in the arousal dimension.
These findings indicate that the degree of arousal
was more difficult to distinguish than valence.

Figure 2 shows a scatter plot of words in the
CVAW, where each point represents the mean of
the VA values as rated by the annotators. Several
words (translated from Chinese) were marked in
the VA space for reference, e.g., victory (7.8, 7.2),
trust (7.8, 5.8), pain (2.4, 6.8), kill (1.6, 7.8), tedi-

ous (3.4, 3), fault (3.6, 4.6), agree (6.4, 4.4) and re-
laxed (6.2, 2.0).

4.2 Analysis Results of CVAT

A total of 2,009 sentences with VA ratings were
included in the CVAT corpus, yielding the (mean,
standard deviation) = (4.83, 1.37) for valence and
(5.05, 0.95) for arousal. The distribution of the six
categories and their word counts in CVAT are
shown in Table 2. The largest category was News
(27%), while the smallest one was Laptop (9%).
Figure 3 shows a scatter plot of VA ratings for all
sentences in CVAT. It is similar with the plot of
the CVAW, indicating that annotators followed
similar guidelines for rating affective words and
sentences.

 Figure 2: Scatter plot of the CVAW lexicon. Figure 3: Scatter plot of the CVAT corpus.

 Num. of
texts

Num. of
tokens

Avg.
tokens

Valence Arousal
MAE RMSE r MAE RMSE r

ANEW vs Forum 20 15,035 751.75 1.20 1.55 0.77 0.72 0.85 0.27
CVAW vs CVAT 2,009 70,456 35.07 1.20 1.52 0.54 1.01 1.28 0.16

Book Review 287(14%) 8,217 28.63 1.00 1.31 0.41 0.89 1.11 0.21
Car Forum 257 (13%) 12,261 47.71 1.48 1.77 0.30 0.92 1.15 0.10

Laptop Review 183 (9%) 5,374 29.37 0.95 1.21 0.55 1.07 1.40 0.04
Hotel Review 301 (15%) 7,268 24.15 1.35 1.73 0.59 0.93 1.17 0.22
News Article 542(27%) 21,923 40.45 1.11 1.40 0.61 1.11 1.40 0.17

Politics Forum 439 (22%) 15,413 35.11 1.28 1.61 0.51 1.04 1.32 0.19

Table 2: Results of using the CVAW lexicon to predict the VA ratings of the CVAT corpus.

543

4.3 Results of Using CVAW to Predict the VA
Ratings of CVAT

To demonstrate the application of the constructed
affective resources, this experiment adopted a sim-
ple aggregate-and-average method (Taboada et al.
2011) to predict the VA ratings of the CVAT cor-
pus using CVAW words. In this approach, the va-
lence (or arousal) rating of a given sentence was
calculated by averaging the valence (or arousal)
ratings of the words matched in the CVAW in that
sentence. Once the predicted values of the VA rat-
ings for the sentences were obtained, they were
compared to the corresponding actual values in the
CVAT to calculate MAE, RMSE and Pearson cor-
relation coefficient r, as shown in Table 2. Notice
that the sentences which contain no affective
words in the CVAW were not included for perfor-
mance calculation (herein 30 sentences). The re-
sults using ANEW to predict the VA rating of 20
English forum discussions were also included for
comparison (Paltoglou et al., 2013).

The results show that the average tokens of the
CVAT sentences are around 35 which is much
smaller than those of the English forum discus-
sions (long texts). Both English and Chinese re-
sources had a similar error rates (MAE and RMSE)
for valence, while the English resource outper-
formed the Chinese resource in terms of arousal
rates. In addition, both the English and Chinese re-
sources had a lower correlation for arousal than for
valence, indicating again that the arousal dimen-
sion is more difficult to predict. Table 2 also shows
the performance for each category in CVAT. For
valence, Laptop achieved the lowest error rate,
while News and Hotel had a higher correlation.
The respective ranges of MAE, RMSE and r are
0.95~1.48, 1.21~1.77 and 0.30~0.61. For arousal,
Book yielded the lowest error rate, while Hotel and
Book yielded a better correlation. The respective
ranges of MAE, RMSE and r are 0.89~1.11,
1.11~1.40 and 0.04~0.22.

5 Conclusions and Future Work

This study presents a Chinese affective lexicon
with 1,653 words and a corpus of 2,009 sentences
with six different categories, both annotated with
valence-arousal values. A corpus cleanup proce-
dure was used to remove outlier ratings and im-
proper texts to improve quality. Experimental re-

sults provided a feasibility evaluation and baseline
performance for VA prediction using the con-
structed resources. Future work will focus on
building useful dimensional sentiment applications
based on the constructed resources.

Acknowledgments
This work was supported by the Ministry of Sci-
ence and Technology, Taiwan, ROC, under Grant
No. NSC102-2221-E-155-029-MY3. The authors
would like to thank the anonymous reviewers and
the area chairs for their constructive comments.

References
Carmen Banea, Rada Mihalcea, and Janyce Wiebe. 2013.

Porting multilingual subjectivity resources across
languages. IEEE Trans. Affective Computing,
4(2):211-225.

Margaret M. Bradley and Peter J. Lang. 1999. Affective
norms for English words (ANEW): Instruction man-
ual and affective ratings. Technical Report C-1, Uni-
versity of Florida, Gainesville, FL.

Margaret M. Bradley and Peter J. Lang. 2007. Affective
Norms for English Text (ANET): Affective ratings of
text and instruction manual. Technical Report D-1,
University of Florida, Gainesville, FL.

R. A. Calvo and Sidney. D'Mello. 2010. Affect detection:
An interdisciplinary review of models, methods, and
their applications. IEEE Trans. Affective Computing,
1(1): 18-37.

Paul Ekman. 1992. An argument for basic emotions.
Cognition and Emotion, 6:169-200.

Andrea Esuli and Fabrizio Sebastiani. 2006. Senti-
WordNet: a publicly available lexical resource for
opinion mining. In Proc. of LREC-06, pages 417-422.

Ronen Feldman. 2013. Techniques and applications for
sentiment a0nalysis. Communications of the ACM,
56(4):82-89.

Didem Gökçay, Erdinç İşbilir and Gülsen Yıldırım.
2012. Predicting the sentiment in sentences based on
words: an exploratory study on ANEW and ANET. In
Proc. of CogInfoCom-12, pages 715-718.

C.-L. Huang, C. K. Chung, N. Hui, Y.-C. Lin, Y.-T. Seih,
W.-C. Chen, B. Lam, M. Bond, and James W. Penne-
baker. 2012. The development of the Chinese Lin-
guistic Inquiry and Word Count dictionary. Chinese
Journal of Psychology, 54(2):185-201.

Lun-Wei Ku and Hsin-Hsi Chen. 2007. Mining opinions
from the web: beyond relevance retrieval. Journal of
the American Society for Information Science and
Technology, 58(12), 1838-1850.

Peter J. Lang. 1980. Behavioral treatment and bio-
behavioral assessment: Computer applications. Tech-

544

nology in Mental Health Care Delivery Systems, pp.
119-137, Ablex Publishing, Norwood.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy.
2014. Towards a general rule for identifying decep-
tive opinion spam. In Proc. of ACL-14, pages 1566-
1576.

Bing Liu. 2012. Sentiment Analysis and Opinion Mining.
Morgan & Claypool, Chicago, IL.

Nikos Malandrakis, Alexandros Potamianos, Elias Iosif,
Shrikanth Narayanan. 2013. Distributional semantic
models for affective text analysis. IEEE Trans. Audio,
Speech, and Language Processing, 21(11): 2379-
2392.

Georgios Paltoglou, Mathias Theunis, Arvid Kappas,
and Mike Thelwall. 2013. Predicting emotional re-
sponses to long informal text. IEEE Trans. Affective
Computing, 4(1):106-115.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1-135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment classification using
machine learning techniques. In Proc. of EMNLP-02,
pages 79-86.

James W. Pennebaker, Roger J. Booth, and Martha E.
Francis. 2007. Linguistic Inquiry and Word Count:
LIWC [Computer software]. Austin, TX: LIWC.net.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Suresh Manandhar and Ion Androutsopoulos. 2015.
SemEval-2015 Task 12: Aspect Based Sentiment
Analysis. In Proc. of SemEval-15, pages 486-495,

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter and Veselin Stoyanov.
2015. SemEval-2015 Task 10: Sentiment Analysis in
Twitter. In Proc. of SemEval-15, pages 451-463.

James A. Russell. 1980. A circumplex model of affect.
Journal of Personality and Social Psychology,
39(6):1161.

Hassan Saif, Miriam Fernandez, Yulan He and Harith
Alani. 2013. Evaluation datasets for Twitter senti-
ment analysis: a survey and a new dataset, the STS-
Gold. In Proc. of ESSEM-13.

Kim Schouten and Flavius Frasincar. 2016. Survey on
Aspect-Level Sentiment Analysis. IEEE Trans.
Knowledge and Data Engineering, 28(3):813-830.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimber-
ly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational Lin-
guistics, 37(2):267-307.

Wen-Li Wei, Chung-Hsien Wu, and Jen-Chun Lin. 2011.
A regression approach to affective rating of Chinese
words from ANEW. In Proc. of ACII-11, pages 121-
131.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in

language. Language Resources and Evaluation, 39(2-
3): 165-210.

Ruifeng Xu, Lin Gui, Jun Xu, Qin Lu, and Kam-Fai
Wong. 2015. Cross lingual opinion holder extraction
based on multi-kernel SVMs and transfer learning.
World Wide Web, 18:299-316.

Liang-Chih Yu, Jin Wang, K. Robert Lai and Xuejie
Zhang. 2015. Predicting valence-arousal ratings of
words using a weighted graph method. In Proc. of
ACL/IJCNLP-15, pages 788-793.

545

Proceedings of NAACL-HLT 2016, pages 546–551,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Improving event prediction by representing script participants

Simon Ahrendt and Vera Demberg
Saarland University
66123 Saarbrücken

Germany
{simona,vera}@coli.uni-saarland.de

Abstract

Automatically learning script knowledge has
proved difficult, with previous work not or
just barely beating a most-frequent baseline.
Script knowledge is a type of world knowl-
edge which can however be useful for various
task in NLP and psycholinguistic modelling.
We here propose a model that includes partici-
pant information (i.e., knowledge about which
participants are relevant for a script) and show,
on the Dinners from Hell corpus as well as
the InScript corpus, that this knowledge helps
us to significantly improve prediction perfor-
mance on the narrative cloze task.

1 Introduction

Scripts represent knowledge about typical event se-
quences (Schank and Abelson, 1977), for exam-
ple the sequence of events happening when eating
at a restaurant. Script knowledge thereby includes
events like order, bring and eat as well as par-
ticipants of those events, e.g., menu, waiter, food,
guest. Script knowledge is a form of structured
world knowledge that is useful in NLP applications
for natural language understanding tasks (e.g., ambi-
guity resolution Rahman and Ng, 2012), as well as
for psycholinguistic models of human language pro-
cessing, which need to represent event knowledge
to model human expectations (Zwaan et al., 1995;
Schütz-Bosbach and Prinz, 2007) of upcoming ref-
erents and utterances.

One recent line of research has tried to learn
scripts in an unsupervised way from large text col-
lections. The core idea in Chambers and Jurafsky

(2008, 2009); Jans et al. (2012) is to use corefer-
ence chains to identify events involving the same en-
tity, with the intuition that these events would, if ob-
served in many texts, be likely to represent a proto-
typical event sequence. Rudinger et al. (2015) show
that this method is also applicable for learning spe-
cific targeted scripts from a domain-specific corpus,
shown at the example of “Dinners From Hell” sto-
ries and the restaurant script.

Pichotta and Mooney (2014) (P&M) have demon-
strated that using richer event representations con-
taining multiple arguments improves prediciton ac-
curacy on the narrative cloze task over the simpler
models by Chambers and Jurafsky (2008). While
they represent a script event as a pair of a verb and
a dependency (an example of an event chain would
be <call,obj>; <bring,subj>; <take,subj>), which
is problematic for weak verbs and verb ambigu-
ity, P&M represent events using a multi-argument
event representation, e.g., call(guest,waiter,*);
bring(waiter,menu,*); take(waiter,order,*).

This richer event representation however still has
some shortcomings. As the representation is based
on coreference chains, the model runs into diffi-
culties for entities that are in a chain of length
one. Entities in a chain are internally mapped
onto variables, but all single entities are mapped
onto a common category Other. This means
that all information about such referents is lost,
e.g. enjoy(customer, fish, ∗) can not be distin-
guished from enjoy(customer, silence, ∗) when
neither fish or silence have appeared before in the
text.

The coreference chains provide a good approxi-

546

mation for identifying events that involve the same
participants. But would performance improve sub-
stantially if we could represent event participants?
This specifically addresses the problem of unlinked
coreference chains (e.g., “food”, “it”, “steak”) not
appearing in the same coreference chain even though
they represent the same role within the script, and
the problem of mapping referents which are not part
of a chain onto a single “other” representation.

Kampmann et al. (2015) show that referring ex-
pressions in a script can be automatically catego-
rized in terms of the role they play within the script
by using coreference chains, as well as information
from WordNet (telling us e.g., that a steak is a kind
of food).

In this paper, we extend the existing approach by
P&M and demonstrate that explicitly labelling par-
ticipants (instead of using coreference chains) leads
to improved event prediction performance. We fur-
thermore provide a systematic evaluation of the ef-
fect of automatically-annotated coreference chains
vs. gold coreference chains, and automatically-
annotated script participants vs. gold participant an-
notation. We evaluate our approach on the Dinners
from Hell corpus (Rudinger et al., 2015), as well
as the newly available InScript corpus (Modi et al.,
2016).

Following earlier work, we evaluate the quality
of script models using the so-called narrative cloze
task, where the model has to predict a missing event
given surrounding events in the text.

2 Methods

2.1 Participant-labeled Events

In order to capture script-relevant information con-
veyed by arguments we represent texts as chains of
participant-labeled events (PLEs). A PLE is a
verb accompanied with the participant labels of its
arguments.

The general form of a PLE is
verb(psubj , pdobj , piobj), where psubj , pdobj and
piobj are the participant labels of the subject,
direct object and indirect object, respectively. For
example, in the sentence The waitress brought
us some water, the corresponding PLE would be
bring(waiter, drink, customer).

To automatically create PLEs from our training

data, we first extract syntactic relations between
verbs and their arguments as well as coreference in-
formation using Stanford CoreNLP (Manning et al.
(2014)). We then use the max-hypernym heuristic
described in Kampmann et al. (2015) to label the ar-
guments with participant roles. This approach as-
signs to token w the participant label with the high-
est hyponym-similarity score between the wordnet-
synsets associated with the label and one of the
synsets of any word present in the coreference chain
connected to w.

Where an argument slot of the event is not filled
syntactically or the argument is not a participant of
the script, a dummy participant O serves as a place-
holder to indicate the absence of a labeled argument.
Every extracted event that contains at least one par-
ticipant is included into the chain.

Knowledge about the participants provides a
much richer represenation of events. With this rep-
resentation we are able to generalize from a specific
word or entity to its overall role in the script. This
way the model can also learn from cases where mul-
tiple entities fill one participant role or where a par-
ticipant occurs in the text only once.

2.2 Predictive Model

Our script model is an adapted version of the bi-
gram model in Jans et al. (2012) with an extension of
the skip-gram option to skip all possible intervening
events. This means we rank an event e to belong to a
given ordered event sequence c at insertion point m
according to its score as defined by:

Score(e) =
m∑
k=0

logP (e|ck) +
n∑

k=m+1

logP (ck|e),

(1)
where ck denotes the kth event in the chain and the
conditional probabilties are estimated by skip-all bi-
gram counts:

P (e2|e1) =
freq(e1, e2)∑
e′ freq(e1, e′)

(2)

with freq(e1, e2) being the the number of times
e1 has been encountered prior to e2 with an arbi-
trary number of events between them. This counting
method might be noisy in case of long documents or
a high number of unrelated events but it significantly

547

reduces data sparsity. In our specialized and rather
small data sets of between 87 and 133 stories per
scenario, sparsity is more of an issue than unrelat-
edness, so skip-all performs well, but other counting
techniques might prove more suitable for different
corpora.

In case our model assigns the same score to sev-
eral events, we backoff to the simple unigram model
described in section 4.2.

3 Data

The Dinners from Hell corpus (Rudinger et al.,
2015) contains stories from an internet blog about
terrible restaurant experiences. The corpus contains
143 stories (out of which 10 are reserved as a devel-
opment set), which all have to do with the script of
going to a restaurant. All non-copula verbs in this
corpus are annotated as to whether they are relevant
to the restaurant script.

The InScript corpus is a novel resource (Modi
et al., 2016), which contains a total of 910 short sto-
ries containing on average 12 sentences each. The
stories were collected via Mechanical Turk, instruct-
ing workers to describe a specific instance of an ac-
tivity, as if explaining it to a child. The corpus con-
tains 10 different scenario types, for which there are
about 90 stories each. This corpus also contains an-
notation for whether a verb is script-relevant, coref-
erence annotation and participant type information.

4 Evaluation

4.1 Narrative Cloze Task

The evaluation on the narrative cloze task (origi-
nally suggested by Chambers and Jurafsky, 2008)
expresses how well a model can predict a missing
event in a sequence of events. In order to make the
methods comparable, all predictions of our model
are mapped onto the encoding used by the simple
pair event model, e.g. <order,obj>, as follows:

We map an PLE v(psubj , pdobj , piobj) to a verb-
dependency pair < v, d > relating to a participant p
if p fills the PLE slot of dependency d. We subse-
quently define the score of a pair event as the max-
imum score of all PLEs which are mapped to this
pair event. When evaluating on pair events, we rank
events according to this redefined score.

4.2 Systems

Unigram Model This baseline is a simple model
that ranks any event (whether it is a participant-
labeled event or a pair event) by its overall frequency
in the training data. It was first used in Pichotta and
Mooney (2014) and has proven to be a very compet-
itive baseline on the task.

Verb-dependecy Pair Event Model This is a bi-
gram model over verb-dependency pair events as in-
troduced by Jans et al. (2012) and following the gen-
eral idea of Chambers and Jurafsky (2008). It has
been slightly modified to model not only subjects
and objects, but also indirect objects. We use the
setting Rudinger et al. (2015) has shown performs
best: Skip-all as a counting method, a count thresh-
old of 1, a document threshold of 5 and absolute dis-
counting. Note that their results on the same data set
differ from ours as we do not include syntactic rela-
tions other than ’subj’, ’dobj’ and ’iobj’ into training
and evaluation.

Pichotta and Mooney We re-implemented the ap-
proach by Pichotta and Mooney (2014) with the ex-
ception that we use v(esubj , edobj , eiobj) instead of
v(esubj , eobj , eprep) to represent events. That is, we
do not model prepositional arguments of an event
but discriminate between direct and indirect objects
of verbs.

Participant-based model Our model, as de-
scribed in section 2.2.

4.3 Automatic labels vs. gold standard

Automatic Coreference Chains We evaluate how
much the results are effected by the quality of the au-
tomatic coreference chains produced by the Stanford
Parser vs. annotated gold-chains on our data.

Automatic Participant Labelling We further-
more investigate to what extent our approach suffers
from imperfect participant labeling, i.e. how good
our model could have been if the labeling process
was 100%-accurate. Kampmann et al. (2015) report
a 0.59 micro F-score on the DinnersFromHell data,
leaving an arguably large room for improvement (al-
though they have a ceiling of 0.84 in terms of micro
F-score because of a mismatch between their partici-
pant label set and the gold-standard labels they eval-

548

uate on). To compare against a perfect participant
labeler, we use the participant annotation described
in the same paper.

4.4 Testing

Following Rudinger et al. (2015), we perform leave-
one-out testing at the document level, i.e., we use
133 folds for Dinners from Hell, and between 87
and 97 for InScript scenarios). We use the anno-
tation provided for the corpora to construct a test set
for every document as follows: Every verb that has
been annotated as script-relevant is regarded as a test
case if it takes an argument in any coreference chain
of at least length two, and the dependency between
the verb and the argument is either ’subj’, ’dobj’ or
’iobj’. The test then consists of inferring the verb
and dependency, given the model’s representation of
the remaining events in the document after this held-
out event is removed.

5 Results

Methods that encode events in a more complex way
have a higher risk of running into sparsity issues,
i.e. cases where the model has not encountered any
of the events in the current context. Table 1 shows
Recall@10 as a measure of prediction precision. We
can see that our model beats the baseline models by
a large margin on this measure. The core advan-
tage of our model are its participant representations,
which allow it to make more correct generalizations,
and generate less noisy predictions. This is also re-
flected in its lower coverage: our model does not
predict events when the context (including partici-
pant labels) has not been observed, while other mod-
els may predict based on non-matching participant
types, and hence generalize incorrectly.

We also report the Recall@10 with respect to
predicting the entire PLE in Table 1 (shown as

Model Coverage R@10 R@10full
this 0.757 0.41 0.18
P&M 0.957 0.26
Jans 0.809 0.25
MostFreq 0.936 0.27 0.13

Table 1: Performance for our model is reported with both au-

tomatic coreference chains and participant labels; R@10full

refers to the evaluation on PLE’s instead of pair events.

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Performance on Narrative Cloze task

Recall@x (log scale)

R
at

e
of

 ta
sk

s
w

ith
 c

or
re

ct
 g

ue
ss

 in
 to

p
x

●

●

●

●

●
●

●

●
●

●
●

● ● ● ● ● ●●●●

● this model
P&M 2014
Jans 2012
most freq baseline

Figure 1: The participant-based method outperforms the other

models and most frequent baseline. Performance shown for au-

tomatic chains and automatic participants.

R@10full), as we believe that inferring more struc-
tured events makes for a qualitative improvement on
script modelling, we here provide a baseline for later
work.

Figure 1 shows that the participant model suc-
ceeds in ranking the correct event high up more fre-
quently than the other models. If the model cannot
make any prediction due to coverage problems, it
has to guess from unigram frequencies. This is re-
flected in our model’s lower performance for Recall
in sets larger than the top 500. We would however
argue that performance at small Recall@x values is
much more relevant for most applications, as it may
matter little for most tasks where exactly in the low
ranks 500-1000 a model manages to rank the cor-
rect solution. For future work, this lack of cover-
age could be compensated for by backing off to the
P&M model.

Next, we’d like to see how the automatic versions
of the models compare to a setting where the models
have access to gold coreference chains and partici-
pants given by the annotation. Figure 2 shows that
using automatic or gold corefernce chains makes no
significant difference, but that there is quite a bit of
scope for performance improvements if one can im-
prove on the automatic participant labelling task.

Finally, we evaluated all models also on the 10
scenarios of the InScript dataset, to check whether
the good performance of our model generalizes also
to other datasets. We find that our model consis-

549

bath bicycle bus cake flight grocery haircut library train tree

0.0

0.1

0.2

0.3

0.4

0.5
re

ca
ll

Model
baseline R@1

baseline R@10

Jans et al. R@1

Jans et al. R@10

P&M R@1

P&M R@10

this model R@1

this model R@10

Model Performance for 10 Scenarios from InScript corpus

Figure 3: Performance of the different models with automatic participant labelling and automatic coreference chain annotation, on

the stories for InScript dataset, showing results by scenario.

1 2 5 10 20 50

0.
0

0.
2

0.
4

0.
6

Gold vs. automatic labels

Recall@x (log scale)

R
at

e
of

 c
lo

ze
 ta

sk
s

w
ith

 c
or

re
ct

 in
 to

p
x

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

this model gold
this model auto
P&M, 2014 gold
P&M, 2014 auto
Jans, 2012 gold
Jans, 2012 auto

Figure 2: Gold models employ gold coreference chains and

participants. There is little to no difference between using gold

or automatic corefernce chains, but improving on participant

labeling would help to further improve the model.

tently outperforms prior work also on this dataset,
in particular with respect to succeeding to rank the
correct event very high up on the list in the narra-
tive cloze task. Figure 3 shows the Recall@1 and
the Recall@10 measure separately for each of the
scenarios from the InScript corpus.

6 Discussion and Conclusions

We have shown that the participant-based model can
make much more accurate predictions in the narra-
tive cloze task than previous models which do not

have access to participant information; this even
holds for automatic participant labelling, where we
use a simple WordNet based method suggested in
Kampmann et al. (2015). Our evaluation showed
that the participant-based model substantially out-
performs the state-of-the-art on the narrative cloze
task, and that this performance holds for a set of nat-
uralistic texts from blogs as well as for a corpus of
narratives collected via crowd-sourcing. The present
results hence represent an important step towards au-
tomatic inferencing for domains where knowledge
of event sequences is relevant.

The automatic participant labeller takes as input a
set of script participants, which can for example be
acquired using the method of Regneri et al. (2010).
The current approach therefore represents a way of
combining the existing Mturk-based script acquisi-
tion methods by Regneri et al. (2010) with the unsu-
pervised methods suggested in Chambers and Juraf-
sky (2008); Jans et al. (2012); Pichotta and Mooney
(2014). Future work should further develop auto-
mated methods for participant labelling.

Acknowledgments

This research was funded by the German Research
Foundation (DFG) as part of SFB 1102 ‘Informa-
tion Density and Linguistic Encoding’ and the Clus-
ter of Excellence ‘Multimodal Computing and Inter-
action’ (EXC 284).

550

References

Chambers, N. and Jurafsky, D. (2008). Unsu-
pervised learning of narrative event chains. In
Proceedings of ACL-08: HLT, pages 789–797,
Columbus, Ohio. Association for Computational
Linguistics.

Chambers, N. and Jurafsky, D. (2009). Unsuper-
vised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 602–
610, Suntec, Singapore. Association for Compu-
tational Linguistics.

Jans, B., Bethard, S., Vulić, I., and Moens, M.-F.
(2012). Skip n-grams and ranking functions for
predicting script events. In Proceedings of the
13th Conference of the European Chapter of the
Association for Computational Linguistics, pages
336–344, Avignon, France. Association for Com-
putational Linguistics.

Kampmann, A., Thater, S., and Pinkal, M. (2015).
A case-study of automatic participant labeling. In
Proceedings of the International Conference of
the German Society for Computational Linguis-
tics and Language Technology, pages 97–105.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The
Stanford CoreNLP natural language processing
toolkit. In Proceedings of 52nd Annual Meeting
of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Modi, A., Anikina, T., Ostermann, S., and Pinkal,
M. (2016). Inscript: Narrative texts annotated
with script information. In Proceedings of the
10th edition of the Language Resources and Eval-
uation Conference.

Pichotta, K. and Mooney, R. (2014). Statistical
script learning with multi-argument events. In
Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics, pages 220–229, Gothenburg,
Sweden. Association for Computational Linguis-
tics.

Rahman, A. and Ng, V. (2012). Resolving com-
plex cases of definite pronouns: the winograd

schema challenge. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Nat-
ural Language Learning, pages 777–789. Associ-
ation for Computational Linguistics.

Regneri, M., Koller, A., and Pinkal, M. (2010).
Learning script knowledge with web experiments.
In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics,
pages 979–988, Uppsala, Sweden. Association
for Computational Linguistics.

Rudinger, R., Demberg, V., Modi, A., Van Durme,
B., and Pinkal, M. (2015). Learning to predict
script events from domain-specific text. Lexi-
cal and Computational Semantics (* SEM 2015),
pages 205–210.

Schank, R. and Abelson, R. (1977). Scripts, plans,
goals and understanding: An inquiry into human
knowledge structures. Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ.

Schütz-Bosbach, S. and Prinz, W. (2007). Prospec-
tive coding in event representation. Cognitive pro-
cessing, 8(2):93–102.

Zwaan, R. A., Langston, M. C., and Graesser, A. C.
(1995). The construction of situation models
in narrative comprehension: An event-indexing
model. Psychological science, pages 292–297.

551

Proceedings of NAACL-HLT 2016, pages 552–557,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Structured Prediction with Output Embeddings
for Semantic Image Annotation

Ariadna Quattoni1, Arnau Ramisa2, Pranava Swaroop Madhyastha3

Edgar Simo-Serra4, Francesc Moreno-Noguer2

1Xerox Research Center Europe, ariadna.quattoni@xrce.xerox.com
2 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), {aramisa,fmoreno}@iri.upc.edu

3TALP Research Center, Universitat Politècnica de Catalunya, pranava@cs.upc.edu
4Waseda University, esimo@aoni.waseda.jp

Abstract

We address the task of annotating images with
semantic tuples. Solving this problem requires
an algorithm able to deal with hundreds of
classes for each argument of the tuple. In
such contexts, data sparsity becomes a key
challenge. We propose handling this spar-
sity by incorporating feature representations
of both the inputs (images) and outputs (ar-
gument classes) into a factorized log-linear
model.

1 Introduction
Many important problems in machine learning can
be framed as structured prediction tasks where the
goal is to learn functions that map inputs to struc-
tured outputs such as sequences, trees or general
graphs. A wide range of applications involve learn-
ing over large state spaces, e.g., if the output is a
labeled graph, each node of the graph may take val-
ues over a potentially large set of labels. Data spar-
sity then becomes a challenge, as there will be many
classes with very few training examples.

Within this context, we are interested in the task
of predicting semantic tuples for images. That is,
given an input image we seek to predict what are
the events or actions (referred here as predicates),
who and what are the participants (referred here as
actors) of the actions and where is the action taking
place (referred here as locatives). For example, an
image might be annotated with the semantic tuples:
〈run, dog, park〉 and 〈play, dog, grass〉. We call
each field of a tuple an argument.

To handle the data sparsity challenge imposed by
the large state space, we will leverage an approach

that has proven to be useful in multiclass and mul-
tilabel prediction tasks (Weston et al., 2010; Akata
et al., 2013). The idea is to represent a value for
an argument a using a feature vector representation
φ ∈ IRn. We will integrate this argument represen-
tation into the structured prediction model.

In summary, our main contribution is to pro-
pose an approach that incorporates feature represen-
tations of the outputs into a structured prediction
model, and apply it to the problem of annotating
images with semantic tuples. We present an experi-
mental study using different output feature represen-
tations and analyze how they affect performance for
different argument types.

2 Semantic Tuple Image Annotation
Task: We will address the task of predicting se-
mantic tuples for images. Following Farhadi et al.
(2010), we will focus on a simple semantic repre-
sentation that considers three basic arguments: pred-
icate, actors and locatives. For example, in the tuple
〈play, dog, grass〉, “play” is the predicate, “dog” is
the actor and “grass” is the locative.

Given this representation, we can formally de-
fine our problem as that of learning a function
θ : X × P × A × L → IR that scores the
compatibility between images and semantic tuples.
Here X is the space of images; P , A and L are dis-
crete sets of predicate, actor and locative arguments
respectively, and 〈p a l〉 is a specific tuple instance.
The overall learning process is illustrated in Fig. 1.

Dataset: For our experiments we used a subset
of the Flickr8k dataset, proposed in Hodosh et al.
(2013). This dataset (subset B in Fig. 1) consists
of 8,000 images from Flickr of people and animals

552

Training'Image'x (From!Q)'

Training'Senten2al'Descrip2ons'(From'Q)'

Seman2c'Tuple'Extractor'
(Trained)using)L)))

Seman2c'Tuples'

Image'Features'

A)brown)dog)is)running)in)a)grassy)plain.)
A)brown)dog)runs)along)a)path)in)the)grass.)
Dog)running)in)field.))
Dog)running)in)narrow)dirt)path.)
The)dog)is)running)through)the)uncut)grass.)

<act=dog,)pre=run,)loc=plain>)
<act=dog,)pre=run,)loc=grass>)
<act=dog,)pre=run,)loc=field>)
<act=dog,)pre=run,)loc=path>)
<act=dog,)pre=run,)loc=grass>))

< ϕA(x), ϕP(x), ϕL(x) >

Convolu2onal'NN'
(Trained)using)U)))

Image'to'
Seman2c'Tuple'

Predictor'

U) (Imagenet):) Images) annotated) with)
keywords) (cheap,) exploits) readily) available)
dataset))
Q) (Flickr8K):) Images) annotated) with)
descripJve) sentences) (relaJvely) cheap,)
exploits)readily)available)resources))
L) (SPMDataset):) Images) annotated) with)
descripJve) sentences) and) semanJc) tuples)
(this) is) a) small) subset) of) Q,) expensive)
annotaJon,)requires)experJse))

Training'Data'

Embedded'CRF''
(Implicitly)induces)
embedding)of)image)

features)and)arguments))

Figure 1: Overview of our approach. First, images x ∈ A are represented using image features φs(x), and semantic tuples are

obtained applying our semantic tuple extractor (learned from the subset C) to their corresponding captions. The resulting enlarged

training set, is used to train our embedded CRF model that maps images to semantic tuples.

(mostly dogs) performing some action, with five
crowd-sourced descriptive captions for each one.

We first manually annotated 1,544 captions, cor-
responding to 311 images (approximately one third
of the development set (subset C in Fig. 1), produc-
ing more than 2,000 semantic tuples of predicate, ac-
tor and locative. For the experiments we partitioned
the images and annotations into training, validation
and test sets of 150, 50 and 100 images respectively.

Data augmentation: To enlarge the manually an-
notated dataset we trained a model able to predict
semantic tuples from captions using standard shal-
low and deep linguistic features (e.g., POS tags, de-
pendency parsing, semantic role labeling). We ex-
tract the predicates by looking at the words tagged
as verbs by the POS tagger. Then, the extraction of
arguments for each predicate is resolved as a classi-
fication problem.

More specifically, for each detected predicate in a
sentence we regard each noun as a positive or neg-
ative training example of a given relation depend-
ing on whether the candidate noun is or is not an
argument of the predicate. We use these examples
to train a SVM classifier that predicts if a candidate
noun is an argument of a given predicate based on
several linguistic features computed over the syntac-
tic path of the dependency tree that connects them.
We run the learned tuple predictor model on all the
captions of the Fickr8k dataset to obtain a larger
dataset of 8,000 images paired with semantic tuples.

3 Bilinear Models with Output Features
In this section we explain how we incorporate out-
put feature representations into a factorized linear
model. For simplicity, we will consider factorized

sequence models over sequences of fixed length.
However, it should not be hard to see that all the
ideas presented here can be easily generalized to
other structured prediction settings.

Let y = [y1. . .yT] be a set of labels and S =
[S1, . . ., ST] be the set of possible label values,
where yi∈Si. We are interested in learning a model
that computes P (y|x), i.e., the conditional probabil-
ity of a sequence y given some input x. We will
consider factorized log-linear models that take the
form:

P (y|x) =
expθ(x,y)∑
y exp

θ(x,y)
(1)

The scoring function θ(x, y) is modeled as a sum of
unary and binary bilinear potentials and is defined
as:

θ(x, y) =
T∑
t=1

v>yt
Wtφ(x, t) +

T∑
t=1

v>yt
Ztvyt+1 (2)

where vyt ∈ IRnt is a nt−dimensional feature rep-
resentation of label arguments yt∈St and φ(x, t) ∈
IRdt is a dt−dimensional feature representation of
the tth input factor of x.

The first set of terms in the above equation are
usually referred as unary potentials and measure the
compatibility between a single state at t and the fea-
ture representation of input factor t. The second set
of terms are the binary potentials and measure the
compatibility between pairs of states at adjacent fac-
tors. The scoring θ(x, y) function is fully parameter-
ized by the unary parameter matrices Wt∈IRnt×dt

and the binary parameter matrices Zt∈IRnt×nt .
The main idea is to define a feature space where

semantically similar labels will be close. Like in the

553

multilabel scenario (Weston et al., 2010; Akata et
al., 2013), having full feature representations for ar-
guments will allow us to share information across
different classes and generalize better. With a good
output feature representation, our model should be
able to make sensible predictions about pairs of ar-
guments that it has not observed at training. This is
easy to see: consider a case were we have a pair of
arguments represented with feature vectors a1 and
a2 and suppose that we have not observed the factor
a1, a2 in our training data but we have observed the
factor b1, b2. Then if a1 is close in the feature space
to argument b1 and a2 is close to b2 our model will
predict that a1 and a2 are compatible. That is it will
assign probability to the factor a1, a2 which seems
a natural generalization from the observed training
data.

Now we show that the rank of W and Z have use-
ful interpretations. Let W = UΣV be the singular
value decomposition ofW . We can then write unary
potentials: v>y Wφ(x, t) as: v>y U Σ [V φ(x, t)] Thus
we can regard the bilinear form as a function com-
puting a weighted inner product over some real em-
bedding v>y U representing state y and some real em-
bedding [V φ(x, t)] representing input factor t. The
rank of W gives us the intrinsic dimensionality of
the embedding. Thus if we want to induce shared
low-dimensional embeddings across different states
it seems reasonable to impose a low rank penalty on
W . Similarly, let Z = UΣV be now the singular
value decomposition of Z. We can write the binary
potentials v>y Zvy′ as: v>y U Σ V vy′ and thus the bi-
nary potentials compute a weighted inner product
between a real embedding of state y and a real em-
bedding of state y′. As before, the rank of Z gives us
the intrinsic dimensionality of the embedding and,
to induce a low dimensional embedding for binary
potentials, we will impose a low rank penalty on Z.

After having described the type of scoring func-
tions we are interested in, we now turn our at-
tention to the learning problem. That is, given
a training set D = {〈x y〉} of pairs of in-
puts x and output sequences y we need to learn
the parameters {W} and {Z}. For this purpose
we will do standard max-likelihood estimation and
find the parameters that minimize the conditional
negative log-likelihood of the data in D. That
is, we will find the {W} and {Z} that mini-

mize the following loss function L(D, {W}, {Z}):
−∑〈x y〉∈D logP (y|x; {W}, {Z}) Recall that we
are interested in learning low-rank unary and binary
potentials. To achieve this we take a common ap-
proach which is to use as the nuclear norm |W |∗ and
|Z|∗ as a convex approximation of the rank function,
the final optimization problem becomes:

min{W}L(D, {W}) +
∑
t

α|Wt|∗ + β|Zt|∗ (3)

where L(D, {W}) =
∑

d∈D loss(d, {W}) is the
negative log likelihood function and α and β are
two constants that control the trade off between
minimizing the loss and the implicit dimensionality
of the embeddings. We use a simple optimization
scheme known as Forward Backward Splitting, or
FOBOS (Duchi and Singer, 2009).

For our task we will consider a simple factor-
ized scoring function: θ(x, 〈p a l〉) that has one
factor associated with the locative-predicate pair
and one factor associated with the predicate-actor
pair. Since this corresponds to a chain structure,
argmaxt∈T θ(x; 〈p a l〉) can be efficiently computed
using Viterbi decoding in time O(N2), where N =
max(|P |, |A|, |L|). Similarly, we can also find the
top k predictions in O(kN2). Thus for this appli-
cation the scoring function of the bilinear CRF will
take the form of:

θ(x, 〈p a l〉) = λloc(l)>Wlocφloc(l)
+λpre(p)>Wpreφpre(p)
+λact(a)>Wactφact(a)
+φloc(l)>W loc

preφpre(p)

+φpre(p)>W
pre
act φact(a) (4)

The unary potentials measure the compatibility be-
tween an image and a semantic argument, the first
binary potential measures the compatibility between
a locative and a predicate, and the second binary po-
tential measures the compatibility between a predi-
cate and an actor. The scoring function is fully pa-
rameterized by the unary parameter matricesWloc ∈
IRdl×nl , Wpre ∈ IRdp×np and Wa ∈ IRda×na and
the binary parameter matrices W loc

pre ∈ IRnl×np and
W pre
act ∈ IRnp×na . Where, nl, np and na are the di-

mensionality of the locatives, predicates and actors
feature representations, respectively and dl, dp and

554

da are the dimensionality of the image representa-
tions. Notice that if we let the argument representa-
tion φt(r) ∈ IR|St| be an indicator vector for label
argument t, we obtain the usual parametrization of
a standard factorized linear model, while having a
dense feature representations for arguments instead
of indicator vectors will allow us to share informa-
tion across different classes.
4 Representing Semantic Arguments
We will conduct experiments with two differ-
ent feature representations: 1) Fully unsupervised
Skip-Gram based Continuous Word Representations
(SCWR) representation (Mikolov et al., 2013) and
2) A feature representation computed using the
〈caption, semantic-tuples〉 pairs, that we call Se-
mantic Equivalence Representation (SER).

We decided to exploit the dataset of captions
paired with semantic tuples to induce a useful fea-
ture representation for arguments. The idea is quite
simple: we wish to leverage the fact that any pair
of semantic tuples associated with the same image
will be likely describing the same event. Thus,
they are in essence different ways of lexicalizing
the same underlying concept. Let’s look at a con-
crete example. Imagine that we have an image an-
notated with the tuples: 〈play, dog, water〉 and
〈play, dog, river〉. Since both tuples describe the
same image, it is quite likely that both “river” and
“water” refer to the same real world entity, i.e,
“river” and “water” are ’semantically equivalent’
for this image. Using this idea we can build a rep-
resentation φloc(i) ∈ IR|L| where the j-th dimen-
sion corresponds to the number of times the argu-
ment j has been semantically equivalent to argu-
ment i. More precisely, we compute the probabil-
ity that argument j can be exchanged with argument
i as: [i,j]sr∑

j [i,j]sr
Where [i, j]sr is the number of times

that i and j have appeared as annotations of the same
image and with the same other arguments. For ex-
ample, for the actor arguments [i, j]sr represents the
number of time that actor i and actor j have appeared
with the same locative and predicate as descriptions
of the same image.
5 Related Work
In recent years, some works have tackled the prob-
lem of generating rich textual descriptions of im-
ages. One of the pioneers is (Kulkarni et al., 2011),

where a CRF model combines the output of several
vision systems to produce input for a language gen-
eration method. In Farhadi et al. (2010), the authors
find the similarity between sentences and images in
a “meaning” space, represented by semantic tuples
which are very similar to our triplets. Other works
focus on a simplified problem: ranking of human-
generated captions for images. Hodosh et al. (2013)
propose to use Kernel Canonical Correlation Anal-
ysis to project images and their captions into a joint
representation space, in which images and captions
can be related and ranked to perform illustration and
annotation tasks. Socher et al. (2014) also address
the ranking of images given a sentence and vice-
versa using a common subspace learned via Recur-
sive Neural Networks. Other recent works also ex-
ploit deep networks to address the problem (Vinyals
et al., 2015; Karpathy and Fei-Fei, 2015). Using la-
bel embeddings combined with bilinear forms has
been previously proposed in the context of multi-
class and multilabel image classification (Weston et
al., 2010; Akata et al., 2013).

6 Experiments
For image features we use the 4,096-dimensional
second to last layer of BVLC implementation of
‘AlexNet’ ImageNet model, a Convolutional Neu-
ral Network (CNN) as described in Jia et al. (2014).
To test our method we used the 100 test images that
were annotated with ground-truth semantic tuples.
To measure performance we first predict the top tu-
ple for each image and then measure accuracy for
each argument type (i.e. the number of correct pre-
dictions among the top 1 triplets). The regularization
parameters of each model were set using the valida-
tion set. We compare the performance of the fol-
lowing models: 1) Baseline Separate Predictors (S-
Pred): We consider a baseline made of independent
predictors for each argument type.

More specifically we train one-vs-all SVMs (we
also tried multi-class SVMs but they did not im-
prove performance) to independently predict loca-
tives, predicates and actors. For each argument type
and candidate label we have a score computed by
the corresponding SVM. Given an image we gener-
ate the top tuples that maximize the sum of scores for
each argument type; 2) Baseline KCCA: This model
implements the Kernel Canonical Correlation Anal-

555

<act=dog,pre=run,loc=beach>3

<act=girl,pre=sit,loc=pool>3

<act=dog,pre=run,loc=grass>3

<act=man,pre=stand,loc=street>3

<act=man,3pre=ride,3loc=street>3

<act=boy,pre=play,loc=field>3

<act=people,pre=sit,loc=camera>3

<act=dog,pre=run,loc=water>3 <act=boy,pre=sit,loc=pool>3

<act=dog,3pre=run,3loc=water>3 <act=dog,pre=stand,loc=field>3<act=dog,pre=perform,loc=air>3 <act=woman,pre=sit,loc=pool>3 <act=player,pre=hold,loc=football>3

Incorrect(loca+ve(&(ac+on(Incorrect(actor(Incorrect(actor(Incorrect(actor(&(ac+on(Incorrect(actor(&(loca+ve(

TRAINING(SENTENCES(
A3guy3is3doing3a3skateboard3trick3in3front3of3a3crowd3
A3man3is3skateboarding3in3front3of3a3group3of3people.3
A3skateboarder3performs3a3trick3in3front3of3a3large3crowd3.3333
A3skateboarder3leaping3from3a3pool3in3front3of3a3crowd.333
Skateboarder3does3tricks3in3front3of3crowd3while3photographer33
watches3333

3
3
3
3
3
3
3

<act=people,pre=perform,loc=air>3
<act=people,pre=jump,loc=air>3
<act=people,pre=wear,loc=air>3
<act=people,pre=watch,loc=air>3
<act=people,pre=perform,loc=pool>3
<act=people,pre=sit,loc=air>3
<act=people,pre=gather,loc=air>3

Figure 2: Samples of predicted tuples. Top-left: Examples of visually correct predictions. Bottom: Typical errors on one or

several arguments. Top-right: Sample image and its top predicted tuples. The tuples in blue were not observed neither in the

SP-Dataset nor in the automatically enlarged dataset. Note that all of them are descriptive of what is occurring in the scene.

ysis approach of Hodosh et al. (2013). We first note
that this approach is able to rank a list of candidate
captions but cannot directly generate tuples. To gen-
erate tuples for test images, we first find the caption
in the training set that has the highest ranking score
for that image and then extract the corresponding se-
mantic tuples from that caption; 3) Indicator Fea-
tures (IND), this is a standard factorized log-linear
model that does not use any feature representation
for the outputs; 4) A model that uses the skip-gram
continuous word representation of outputs (SCWR);
5) A model that uses that semantic equivalence rep-
resentation of outputs (SER); 6) A combined model
that makes predictions using the best feature repre-
sentation for each argument type (COMBO).

S-Pred KCCA IND SCWR SER COMBO
LOC 15 23 32 28 33
PRED 11 20 24 33 25
ACT 30 25 52 51 50
MEAN 18.6 22.6 36 37.3 36 39.3

Table 1: Comparison of Output Feature Representation.

Table 1 shows the results. We observe that our
proposed method performs significantly better than
the baselines. The second observation is that the
best performing output feature representation is dif-
ferent for different argument types, for the locatives
the best representation is SER, for the predicates is
the SCWR and for the actors using an output fea-
ture representation actually hurts performance. The

biggest improvement we get is on the predicate ar-
guments, where we improve almost by 10% in aver-
age precision over the baseline using the skip-gram
word representation. Overall, the model that uses
the best representation performs better than the indi-
cator baseline.

Regarding the rank of the parameter matrices,
we observed that the learned models can work well
even if we drop the rank to 10% of its maximum
rank. This shows that the learned models are effi-
cient in the sense that they can work well with low-
dimensional projections of the features.

7 Conclusion
In this paper we have presented a framework for ex-
ploiting input and output embeddings in the context
of structured prediction. We have applied this frame-
work to the problem of predicting compositional se-
mantic descriptions of images. Our results show the
advantages of using output embeddings and induc-
ing low-dimensional embeddings for handling large
state spaces in structured prediction problems. The
framework we propose is general enough to consider
additional sources of information.

8 Acknowledgments
This work was partly funded by the Spanish
MINECO project RobInstruct TIN2014-58178-R
and by the ERA-net CHISTERA projects VISEN
PCIN- 2013-047 and I-DRESS PCIN-2015-147.
The authors are grateful to the Nvidia donation pro-
gram for its support with GPU cards.

556

References
[Akata et al.2013] Zeynep Akata, Florent Perronnin, Zaid

Harchaoui, and Cordelia Schmid. 2013. Label-
embedding for attribute-based classification. In Proc.
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Duchi and Singer2009] John Duchi and Yoram Singer.
2009. Efficient online and batch learning using for-
ward backward splitting. Journal of Machine Learn-
ing Research (JMLR), 10:2899–2934.

[Farhadi et al.2010] Ali Farhadi, Mohsen Hejrati,
MohammadAmin Sadeghi, Peter Young, Cyrus
Rashtchian, Julia Hockenmaier, and David Forsyth.
2010. Every picture tells a story: Generating sen-
tences from images. In Proc. European Conference
on Computer Vision (ECCV).

[Hodosh et al.2013] Micah Hodosh, Peter Young, and Ju-
lia Hockenmaier. 2013. Framing image descrip-
tion as a ranking task: Data, models and evaluation
metrics. Journal of Artificial Intelligence Research
(JAIR), 47:853–899.

[Jia et al.2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. 2014. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

[Karpathy and Fei-Fei2015] Andrej Karpathy and Li Fei-
Fei. 2015. Deep visual-semantic alignments for gen-

erating image descriptions. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[Kulkarni et al.2011] Girish Kulkarni, Visruth Premraj,
Sagnik Dhar, Siming Li, Yejin Choi, Alexander C
Berg, and Tamara L Berg. 2011. Baby talk: Un-
derstanding and generating image descriptions. In
Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

[Mikolov et al.2013] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. In Proc. In-
ternational Conference on Learning Representations
(ICLR).

[Socher et al.2014] Richard Socher, Andrej Karpathy,
Quoc V. Le, Christopher D. Manning, and Andrew Y.
Ng. 2014. Grounded compositional semantics for
finding and describing images with sentences. Trans-
actions of the Association of Computational Linguis-
tics (TACL), 2:207–218.

[Vinyals et al.2015] Oriol Vinyals, Alexander Toshev,
Samy Bengio, and Dumitru Erhan. 2015. Show and
tell: A neural image caption generator. In Proc. IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[Weston et al.2010] Jason Weston, Samy Bengio, and
Nicolas Usunier. 2010. Large scale image annota-
tion: Learning to rank with joint word-image embed-
dings. In Proc. European Conference on Computer
Vision (ECCV).

557

Proceedings of NAACL-HLT 2016, pages 558–567,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Large-scale Multitask Learning for Machine Translation Quality Estimation

Kashif Shah and Lucia Specia
Department of Computer Science

University of Sheffield, UK
{kashif.shah,l.specia}@sheffield.ac.uk

Abstract

Multitask learning has been proven a useful
technique in a number of Natural Language
Processing applications where data is scarce
and naturally diverse. Examples include learn-
ing from data of different domains and learn-
ing from labels provided by multiple annota-
tors. Tasks in these scenarios would be the
domains or the annotators. When faced with
limited data for each task, a framework for
the learning of tasks in parallel while using a
shared representation is clearly helpful: what
is learned for a given task can be transferred
to other tasks while the peculiarities of each
task are still modelled. Focusing on machine
translation quality estimation as application,
in this paper we show that multitask learning
is also useful in cases where data is abundant.
Based on two large-scale datasets, we explore
models with multiple annotators and multiple
languages and show that state-of-the-art mul-
titask learning algorithms lead to improved re-
sults in all settings.

1 Introduction

Quality Estimation (QE) models predict the qual-
ity of Machine Translation (MT) output based on
the source and target texts only, without reference
translations. This task is often framed as a super-
vised machine learning problem using various fea-
tures indicating fluency, adequacy and complexity
of the source-target text pair, and annotations on
translation quality given by human translators. Var-
ious kernel-based regression and classification algo-
rithms have been explored to learn prediction mod-
els.

The application of QE we focus on here is that
of guiding professional translators during the post-
editing of MT output. QE models can provide trans-
lators with information on how much editing/time
will be necessary to fix a given segment, or on
whether it is worth editing it at all, as opposed to
translating it from scratch. For this application,
models are learnt from quality annotations that re-
flect post-editing effort, for instance, 1-5 judgements
on estimated post-editing effort (Callison-Burch et
al., 2012) or actual post-editing effort measured as
post-editing time (Bojar et al., 2013) or edit distance
between the MT output and its post-edited version
(Bojar et al., 2014; Bojar et al., 2015).

One of the biggest challenges in this field is to
deal with the inherent subjectivity of quality labels
given by humans. Explicit judgements (e.g. the
1-5 point scale) are affected the most, with pre-
vious work showing that translators’ perception of
post-editing effort differs from actual effort (Kopo-
nen, 2012). However, even objective annotations
of actual post-editing effort are subject to natural
variance. Take, for example, post-editing time as
a label: Different annotators have different typing
speeds and may require more or less time to deal
with the same edits depending on their level of expe-
rience, familiarity with the domain, etc. Post-editing
distance also varies across translators as there are of-
ten multiple ways of producing a good quality trans-
lation from an MT output, even when strict guide-
lines are given.

In order to address variance among multiple trans-
lators, three strategies have been applied: (i) mod-
els are built by averaging annotations from multiple

558

translators on the same data points, as was done in
the first shared task on the topic (Callison-Burch et
al., 2012); (ii) models are built for individual trans-
lators by collecting labelled data for each translator
(Shah and Specia, 2014); and (iii) models are built
using multitask learning techniques (Caruana, 1997)
to put together annotations from multiple translators
while keeping track of the translators’ identification
to account for their individual biases (Cohn and Spe-
cia, 2013; de Souza et al., 2015).

The first approach is sensible because, in the limit,
the models built should reflect the “average” strate-
gies/preferences of translators. However, its cost
makes it prohibitive. The second approach can lead
to very accurate models but it requires sufficient
training data for each translator, and that all trans-
lators are known at model building time. The last
approach is very attractive. It is a transfer learn-
ing (a.k.a. domain-adaptation) approach that allows
the modelling of data from each individual translator
while also modelling correlations between transla-
tors such that “similar” translators can mutually in-
form one another. As such, it does not require mul-
tiple annotations of the same data points and can be
effective even if only a few data points are available
for each translator. In fact, previous work on multi-
task learning for quality estimation has concentrated
on the problem of learning prediction models from
little data provided by different annotators.

In this paper we take a step further to investigate
multitask learning for quality estimation in settings
where data may be abundant for some or most an-
notators. We explore a multitask learning approach
that provides a general, scalable and robust solution
regardless of the amount of data available. By test-
ing models on single translator data, we show that
while building models for individual translators is
a sensible decision when large amounts of data are
available, the multitask learning approach can out-
perform these models by learning from data by mul-
tiple annotators. Additionally, besides having trans-
lators as “tasks”, we address the problem of learning
from data for multiple language pairs.

We devise our multitaslk approach within the
Bayesian non-parametric machine learning frame-
work of Gaussian Processes (Rasmussen and
Williams, 2006). Gaussian Processes have shown
very good results for quality estimation in previous

work (Cohn and Specia, 2013; Beck et al., 2013;
Shah et al., 2013). Our datasets – annotated for post-
editing distance – contain nearly 100K data points,
two orders of magnitude larger than those used in
previous work. To cope with scalability issues re-
sulting from the size of these datasets, we apply a
sparse version of Gaussian Processes. We perform
extensive experiments on this large-scale data aim-
ing to answer the following research questions:

• What is the best approach to build models to
be used by individual translators? How much
data is necessary to build independent models
(one per translator) that can be as accurate as
(or better than) models using data from multi-
ple translators?

• When large amounts of data are available, can
we still improve over independent and pooled
models by learning from metadata to exploit
transfer across translators?

• Can crosslingual data help improve model per-
formance by exploiting transfer across lan-
guage pairs?

In the remainder of the paper we start with an
overview on related work in the area of multitask
learning for quality estimation (Section 2), to then
describe our approach to multitask learning in the
context of Gaussian Processes (Section 3). In Sec-
tion 4 we introduce our data and experimental set-
tings. Finally in Sections 5 and 6 we present the
results of our experiments to answer the above men-
tioned questions for cross-annotator and crosslin-
gual transfer, respectively.

2 Related Work

As was discussed in Section 1, the problem of vari-
ance among multiple translators in QE has recently
been approached in three ways. The first two ap-
proaches essentially refer to preparation of the data.
At WMT12, the first shared task on QE (Callison-
Burch et al., 2012), the official dataset was created
by collecting three 1-5 (worst-best) discrete judge-
ments on “perceived” post-editing effort for each
translated segment. The final score was a scaled av-
erage of the three scores, and about 15% of the la-
belled data was discarded as annotators diverged in

559

their judgemetns by more than one point. While this
type of data proved useful and certainly reliable in
the limit of the number of annotators, it is too ex-
pensive to collect.

Shah and Specia (2014) built QE models using
data from n annotators by either pooling all the data
together or splitting it into n datasets for n individ-
ual annotator models. These models were tested in
blind versus non-blind settings, where the former
refers to test sets whose annotator identifiers were
unknown. They observed a substantial difference in
the error scores for each of the individual models.
They showed that the task is much more challenging
for QE models trained independently when training
data for each annotator is scarce. In other words,
sufficient data needs to be available to build individ-
ual models for all possible translators.

The approach of using multitask learning to build
models addresses the data scarcity issue and has
been shown effective in previous work. Cohn and
Specia (2013) first introduced multitask learning for
QE. Their goal was to allow the modelling of vari-
ous perspectives on the data, as given by multiple an-
notators, while also recognising that they are rarely
independent of one another (annotators often agree)
by explicitly accounting for inter-annotator correla-
tions. A set of task-specific regression models were
built from data labelled with post-editing time and
perceived post-editing effort (1-5). “Tasks” included
annotators, the MT system and the actual source sen-
tence, as their data included same source segments
translated/edited by multiple systems/editors.

Similarly, de Souza et al. studied multitask learn-
ing to deal with data coming from different train-
ing/test set distributions or domains, and generally
scenarios in which training data is scarce. Offline
multitask (de Souza et al., 2014a) and online multi-
task (de Souza et al., 2015; de Souza et al., 2014b)
learning methods for QE were proposed. The later
focused on continuous model learning and adapta-
tion from new post-edits in a computer-aided trans-
lation environment. For that, they adapted an on-
line passive-aggressive algorithm (Cavallanti et al.,
2010) to the multitask scenario. While their setting
is interesting and could be considered more chal-
lenging because of the online adaptation require-
ments, ours is different as we can take advantage of
already having collected large volumes of data.

Multitask learning has also been used for other
classification and regression tasks in language pro-
cessing, mostly for domain adaptation (Daume III,
2007; Finkel and Manning, 2009), but also more
recently for tasks such as multi-emotion analysis
(Beck et al., 2014), where the each emotion explain-
ing a text is defined as a task. However, in all previ-
ous work the focus has been on addressing task vari-
ance coupled with data scarcity, which makes them
different from the work we describe in this paper.

3 Gaussian Processes

Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) are a Bayesian non-parametric
machine learning framework considered the state-
of-the-art for regression. GPs have been used
successfully for MT quality prediction (Cohn and
Specia, 2013; Beck et al., 2013; Shah et al., 2013),
among other tasks.

GPs assume the presence of a latent function f :
RF → R, which maps a vector x from feature space
F to a scalar value. Formally, this function is drawn
from a GP prior:

f(x) ∼ GP(0, k(x,x′)),

which is parameterised by a mean function (here,
0) and a covariance kernel function k(x,x′). Each
response value is then generated from the function
evaluated at the corresponding input, yi = f(xi)+η,
where η ∼ N (0, σ2

n) is added white-noise.
Prediction is formulated as a Bayesian inference

under the posterior:

p(y∗|x∗,D) =
∫
f
p(y∗|x∗, f)p(f |D),

where x∗ is a test input, y∗ is the test response value
and D is the training set. The predictive posterior
can be solved analitically, resulting in:

y∗ ∼ N (kT∗ (K + σ2
nI)
−1y,

k(x∗, x∗)− kT∗ (K + σ2
nI)
−1k∗),

where k∗ = [k(x∗,x1)k(x∗,x2) . . . k(x∗,xn)]T is
the vector of kernel evaluations between the training
set and the test input and K is the kernel matrix over
the training inputs (the Gram matrix).

560

3.1 Multitask Learning
The GP regression framework can be extended to
multiple outputs by assuming f(x) to be a vector
valued function. These models are commonly re-
ferred as Intrinsic Coregionalization Models (ICM)
in the GP literature (Álvarez et al., 2012).

In this work, we employ a separable multitask ker-
nel, similar to the one used by Bonilla et al. (2008)
and Cohn and Specia (2013). Considering a set ofD
tasks, we define the corresponding multitask kernel
as:

k((x, d), (x′, d′)) = kdata(x,x′)×Md,d′ ,

where kdata is a kernel (Radial Basis Function, in
our experiments) on the input points, d and d′ are
task or metadata information for each input and
M ∈ RD×D is the multitask matrix, which encodes
task covariances. In our experiments, we first con-
sider each post-editor as a different task, and then
use crosslingual data to treat each combination of
language and post-editor as a task.

An adequate parametrisation of the multitask ma-
trix is required to perform learning process. We
follow the parameterisations proposed by Cohn and
Specia (2013) and Beck et al. (2014):

Individual: M = I. In this setting each task
is modelled independently by keeping corre-
sponding task identity.

Pooled: M = 1. Here the task identity is ignored.
This is equivalent to pooling all datasets in a
single task model.

Multitask: M = H̃H̃T + diag(α) , where H̃ is
a D ×R matrix. The vector α enables the de-
gree of independence for each task with respect
to the global task. The choice of R defines
the rank (= 1 in our case) which can be un-
derstood as the capacity of the manifold with
which we model the D tasks. We refer read-
ers to see Beck et al. (2014) for a more detailed
explanation of this setting.

3.2 Sparse Gaussian Processes
The performance bottleneck for GP models is the
Gram matrix inversion, which is O(n3) for stan-
dard GPs, with n being the number of training in-

stances. For multitask settings this becomes an is-
sue for large datasets as the models replicate the in-
stances for each task and the resulting Gram matrix
has dimensionality nd × nd, where d is the number
of tasks.

Sparse GPs (Snelson and Ghahramani, 2006)
tackle this problem by approximating the Gram ma-
trix using only a subset of m inducing inputs. With-
out loss of generalisation, consider thesem points as
the first instances in the training data. We can then
expand the Gram matrix in the following way:

K =
[

Kmm Km(n−m)

K(n−m)m K(n−m)(n−m)

]
.

Following the notation in (Rasmussen and Williams,
2006), we refer Km(n−m) as Kmn and its transpose
as Knm. The block structure of K forms the basis
of the so-called Nyström approximation:

K̃ = KnmK−1
mmKmn,

which results in the following predictive posterior:

y∗ ∼ N (kTm∗G̃
−1Kmny,

k(x∗,x∗)− kTm∗K
−1
mmkm∗+

σ2
nk

T
m∗G̃

−1km∗),

where G̃ = σ2
nKmm + KmnKnm and km∗ is the

vector of kernel evaluations between test input x∗
and the m inducing inputs. The resulting training
complexity is O(m2n).

In our experiments, the number of inducing points
was set empirically by inspecting where the learning
curves (in terms of Pearson’s correlation gains) flat-
ten, as shown in Figure 1. We used 300 inducing
points in experiments with all the settings (see Sec-
tion 4.3).

4 Experimental Settings

4.1 Data
Our experiments are based on data from two lan-
guage pairs: English-Spanish (en-es) and English-
French (en-fr). The data was collected and made
available by WIPO’s (World Intellectual Property
Organization) Brands and Design Sector. The do-
main of the data is trademark applications in En-
glish, using one or more of the 45 categories of the

561

0.45%

0.46%

0.47%

0.48%

0.49%

0.5%

0.51%

0.52%

0% 200% 400% 600% 800% 1000% 1200%

r"

inducing"points"

Figure 1: Number of inducing points versus Pear-
son’s correlation

NICE1 goods and services (e.g. furniture, clothing),
and their translations into one of the two languages.

An in-house phrase-based statistical MT system
was built by WIPO (Pouliquen et al., 2011), trained
on domain-specific data, to translate the English seg-
ments. The quality of the translations produced is
considered high, with BLEU scores on a 1K-single
reference test set reaching 0.71. This is partly at-
tributed to the short length and relative simplicity
of the segments in the sub-domains of goods and
services. The post-editing was done mostly inter-
nally and systematically collected between Novem-
ber 2014 and August 2015. The quality label for
each segment is post-editing distance, calculated as
the HTER (Snover et al., 2006) between the tar-
get segment and its post-edition using the TERCOM
tool.2

The data was split into 75% for training and 25%
for test, with each split maintaining the original data
distribution by post-editor. The number of training
and test <source, MT output, post-edited MT, HTER
score> tuples for each of the post-editors (ID) and
language pair is given in Table 1. There are 63,763
overlapping English source segments out of 77,656
entries for en-fr and 98,663 entries for en-es. This
information is relevant for the crosslingual data ex-
periments, as we discuss in Section 6.

It should be noted that the total number of seg-
ments as well as the number of segments per post-
editor is significantly higher than those used in pre-

1http://www.wipo.int/classifications/
nice/en/

2http://www.cs.umd.edu/˜snover/tercom/

Lang. Pair ID Total Train Test

en-es

1 28,423 21,317 7,105
2 12,904 9,678 3,226
3 3,939 2,954 984
4 16,518 12,388 4,129
5 14,187 10,640 3,546
6 9,395 7,046 2,348
7 402 301 100
8 9,294 6,970 2,323
9 845 633 211

10 2,756 2,067 689
All 98,663 73,997 24,665

en-fr

1 65,280 48,960 16,320
2 6,336 4,752 1,584
3 769 576 192
4 5,271 3,953 1,317

All 77,656 58,241 19,413

Table 1: Number of en-es and en-fr segments

vious work. For example, (Cohn and Specia, 2013)
used datasets of 6,762 instances (2,254 for each of
three translator) and 1,624 instances (299 for each of
eight translators), while (Beck et al., 2014) had ac-
cess to 1000 instances annotated with six emotions.

4.2 Algorithms

For all tasks we used the QuEst framework (Specia
et al., 2013) to extract a set of 17 baseline black-box
features3 (Shah et al., 2013) for which we had all the
necessary resources for the WIPO domain. These
baseline features have shown to perform well in
the WMT shared tasks on QE. They include simple
counts, e.g. number of tokens in source and target
segments, source and target language model prob-
abilities and perplexities, average number of possi-
ble translations for source words, number of punc-
tuation marks in source and target segments, among
other features reflecting the complexity of the source
segment and the fluency of the target segment.

All our models were trained using the GPy4

toolkit, an open source implementation of GPs writ-
ten in Python.

4.3 Settings

We built and tested models in the following condi-
tions:

3http://www.quest.dcs.shef.ac.uk/quest_
files/features_blackbox_baseline_17

4http://sheffieldml.github.io/GPy/

562

One language Setting-1 Setting-2 Setting-3 Setting-4 Setting-5 Setting-6
ind trn-ind tst pol trn-ind tst mtl trn-ind tst ind trn-pol tst pol trn-pol tst mtl trn-pol tst

Model Individual Pooled Multitask Individual Pooled Multitask
Test Individual Individual Individual Pooled Pooled Pooled
Crosslingual (cl) Setting-7 Setting-8 Setting-9 Setting-10

cl pol trn-ind tst cl mtl trn-ind tst cl pol trn-pol tst cl mtl trn-pol tst
Model Pooled Multitask Pooled Multitask
Test Individual Individual Pooled Pooled
Non-overlapping (no) Setting-11 Setting-12 Setting-13

no cl pol trn-pol tst no mtl trn-pol tst no cl mtl trn-pol tst
Model Pooled Multitask Multitask
Test Pooled Pooled Pooled

Table 2: Various models and test settings in our experiments

• Setting-1: Individual models on individual test
sets: each model is trained with data from an
individual post-editor and tested on the test set
for the same individual post-editor.

• Setting-2: Pooled model on individual test
sets: model trained with data concatenated
from all post-editors and tested on test sets of
individual post-editors.

• Setting-3: Multitask model on individual test
sets: multitask models trained with data from
all post-editors and tested on test sets of indi-
vidual post-editors.

• Setting-4: Individual models tested on pooled
test set: each model is trained with data from
an individual post-editor and tested on a test set
with data from all post-editors. This setup aims
to find out the performance of individual mod-
els when the identifier of the post-editor is not
known (e.g. in crowdsourcing settings).

• Setting-5: Pooled model on pooled test set:
model trained with data concatenated from all
post-editors and tested on test set of all post-
editors.

• Setting-6: Multitask model on pooled test set:
Multitask model trained with data from all
post-editors and tested on test set from all post-
editors together.

• Setting-7 to 10: Similar to setting-2, 3, 5, 6 but
with additional crosslingual data where pooled
and multitask models are trained with both en-
es and en-fr datasets together.

• Setting-11-13: Similar to setting-9, 6, 10 re-
spectively, but with non-overlapping crosslin-
gual data only.

5 Results with Multiple Annotators

We report results in terms of Pearson’s correlation
between predicted and true quality labels, as was
done in the WMT QE shared tasks (Bojar et al.,
2015). The multitask learning models consistently
led to improvement over pooled models, and over
individual models in most cases. We present the
comparisons of the models for various settings in
the following. The bars marked with * in each com-
parison are significantly better than all others with
p < 0.01 according to the Williams significance
test (Williams, 1959).

Individual, pooled and multitask models on in-
dividual test sets Results for both language pairs
are shown in Figure 2. As expected, in cases where
a large number of instances is available from an in-
dividual post-editor, individual models tested on in-
dividual test sets perform better than pooled mod-
els. Overall, multitask learning models show im-
provement over both individual and pooled mod-
els, or the same performance in cases where large
amounts of data are available for an individual post-
editor. For example, in en-es, for post-editors 9 and
3, which have 845 and 3,939 instances in total, re-
spectively, multitask learning models are consider-
ably better. The same goes for post-editor 3 in en-fr,
which has only 769 instances. For very few post-
editors with a large number of instances (1,2 and
4 in en-es) multitask learning models perform the
same as individual or even pooled models. For all
other post-editors, multitask models further improve
correlation with humans. These results emphasize

563

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"
ind_trn2ind_tst" 0.4379" 0.4412" 0.3211" 0.4487" 0.3802" 0.3519" 0.3310" 0.4410" 0.2513" 0.3310"
pol_trn2ind_tst" 0.4234" 0.4324" 0.3684" 0.4489" 0.3717" 0.3520" 0.3510" 0.4109" 0.3022" 0.3902"
mtl_trn2ind_tst" 0.4435" 0.4409" 0.4009" 0.4491" 0.3903" 0.3902" 0.3622" 0.4496" 0.3411" 0.4040"

*" *" *"
*"

*"

*"

*"

0.00"
0.05"
0.10"
0.15"
0.20"
0.25"
0.30"
0.35"
0.40"
0.45"
0.50"

r"

(a) en-es

1" 2" 3" 4"
ind_trn,ind_tst" 0.4512" 0.4212" 0.1023" 0.4265"
pol_trn,ind_tst" 0.4412" 0.4211" 0.1511" 0.4301"
mtl_trn,ind_tst" 0.4610" 0.4320" 0.1712" 0.4411"

*"
*"

*"

*"

0.00"
0.05"
0.10"
0.15"
0.20"
0.25"
0.30"
0.35"
0.40"
0.45"
0.50"

r"

(b) en-fr
Figure 2: Pearson’s correlation with various models
on individual test sets

the advantages of multitask learning models, even in
cases where the post-editors that will use the mod-
els are known in advance (first research question):
Clearly, the models for post-editors with fewer in-
stances benefit from the sharing of information from
the larger post-editor data sets. As for post-editors
with large numbers of instances, in the worst case
the performance remains the same.

Individual, pooled and multitask models on
pooled test set Here we focus on cases where
models are built to be used by any post-editor
(second research question). Results in Figure 3
show that when test sets for all post-editors are
put together, individual models perform distinctively
worse than pooled and multitask learning models.
Multitask learning models are significantly better
than pooled models for both languages (0.511 vs
0.469 for en-es, and 0.481 vs 0.441 for en-fr). In
the case of post-editor 3 for en-fr, the correlation is
negative for individual models given the very low
number of instances for this post-editor, which is not
sufficient to build a general enough model that also

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"
ind_trn2pol_tst" 0.4131" 0.4268" 0.3445" 0.4323" 0.3508" 0.3560" 0.3269" 0.4020" 0.2876" 0.3705"
pol_trn2pol_tst" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694" 0.4694"
mtl_trn2pol_tst" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115" 0.5115"

*"

0.00"

0.10"

0.20"

0.30"

0.40"

0.50"

0.60"

r"

(a) en-es

1" 2" 3" 4"
ind_trn,pol_tst" 0.4366" 0.3912" ,0.0847" 0.4063"
pol_trn,pol_tst" 0.4412" 0.4412" 0.4412" 0.4412"
mtl_trn,pol_tst" 0.4812" 0.4812" 0.4812" 0.4812"

*"

,0.20"

,0.10"

0.00"

0.10"

0.20"

0.30"

0.40"

0.50"

0.60"

r"

(b) en-fr
Figure 3: Pearson’s correlation with various models
on pooled test set

works for other post-editors.

Relationship among post-editors In order to gain
a better insight into the strength of the relationships
among various post-editors and thus into the ex-
pected benefits from joint modelling, we plot the
learned Corregionalisation matrix for all against all
post-editors in Figure 4.5 It can be observed that
there exist various degrees of mutual interdepen-
dences among post-editors. For instance, in the case
of en-es, post-editor 4 shows a strong relationship
with post-editors 6 and 7, a relatively weaker rela-
tionship with post-editors 1 and 9, and close to non-
existing with post-editors 3, 8 and 10. In the case
of en-fr, post-editor 3 shows very weak relationship
with all other post-editors, especially 4. This might
explain the low Pearson’s correlation with individual
models for post-editor 3 on pooled test sets.

5We note that the Corregionalisation matrix cannot be inter-
preted as a correlation matrix. Rather, it shows the covariance
between tasks.

564

(a) en-es

(b) en-fr

Figure 4: Heatmap showing a learned Coregionali-
sation matrix over all post-editors

6 Results with Multiple Languages

To address the last research question, here we
present the results on crosslingual models in com-
parison to single language pair models. The train-
ing models contain data from both en-es and en-fr
language pairs in the various settings previously de-
scribed, where for the multitask settings, tasks can
be annotators, languages, or both.

Single versus crosslingual pooled and multitask
models on individual test sets Figure 5 shows a
performance comparison between single language
versus crosslingual models on individual test sets.

1" 2" 3" 4"
pol_trn-ind_tst" 0.4412" 0.4211" 0.1511" 0.4301"
mtl_trn-ind_tst" 0.4610" 0.4320" 0.1712" 0.4411"
cl_pol_trn-ind_tst" 0.4399" 0.4122" 0.1641" 0.4217"
cl_mtl_trn-ind_tst" 0.4612" 0.4401" 0.2011" 0.4441"

*" *" *"

*"

*"

0.00"
0.05"
0.10"
0.15"
0.20"
0.25"
0.30"
0.35"
0.40"
0.45"
0.50"

r"

Figure 5: Pearson’s correlation with single versus
crosslingual models on individual en-fr test sets

Due to space constraints, we only present results for
the en-fr test sets, but those for the en-es test sets fol-
low the same trend. Multitask models lead to further
improvements, particularly visible for post-editor 3
(the one with less training data), where the crosslin-
gual multitask learning model reaches 0.201 Pear-
son’s correlation, while the monolingual multitask
learning model performs at 0.171. The performance
of the pooled models with crosslingual data also im-
proves on this test set over monolingual pooled mod-
els, but the overall figures are lower than with mul-
titask learning, showing that the benefit does not
only come from adding more data, but from ade-
quate modelling of the additional data. This shows
the potential to learn robust prediction models from
datasets with multiple languages.

Single versus crosslingual pooled and multitask
models on pooled test set Figure 6 compares
single language and crosslingual models on the
pooled test sets for both languages. A pooled test
set with data from different languages presents a
more challenging case. Simply building crosslin-
gual pooled models deteriorates the performance
over single pooled models, whereas multitask mod-
els marginally improve the performance for en-es
and keep the performance of the single language
models for en-fr. This again shows that multitask
learning is an effective technique for robust predic-
tion models over several training and test conditions.

Single versus crosslingual pooled and multi-
task models on non-overlapping data on pooled
test set We posited that the main reason behind
the marginal or non-existing improvement of the
crosslingual transfer learning shown in Figure 6 is

565

en#es% en#fr%
pol_trn#pol_tst% 0.4694% 0.4412%
mtl_trn#pol_tst% 0.5115% 0.4812%
cl_pol_trn#pol_tst% 0.4411% 0.4389%
cl_mtl_trn#pol_tst% 0.5201% 0.4821%

*%
*%

*%

0.30%

0.40%

0.50%

0.60%

r"

Figure 6: Pearson’s correlation with single vs
crosslingual models: en-es and en-fr pooled test sets

en#es% en#fr%
no_cl_pol_trn#pol_tst% 0.3801% 0.2901%
no_mtl_trn#pol_tst% 0.4167% 0.3512%
no_cl_mtl_trn#pol_tst% 0.4477% 0.3701%

*"

*"

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

r"

Figure 7: Pearson’s correlation with non-
overlapping language data: single vs crosslingual
models on en-es and en-fr on pooled test sets

the large overlap between the source segments in the
datasets for the two language pairs, as mentioned in
Section 4: 63,763 instances, which comprise 82% of
the en-fr instances, and 65% of the en-es instances.
This becomes an issue because nearly half of the
quality estimation features are based on the source
segments. Therefore, we conducted an experiment
with only 41,930 non-overlapping segments in the
two languages. This experiment is only possible
with pooled test sets, as otherwise too few (if any)
instances are left for some post-editors. The re-
sults, shown in Figure 7, are much more promising.
The Figure compares single language and crosslin-
gual multitask and pooled models on the polled test
sets for both languages. It is interesting to note
that, while the absolute figures are lower when com-
pared to models trained on all data (Figures 5 and
6), the relative improvements of multitask crosslin-
gual models over multitask single language models
are much larger.

7 Conclusions

We investigated multitask learning with GP for QE
based on large datasets with multiple annotators and
language pairs. The experiments were performed
with various settings for training QE models to study
the cases where data is available in abundance, ver-
sus cases with less data. Our results show that mul-
titask learning leads to improved results in all set-
tings against individual and pooled models. Individ-
ual models perform reasonably well in cases where
a large amount of training data for individual anno-
tators is available. Yet, by learning from data by
multiple annotators, multitask learning models still
perform better (in most cases) or at least the same as
these models. Testing models on data for individual
annotators is a novel experimental setting that we
explored in this paper. Another novel finding was
the advantage of multitask models in crosslingual
settings, where individual models performed poorly
and pooled models brought little gain.

Acknowledgments

This work was supported by the QT21 (H2020 No.
645452) and Cracker (H2020 No. 645357). We
would like to thank Bruno Pouliquen and Peter
Baker for providing the WIPO data, resources and
revising the details in Section 4.1.

References

Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D.
Lawrence. 2012. Kernels for Vector-Valued Func-
tions: a Review. Foundations and Trends in Machine
Learning, pages 1–37.

Daniel Beck, Kashif Shah, Trevor Cohn, and Lucia Spe-
cia. 2013. SHEF-Lite: When less is more for trans-
lation quality estimation. In Eighth Workshop on Sta-
tistical Machine Translation, WMT, pages 337–342,
Sofia, Bulgaria.

Daniel Beck, Trevor Cohn, and Lucia Specia. 2014. Joint
emotion analysis via multi-task gaussian processes.
In Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP, pages 1798–1803, Doha,
Qatar.

Ondej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,
Christof Monz, Matt Post, Radu Soricut, and Lucia
Specia. 2013. Findings of the 2013 Workshop on Sta-

566

tistical Machine Translation. In Eigth Workshop on
Statistical Machine Translation, pages 1–44.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Aleš Tam-
chyna. 2014. Findings of the 2014 Workshop on Sta-
tistical Machine Translation. In Ninth Workshop on
Statistical Machine Translation, pages 12–58, Balti-
more, Maryland.

Ondrej Bojar, Barry Haddow, Matthias Huck, and Philipp
Koehn. 2015. Findings of the 2015 workshop on sta-
tistical machine translation. In Tenth Workshop on Sta-
tistical Machine Translation, pages 1–42, Lisboa, Por-
tugal.

Edwin V. Bonilla, Kian Ming A. Chai, and Christopher
K. I. Williams. 2008. Multi-task Gaussian Process
Prediction. Advances in Neural Information Process-
ing Systems.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Machine
Translation. In Seventh Workshop on Statistical Ma-
chine Translation.

Rich Caruana. 1997. Multitask Learning. Machine
Learning, 28:41–75.

Giovanni Cavallanti, Nicolo Cesa-Bianchi, and Claudio
Gentile. 2010. Linear algorithms for online multitask
classification. The Journal of Machine Learning Re-
search, 11:2901–2934.

Trevor Cohn and Lucia Specia. 2013. Modelling anno-
tator bias with multi-task gaussian processes: An ap-
plication to machine translation quality estimation. In
51st Annual Meeting of the Association for Computa-
tional Linguistics, ACL, pages 32–42, Sofia, Bulgaria.

Hal Daume III. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256–263, Prague, Czech Republic, June. Association
for Computational Linguistics.

José G.C. de Souza, Marco Turchi, and Matteo Negri.
2014a. Machine translation quality estimation across
domains. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguis-
tics: Technical Papers, pages 409–420, Dublin, Ire-
land, August. Dublin City University and Association
for Computational Linguistics.

José G.C. de Souza, Marco Turchi, and Matteo Negri.
2014b. Towards a combination of online and multi-
task learning for mt quality estimation: a preliminary
study. In Workshop on Interactive and Adaptive Ma-
chine Translation.

José G.C. de Souza, Matteo Negri, Elisa Ricci, and Marco
Turchi. 2015. Online multitask learning for machine

translation quality estimation. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 219–228, Beijing, China.

Jenny Rose Finkel and Christopher D Manning. 2009.
Hierarchical bayesian domain adaptation. In Proceed-
ings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
602–610. Association for Computational Linguistics.

Maarit Koponen. 2012. Comparing human perceptions
of post-editing effort with post-editing operations.
In Proceedings of the Seventh Workshop on Statisti-
cal Machine Translation, pages 181–190, Montréal,
Canada.

Bruno Pouliquen, Christophe Mazenc, and Aldo Io-
rio. 2011. Tapta: a user-driven translation system
for patent documents based on domain-aware statis-
tical machine translation. In Proceedings of the 15th
conference of the European Association for Machine
Translation, pages 5–12, Leuven, Belgium.

Carl Edward Rasmussen and Christopher K. I. Williams.
2006. Gaussian processes for machine learning, vol-
ume 1. MIT Press Cambridge.

Kashif Shah and Lucia Specia. 2014. Quality estimation
for translation selection. In 17th Annual Conference
of the European Association for Machine Translation,
EAMT, pages 109–116, Dubrovnik, Croatia.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2013.
An Investigation on the Effectiveness of Features for
Translation Quality Estimation. In Proceedings of MT
Summit XIV.

Edward Snelson and Zoubin Ghahramani. 2006. Sparse
gaussian processes using pseudo-inputs. In Advances
in neural information processing systems, pages 1257–
1264.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas (AMTA),
pages 223–231.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. Quest - a translation quality
estimation framework. In 51st Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, ACL, pages 79–84, Sofia, Bulgaria.

E. J. Williams. 1959. Regression analysis. Wiley New
York.

567

Proceedings of NAACL-HLT 2016, pages 568–578,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Conversational Markers of Constructive Discussions

Vlad Niculae and Cristian Danescu-Niculescu-Mizil
{vlad|cristian}@cs.cornell.edu

Cornell University

Abstract

Group discussions are essential for organiz-
ing every aspect of modern life, from faculty
meetings to senate debates, from grant review
panels to papal conclaves. While costly in
terms of time and organization effort, group
discussions are commonly seen as a way of
reaching better decisions compared to solu-
tions that do not require coordination between
the individuals (e.g. voting)—through discus-
sion, the sum becomes greater than the parts.
However, this assumption is not irrefutable:
anecdotal evidence of wasteful discussions
abounds, and in our own experiments we find
that over 30% of discussions are unproductive.

We propose a framework for analyzing con-
versational dynamics in order to determine
whether a given task-oriented discussion is
worth having or not. We exploit conversa-
tional patterns reflecting the flow of ideas and
the balance between the participants, as well
as their linguistic choices. We apply this
framework to conversations naturally occur-
ring in an online collaborative world explo-
ration game developed and deployed to sup-
port this research. Using this setting, we show
that linguistic cues and conversational patterns
extracted from the first 20 seconds of a team
discussion are predictive of whether it will be
a wasteful or a productive one.

1 Introduction

Working in teams is a common strategy for decision
making and problem solving, as building on effec-
tive social interaction and on the abilities of each
member can enable a team to outperform lone in-
dividuals. Evidence shows that teams often per-
form better than individuals (Williams and Stern-
berg, 1988) and even have high chances of reaching

correct answers when all team members were pre-
viously wrong (Laughlin and Adamopoulos, 1980).
Furthermore, team performance is not a factor of in-
dividual intelligence, but of collective intelligence
(Woolley et al., 2010), with interpersonal interac-
tions and emotional intelligence playing an impor-
tant role (Jordan et al., 2002).

Yet, as most people can attest from experience,
team interaction is not always smooth, and poor co-
ordination can lead to unproductive meetings and
wasted time. In fact, Romano Jr and Nunamaker Jr
(2001) report that one third of work-related meet-
ings in the U. S. are considered unproductive, while
a 2005 Microsoft employee survey reports that 69%
of meetings are ineffective.1 As such, many grow
cynical of meetings.

Computational methods with the ability to reli-
ably recognize unproductive discussions could have
an important impact on our society. Ideally, such
a system could provide actionable information as a
discussion progresses, indicating whether it is likely
to turn out to be productive, rather than a waste of
time. In this paper we focus on the conversational
aspects of productive interactions and take the fol-
lowing steps:

• introduce a constructiveness framework that al-
lows us to characterize teams where discussion
enables better performance than the individu-
als could reach, and, conversely, teams better
off not having discussed at all (Section 3);

• create a setting that is conducive to decision-
making discussions, where all steps of the
process (e.g., individual answers, intermedi-
ate guesses) are observable to researchers: the
StreetCrowd game (Sections 4–5);

1money.cnn.com/2005/03/16/technology/survey/

568

• develop a novel framework for conversational
analysis in small group discussions, studying
aspects such as the flow of ideas, conversational
dynamics, and group balance (Sections 6–7).

We reveal differences in the collective decision
process characteristic of productive and unproduc-
tive teams, and show that these differences are re-
flected in their conversational patterns. For exam-
ple, the language used when new ideas are intro-
duced and adopted encodes important discrimina-
tive cues. Measures of interactional balance and
language matching (Niederhoffer and Pennebaker,
2002; Danescu-Niculescu-Mizil et al., 2011) also
prove to be informative, suggesting that more bal-
anced discussions are most productive. Our results
underline the potential held by computational ap-
proaches to conversational dynamics. To encour-
age further work in this direction, we render our
dataset of task-oriented discussions and our feature-
extraction code publicly available.2

2 Related Work

Existing computational work on task-oriented group
interaction is largely focused on how well the team
performs. Coetzee et al. (2015) deployed and stud-
ied the impact of a chat-based team interaction plat-
form in massive open online courses, finding that
teams reach more correct answers than individuals,
and that the experience is more enjoyable. One of-
ten studied experimental setting is the HCRC Map
Task Corpus (Anderson et al., 1991), consisting of
128 conversations between pairs of people, where a
designated one gives directions to the other. This
simplified setting avoids issues like role establish-
ment and leadership. Reitter and Moore (2007) find
that successful dialogs are characterized by long-
term adaptation and alignment of linguistic struc-
tures at syntactic, lexical and character level. A
notable feature of this work is the success predic-
tion task attempted using only the first 5 minutes
of conversation. Other attempts use authority level
features inspired from negotiation theory, experi-
mental meta-features, task-specific features (May-
field et al., 2011), and sociolinguistic spelling differ-
ences (Mayfield et al., 2012). Another research path

2https://vene.ro/constructive/

uses negotiation tasks from the Inspire dataset (Ker-
sten and Zhang, 2003), a collection of 1525 online
bilateral negotiations where roles are fixed (buyer
and seller) and success is defined by the sale going
through. Sokolova et al. (2008) use a bag-of-words
model and investigate the importance of temporal
aspects. Sokolova and Lapalme (2012) measure in-
formativeness, quantified by lexical sets of degrees,
scalars and comparatives.

Research on success in groups with more than two
members is less common. Friedberg et al. (2012)
model the grades of 27 group assignments from a
class using measures of average entrainment, finding
task-specific words to be a strong cue. Jung (2011)
shows how the affective balance expressed in teams
correlates with performance on engineering tasks,
in 30 teams of up to 4 students. In a related study
the balance in the first 5 minutes of an interaction is
found predictive of performance (Jung et al., 2012).
None of the research we are aware of controls for
initial skill or potential of the team members.

In management science, network analysis reveals
that certain subgraphs found in long-term, structured
teams indicate better performance, as rated by se-
nior managers (Cummings and Cross, 2003); con-
trolled experiments show that optimal structures de-
pend on the complexity of the task (Guetzkow and
Simon, 1955; Bavelas, 1950). These studies, as well
as much of the research on effective team crowd-
sourcing (Lasecki et al., 2012; Wang et al., 2011,
inter alia), do not focus on linguistic and conversa-
tional factors.

3 Constructive Discussions

The first hurdle is to reliably quantify how produc-
tive group conversations are. In problem-solving,
the ultimate goal is to find the correct answer, or,
failing that, to come as close to it as possible. To
quantify closeness to the correct answer, a score
is often used, such that better guesses get higher
scores; for example, school grades.

In contrast, our goal is to measure how produc-
tive a team’s interaction is. Scores are measures of
correctness, so using them as a proxy for interaction
quality is not ideal: a team of straight A students can
manage to get an A on a project without exchang-
ing ideas, while a group of D students getting a B is

569

gǖ

gǗ

gǘ

gǙ

true answer

scoreVgǖW
țbest individual
guessȜ

Avg[scoreVgiW]
țmean score of
individual guessesȜ

t

t

t

discussion start discussion end time

sc
or

e

score of
team guess

cavg
țconstructivenessȜ

Figure 1: Intuitive sketch for constructiveness. The
solid green circle corresponds a team guess follow-
ing a constructive discussion (cavg > 0), the dashed
green circle corresponds to the scenario of a team
that outperforms its best member (cbest > 0), while
the dashed red circle corresponds to a team that un-
derperforms its worst member (cworst < 0).

more interesting. In the latter case, the team’s im-
proved performance is likely to come from a good
discussion and an efficient exchange of complemen-
tary ideas—making the sum greater than the parts.

To capture this intuition we say a team discussion
is constructive if it results in an improvement over
the potential of the individuals. We can then quan-
tify the degree of constructiveness cavg as the im-
provement of the team score t over the mean of the
initial scores gi of the N individuals in the team:

cavg = score(t) −
∑N

i=1 score(gi)
N

.

The higher cavg is, the more the team’s answer, af-
ter discussion, improves upon the individuals’ aver-
age performance before discussion; zero construc-
tiveness (cavg = 0) means the team performed no
better than its members did before discussing, while
negative constructiveness (cavg < 0) corresponds
to non-constructive discussions.3 Figure 1 sketches
the idea visually: the dark green circle corresponds
to the team’s score after a constructive discussion
(cavg > 0), being above the average individual score.

Since individuals answers can sometimes vary
widely, we also consider the extreme cases of teams

3From an operational perspective, a team can choose, in-
stead of having a discussion, to aggregate individual guesses,
e.g., by majority voting or averaging. Non-constructive dis-
cussions roughly correspond to cases where such an aggregate
guess would actually be better than what the team discussion
would accomplish.

that perform better than the best team member
(cbest > 0) and worse than the worst member
(cworst < 0), where:

cbest = score(t) − max
i

score(gi)

cworst = score(t) − min
i

score(gi).

One way to think of the extreme cases is to imag-
ine a team supervisor that collects the individual an-
swers and aggregates them, without any external in-
formation. An oracle supervisor can do no better
than choosing the best answer. The discussion and
interaction of teams where cbest > 0 leads to a better
answer than such an oracle could achieve. (One such
scenario is illustrated by the dashed light green cir-
cle in Figure 1.) Similarly, teams where cworst < 0
waste their time completely, as simply picking one
of their members’ answers at random is guaranteed
to do better. (The dashed red circle in Figure 1 illus-
trates this scenario.)

The most important aspect of the constructive-
ness framework, in contrast to traditional measures
of correctness or success, is that all constructiveness
measures are designed to control for initial perfor-
mance or potential of the team members, in order to
focus on the effect of the discussion.4

In settings of importance, the true answer is not
known a priori, and this constructiveness cannot
be calculated directly. We therefore seek out to
model constructiveness using observable conversa-
tional and linguistic correlates (Sections 6–7). To
develop such a model, we design a large-scale exper-
imental setting where the true answer is available to
researchers, but unknown by the players (Section 4).

4 Experimental setting

4.1 StreetCrowd
In order to study the constructiveness of task-
oriented group discussion, we need a setting that is
conducive to decision-making discussions, where all
steps of the process (individual answers, intermedi-
ate guesses, group discussions and decisions) are ob-
servable. Furthermore, to study at scale, we need to

4Due to its relative nature, constructiveness also accounts
for variation in task difficulty in most scenarios. For example,
in terms of cworst, when a team cannot even match its worst per-
forming member, this is a sign of poor team interaction even if
the task is particularly challenging.

570

find a class of complex tasks with known solutions
that can be automatically generated, but that cannot
be easily solved by simply querying search engines.

With these constraints in mind, we built
StreetCrowd, an online multi-player world explo-
ration game.5 StreetCrowd is played in teams of at
least two players and is built around a geographic
puzzle: determining your location based on first-
person images from the ground level.6 Each location
generates a new puzzle.
Solo phase. Each player has 3 minutes to navi-
gate the surroundings, explore, and try to find clues.
This happens independently and without communi-
cating. At the end, the player is asked to make a
guess by placing a marker on the world’s map, and
is prompted for an explanation and for a confidence
level. The answer is not yet revealed.
Team phase. The team must then decide on a single,
common guess. To accomplish this, all teammates
are placed in a chatroom and are provided with a
map and a shared marker. Any player can move the
marker at any point during the discussion. The game
ends when all players agree on the answer, or when
the time limit is reached. An example discussion is
given in Figure 4.

Guesses are scored according to their distance to
the true location using the spherical law of cosines:

score(guess, true) = −Rd(guess, true)

where d is the arc distance on a sphere, and R de-
notes the radius of the earth, assumed spherical. The
score is given by the negative distance in kilometers,
such that higher means better. To motivate players
and emphasize collaboration, the main StreetCrowd
page displays a leaderboard consisting of the best
team players.

The key aspects of the StreetCrowd design are:

• The puzzles are complex and can be generated
automatically in large numbers;

• The true answers are known to researchers, but
hard to obtain without solving the puzzle, al-
lowing for objective evaluation of both individ-
ual and group performance;

5http://streetcrowd.us/log_in

(the experiment was approved by the IRB).
6We embed Google Street View data.

• Scoring is continuous rather than discrete, al-
lowing us to quantify degrees of improvement
and capture incremental effects;

• Each teammate has a different solo phase ex-
perience and background knowledge, making it
possible for the group discussion to shed light
on new ideas;

• The puzzles are engaging and naturally con-
ducive to collaboration, avoiding the use of
monetary incentives that can bias behavior.

4.2 Preprocessing

In the first 8 months, over 1400 distinct players par-
ticipated in over 2800 StreetCrowd games. We tok-
enize and part-of-speech tag the conversations.7 Be-
fore analysis, due to the public nature of the game,
we perform several filtering and quality check steps.
Discarding trivial games. We remove all games
that the developers took part in. We filter games
where the team fails to provide a guess, where fewer
than two team members engage in the team chat, and
puzzles with insufficient samples.
Preventing and detecting cheating. The
StreetCrowd tutorial asks players to avoid us-
ing external resources to look up clues and get an
unfair advantage. To prevent cheating, we detect
and block chat messages that link to websites, and
we employ cookies and user accounts to prevent
people from playing the same puzzle multiple
times. To identify games that slip through this net,
we flag cases where the team, or any individual
player, guesses within 10 km of the correct answer,
and leaves the window while playing. We further
remove a small set of games where the players
confess to cheating in the chat.

After filtering, our dataset consists of 1450 games
on 70 different puzzles, with an average of 3.9
games per unique player, and 12.1 messages and
64.5 words in an average conversation.

5 Constructiveness in StreetCrowd

We find that, indeed, most of the games are con-
structive. There are, however, 32% non-constructive

7We use the TweetNLP toolkit (Owoputi et al., 2013) with a
tag set developed for Twitter data. Manual examination reveals
this approach to be well suited for online chat data.

571

15000 10000 5000 0 5000 10000 15000
Constructiveness (improvement in km)

0
50

100
150
200
250
300
350
400
450

N
um

be
r

of
 te

am
s (++) cbest > 0

(+) cavg > 0

(­ ­) cworst 0

(­) cavg 0

Figure 2: Distribution of team constructiveness.

games (cavg < 0); this reflects very closely the sur-
vey by Romano Jr and Nunamaker Jr (2001). In-
terestingly, in 36% of games, the team arrives at
a better answer than any of the individual guesses
(cbest > 0). The flip side is also remarkably com-
mon, with 17% of teams performing even worse than
the worst individual (cworst < 0). The distribution of
constructiveness is shown in Figure 2: the fat tails
indicate that cases of large improvements and large
deterioration are not uncommon.

Collective decision process. Due to the full instru-
mentation of the game interface, we can investigate
how constructiveness emerges out of the team’s in-
teraction. The team’s intermediate guesses during
discussion confirm that a meaningful process leads
to the final team decision: guesses get closer and
closer to the final submitted guess (Figure 3a); in
other words, the team converges to their final guess.

Notably, when considering how correct the in-
termediate guesses are, we notice an important
difference between the way constructive and non-
constructive teams converge to their final guess (Fig-
ure 3b). During their collaborative decision pro-
cess, constructive teams make guesses that get closer
and closer to the correct answer; in contrast, non-
constructive teams make guesses that take them far-
ther from the correct answer. This observation has
two important consequences. First, it shows that
the two types of teams behave differently through-
out, suggesting we could potentially detect non-
constructive discussions early on, using interaction
patterns. Second, it emphasizes the potential practi-
cal value of such a task: stopping a non-constructive
team early could lead to a better answer than if they
would carry on.

­3 ­2 ­1 final
intermediate guess

0.0
0.5
1.0
1.5
2.0
2.5

di
st

an
ce

 (
x1

00
0

km
)

(a) Distance between the last three intermediate
guesses and the final guess.

indiv. 1 2 3 final
intermediate guess

­10

­8

­6

­4

­2

0

sc
or

e
(x

10
00

 k
m

)

constructive
not constr.

(b) Score of the first three intermediate guesses; the
mean score of the initial individual guesses and the

score of the final team guess are shown for reference.

Figure 3: Intermediate guesses offer a glimpse at the
decision process: (a) guesses converge rather than
zig-zag (b) in constructive games, guesses get in-
crementally better than the mean individual score,
while in non-constructive games, they get worse.
(Games with ≥ 3 intermediate guesses.)

6 Conversation analysis

The process of team convergence revealed in the pre-
vious section suggests a relation between the inter-
action leading to the final group decision and the rel-
ative quality of the outcome. In this section, we de-
velop a conversation analysis framework aimed at
characterizing this relation. This framework relies
on conversational patterns and linguistic features,
while steering away from lexicalized cues that might
not generalize well beyond our experimental setting.
To enable reproducibility, we make available the fea-
ture extraction code and the hand-crafted resources
on which it relies.8

8https://vene.ro/constructive/

572

J: hey
E: Hey
L: based on the buildings i would say China
E: What do you guys think?
 Yeah, same
J: I feel like it is somewhere in south east asia
E: In Shanghai the buildings all look like that
 But Shanghai is too densely urban
 This is definitely somewhere on the outskirts of the city
L: yeap
E: any other ideas?
J: is there a place more rural with that kind of buildings?
E: haha china is HUGE
 I couldn't guess
J: For sure it is in Asia, but I don't know more...
L: let s pick in the subburbs of shanghai
E: Yeah
J: alright, let's go with this.

J: Tropical setting + some asia
 writing signs
E: Lots of similar looking apartments -
 like outskirts of urban China
L: țNone givenȜ

Reasons

Chat

Idea flow

J

E L

ǖ
Ǘ
ǖ

Figure 4: Example (constructive) conversation and
the corresponding flow of ideas. Idea mentions
are in bold, and relevant word classess are un-
derlined. Arrow colors map to introducer–adopter
pairs, matching the edges in the top-right graph.

6.1 Idea flow

Task-oriented discussions are the the primary way of
exchanging ideas and opinions between the group
members; some are quickly discarded while others
prove useful to the final guess. The arrows in Fig-
ure 4 show how ideas are introduced and discussed
in that example conversation. We attempt to cap-
ture the shape in which the ideas flow in the discus-
sion. In particular, we are interested in how many
ideas are discussed, how widely they are adopted,
who tends to introduce them, and how.

We consider as candidate ideas all nouns, proper
nouns, adjectives and verbs that are not stopwords.
As soon as a candidate idea introduced by a player is
adopted by another, we count it. Henceforth, we’ll
refer to such adopted ideas simply as ideas. In gen-
eral chat domains, state-of-the-art models of conver-

sation structure use unsupervised probabilistic mod-
els (Ritter et al., 2010; Elsner and Charniak, 2010).
Since StreetCrowd conversations are short and fo-
cused, the adoption filter is sufficient to accurately
capture what ideas are being discussed; a manual
examination of the ideas reveals almost exclusively
place names and words such as flag, sign, road—
highly relevant clues in the context of StreetCrowd.
In Figure 4, three ideas are adopted: China, build-
ings and Shanghai. The only idea adopted by all
players is buildings, a good signal that this was the
most important clue. A notable limitation is that this
approach cannot capture the connections between
Shanghai and China, or buildings and apartments.
Further work is needed to robustly capture such vari-
ations in idea flow, as they could reveal trajectories
(discussion getting more specific or more vague) or
lexical choice disagreement.

Balance in idea contributions between the team
members is a good indicator of productive discus-
sions. In particular, in the best teams (the ones
that outperform the best player, i.e., cbest > 0) the
most idea-prolific player introduces fewer ideas, on
average, than in the rest of the games (Figure 5a,
p = 0.01).9 In Figure 4, E is the most prolific player
and only introduces two ideas. To further capture the
balance in contribution between the team members,
we use the entropy of the number ideas introduced
by each player. We also count the number of ideas
adopted unanimously as an indicator of convergence
in the conversation.

In terms of the overall number of ideas dis-
cussed, both the best teams (the ones that outper-
form the best player) and the worst teams (the ones
that perform worse than the worst player) discuss
fewer ideas than the rest (Figure 5b, p = 0.006).
Indeed, an ideal interaction would avoid distract-
ing ideas, but in teams with communication break-
downs, members might fail to adequately discuss the
ideas that led them to their individual guesses.

The language used to introduce new ideas can
indicate confidence or hesitation; in Figure 4, a
hedge (would) is used when introducing the build-
ings cue. We find that, in teams that outperform
the best player, ideas are less likely to be accom-

9All p-values reported reported in this section are based on
one-sided Mann-Whitney rank statistical significance tests.

573

++ + ­ ­ ­
0.8
1.0
1.2
1.4

(a) Ideas by most
prolific player

++ + ­ ­ ­
1.2
1.4
1.6
1.8
2.0

(b) Ideas adopted

++ + ­ ­ ­
0.2
0.4
0.6
0.8
1.0

(c) Hedged idea
introductions

++ + ­ ­ ­
0.4
0.6
0.8
1.0
1.2

(d) Hedged idea
adoptions

++ + ­ ­ ­
22

24

26

(e) Time between
turns (seconds)

++ + ­ ­ ­
0.25
0.30
0.35
0.40

(f) Guessing entropy

++ + ­ ­ ­
0.91
0.92
0.93
0.94

(g) Message entropy

++ + ­ ­ ­
0.15
0.20
0.25

(h) Max-pair content
word matching

++ + ­ ­ ­
0.8
1.0
1.2
1.4
1.6

(i) Overall POS
bigram matching

++ + ­ ­ ­
0.06

0.07

0.08

(j) Ratio of words
related to geography

Figure 5: Averages for some of the predictive features, based on idea flow (a-d), balance (e-i), and lexicons
(j). Error bars denote standard errors. Legend: (++): teams that do better than their best member (N = 525),
(+): constructive (N = 986), (-): non-constructive (N = 464), (- -): worse than worst member (N = 248).

panied by hedge words when introduced (Figure 5c,
p < 10−4), showing less hesitation. Furthermore,
the level of confidence used when players adopt oth-
ers’ ideas is also informative (Figure 5d). Inter-
estingly, overall occurrences of certainty and hedge
words (detailed in Section 6.3) are not predictive,
suggesting that ideas are good selectors for impor-
tant discussion segments.

6.2 Interaction dynamics
Balance. Interpersonal balance has been shown to
be predictive of team performance (Jung, 2011; Jung
et al., 2012) and, similarly, forms of linguistic bal-
ance have been shown to characterize stable rela-
tionships (Niculae et al., 2015). Here we focus on
balance in contributions to the discussion and the de-
cision process. In search of measures applicable to
teams of arbitrary sizes, we use binary indicators of
whether all players participate in the discussion and
in moving the marker, as well as whether at least
two players move the marker. To measure team bal-
ance with respect to continuous user-level features,
we use the entropy of these features:

balance(S) = −
∑
s̄∈S

s̄ log|S| s̄,

where, for a given feature, S is the set of its val-
ues for each user, normalized to sum to 1. For in-
stance, the chat message entropy is 1 if everybody
chats equally, and decreases toward 0 as one or more

players dominate. We use the entropy of the num-
ber of messages, words per message, and number of
intermediate guesses. In teams that outperform the
best player, users take turns controlling the marker
more uniformly (Figure 5f, p = 0.006), adding fur-
ther evidence that well-balanced teams perform best.
Language matching. We investigate matching at
stopword, content word, and POS tag bigram level:
the stopword matching at a turn is given by the num-
ber of stopwords from the earlier message repeated
in the reply, divided by the total number of distinct
stopwords to choose from; similarly for the rest. We
micro-average over the conversation:

match =

∑
(msg,reply)∈Turns |msg ∩ reply|∑

(msg,reply)∈Turns |msg| .

We also micro-average at the player-pair level, and
use the maximum pair value as a feature. This gives
an indication of how cohesive the closest pair is,
which can be a sign of the level of power imbal-
ance between the two (Danescu-Niculescu-Mizil et
al., 2012). Figure 5h shows that in teams that out-
perform the best individual the most cohesive pair
matches fewer content words (p = 0.023). Overall
matching is also significant, notably in terms of part-
of-speech bigrams; in teams that outperform the best
individual there is less overall matching (Figure 5i,
p = 0.007). These results suggest that in construc-
tive teams the relationships between the members
are less subordinate.

574

Agreement and confidence. We capture the amount
of agreement and disagreement using high-precision
keywords and filters validated on a subset of the
data. (For instance, the word sure marks agreement
if found at the beginning of a message, but not other-
wise.) In Figure 4, agreement signals are underlined
with purple; the team exhibits no disagreement.

The relative position of successive guesses made
can also indicate whether the team is refining a guess
or contradicting each other. We measure the median
distance between intermediate guesses, as well as
between guesses made by different players; in con-
structive teams, the jumps between different player
guesses are smaller (p < 10−16).

Before the discussion starts, players are asked
to self-evaluate their confidence in their individual
guesses. Constructive teams have more confident
members on average (p < 10−5).

6.3 Other linguistic features

Length and variation. We measure the average
number of words per message, the total number of
words used to express the solo phase reasons, and
the overall type/token ratio of the conversation. We
also measure responsiveness in terms of the mean
time between turns and the total number of turns.
Psycholinguistic lexicons. We use hand-crafted
lexicons inspired from LIWC (Tausczik and Pen-
nebaker, 2010) to capture certainty and pronoun
use. For example, the conversation in Figure 4 has
two confident phrases, underlined in red. We also
use a custom hedging lexicon adapted from Hyland
(2005) for conversational data; hedging words are
underlined in blue in Figure 4. To estimate how
grounded the conversation is, we measure the av-
erage concreteness of all content nouns, adjectives,
adverbs and verbs, using scalar word and bigram rat-
ings from Brysbaert et al. (2014).10 Concreteness
reflects the degree to which a word denotes some-
thing perceptible, as opposed to ideas and concepts.
Words like soil and coconut are highly concrete,
while words like trust have low concreteness.
Game-specific words. We put together a lexicon of
geography terms and place names, to capture task-

10We scale the ratings to lie in [0, 1]. We extrapolate to out-
of-vocabulary words by regressing on dependency-based word
embeddings (Levy and Goldberg, 2014); this approach is highly
accurate (median absolute error of about 0.1).

Full conversation First 20s
Features (++) (+) (- -) (++) (+) (- -)

Baseline .51 .52 .55 .52 .50 .54
Linguistic .54 .52 .50 .50 .51 .50
Interaction .55† .56† .53 .55† .57⋆ .56
POS .55† .59⋆ .55 .54 .54 .53
All .56⋆ .60⋆ .56 .56⋆ .57⋆ .57†

Table 1: Cross-validation AUC scores. Signifi-
cantly better than chance scores after 5000 permu-
tations denoted with ⋆ (p < 0.05) and † (p < 0.1).

specific discussion. We use a small set of words
specific to the StreetCrowd interface, such as map,
marker, and game, to capture phatic communica-
tion. Figure 5j shows that constructive teams tend
to use more geography terms (p = 0.008), possi-
bly because of more on-topic discussion and a more
focused vocabulary.
Part-of-speech patterns. We use n-grams of coarse
part-of-speech tags as a general way of capturing
common syntactic patterns.

7 Predicting constructiveness

7.1 Experimental setup

So far we have characterized the relation between a
team’s interaction patterns and its level of produc-
tivity. This opens the door towards recognizing con-
structive and non-constructive interactions in real-
istic settings where the true answer is not known.
Ideally, such an automatic system could prompt un-
productive teams to reconsider their approach, or
to aggregate their individual answers instead. With
early detection, non-constructive discussions could
be stopped or steered on the right track. In order to
assess the feasibility of such a challenging task and
to compare the predictive power of our features, we
consider three classification objectives:
(++): Team outperforms its best member (cbest > 0)?
(+): Team is constructive (cavg > 0)?
(- -): Team underperforms its worst member (cworst < 0)?
To investigate early detection, we evaluate the clas-
sification performance when using data from only
the first 20 seconds of the team’s interaction.11

11Measured from the first chat message or guess. For this
evaluation, we remove teams where the first 20 seconds contain
over 75% of the interaction, to avoid distorting the results with

575

Since all three objectives are imbalanced (Fig-
ure 2), we use the area under the ROC curve (AUC)
as the performance metric, and we use logistic
regression models. We perform 20 iterations of
puzzle-aware shuffled train-validation splitting, fol-
lowed by 5000 iterations on the best models, to esti-
mate variance. This ensures that the models don’t
learn to overfit puzzle-specific signals. The com-
bined model uses weighted model averaging. We
use grid search for regularization parameters, feature
extraction parameters, and combination weights.

7.2 Discussion of the results (Table 1)

We compare to a baseline consisting of the team
size, average number of messages per player, and
conversation duration. For comparison, a bag-of-
words classifier does no better than chance and is
on par with the baseline. We refer to idea flow and
interaction dynamics features (Section 6.2) as Inter-
action, and to linguistic and lexical features (Sec-
tion 6.3) as Linguistic. The combination model in-
cluding baseline, interaction, linguistic and part-of-
speech n-gram features, is consistently the best and
significantly outperforms random guessing (AUC
.50) in nearly all settings. While overall scores
are modest, the results confirm that our conversa-
tional analysis framework has predictive power, and
that the high-stakes task of early prediction is fea-
sible. The language used when introducing and
adopting ideas, together with balance and language
matching features, are selected in nearly all settings.
The least represented class (- -) has the highest vari-
ance in prediction, suggesting that more data collec-
tion is needed to successfully capture extreme cases.
Useful POS patterns capture the amount of proper
nouns and their contexts: proper nouns at the end of
messages are indicative of constructiveness, while
proper nouns followed by verbs are a negative fea-
ture. (The constructive discussion shown in Figure 4
has most proper nouns at the end of messages.)

A manual error analysis of the false positives and
false negatives where our best model is most con-
fident points to games with very short conversations
and spelling mistakes, confirming that the noisy data
problem causes learning and modeling difficulties.

teams who make their decision early, but take longer to submit.
The 20 second threshold was chosen as a trade-off in terms of
how much interaction it covers in the games.

8 Conclusions and Future Work

We developed a framework based on conversational
dynamics in order to distinguish between produc-
tive and unproductive task-oriented discussions. By
applying it to an online collaborative game we de-
signed for this study, we reveal new interactions with
conversational patterns. Constructive teams are gen-
erally well-balanced on multiple aspects, with team-
members participating equally in proposing ideas
and making guesses and showing little asymmetry in
language matching. Also, the flow of ideas between
teammates marks predictive linguistic cues, with the
most constructive teams using fewer hedges when
introducing and adopting ideas.

We show that such cues have predictive power
even when extracted from the first 20 seconds of
the conversations. In future work, improved clas-
sifiers could lead to a system that can intervene in
non-constructive discussions early on, steering them
on track and preventing wasted time.

Further improving classification performance on
such a difficult task will hinge on better conversation
processing tools, adequate for the domain and robust
to the informal language style. In particular, we plan
to develop and evaluate models for idea flow and
(dis)agreement, using more advanced features (e.g.,
from dependency relations and knowledge graphs).

The StreetCrowd game is continuously accumu-
lating more data, enabling further development on
conversation analysis. Our full control over the
game permits manipulation and intervention exper-
iments that can further advance research on team-
work. In future work, we envision applying our
framework to settings where teamwork takes place
online, such as open-source software development,
Wikipedia editing, or massive open online courses.

Acknowledgements We are particularly grateful to
Bob West for the poolside chat that inspired the de-
sign of the game, to Daniel Garay, Jinjing Liang
and Neil Parker for participating in its development,
and to the numerous passionate players. We are
also grateful to Natalya Bazarova, David Byrne,
Mala Gaonkar, Lillian Lee, Sendhil Mullainathan,
Andreas Veit, Connie Yuan, Justine Zhang and the
anonymous reviewers for their insightful sugges-
tions. This work was supported in part by a Google
Faculty Research Award.

576

References

Anne H Anderson, Miles Bader, Ellen Gurman Bard,
Elizabeth Boyle, Gwyneth Doherty, Simon Garrod,
Stephen Isard, Jacqueline Kowtko, Jan McAllister, and
Jim Miller. 1991. The HCRC map task corpus. Lan-
guage and speech, 34(4):351–366.

Alex Bavelas. 1950. Communication patterns in task-
oriented groups. Journal of the Acoustical Society of
America.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuper-
man. 2014. Concreteness ratings for 40 thousand
generally known English word lemmas. Behavior Re-
search Methods, 46(3):904–911.

Derrick Coetzee, Seongtaek Lim, Armando Fox, Bjorn
Hartmann, and Marti A Hearst. 2015. Structuring
interactions for large-scale synchronous peer learning.
In Proceedings of CSCW.

Jonathon N Cummings and Rob Cross. 2003. Structural
properties of work groups and their consequences for
performance. Social Networks, 25(3):197–210.

Cristian Danescu-Niculescu-Mizil, Michael Gamon, and
Susan Dumais. 2011. Mark my words! Linguistic
style accommodation in social media. In Proceedings
of WWW.

Cristian Danescu-Niculescu-Mizil, Lillian Lee, Bo Pang,
and Jon Kleinberg. 2012. Echoes of power: Language
effects and power differences in social interaction. In
Proceedings of WWW.

Micha Elsner and Eugene Charniak. 2010. Dis-
entangling chat. Computational Linguistics,
36(3):389–409.

Heather Friedberg, Diane Litman, and Susannah BF
Paletz. 2012. Lexical entrainment and success in stu-
dent engineering groups. In Proceedings of the Spoken
Language Technology Workshop.

Harold Guetzkow and Herbert A Simon. 1955. The im-
pact of certain communication nets upon organization
and performance in task-oriented groups. Manage-
ment Science, 1(3-4):233–250.

Ken Hyland. 2005. Metadiscourse: Exploring interac-
tion in writing. Continuum.

Peter J Jordan, Neal M Ashkanasy, Charmine EJ Härtel,
and Gregory S Hooper. 2002. Workgroup emotional
intelligence: Scale development and relationship to
team process effectiveness and goal focus. Human Re-
source Management Review, 12(2):195–214.

Malte F Jung, Jan Chong, and Larry Leifer. 2012. Group
hedonic balance and pair programming performance:
affective interaction dynamics as indicators of perfor-
mance. In Proceedings of SIGCHI.

Malte F Jung. 2011. Engineering team performance and
emotion: Affective interaction dynamics as indicators

of design team performance. Ph.D. thesis, Stanford
University.

Gregory E Kersten and Grant Zhang. 2003. Mining in-
spire data for the determinants of successful internet
negotiations. Central European Journal of Operations
Research, 11(3).

Walter S Lasecki, Christopher D Miller, Adam Sadilek,
Andrew Abumoussa, Donato Borrello, Raja Kushal-
nagar, and Jeffrey P Bigham. 2012. Real-time cap-
tioning by groups of non-experts. In Proceedings of
UIST.

Patrick R Laughlin and John Adamopoulos. 1980. So-
cial combination processes and individual learning
for six-person cooperative groups on an intellective
task. Journal of Personality and Social Psychology,
38(6):941.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of ACL.

Elijah Mayfield, Michael Garbus, David Adamson, and
Carolyn Penstein Rosé. 2011. Data-driven interac-
tion patterns: Authority and information sharing in di-
alogue. In Proceedings of AAAI Fall Symposium on
Building Common Ground with Intelligent Agents.

Elijah Mayfield, David Adamson, Alexander Rudnicky,
and Carolyn Penstein Rosé. 2012. Computational rep-
resentation of discourse practices across populations in
task-based dialogue. In Proceedings of ICIC.

Vlad Niculae, Srijan Kumar, Jordan Boyd-Graber, and
Cristian Danescu-Niculescu-Mizil. 2015. Linguistic
harbingers of betrayal: A case study on an online strat-
egy game. In Proceedings of ACL.

Kate G Niederhoffer and James W Pennebaker.
2002. Linguistic style matching in social interac-
tion. Journal of Language and Social Psychology,
21(4):337–360.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of
NAACL.

David Reitter and Johanna D Moore. 2007. Predicting
success in dialogue. In ACL, volume 45, page 808.

Alan Ritter, Colin Cherry, Bill Dolan, et al. 2010. Un-
supervised modeling of Twitter conversations. In Pro-
ceedings of NAACL.

Nicholas C Romano Jr and Jay F Nunamaker Jr. 2001.
Meeting analysis: Findings from research and prac-
tice. In Proceedings of HICSS.

Marina Sokolova and Guy Lapalme. 2012. How much
do we say? Using informativeness of negotiation text
records for early prediction of negotiation outcomes.
Group Decision and Negotiation, 21(3):363–379.

577

Marina Sokolova, Vivi Nastase, and Stan Szpakowicz.
2008. The telling tail: Signals of success in electronic
negotiation texts.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: LIWC and comput-
erized text analysis methods. Journal of Language and
Social Psychology, 29(1):24.

Hao-Chuan Wang, Susan R Fussell, and Dan Cosley.
2011. From diversity to creativity: Stimulating
group brainstorming with cultural differences and
conversationally-retrieved pictures. In Proceedings of
CSCW.

Wendy M Williams and Robert J Sternberg. 1988. Group
intelligence: Why some groups are better than others.
Intelligence, 12(4):351–377.

Anita Williams Woolley, Christopher F Chabris, Alex
Pentland, Nada Hashmi, and Thomas W Malone.
2010. Evidence for a collective intelligence fac-
tor in the performance of human groups. Science,
330(6004):686–688.

578

Proceedings of NAACL-HLT 2016, pages 579–588,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Vision and Feature Norms: Improving automatic feature norm learning
through cross-modal maps

Luana Bulat, Douwe Kiela and Stephen Clark
Computer Laboratory

University of Cambridge
ltf24,douwe.kiela,stephen.clark@cl.cam.ac.uk

Abstract

Property norms have the potential to aid a
wide range of semantic tasks, provided that
they can be obtained for large numbers of
concepts. Recent work has focused on text
as the main source of information for auto-
matic property extraction. In this paper we ex-
amine property norm prediction from visual,
rather than textual, data, using cross-modal
maps learnt between property norm and visual
spaces. We also investigate the importance of
having a complete feature norm dataset, for
both training and testing. Finally, we evalu-
ate how these datasets and cross-modal maps
can be used in an image retrieval task.

1 Introduction

Many cognitive theories of conceptual organisation
assume that concepts are distributed representations
over semantic primitives, often referred to as fea-
tures or properties1 (Tyler et al., 2000; Randall et al.,
2004). That is, we can understand the meaning of a
concept through its properties. For example, under-
standing the meaning of BANANA is closely related
to understanding that it has properties such as is a
fruit, is yellow, is long, is sweet, and knowing how
these properties overlap with or differ from the prop-
erties of other concepts.

A number of property norm datasets, where hu-
mans were asked to list attributes of given concepts,
have been collected to test this hypothesis (McRae
et al., 2005; Vinson and Vigliocco, 2008; Devereux

1Throughout the paper we will be using the terms properties,
features norms and attributes interchangeably.

et al., 2013). After having been used to test mod-
els of conceptual representation in cognitive science
for decades (Randall et al., 2004; Cree et al., 2006),
these datasets have proved to be useful in a wide
range of semantic NLP tasks as well, including text
simplification for limited vocabulary groups. More
recently, property norms have been used as a proxy
for perceptual information in a number of studies on
multi-modal semantics (Andrews et al., 2009; Ri-
ordan and Jones, 2011; Silberer and Lapata, 2012;
Roller and Im Walde, 2013; Hill and Korhonen,
2014). Such models aim to addres the grounding
problem (Harnad, 1990) that distributional semantic
models of language (Turney and Pantel, 2010; Clark,
2015) suffer from.

Property norms are a valuable source of seman-
tic information, and can potentially be applied to a
variety of NLP tasks, but are expensive to obtain
because they involve intensive human annotation.
The largest property norm dataset to date consists
of just 638 concepts (Devereux et al., 2013), and the
most widely cited one presents properties for only
541 concepts (McRae et al., 2005). If we are to
use these datasets in large-scale semantic tasks, we
would need to extend the currently available prop-
erty norms by obtaining annotations for more than
just a few hundred words.

The alternative to collecting more data through
human annotation is to increase the coverage of
property norms datasets by automatically inferring
properties of concepts from easily accessible re-
sources, such as textual data. Considering the fact
that concepts, as well as their properties, are in lin-
guistic form, the task then becomes a bootstrapping

579

one where we take advantage of the abundance of
freely available textual corpora.

There are two strands of research that attempt
to automatically obtain property norm data for new
concepts. One approach is to automatically generate
feature norms from text corpora by mining text data
for a set of generalised property patterns (Kelly et
al., 2014; Baroni et al., 2010; Barbu, 2008). An-
other avenue of research is inspired by Lazaridou
et al. (2014) and Mikolov et al. (2013b) and tries
to increase the coverage of feature norms through
cross-modal mapping from linguistic information
(Fagarasan et al., 2015).

Here, we follow recent trends in multi-modal se-
mantics and explore automatic property norm ex-
traction from visual, rather than textual, data. Ob-
taining property norms from visual information
makes intuitive sense: information contained in the
property norm datasets can often be attributed to
extra-linguistic modalities—a large proportion of
relevant properties are visual, auditory or tactile,
rather than linguistic (e.g. is round, makes noise,
is yellow).

We show that such conceptual properties can
be more accurately predicted through cross-modal
mappings from raw perceptual information (i.e. im-
age data) or multi-modal models (i.e. text and image
data combined) rather than from purely textual in-
formation (Section 3). Furthermore, we analyse the
quality of human collected property norm datasets
and conclude that these are sparse and incomplete,
meaning that there will be a lot of property annota-
tions missing for a given concept (e.g. has legs is
not listed as a property of TORTOISE). We show that
having a complete dataset can drastically increase
the performance of automatic feature prediction, re-
sulting in a truer evaluation (Section 3.5). Lastly,
we demonstrate how property norm datasets could
be used in an image retrieval task (Section 4), which
opens up intriguing possibilities for retrieving con-
cepts based on their visual properties.

2 Property norms

Property norming studies are set up in the following
way: participants are asked to freely write down a
list of properties for a given concept, whilst being
encouraged to consider different kinds of properties

BANANA CELLO

is yellow, 29 a musical instrument, 26
a fruit, 25 has strings, 16
is edible, 13 made of wood, 16
is soft, 12 found in orchestras, 13
grows on trees, 11 is large, 13
eaten by peeling, 10 requires a bow, 9

Table 1: Examples of features together with their
production frequencies from MCRAE

(how the concept feels, smells, what it is used for
etc).

Besides collecting lists of properties for the con-
cepts of interest, a number of useful property statis-
tics are also collected during these studies. For ex-
ample, the number of participants that have pro-
duced the same property for a given concept (also
called production frequency) and the number of con-
cepts for which a particular property is listed in the
dataset (number of concepts per feature) have been
proposed as fundamental organising principles of
cognitive models (Cree et al., 2006).

One of the most widely used property norm
datasets is the one collected by McRae et al. (2005),
henceforth MCRAE. It contains feature norms for a
set of 541 concrete nouns. Each concept was seen
by 30 participants and only features that were listed
by at least 5 participants were recorded. The pub-
lished dataset contains a total of 2526 features, with
a mean of 13.7 features per concept. The numbers
of features registered for a given concept range be-
tween 6 (for concepts like COLANDER or HARMON-
ICA) and 26 (for FAWN). Table 1 lists some exam-
ples of properties that have been produced for BA-
NANA and CELLO, taken from the MCRAE dataset.

The largest feature norm dataset published to date
was developed by the Cambridge Centre for Speech,
Language and Brain (Devereux et al., 2013). It
contains semantic properties for 638 concrete con-
cepts, with 415 of these also appearing in MCRAE.
The data collection experiment was done similarly
to McRae et al. (2005), using a production frequency
cutoff of 5. The final dataset lists a total of 4359 fea-
tures for the 638 concepts, with an average of 2.15
features per concept more than MCRAE. Although
most property norm datasets have only collected
property norms for nouns, Vinson and Vigliocco

580

Property type Count Examples
ENCYCLOPAEDIC 739 associated with vampires
FUNCTION 794 used for cutting
SMELL 7 is musty, smells bad
SOUND 55 barks, produces music
TACTILE 39 is scaly, is hot, is soft
TASTE 12 is delicious, tastes sour
TAXONOMIC 207 an insect, a vegetable
VISUAL(COLOUR) 34 is black, is white
VISUAL(FORM) 544 has a motor, made of lace
VISUAL(MOTION) 95 flies, jumps, runs fast
TOTAL 2526 -

Table 2: Property types and associated examples
from MCRAE

(2008) also include verbs in their study.
All the experiments presented in this paper were

conducted on MCRAE. Our choice is motivated by
the fact that this dataset has also been used in pre-
vious work on automated property norm prediction
(Kelly et al., 2014; Fagarasan et al., 2015), besides
being one of the largest publicly-available property
norm datasets.

One aspect of feature norms that previous work
(Kelly et al., 2014; Baroni et al., 2010; Barbu, 2008;
Fagarasan et al., 2015) fails to capture is their multi-
modal nature. Even though the attributes are elicited
in a linguistic form, and some properties (e.g. what
things look like) are easier to verbalise than others
(e.g. what things smell like), these datasets contain
a variety of property types, ranging from visual and
auditory to encyclopaedic and behavioural. Table 2
shows some examples for each of the 10 property
types as defined and annotated in MCRAE. More
than 25% of all features are visual (e.g. is yellow,
is round, made of metal); hence a natural question
that follows is whether images can be used in the
property norm prediction task and how their per-
formance compares to that of predicting properties
from text.

3 Predicting feature norms from images
through cross-modal mapping

Cross-modal maps represent a formalisation of the
reference problem. For example, by inducing cross-
modal maps between visual vectors and linguistic
ones we can learn which images (represented as vi-
sual vectors) refer to which concepts (represented as

is yellow a fruit is edible is soft
BANANA 29 25 13 12

APPLE 7 24 0 0
BED 0 0 0 13

Table 3: Subspace of PROPNORM. Important to
note that MCRAE is not complete, meaning that even
though some properties are true of a given concept,
they have not been produced by the human partic-
ipants (e.g. the is edible property for APPLE holds
the value 0).

text-based distributional vectors) (Lazaridou et al.,
2014). This represents an extension of the object
recognition problem, since we want to associate im-
ages with semantic representations of their depicted
objects, rather than just with their label (Frome et
al., 2013; Socher et al., 2014).

The benefit of this approach lies in its generali-
sation power: once a function between the two se-
mantic spaces is learnt, it can be used to see how
an unseen concept relates to other concepts, just by
looking at an image of that concept. This is referred
to as the zero-shot learning task (Palatucci et al.,
2009; Lazaridou et al., 2014). Our task is to increase
the coverage of the property norm datasets, meaning
that we want to predict properties for new (unseen)
concepts. For example, the concept WOLF is not in-
cluded in MCRAE, but it would be desirable to know
which of the properties in the dataset apply to it (e.g.
is animal, has 4 legs) and which don’t (e.g. a bird,
made of metal).

3.1 Building modality-specific representations

We obtain distributed representations of concepts
in the property-norm semantic space (henceforth
PROPNORM) by simply treating MCRAE as a bag
of 2526 properties, with the production frequencies
representing the “co-occurrence counts” (Table 3).

Our visual space (henceforth VISUAL) consists of
visual representations for all the 541 concepts in
MCRAE, built as follows. First, we retrieve 10 im-
ages per concept from Google Images,2 following
previous work (Bergsma and Goebel, 2011; Kiela
and Bottou, 2014). The image representations are
then obtained by extracting the pre-softmax layer

2www.google.com/imghp (images were retrieved on
10 April 2015)

581

from a forward pass in a convolutional neural net-
work that has been trained on the ImageNet classifi-
cation task using Caffe (Jia et al., 2014). We aggre-
gate images associated with a concept into an overall
visually grounded representation by taking the mean
of the individual image representations. The dimen-
sionality of the visual vectors is 4096.

We also build three linguistic spaces (DISTRIB,
SVD and EMBED), along the lines of Fagarasan
et al. (2015). DISTRIB is a 10K-dimensional
“vanilla” distributional semantic space, where the
contexts are the top 10K most frequent lemmatised
words (excluding stopwords) from the October 2013
Wikipedia dump. We use raw frequency counts with
context windows being defined as sentence bound-
aries. SVD is a 300-dimensional SVD-reduced ver-
sion of DISTRIB where PPMI has been applied to
the raw counts. EMBED stands for the continu-
ous vector representations from the log-linear skip-
gram model of Mikolov et al. (2013a). We used the
publicly-available3 representations that were trained
on part of the Google News dataset (about 100 bil-
lion words).

We will also employ three multi-modal seman-
tic spaces (VISUAL+DISTRIB, VISUAL+SVD, VI-
SUAL+EMBED), in which the visual (VISUAL) and
respective linguistic representations (DISTRIB, SVD,
EMBED) are combined into a multi-modal rep-
resentation by concatenating their respective L2-
normalized representations.

3.2 Method and evaluation
Following previous work (Fagarasan et al., 2015;
Kiela et al., 2015) we use partial least squares re-
gression (PLSR)4 to learn cross-modal maps to the
property-norm space (PROPNORM) from the visual
(VISUAL), linguistic (DISTRIB, SVD, EMBED) and
multi-modal semantic spaces (VISUAL+DISTRIB,
VISUAL+SVD, VISUAL+EMBED). At training time,
we take advantage of the fact that we possess both
visual/linguistic/multi-modal and property norm in-
formation for the concepts in MCRAE. Let’s con-
sider the VISUAL→PROPNORM setting as an exam-
ple. We use this cross-modal vocabulary to learn
a mapping function between VISUAL and PROP-

3https://code.google.com/p/word2vec/
4The number of components in the linear regression was set

to 100 for all experiments.

NORM: this function will learn to map visual dimen-
sions to property dimensions. During testing, we
use the learnt function to map the visual informa-
tion of a previously unseen concept (e.g. CAT) to the
property norm space and obtain a predicted prop-
erty vector for that concept. Ideally, we want this
predicted property vector to be closer to the gold-
standard property vector for CAT than to any other
property vector (i.e. the label of its nearest neigh-
bour in PROPNORM to be CAT).

We use the standard evaluation metric for this
task: average percentage correct at N (P@N) (Fa-
garasan et al., 2015; Lazaridou et al., 2014; Kiela et
al., 2015). This measures how many of the test in-
stances were ranked within the top N highest ranked
nearest neighbors (using the cosine measure). All
the results reported in Table 4 use the zero-shot
learning procedure—for each of the 541 concepts
in MCRAE, we train a mapping on the remaining
540 concepts and record whether the correct label
is retrieved among the top N neighbours—and are
averaged over the entire dataset. We also compare
to a random baseline, for which a concept’s nearest
neighbours list is obtained by randomly ranking the
list of target words.

Since the cross-modal map allows us to obtain
property vectors for any concept, we were also able
to evaluate these semantic representations on a stan-
dard NLP task, such as the well known conceptual
similarity and relatedness task. The MEN test col-
lection (Bruni et al., 2014) contains human similar-
ity ratings for 3000 concept pairs. Performance on
this dataset is usually measured by computing the
Spearman ρs correlation between the ranking pro-
duced by the similarity scores of the learnt property
vectors and that produced by the human-annotated
concept similarity scores. Similarity between con-
cept pairs is calculated using cosine similarity.

For each of the semantic spaces presented in Table
5 we learn a cross-modal map to PROPNORM using
all the concepts in MCRAE at training time. Dur-
ing testing, we predict property vectors for all con-
cepts in MEN-NOUNS, a subset of the MEN dataset
consisting of 1285 noun pairs that don’t occur in
MCRAE. Table 5 reports the Spearman ρs correla-
tion of the predicted property vectors and the gold-
standard relatedness scores on MEN-NOUNS (col-
umn→PROPNORM), as well as the correlation of the

582

From P@1 P@5 P@10 P@20

DISTRIB 1.30 6.88 16.54 26.58

SVD 2.79 22.12 38.10 57.99

EMBED 3.90 23.42 36.80 55.02

VISUAL 3.35 28.44 47.96 64.50

VISUAL+DISTRIB 2.60 23.23 39.41 56.13

VISUAL+SVD 2.97 28.44 50.74 65.43

VISUAL+EMBED 3.16 28.44 51.12 65.06

RANDOM 0.0 0.74 2.42 3.90

Table 4: Zero-shot learning performance when map-
ping to the property-norm space (PROPNORM)

Semantic space (SS) SS →PROPNORM

Linguistic

DISTRIB 0.68 0.42

SVD 0.68 0.58

EMBED 0.75 0.69

Visual VISUAL 0.56 0.60

Multi-modal

DISTRIB+VISUAL 0.56 0.45

SVD+VISAL 0.57 0.60

EMBED+VISUAL 0.56 0.60

Table 5: Performance (Spearman ρs correlation) of
various uni-modal and multi-modal semantic spaces
(column SS), together with that of the property vec-
tors they predict (column →PROPNORM) on a se-
mantic relatedness task (MEN-NOUNS)

original semantic spaces (e.g. DISTRIB or SVD) and
the gold standard scores (column SS).

3.3 Quantitative results

The results presented in Table 4 show that visual in-
formation is a overall better predictor of a concept’s
properties than linguistic information. The cross-
modal maps from the visual space VISUAL outper-
form all those from linguistic spaces DISTRIB, SVD,
EMBED, and the addition of linguistic information
to the visual one (maps from VISUAL+DISTRIB, VI-
SUAL+SVD, VISUAL+EMBED) seem to only slightly
improve the performance.

It is also important to point out that, even though
the P@1 numbers may appear small, similar results
have been reported for other zero-shot cross-modal
maps (Lazaridou et al., 2014; Kiela et al., 2015).
Overall results are good for higher values of N and

the qualitative results (Table 6) demonstrate how
well the mapping is performing.

A model will achieve a perfect score on this task
if it is able to predict, for a given concept, exactly
those features (and associated production frequen-
cies) listed in MCRAE. However, close-to-perfect
performance in this task is impossible, since almost
30% of the features only occur with one concept,
and hence can’t be reconstructed for that particular
concept. Consider the case of the a baby deer prop-
erty: this only occurs in the MCRAE dataset as an
attribute of FAWN. When predicting properties of
FAWN as part of the zero-shot learning procedure,
the a baby deer property can’t be learned, since it
doesn’t occur with any other concept.

Columns SS and →PROPNORM in Table 5 re-
port correlations with the MEN-NOUNS ratings. The
predicted property vectors obtain a high correlation
with the MEN scores, showing that the property vec-
tors do capture lexical similarity well, although not
as well as the linguistic vectors, which was expected
(Bruni et al., 2012). An useful finding is that in some
cases, the predicted property vectors obtain a better
correlation with the MEN scores than their predic-
tors (i.e. the VISUAL and multi-modal vectors). This
shows a potential strength of the attribute-centric se-
mantic representations: their capability to perform
better on some lexical similarity/relatedness tasks
than representations that contain raw perceptual in-
formation.

3.4 Qualitative results

In order to gain more insight into the differences be-
tween the from vision and from language mappings,
we performed two types of qualitative analysis: we
looked at the differences in nearest neighbours of the
predicted property-norm representations (Table 6),
as well as the top predicted properties of a concept
(Table 6). In the from language setting we learned
the mapping using the EMBED space, as it was the
best performing linguistic space at P@1 and P@5
as shown in Table 4. We obtained the list of near-
est neighbours as follows: at test time, we use the
learnt cross-modal map to project the visual or lin-
guistic representation of the unseen concept onto a
property-norm representation. Using cosine similar-
ity, we then obtain a ranked list of neighbours from
all the 541 gold-standard property vectors. By in-

583

Concept Nearest neighbours (from VISION) Nearest neighbours (from LANGUAGE)

banana banana, lemon, corn, pear, grapefruit, pineapple pear, apple, avocado, plum, peach, lime, pineapple

cabbage lettuce, asparagus, spinach, celery, broccoli, cucumber asparagus, turnip, cauliflower, cabbage, celery, spinach

crocodile alligator, crocodile, frog, turtle, iguana, toad alligator, walrus, otter, platypus, crocodile, gorilla, buffalo

cello violin, guitar, banjo, harp, harpsichord, cello, flute harpsichord, harp, clarinet, flute, banjo, guitar, piano

drum pot, pan, coin, skillet, bucket, peg, cap (bottle) tuba, clarinet, trombone, flute, harpsichord, trumpet, harp

fox fox, cougar, coyote, deer, mink, elk, chipmunk blackbird, raven, sparrow, pigeon, starling, chickadee

harpoon sword, machete, harpoon, dagger, rifle, knife, gun spear, dagger, harpoon, rifle, bazooka, crossbow, sword

muzzle donkey, horse, ox, dog, cat, goat, cow peg, fox, pin, crowbar, gun, dog, harpoon

pants jeans, trousers, pants, shirt, blouse, jacket, coat shirt, blouse, shawl, coat, sweater, dress, pants

prune plum, blueberry, nectarine, peach, tangerine, raisin pear, apple, avocado, lime, peach, pineapple, plum

rice cauliflower, turnip, pie, rice, cabbage, biscuit, plate turnip, lettuce, eggplant, peas, potato, corn, asparagus

stool stool (furniture), table, peg, chair, gate, desk, door chair, couch, stool (furniture), sofa, bench, desk, peg

swan pelican, goose, dove, seagull, partridge, raven, falcon raven, blackbird, goose, sparrow, pelican, partridge

tortoise turtle, tortoise, crocodile, alligator, otter, frog, walrus cat, fox, cougar, squirrel, hamster, donkey, turtle

worm eel, rattlesnake, worm, shrimp, bat (baseball), python plum, tangerine, mandarin, nectarine, minnow, peach

Concept Top predicted features (from VISION) Top predicted features (from LANGUAGE)

banana is yellow, is black*, is round, is long, a fruit a fruit, is green*, tastes sweet*, grows on trees, is edible

cabbage is green, a vegetable, is edible, eaten in salads a vegetable, is green, is white, is edible, eaten in salads

crocodile is green, an animal, lives in water, beh - swims an animal, is long, beh - swims, lives in water, is large

cello has strings, a musical instrument, made of wood a musical instrument, inbeh - produces music,

drum made of metal, is round, used for cooking*, a musical instrument, is large*, made of metal, is loud

fox an animal, is fast, is small, has fur, has a tail an animal, a bird*, beh - flies*, has a tail, is green*

harpoon made of metal, a weapon, is sharp, is dangerous* a weapon, is large*, used for killing, is dangerous*

muzzle an animal*, has legs*, has 4 legs*, is large* made of metal*, an animal*, is small*, has 4 legs*

pants clothing, has buttons, is blue*, different colours clothing, worn by women, worn for warmth, has buttons

prune a fruit, is small, tastes sweet, is round*, is edible* a fruit, is green*, grows on trees, tastes sweet, is juicy

rice is edible, is white, is round, a vegetable*, is yellow* is edible, a vegetable*, is yellow*, is brown, has wheels*

stool made of wood, made of metal, has 4 legs, has legs, made of metal, used by sitting on, has legs, has 4 legs

swan a bird, is white, beh - flies, has a beak, has feathers a bird, an animal*, has feathers, beh - flies, is white

tortoise an animal, has a shell, is green, lives in water an animal, has legs*, is green, is large, is small*

worm is long, is edible*, made of wood*, has strings* a fruit*, is small, an insect*, is black*, a fish*

Table 6: Comparison of the top predicted features and nearest neighbours when mapping from VISION or
from LANGUAGE. Properties marked with * don’t appear as attributes of the associated concept in MCRAE.

specting the nearest neighbour predictions, we can
check where the unseen concept is mapped to (e.g.
BANANA is mapped close to yellow fruits). In or-
der to retrieve the top predicted properties of a con-
cept, we rank the dimensions of PROPNORM accord-
ing to the weights in the predicted property vector
(e.g. the predicted property vector for BANANA has

high weights for a fruit and is green when mapped
from language).

By looking at the nearest neighbour predictions,
we observe that, when mapping from visual input,
the predicted vector will be mapped into a subspace
containing visually-similar things. When mapping
from linguistic input, the neighbours tend to be con-

584

cepts that are semantically related or denoted by
words that occur in the same context as the target
concept (e.g. worms are found in plums and nec-
tarines).

A notable result is that when mapping from vi-
sion, the top neighbours tend to share the same
colour (top neighbours for BANANA are yellow
fruits, for SWAN are white birds) or shape as the
target concept (top neighbours for WORM are long
things with no legs). One possible clue as to why
vision is better at predicting a concept’s properties
is given by the fact that it obtains better results on
concepts such as PANTS or STOOL, where the only
difference to very similar concepts like TROUSERS

or CHAIR are visual (a STOOL has no backrest as
opposed to a CHAIR).

However, there are cases in which the visual at-
tributes of an object are not very useful in predicting
its most important features: e.g. DRUM is mapped
into a subspace of round objects (from vision), and
not instruments (from language).

Besides the difference in top predicted features,
Table 6 also indicates a shortcoming of MCRAE,
specifically that this is not complete, meaning that
not all properties that apply to a given concept were
produced by the human annotators. Most of the top
predicted attributes that don’t occur in the dataset
(those marked with * in Table 6) are highly plausi-
ble properties for the given concepts: tastes sweet
for BANANA or has legs for TORTOISE. This also
means that the model is being unfairly penalised.

In order to obtain a complete version of MCRAE,
every possible (CONCEPT, property) pair would
have to be checked for validity and annotated ac-
cordingly depending on whether property is a valid
attribute of CONCEPT.

3.5 Importance of complete data
We were interested in measuring the impact that
a complete dataset of features would have on the
performance of the cross-modal zero-shot learning
task. Silberer et al. (2013) conducted a study using
a subset of the concepts and properties in MCRAE,
whereby every property was annotated if it was a
plausible attribute of the concept.

The published dataset (SILBERER) consists of vi-
sual attribute annotations for 512 concepts (that also
occur in MCRAE) and 693 visual properties. The an-

Dataset #concs #props #(conc,prop) pairs

SILBERER 512 693 7743

SILB-VIS 512 283 5335

M-VIS 512 283 2140

MCRAE 541 2526 7259

Table 7: Comparison of various datasets, according
to the number of concepts and properties covered, as
well as the pairs of (CONCEPT, property) contained

Train Test P@1 P@5 P@10 P@20

M-VIS M-VIS 0.59 7.91 15.02 19.97

M-VIS SILB-VIS 7.11 27.67 43.68 56.92

SILB-VIS SILB-VIS 5.93 35.77 54.74 71.54

Table 8: Zeroshot learning performance for the vi-
sion to norms cross-modal map on different training
and test sets

notation was done on a per-concept basis by looking
at 10 images retrieved from ImageNet (Deng et al.,
2009) and selecting all the attributes that were con-
sidered to be generally true for the given concept,
even if not depicted in the images. For example,
has a pit is a valid visual attribute for PLUM, even
though not all retrieved images of plums show the
pit.

Since not all of the 693 visual properties covered
in SILBERER can be found in MCRAE, we will only
be concerned with the subset of SILBERER which
contains only those visual properties that also occur
in MCRAE, henceforth SILB-VIS. These datasets are
complete, since they were exhaustively annotated as
explained above.

Let us also define M-VIS as the subset of MCRAE

that contains the 512 concepts listed in SILBERER

and the 283 properties that are common to SIL-
BERER and MCRAE, together with their produc-
tion frequencies as in MCRAE. This will act as
our incomplete dataset. Table 7 lists all the afore-
mentioned datasets, together with statistics related
to their number of concepts, features and concept-
feature pairs. It also demonstrates the sparsity of
MCRAE: it contains fewer (CONCEPT, property)
pairs than SILBERER, even though it contains 4
times more properties.

All the experiments performed using these

585

Figure 1: Nearest neighbours of the predicted visual vectors

datasets are listed in Table 8. These are identical
in methodology to the zero-shot cross-modal maps
from VISUAL to PROPNORM; the only difference be-
ing the datasets that these are run on.

The row (train:M-VIS, test:M-VIS) represents the
setting where the cross-modal map learning and test-
ing are both done on the incomplete set of data, just
like we would do using MCRAE. We notice a huge
improvement in performance by using the complete
data only at test-time (row (train:M-VIS, test:SILB-
VIS)). Note that, in this scenario, the learning is
carried out in the same way, but the model can’t
be penalised for ranking plausible features near the
top during test time, since we are testing against a
complete dataset. This new setting provides a truer
evaluation scenario and demonstrates the weakness
in using MCRAE as a test set.

Performance improves even more if the complete
dataset is used at training time as well (the row
(train:SILB-VIS, test:SILB-VIS)), showing the bene-
fit of also learning the mapping from complete data,
as well as evaluating on it.

From P@1 P@5 P@10 P@20 P@50

PROPNORM 6.13 36.43 54.46 68.40 81.97

DISTRIB 4.08 10.78 17.29 26.21 40.89

SVD 7.81 34.57 47.77 60.60 79.00

EMBED 9.48 31.60 47.21 62.08 78.81

Table 9: Zero-shot learning performance when map-
ping to the visual space (VISUAL)

4 Property based query engine

An interesting question follows from the good per-
formance of the cross-modal mapping in Section 3,
and that is whether we can reliably predict what con-
cepts look like based on their semantic properties.
For example, does something that flies, has wings
and a beak look like a bird?

This task could be formalised as a property-based
query engine, where we can train the cross-modal
mapping to learn which concepts refer to which im-
ages. We follow the same experimental setup as
detailed in Section 3.2 in order to learn a cross-
modal map from PROPNORM to VISUAL. We also
learn cross-modal maps from the linguistic spaces

586

(DISTRIB, SVD, EMBED) to VISUAL in order to see
whether conceptual properties or linguistic input are
better at predicting visual information.

Table 9 shows the results of our quantitative eval-
uation: the average precentage of correctly retrieved
mean visual representations at N.

A qualitative analysis of the PROPNORM to VI-
SUAL cross-modal map is shown in Figure 1. Be-
cause there are no images associated with the
predicted mean visual representation, we retrieve
and display the top neighbouring images. These
images look surprisingly good, considering that
the representation for TAXI in PROPNORM is a
sparse vector where only the features is yellow,
requires drivers, used for transportation, a car,
requires money, found in New York, is expensive,
used for passengers, a cab, is fast are activated.

5 Conclusions

We have studied the automatic prediction of prop-
erty norms for unseen concepts, through learning the
cross-modal mapping from image data. Following
previous work, we evaluated on a zero-shot learning
task and show that raw visual information (images)
is a better predictor for conceptual properties than
linguistic input (text). We also presented a short case
study demonstrating the importance of having com-
plete annotations in the property norm datasets, for
both testing and training. Lastly, we demonstrated
a possible use case for property norm datasets in an
image retrieval task.

Our contributions are two-fold: first, we show that
property norms can be successfully predicted from
non-linguistic modalities and secondly, we quantify
the need to have complete property norm datasets,
where a production frequency of 0 for a (CONCEPT,
property) pair can always be interpreted as “property
is not true of CONCEPT”.

Acknowledgments

LB is supported by an EPSRC Doctoral Train-
ing Grant. DK is supported by EPSRC grant
EP/I037512/1. SC is supported by ERC Start-
ing Grant DisCoTex (306920) and EPSRC grant
EP/I037512/1. We thank the anonymous review-
ers for their helpful comments. A link to the data
used for the experiments in this paper is available at

http://www.cl.cam.ac.uk/˜ltf24/.

References

Mark Andrews, Gabriella Vigliocco, and David Vinson.
2009. Integrating experiential and distributional data
to learn semantic representations. Psychological re-
view, 116(3):463.

Eduard Barbu. 2008. Combining methods to learn
feature-norm-like concept descriptions. In Proceed-
ings of the ESSLLI Workshop on Distributional Lexical
Semantics, pages 9–16.

Marco Baroni, Brian Murphy, Eduard Barbu, and Mas-
simo Poesio. 2010. Strudel: A corpus-based semantic
model based on properties and types. Cognitive Sci-
ence, 34(2):222–254.

Shane Bergsma and Randy Goebel. 2011. Using visual
information to predict lexical preference. In RANLP,
pages 399–405.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 136–145. Association
for Computational Linguistics.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR), 49(1-47).

Stephen Clark. 2015. Vector space models of lexi-
cal meaning. Handbook of Contemporary Semantics–
second edition. Wiley-Blackwell.

George S Cree, Chris McNorgan, and Ken McRae. 2006.
Distinctive features hold a privileged status in the com-
putation of word meaning: Implications for theories of
semantic memory. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 32(4):643.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. IEEE.

Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen, and
Billi Randall. 2013. The centre for speech, language
and the brain (cslb) concept property norms. Behavior
research methods, pages 1–9.

Luana Fagarasan, Eva Maria Vecchi, and Stephen Clark.
2015. From distributional semantics to feature norms:
grounding semantic models in human perceptual data.
In Proceedings of the 11th International Conference
on Computational Semantics, pages 52–57, London,
UK, April. Association for Computational Linguistics.

587

Andrea Frome, Greg S Corrado, Jon Shlens, Samy Ben-
gio, Jeff Dean, Tomas Mikolov, et al. 2013. De-
vise: A deep visual-semantic embedding model. In
Advances in Neural Information Processing Systems,
pages 2121–2129.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D: Nonlinear Phenomena, 42(1):335–346.

Felix Hill and Anna Korhonen. 2014. Learning abstract
concept embeddings from multi-modal data: Since
you probably cant see what i mean. Proceedings of
EMNLP. ACL.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. 2014. Caffe: Con-
volutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on
Multimedia, pages 675–678. ACM.

Colin Kelly, Barry Devereux, and Anna Korhonen. 2014.
Automatic extraction of property norm-like data from
large text corpora. Cognitive Science, 38(4):638–682.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
EMNLP, volume 2014.

Douwe Kiela, Luana Bulat, and Stephen Clark. 2015.
Grounding semantics in olfactory perception. In Pro-
ceedings of ACL, volume 2, pages 231–6.

Angeliki Lazaridou, Elia Bruni, and Marco Baroni. 2014.
Is this a wampimuk? Cross-modal mapping between
distributional semantics and the visual world. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1403–1414, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature production
norms for a large set of living and nonliving things.
Behavior research methods, 37(4):547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Mark Palatucci, Dean Pomerleau, Geoffrey E Hinton, and
Tom M Mitchell. 2009. Zero-shot learning with se-
mantic output codes. In Advances in neural informa-
tion processing systems, pages 1410–1418.

Billi Randall, Helen E Moss, Jennifer M Rodd, Mike
Greer, and Lorraine K Tyler. 2004. Distinctive-
ness and correlation in conceptual structure: behav-
ioral and computational studies. Journal of Experi-
mental Psychology: Learning, Memory, and Cogni-
tion, 30(2):393.

Brian Riordan and Michael N Jones. 2011. Redun-
dancy in perceptual and linguistic experience: Com-
paring feature-based and distributional models of se-
mantic representation. Topics in Cognitive Science,
3(2):303–345.

Stephen Roller and Sabine Schulte Im Walde. 2013.
A multimodal lda model integrating textual, cogni-
tive and visual modalities. Seattle, Washington, USA,
pages 1146–1157.

Carina Silberer and Mirella Lapata. 2012. Grounded
models of semantic representation. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1423–1433. Asso-
ciation for Computational Linguistics.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2013. Models of semantic representation with visual
attributes. In ACL (1), pages 572–582.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Grounded
compositional semantics for finding and describing
images with sentences. Transactions of the Associa-
tion for Computational Linguistics, 2:207–218.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37(1):141–
188.

Lorraine K Tyler, HE Moss, MR Durrant-Peatfield, and
JP Levy. 2000. Conceptual structure and the structure
of concepts: A distributed account of category-specific
deficits. Brain and language, 75(2):195–231.

David P Vinson and Gabriella Vigliocco. 2008. Seman-
tic feature production norms for a large set of objects
and events. Behavior Research Methods, 40(1):183–
190.

588

Proceedings of NAACL-HLT 2016, pages 589–598,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Cross-lingual Wikification Using Multilingual Embeddings

Chen-Tse Tsai and Dan Roth
University of Illinois at Urbana-Champaign
201 N. Goodwin, Urbana, Illinois, 61801
{ctsai12, danr}@illinois.edu

Abstract
Cross-lingual Wikification is the task of
grounding mentions written in non-English
documents to entries in the English Wikipedia.
This task involves the problem of comparing
textual clues across languages, which requires
developing a notion of similarity between text
snippets across languages. In this paper, we
address this problem by jointly training multi-
lingual embeddings for words and Wikipedia
titles. The proposed method can be applied
to all languages represented in Wikipedia, in-
cluding those for which no machine trans-
lation technology is available. We create a
challenging dataset in 12 languages and show
that our proposed approach outperforms var-
ious baselines. Moreover, our model com-
pares favorably with the best systems on the
TAC KBP2015 Entity Linking task including
those that relied on the availability of transla-
tion from the target language to English.

1 Introduction

Wikipedia has become an indispensable resource in
knowledge acquisition and text understanding for
both human beings and computers. The task of
Wikification or Entity Linking aims at disambiguat-
ing mentions (sub-strings) in text to the correspond-
ing titles (entries) in Wikipedia or other Knowledge
Bases, such as FreeBase. For English text, this
problem has been studied extensively (Bunescu and
Pasca, 2006; Cucerzan, 2007; Mihalcea and Csomai,
2007; Ratinov et al., 2011; Cheng and Roth, 2013).
It also has been shown to be a valuable component of
several natural language processing and information
extraction tasks across different domains.

Recently, there has also been interest in the cross-
lingual setting of Wikification: given a mention
from a document written in a foreign language, the
goal is to find the corresponding title in the English
Wikipedia. This task is driven partly by the fact that
a lot of information around the world may be written
in a foreign language for which there are limited lin-
guistic resources and, specifically, no English trans-
lation technology. Instead of translating the whole
document to English, grounding the important entity
mentions in the English Wikipedia may be a good
solution that could better capture the key message
of the text, especially if it can be reliably achieved
with fewer resources than those needed to develop a
translation system. This task is mainly driven by the
Text Analysis Conference (TAC) Knowledge Base
Population (KBP) Entity Linking Tracks (Ji et al.,
2012; Ji et al., 2015; Ji et al., 2016), where the target
languages are Spanish and Chinese.

In this paper, we develop a general technique
which can be applied to all languages in Wikipedia
even when no machine translation technology is
available for them.

The challenges in Wikification are due both to
ambiguity and variability in expressing entities and
concepts: a given mention in text, e.g., Chicago,
may refer to different titles in Wikipedia (Chicago
Bulls, the City, Chicago Bears, the band, etc.), and
a title can be expressed in the text in multiple ways,
such as synonyms and nicknames. These challenges
are usually resolved by calculating some similarity
between the representation of the mention and can-
didate titles. For instance, the mention could be rep-
resented using its neighboring words, whereas a ti-

589

tle is usually represented by the words and entities
in the document which introduces the title. In the
cross-lingual setting, an additional challenge arises
from the need to match words in a foreign language
to an English title.

In this paper, we address this problem by using
multilingual title and word embeddings. We repre-
sent words and Wikipedia titles in both the foreign
language and in English in the same continuous vec-
tor space, which allows us to compute meaningful
similarity between mentions in the foreign language
and titles in English. We show that learning these
embeddings only requires Wikipedia documents and
language links between the titles across different
languages, which are quite common in Wikipedia.
Therefore, we can learn embeddings for all lan-
guages in Wikipedia without any additional anno-
tation or supervision.

Another notable challenge for the cross-lingual
setting that we do not address in this paper is that of
generating English candidate titles given a foreign
mention when there is no corresponding title in the
foreign language Wikipedia. If a title exists in both
the English and the foreign language Wikipedia,
there could be examples of using this title in the
foreign language Wikipedia text, and this informa-
tion could help us determine the possible English ti-
tles. For example, Vladimir N. Vapnik exists in both
the English Wikipedia (en/Vladimir Vapnik)1

and the Chinese Wikipedia (zh/⌫…˙s ·⌥n<
K). In the Chinese Wikipedia, we may see the use of
the mention,n<K as a reference, that is, ,n<
K is linked to the title zh/⌫…˙s·⌥n<K. Fol-
lowing the inter-language links in Wikipedia, we can
reach the English title en/Vladimir Vapnik.
On the other hand, Dan Roth does not have a page
in the Chinese Wikipedia, it would have been harder
to get to en/Dan Roth from the Chinese mention.
In this case, a transliteration model may be needed.
Note that the difference between these two cases is
only in generating English title candidates from the
given foreign mention. The disambiguation method
which identifies the most probable title is conceptu-
ally the same, so our method could generalize as is
to this case.

1We use en/Vladimir Vapnik to refer to the title of
en.wikipedia.org/wiki/Vladimir Vapnik

For evaluation purposes, we focus in this paper
on mentions that have corresponding titles in both
the English and the foreign language Wikipedia,
and concentrate on disambiguating titles across lan-
guages. This allows us to evaluate on a large number
of Wikipedia documents. Note that under this set-
ting, a natural approach is to do wikification on the
foreign language and then follow the language links
to obtain the corresponding English titles. However,
this approach requires developing a separate wiki-
fier for each foreign language if it uses language-
specific features, while our approach is generic and
only requires using the appropriate embeddings. Im-
portantly, the aforementioned approach will also not
generalize to the cases where the target titles only
exist in the English Wikipedia while ours does.

We create a challenging Wikipedia dataset for 12
foreign languages and show that the proposed ap-
proach, WikiME (Wikification using Multilingual
Embeddings), consistently outperforms various
baselines. Moreover, the results on the TAC
KBP2015 Entity Linking dataset show that our ap-
proach compares favorably with the best Spanish
system and the best Chinese system despite using
significantly weaker resources (no need for transla-
tion). We note that the need for translation would
have prevented the wikification of 12 languages used
in this paper.

2 Task Definition and Model Overview

We formalize the problem as follows. We are given
a document d in a foreign language, a set of men-
tions Md = {m1, · · · , mn} in d, and the English
Wikipedia. For each mention in the document, the
goal is to retrieve the English Wikipedia title that the
mention refers to. If the corresponding entity or con-
cept does not exist in the English Wikipedia, “NIL”
should be the answer.

Given a mention m 2Md, the first step is to gen-
erate a set of title candidates Cm. The goal of this
step is to quickly produce a short list of titles which
includes the correct answer. We only look at the sur-
face form of the mention in this step, that is, no con-
textual information is used.

The second and the key is the ranking step where
we calculate a score for each title candidate c 2 Cm,
which indicates how relevant it is to the given men-

590

tion. We represent the mention using various con-
textual clues and compute several similarity scores
between the mention and the English title candidates
based on multilingual word and title embeddings. A
ranking model learnt from Wikipedia documents is
used to combine these similarity scores and output
the final score for each title candidate. We then se-
lect the candidate with the highest score as the an-
swer, or output NIL if there is no appropriate candi-
date.

The rest of paper is structured as follows. Sec-
tion 3 introduces our approach of generating multi-
lingual word and title embeddings for all languages
in Wikipedia. Section 4 presents the proposed cross-
lingual wikification model which is based on multi-
lingual embeddings. Evaluations and analyses are
presented in Section 5. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

3 Multilingual Entity and Word
Embeddings

In this section, we describe how we generate a vector
representation for each word and Wikipedia title in
any language.

3.1 Monolingual Embeddings

The first step is to train monolingual embeddings for
each language separately. We adopt the “Alignment
by Wikipedia Anchors” model proposed in Wang et
al. (2014). For each language, we take all docu-
ments in Wikipedia and replace the hyperlinked text
with the corresponding Wikipedia title. For exam-
ple, consider the following Wikipedia sentence: “It
is led by and mainly composed of Sunni Arabs from
Iraq and Syria.”, where the three bold faced men-
tions are linked to some Wikipedia titles. We re-
place those mentions and the sentence becomes “It is
led by and mainly composed of en/Sunni Islam
Arabs from en/Iraq and en/Syria.” We then
learn the skip-gram model (Mikolov et al., 2013a;
Mikolov et al., 2013b) on this newly generated text.
Since a title appears as a token in the transformed
text, we will obtain an embedding for each word and
title from the model.

The skip-gram model maximizes the following

objective:X
(w,c)2D

log
1

1 + e�v0c·vw
+

X
(w,c)2D0

log
1

1� e�v0c·vw
,

where w is the target token (word or title), c is a con-
text token within a window of w , vw is the target
embedding represents w, v0c is the embedding of c in
context, D is the set of training documents, and D0

contains the sampled token pairs which serve as neg-
ative examples. This objective is maximized with
respect to variables vw’s and v0w’s. In this model,
tokens in the context are used to predict the target
token. The token pairs in the training documents are
positive examples, and the randomly sampled pairs
are negative examples.

3.2 Multilingual Embeddings
After getting monolingual embeddings, we adopt
the model proposed in Faruqui and Dyer (2014) to
project the embeddings of a foreign language and
English to the same space. The requirement of this
model is a dictionary which maps the words in En-
glish to the words in the foreign language. Note that
there is no need to have this mapping for every word.
The aligned words are used to learn the projection
matrices, and the matrices can later be applied to
the embeddings of each word to obtain the enhanced
new embeddings. Faruqui and Dyer (2014) obtain
this dictionary by picking the most frequent trans-
lated word from a parallel corpus. However, there is
a limited or no parallel corpus for many languages.
Since our monolingual embedding model consists
also of title embeddings, we can use the Wikipedia
title alignments between two languages as the dic-
tionary.

Let Aen 2 Ra⇥k1 and Afo 2 Ra⇥k2 be the ma-
trices containing the embeddings of the aligned En-
glish and foreign language titles, where a is the num-
ber of aligned titles and k1 and k2 are the dimen-
sionality of English embeddings and foreign lan-
guage embeddings respectively (i.e., each row is
a title embedding). Canonical correlation analysis
(CCA) (Hotelling, 1936) is applied to these two ma-
trices:

Pen, Pfo = CCA(Aen, Afo),

where Pen 2 Rk1⇥d and Pfo 2 Rk2⇥d are the pro-
jection matrices for English and foreign language

591

FEATURE TYPE DESCRIPTIONS

Basic Pr(c|m) and Pr(m|c), the fraction of times the title candidate c is the target page
given the mention m, and the fraction of times c is referred by m

Other Mentions Cosine similarity of e(c) and the average of vectors in other-mentions(m)
The maximum and minimum cosine similarity of the vectors in other-mentions(m) and e(c)

Local Context Cosine similarity of e(c) and contextj(m), for j = 30, 100, and 200

Previous Titles Cosine similarity of e(c) and the average of vectors in previous-titles(m)
The maximum and minimum cosine similarity of the vectors in previous-titles(m) and e(c)

Table 1: Features for measuring similarity of an English title candidate c and a mention m in the foreign language, where e(c) is

the English title embedding of c. other-mentions(m), previous-titles(m), and contextj(m) are defined in Section 4.2.

embeddings, and d is the dimensionality of the pro-
jected vectors, which is a parameter in CCA.

Let Een 2 Rn1⇥k1 be the matrix containing the
monolingual embeddings for all words and titles in
English, where the number of words and titles is n1,
We obtain the multilingual embeddings of English
words and titles by

E0en = EenPen 2 Rn1⇥d.

Similarly, the multilingual embeddings of the for-
eign words and titles are stored in the rows of

E0fo = EfoPfo 2 Rn2⇥d,

where there are n2 words and titles in the foreign
language. The rows of E0en and E0fo are the repre-
sentations of words and titles that we use to create
the similarity features in the ranker.

Faruqui and Dyer (2014) show that the multi-
lingual embeddings perform better than monolin-
gual embeddings on various English word similarity
datasets. Since synonyms in English may be trans-
lated into the same word in a foreign language, the
CCA model could bring the synonyms in English
closer in the embedding space. In this paper, we
further show that projecting the embeddings of the
two languages into the same space helps us com-
puting better similarity between the words and titles
across languages and that a bilingual dictionary con-
sisting of pairs of Wikipedia titles is sufficient to in-
duce these embeddings.

4 Cross-lingual Wikification

We now describe the algorithm for finding the En-
glish title given a foreign mention.

4.1 Candidate Generation

Given a mention m, the first step is to select a set
of English title candidates Cm, a subset of all ti-
tles in the English Wikipedia. Ideally the correct ti-
tle is included in this set. The goal is to produce a
manageable number of candidates so that a more so-
phisticated algorithm can be applied to disambiguate
them.

Since we focus on the titles in the intersection of
English and the foreign language Wikipedia, we can
build indices from the anchor texts in the foreign lan-
guage Wikipedia. More specifically, we create two
dictionaries and apply a two-step approach. The first
dictionary maps each hyperlinked mention string in
the text to the corresponding English titles. We sim-
ply lookup this dictionary by using the query men-
tion m to retrieve all possible titles. The title candi-
dates are initially sorted by Pr(title|mention), the
fraction of times the title is the target page of the
given mention. This probability is estimated from
all Wikipedia documents. The top k title candidates
are then returned.

If the first high-precision dictionary fails to gen-
erate any candidate, we then lookup the second dic-
tionary. We break each hyperlinked mention string
into tokens, and create a dictionary which maps to-
kens to English titles. The tokens of m are used to
query this dictionary. Similarly, the candidates are
sorted by Pr(title|token) and the top k candidates
are returned.

4.2 Candidate Ranking

Given a mention m and a set of title candidates Cm,
we compute a score for each title in Cm which indi-

592

cates how relevant the title is to m. For a candidate
c 2 Cm, we define the relevance as:

s(m, c) =
X

i

wi�i(m, c), (1)

a weighted sum of the features, �i, which are based
on multilingual title and word embeddings. We rep-
resent the mention m by the following contextual
clues and use these representation to compute fea-
ture values:

• contextj(m): use the tokens within j charac-
ters of m to compute the TF-IDF weighted av-
erage of their embeddings in the foreign lan-
guage.

• other-mentions(m): a set of vectors that rep-
resent other mentions. For each mention in the
document other than m, we represent it by aver-
aging the embeddings of the tokens in the men-
tion surface string.

• previous-titles(m): a set of vectors that rep-
resent previous entities. For each mention be-
fore m, we represent it by the English embed-
ding of the disambiguated title.

Let e(c) be the English embedding of the title can-
didate c. The features used in Eq. (1) are shown
in Table 1. We train a linear ranking SVM model
with the proposed features to obtain the weights, wi,
in Eq. (1). Finally, the title which has the highest
relevant score is chosen as the answer to m.

5 Experiments

We evaluate the proposed method on the Wikipedia
dataset of 12 langugaes and the TAC’15 Entity Link-
ing dataset.

For all experiments, we use the Word2Vec imple-
mentation in Gensim2 to learn the skip-gram model
with dimensionality 500 for each language. The
CCA code for projecting mono-lingual embeddings
is from Faruqui and Dyer (2014)3 in which the ratio
parameter is set to 0.5 (i.e., the resulting multilingual
embeddings have dimensionality 250).

We use Stanford Word Segmenter (Chang et al.,
2008) for tokenizing Chinese, and use the Java built-
in BreakIterator for Thai. For all other languages,

2https://radimrehurek.com/gensim/
3https://github.com/mfaruqui/

crosslingual-cca

LANGUAGE #TOKENS #ALIGN. TITLES

German 616,347,668 960,624
Spanish 460,984,251 754,740
French 357,553,957 1,088,660
Italian 342,038,537 836,154
Chinese 179,637,674 469,982
Hebrew 75,076,391 137,821
Thai 68,991,911 72,072
Arabic 67,954,771 255,935
Turkish 47,712,534 162,677
Tamil 12,665,312 50,570
Tagalog 4,925,785 48,725
Urdu 3,802,679 83,665

Table 2: The number of tokens used in training the skip-gram

model and the number of titles which can be aligned to the cor-

responding English titles via the language links in Wikipedia.

tokenization is based on whitespaces. The number
of tokens we use to learn the skip-gram model and
the number of title alignments used by the CCA are
given in Table 2. For learning the weights in Eq. (1),
we use the implementation of linear ranking SVM in
Lee and Lin (2014). Parameter selection and feature
engineering are done by conducting cross-validation
on the training data of Spanish Wikipedia dataset.

5.1 Wikipedia Dataset
We create this dataset from the documents in
Wikipedia by taking the anchors (hyperlinked texts)
as the query mentions and the corresponding English
Wikipedia titles as the answers. Note that we only
keep the mentions for which we can get the corre-
sponding English Wikipedia titles by the language
links. As observed in previous work (Ratinov et
al., 2011), most of the mentions in Wikipedia docu-
ments are easy, that is, the baseline of simply choos-
ing the title that maximizes Pr(title|mention), the
most frequent title given the mention surface string,
performs quite well. In order to create a more chal-
lenging dataset, we randomly select mentions such
that the number of easy mentions is about twice the
number of hard mentions (those mentions for which
the most common title is not the correct title). This
generation process is inspired by (and close to) the
distribution generated in the TAC KBP2015 Entity
Linking Track. Another problem that occurs when
creating a dataset from Wikipedia documents is that
even though training documents are different from

593

LANGUAGE #TRAINING #TEST (#HARD)

German 23,124 9,798 (3,266)
Spanish 30,471 12,153 (4,051)
French 37,860 14,358 (4,786)
Italian 34,185 12,775 (4,254)
Chinese 44,246 11,394 (3,798)
Hebrew 20,223 16,146 (5,382)
Thai 16,819 11,381 (3,792)
Arabic 22,711 10,646 (3,549)
Turkish 12,942 13,798 (4,598)
Tamil 21,373 11,346 (3,776)
Tagalog 4,835 1,074 (358)
Urdu 1,413 1,389 (463)

Table 3: The number of training and test mentions of the

Wikipedia dataset. The mentions are from the hyperlinked text

in randomly selected Wikipedia documents. We ensure that

there are at least one-third of test mentions are hard (cannot be

solved by the most common title given the mention).

test documents, many mentions and titles actually
overlap. To test that the algorithms really general-
ize from training examples, we ensure that no (men-
tion, title) pair in the test set appear in the training
set. Table 3 shows the number of training men-
tions, test mentions, and hard mentions in the test
set of each language. This dataset is publicly avail-
able at http://bilbo.cs.illinois.edu/
˜ctsai12/xlwikifier-wikidata.zip.

The performance of the proposed method
(WikiME) is shown in Table 4 along with the fol-
lowing approaches:

MonoEmb: In this method, we use the mono-
lingual embeddings before applying CCA while all
the other settings are the same as in WikiME. Since
the monolingual embeddings are learnt separately
for each language, calculating the cosine similarity
of the word embedding in the foreign language and
an English title embedding does not produce a good
similarity function. The ranker, though, learns that
the most important feature is Pr(title|mention),
and, consequently, performs well on easy mentions
but has poor performance on hard mentions.

WordAlign: Instead of using the aligned
Wikipedia titles in generating multilingual embed-
dings, the CCA model operates on the word align-
ments as originally proposed in Faruqui and Dyer
(2014). We use the word alignments provided
by Faruqui and Dyer (2014), which are obtained

LANGUAGE METHOD HARD EASY TOTAL

German

MonoEmb 35.18 96.92 76.34
WordAlign 52.39 95.32 81.01
WikiME 53.28 95.53 81.45
Ceiling 90.20 100 96.73

Spanish

EsWikifier 40.11 99.28 79.56
MonoEmb 38.46 96.12 76.90
WordAlign 48.75 95.78 80.10
WikiME 54.46 94.83 81.37
Ceiling 93.46 100 97.69

French

MonoEmb 23.17 97.16 72.50
WordAlign 41.70 96.08 77.96
WikiME 47.51 95.72 79.65
Ceiling 89.41 100 96.47

Italian
MonoEmb 32.68 97.48 75.90
WikiME 48.28 95.52 79.79
Ceiling 87.99 100 96.00

Chinese
MonoEmb 43.73 97.85 79.81
WikiME 57.61 98.03 84.55
Ceiling 94.29 100 98.10

Hebrew
MonoEmb 42.59 98.16 79.64
WikiME 56.67 97.71 84.03
Ceiling 96.84 100 98.95

Thai
MonoEmb 53.43 99.08 83.87
WikiME 70.02 99.17 89.46
Ceiling 94.49 100 98.16

Arabic
MonoEmb 39.81 98.99 79.26
WikiME 62.05 98.17 86.13
Ceiling 93.27 100 97.76

Turkish
MonoEmb 40.47 98.15 78.93
WikiME 60.18 97.55 85.10
Ceiling 94.08 100 98.03

Tamil
MonoEmb 34.51 98.65 77.30
WikiME 54.13 99.13 84.15
Ceiling 95.60 100 98.54

Tagalog
MonoEmb 35.47 99.44 78.12
WikiME 56.70 98.46 84.54
Ceiling 90.78 100 96.93

Urdu
MonoEmb 63.71 98.81 87.11
WikiME 74.51 99.35 91.07
Ceiling 90.06 100 96.69

Table 4: Ranking performance (Precision@1) of different ap-

proaches on various languages. Since about one-third of the test

mentions are non-trivial, a baseline is 66.67 for all languages, if

we pick the most common title given the mention. Bold signi-

fies highest score for each column.

594

Figure 1: Feature ablation study of WikiME. The left bar of each language shows the performance on hard mentions, whereas the

right bar corresponds to the performance of all mentions. The descriptions of feature types are listed in Table 1.

from the parallel news commentary corpora com-
bined with the Europarl corpus for English to Ger-
man, France, and Spanish. The number of aligned
words for German, France, and Spanish are 37,484,
37,582, and 37,554 respectively. WikiME performs
statistically significantly better than WordAlign on
all three languages.

EsWikifier: We use Illinois Wikifier (Ratinov
et al., 2011; Cheng and Roth, 2013) on a Spanish
Wikipedia dump and train its ranker on the same set
of documents that are used in WikiME.

Ceiling: These rows show the performance of ti-
tle candidate generation. That is, the numbers indi-
cate the percentage of mentions that have the gold
title in its candidate set, therefore upper-bounds the
ranking performance.

In sum, WikiME can disambiguate the hard men-
tions much better than other methods without sacri-
ficing the performance on the easy mentions much.
Comparing across different languages, it is impor-
tant to note that languages which have a smaller size
Wikipedia tend to have better performance, despite
the degradation in the quality of the embeddings (see
below). This is due to the difficulty of the datasets.
That is, there is less ambiguity because the number
of articles in the corresponding Wikipedia is small.

Figure 1 shows the feature ablation study of
WikiME. For each language, we show results on
hard mentions (the left bar) and all mentions (the
right bar). We do not show the performance on easy
mentions since it always stays high and does not
change much. We can see that Local Context and
Other Mentions are very effective for most of the
languages. In particular, on hard mentions, the per-
formance gain of the three feature groups is from
almost 0 to around 50. For the easier dataset such as

Figure 2: The number of aligned titles used in generating mul-

tilingual embeddings versus the performance of WikiME.

Urdu, Basic features alone work quite well.
Figure 2 shows the performance of WikiME when

we vary the number of aligned titles in generating
multilingual embeddings. The performance drops a
lot when there are only few aligned titles, especially
for Spanish and French, where the results are even
worse than MonoEmb when only 2000 titles are
aligned. This indicates that the CCA method needs
enough aligned pairs in order to produce good em-
beddings. The performance does not change much
when there are more than 16,000 aligned titles.

5.2 TAC KBP2015 Entity Linking

To evaluate our system on documents outside
Wikipedia, we conduct an experiment on the evalu-
ation documents in TAC KBP2015 Tri-Lingual En-
tity Linking Track. In this dataset, there are 166
Chinese documents (84 news and 82 discussion fo-
rum articles) and 167 Spanish documents (84 news
and 83 discussion forum articles). The mentions in
this dataset are all named entities of five types: Per-
son, Geo-political Entity, Organization, Location,

595

and Facility.
Table 5 shows the results. Besides the Span-

ish Wikifier (EsWikifier) that we used in the previ-
ous experiment, we implemented another baseline
for Spanish Wikification. In this method, we use
Google Translate to translate the whole documents
from Spanish to English, and then the English Illi-
nois Wikifier is applied to disambiguate the English
gold mentions. Note that the target Knowledge Base
of this dataset is FreeBase, therefore we use the
FreeBase API to map the resulting English or Span-
ish Wikipedia titles to the corresponding FreeBase
ID. If this conversion fails to find the corresponding
FreeBase ID, “NIL” is returned instead.

The ranker models used in all three systems are
trained on Wikipedia documents. We can see that
WikiME outperforms both baselines significantly on
Spanish. It is interesting to see that the translation-
based baseline performs slightly better than the
Spanish Wikifier, which indicates that the machine
translation between Spanish and English is quite re-
liable. Note that this translation-based baseline got
the highest score in this shared task when the men-
tion boundaries were not given.

The row “Top TAC’15 System” lists the best
scores of the diagnostic setting in which mention
boundaries are given (Ji et al., 2016). Since the offi-
cial evaluation metric considers not only the linked
FreeBase IDs but also the entity types, namely, an
answer is counted as correct only if the FreeBase ID
and the entity type are both correct, we built two
simple 5-class classifiers to classify each mention
into the five entity types so that we can compare
with the state of the art. One classifier uses Free-
Base types of the linked FreeBase ID as features,
and this classifier is only applied to mentions that
are linked to some entry in FreeBase. For NIL men-
tions, another classifier which uses word form fea-
tures (words in the mention, previous word, and next
word) is applied. Both classifiers are trained on the
training data of this task. From the last two rows
of Table 5, we can see that WikiME achieves better
results than the best TAC participants.

6 Related Work

Wikification on English documents has been stud-
ied extensively. Earlier works (Bunescu and Pasca,

APPROACH SPANISH CHINESE

Translation + EnWikifier 79.35 N/A
EsWikifier 79.04 N/A
WikiME 82.43 85.07

+Typing

Top TAC’15 System 80.4 83.1
WikiME 80.93 83.63

Table 5: TAC KBP2015 Entity Linking dataset. All results use

gold mentions and the metric is precision@1. The top section

only evaluates the linked FreeBase ID. To compare with the best

systems in TAC, we also classify each mention into the five en-

tity types. The results which evaluate both FreeBase IDs and

entity types are shown in the bottom section.

2006; Mihalcea and Csomai, 2007) focus on local
features which compare context words with the con-
tent of candidate Wikipedia pages. Later, several
works (Cucerzan, 2007; Milne and Witten, 2008;
Han and Zhao, 2009; Ferragina and Scaiella, 2010;
Ratinov et al., 2011) proposed to explore global fea-
tures, trying to capture coherence among titles that
appear in the text. In our method, we compute lo-
cal and global features based on multilingual embed-
dings, which allow us to capture better similarity be-
tween words and Wikipedia titles across languages.

The annual TAC KBP Entity Linking Track has
used the cross-lingual setting since 2011 (Ji et al.,
2012; Ji et al., 2015; Ji et al., 2016), where the
target foreign languages are Spanish and Chinese.
To our best knowledge, most of the participants use
one of the following two approaches: (1) Do en-
tity linking in the foreign language, and then find
the corresponding English titles from the resulting
foreign language titles; and (2) Translate the query
documents to English and do English entity linking.
The first approach relies on a large enough Knowl-
edge Base in the foreign language, whereas the sec-
ond depends on a good machine translation system.
The approach developed in this paper makes sig-
nificantly simpler assumptions on the availability of
such resources, and therefore can scale also to lower-
resource languages, while doing very well also on
high-resource languages.

Wang et al. (2015) proposed an unsupervised
method which matches a knowledge graph with
a graph constructed from mentions and the corre-

596

sponding candidates of the query document. This
approach performs well on the Chinese dataset of
TAC’13, but falls into the category (1). Moro et
al. (2014) proposed another graph-based approach
which uses Wikipedia and WordNet in multiple lan-
guages as lexical resources. However, they only fo-
cus on English Wikification.

McNamee et al. (2011) aims at the same cross-
lingual Wikification setting as we do, where the
challenge is in comparing foreign language words
with English titles. They treat this problem as a
cross-lingual information retrieval problem. That is,
given the context words of the target mention in the
foreign language, retrieve the most relevant English
Wikipedia page. However, their approach requires
parallel text to estimate word translation probabili-
ties. In contrast, our method only needs Wikipedia
documents and the inter-language links.

Besides the CCA-based multilingual word em-
beddings (Faruqui and Dyer, 2014) that we ex-
tend in Section 3, several other methods also try to
embed words in different languages into the same
space. Hermann and Blunsom (2014) use a sen-
tence aligned corpus to learn bilingual word vectors.
The intuition behind the model is that representa-
tions of aligned sentences should be similar. Unlike
the CCA-based method which learns monolingual
word embeddings first, this model directly learns the
cross-lingual embeddings. Luong et al. (2015) pro-
pose Bilingual Skip-Gram which extends the mono-
lingual skip-gram model and learns bilingual em-
beddings using a parallel copora and word align-
ments. The model jointly considers within language
co-occurrence and meaning equivalence across lan-
guages. That is, the monolingual objective for each
language is also included in their learning objec-
tive. Several recent approaches (Gouws et al., 2014;
Coulmance et al., 2015; Shi et al., 2015; Soyer et al.,
2015) also require a sentence aligned parallel corpus
to learn multilingual embeddings. Unlike other ap-
proaches, Vulić and Moens (2015) propose a model
that only requires comparable corpora in two lan-
guages to induce cross-lingual vectors. Similar to
our proposed approach, this model can also be ap-
plied to all languages in Wikipedia if we treat docu-
ments across two Wikipedia languages as a compa-
rable corpus. However, the quality and quantity of
this comparable corpus for low-resource languages

will be low, we believe.
We choose the CCA-based model because we can

obtain multilingual word and title embeddings for
all languages in Wikipedia without any additional
data beyond Wikipedia. In addition, by decoupling
the training of the monolingual embeddings from
the cross-lingual alignment we make it easier to im-
prove the quality of the embeddings by getting more
text in the target language or a better dictionary be-
tween English and the target language. Neverthe-
less, as cross-lingul wikification provides another
testbed for multilingual embeddings, it would be
very interesting to compare these recent models on
Wikipedia languages.

7 Conclusion

We propose a new, low-resource, approach to Wik-
ification across multiple languages. Our first step
is to train multilingual word and title embeddings
jointly using title alignments across Wikipedia col-
lections in different languages. We then show that
using features based on these multilingual embed-
dings, our wikification ranking model performs very
well on a newly constructed dataset in 12 languages,
and achieves state of the art also on the TAC’15 En-
tity Linking dataset.

An immediate future direction following our work
is to improve the title candidate generation process
so that it can handle the case where the correspond-
ing titles only exist in the English Wikipedia. This
only requires augmenting our method with a translit-
eration tool and, together with the proposed disam-
biguation approach across languages, this will be a
very useful tool for low-resource languages which
have a small number of articles in Wikipedia.

Acknowledgments

This research is supported by NIH grant U54-
GM114838, a grant from the Allen Institute for
Artificial Intelligence (allenai.org), and Contract
HR0011-15-2-0025 with the US Defense Advanced
Research Projects Agency (DARPA). Approved for
Public Release, Distribution Unlimited. The views
expressed are those of the authors and do not reflect
the official policy or position of the Department of
Defense or the U.S. Government.)

597

References

R. Bunescu and M. Pasca. 2006. Using encyclopedic
knowledge for named entity disambiguation. In Pro-
ceedings of the European Chapter of the ACL (EACL).

P.-C. Chang, M. Galley, and C. D. Manning. 2008. Opti-
mizing chinese word segmentation for machine trans-
lation performance. In Proceedings of the third work-
shop on statistical machine translation, Association
for Computational Linguistics.

X. Cheng and D. Roth. 2013. Relational inference for
wikification. In Proceedings of the Conference on
Empirical Methods for Natural Language Processing
(EMNLP).

J. Coulmance, J.-M. Marty, G. Wenzek, and A. Benhal-
loum. 2015. Trans-gram, fast cross-lingual word-
embeddings. In Proceedings of EMNLP.

S. Cucerzan. 2007. Large-scale named entity disam-
biguation based on Wikipedia data. In Proceedings of
the 2007 Joint Conference of EMNLP-CoNLL, pages
708–716.

M. Faruqui and C. Dyer. 2014. Improving vector space
word representations using multilingual correlation.
Association for Computational Linguistics.

P. Ferragina and U. Scaiella. 2010. Tagme: on-the-fly
annotation of short text fragments (by wikipedia enti-
ties). In Proceedings of the 19th ACM international
conference on Information and knowledge manage-
ment, pages 1625–1628. ACM.

S. Gouws, Y. Bengio, and G. Corrado. 2014. Bilbowa:
Fast bilingual distributed representations without word
alignments. In Deep Learning Workshop, NIPS.

X. Han and J. Zhao. 2009. Named entity disambiguation
by leveraging wikipedia semantic knowledge. In Pro-
ceedings of the 18th ACM conference on Information
and knowledge management, pages 215–224. ACM.

K. M. Hermann and P. Blunsom. 2014. Multilingual
distributed representations without word alignment. In
Proceedings of ICLR.

H. Hotelling. 1936. Relations between two sets of vari-
ates. Biometrika, pages 321–377.

H. Ji, R. Grishman, and H. T. Dang. 2012. Overview of
the tac2011 knowledge base population track. In Text
Analysis Conference (TAC2011).

H. Ji, J. Nothman, and B. Hachey. 2015. Overview of
tac-kbp2014 entity discovery and linking tasks. In Text
Analysis Conference (TAC2014).

H. Ji, J. Nothman, B. Hachey, and R. Florian. 2016.
Overview of tac-kbp2015 tri-lingual entity discovery
and linking. In Text Analysis Conference (TAC2015).

C.-P. Lee and C.-J. Lin. 2014. Large-scale linear
RankSVM. Neural computation, 26(4):781–817.

T. Luong, H. Pham, and C. D. Manning. 2015. Bilin-
gual word representations with monolingual quality in
mind. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing.

P. McNamee, J. Mayfield, D. Lawrie, D. W. Oard, and
D. S. Doermann. 2011. Cross-language entity linking.
In Proceedings of IJCNLP, pages 255–263.

R. Mihalcea and A. Csomai. 2007. Wikify!: linking doc-
uments to encyclopedic knowledge. In Proceedings
of ACM Conference on Information and Knowledge
Management (CIKM), pages 233–242.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013a.
Efficient estimation of word representations in vector
space. In Proceedings of Workshop at ICLR.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. 2013b. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–
3119.

D. Milne and I. H. Witten. 2008. Learning to link
with wikipedia. In Proceedings of ACM Conference
on Information and Knowledge Management (CIKM),
pages 509–518.

A. Moro, A. Raganato, and R. Navigli. 2014. Entity
linking meets word sense disambiguation: a unified
approach. In Transactions of the Association for Com-
putational Linguistics, volume 2, pages 231–244.

L. Ratinov, D. Downey, M. Anderson, and D. Roth.
2011. Local and global algorithms for disambiguation
to wikipedia. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics (ACL).

T. Shi, Z. Liu, Y. Liu, and M. Sun. 2015. Learn-
ing crosslingual word embeddings via matrix co-
factorization. In Proceedings of ACL.

H. Soyer, P. Stenetorp, and A. Aizawa. 2015. Leveraging
monolingual data for crosslingual compositional word
representations. In Proceedings of ICLR.

I. Vulić and M.-F. Moens. 2015. Bilingual word em-
beddings from non-parallel document-aligned data ap-
plied to bilingual lexicon induction. In Proceedings of
ACL.

Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowl-
edge graph and text jointly embedding. In Proceed-
ings of EMNLP.

H. Wang, J. G. Zheng, X. Ma, P. Fox, and H. Ji. 2015.
Language and domain independent entity linking with
quantified collective validation. In Proceedings of
EMNLP.

598

Proceedings of NAACL-HLT 2016, pages 599–605,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Deconstructing Complex Search Tasks: A Bayesian Nonparametric
Approach for Extracting Sub-tasks

Rishabh Mehrotra
Dept. of Computer Science
University College London

London, UK
R.Mehrotra@cs.ucl.ac.uk

Prasanta Bhattacharya
Dept. of Information Systems

National University of Singapore
Singapore

prasanta@comp.nus.edu.sg

Emine Yilmaz
Dept. of Computer Science
University College London

London, UK
emine.yilmaz@ucl.ac.uk

Abstract

Search tasks, comprising a series of search
queries serving a common informational need,
have steadily emerged as accurate units for
developing the next generation of task-aware
web search systems. Most prior research in
this area has focused on segmenting chrono-
logically ordered search queries into higher
level tasks. A more naturalistic viewpoint
would involve treating query logs as convo-
luted structures of tasks-subtasks, with com-
plex search tasks being decomposed into more
focused sub-tasks. In this work, we focus
on extracting sub-tasks from a given collec-
tion of on-task search queries. We jointly
leverage insights from Bayesian nonparamet-
rics and word embeddings to identify and ex-
tract sub-tasks from a given collection of on-
task queries. Our proposed model can inform
the design of the next generation of task-based
search systems that leverage user’s task behav-
ior for better support and personalization.

1 Introduction

Search behavior, and information behavior more
generally, is often motivated by tasks that prompt
search processes that are often lengthy, iterative,
and intermittent, and are characterized by distinct
stages, shifting goals and multitasking (Kelly et al.,
2013; Mehrotra et al., 2016). Current search sys-
tems do not provide adequate support for users tack-
ling complex tasks, due to which the cognitive bur-
den of keeping track of such tasks is placed on the
searcher. Ideally, a search engine should be able to
understand the reason that caused the user to submit

a query (i.e., the actual task that caused the query
to be issued) and be able to guide users to achieve
their tasks by incorporating this information about
the actual informational need. Clearly, identifying
and analyzing search tasks is an extremely impor-
tant activity not only for search engine providers but
also other web based frameworks like spoken dia-
logue (Sun et al., 2015) and general recommenda-
tion systems (Mehrotra et al., 2014) in their effort to
improve user experience on their platforms.

Previous work in the area have proposed a num-
ber of methods for identifying and extracting task
knowledge from search query sessions (Mehrotra
and Yilmaz, 2015b; Wang et al., 2013; Lucchese
et al., 2011; Verma and Yilmaz, 2014; Mehrotra
and Yilmaz, 2015a). However, while some tasks
are fairly trivial and single-shot (e.g. ”latest Taylor
Swift album”), others are more complex and often
involve multiple steps or sub-tasks (e.g. ”planning a
wedding”).

Deciphering sub-tasks from search query logs be-
comes an important problem since users might ex-
hibit different search preferences as well as expend
different amounts of search effort while executing
the sub-tasks. For example, while planning a wed-
ding, users might choose to spend more time and ef-
fort on searching for a suitable venue, while spend-
ing considerably less on the choice of a wedding
cake. However, even before we can analyze the vari-
ance in search effort across sub-tasks, it becomes
imperative to successfully identify and extract sub-
tasks for a specific task from search query logs. This
turns out to be a complex problem for two reasons.
First, the number of sub-tasks in a given task is not a

599

parameter than can be explicitly defined, and is gen-
erally task dependent. Second, while similar sound-
ing queries like ”wedding planning checklist” and
”wedding dress” belong to the same task, they inher-
ently represent different sub-tasks. This necessitates
the use of advanced distancing techniques, beyond
the usual bag-of-words or TF-IDF approaches.

In our current study, we propose a method for
extracting search sub-tasks from a given collection
of queries constituting a complex search task, using
a non-parametric Bayes approach. Our generative
model is not restricted by a fixed number of sub-task
clusters, and assumes an infinite number of latent
groups, with each group described by a certain set of
parameters. We specify our non-parametric model
by defining a Distance-dependent Chinese Restau-
rant Process (dd-CRP) prior and a Dirichlet multino-
mial likelihood (Blei and Frazier, 2011). Further, we
draw on recent advancements that emphasize the su-
periority of embedding based distancing approaches
over others, especially when comparing documents
with less or no common words (Mikolov et al.,
2013). We enrich our non-parametric model by
working in the vector embedding space and propose
a word-embedding based distance measure (Kusner
et al., 2015) to encode query distances for efficient
sub-task extraction.

2 Related Work

Web search logs have been extensively studied to
generate insights and provide explicit cues about
the information seeking behavior of users, that
would improve their search experiences. There have
been attempts to extract in-session tasks (Jones and
Klinkner, 2008; Lucchese et al., 2011; Spink et al.,
2005), and cross-session tasks (Wang et al., 2013;
Kotov et al., 2011; Li et al., 2014) from query se-
quences based on classification and clustering meth-
ods. Hagen et al. (Hagen et al., 2013) have re-
cently presented a cascading method for logical ses-
sion detection that can also be applied to search mis-
sion detection. Kotov et al (Kotov et al., 2011) and
Agichtein et al (Agichtein et al., 2012) have stud-
ied the problem of cross-session task extraction via
binary same-task classification. Unfortunately, pair-
wise predictions alone cannot generate the partition
of tasks, and post-processing is needed to obtain the

final task partitions (Liao et al., 2012).
Some previous attempts have been made to sup-

port people engaged in complex tasks by allowing
them to take notes and record results that they al-
ready examined (Donato et al., 2010), or to provide
task continuation assistance (Morris et al., 2008).
Jones et al. (Jones and Klinkner, 2008) was the
first work to consider the notion that there may be
multiple sub-tasks associated with a user’s informa-
tional needs. However, they fall short of propos-
ing a method to identify a task from queries. Since
most of these task extraction methods are based on
relating a user’s current query to one of her previ-
ous tasks, these methods cannot be directly used in
finding and extracting sub-tasks. As a result, while
task extraction methods abound, very little has been
done to explicitly identify the sub-tasks from within
complex search tasks.

3 Extracting Sub-tasks

Consider a collection of queries (Q) issued by search
engine users, trying to accomplish certain search
tasks. Quite often, these search tasks (e.g. plan-
ing a trip) are complex and conceptually decompose
into a set of sub-tasks (e.g. booking flights, find-
ing places of interest etc), each of which warrants
the user to further issue multiple queries to solve. It
is important to note that while the queries are ob-
served, the inherent sub-tasks and their numbers are
latent. Given a collection of on-task queries, ex-
tracted using a standard task extraction algorithm,
our goal is to extract these sub-tasks from the on-
task query collection.

The distance dependent Chinese restaurant pro-
cess (dd-CRP) (Blei and Frazier, 2011) was re-
cently introduced to model random partitions of
non-exchangeable data. To extract sub-tasks, we
consider the dd-CRP model in an embedding-space
setting and place a dd-CRP prior over the search
tasks.

3.1 Nonparametric Priors for Sub-tasks

The Chinese restaurant process (CRP) is a distribu-
tion on all possible partitions of a set of objects (in
our case, queries). The generative process can be
described via a restaurant with an infinite number of
tables (in our case, sub-tasks). Customers (queries) i

600

enter the restaurant in sequence and select a table zi
to join. They pick an occupied table with a probabil-
ity proportional to the number of customers already
sitting there, or a new table with probability propor-
tional to a scaling parameter α. The dd-CRP alters
the CRP by modeling customer links not to tables,
but to other customers.

In our sub-task extraction problem, each task is
associated with a dd-CRP and its tables are embel-
lished with IID draws from a base distribution over
mixture component parameters. Let zi denote the
ith query assignment, the index of the query with
whom the ith query is linked. Let dij denote the
distance measurement between queries i and j, let D
denote the set of all distance measurements between
queries, and let f be a decay function. The distance
dependent CRP independently draws the query as-
signments to sub-tasks conditioned on the distance
measurements,

p(zi = j|D,α) ∝
{
f(dij) if j 6= i

α if j = i

Here, dij is an externally specified distance between
queries i and j, and α determines the probability
that a customer links to themselves rather than an-
other customer. The monotonically decreasing de-
cay function f(d) mediates how the distance be-
tween two queries affects their probability of con-
necting to each other. The overall link structure
specifies a partition: two queries are clustered to-
gether in the same sub-task if and only if one can
reach the other by traversing the link edges. R(q1:N)
maps query assignments to sub-task assignments.

Given a decay function f , distances between
queries D, scaling parameter α, and an exchange-
able Dirichlet distribution with parameter λ, N M-
word queries are drawn as follows,

1. For i ∈ [1, N], draw zi ∼ dist −
CRP (α, f,D).

2. For i ∈ [1, N],

(a) If zi /∈ R∗q1:N , set the parameter for the
ith query to θi = θqi . Otherwise draw the
parameter from the base distribution, θi ∼
Dirichlet(λ).

(b) Draw the ith query terms, wi ∼
Mult(M, θi).

We experimented with 3 different values of alpha
and reported the best performing results. We next
define the distance and decay functions which help
us find task-specific query distances.

3.2 Quantifying Task Based Query Distances
Word embeddings capture lexico-semantic regulari-
ties in language, such that words with similar syn-
tactic and semantic properties are found to be close
to each other in the embedding space. We leverage
this insight and propose a novel query-query dis-
tance metric based on such embeddings. We train
a skip-gram word embeddings model where a query
term is used as an input to a log-linear classifier
with continuous projection layer and words within
a certain window before and after the words are pre-
dicted. We next describe how we use these query
term embedding vectors to define query distances.

For a search task like ”planning a wedding”, fre-
quent queries include wedding checklist, wedding
planning and bridal dresses. Ideally, checklist and
planning related queries constitute a different sub-
task than bridal dresses. Given the overall context
of weddings, words like checklist and dresses are
more informative than generic words like weddings.
To this end, we classify each word as background
word or subtask-specific word using a simple fre-
quency based approach on the given collection of
on-task query terms and use a weighted combina-
tion of their embedding vectors to encode a query’s
vector:

Vq =
1

nterms

∑
i

nqti
Σqnq

Vti (1)

where ti is the i-th term in the query q, nqti is the
number of queries in the current task which contain
the term ti. We encode each query by its correspond-
ing embedding vector representation Vq and take the
cosine distance of these vectors while defining dij .
We consider a simple window decay f(d) = 1[d <
a] to only considers queries that are separated from
the current query for a given sub-task, by a distance
of, at most, a .

3.3 Posterior Inference
The posterior of the proposed dd-CRP model is in-
tractable to compute because the dd-CRP places a
prior over a combinatorial number of possible cus-
tomer configurations. We employ a Gibbs sampler,

601

Figure 1: Visual formulation of the proposed approach. The ta-
bles represent the different sub-tasks while each triangle represents the
search queries. Query assignment leads to sub-task assignments.

wherein we iteratively draw from the conditional
distribution of each latent variable, given the other
latent variables and observations.
The Gibbs sampler iteratively draws from

p(znewi |z−i, x) ∝ p(znewi |D,α)
p(x|t(z−i ∪ znewi), G0)

(2)

The first term is the dd-CRP prior and the second
is the likelihood of observations (x) under the parti-
tion, and t(z) is the sub-task formed from the assign-
ments z. We employ a Dirichlet-Multinomial con-
jugate distribution to model the likelihood of query
terms.

Queries are assigned to sub-tasks by considering
sets of queries that are reachable from each other
through the query assignments. Notice that many
configurations of query assignments might lead to
the same sub-task assignment. Finally, query as-
signments can produce a cycle, e.g., query 1 linking
with 2 and query 2 linking with 1. This still deter-
mines a valid sub-task assignment: all queries linked
in a cycle are assigned to the same sub-task. Figure
1 provides a pictorial representation of the sub-task
assignment process.

4 Experimental Evaluation

In this section, we evaluate the robustness of the pro-
posed sub-task extraction framework. In addition
to qualitative analysis of the extracted sub-tasks, we
perform a user judgment study to evaluate the qual-
ity of the extracted sub-tasks.

4.1 Dataset & Baselines
We make use of the AOL log dataset which consists
of 20M web queries collected over three months
(Pass et al., 2006). The dataset comprises of
five fields viz. the search query string, the query
time stamp, the rank of the selected item (if any),
the domain of the selected items URL (if any),
and a unique user identifier. We augment on-task
queries extracted from the AOL logs with the re-
lated searches output from different search engines
by making use of their APIs.

To compare the performance of the proposed sub-
task extraction algorithm, we baseline against a
number of methods including state-of-the-art task
extraction systems, in addition to parametric and
non-parametric clustering approaches:

1 QC-HTC (Lucchese et al., 2011): a frequently
used search task identification method.

2 LDA (Blei et al., 2003): a topic model based
baseline which aggregates queries (similar to
tweet aggregation as proposed in (Mehrotra et
al., 2013)) in a session to form a document and
learns an LDA model on top of it.

3 vanilla-CRP: a vanilla non-parametric CRP
model (Wang and Blei, 2009).

4 Proposed Approach: the proposed embedding
based dd-CRP model.

4.2 Qualitative Evaluation
Table 1 shows some exemplar sub-tasks identified
by the proposed model and the baseline methods
using a CRP, QC-HTC and a LDA process. Each
task is visualized using four search queries that were
most frequently executed in relation to that sub-task,
but not in any specific order among themselves. The
task selected for this illustration was that of plan-
ning a wedding, and the three sub-tasks identified
using our proposed method, for this particular task
were wedding hairstyles, wedding dresses, and wed-
ding cards. In comparison, however, the baseline
methods failed to identify diagnostic clusters. For
instance, LDA grouped wedding insurance, wed-
ding planning books and wedding cards as a sin-
gle sub-task, while CRP grouped wedding planning
kits, wedding dresses and wedding decorations into

602

Proposed Approach LDA
sub-task 1 sub-task 2 sub-task 3 sub-task 1 sub-task 2 sub-task 3

wedding hairstyles used wedding dresses wedding card holders wedding insurance christian wedding vows make wedding invitations
wedding hair dos colorful bridal gowns indian wedding program destination wedding brides wedding cakes pictures

curly wedding hairstyles preowned wedding dresses wedding program wedding planning book cheap wedding dresses planners
pictures of wedding hair wedding attire regency wedding cards party supply stores tea length wedding dresses wedding colors

CRP QC-HTC
sub-task 1 sub-task 2 sub-task 3 sub-task 1 sub-task 2 sub-task 3

wedding planning kit wedding theme wedding insurance wedding insurance christian wedding vows cheap dresses
destination wedding wedding guide weddings in vegas destination wedding plus size bridesmaid wedding cakes pictures

wedding table decorations save the date ideas wedding cakes pictures financing wedding rings wedding colors pricing weddings
1930s wedding pictures wedding vacation planning a wedding party supply stores tea length wedding dresses wedding dresses discounts

Table 1: Qualitative Analysis of Sub-Tasks extracted by different approaches.

a single sub-task. Our proposed method, however,
demonstrated remarkably good discriminant valid-
ity, as is clear from Table 1.

4.3 User Study

Evaluation of tasks and sub-tasks is an open research
question. Owing to the absence of ground truth data
on sub-task classification, we resort to user judg-
ments in order to validate the quality of sub-tasks
extracted. We select a sub-task at random and then
choose a randomly selected pair of queries from that
sub-task. Next, we ask the judges, recruited via
AMT1, to affirm or deny if the two queries should
be assigned to the same sub-task category. We repeat
this process for a total of 100 iterations and compare
the results with the ones predicted by our proposed
approach, as well as with the ones predicted by the
baselines.

We report the proportion of correct matches (i.e.
proportion of times our predicted sub-task classifica-
tions matched the expert judgments) in Fig. 2. The
label agreement among the judges was 85.4% and
the performance differences were statistically sig-
nificant. It is clear that our proposed method out-
performs both, task extraction & topic model based
baselines in making correct sub-task classifications.

5 Results & Discussion

Web search tasks are often complex and comprise
several constituent sub-tasks. In this paper we of-
fer a non-parametric Bayesian approach to identi-
fying sub-tasks by grouping search queries using
an embedding based dd-CRP approach. The pro-
posed model combines insights from Bayesian non-
parametrics and distributional semantics to extract

1https://www.mturk.com/mturk/welcome

Figure 2: Judgments results for sub-task validity
across compared approaches.

sub-tasks which are not only meaningful but are
also coherent. We evaluate our proposed method
on the popular AOL search log dataset augmented
with related search queries and demonstrate supe-
riority over comparable approaches such as LDA
and CRP. Further, we contend that our proposed ap-
proach is significantly more useful in online environ-
ments where the number of sub-tasks is never known
apriori and impossible to ascertain or approximate.

In future work, we intend to consider hierarchi-
cal extensions for extracting hierarchies of tasks-
subtasks. Further, using an embedding based dis-
tancing scheme, we offer an improvement in em-
pirical performance over prior clustering approaches
that have used either a bag-of-words or TF-IDF
based solution. Our method offers search engine
providers with a novel method to identify and an-
alyze user task-behavior, and better support task de-
cisions on their platforms.

Acknowledgments
This work was supported in part by a Google Faculty
Research Award.

603

References

[Agichtein et al.2012] Eugene Agichtein, Ryen W White,
Susan T Dumais, and Paul N Bennet. 2012. Search,
interrupted: understanding and predicting search task
continuation. In Proceedings of the 35th international
ACM SIGIR conference on Research and development
in information retrieval, pages 315–324. ACM.

[Blei and Frazier2011] David M Blei and Peter I Frazier.
2011. Distance dependent chinese restaurant pro-
cesses. The Journal of Machine Learning Research,
12:2461–2488.

[Blei et al.2003] David M Blei, Andrew Y Ng, and
Michael I Jordan. 2003. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–
1022.

[Donato et al.2010] Debora Donato, Francesco Bonchi,
Tom Chi, and Yoelle Maarek. 2010. Do you want
to take notes?: identifying research missions in yahoo!
search pad. In Proceedings of the 19th international
conference on World wide web, pages 321–330. ACM.

[Hagen et al.2013] Matthias Hagen, Jakob Gomoll, Anna
Beyer, and Benno Stein. 2013. From search session
detection to search mission detection. In Proceedings
of the 10th Conference on Open Research Areas in In-
formation Retrieval, pages 85–92.

[Jones and Klinkner2008] Rosie Jones and Kristina Lisa
Klinkner. 2008. Beyond the session timeout: au-
tomatic hierarchical segmentation of search topics in
query logs. In Proceedings of the 17th ACM con-
ference on Information and knowledge management,
pages 699–708. ACM.

[Kelly et al.2013] Diane Kelly, Jaime Arguello, and
Robert Capra. 2013. Nsf workshop on task-based
information search systems. In ACM SIGIR Forum,
volume 47, pages 116–127. ACM.

[Kotov et al.2011] Alexander Kotov, Paul N Bennett,
Ryen W White, Susan T Dumais, and Jaime Teevan.
2011. Modeling and analysis of cross-session search
tasks. In Proceedings of the 34th international ACM
SIGIR conference on Research and development in In-
formation Retrieval, pages 5–14. ACM.

[Kusner et al.2015] M. J. Kusner, Y. Sun, N. I. Kolkin,
and K. Q. Weinberger. 2015. From word embeddings
to document distances. In ICML.

[Li et al.2014] Liangda Li, Hongbo Deng, Anlei Dong,
Yi Chang, and Hongyuan Zha. 2014. Identifying
and labeling search tasks via query-based hawkes pro-
cesses. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 731–740. ACM.

[Liao et al.2012] Zhen Liao, Yang Song, Li-wei He, and
Yalou Huang. 2012. Evaluating the effectiveness of

search task trails. In Proceedings of the 21st interna-
tional conference on World Wide Web, pages 489–498.
ACM.

[Lucchese et al.2011] Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, Fabrizio Silvestri, and
Gabriele Tolomei. 2011. Identifying task-based ses-
sions in search engine query logs. In Proceedings
of the fourth ACM international conference on Web
search and data mining, pages 277–286. ACM.

[Mehrotra and Yilmaz2015a] Rishabh Mehrotra and Em-
ine Yilmaz. 2015a. Terms, topics & tasks: Enhanced
user modelling for better personalization. In Proceed-
ings of the 2015 International Conference on The The-
ory of Information Retrieval, pages 131–140. ACM.

[Mehrotra and Yilmaz2015b] Rishabh Mehrotra and Em-
ine Yilmaz. 2015b. Towards hierarchies of search
tasks & subtasks. In Proceedings of the 24th Inter-
national Conference on World Wide Web Companion,
pages 73–74. International World Wide Web Confer-
ences Steering Committee.

[Mehrotra et al.2013] Rishabh Mehrotra, Scott Sanner,
Wray Buntine, and Lexing Xie. 2013. Improving
lda topic models for microblogs via tweet pooling and
automatic labeling. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 889–892.
ACM.

[Mehrotra et al.2014] Rishabh Mehrotra, Emine Yilmaz,
and Manisha Verma. 2014. Task-based user mod-
elling for personalization via probabilistic matrix fac-
torization. In RecSys Posters.

[Mehrotra et al.2016] Rishabh Mehrotra, Prasanta Bhat-
tacharya, and Emine Yilmaz. 2016. Characteriz-
ing users’ multi-tasking behavior in web search. In
Proceedings of the 2016 ACM on Conference on Hu-
man Information Interaction and Retrieval, CHIIR
’16, pages 297–300, New York, NY, USA. ACM.

[Mikolov et al.2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Greg S Corrado, and Jeff Dean. 2013. Dis-
tributed representations of words and phrases and their
compositionality. In Advances in neural information
processing systems, pages 3111–3119.

[Morris et al.2008] Dan Morris, Meredith Ringel Morris,
and Gina Venolia. 2008. Searchbar: a search-centric
web history for task resumption and information re-
finding. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 1207–
1216. ACM.

[Pass et al.2006] Greg Pass, Abdur Chowdhury, and Cay-
ley Torgeson. 2006. A picture of search. In InfoScale,
volume 152, page 1.

[Spink et al.2005] Amanda Spink, Sherry Koshman, Min-
soo Park, Chris Field, and Bernard J Jansen. 2005.

604

Multitasking web search on vivisimo. com. In In-
formation Technology: Coding and Computing, 2005.
ITCC 2005. International Conference on, volume 2,
pages 486–490. IEEE.

[Sun et al.2015] Ming Sun, Yun-Nung Chen, and Alexan-
der I Rudnicky. 2015. Understanding users cross-
domain intentions in spoken dialog systems. In NIPS
Workshop on Machine Learning for SLU and Interac-
tion.

[Verma and Yilmaz2014] Manisha Verma and Emine Yil-
maz. 2014. Entity oriented task extraction from query
logs. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowl-
edge Management, pages 1975–1978. ACM.

[Wang and Blei2009] Chong Wang and David M Blei.
2009. Variational inference for the nested chinese
restaurant process. In Advances in Neural Information
Processing Systems, pages 1990–1998.

[Wang et al.2013] Hongning Wang, Yang Song, Ming-
Wei Chang, Xiaodong He, Ryen W White, and Wei
Chu. 2013. Learning to extract cross-session search
tasks. In Proceedings of the 22nd international con-
ference on World Wide Web, pages 1353–1364. Inter-
national World Wide Web Conferences Steering Com-
mittee.

605

Proceedings of NAACL-HLT 2016, pages 606–616,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Probabilistic Models for Learning a Semantic Parser Lexicon

Jayant Krishnamurthy
Allen Institute for Artificial Intelligence

2157 N. Northlake Way, Suite 110
Seattle, WA 98103

jayantk@allenai.org

Abstract

We introduce several probabilistic models for
learning the lexicon of a semantic parser. Lex-
icon learning is the first step of training a se-
mantic parser for a new application domain
and the quality of the learned lexicon signifi-
cantly affects both the accuracy and efficiency
of the final semantic parser. Existing work
on lexicon learning has focused on heuris-
tic methods that lack convergence guarantees
and require significant human input in the
form of lexicon templates or annotated logi-
cal forms. In contrast, our probabilistic mod-
els are trained directly from question/answer
pairs using EM and our simplest model has a
concave objective that guarantees convergence
to a global optimum. An experimental evalu-
ation on a set of 4th grade science questions
demonstrates that our models improve seman-
tic parser accuracy (35-70% error reduction)
and efficiency (4-25x more sentences per sec-
ond) relative to prior work despite using less
human input. Our models also obtain compet-
itive results on GEO880 without any dataset-
specific engineering.

1 Introduction

Semantic parsing has recently gained popularity as
a technique for mapping from natural language to a
formal meaning representation language, e.g., in or-
der to answer questions against a database (Zelle and
Mooney, 1993; Zettlemoyer and Collins, 2005). In
order to train a semantic parser, one must first pro-
vide a lexicon, which is a mapping from words in the
language to statements in the meaning representa-
tion language. This mapping defines the grammar of

L

λx.EATS(x, BASS)

SKIP

what ...

λx.EATS(x, BASS)

λf.λx.EATS(x, f)

predator

BASS

SKIP

of

BASS

bass
Lexicon Entries:
predator := N/NP : λf.λx.EATS(x, f)
bass := NP : BASS

Figure 1: Parse tree of a training example and the lexicon en-

tries derived from it.

the parser and thereby determines the set of meaning
representations that can be produced for any given
sentence. Therefore, a good lexicon is necessary to
achieve both high accuracy and parsing speed. How-
ever, the lexicon is unobserved in real semantic pars-
ing applications, leading us to ask: how do we learn
a lexicon for a semantic parser?

This paper presents several novel probabilistic
models for learning a semantic parser lexicon. Ex-
isting lexicon learning algorithms are heuristic in na-
ture and require either annotated logical forms or
manually-specified lexicon entry templates during
training. In contrast, our models do not require such
templates and can be trained from question/answer
pairs and other forms of weak supervision. Train-
ing consists of optimizing an objective function with
Expectation Maximization (EM), thereby guaran-

606

teeing convergence to a local optimum. Further-
more, the objective function for our simplest model
is concave, guaranteeing convergence to a global
optimum. Our approach generates a probabilis-
tic context-free grammar that represents the space
of correct semantic parses for each question; once
trained, our approach derives lexicon entries from
the most likely parse of each question (Figure 1).

We present an experimental evaluation of our lex-
icon learning models on a data set of food chain
questions from a 4th grade science domain. These
questions concern relations between organisms in
an ecosystem and have challenging lexical diversity
and question length. Our models improve semantic
parser accuracy (35-70% error reduction) over prior
work despite using less human input. Furthermore,
our best model produces a lexicon that contains 40x
fewer entries than the most accurate baseline, result-
ing in a semantic parser that is 4x faster. Our models
also obtain competitive results on GEO880 without
any dataset-specific engineering.

2 Prior Work

Work on lexicon learning falls into two categories:
Pipelined approaches build a lexicon before

training the parser, either by manually defining it
(Lee et al., 2014; Angeli et al., 2012) or by us-
ing a collection of heuristics. The heuristics of-
ten take the form of lexicon templates, which are
rules that create lexicon entries by pattern-matching
training examples (Liang et al., 2011; Krishna-
murthy and Mitchell, 2012; Krishnamurthy and Kol-
lar, 2013). These approaches require new lexi-
con templates for each application. More complex
heuristic algorithms have been proposed based on
word alignments (Wong and Mooney, 2006; Wong
and Mooney, 2007) or common substructures in the
meaning representation (Chen and Mooney, 2011);
these algorithms all require annotated logical forms.

Joint approaches simultaneously learn a lexicon
and the parameters of a semantic parser. Typically,
these algorithms use lexicon templates to generate a
set of lexicon entries for each example, then heuristi-
cally select a subset of these entries to include in the
global lexicon while training the parser (Zettlemoyer
and Collins, 2005; Zettlemoyer and Collins, 2007;
Artzi and Zettlemoyer, 2013b; Artzi et al., 2014).

UBL takes a different approach that performs top-
down, iterative splits of an annotated logical form
for each training example (Kwiatkowski et al., 2010;
Kwiatkowski et al., 2011). Artzi et al. (2015) com-
bine templates with top-down splitting. The heuris-
tic search performed by these algorithms can be dif-
ficult to control and we empirically found that these
algorithms often selected overly-specific lexicon en-
tries (see Section 4.4).

Other work has avoided the lexicon learning prob-
lem altogether by searching over all possible mean-
ing representations (Kate and Mooney, 2006; Clarke
et al., 2010; Goldwasser et al., 2011; Berant and
Liang, 2014; Pasupat and Liang, 2015; Reddy et
al., 2014). The challenge of this approach is that
the space of meaning representations for a sentence
can be very large, making parsing less efficient and
learning more difficult. A practical compromise is to
combine a (possibly minimal) lexicon with flexible
parsing operations (Liang et al., 2011; Zettlemoyer
and Collins, 2007; Poon, 2013; Parikh et al., 2015).

Our lexicon learning models are closely related to
machine translation word alignment models (Brown
et al., 1993) – our key insight is that lexicon learning
is equivalent to word alignment where the tokeniza-
tion of one of the sentences is unobserved. Thus, our
models simultaneously “tokenize” the logical form –
using a splitting process similar to UBL – and align
the resulting logical form “tokens” to words.

3 Probabilistic Models for Lexicon
Learning

This section describes our lexicon learning models.
For concreteness, we focus on learning a lexicon for
a Combinatory Categorial Grammar (CCG) seman-
tic parser with lambda calculus logical forms as the
meaning representation; however, our models are
applicable to other semantic parsing formalisms and
meaning representation languages.

Our models learn a CCG lexicon from a data set of
question/label pairs {(wi, Li)}ni=1. Each question is
a sequence of words, wi = [wi1, w

i
2, ...], and each la-

bel is a set of logical forms, Li = {`i1, ...}. Labeling
each question with a set of logical forms generalizes
many weak supervision settings, including ambigu-
ous supervision (Kate and Mooney, 2007) and ques-

607

Training Example:
w = What is the predator of bass ?
L = {λx.EATS(x, BASS),

λx.CAUSE(INCREASE(BASS), INCREASE(x)),
...}

Generated Grammar:
Unary rules:
L � λx.EATS(x, BASS)
L � λx.CAUSE(INCREASE(BASS), INCREASE(x))

Nonterminal rules:
λx.EATS(x, BASS) � BASS λf.λx.EATS(x, f)
λx.EATS(x, BASS) � λf.λx.EATS(x, f) BASS
BASS � SKIP BASS
...

Terminal rules:
λx.EATS(x, BASS) � what
λx.EATS(x, BASS) � is
SKIP � what
...

Figure 2: Training example (top) and several of the rules in its

logical form derivation grammar (bottom).

tion/answer pairs (Liang et al., 2011).1 The output of
learning is a collection of lexicon entries w := C : `
mapping word w to syntactic category C and logical
form `.

Our models are generative models of questions
given a label, P (w|L). The key component of
each model is a probabilistic context-free grammar
(PCFG) over correct logical form derivations. A
parse tree in this grammar simultaneously represents
(1) the choice of a logical form ` ∈ L, (2) the way `
is constructed from smaller parts, and (3) the align-
ment between these parts and words in the question.
Training each model amounts to learning the rule
probabilities of this grammar, including which logi-
cal forms are likely to generate which words. Pars-
ing an example with the trained grammar produces
an alignment between words and logical forms that
is used to construct a lexicon.

3.1 Logical Form Derivation Grammar
The logical form derivation grammar is a PCFG con-
structed to represent the set of correct logical form
derivations – i.e., correct semantic parses – of each

1In the second case, the set L can be generated by enumer-
ating logical forms and evaluating each one to determine if it
produces the correct answer. See Section 5 for a discussion of
the benefits and limitations of this process.

training example. The grammar’s nonterminals are
logical forms and its binary production rules repre-
sent ways that pairs of logical forms can combine in
the semantic parser. The grammar’s terminals are
words and its terminal production rules represent
lexicon entries. The complete grammar is a union
of many smaller grammars, each of which is con-
structed to represent the logical form derivations of
a single example. Figure 2 shows a training exam-
ple and a portion of the grammar generated for it,
and Figure 1 shows a parse tree in the grammar.

Our algorithm for constructing the PCFG for a
training example (w, L) uses a top-down approach
that iteratively splits logical forms in L. Assume we
are given a procedure SPLIT(f) that outputs a list of
ways to split f into a pair of logical forms (g, h).
Grammar generation performs the following steps:

1. Model weak supervision. Add L to the gram-
mar as a nonterminal and add a unary rule
L � ` for all ` ∈ L.

2. Enumerate logical form splits. For all ` ∈ L,
perform a depth-first search over logical forms
starting at `. To explore a logical form f during
the search, use SPLIT(f) to produce a collec-
tion of g, h pairs. For each g, h pair, add the
binary rules f � g h and f � h g to the gram-
mar, then add g and h to the search queue for
later exploration.

3. Create lexicon entries. Add a terminal rule
f � w to G for every word in the question,
w ∈ w, and logical form f encountered during
the search above.

4. Allow word skipping. Add a special SKIP non-
terminal, along with the rules f � f SKIP,
f � SKIP f and SKIP � w for all logical forms
f and words w ∈ w.

The SPLIT procedure required above depends
on the meaning representation language, but is
application-independent. For our lambda calculus
representation, SPLIT(f) returns a list of logical
forms g, h such that f = g(h). We use similar
constraints as Kwiatkowski et al. (2011) to keep
the number of splits manageable. Note that SPLIT

could also include composition by returning g, h

608

pairs such that f = λx.g(h(x)); however, we did
not explore this possibility in this paper.

An important property of this grammar is that it
excludes many logical form derivations that cannot
lead to the label. For example, the grammar in Fig-
ure 2 does not let us apply λx.EATS(x, BASS) to
BASS – even though this operation would be per-
mitted by CCG – because there is no way to reach
the label L from the result EATS(BASS, BASS). This
property reduces the number of possible parses of
a question relative to a CCG parser with the same
lexicon entries, making parsing more efficient.

The logical form derivation grammar G is con-
structed by applying the above process to every ex-
ample in the data set. Let P (t|L; θ) denote the prob-
ability of generating tree t from G given ROOT(t) =
L and parameters θ. This probability factors into a
product of production rule probabilities:

P (t|L; θ) =
∏

(f�g h)∈tP (f � g h; θ)×
∏

(f�w)∈t
P (f � w; θ)

In the above equation, P (f � g h; θ) and P (f �
w; θ) represent the conditional probability of select-
ing a production rule given the nonterminal f . We
use P (w, t|L; θ) to denote P (t|L; θ) where the ter-
minals of t are equal to the question w. In the fol-
lowing, sums over trees t are implicitly over all trees
permitted by G.

3.2 Independent Model
The independent model assumes that each word wj
of a question w is generated independently from a
parse tree t chosen uniformly at random given the
label L. This simple model allows two words in the
same question to be generated by different trees. The
probability of a question given a label is:

P (w|L; θ) =
|w|∏
j=1

∑
f

P (f � wj ; θ)#(f, j, L, |w|)

The final term #(f, j, L, |w|) is the fraction of
trees with root L and |w| terminals where the jth
terminal symbol is generated by nonterminal f . This

term appears due to the assumption that trees are
drawn uniformly at random. The parameters θ of
this model are the terminal production rule probabil-
ities, which are modeled as a conditional probability
table: P (f � w; θ) = θf,w where

∑
w θf,w = 1.

The independent model is a generalization of IBM
Model 1 (Brown et al., 1993) to the lexicon learning
problem, and – like IBM Model 1 – its loglikelihood
function is concave (see Appendix A). Therefore,
the EM algorithm will converge to a global optimum
of the data loglikelihood under this model.

3.3 Coupled Model
The coupled model generates the entire question w
from a single parse tree t that is generated given L.
This model removes the previous model’s naı̈ve as-
sumption that each word is generated independently.
The probability of a question given a label under this
model is:

P (w|L; θ) =
∑
t

P (w, t|L; θ)

Theoretically, we could learn both of the produc-
tion rule distributions that compose P (w, t|L; θ) in
this formulation. However, in practice, the large
number of nonterminals makes it challenging to
learn a conditional probability table for the binary
production rules. Therefore, we again assume the
trees are drawn uniformly at random and only learn
a conditional probability table for the terminal pro-
duction rules.

3.4 Coupled Loglinear Model
The coupled loglinear model replaces the con-
ditional probability tables of the coupled model
with loglinear models. Loglinear models can
share parameters across different – but intuitively
similar – production rules. For example, both
λx.EATS(x, BASS) and λx.EATS(x, FROG) should
have similar distributions over production rules
when BASS is appropriately replaced by FROG. We
can produce this effect with loglinear models by as-
signing similar feature vectors to these rules.

This model uses three locally-normalized loglin-
ear models to parameterize the distribution over pro-
duction rules. First, a rule model decides whether or
not to apply a terminal production rule. Next, given

609

this model’s response, a second loglinear model de-
cides which of the chosen kind of rules to apply.
This approach ensures that each nonterminal sym-
bol has a proper conditional probability distribution
over rules. The production rule distributions are pa-
rameterized as:

P (f � w; θ) =
exp(θTr φr(f) + θTt φt(f, w))

ZrZt(f)

P (f � g h; θ) =
exp(θTnφn(f, g, h))

ZrZn(f)

In the above equation, the r, t and n subscripts
indicate terms of the rule, terminal and nontermi-
nal models, respectively. The Zr, Zt(f) and Zn(f)
terms denote the partition functions of each model,
and φr, φn and φt are functions mapping nontermi-
nals and production rules to feature vectors. We use
indicator features for logical form patterns, where
each pattern is produced by replacing all of a logi-
cal form’s subexpressions below a certain depth with
their types.

3.5 Training with Expectation Maximization

We train all three models by maximizing data log-
likelihood with EM (Dempster et al., 1977). Train-
ing the independent model is equivalent to training
a mixture of multinomials where each word of each
question has its own prior over cluster assignments.
Let θm represent the model parameters on the mth
training iteration. The E-step calculates expected
count of each terminal production rule:

Ef,w � ∑
i,j:wi

j=w

P (f � wij ; θ
m)#(f, j, Li, |wi|)

The term #(f, j, Li, |wi|) – representing the frac-
tion of trees where nonterminal f generates the jth
word of question i – can be calculated by parsing
each example once using the inside/outside algo-
rithm. The M-step re-estimates the terminal produc-
tion rule probabilities using these expected counts:

θm+1
f,w � Ef,w∑

w′ Ef,w′

Training the coupled models is a standard appli-
cation of EM to learning the parameters of a la-
tent probabilistic CFG. The E-step calculates the ex-
pected number of occurrences of each production
rule in each example:

Ef,g,h �∑
i,t

#(f � g h, t)P (t|wi, Li; θm)

Ef,w �∑
i,t

#(f � w, t)P (t|wi, Li; θm)

In the above equation, the function #(f � w; t)
returns the number of occurrences of f � w in t.
These expected counts can be computed efficiently
using the inside/outside algorithm.2 The M-step of
the coupled model is the same as that of the indepen-
dent model above. The M-step of the coupled log-
linear model solves an optimization problem to fit
the loglinear models to the computed expectations
(Berg-Kirkpatrick et al., 2010):

θm+1 � arg max
θ

∑
f,w

Ef,w logP (f � w; θ)+

∑
f,g,h

Ef,g,h logP (f � g h; θ)

This problem factors into three separate optimiza-
tion problems: a binary logistic regression for the
rule model, and estimating two conditional distri-
butions over nonterminal and terminal production
rules. We use L-BFGS to solve these problems.

3.6 Producing a Lexicon
Given parameters θ and a data set {(wi, Li)}ni=1, we
produce a CCG lexicon from the terminal produc-
tion rules of the most probable parse of each exam-
ple. First, we parse each question wi conditioning
on the parse tree root being Li. Second, we gen-
erate lexicon entries from the highest scoring parse
tree for each example. We identify the nonterminal
f that generates each word w ∈ w and, if f 6= SKIP,
create a lexicon entry w := C : f . As in previous
work, we derive the syntactic category C from the
semantic type of the logical form (Kwiatkowski et

2A further efficiency improvement is to note that, when pars-
ing an example, it is sufficient to use the subset of G that was
generated for it.

610

w: Which organism in the diagram is eaten by the
blackbird?

`: λx.EATS(BLACKBIRD, x)
c: sun � grains � blackbird � hawk � falcon
a: grains

w: The is neither a producer or a consumer.
`: λx.NOT(ANIMAL(x) ∨ PLANT(x)),
c: sun � grasses � hartebeest � lion
a: sun

w: If the sun is blocked by clouds for a long period of
time, which animal will be most quickly threatened
by starvation?

`: λx.CAUSE(DECREASE(SUN), DECREASE(x))
c: sun � algae � shrimp � smelt � salmon
a: algae

w: If the seals were killed off, the population of pen-
guin would most likely

`: λf.CAUSE(DECREASE(SEAL), f(PENGUIN))
c: sun � algae � squid � penguin � seal
a: increase

Figure 3: Examples from FOODCHAINS. Each example con-

sists of a question w, logical form `, food chain c and answer

a.

al., 2011). The argument directions of C are deter-
mined by walking up the tree and noting the relative
position of each of its arguments. Figure 1 shows
an example of a predicted parse tree and the lexicon
entries generated from it.

4 Evaluation

We compare our lexicon learning models against
several baselines on two data sets: FOODCHAINS,
containing 4th grade science food chain ques-
tions, and GEO880, containing geography questions.
These data sets each present different challenges for
lexicon learning: FOODCHAINS has more difficult
language – long questions and more lexical vari-
ation – while GEO880 has more complex logical
forms. Our results demonstrate that our models per-
form better than several baselines with difficult lan-
guage while simultaneously performing reasonably
well with complex logical forms.

Code, data and other supplementary
material for this paper is available at
http://www.allenai.org/paper-appendix/

naacl2016-lexicon.

FOODCHAINS GEO880

Examples 774 880
Word types 446 279
Word types w/o entity names 357 157
Tokens per question 11.6 7.56
Predicates in ontology 15 38
Constants per logical form 4.0 7.7

Table 1: Data statistics for FOODCHAINS and GEO880.

4.1 Data
We collected a new data set, FOODCHAINS, that con-
tains 774 food chain questions designed to imitate
actual questions from the New York State Grade 4
Regents Exam. Each example in the data set con-
sists of a natural language question and a food chain,
which is a list of organisms that eat each other. The
questions are multiple choice and the answer options
are either animals from the food chain or a direction
of change, e.g., “increase.” Each question also has a
logical form annotated by the first author, which is
necessary to train some of the baseline systems. The
denotation of each predicate – and therefore logical
form – is a deterministic function of the food chain.
Figure 3 shows some examples from this data set.

FOODCHAINS was created using Mechanical
Turk. We first manually created 25 distinct food
chains of various lengths containing different organ-
isms and a set of question templates – questions with
a blank – based on real Regents questions. In the
first task, Turk workers were shown a randomly-
selected food chain, question template, and answer,
and were asked to complete the question by filling in
the blank. In the second task, workers paraphrased
questions from the first task, thereby eliminating the
templated structure and increasing lexical variation
(similar to Wang et al., (2015)). In the third task, a
worker validated each question by answering it.

Statistics of FOODCHAINS are presented in Ta-
ble 1 alongside corresponding statistics of GEO880
(Zelle and Mooney, 1996; Tang and Mooney, 2001;
Zettlemoyer and Collins, 2005). FOODCHAINS dif-
fers from GEO880 in two significant and interesting
ways. First, although the data set contains relatively
few predicates, there are many ways to reference
each predicate – for example, consider the diversity
in references to DECREASE in Figure 3. Second, the
questions are long but contain many uninformative

611

Model Accuracy

Independent Model (§3.2) 78.7%
Coupled Model (§3.3) 79.0%
Coupled Loglinear Model (§3.4) 81.7%

Table 2: Comparison of semantic parser accuracy on FOOD-

CHAINS when trained using our three proposed probabilistic

models for lexicon learning.

words that can safely be ignored by the parser.

4.2 Methodology

We compare lexicon learning algorithms by per-
forming an end-to-end evaluation, measuring the
question answering accuracy of a CCG semantic
parser trained with the learned lexicon. The parser
has a rich set of features, including lexicon entry
features, dependency features, and dependency dis-
tance features. The parser is also permitted to skip
words in the question for a learned per-word cost.
We train the parser by optimizing data loglikelihood
with 100 epochs of stochastic gradient descent.

All experiments on FOODCHAINS are performed
using 5-fold cross validation. All questions about a
single food chain appear in the same fold, ensuring
that the questions in the held-out fold reference un-
seen food chains.

4.3 Comparing Probabilistic Models

Our initial experiment compares the three proba-
bilistic models proposed in Section 3 on FOOD-
CHAINS. We generated three lexicons by training
each model using 10 iterations of EM. We used a
smoothing parameter of 0.1 when estimating con-
ditional probability tables, and an L2 regularization
parameter of 10−6 when estimating loglinear mod-
els. We also initialized the coupled model with the
optimum of the independent model. All of these
models are trained without labeled logical forms, in-
stead using an automatically enumerated set of logi-
cal forms that evaluate to the correct answer.

Table 2 presents the result of this evaluation. All
three models perform roughly similarly, with the
coupled loglinear model slightly outperforming the
others. The competitive performance of the inde-
pendent model is interesting because its concave ob-
jective function is easy to optimize. The remaining
experiments compare against the coupled loglinear

Logical Lexicon PAL
Model forms? Templates? Accuracy % Err. Red.

PAL No No 81.7% –

POS No Yes 70.5% 38.0%
UBL Yes No 40.6% 69.1%
ZC2007 Yes Yes 49.4% 63.8%
ADP2014 No Yes 32.4% 72.9%

Table 3: Semantic parser accuracy comparison for several lex-

icon learning algorithms on FOODCHAINS. The middle two

columns note the human input required by each algorithm and

the final column notes the relative error reduction of PAL over

each baseline.

model, which we dub PAL, short for “Probabilistic
Alignments for Lexicon learning.”

4.4 Lexicon Learning Baselines

Our second experiment compares PAL with four
baseline lexicon learning algorithms. The first base-
line, POS, defines a set of lexicon entries for each
word in the training set based on its part-of-speech
tag (Liang et al., 2011). We iteratively developed
these templates to cover the data set, and the lexi-
con generated by these templates can correctly parse
96% of the examples in FOODCHAINS. The re-
maining three baselines, ZC2007 (Zettlemoyer and
Collins, 2007), UBL (Kwiatkowski et al., 2011),
and ADP2014 (Artzi et al., 2014), are joint lexi-
con and parameter learning algorithms. We used the
UW SPF (Artzi and Zettlemoyer, 2013a) implemen-
tations of UBL and ZC2007. For these two models,
we trained our parser using the learned lexicon to en-
sure consistency of implementation details.3 We ini-
tialized UBL’s parameters using GIZA++ (Och and
Ney, 2003) as in the original paper. The lexicon en-
try templates for ZC2007 and ADP2014 are derived
from the POS templates to ensure coverage of the
questions; these algorithms allow each template to
apply to 1-4 word phrases.

Table 3 compares the accuracy of semantic
parsers trained with these baseline approaches to
PAL. Our model outperforms all of the baselines,
beating the most accurate baseline, POS, by more

3We also postprocessed the lexicon entries to improve per-
formance, for example, by removing lexicon entries that skip
words. In both cases, our parser was more accurate than the
UW SPF parser.

612

Model Lexicon Size Parse Time (ms)

POS 4,282 7.8
UBL 3,356 14.9
ZC2007 2,949 43.4
ADP2014 401 1.1

Independent Model 410 6.7
Coupled Model 318 3.1
PAL 184 1.8

Table 4: Lexicon size excluding entity names and parse time

per question on FOODCHAINS averaged across folds per model.

Our models produce smaller lexicons that lead to faster seman-

tic parsers.

than 10 points. Note that all of these baselines also
use more human input than our model, either in the
form of lexicon templates or logical forms. Table 4
compares the average number of lexicon entries and
semantic parser speed of the baselines with our mod-
els. PAL produces the most compact lexicon and sec-
ond fastest parser, which is 4x faster than POS, the
baseline with the highest accuracy. The correlation
between lexicon size and parse time is imperfect due
to word frequency and co-occurrence effects.

The three joint lexicon and parameter learning al-
gorithms perform poorly on our data set for two rea-
sons. First, the long question length increases the
difficulty of finding good lexicon entries. The algo-
rithms with lexicon templates were frequently un-
able to find a correct parse for long questions, even
with a large beam size – we ran ADP2014 with a
beam size of 10000. (Note that POS does not suf-
fer from this problem because it only generates lex-
icon entries for a few parts of speech, so most of the
words in a question are ignored by default.) Sec-
ond, these algorithms’ discriminative objectives in-
herently prefer lexicon entries with highly specific
word sequences. This preference interacts poorly
with the uninformative words in the data set, leading
these algorithms to produce many lexicon entries for
long phrases that do not generalize well. The lexi-
con sizes in Table 4 are suggestive of this problem
for ZC2007 and UBL; ADP2014 also has this prob-
lem, but its voting mechanism prunes lexicon entries
much more aggressively. We tried to solve this prob-
lem for ZC2007 and ADP2014 by restricting lexicon
templates to apply to at most 1 word, but this change
actually reduced accuracy. An investigation of this

Model Accuracy

UBL (Kwiatkowski et al., 2011) 88.6%
ZC2007 (Zettlemoyer and Collins, 2007) 86.1%

PAL 81.8%
w/ factored lexicon 85.4%

Table 5: Logical form accuracy on GEO880 compared to previ-

ously reported CCG parsing results. Both UBL and ZC2007 use

special CCG extensions to improve performance; adding one of

these to PAL brings its accuracy near that of these systems.

phenomenon found that reducing the length of the
templates made it even more difficult for these mod-
els to find correct parses for long questions.

In contrast to these baselines, our models do not
suffer from either of these problems because the
logical form derivation grammar restricts the search
to correct derivations and our generative objective
prefers frequently-occurring lexicon entries. Our
models actually consider a larger space of possible
lexicon entries than ZC2007 and ADP2014 with 1
word templates, yet find better lexicon entries.

4.5 Geo880 Evaluation

We performed an additional evaluation on GEO880
to demonstrate that our models can work with more
complex logical forms. GEO880 is a good data set
for this evaluation because its logical forms contain,
on average, about twice as many constants as FOOD-
CHAINS. We applied PAL to generate a lexicon for
this data set using its included logical form labels,
then trained a CCG semantic parser with this lexi-
con. Table 5 compares the accuracy of this parser
with previous CCG lexicon learning results on this
data set using the standard 600/280 train/test split.
The comparison to PAL is inexact because both prior
systems use CCG parsers with special extensions
that improve performance on this data set. UBL
uses factored lexicon entries that generalize better
to certain infrequent entries, and ZC2007 includes
relaxed parsing operators that fix common parsing
errors. Examining the errors made by our parser,
we found many cases where these extensions would
help. We therefore trained another CCG parser us-
ing a lexicon generated by postprocessing PAL’s lex-
icon to include factored lexicon entries. This parser
achieves an accuracy close to previous work.

613

5 Discussion

We introduce several probabilistic models for learn-
ing a semantic parser lexicon that can be trained
from question/answer pairs and other forms of weak
supervision. Our experimental results demonstrate
that our models improve semantic parser accuracy
and efficiency relative to prior work on data sets with
more challenging language, despite using less hu-
man input. Furthermore, we find that our indepen-
dent model is nearly as effective as more complex
models, but has a concave objective function that
guarantees training converges to a global optimum.

A possible complaint about our approach is that,
when training from question/answer pairs, it is not
practical to enumerate all logical forms that pro-
duce the correct answer. We believe this complaint
is misguided because enumerating logical forms is
unavoidable in the question/answer setting. Every
algorithm uses an enumerate-and-test approach to
identify correct logical forms; this process occurs in
the gradient computation of semantic parser train-
ing and in template-based lexicon learning algo-
rithms such as ADP2014. The critical question is not
whether enumeration is used, but rather how logical
forms are enumerated. Many strategies are possible
and different strategies are likely to be effective on
different data sets. In fact, the failure of template-
based algorithms on FOODCHAINS is largely a fail-
ure of their template-guided enumeration strategy to
find correct logical forms. Choosing an enumeration
strategy and related questions – e.g., does semantic
parser parameter learning affect the enumeration? –
are empirical questions that must be decided on a
task-specific basis.

A recent trend in semantic parsing has been to
avoid lexicon learning, instead directly searching the
space of all possible logical forms. However, we
think that lexicon learning still serves a valuable pur-
pose. Fundamentally, a lexicon constrains the space
of logical forms searched by a semantic parser; these
constraints improve efficiency and can improve ac-
curacy as long as they do not exclude correct logi-
cal forms. Thus, a promising approach to building
a semantic parser is to automatically learn a lexicon
using one of our models, then (perhaps) manually
specify new parsing operations to correct any prob-
lems with the learned lexicon. We plan to apply this

approach in the future to construct semantic parsers
for more challenging tasks.

Acknowledgments

We gratefully acknowledge Oyvind Tafjord, Matt
Gardner, Peter Turney, Oren Etzioni and the anony-
mous reviewers for their helpful comments.

References

Gabor Angeli, Christopher D. Manning, and Daniel Ju-
rafsky. 2012. Parsing time: Learning to interpret time
expressions. In Proceedings of the 2012 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Yoav Artzi and Luke Zettlemoyer. 2013a. UW SPF: The
University of Washington Semantic Parsing Frame-
work.

Yoav Artzi and Luke Zettlemoyer. 2013b. Weakly su-
pervised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Association
for Computational Linguistics.

Yoav Artzi, Dipanjan Das, and Slav Petrov. 2014. Learn-
ing compact lexicons for CCG semantic parsing. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from

614

the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38.

Dan Goldwasser, Roi Reichart, James Clarke, and Dan
Roth. 2011. Confidence driven unsupervised semantic
parsing. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics.

Rohit J. Kate and Raymond J. Mooney. 2006. Using
string-kernels for learning semantic parsers. In 21st
International Conference on Computational Linguis-
tics and 44th Annual Meeting of the Association for
Computational Linguistics, Proceedings of the Confer-
ence.

Rohit J. Kate and Raymond J. Mooney. 2007. Learning
language semantics from ambiguous supervision. In
Proceedings of the 22nd Conference on Artificial In-
telligence.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: Connecting natural lan-
guage to the physical world. Transactions of the Asso-
ciation of Computational Linguistics – Volume 1.

Jayant Krishnamurthy and Tom M. Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilistic
CCG grammars from logical form with higher-order
unification. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater,
and Mark Steedman. 2011. Lexical generalization in
CCG grammar induction for semantic parsing. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent semantic parsing for
time expressions. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers).

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional semantics.
In Proceedings of the Association for Computational
Linguistics.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics.

Ankur P. Parikh, Hoifung Poon, and Kristina Toutanova.
2015. Grounded semantic parsing for complex knowl-
edge extraction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers).

Hoifung Poon. 2013. Grounded unsupervised semantic
parsing. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-answer
pairs. Transactions of the Association for Computa-
tional Linguistics.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic pro-
gramming for semantic parsing. In Proceedings of the
12th European Conference on Machine Learning.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine trans-
lation. In Proceedings of the Human Language Tech-
nology Conference of the NAACL.

Yuk Wah Wong and Raymond J. Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguis-
tics.

John M. Zelle and Raymond J. Mooney. 1993. Learning
semantic grammars with constructive inductive logic
programming. In Proceedings of the 11th National
Conference on Artificial Intelligence.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic pro-
gramming. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
UAI ’05, Proceedings of the 21st Conference in Un-
certainty in Artificial Intelligence.

Luke S. Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to logi-
cal form. In Proceedings of the 2007 Joint Conference

615

on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning.

Appendix A: Proof of Concavity

The loglikelihoodO(θ) of the independent model is:

O(θ) =
n∑
i=1

logP (wi|Li; θ)

=
n∑
i=1

|wi|∑
j=1

log
∑
f

θf,wi
j
#(f, j, Li, |wi|)

Each log term above is concave in θ because log is a
concave function applied to an affine function of θ.
(Note that the #(f, j, Li, |wi|) terms do not depend
on θ.) Finally, O(θ) is concave because it is a sum
of concave functions.

616

Proceedings of NAACL-HLT 2016, pages 617–622,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Unsupervised Compound Splitting With Distributional Semantics
Rivals Supervised Methods

Martin Riedl and Chris Biemann
Language Technology

Computer Science Department, Technische Universität Darmstadt
Hochschulstrasse 10, D-64289 Darmstadt, Germany
{riedl,biem}@cs.tu-darmstadt.de

Abstract

In this paper we present a word decom-
pounding method that is based on distribu-
tional semantics. Our method does not re-
quire any linguistic knowledge and is initial-
ized using a large monolingual corpus. The
core idea of our approach is that parts of com-
pounds (like “candle” and “stick”) are seman-
tically similar to the entire compound, which
helps to exclude spurious splits (like “candles”
and “tick”). We report results for German
and Dutch: For German, our unsupervised
method comes on par with the performance of
a rule-based and a supervised method and sig-
nificantly outperforms two unsupervised base-
lines. For Dutch, our method performs only
slightly below a rule-based optimized com-
pound splitter.

1 Introduction

Germanic and agglutinative languages (e.g. German,
Swedish, Finnish, Korean) have a productive mor-
phology that allows the formation of not space-
separated compounds in a much larger extent than
e.g. in English. The task of separating such com-
pounds into their corresponding single word (sub-)
units is called compound splitting or decompound-
ing.

Decompounding showed impact in several NLP
applications, e.g. ASR (Adda-Decker and Adda,
2000), MT (Koehn and Knight, 2003) or IR (Monz
and de Rijke, 2001), and is generally perceived as
a crucial component for the processing of respec-
tive languages. However, most existing systems rely

on dictionaries or are trained in a supervised fash-
ion. Both approaches require substantial manual
work and do not adapt to vocabulary change. In this
paper we introduce an unsupervised method for de-
compounding that relies on distributional semantics.
For the computation of the semantic model we solely
rely on a tokenized monolingual corpus and do not
require any further linguistic processing. Most pre-
vious research on compound splitting concentrates
on the detection of lemmas that form the compound.
Whereas this is important for several tasks, in this
work we focus on the splitting of a compound into
its word units without any base form reduction, ar-
guing that lemmatization is either part of the task
pipeline anyways (e.g. IR) or not required (e.g. for
ASR).

2 Related Work

Approaches to automatic decompounding can be
classified into corpus-driven approaches and super-
vised approaches. Corpus-driven approaches are
usually informed by a frequency list (Koehn and
Knight, 2003), by a probabilistic model (Schiller,
2005), by parallel corpora (Koehn and Knight, 2003;
Macherey et al., 2011) or by the existence of pe-
riphrases (i.e. reformulations) in large monolingual
corpora (Holz and Biemann, 2008). As with other
tasks, supervised approaches are usually superior to
unsupervised approaches if sufficient training ma-
terial is provided. A straightforward yet effective
supervised decompounding system is contained in
the ASV Toolbox (Biemann et al., 2008), which
uses trie-based datastructures for recursively split-
ting compounds based on learned splits. Alfonseca

617

et al. (2008) combine several signals, including web
anchor text, in an SVM-based supervised splitter. A
widely used German decompounder is JWordSplit-
ter1, which is based on word lists of compound parts
as well as manually crafted blacklists and whitelists.
The NL Splitter2 uses similar technology for Dutch
compound decomposition. An unsupervised ap-
proach is presented in (Koehn and Knight, 2003):
out of several splits as given by matching parts of
the compound to a vocabulary list, they pick the
split with the highest geometric mean of word fre-
quencies, which is entirely corpus-driven but ignores
semantic relations between the compound and its
parts. Another unsupervised system is proposed by
Daiber et al. (2015). They propose an analogy-based
approach, which relies on word embeddings.

Decompounding is evaluated either intrinsically
or in a task that benefits from it, e.g. IR (Monz
and de Rijke, 2001), MT (Koehn and Knight, 2003;
Macherey et al., 2011) or ASR (Adda-Decker and
Adda, 2000; Ordelman et al., 2003).

3 Method

The introduced method, called SECOS (SEman-
tic COmpound Splitter)3, is based on the hypothe-
sis that compounds are similar to their constituting
word units. Our method is based on a distributional
thesaurus (DT) that is computed, based on the dis-
tributional hypothesis (Harris, 1951), using a mono-
lingual background corpus and does not require any
language-specific rules or preprocessing. We ex-
emplify the method based on the compound noun
Bundesfinanzministerium (federal finance ministry),
which is assembled of the words Bundes (federal),
Finanz (finance) and Ministerium (ministry).

Our method consists of three stages: First we ex-
tract a candidate word set that defines the possible
word units of compounds. We present several ap-
proaches to generate such candidates. Second, we
use a general method that splits the compound based
on a candidate word set. Using the different candi-
date sets, we obtain different compound splits. Fi-

1https://github.com/danielnaber/
jwordsplitter

2http://ilps.science.uva.nl/resources/
compound-splitter-nl/

3An implementation and models for German and Dutch are
available at: https://github.com/riedlma/SECOS

nally, we define a mechanism that ranks these splits
and returns the top-ranked one.

3.1 Candidate Extraction
For the extraction of all candidates in C, we use a
distributional thesaurus (DT) that is computed on a
background corpus. We present three approaches for
the generation of candidate sets.

When we retrieve the l most similar terms for a
word w from a DT, we observe well-suited candi-
dates that are nested in w. For example Bundesfi-
nanzministerium is similar to Bund, Bundes and Fi-
nanzministerium. Extracting the most similar terms
that are nested in w results in the first split candidate
set, called similar candidate units.

However, only for few terms we observe nested
candidates in the most similar words. Thus, we re-
quire methods to generate “back-off” candidates.

First, we introduce the extended similar candidate
units. Here, we extract the l most similar terms for
w and then grow this set by again adding their re-
spective l most similar words. Based on these terms,
we extract all words that are nested in w. This re-
sults into more but less precise decompounding can-
didates.

As the coverage might still be insufficient to
decompound all words (e.g. entirely unseen com-
pounds), we propose a method to generate a global
dictionary of single atomic word units. For this, we
iterate over the entire vocabulary of the background
corpus, apply the compound splitter (see Section
3.2) to all words where we find similar candidate
units. Then, we add these detected units to the dic-
tionary. Finally, for word w subject to decompound-
ing, we first extract all nested words NW from this
dictionary. Then, we remove all words in NW that
are nested itself in NW , resulting in the candidate
set we call generated dictionary.

3.2 Compound Splitting
Here, we introduce the decompounding algorithm
for a given candidate set. For decompounding the
word w, we require a set of candidate words C.
Each word in the candidate set needs to be a sub-
string of w. We do not include candidates in C that
have less than ml characters. Additionally, we ap-
ply a frequency threshold of wc. These mechanisms
are intended to rule out spurious parts and ‘words’

618

word w Bundesfinanzministerium
candidates C Finanzministerium, Ministerium,
w. ml=3 Bunde, Bund, Bundes, Minister
split possibilities Bund-e-s-finanz-minister-ium

Merging character n-grams
suffix-prefix Bundes-finanz-ministerium
prefix-suffix Bund-esfinanz-ministerium

Table 1: Examples of the output of our algorithms for the ex-

ample term Bundesfinanzministerium.

that are in fact short abbreviations. We show can-
didates, extracted from the similar candidate unit,
with ml = 3 for the example term in Table 1. Then,
we iterate over each candidate ci ∈ C and add its
beginning and ending position within w to the set
S. This set is then used to identify possible split po-
sitions of w. For this, we iterate from left to right
and add all split possibilities to the word w. This
approach over-generates split points, as can be ob-
served for the example word, which is split into 6
units: Bund-e-s-finanz-minister-ium.

To merge character n-grams, we use a suffix- and
prefix-based method. The suffix merging method
appends all character n-grams with n below ms to
the left word. The prefix method merges all charac-
ter n-grams with n belowmp to the word on the right
side. To avoid remaining prefixes/suffixes, we ap-
ply the opposite method afterwards. For the German
language, the suffix-prefix ordering mostly yields
the best output. The suffix-prefix-based approach
results to Bundes-finanz-ministerium and the prefix-
suffix method to Bund-esfinanz-ministerium. How-
ever for some words, the prefix-suffix generates the
correct compound split, e.g. for the word Zuschauer-
er-wartung (audience + he + service), which is cor-
rectly decompounded as Zuschauer-erwartung (au-
dience+expectation).

In order to select the correct split, we compute the
geometric mean of the joint probability for each split
variation. For this we use word counts from a back-
ground corpus. In addition to the geometric mean
formula introduced in (Koehn and Knight, 2003),
we apply a smoothing factor4 ε to each frequency
in order to assign non-zero values to unknown units.
This yields the following formula for a compound

4We set ε = 0.01. Using values in the range of ε =
[0.0001, 1] we observe marginally higher scores using smaller
values.

w, which is decomposed into the units wi, . . . , wN :

p(w) =

(
N∏
i

wordcount(wi) + ε

total wordcount+ ε ∗#words

) 1
N

(1)

Here, #word denotes the total number of words in
the background corpus and total wordcount is the
sum of all word counts. Then, we select the split
variation with the highest geometric mean.5 In our
example, this is the prefix-suffix-merged candidate
Bundes-finanz-ministerium.

3.3 Split Ranking

We have examined schemes of priority ordering
for integrating information from different candidate
sets, e.g. using the similar candidate units first and
only apply the other candidate sets if no split was
found. However, preliminary experiments revealed
that it was always beneficial to generate splits based
on all three candidate sets and use the geometric
mean scoring as outlined above to select the best
split as decomposition of a word.

4 Datasets

For testing the performance of our method, we chose
four datasets. The first dataset was manually label-
ed by Holz and Biemann (2008) and consists of
700 German nouns from different frequency bands.
The second dataset consists of 158,653 nouns from
the German newspaper magazine c’t6 and was cre-
ated by Marek (2006). As third dataset we use a
noun compound dataset of 54,571 nouns from Ger-
maNet7, which has been constructed by Henrich and
Hinrichs (2011).8 While converting these datasets
for the task of compound splitting, we do not sep-
arate words in the gold standard, which comprise
of prepositions, e.g. the word Abgang (outflow) is
not split into Ab-gang (off walk). To show the lan-
guage independency of our method, we apply it to a

5Whereas our method mostly does not assume language
knowledge, we uppercase the first letter of each wi, when we
apply our method on German texts.

6http://heise.de/ct
7available at: http://www.sfs.uni-tuebingen.

de/lsd/documents/compounds/split_
compounds_from_GermaNet10.0.txt

8We follow Schiller (2005) and remove all words including
dashs. This only affects the GermaNet dataset and reduces the
effective test set to 53,118 nouns.

619

Dutch compound dataset proposed by van Zaanen et
al. (2014). This dataset comprises of 21,997 nouns.

5 Experimental Setting

The corpus-based DT is computed following the ap-
proach by Biemann and Riedl (2013). For each
word, we use the left and the right neighboring word
as context representation to compute the DT. For
the generation of the split candidates we rely on the
l = 200 most similar entries for each word.

The German DT is computed based on 70 mil-
lion newspaper sentences, which are extracted from
the Leipzig Corpora Collection (LCC) (Richter et
al., 2006). For the generation of the Dutch DT, we
use the Dutch web corpus (Schäfer and Bildhauer,
2013), which is composed from 259 million sen-
tences.9

We evaluate the performance of the algorithms us-
ing precision and recall as defined by Koehn and
Knight (2003). As unsupervised baselines we use
the split ranking by (Koehn and Knight, 2003),
called KK, and the semantic analogy-based splitter
(SAS) from Daiber et al. (2015).10 As advanced sys-
tems we apply the lexicon- and rule-based JWord-
Splitter (JWS) and the supervised decompounding
algorithm (ASV), introduced by Holz and Biemann
(2008).11 For all algorithms, we converted the splits
to capture all characters in the words, reverting base
forms to full forms. For Dutch, we apply the KK
baseline and the NL Splitter.

6 Method Tuning

We use the small dataset with the 700 German nouns
to find the best parameter settings of our method.
The highest F1-scores are obtained using candidates
with a frequency above 50 (wc=50) and that have
more than 4 characters (ml=5). Further we append
only prefixes and suffixes equal or shorter than 3
characters (ms=3 and mp=3).

The highest precision is achieved with the similar
candidate units (see Table 2). However, the recall
is lowest as for many words no information is avail-
able. Using the extended similarities, the precision

9available at: http://webcorpora.org/.
10https://github.com/jodaiber/semantic_

compound_splitting
11http://wortschatz.uni-leipzig.de/

˜cbiemann/software/toolbox/.

P R F1
similar cand. 0.9880 0.6798 0.8054
ext. sim. cand. 0.9617 0.7304 0.8303
gen. dictionary 0.9576 0.9199 0.9384
geom. mean scoring 0.9698 0.9338 0.9515

Table 2: Precision (P), Recall (R) and F1-Measure (F1) for the

700 compound nouns using different split candidates.

decreases and the recall increases. The best overall
performance is achieved with the generated dictio-
nary, which yields an F1-measure of 0.9384. The
selection mechanism using the geometric mean scor-
ing brings F1-measure up to 0.9515 on this dataset.

7 Results

In this section we compare the performance of our
method against the unsupervised baselines and the
knowledge-based systems (see Table 3).

P R F1

700

JWS 0.9328 0.9037 0.9180
ASV 0.9584 0.9238 0.9408
SAS 0.8723 0.6224 0.7265
KK 0.9532 0.7513 0.8403
SECOS 0.9698 0.9338 0.9515

c’t

JWS 0.9557 0.9045 0.9294*
ASV 0.9571 0.8980 0.9266
SAS 0.9303 0.5428 0.6856
KK 0.9432 0.8114 0.8723
SECOS 0.9606 0.8809 0.9190

Germa-
Net

JWS 0.9248 0.8734 0.8983
ASV 0.9346 0.8866 0.9100
SAS 0.8861 0.6188 0.7287
KK 0.9486 0.7361 0.8289
SECOS 0.9543 0.8773 0.9142*

Dutch
NL Splitter 0.9706 0.8694 0.9172*
KK 0.9579 0.7735 0.8559
SECOS 0.9624 0.8272 0.8897

Table 3: Results for three German datasets and for one Dutch

dataset. The significantly best results are marked with an aster-

isk (*).

For the 700 nouns we achieve the highest preci-
sion, recall and F1-measure using our method. How-
ever, we have tuned our parameters on this dataset.
Our improvement in terms of F-score is not signifi-
cant12 with respect to the ASV system, but with re-

12We perform a Wilcoxon signed-rank test between the F1-

620

spect to all other systems on this dataset. Never-
theless, JWS is based on a manually created dictio-
nary and ASV uses a supervised algorithm. On this
dataset, ASV outperforms JWS. Due to their low
recall, both unsupervised baselines (SAS and KK)
achieve significantly lower F1-scores than SECOS.

Using the c’t dataset we observe a different trend.
Here, the best results are observed by using JWS fol-
lowed by ASV and our method. Nevertheless, our
method yields the highest precision value. Again,
SAS and KK score lowest.

For the GermaNet dataset, our method signifi-
cantly outperforms all others. Similar to the evalu-
ation with the 700 nouns, JWS performs lower than
the decompounding method from the ASV toolbox.
Whereas our method obtains lower recall than ASV
and JWS, it still significantly outperforms the un-
supervised baselines and yields the overall highest
precision.

In a last experiment, we show the performance on
the Dutch dataset. As no trained models for JWS
and ASV are available, we did not use these tools
but compare to NL splitter, achieving a competitive
precision but lower recall. This is caused by many
short split candidates that are not detected due to the
ml parameter. However, our method still beats the
KK baseline significantly.

8 Error Analysis

In order to understand the errors of our method,
we analyzed the compounds that have been split
incorrectly. Considering the 700 German com-
pounds our method splits 12.17% incorrectly, for the
Dutch dataset, we observe the highest percentage of
32.60% incorrectly split compounds (see Table 4).

In addition, we analyzed how many compounds
have been split in fewer parts (under-split), more
parts (over-split) than the gold data or have the
same number of splits, which, however, are incor-
rect (wrongly-split). For all datasets we observe a
general trend: our method tends to suppress splitting
compounds, due to the parameters ms and mp that
suppress very short parts. Compounds that are split
at entirely incorrect positions constitute the lowest
error class. We also analyzed for incorrectly split
compounds how often our method missed a split,

scores of each candidate assuming p < 0.01.

dataset 700 c’t GermaNet Dutch
number of compounds

incorrect 85 35177 12532 7258
% incorrect 12.17 22.17 23.26 32.60
under-split 47 23773 7972 5849
over-split 33 7843 3578 806
wrongly-split 5 3561 982 603

number of splits
missed 55 29213 8968 6612
wrong 43 12703 4669 1520
correct 43 20381 3777 1743

Table 4: Number of compounds that have been split incorrectly

with respect to the gold data. We report numbers of how many

of these compounds are split fewer (under-split), more often

(over-split) or equally (wrongly-split) in comparison to the gold

standard. In addition, we show the total number of missed,

wrong and correct splits for these compounds.

performed a wrong split and split correctly (see bot-
tom three lines in Table 4). This analysis supports
the previous finding: most errors of our SECOS
method consist of missed splits.

9 Conclusion

In this paper we have introduced an unsupervised
method for decompounding words that is based on
distributional semantics. We show the impact of its
components and tune its parameters on a small Ger-
man dataset. On two large German datasets, we
demonstrate a performance of our method that is
competitive to supervised and rule-based tools and
outperforms two unsupervised baselines by a large
margin. Further, we demonstrated its language-
independence by achieving a good performance on a
Dutch dataset. In the future, we would like to assess
the impact of SECOS in task-based settings as well
as apply it to other compounding languages.

Acknowledgments

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) within the SeMSch
project. Additionally, we want to thank the anony-
mous reviewers for their helpful comments.

References
Martine Adda-Decker and Gilles Adda. 2000. Morpho-

logical Decomposition for ASR in German. In In Pro-

621

ceedings of the Workshop on Phonetics and Phonol-
ogy in ASR, PHONUS 5, pages 129–143, Saarbrücken,
Germany.

Enrique Alfonseca, Slaven Bilac, and Stefan Pharies.
2008. Decompounding Query Keywords from Com-
pounding Languages. In Proceedings of the 46th An-
nual Meeting of the Association for Computational
Linguistics on Human Language Technologies, ACL-
HLT ’08, pages 253–256, Columbus, OH, USA.

Chris Biemann and Martin Riedl. 2013. Text: Now in
2D! A Framework for Lexical Expansion with Con-
textual Similarity. Journal of Language Modelling,
1(1):55–95.

Chris Biemann, Uwe Quasthoff, Gerhard Heyer, and Flo-
rian Holz. 2008. ASV Toolbox: a Modular Collection
of Language Exploration Tools. In Proceedings of the
International Conference on Language Resources and
Evaluation, LREC ’08, pages 1760–1767, Marrakech,
Morocco.

Joachim Daiber, Lautaro Quiroz, Roger Wechsler, and
Stella Frank. 2015. Splitting Compounds by Seman-
tic Analogy. In Proceedings of the 1st Deep Machine
Translation Workshop, pages 20–28, Prague, Czech
Republic.

Zellig S. Harris. 1951. Methods in Structural Linguis-
tics. University of Chicago Press, Chicago.

Verena Henrich and Erhard Hinrichs. 2011. Determining
Immediate Constituents of Compounds in GermaNet.
In Proceedings of the International Conference Re-
cent Advances in Natural Language Processing 2011,
pages 420–426, Hissar, Bulgaria.

Florian Holz and Chris Biemann. 2008. Unsupervised
and Knowledge-Free Learning of Compound Splits
and Periphrases. In Proceedings of the 9th Interna-
tional Conference on Computational Linguistics and
Intelligent Text Processing (CICLING), pages 117–
127, Haifa, Israel.

Philipp Koehn and Kevin Knight. 2003. Empirical Meth-
ods for Compound Splitting. In In Proceedings of the
10th Conference of the European Chapter of the As-
sociation for Computational Linguistics, EACL ’03,
pages 187–193, Budapest, Hungary.

Klaus Macherey, Andrew M. Dai, David Talbot,
Ashok C. Popat, and Franz Och. 2011. Language-
independent Compound Splitting with Morphologi-
cal Operations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, HLT ’11, pages
1395–1404, Portland, OR, USA.

Torsten Marek. 2006. Analysis of German Compounds
Using Weighted Finite State Transducers. Bachelor
thesis, Universität Tübingen.

Christof Monz and Maarten de Rijke. 2001. Shallow
Morphological Analysis in Monolingual Information

Retrieval for Dutch, German, and Italian. In Eval-
uation of Cross-Language Information Retrieval Sys-
tems, Second Workshop of the Cross-Language Evalu-
ation Forum, CLEF 2001, pages 262–277, Darmstadt,
Germany.

Roeland Ordelman, Arjan van Hessen, and Franciska
de Jong. 2003. Compound decomposition in Dutch
large vocabulary speech recognition. In Proceedings
of the European Conference on Speech Communica-
tion and Technology, EUROSPEECH ’03, pages 225–
228, Geneva, Switzerland.

Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir,
and Chris Biemann. 2006. Exploiting the Leipzig
Corpora Collection. In Proceedings of the Fifth
Slovenian and First International Language Technolo-
gies Conference, IS-LTC ’06, pages 68–73, Ljubljana,
Slovenia.

Roland Schäfer and Felix Bildhauer. 2013. Web Cor-
pus Construction. Synthesis Lectures on Human Lan-
guage Technologies. Morgan and Claypool.

Anne Schiller. 2005. German Compound Analysis with
wfsc. In Proceedings of the 5th International Work-
shop on Finite-State Methods and Natural Language
Processing, FSMNLP 2005, pages 239–246, Helsinki,
Finnland.

Menno van Zaanen, Gerhard van Huyssteen, Suzanne
Aussems, Chris Emmery, and Roald Eiselen. 2014.
The Development of Dutch and Afrikaans Language
Resources for Compound Boundary Analysis. In Pro-
ceedings of the 9th International Conference on Lan-
guage Resources and Evaluation, LREC ’14, pages
1056–1062, Reykjavı́k, Iceland.

622

Proceedings of NAACL-HLT 2016, pages 623–633,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Weighting Finite-State Transductions With Neural Context

Pushpendre Rastogi and Ryan Cotterell and Jason Eisner
Department of Computer Science, Johns Hopkins University
{pushpendre,ryan.cotterell,eisner}@jhu.edu

Abstract

How should one apply deep learning to tasks
such as morphological reinflection, which
stochastically edit one string to get another? A
recent approach to such sequence-to-sequence
tasks is to compress the input string into a
vector that is then used to generate the out-
put string, using recurrent neural networks. In
contrast, we propose to keep the traditional
architecture, which uses a finite-state trans-
ducer to score all possible output strings, but
to augment the scoring function with the help
of recurrent networks. A stack of bidirec-
tional LSTMs reads the input string from left-
to-right and right-to-left, in order to summa-
rize the input context in which a transducer
arc is applied. We combine these learned fea-
tures with the transducer to define a probabil-
ity distribution over aligned output strings, in
the form of a weighted finite-state automaton.
This reduces hand-engineering of features, al-
lows learned features to examine unbounded
context in the input string, and still permits ex-
act inference through dynamic programming.
We illustrate our method on the tasks of mor-
phological reinflection and lemmatization.

1 Introduction

Mapping one character sequence to another is a
structured prediction problem that arises frequently
in NLP and computational linguistics. Common
applications include grapheme-to-phoneme (G2P),
transliteration, vowelization, normalization, mor-
phology, and phonology. The two sequences may
have different lengths.

Traditionally, such settings have been modeled
with weighted finite-state transducers (WFSTs) with
parametric edge weights (Mohri, 1997; Eisner,
2002). This requires manual design of the transducer
states and the features extracted from those states.
Alternatively, deep learning has recently been tried

for sequence-to-sequence transduction (Sutskever et
al., 2014). While training these systems could dis-
cover contextual features that a hand-crafted para-
metric WFST might miss, they dispense with impor-
tant structure in the problem, namely the monotonic
input-output alignment. This paper describes a nat-
ural hybrid approach that marries simple FSTs with
features extracted by recurrent neural networks.

Our novel architecture allows efficient modeling
of globally normalized probability distributions over
string-valued output spaces, simultaneously with au-
tomatic feature extraction. We evaluate on morpho-
logical reinflection and lemmatization tasks, show-
ing that our approach strongly outperforms a stan-
dard WFST baseline as well as neural sequence-to-
sequence models with attention. Our approach also
compares reasonably with a state-of-the-art WFST
approach that uses task-specific latent variables.

2 Notation and Background

Let Σx be a discrete input alphabet and Σy be a dis-
crete output alphabet. Our goal is to define a con-
ditional distribution p(y | x) where x ∈ Σ∗x and
y ∈ Σ∗y and x and y may be of different lengths.

We use italics for characters and boldface for
strings. xi denotes the ith character of x, and xi:j de-
notes the substring xi+1xi+2 · · ·xj of length j− i ≥
0. Note that xi:i = ε, the empty string. Let n = |x|.

Our approach begins by hand-specifying an un-
weighted finite-state transducer (FST), F , that non-
deterministically maps any well-formed input x to
all appropriate outputs y. An FST is a directed graph
whose vertices are called states, and whose arcs are
each labeled with some pair s :t, representing a pos-
sible edit of a source substring s ∈ Σ∗x into a target
substring t ∈ Σ∗y. A path π from the FST’s initial
state to its final state represents an alignment of x
to y, where x and y (respectively) are the concate-
nations of the s and t labels of the arcs along π. In

623

3210 s a y

Figure 1: An automaton encoding the English word say.

$

?:a

?:s
s

a

?:s

Σ:ε

?:a

Σ:ε

?:s

?:aΣ:ε

Figure 2: An example transducer F , whose state remem-
bers the most recent output character (or $ if none). Only
a few of the states are shown, with all arcs among them.
The Σ wildcard matches any symbol in Σx; the “?” wild-
card matches the empty string ε or any symbol in Σx.

general, two strings x,y can be aligned through ex-
ponentially many paths, via different edit sequences.

If we represent x as a straight-line finite-state au-
tomaton (Figure 1), then composing x with F (Fig-
ure 2) yields a new FST, G (Figure 3). The paths in
G are in 1-1 correspondence with exactly the paths
in F that have input x. G can have cycles, allowing
outputs of unbounded length.

Each path in G represents an alignment of x to
some string in Σ∗y. We say p(y | x) is the total prob-
ability of all paths in G that align x to y (Figure 4).

But how to define the probability of a path? Tra-
ditionally (Eisner, 2002), each arc in F would also
be equipped with a weight. The weight of a path in
F , or the corresponding path in G, is the sum of its
arcs’ weights. We would then define the probability
p(π) of a path π in G as proportional to expw(π),
where w(·) ∈ R denotes the weight of an object.

The weight of an arc h© s:t−→ h′© in F is traditionally
defined as a function of features of the edit s : t and
the names (h, h′) of the source and target states. In
effect, h summarizes the alignment between the pre-
fixes of x and y that precede this edit, and h′ sum-
marizes the alignment of the suffixes that follow it.

Thus, while the weight of an edit s :t may depend
on context, it traditionally does so only through h
and h′. So if F has k states, then the edit weight can
only distinguish among k different types of preced-
ing or following context.

0, s

0, a

1, s

1, a

2, s

2, a 3, a

3, s

ε:sε:sε:sε:s
s:s a:s y:s

s:ε a:ε y:ε

s:ε a:ε y:ε

ε:s

ε:aε:aε:aε:a s:a a:a y:a

ε:a ε:s ε:a ε:s ε:a ε:s ε:a
s:a

s:s

a:a

a:s

y:a

y:s
0, $

ε:s

ε:a

s:a

s:s

Figure 3: An example of the transducer G, which pairs
the string x=say with infinitely many possible strings y.
ThisGwas created as the composition of the straight-line
input automaton (Figure 1) and the transducer F (Fig-
ure 2). Thus, the state of G tracks the states of those two
machines: the position in x and the most recent output
character. To avoid a tangled diagram, this figure shows
only a few of the states (the start state plus all states of
the form i,s© or i,a©), with all arcs among them.

3 Incorporating More Context

That limitation is what we aim to correct in this
paper, by augmenting our representation of con-
text. Our contextual weighting approach will assign
weights directly to G’s arcs, instead of to F ’s arcs.

Each arc of G can be regarded as a “token” of
an edit arc in F : it “applies” that edit to a particu-
lar substring of x. It has the form i,h© s:t−→j,h′©, and
represents the replacement of xi:j = s by t. The
finite-state composition construction produced this
arc of G by combining the arc h© s:t−→ h′© in F with
the path i© s j© in the straight-line automaton rep-
resenting x. The latter automaton uses integers as
state names: it is 0© x1−→ 1© x2−→ . . . xn−→ n©.

Our top-level idea is to make the weight of this arc
in G depend also on (x, i, j), so that it can consider
unbounded input context around the edit’s location.
Arc weights can now consider arbitrary features of
the input x and the position i, j—exactly like the
potential functions of a linear-chain conditional ran-
dom field (CRF), which also defines p(y | x).

Why not just use a CRF? That would only model a
situation that enforced |y| = |x| with each character
yi aligned to xi, since the emissions of a CRF corre-
spond to edits s : t with |s| = |t| = 1. An FST can
also allow edits with |s| 6= |t|, if desired, so it can be
fit to (x,y) pairs of different lengths with unknown

624

0,$,0

0,s,1

1,$,0

1,s,1

2,$,0

2,s,1

0,a,2 1,a,2 2,a,2

0,i,3 1,i,3 2,i,3

0,d,4 1,d,4 2,d,4 3,d,4

3,$,0

3,s,1

3,a,2

3,i,3

ε:a
ε:s

ε:i
ε:d

ε:a
ε:s

ε:i
ε:d

ε:s

ε:s

ε:a ε:a

ε:i

ε:i

ε:d

ε:d

s:ε a:ε y:ε

s:ε a:ε y:ε

s:ε a:ε y:ε

s:ε a:ε y:ε

s:ε a:ε y:ε

s:s

a:a

y:ia:i

a:d

a:s

y:a

y:s

y:d

s:a

s:i

s:d

Figure 4: A compact lattice of the exponentially many
paths in the transducer G of Figure 3 that align in-
put string x=say with output string y=said. To find
p(y | x), we must sum over these paths (i.e., alignments).
The lattice is created by composing G with y, which se-
lects all paths in G that output y. Note that horizontal
movement makes progress through x; vertical movement
makes progress through y. The lattice’s states specialize
states in G so that they also record a position in y.

alignment, summing over their possible alignments.
A standard weighted FST F is similar to a dy-

namic linear-chain CRF. Both are unrolled against
the input x to get a dynamic programming lattice G.
But they are not equivalent. By weighting G instead
of F , we combine the FST’s advantage (aligning
unequal-length strings x,y via a latent path) with
the CRF’s advantage (arbitrary dependence on x).

To accomplish this weighting in practice, sec-
tions 4–5 present a trainable neural architecture for
an arc weight function w = f(s, t, h, h′,x, i, j).
The goal is to extract continuous features from all
of x. While our specific architecture is new, we are
not the first to replace hand-crafted log-linear mod-
els with trainable neural networks (see section 9).1

Note that as in a CRF, our arc weights cannot
consider arbitrary features of y, only of x. Still, a
weight’s dependence on states h, h′ does let it de-
pend on a finite amount of information about y (also
possible in CRFs/HCRFs) and its alignment to x.

In short, our model p(y | x) makes the weight of

1For CRFs, this sacrifices the convexity of the log-likelihood
training objective. But for FSTs, that objective was usually non-
convex to begin with, because the alignment path is latent.

an s :t edit, applied to substring xi:j , depend jointly
on s :t and two summaries of the edit’s context:
• a finite-state summary (h, h′) of its context in

the aligned (x,y) pair, as found by the FST F
• a vector-valued summary of the context in x

only, as found by a recurrent neural network
The neural vector is generally a richer summary of
the context, but it considers only the input-side con-
text. We are able to efficiently extract these rich fea-
tures from the single input x, but not from each of
the very many possible outputs y. The job of the
FST F is to compute additional features that also
depend on the output.2 Thus our model of p(y | x)
is defined by an FST together with a neural network.

4 Neural Context Features

Our arc weight function f will make use of a vec-
tor γi:j (computed from x, i, j) to characterize the
substring xi:j that is being replaced, in context. We
define γi:j as the concatenation of a left vector αj
(describing the prefix x0:j) and a right vector βi
(describing the suffix xi:n), which characterize xi:j
jointly with its left or right context. We use γi to
abbreviate γi−1:i, just as xi abbreviates xi−1:i.

To extract αj , we read the string x one character
at a time with an LSTM (Hochreiter and Schmidhu-
ber, 1997), a type of trainable recurrent neural net-
work that is good at extracting relevant features from
strings. αj is the LSTM’s output after j steps (which
read x0:j). Appendix A reviews how αj ∈ Rq is
computed for j = 1, . . . , n using the recursive, dif-
ferentiable update rules of the LSTM architecture.

We also read the string x in reverse with a second
LSTM. βi ∈ Rq is the second LSTM’s output after
n− i steps (which read reverse(xi:n)).

We regard the two LSTMs together as a BiLSTM
function (Graves and Schmidhuber, 2005) that reads
x (Figure 5). For each bounded-length substring
xi:j , the BiLSTM produces a characterization γi:j
of that substring in context, in O(n) total time.

We now define a “deep BiLSTM,” which stacks
up K BiLSTMs. This deepening is aimed at ex-
tracting the kind of rich features that Sutskever et al.

2Each arc of G is used in a known input context, but could
be reused in many output contexts—different paths in G. Those
contexts are only guaranteed to share h, h′. So the arc weight
cannot depend on any other features of the output context.

625

s a y
�1 �2

↵3↵2↵1

�3

↵0

�0

�1 �2 �3

Figure 5: A level-1 BiLSTM reading the word x=say.

↵
(k)
0 ↵

(k)
1 ↵

(k)
2 ↵

(k)
3

�
(k)
3�

(k)
2�

(k)
1�

(k)
0

�
(k)
1 �

(k)
2

�
(k�1)
3�

(k�1)
2�

(k�1)
1

�
(k)
3

Figure 6: Level k > 1 of a deep BiLSTM. (We augment
the shown input vectors with level k− 1’s input vectors.)

(2014) and Vinyals et al. (2015) found so effective
in a different structured prediction architecture.

The kth-level BiLSTM (Figure 6) reads a se-
quence of input vectors x(k)

1 ,x(k)
2 , . . . ,x(k)

n ∈
Rd(k)

, and produces a sequence of vectors
γ

(k)
1 ,γ

(k)
2 , . . . ,γ

(k)
n ∈ R2q. At the initial level

k = 1, we define x(1)
i = exi ∈ Rd(1) , a vector em-

bedding of the character xi ∈ Σx. For k > 1, we
take x(k)

i to be γ(k−1)
i , concatenated with x(k−1)

i for
good measure. Thus, d(k) = 2q + d(k−1).

After this deep generalization, we define γi:j to be
the concatenation of all γ(k)

i:j (rather than just γ(K)
i:j).

This novel deep BiLSTM architecture has more
connections than a pair of deep LSTMs, since α(k)

i

depends not only on α(k−1)
i but also on β(k−1)

i .
Thus, while we may informally regard α(k)

i as be-
ing a deep summary of the prefix x0:i, it actually
depends indirectly on all of x (except when k = 1).

5 The Arc Weight Function

Given the vector γi:j , we can now compute the
weight of the edit arc i,h© s:t−→j,h′© in G, namely w =
f(s, t, h, h′,x, i, j). Many reasonable functions are
possible. Here we use one that is inspired by the log-
bilinear language model (Mnih and Hinton, 2007):

w = (es,γi,j , exi , exj+1) · rt,h,h′,type(s:t) (1)

The first argument to the inner product is an em-
bedding es ∈ Rd

(1)
of the source substring s, con-

catenated to the edit’s neural context and also (for
good measure) its local context.3 For example, if
|s| = 1, i.e. s is a single character, then we would
use the embedding of that character as es. Note
that the embeddings es for |s| = 1 are also used
to encode the local context characters and the level-
1 BiLSTM input. We learn these embeddings, and
they form part of our model’s parameter vector θ.

The second argument is a joint embedding of the
other properties of the edit: the target substring t,
the edit arc’s state labels from F , and the type of the
edit (INS, DEL, or SUB: see section 8). When re-
placing s in a particular context, which fixes the first
argument, we will prefer those replacements whose
r embeddings yield a high inner product w. We will
learn the r embeddings as well; note that their di-
mensionality must match that of the first argument.

The model’s parameter vector θ includes the
O((d(K))2) parameters from the 2K LSTMs, where
d(K) = O(d(1) + Kq). It also O(d(1)S) parame-
ters for the embeddings es of the S different input
substrings mentioned by F , and O(d(K)T) for the
embeddings rt,h,h′,type(s:t) of the T “actions” in F .

6 Training

We train our model by maximizing the conditional
log-likelihood objective,∑

(x,y∗)∈dataset

log p(y∗ | x) (2)

Recall that p(y∗ | x) sums over all alignments. As
explained by Eisner (2002), it can be computed as
the pathsum of the composition G ◦ y∗ (Figure 4),
divided by the pathsum of G (which gives the nor-
malizing constant for the distribution p(y | x)). The
pathsum of a weighted FST is the total weight of all
paths from the initial state to a final state, and can be
computed by the forward algorithm.4

3Our present implementation handles INS edits (for which
j = i) a bit differently, using (exi+1 ,γi:i+1, exi , exi+2) rather
than (eε,γi:i, exi , exi+1). This is conveniently the same vector
that is used for all other competing edits at this i position (as
they all have |s| = 1 in our present implementation); it provides
an extra character of lookahead.

4If an FST has cycles, such as the self-loops in the example
of Figure 3, then the forward algorithm’s recurrence equations
become cyclic, and must be solved as a linear system rather than
sequentially. This is true regardless of how the FST’s weights

626

Eisner (2002) and Li and Eisner (2009) also ex-
plain how to compute the partial derivatives of
p(y∗ | x) with respect to the arc weights, essen-
tially by using the forward-backward algorithm. We
backpropagate further from these partials to find the
gradient of (2) with respect to all our model param-
eters. We describe our gradient-based maximization
procedure in section 10.3, along with regularization.

Our model does not have to be trained with the
conditional log likelihood objective. It could be
trained with other objectives such as empirical risk
or softmax-margin (Li and Eisner, 2009; Gimpel and
Smith, 2010), or with error-driven updates such as in
the structured perceptron (Collins, 2002).

7 Inference and Decoding

For a new input x at test time, we can now construct
a weighted FST, G, that defines a probability distri-
bution over all aligned output strings. This can be
manipulated to make various predictions about y∗

and its alignment.
In our present experiments, we find the most prob-

able (highest-weighted) path in G (Dijkstra, 1959),
and use its output string ŷ as our prediction. Note
that Dijkstra’s algorithm is exact; no beam search is
required as in some neural sequence models.

On the other hand, ŷ may not be the most prob-
able string—extracting that from a weighted FST is
NP-hard (Casacuberta and de la Higuera, 1999). The
issue is that the total probability of each y is split
over many paths. Still, this is a well-studied prob-
lem in NLP. Instead of the Viterbi approximation,
we could have used a better approximation, such as
crunching (May and Knight, 2006) or variational de-
coding (Li et al., 2009). We actually did try crunch-
ing the 10000-best outputs but got no significant im-
provement, so we do not report those results.

8 Transducer Topology

In our experiments, we choose F to be a simple con-
textual edit FST as illustrated in Figure 2. Just as in
Levenshtein distance (Levenshtein, 1966), it allows
all edits s : t where |s| ≤ 1, |t| ≤ 1, |s| + |t| 6= 0.
We consider the edit type to be INS if s = ε, DEL if

are defined. (For convenience, our experiments in this paper
avoid cycles by limiting consecutive insertions: see section 8.)

t = ε, and SUB otherwise. Note that copy is a SUB

edit with s = t.
For a “memoryless” edit process (Ristad and

Yianilos, 1996), the FST would require only a sin-
gle state. By contrast, we use |Σx|+ 1 states, where
each state records the most recent output character
(initially, a special “beginning-of-string” symbol $).
That is, the state label h is the “history” output char-
acter immediately before the edit s : t, so the state
label h′ is the history before the next edit, namely the
final character of ht. For edits other than DEL, ht is
a bigram of y, which can be evaluated (in context)
by the arc weight function w = f(s, t, h, h′,x, i, j).

Naturally, a weighted version of this FST F is far
too simple to do well on real NLP tasks (as we show
in our experiments). The magic comes from instead
weightingG so that we can pay attention to the input
context γi:j .

The above choice of F corresponds to the
“(0, 1, 1) topology” in the more general scheme of
Cotterell et al. (2014). For practical reasons, we
actually modify it to limit the number of consec-
utive INS edits to 3.5 This trick bounds |y| to be
< 4 · (|x| + 1), ensuring that the pathsums in sec-
tion 6 are finite regardless of the model parameters.
This simplifies both the pathsum algorithm and the
gradient-based training (Dreyer, 2011). Less im-
portantly, since G becomes acyclic, Dijkstra’s algo-
rithm in section 7 simplifies to the Viterbi algorithm.

9 Related Work

Our model adds to recent work on linguistic se-
quence transduction using deep learning.

Graves and Schmidhuber (2005) combined BiL-
STMs with HMMs. Later, “sequence-to-sequence”
models were applied to machine translation by
Sutskever et al. (2014) and to parsing by Vinyals
et al. (2015). That framework did not model any
alignment between x and y, but adding an “atten-
tion” mechanism provides a kind of soft alignment
that has improved performance on MT (Bahdanau et
al., 2015). Faruqui et al. (2016) apply these meth-
ods to morphological reinflection (the only other ap-
plication to morphology we know of). Grefenstette

5This multiplies the number of states 4-fold, since each state
must also record a count in [0, 3] of immediately preceding INS

edits. No INS edit arc is allowed from a state with counter 3.
The counter is not considered by the arc weight function.

627

et al. (2015) recently augmented the sequence-to-
sequence framework with a continuous analog of
stack and queue data structures, to better handle
long-range dependencies often found in linguistic
data.

Some recent papers have used LSTMs or BiL-
STMs, as we do, to define probability distributions
over action sequences that operate directly on an in-
put sequence. Such actions are aligned to the in-
put. For example, Andor et al. (2016) score edit
sequences using a globally normalized model, and
Dyer et al. (2015) evaluate the local probability of
a parsing action given past actions (and their result)
and future words. These architectures are powerful
because their LSTMs can examine the output struc-
ture; but as a result they do not permit dynamic pro-
gramming and must fall back on beam search.

Our use of dynamic programming for efficient ex-
act inference has long been common in non-neural
architectures for sequence transduction, including
FST systems that allow “phrasal” replacements s : t
where |s|, |t| > 1 (Chen, 2003; Jiampojamarn et
al., 2007; Bisani and Ney, 2008). Our work aug-
ments these FSTs with neural networks, much as
others have augmented CRFs. In this vein, Durrett
and Klein (2015) augment a CRF parser (Finkel et
al., 2008) to score constituents with a feedforward
neural network. Likewise, FitzGerald et al. (2015)
employ feedforward nets as a factor in a graphical
model for semantic role labeling. Many CRFs have
incorporated feedforward neural networks (Bridle,
1990; Peng et al., 2009; Do and Artieres, 2010;
Vinel et al., 2011; Fujii et al., 2012; Chen et al.,
2015, and others). Some work augments CRFs with
BiLSTMs: Huang et al. (2015) report results on
part-of-speech tagging and named entity recognition
with a linear-chain CRF-BiLSTM, and Kong et al.
(2015) on Chinese word segmentation and handwrit-
ing recognition with a semi-CRF-BiLSTM.

10 Experiments

We evaluated our approach on two morphological
generation tasks of reinflection (section 10.1) and
lemmatization (section 10.2). In the reinflection
task, the goal is to transduce verbs from one inflected
form into another, whereas the lemmatization task
requires the model to reduce an inflected verb to its

root form.
We compare our WFST-LSTM against two stan-

dard baselines, a WFST with hand-engineered fea-
tures and the Moses phrase-based MT system
(Koehn et al., 2007), as well as the more complex
latent-variable model of Dreyer et al. (2008). The
comparison with Dreyer et al. (2008) is of noted in-
terest since their latent variables are structured par-
ticularly for morphological transduction tasks—we
are directly testing the ability of the LSTM to struc-
ture its hidden layer as effectively as linguistically
motivated latent-variables. Additionally, we provide
detailed ablation studies and learning curves which
show that our neural-WFSA hybrid model can gen-
eralize even with very low amounts of training data.

10.1 Morphological Reinflection

Following Dreyer (2011), we conducted our ex-
periments on the following transduction tasks from
the CELEX (Baayen et al., 1993) morphological
database: 13SIA 7→ 13SKE, 2PIE 7→ 13PKE, 2PKE
7→ z and rP 7→ pA.6 We refer to these tasks as 13SIA,
2PIE, 2PKE and rP, respectively.

Concretely, each task requires us to map a Ger-
man inflection into another inflection. Consider
the 13SIA task and the German verb abreiben

(“to rub off”). We require the model to learn
to map a past tense form abrieb to a present
tense form abreibe—this involves a combination
of stem change and affix generation. Sticking
with the same verb abreiben, task 2PIE requires
the model to transduce abreibt to abreiben—
this requires an insertion and a substitution at
the end. The tasks 2PKE and rP are somewhat
more challenging since performing well on these
tasks requires the model to learn complex trans-
duction: abreiben to abzureiben and abreibt

to abgerieben, respectively. These are complex
transductions with phenomenon like infixation in
specific contexts (abzurieben) and circumfixation
(abgerieben) along with additional stem and af-
fix changes. See Dreyer (2011) for more details and
examples of these tasks.

We use the datasets of Dreyer (2011). Each exper-
6Glossary: 13SIA=1st/3rd sg. ind. past; 13SKE=1st/3rd

sg. subjunct. pres.; 2PIE=2nd pl. ind. pres.; 13PKE=1st/3rd
pl. subjunct. pres.; 2PKE=2nd pl. subjunct. pres.; z=infinitive;
rP=imperative pl.; pA=past part.

628

iment sampled a different dataset of 2500 examples
from CELEX, dividing this into 500 training + 1000
validation + 1000 test examples. Like them, we re-
port exact-match accuracy on the test examples, av-
eraged over 5 distinct experiments of this form. We
also report results when the training and validation
data are swapped in each experiment, which doubles
the training size.

10.2 Lemmatization

Lemmatization is a special case of morphological re-
inflection where we map an inflected form of a word
to its lemma (canonical form), i.e., the target inflec-
tion is fixed. This task is quite useful for NLP, as
dictionaries typically list only the lemma for a given
lexical entry, rather than all possible inflected forms.
In the case of German verbs, the lemma is taken to
be the infinitive form, e.g., we map the past partici-
ple abgerieben to the infinitive abreiben.

Following Dreyer (2011), we use a subset of
the lemmatization dataset created by Wicentowski
(2002) and perform 10-fold experiments on four lan-
guages: Basque (5843), English (4915), Irish (1376)
and Tagalog (9545), where the numbers in paren-
thesis indicate the total number of data pairs avail-
able. For each experimental fold the total data was
divided into train, development and test sets in the
proportion of 80:10:10 and we report test accuracy
averaged across folds.

10.3 Settings and Training Procedure

We set the hyperparameters of our model to K = 4
(stacking depth), d(1) = 10 (character embedding
dimension), and q = 15 (LSTM state dimension).
The alphabets Σx and Σy are always equal; their size
is language-dependent, typically ≈ 26 but larger in
languages like Basque and Irish where our datasets
include properly accented characters. With |Σ| = 26
and the above settings for the hyperparameters, the
number of parameters in our models is 352, 801.

We optimize these parameters through stochas-
tic gradient descent of the negative log-likelihood
objective, and regularize the training procedure
through dropout accompanied with gradient clip-
ping and projection of parameters onto L2-balls with
small radii, which is equivalent to adding a group-
ridge regularization term to the training objective.
The learning rate decay schedule, gradient clipping

Model 13SIA 2PIE 2PKE rP
Moses15 85.3 94.0 82.8 70.8
Dreyer (Backoff) 82.8 88.7 74.7 69.9
Dreyer (Lat-Class) 84.8 93.6 75.7 81.8
Dreyer (Lat-Region) 87.5 93.4 87.4 84.9

BiLSTM-WFST 85.1 94.4 85.5 83.0

Model Ensemble 85.8 94.6 86.0 83.8

BiLSTM-WFST (2 × Data) 87.6 94.8 88.1 85.7

Table 1: Exact match accuracy on the morphological re-
inflection task. All the results in the first half of the table
are taken from Dreyer (2011), whose experimental setup
we copied exactly. The Moses15 result is obtained by ap-
plying the SMT toolkit Moses (Koehn et al., 2007) over
letter strings with 15-character context windows. Dreyer
(Backoff) refers to the ngrams+x model which has access
to all the “backoff features.” Dreyer (Lat-Class) is the
ngrams+x+latent class model, and Dreyer (Lat Region)
refers to the ngrams+x+latent class + latent change re-
gion model. The “Model Ensemble” row displays the
performance of an ensemble including our full model and
the 7 models that we performed ablation on. In each col-
umn, we boldfaced the highest result and those that were
not significantly worse (sign test, p < 0.05). Finally, the
last row reports the performance of our BiLSTM-WFST
when trained on twice the training data.

threshold, radii of L2-balls, and dropout frequency
were tuned by hand on development data.

In our present experiments, we made one change
to the architecture. Treating copy edits like other
SUB edits led to poor performance: the system was
unable to learn that all SUB edits with s = t were ex-
tremely likely. In the experiments reported here, we
addressed the problem by simply tying the weights
of all copy edits regardless of context, bypassing (1)
and instead setting w = c where c is a learned pa-
rameter of the model. See section 11 for discussion.

10.4 Results

Table 1 and 2 show our results. We can see that
our proposed BiLSTM-WFST model always outper-
forms all but the most complex latent-variable model
of Dreyer (2011); it is competitive with that model,
but only beats it once individually. All of Dreyer’s
models include output trigram features, while we
only use bigrams.

Figure 7 shows learning curves for the 13SIA and
2PKE tasks: test accuracy when we train on less
data. Curiously, at 300 data points the performance
of our model is tied to Dreyer (2011). We also note

629

Model Basque English Irish Tagalog

Base (W) 85.3 91.0 43.3 0.3
WFAffix (W) 80.1 93.1 70.8 81.7
ngrams (D) 91.0 92.4 96.8 80.5

ngrams + x (D) 91.1 93.4 97.0 83.0
ngrams + x + l (D) 93.6 96.9 97.9 88.6

BiLSTM-WFST 91.5 94.5 97.9 97.4
Table 2: Lemmatization results on Basque, English, Irish
and Tagalog. Comparison systems marked with (W) are
taken from Wicentowski (2002) and systems marked with
a (D) are taken from Dreyer (2011). We outperform base-
lines on all languages and are competitive with the latent-
variable approach (ngrams + x + l), beating it in two
cases: Irish and Tagalog.

50100 300 500 1000
55

60

65

70

75

80

85

90

A
cc

u
ra

cy

2PKE

50100 300 500 1000
72

74

76

78

80

82

84

86

88
13SIA

BiLSTM-WFST

Dreyer (Lat-Region)

Dreyer (Backoff)

Moses15

Figure 7: Learning Curves

that our model always outperforms the Moses15
baseline on all training set sizes except on the 2PKE
task with 50 training samples.

In general, the results from our experiments are
a promising indicator that LSTMs are capable of
extracting linguistically relevant features for mor-
phology. Our model outperforms all baselines, and
is competitive with and sometimes surpasses the
latent-variable model of Dreyer et al. (2008) without
any of the hand-engineered features or linguistically
inspired latent variables.

On morphological reinflection, we outperform all
of Dreyer et al’s models on 2PIE, but fall short of his
latent-change region model on the other tasks (out-
performing the other models). On lemmatization,
we outperform all of Wicentowski’s models on all
the languages and all of Dreyer et al.’s models on
Irish and Tagalog, but, but not on English and Irish.
This suggests that perhaps further gains are possible
through using something like Dreyer’s FST as our
F . Indeed, this would be compatible with much re-
cent work that gets best results from a combination
of automatically learned neural features and hand-

Systems 13SIA 2PIE 2PKE rP
Deep BiLSTM w/ Tying 86.8 94.8 87.9 81.1

Deep BiLSTM (No Context) 86.5 94.3 87.8 78.8
Deep BiLSTMs w/o Copying 86.5 94.6 86.5 80.7
Shallow BiLSTM 86.4 94.7 86.1 80.6
Bi-Deep LSTM 86.1 94.2 86.5 78.6
Deep MonoLSTM 84.0 93.8 85.6 67.3
Shallow MonoLSTM 84.2 94.5 84.9 68.2
No LSTM (Local Context) 83.6 88.5 83.2 68.0
Deep BiLSTM w/o Tying 69.7 78.5 77.9 66.7
No LSTM (No Context) 70.7 84.9 72.4 64.1

Seq2Seq-Att-4Layer 76.0 91.4 81.2 79.3
Seq2Seq-Att-1Layer 77.2 89.6 82.1 79.1
Seq2Seq-4Layer 2.5 5.2 11.5 6.4
Seq2Seq-1Layer 9.1 11.1 14.1 11.9

Table 3: Ablation experiments: Exact-match accuracy of
the different systems averaged on 5 folds of validation
portions of the morphological induction dataset.

engineered features.

10.5 Analysis of Results

We analyzed our lemmatization errors for all the lan-
guages on one fold of the datasets. On the English
lemmatization task, 7 of our 27 errors simply copied
the input word to the output: ate, kept, went,

taught, torn, paid, strung. This suggests
that our current aggressive parameter tying for copy
edits may predict a high probability for a copy edit
even in contexts that should not favor it.

Also we found that the FST sometimes produced
non-words while lemmatizing the input verbs. For
example it mapped picnicked 7→ picnick,

happen 7→ hapen, exceed 7→ excy and

lining 7→ lin. Since these strings would be rare
in a corpus, many such errors could be avoided by
a reranking approach that combined the FST’s path
score with a string frequency feature.

In order to better understand our architecture and
the importance of its various components, we per-
formed an ablation study on the validation por-
tions of the morphological induction datasets, shown
in Table 3. We can see in particular that using a BiL-
STM instead of an LSTM, increasing the depth of
the network, and including local context all helped
to improve the final accuracy.

“Deep BiLSTM w/ Tying” refers to our complete
model. The other rows are ablation experiments—
architectures that are the same as the first row except
in the specified way. “Deep BiLSTM (No Context)”

630

omits local context exi , exj+1 from (1). “Deep BiL-
STMs w/o Copying” does not concatenate a copy of
x(k−1)
i into x(k)

i and simplifies γi:j to be γ(K)
i:j only.

“Shallow BiLSTM” reduces K from 4 to 1. “Bi-
Deep LSTM” replaces our deep BiLSTM with two
deep LSTMs that run in opposite directions but do
not interact with each other. “Deep MonoLSTM”
redefines βi to be the empty vector,g i.e. it replaces
the deep BiLSTM with a deep left-to-right LSTM.
“Shallow MonoLSTM” replaces the deep BiLSTM
with a shallow left-to-right LSTM. “No LSTM (Lo-
cal Context)” omits γi:j from the weight function al-
together. “Deep BiLSTM w/o Tying” does not use
the parameter tying heuristic for copy edits. “No
LSTM (No Context)” is the simplest model that we
consider. It removes γi:j , exi and exj+1 and in fact,
it is precisely a weighting of the edits in our origi-
nal FST F , without further considering the context
in which an edit is applied.

Finally, to compare the performance of our
method to baseline neural encoder-decoder models,
we trained 1-layer and 4-layer neural sequence-to-
sequence models with and without attention, us-
ing the publicly available morph-trans toolkit
(Faruqui et al., 2016). We show the performance
of these models in the lower half of the table. The
results consistently show that sequence-to-sequence
transduction models that lack the constraints of
monotonic alignment perform worse than our pro-
posed models on morphological transduction tasks.

11 Future Work

As neither our FST-LSTM model or the latent-
variable WFST model of Dreyer et al. (2008) uni-
formly outperforms the other, a future direction is
to improve the FST we use in our model—e.g., by
augmenting its states with explicit latent variables.
Other improvements to the WFST would be to in-
crease the amount of history h stored in the states,
and to allow s, t to be longer than a single character,
which would allow the model to segment x.

We are not committed to the arc weight function
in (1), and we believe that further investigation here
could improve performance. The goal is to define
the weight of h© s:t−→ h′© in the context summarized by
αi,βj (the context around xi:j = s) and/or αj ,βi
(which incorporate s as well).

Any parametric function of the variables
(s, t, h, h′,αi,αj ,βi,βj) could be used—for
example, a neural network or a multilinear function.
This function might depend on learned embeddings
of the separate objects s, t, h, h′, but also on learned
joint embeddings of pairs of these objects (which
adds finer-grained parameters), or hand-specified
properties of the objects such as their phonological
features (which adds backoff parameters).

A basic approach along the lines of (1) would
use an inner product of some encoding of the
arc (s, t, h, h′) with some encoding of the context
(s, h, h′,αi,αj ,βi,βj). Note that this formulation
lets the objects s, h, h′ play a dual role—they may
appear as part of the arc and/or as part of the context.
This is because we must judge whether s = xi:j
(with “label” h©−→ h′©) is an appropriate input seg-
ment given the string context around xi:j , but if this
segment is chosen, in turn it provides additional con-
text to judge whether t is an appropriate output.

High-probability edits s : t typically have t ≈ s:
a perfect copy, or a modified copy that changes just
one or two features such as phonological voicing or
orthographic capitalization. Thus, we are interested
in learning a shared set of embeddings for Σx ∪Σy,
and making the arc weight depend on features of the
“discrepancy vector” et − es, such as this vector’s
components7 and their absolute magnitudes, which
would signal discrepancies of various sorts.

12 Conclusions

We have presented a hybrid FST-LSTM architec-
ture for string-to-string transduction tasks. This
approach combines classical finite-state approaches
to transduction and newer neural approaches. We
weight the same FST arc differently in different con-
texts, and use LSTMs to automatically extract fea-
tures that determine these weights. This reduces the
need to engineer a complex topology for the FST
or to hand-engineer its weight features. We evalu-
ated one such model on the tasks of morphological
reinflection and lemmatization. Our approach out-
performs several baselines and is competitive with
(and sometimes surpasses) a latent-variable model
hand-crafted for morphological transduction tasks.

7In various directions—perhaps just the basis directions,
which might come to encode distinctive features, via training.

631

Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency under the Deep Exploration
and Filtering of Text (DEFT) Program, agreement num-
ber FA8750-13-2-001; by the National Science Founda-
tion under Grant No. 1423276; and by a DAAD fellow-
ship to the second author. We would like to thank Markus
Dreyer for providing the datasets and Manaal Faruqui for
providing implementations of the baseline sequence-to-
sequence models. Finally we would like to thank Mo Yu,
Nanyun Peng, Dingquan Wang and Elan Hourticolon-
Retzler for helpful discussions and early prototypes for
some of the neural network architectures.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. Available
at arXiv.org as arXiv:1603.06042, March.

R. Harald Baayen, Richard Piepenbrock, and Rijn van H.
1993. The CELEX lexical data base on CD-ROM.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50(5):434–451.

John S. Bridle. 1990. Training stochastic model recog-
nition algorithms as networks can lead to maximum
mutual information estimation of parameters. In Pro-
ceedings of NIPS, pages 211–217.

Francisco Casacuberta and Colin de la Higuera. 1999.
Optimal linguistic decoding is a difficult compu-
tational problem. Pattern Recognition Letters,
20(8):813–821.

Liang-chieh Chen, Alexander Schwing, Alan Yuille, and
Raquel Urtasun. 2015. Learning deep structured mod-
els. In Proceedings of ICML, pages 1785–1794.

Stanley F. Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. In Proceedings of
EUROSPEECH.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, Philadelphia, July.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In Proceedings of ACL, pages 625–630, June.

E. W. Dijkstra. 1959. A note on two problems in con-
nexion with graphs. Numerische Mathematik, 1(1).

Trinh-Minh-Tri Do and Thierry Artieres. 2010. Neu-
ral conditional random fields. In Proceedings of AIS-
TATS. JMLR.

Markus Dreyer, Jason R. Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In Proceedings of EMNLP, pages
1080–1089, October.

Markus Dreyer. 2011. A Non-Parametric Model for the
Discovery of Inflectional Paradigms from Plain Text
Using Graphical Models over Strings. Ph.D. thesis,
Johns Hopkins University, Baltimore, MD, April.

Greg Durrett and Dan Klein. 2015. Neural CRF parsing.
In Proceedings of ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of ACL-IJCNLP, pages 334–
343, July.

Jason Eisner. 2002. Parameter estimation for probabilis-
tic finite-state transducers. In Proceedings of ACL,
pages 1–8, July.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning. In
Proceedings of NAACL. Code available at https:
//github.com/mfaruqui/morph-trans.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, conditional
random field parsing. In Proceedings of ACL, pages
959–967.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proceedings
of EMNLP, pages 960–970.

Yasuhisa Fujii, Kazumasa Yamamoto, and Seiichi Naka-
gawa. 2012. Deep-hidden conditional neural fields for
continuous phoneme speech recognition. In Proceed-
ings of IWSML.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
margin CRFs: Training log-linear models with cost
functions. In Proceedings of NAACL-HLT, pages 733–
736, June.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Alex Graves. 2012. Supervised Sequence Labelling with
Recurrent Neural Networks. Springer.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Su-
leyman, and Phil Blunsom. 2015. Learning to trans-
duce with unbounded memory. In Proceedings of
NIPS, pages 1819–1827.

632

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme con-
version. In Proceedings of NAACL-HLT, pages 372–
379.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit
for statistical machine translation. In Proceedings of
ACL (Interactive Poster and Demonstration Sessions),
pages 177–180.

Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2015.
Segmental recurrent neural networks. arXiv preprint
arXiv:1511.06018.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710.

Zhifei Li and Jason Eisner. 2009. First- and second-order
expectation semirings with applications to minimum-
risk training on translation forests. In Proceedings of
EMNLP, pages 40–51, August.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. 2009.
Variational decoding for statistical machine transla-
tion. In Proceedings of ACL, pages 593–601.

Jonathan May and Kevin Knight. 2006. A better n-best
list: Practical determinization of weighted finite tree
automata. In Proceedings of NAACL, pages 351–358.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling. In
Proceedings of ICML, pages 641–648. ACM.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2):269–311.

Jian Peng, Liefeng Bo, and Jinbo Xu. 2009. Conditional
neural fields. In Proceedings of NIPS, pages 1419–
1427.

Eric Sven Ristad and Peter N. Yianilos. 1996. Learning
string edit distance. Technical Report CS-TR-532-96,
Princeton University, Department of Computer Sci-
ence, October. Revised October 1997.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Se-
quence to sequence learning with neural networks. In
Proceedings of NIPS.

Antoine Vinel, Trinh Minh Tri Do, and Thierry Artieres.
2011. Joint optimization of hidden conditional ran-
dom fields and non-linear feature extraction. In Pro-
ceedings of ICDAR, pages 513–517. IEEE.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of NIPS,
pages 2755–2763.

Richard Wicentowski. 2002. Modeling and Learning
Multilingual Inflectional Morphology in a Minimally
Supervised Framework. Ph.D. thesis, Johns Hopkins
University.

633

Proceedings of NAACL-HLT 2016, pages 634–643,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Morphological Inflection Generation Using
Character Sequence to Sequence Learning

Manaal Faruqui1 Yulia Tsvetkov1 Graham Neubig2 Chris Dyer1

1Language Technologies Institute, Carnegie Mellon University, USA
2Graduate School of Information Science, Nara Institute of Science and Technology, Japan

{mfaruqui,ytsvetko,cdyer}@cs.cmu.edu neubig@is.naist.jp

Abstract

Morphological inflection generation is the
task of generating the inflected form of a given
lemma corresponding to a particular linguis-
tic transformation. We model the problem of
inflection generation as a character sequence
to sequence learning problem and present a
variant of the neural encoder-decoder model
for solving it. Our model is language inde-
pendent and can be trained in both supervised
and semi-supervised settings. We evaluate our
system on seven datasets of morphologically
rich languages and achieve either better or
comparable results to existing state-of-the-art
models of inflection generation.

1 Introduction

Inflection is the word-formation mechanism to ex-
press different grammatical categories such as tense,
mood, voice, aspect, person, gender, number and
case. Inflectional morphology is often realized by
the concatenation of bound morphemes (prefixes
and suffixes) to a root form or stem, but noncon-
catenative processes such as ablaut and infixation are
found in many languages as well. Table 1 shows the
possible inflected forms of the German stem Kalb
(calf) when it is used in different cases and numbers.
The inflected forms are the result of both ablaut (e.g.,
a→ä) and suffixation (e.g., +ern).

Inflection generation is useful for reducing data
sparsity in morphologically complex languages. For
example, statistical machine translation suffers from
data sparsity when translating morphologically-rich
languages, since every surface form is considered an

singular plural
nominative Kalb Kälber
accusative Kalb Kälber
dative Kalb Kälbern
genitive Kalbes Kälber

Table 1: An example of an inflection table from the German

noun dataset for the word Kalb (calf).

independent entity. Translating into lemmas in the
target language, and then applying inflection gener-
ation as a post-processing step, has been shown to
alleviate the sparsity problem (Minkov et al., 2007;
Toutanova et al., 2008; Clifton and Sarkar, 2011;
Fraser et al., 2012; Chahuneau et al., 2013a). Mod-
eling inflection generation has also been used to im-
prove language modeling (Chahuneau et al., 2013b),
identification of multi-word expressions (Oflazer et
al., 2004), among other applications.

The traditional approach to modeling inflec-
tion relies on hand-crafted finite state transducers
and lexicography, e.g., using two-level morphology
(Koskenniemi, 1983; Kaplan and Kay, 1994). Such
systems are appealing since they correspond to lin-
guistic theories, but they are expensive to create,
they can be fragile (Oflazer, 1996), and the com-
posed transducers can be impractically large. As
an alternative, machine learning models have been
proposed to generate inflections from root forms
as string transduction (Yarowsky and Wicentowski,
2000; Wicentowski, 2004; Dreyer and Eisner, 2011;
Durrett and DeNero, 2013; Ahlberg et al., 2014;
Hulden, 2014; Ahlberg et al., 2015; Nicolai et al.,
2015). However, these impose either assumptions
about the set of possible morphological processes

634

inflection
generation

kalb
kälbercase=nominative

number=plural

Figure 1: A general inflection generation model.

(e.g. affixation) or require careful feature engineer-
ing.

In this paper, we present a model of inflection
generation based on a neural network sequence to
sequence transducer. The root form is represented
as sequence of characters, and this is the input to
an encoder-decoder architecture (Cho et al., 2014;
Sutskever et al., 2014). The model transforms its in-
put to a sequence of output characters representing
the inflected form (§4). Our model makes no as-
sumptions about morphological processes, and our
features are simply the individual characters. The
model is trained on pairs of root form and inflected
forms obtained from inflection tables extracted from
Wiktionary.1 We improve the supervised model with
unlabeled data, by integrating a character language
model trained on the vocabulary of the language.

Our experiments show that the model achieves
better or comparable results to state-of-the-art meth-
ods on the benchmark inflection generation tasks
(§5). For example, our model is able to learn long-
range relations between character sequences in the
string aiding the inflection generation process re-
quired by Finnish vowel harmony (§6), which helps
it obtain the current best results in that language.

2 Inflection Generation: Background

Durrett and DeNero (2013) formulate the task of su-
pervised inflection generation for a given root form,
based on a large number of training inflection ta-
bles extracted from Wiktionary. Every inflection ta-
ble contains the inflected form of a given root word
corresponding to different linguistic transformations
(cf. Table 1). Figure 1 shows the inflection genera-
tion framework. Since the release of the Wiktionary
dataset, several different models have reported per-
formance on this dataset. As we are also using this
dataset, we will now review these models.

We denote the models of Durrett and DeNero
1www.wiktionary.org

k a l b<w> </w>

k ä l b e r<w> </w>

k a l b<w> </w>e s

(a)

x1 a x2<w> </w>

ä er<w> </w>

a<w> </w>es
x2x1

x1 x2

(b) </w>

er </w>

</w>es

a
ä
a

(c)

(d) a
ä

a
a

</w>

er </w>

</w>

es </w>

k
k

l
l

b
b

Figure 2: Rule extraction: (a) Character aligned-table; (b)

Table-level rule of AFH14, AFH15 (c) Vertical rules of DDN13

and (d) Atomic rules of NCK15.

(2013), Ahlberg et al. (2014), Ahlberg et al. (2015),
and Nicolai et al. (2015), by DDN13, AFH14,
AFH15, and NCK15 respectively. These models
perform inflection generation as string transduction
and largely consist of three major components: (1)
Character alignment of word forms in a table; (2)
Extraction of string transformation rules; (3) Appli-
cation of rules to new root forms.

The first step is learning character alignments
across inflected forms in a table. Figure 2 (a) shows
alignment between three word forms of Kalb. Dif-
ferent models use different heuristic algorithms for
alignments such as edit distance, dynamic edit dis-
tance (Eisner, 2002; Oncina and Sebban, 2006),
and longest subsequence alignment (Bergroth et al.,
2000). Aligning characters across word forms pro-
vide spans of characters that have changed and spans
that remain unchanged. These spans are used to ex-
tract rules for inflection generation for different in-
flection types as shown in Figure 2 (b)–(d).

By applying the extracted rules to new root forms,
inflected words can be generated. DDN13 use a
semi-Markov model (Sarawagi and Cohen, 2004) to
predict what rules should be applied, using charac-
ter n-grams (n = 1 to 4) as features. AFH14 and
AFH15 use substring features extracted from words
to match an input word to a rule table. NCK15 use
a semi-Markov model inspired by DDN13, but ad-
ditionally use target n-grams and joint n-grams as
features sequences while selecting the rules.

Motivation for our model. Morphology often
makes references to segmental features, like place
or manner of articulation, or voicing status (Chom-

635

sky and Halle, 1968). While these can be encoded
as features in existing work, our approach treats seg-
ments as vectors of features “natively”. Our ap-
proach represents every character as a bundle of con-
tinuous features, instead of using discrete surface
character sequence features. Also, our model uses
features as part of the transduction rules themselves,
whereas in existing work features are only used to
rescore rule applications.

In existing work, the learner implicitly speci-
fies the class of rules that can be learned, such
as “delete” or “concatenate”. To deal with phe-
nomenona like segment lengthening in English: run
→ running; or reduplication in Hebrew: Kelev →
Klavlav, Chatul → Chataltul; (or consonant grada-
tion in Finnish), where the affixes are induced from
characters of the root form, one must engineer a new
rule class, which leads to poorer estimates due to
data sparsity. By modeling inflection generation as
a task of generating a character sequence, one char-
acter at a time, we do away with such problems.

3 Neural Encoder-Decoder Models

Here, we describe briefly the underlying framework
of our inflection generation model, called the recur-
rent neural network (RNN) encoder-decoder (Cho et
al., 2014; Sutskever et al., 2014) which is used to
transform an input sequence ~x to output sequence ~y.
We represent an item by x, a sequence of items by
~x, vectors by x, matrices by X, and sequences of
vectors by ~x.

3.1 Formulation

In the encoder-decoder framework, an encoder reads
a variable length input sequence, a sequence of vec-
tors ~x = 〈x1, · · · ,xT 〉 (corresponding to a sequence
of input symbols ~x = 〈x1, · · · , xT 〉) and generates
a fixed-dimensional vector representation of the se-
quence. xt ∈ Rl is an input vector of length l. The
most common approach is to use an RNN such that:

ht = f(ht−1,xt) (1)

where ht ∈ Rn is a hidden state at time t, and f
is generally a non-linear transformation, producing
e := hT+1 as the input representation. The decoder
is trained to predict the next output yt given the

encoded input vector e and all the previously pre-
dicted outputs 〈y1, · · · yt−1〉. In other words, the de-
coder defines a probability over the output sequence
~y = 〈y1, · · · , yT ′〉 by decomposing the joint proba-
bility into ordered conditionals:

p(~y|~x) =
∏T ′

t=1
p(yt|e, 〈y1, · · · , yt−1〉) (2)

With a decoder RNN, we can first obtain the hidden
layer at time t as: st = g(st−1, {e,yt−1}) and feed
this into a softmax layer to obtain the conditional
probability as:

p(yt = i|e, ~y<t) = softmax(Wsst + bs)i (3)

where, ~y<t = 〈y1, · · · , yt−1〉. In recent work, both
f and g are generally LSTMs, a kind of RNN which
we describe next.

3.2 Long Short-Term Memory (LSTM)
In principle, RNNs allow retaining information from
time steps in the distant past, but the nonlinear
“squashing” functions applied in the calculation of
each ht result in a decay of the error signal used in
training with backpropagation. LSTMs are a vari-
ant of RNNs designed to cope with this “vanish-
ing gradient” problem using an extra memory “cell”
(Hochreiter and Schmidhuber, 1997; Graves, 2013).
Past work explains the computation within an LSTM
through the metaphors of deciding how much of the
current input to pass into memory or forget. We refer
interested readers to the original papers for details.

4 Inflection Generation Model

We frame the problem of inflection generation as a
sequence to sequence learning problem of charac-
ter sequences. The standard encoder-decoder mod-
els were designed for machine translation where
the objective is to translate a sentence (sequence of
words) from one language to a semantically equiv-
alent sentence (sequence of words) in another lan-
guage. We can easily port the encoder-decoder
translation model for inflection generation. Our
model predicts the sequence of characters in the in-
flected string given the characters in the root word
(input).

However, our problem differs from the above set-
ting in two ways: (1) the input and output character

636

k a l b<w> </w>
e
k

e
a

<w> k

k ä l b e r </w>

e
l
ä

e
b
l

e
ε
b

e
ε
e

e
ε
r

e

Figure 3: The modified encoder-decoder architecture for inflection generation. Input characters are shown in black and predicted

characters are shown in red. · indicates the append operation.

sequences are mostly similar except for the inflec-
tions; (2) the input and output character sequences
have different semantics. Regarding the first differ-
ence, taking the word play as an example, the in-
flected forms corresponding to past tense and con-
tinuous forms are played and playing. To better use
this correspondence between the input and output
sequence, we also feed the input sequence directly
into the decoder:

st = g(st−1, {e,yt−1,xt}) (4)

where, g is the decoder LSTM, and xt and yt are the
input and output character vectors respectively. Be-
cause the lengths of the input and output sequences
are not equal, we feed an ε character in the decoder,
indicating null input, once the input sequence runs
out of characters. These ε character vectors are pa-
rameters that are learned by our model, exactly as
other character vectors.

Regarding the second difference, to provide the
model the ability to learn the transformation of se-
mantics from input to output, we apply an affine
transformation on the encoded vector e:

e←Wtranse + btrans (5)

where, Wtrans,btrans are the transformation pa-
rameters. Also, in the encoder we use a bi-
directional LSTM (Graves et al., 2005) instead of
a uni-directional LSTM, as it has been shown to
capture the sequence information more effectively
(Ling et al., 2015; Ballesteros et al., 2015; Bah-
danau et al., 2015). Our resultant inflection gener-
ation model is shown in Figure 3.

4.1 Supervised Learning
The parameters of our model are the set of
character vectors, the transformation parameters
(Wtrans,btrans), and the parameters of the encoder
and decoder LSTMs (§3.2). We use negative log-
likelihood of the output character sequence as the
loss function:

−log p(~y|~x) = −
∑T ′

t=1
log p(yt|e, ~y<t) (6)

We minimize the loss using stochastic updates with
AdaDelta (Zeiler, 2012). This is our purely super-
vised model for inflection generation and we evalu-
ate it in two different settings as established by pre-
vious work:

Factored Model. In the first setting, we learn a
separate model for each type of inflection indepen-
dent of the other possible inflections. For example,
in case of German nouns, we learn 8, and for Ger-
man verbs, we learn 27 individual encoder-decoder
inflection models (cf. Table 3). There is no param-
eter sharing across these models. We call these fac-
tored models of inflection generation.

Joint Model. In the second setting, while learn-
ing a model for an inflection type, we also use the
information of how the lemma inflects across all
other inflection types i.e., the inflection table of a
root form is used to learn different inflection mod-
els. We model this, by having the same encoder
in the encoder-decoder model across all inflection
models.2 The encoder in our model is learning a

2We also tried having the same encoder and decoder across
inflection types, with just the transformation matrix being dif-

637

pLM(~y) p(~y|~x)
len(~y) - len(~x) levenshtein(~y, ~x)

same-suffix(~y, ~x)? subsequence(~y, ~x)?
same-prefix(~y, ~x)? subsequence(~x, ~y)?

Table 2: Features used to rerank the inflected outputs. ~x, ~y

denote the root and inflected character sequences resp.

representation of the input character sequence. Be-
cause all inflection models take the same input but
produce different outputs, we hypothesize that hav-
ing the same encoder can lead to better estimates.

4.2 Semi-supervised Learning

The model we described so far relies entirely on the
availability of pairs of root form and inflected word
form for learning to generate inflections. Although
such supervised models can be used to obtain inflec-
tion generation models (Durrett and DeNero, 2013;
Ahlberg et al., 2015), it has been shown that unla-
beled data can generally improve the performance
of such systems (Ahlberg et al., 2014; Nicolai et al.,
2015). The vocabulary of the words of a language
encode information about what correct sequences of
characters in a language look like. Thus, we learn
a language model over the character sequences in
a vocabulary extracted from a large unlabeled cor-
pus. We use this language model to make predic-
tions about the next character in the sequence given
the previous characters, in following two settings.

Output Reranking. In the first setting, we first
train the inflection generation model using the su-
pervised setting as described in §4.1. While mak-
ing predictions for inflections, we use beam search
to generate possible output character sequences and
rerank them using the language model probability
along with other easily extractable features as de-
scribed in Table 2. We use pairwise ranking opti-
mization (PRO) to learn the reranking model (Hop-
kins and May, 2011). The reranker is trained on the
beam output of dev set and evaluated on test set.

Language Model Interpolation. In the second
setting, we interpolate the probability of observing
the next character according to the language model
with the probability according to our inflection gen-

ferent (equ. 5), and observed consistently worse results.

Dataset root forms Infl.
German Nouns (DE-N) 2764 8
German Verbs (DE-V) 2027 27
Spanish Verbs (ES-V) 4055 57
Finnish NN & Adj. (FI-NA) 6400 28
Finnish Verbs (FI-V) 7249 53
Dutch Verbs (NL-V) 11200 9
French Verbs (FR-V) 6957 48

Table 3: The number of root forms and types of inflections

across datasets.

eration model. Thus, the loss function becomes:

−log p(~y|~x) =
1
Z

∑T ′

t=1
− log p(yt|e, ~y<t)
− λlog pLM(yt|~y<t) (7)

where pLM (yt|~y<t) is the probability of observing
the word yt given the history estimated according to
a language model, λ ≥ 0 is the interpolation pa-
rameter which is learned during training and Z is
the normalization factor. This formulation lets us
use any off-the-shelf pre-trained character language
model easily (details in §5).

4.3 Ensembling
Our loss functions (equ. 6 & 7) formulated using a
neural network architecture are non-convex in nature
and are thus difficult to optimize. It has been shown
that taking an ensemble of models which were ini-
tialized differently and trained independently leads
to improved performance (Hansen and Salamon,
1990; Collobert et al., 2011). Thus, for each model
type used in this work, we report results obtained
using an ensemble of models. So, while decoding
we compute the probability of emitting a charac-
ter as the product-of-experts of the individual mod-
els in the ensemble: pens(yt|·) = 1

Z

∏k
i=1 pi(yt|·)

1
k

where, pi(yt|·) is the probability according to i-th
model and Z is the normalization factor.

5 Experiments

We now conduct experiments using the described
models. Note that not all previously published mod-
els present results on all settings, and thus we com-
pare our results to them wherever appropriate.

Hyperparameters. Across all models described
in this paper, we use the following hyperparameters.

638

In both the encoder and decoder models we use sin-
gle layer LSTMs with the hidden vector of length
100. The length of character vectors is the size of
character vocabulary according to each dataset. The
parameters are regularized with `2, with the regular-
ization constant 10−5.3 The number of models for
ensembling are k = 5. Models are trained for at
most 30 epochs and the model with best result on
development set is selected.

5.1 Data

Durrett and DeNero (2013) published the Wik-
tionary inflection dataset with training, development
and test splits. The development and test sets con-
tain 200 inflection tables each and the training sets
consist of the remaining data. This dataset con-
tains inflections for German, Finnish and Span-
ish. This dataset was further augmented by (Nico-
lai et al., 2015), by adding Dutch verbs extracted
from CELEX lexical database (Baayen et al., 1995),
French verbs from Verbsite, an online French con-
jugation dictionary and Czech nouns and verbs
from the Prague Dependnecy Treebank (Hajič et al.,
2001). As the dataset for Czech contains many in-
complete tables, we do not use it for our experi-
ments. These datasets come with pre-specified train-
ing/dev/test splits, which we use. For each of these
sets, the training data is restricted to 80% of the to-
tal inflection tables, with 10% for development and
10% for testing. We list the size of these datasets in
Table 3.

For semi-supervised experiments, we train a 5-
gram character language model with Witten-Bell
smoothing (Bell et al., 1990) using the SRILM
toolkit (Stolcke, 2002). We train the character lan-
guage models on the list of unique word types ex-
tracted from the Wikipedia dump for each language
after filtering out words with characters unseen in
the inflection generation training dataset. We ob-
tained around 2 million unique words for each lan-
guage.

5.2 Results

Supervised Models. The individual inflected
form accuracy for the factored model (§4.1) is shown
in Table 4. Across datasets, we obtain either com-

3Using dropout did not improve our results.

DDN13 NCK15 Ours
DE-V 94.76 97.50 96.72
DE-N 88.31 88.60 88.12
ES-V 99.61 99.80 99.81
FI-V 97.23 98.10 97.81
FI-NA 92.14 93.00 95.44
NL-V 90.50 96.10 96.71
FR-V 98.80 99.20 98.82
Avg. 94.47 96.04 96.20

Table 4: Individual form prediction accuracy for factored su-
pervised models.

DDN13 AFH14 AFH15 Ours
DE-V 96.19 97.01 98.11 97.25
DE-N 88.94 87.81 89.88 88.37
ES-V 99.67 99.52 99.92 99.86
FI-V 96.43 96.36 97.14 97.97
FI-NA 93.41 91.91 93.68 94.71
Avg. 94.93 94.53 95.74 95.63
NL-V 93.88 – – 96.16
FR-V 98.60 – – 98.74
Avg. 95.30 – – 96.15

Table 5: Individual form prediction accuracy for joint super-
vised models.

parable or better results than NCK15 while obtain-
ing on average an accuracy of 96.20% which is
higher than both DDN13 and NCK15. Our factored
model performs better than DDN13 and NCK15
on datasets with large training set (ES-V, FI-V, FI-
NA, NL-V, FR-V) as opposed to datasets with small
training set (DE-N, DE-V). In the joint model set-
ting (cf. Table 5), on average, we perform better
than DDN13 and AFH14 but are behind AFH15
by 0.11%. Our model improves in performance
over our factored model for DE-N, DE-V, and ES-V,
which are the three smallest training datasets. Thus,
parameter sharing across different inflection types
helps the low-resourced scenarios.4

Semi-supervised Models. We now evaluate the
utility of character language models in inflection
generation, in two different settings as described ear-
lier (§4.2). We use the factored model as our base
model in the following experiments as it performed

4Although NCK15 provide results in the joint model setting,
they also use raw data in the joint model which makes it incom-
parable to our model and other previous models.

639

AFH14 NCK15 Interpol Rerank
DE-V 97.87 97.90 96.79 97.11
DE-N 91.81 89.90 88.31 89.31
ES-V 99.58 99.90 99.78 99.94
FI-V 96.63 98.10 96.66 97.62
FI-NA 93.82 93.60 94.60 95.66
Avg. 95.93 95.88 95.42 95.93
NL-V – 96.60 96.66 96.64
FR-V – 99.20 98.81 98.94
Avg. – 96.45 96.08 96.45

Table 6: Individual form prediction accuracy for factored
semi-supervised models.

Model Accuracy
Encoder-Decoder 79.08
Encoder-Decoder Attention 95.64
Ours W/O Encoder 84.04
Ours 96.20

Table 7: Avg. accuracy across datasets of the encoder-decoder,

attentional encoder-decoder & our model without encoder.

better than the joint model (cf. Table 4 & 5). Our
reranking model which uses the character language
model along with other features (cf. Table 2) to se-
lect the best answer from a beam of predictions, im-
proves over almost all the datasets with respect to the
supervised model and is equal on average to AFH14
and NCK15 semi-supervised models with 96.45%
accuracy. We obtain the best reported results on
ES-V and FI-NA datasets (99.94% and 95.66% re-
spectively). However, our second semi-supervised
model, the interpolation model, on average obtains
96.08% and is surprisingly worse than our super-
vised model (96.20%).

Comparison to Other Architectures. Finally it
is of interest how our proposed model compares to
more traditional neural models. We compare our
model against a standard encoder-decoder model,
and an encoder-decoder model with attention, both
trained on root form to inflected form character
sequences. In a standard encoder-decoder model
(Sutskever et al., 2014), the encoded input sequence
vector is fed into the hidden layer of the decoder as
input, and is not available at every time step in con-
trast to our model, where we additionally feed in xt
at every time step as in equ. 4. An attentional model
computes a weighted average of the hidden layer of

5 10 15 20
Word length

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

Ours

DDN13

NCK15

Figure 4: Plot of inflection prediction accuracy against the

length of gold inflected forms. The points are shown with minor

offset along the x-axis to enhance clarity.

the input sequence, which is then used along with
the decoder hidden layer to make a prediction (Bah-
danau et al., 2015). These models also do not take
the root form character sequence as inputs to the de-
coder. We also evaluate the utility of having an en-
coder which computes a representation of the input
character sequence in a vector e by removing the en-
coder from our model in Figure 3. The results in Ta-
ble 7 show that we outperform the encoder-decoder
model, and the model without an encoder substan-
tially. Our model is slightly better than the atten-
tional encoder-decoder model, and is simpler as it
does not have the additional attention layer.

6 Analysis

Length of Inflected Forms. In Figure 4 we show
how the prediction accuracy of an inflected form
varies with respect to the length of the correct in-
flected form.To get stable estimates, we bin the in-
flected forms according to their length: < 5, [5, 10),
[10, 15), and ≥ 15. The accuracy for each bin is
macro-averaged across 6 datasets5 for our factored
model and the best models of DDN13 and NCK15.
Our model consistently shows improvement in per-
formance as word length increases and is signifi-
cantly better than DDN13 on words of length more
than 20 and is approximately equal to NCK15. On
words of length< 5, we perform worse than DDN13

5We remove DE-N as its the smallest and shows high vari-
ance in results.

640

but better than NCK15. On average, our model has
the least error margin across bins of different word
length as compared to both DDN13 and NCK15.
Using LSTMs in our model helps us make better
predictions for long sequences, since they have the
ability to capture long-range dependencies.

Finnish Vowel Harmony. Our model obtains the
current best result on the Finnish noun and adjective
dataset, this dataset has the longest inflected words,
some of which are> 30 characters long. Finnish ex-
hibits vowel harmony, i.e, the occurrence of a vowel
is controlled by other vowels in the word. Finnish
vowels are divided into three groups: front (ä, ö,
y), back (a, o, u), and neutral (e, i). If back vow-
els are present in a stem, then the harmony is back
(i.e, front vowels will be absent), else the harmony is
front (i.e, back vowels will be absent). In compound
words the suffix harmony is determined by the final
stem in the compound. For example, our model cor-
rectly inflects the word fasisti (fascist) to obtain fa-
sisteissa and the compound tärkkelyspitoinen (starch
containing) to tärkkelyspitoisissa. The ability of our
model to learn such relations between these vowels
helps capture vowel harmony. For FI-NA, our model
obtains 99.87% for correctly predicting vowel har-
mony, and NCK15 obtains 98.50%.We plot the char-
acter vectors of these Finnish vowels (cf. Figure 5)
using t-SNE projection (van der Maaten and Hin-
ton, 2008) and observe that the vowels are correctly
grouped with visible transition from the back to the
front vowels.

7 Related Work

Similar to the encoder in our framework, Rastogi et
al. (2016) extract sub-word features using a forward-
backward LSTM from a word, and use them in a tra-
ditional weighted FST to generate inflected forms.
Neural encoder-decoder models of string transduc-
tion have also been used for sub-word level transfor-
mations like grapheme-to-phoneme conversion (Yao
and Zweig, 2015; Rao et al., 2015).

Generation of inflectional morphology has been
particularly useful in statistical machine transla-
tion, both in translation from morphologically rich
languages (Goldwater and McClosky, 2005), and
into morphologically rich languages (Minkov et al.,
2007; Toutanova et al., 2008; Clifton and Sarkar,

Figure 5: Plot of character vectors of Finnish vowels. Their

organization shows that front, back and neutral vowel groups

have been discovered. The arrows show back and front vowel

correspondences.

2011; Fraser et al., 2012). Modeling the morpholog-
ical structure of a word has also shown to improve
the quality of word clusters (Clark, 2003) and word
vector representations (Cotterell and Schütze, 2015).

Inflection generation is complementary to the task
of morphological and phonological segmentation,
where the existing word form needs to be segmented
to obtained meaningful sub-word units (Creutz and
Lagus, 2005; Snyder and Barzilay, 2008; Poon et
al., 2009; Narasimhan et al., 2015; Cotterell et al.,
2015; Cotterell et al., 2016). An additional line of
work that benefits from implicit modeling of mor-
phology is neural character-based natural language
processing, e.g., part-of-speech tagging (Santos and
Zadrozny, 2014; Ling et al., 2015) and dependency
parsing (Ballesteros et al., 2015). These models
have been successful when applied to morphologi-
cally rich languages, as they are able to capture word
formation patterns.

8 Conclusion

We have presented a model that generates inflected
forms of a given root form using a neural network
sequence to sequence string transducer. Our model
obtains state-of-the-art results and performs at par or
better than existing inflection generation models on
seven different datasets. Our model is able to learn
long-range dependencies within character sequences
for inflection generation which makes it specially
suitable for morphologically rich languages.

641

Acknowledgements

We thank Mans Hulden for help in explaining
Finnish vowel harmony, and Garrett Nicolai for
making the output of his system available for com-
parison. This work was sponsored in part by the
National Science Foundation through award IIS-
1526745.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proc. of EACL.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learning
of morphology. Proc. of NAACL.

Harald R. Baayen, Richard Piepenbrock, and Leon Gu-
likers. 1995. The CELEX Lexical Database. Release
2 (CD-ROM). LDC, University of Pennsylvania.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Proc. of
EMNLP.

Timothy C Bell, John G Cleary, and Ian H Witten. 1990.
Text compression. Prentice-Hall, Inc.

Lasse Bergroth, Harri Hakonen, and Timo Raita. 2000.
A survey of longest common subsequence algorithms.
In Proc. of SPIRE.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and
Chris Dyer. 2013a. Translating into morphologically
rich languages with synthetic phrases. In Proc. of
EMNLP.

Victor Chahuneau, Noah A Smith, and Chris Dyer.
2013b. Knowledge-rich morphological priors for
bayesian language models. In Proc. of NAACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. 2014. Learning phrase represen-
tations using rnn encoder–decoder for statistical ma-
chine translation. In Proc. of EMNLP.

N. Chomsky and M. Halle. 1968. The Sound Pattern of
English. Harper & Row, New York, NY.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proc. of EACL.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In Proc. of ACL.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Ryan Cotterell and Hinrich Schütze. 2015. Morphologi-
cal word-embeddings. In Proc. of NAACL.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2015.
Modeling word forms using latent underlying morphs
and phonology. Transactions of the Association for
Computational Linguistics, 3:433–447.

Ryan Cotterell, Tim Vieria, and Hinrich Schütze. 2016.
A joint model of orthography and morphological seg-
mentation. In Proc. of NAACL.

Mathias Creutz and Krista Lagus. 2005. Unsuper-
vised morpheme segmentation and morphology induc-
tion from text corpora using Morfessor 1.0. Helsinki
University of Technology.

Markus Dreyer and Jason Eisner. 2011. Discover-
ing morphological paradigms from plain text using a
dirichlet process mixture model. In Proc. of EMNLP.

Greg Durrett and John DeNero. 2013. Supervised learn-
ing of complete morphological paradigms. In Proc. of
NAACL.

Jason Eisner. 2002. Parameter estimation for probabilis-
tic finite-state transducers. In Proc. of ACL.

Alexander Fraser, Marion Weller, Aoife Cahill, and Fa-
bienne Cap. 2012. Modeling inflection and word-
formation in SMT. In Proc. of EACL.

Sharon Goldwater and David McClosky. 2005. Improv-
ing statistical MT through morphological analysis. In
Proc. of EMNLP, pages 676–683.

Alex Graves, Santiago Fernández, and Jürgen Schmidhu-
ber. 2005. Bidirectional lstm networks for improved
phoneme classification and recognition. In Proc. of
ICANN.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. CoRR, abs/1308.0850.

Jan Hajič, Barbora Vidová-Hladká, and Petr Pajas. 2001.
The Prague Dependency Treebank: Annotation struc-
ture and support. In Proc. of the IRCS Workshop on
Linguistic Databases.

Lars Kai Hansen and Peter Salamon. 1990. Neural net-
work ensembles. In Proc. of PAMI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Mark Hopkins and Jonathan May. 2011. Tuning as rank-
ing. In Proc. of EMNLP.

Mans Hulden. 2014. Generalizing inflection tables into
paradigms with finite state operations. In Proc. of the
Joint Meeting of SIGMORPHON and SIGFSM.

642

Ronald M Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems. Computational lin-
guistics, 20(3):331–378.

Kimmo Koskenniemi. 1983. Two-level morphology: A
general computational model for word-form recogni-
tion and production. University of Helsinki.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Rámon Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W Black,
and Isabel Trancoso. 2015. Finding function in form:
Compositional character models for open vocabulary
word representation. In Proc. of EMNLP.

Einat Minkov, Kristina Toutanova, and Hisami Suzuki.
2007. Generating complex morphology for machine
translation. In Proc. of ACL.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for uncov-
ering morphological chains. TACL.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In Proc. of NAACL.

Kemal Oflazer, Özlem çetinoğlu, and Bilge Say. 2004.
Integrating morphology with multi-word expression
processing in turkish. In Proc. of the Workshop on
Multiword Expressions.

Kemal Oflazer. 1996. Error-tolerant finite-state recog-
nition with applications to morphological analysis
and spelling correction. Computational Linguistics,
22(1):73–89.

Jose Oncina and Marc Sebban. 2006. Learning stochas-
tic edit distance: Application in handwritten character
recognition. Pattern recognition, 39(9):1575–1587.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In Proc. of NAACL.

Kanishka Rao, Fuchun Peng, Hasim Sak, and Françoise
Beaufays. 2015. Grapheme-to-phoneme conversion
using long short-term memory recurrent neural net-
works. In Proc. of ICASSP.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neural
context. In Proc. of NAACL.

Cicero D. Santos and Bianca Zadrozny. 2014. Learning
character-level representations for part-of-speech tag-
ging. In Proc. of ICML.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In Proc. of NIPS.

Benjamin Snyder and Regina Barzilay. 2008. Unsuper-
vised multilingual learning for morphological segmen-
tation. In In The Annual Conference of the.

Andreas Stolcke. 2002. Srilm-an extensible language
modeling toolkit. In Proc. of Interspeech.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Proc. of NIPS.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models to
machine translation. In Proc. of ACL, pages 514–522.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Richard Wicentowski. 2004. Multilingual noise-robust
supervised morphological analysis using the word-
frame model. In Proc. of SIGPHON.

Kaisheng Yao and Geoffrey Zweig. 2015. Sequence-to-
sequence neural net models for grapheme-to-phoneme
conversion. In Proc. of ICASSP.

David Yarowsky and Richard Wicentowski. 2000. Min-
imally supervised morphological analysis by multi-
modal alignment. In Proc. of ACL.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

643

Proceedings of NAACL-HLT 2016, pages 644–653,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Towards Unsupervised and Language-independent Compound Splitting
using Inflectional Morphological Transformations

Patrick Ziering
Institute for Natural Language Processing

University of Stuttgart, Germany
Patrick.Ziering@

ims.uni-stuttgart.de

Lonneke van der Plas
Institute of Linguistics

University of Malta, Malta
Lonneke.vanderPlas@um.edu.mt

Abstract

In this paper, we address the task of language-
independent, knowledge-lean and unsuper-
vised compound splitting, which is an essen-
tial component for many natural language pro-
cessing tasks such as machine translation. Pre-
vious methods on statistical compound split-
ting either include language-specific knowl-
edge (e.g., linking elements) or rely on parallel
data, which results in limited applicability. We
aim to overcome these limitations by learning
compounding morphology from inflectional
information derived from lemmatized mono-
lingual corpora. In experiments for Germanic
languages, we show that our approach signifi-
cantly outperforms language-dependent state-
of-the-art methods in finding the correct split
point and that word inflection is a good ap-
proximation for compounding morphology.

1 Introduction

Compounding represents one of the most productive
word formation types in many languages. In partic-
ular, Germanic languages (e.g., German or Dutch)
show high productivity in closed compounding, i.e.,
in creating one-word compounds such as the Ger-
man Armutsbekämpfungsprogramm ‘poverty elimi-
nation program’. Previous studies on German cor-
pora reveal that almost half of the corpus types
are compounds, whereas individual compounds are
very infrequent (Baroni et al., 2002). Therefore, an
automatic compound analysis is indispensable and
represents an essential component in many natural
language processing (NLP) tasks such as machine
translation (MT) or information retrieval (IR).

Besides determining the concatenated constituent
forms, i.e., the correct split points (e.g., Armuts
| bekämpfungs | programm), a compound split-
ter needs to normalize each part (e.g., Armut +
Bekämpfung + Programm), because down-stream
applications such as MT systems expect lemma-
tized words as input. However, normalization
of constituent forms is non-trivial and usually re-
quires language-specific knowledge (e.g., linking el-
ements). State-of-the-art lemmatizers, designed for
regular word inflection, would fail, because con-
stituent forms often contain linking elements lead-
ing to a non-paradigmatic word form of the corre-
sponding lexeme (e.g., Armuts ‘poverty + s’ never
occurs as an isolated token in German corpora, since
the s-suffix, often used for genitive or pluralization,
is not used with Armut). Moreover, morphologi-
cal operations during compounding vary a lot across
languages and lexemes: we find cases that start
from the lemma and have additions (e.g., linking
elements), truncations (e.g., reductions to a verbal
stem), word-internal operations (e.g., Umlautung)
and combinations thereof (e.g., the first constituent
of the German Weihnachts|baum ‘Christmas tree’,
Weihnachten, undergoes both the en-truncation and
the s-suffixation).

In this paper, we present a language-independent,
unsupervised compound splitter that normalizes
constituent forms by tolerantly retrieving candi-
date lemmas using an Ngram index and weighting
string differences with inflectional information de-
rived from lemmatized corpora.

Most previous work on compound splitting in-
cludes language-specific knowledge such as large

644

lexicons and morphological analyzers (Fritzinger
and Fraser, 2010) or hand-crafted lists of link-
ing elements and rules for modeling morphologi-
cal transitions (Koehn and Knight, 2003; Stymne,
2008; Weller and Heid, 2012), which makes the
approaches language-dependent. Macherey et al.,
(2011) were the first to overcome this limitation
by learning morphological compounding operations
automatically by retrieving compounds and their
constituents from parallel corpora including English
as support language.

We would like to take this one step further by
avoiding the usage of parallel data, which are known
to be sparse and frequently domain-specific, while
Bretschneider and Zillner (2015) showed that com-
pounding morphology varies between different do-
mains. Instead, we exploit lemmatized corpora and
use word inflection as an approximation to com-
pounding morphology. This way, we are able to pro-
cess compounds of any type of domain.

Our contributions are as follows. Firstly, we
develop a language-independent and unsupervised
compound splitter that does not rely on parallel data.
As we will show, our system significantly outper-
forms language-dependent, knowledge-rich state-
of-the-art methods in predicting the best split point.
Secondly, in a controlled experiment, we show that
compound splitting based on inflectional morphol-
ogy performs similarly to splitting based on an ex-
tensive hand-crafted set of rules for compounding
morphology. Thirdly, we perform a comprehensive,
intrinsic evaluation of compound splitting, which is
often missing in previous work that focuses on task-
based evaluation (e.g., MT), and thus evaluates per-
formance only indirectly. We compare splitting per-
formance for several languages for two disciplines:
(1) prediction of the correct split points and (2) nor-
malization of the constituent forms. To the best of
our knowledge, we are the first to evaluate these dis-
ciplines separately.

The paper is structured as follows. Section 2 out-
lines previous work on compound splitting. Sec-
tion 3 discusses some theoretical assumptions on
which we base our splitting method. Section 4
shows two efficient and flexible data structures used
for our statistical compound splitter, which is de-
scribed in Section 5. Section 6 presents some split-
ting experiments performed on German, Dutch and

Afrikaans. Finally, Section 7 concludes and points
to future work.

2 Related work

In the following discussion, we focus on splitting
approaches that address morphological transforma-
tions, as these are most relevant for our work. Previ-
ous work on compound splitting can be roughly di-
vided into two groups: (1) statistical approaches that
are mainly based on large corpora and (2) linguisti-
cally based splitters, usually relying on knowledge-
rich morphological analyzers or rules.

Statistical approaches generate all possible splits
and rank them according to corpus statistics. Al-
though independent of lexical resources, most meth-
ods contain morphological knowledge in terms of
linking elements. The most influential statistical
splitter is developed by Koehn and Knight (2003)
who addressed German compound splitting by scor-
ing splits according to the geometric mean of the
potential constituents’ frequencies. For normaliza-
tion, they selected the two fillers +©s and +©es.
Stymne (2008) performed several experiments to
measure the impact of varying parameters of Koehn
and Knight’s (2003) algorithm for factored statisti-
cal MT. Instead of using two single fillers, she im-
plemented the collection of the 20 most frequent
morphological transformations for German com-
pounding as presented by Langer (1998). She ob-
served that splitting parameters should not neces-
sarily be the same for translating in different di-
rections. Bretschneider and Zillner (2015) com-
pared the splitting performance between Koehn and
Knight’s (2003) two fillers and Langer’s (1998) col-
lection, illustrating the necessity of an exhaustive
set of linking elements. Moreover, they showed
that Langer’s (1998) data is still not sufficient for
domain-specific targets. Macherey et al., (2011)
were the first to overcome the need for manual mor-
phological input and the limitation to a fixed set of
linking elements by learning morphological oper-
ations automatically from parallel corpora includ-
ing a support language which creates open com-
pounds and has only little inflection, such as En-
glish. We take this one step further by avoiding
the dependence on such parallel corpora, known to
be sparse, and by approximating compounding mor-

645

phology with word inflection learned from monolin-
gual preprocessed data.

Linguistically based splitters are usually rely-
ing on a lexical database or a set of linguistic
rules. While these splitters outperform statisti-
cal approaches (Escartı́n, 2014), they are designed
for a specific language and thus less applicable
to other languages. Nießen and Ney (2000) used
the morpho-syntactic analyzer GERTWOL (Mariikka
Haapalainen and Ari Majorin, 1995) for splitting
compounds. Schmid (2004) developed the mor-
phological analyzer SMOR, that enumerates linguis-
tically motivated compound splits. Fritzinger and
Fraser (2010) combined SMOR with Koehn and
Knight’s (2003) statistical approach and outper-
formed both individual methods. Weller and Heid
(2012) extended the splitter of Koehn and Knight
(2003) with a list of PoS-tagged lemmas and a hand-
crafted set of morphological transition rules. While
our approach similarly exploits lemma and PoS in-
formation, we avoid the manual input of transition
rules.

3 Theoretical preliminaries

The splitting architecture, data structure, features
and evaluation we propose in this paper are based
on a number of assumptions and considerations that
we would like to discuss first.

3.1 Morphological transformation
Closed (or concatenative) compounding is the main
spelling form in many languages around the world,
e.g., Germanic languages such as German, Dutch,
Swedish, Afrikaans or Danish, Uralic languages
such as Estonian or Finnish, Hellenic languages
such as Modern Greek, Slavic languages such as
Russian and many more. Most closed-compounding
languages use morphological transformations. Ger-
man or Dutch often insert a linking element between
the constituents while Greek reduces the first con-
stituent to its morphological stem and adds a com-
pound marker. In contrast to conjugations of ir-
regular verbs (such as to be), there is only a mi-
nor string difference (e.g., in terms of edit distance
(ED)) between constituent form and corresponding
lemma (usually they differ in at most two charac-
ters). This minimal difference makes it possible to
interpret constituent normalization as a kind of tol-

erant string retrieval (which is presented for the case
of spelling correction within IR by Manning et al.,
(2008)). This is why we are using an Ngram index
for retrieving the candidate lemmas with the highest
string similarity to the constituent form.

3.2 Inflectional morphology

Relying exclusively on the highest string similarity
for the normalization, would lead to candidate lem-
mas that result from linguistically unmotivated op-
erations, e.g., the German Hühner ‘chickens’ would
be normalized to the most string-similar lemma
Hüne ‘giant’ (ED=2) and not to the correct but less
string-similar lemma Huhn ‘chicken’ (ED=3). Thus,
a linguistic restrictor is indispensable for finding the
underlying lemma for a given constituent.

In many languages, inflectional morphology
shares operations with compounding morphology,
e.g., the German Hühner in Hühner|suppe ‘chicken
soup’ is equivalent to the plural form of Huhn. But
even for non-paradigmatic constituent forms (e.g.,
Armuts ‘poverty’), we can find cases of inflection
that use the transformation at hand (e.g., the geni-
tive form of window: Fensters).

We thus decided to approximate compounding
morphology by using inflectional morphology as de-
rived from lemmatized corpus tokens. We realize
that the inflectional approximation does not work for
all closed-compounding languages but it does for a
large subset that is known to have a large variety of
linking elements and is therefore most in need of
unsupervised morphology induction, the Germanic
languages. Moreover, our flexible system can be
easily supported with morphological information,
which is suitable for languages like Greek, that use
a special compound marker.

3.3 Compound headedness

Most closed-compounding languages usually follow
the righthand head rule (RHHR), i.e., the head of a
compound is the right-most constituent and encodes
the principal semantics and the PoS of the com-
pound. As done by previous splitting approaches
(Stymne, 2008; Weller and Heid, 2012), we assume
the RHHR and allow only splits for which the right-
hand side constituents has the same PoS as the com-
pound.

646

3.4 Splitting depth

The granularity of the morphological analysis
needed differs with the type of application. For MT,
a compound should not be split deeper than into
parts for which a translation is known, whereas for
linguistic research, a deeper morphological analysis
is desirable.

Fernsehzeitschrift
Score = 2,409,641

fernsehen
Score = 646,988

fern sehen

zeitschrift
Score = 16,219,561

zeit schrift
Figure 1: Linguistically motivated split

For example, while an MT system needs a binary
split for the German Fernsehzeitschrift ‘television
journal’, for a linguistic analysis, a split into four
parts as given in Figure 1 is also valid and introduces
etymological clues (e.g., how far is Zeit ‘time’ re-
lated to Zeitschrift ‘journal’). Our flexible approach
caters for all tasks1.

3.5 Constituent length balance

While compounds can be build up from almost any
semantic concept pair, we observed a bias towards
constituent pairs having a similar word length.

For the German, Dutch and Afrikaans compound
splitting gold standards (described in Section 6.2)
comprising m split compounds, we randomly re-
combine all modifiers with all heads to a set ofm re-
combinations. For both original compounds and re-
combined compounds, we measure the character dif-
ference in length between modifier and head form.

Compound set German Dutch Afrikaans
Original 2.62 2.26 2.87

Recombination 3.43 2.74 2.92
Table 1: Average constituent length difference in characters

As shown in Table 1, all original compounds have
a smaller difference than the recombinations. There-

1As the splitting depth is very dependent on the task at hand
and the gold standard we used is not created with a specific
task in mind, we do not evaluate our system with respect to
splitting depth but treat it as given. Our system cuts off subtrees
with the lowest splitting score until the desired splitting depth
is achieved.

fore, we decided to promote compound splits with
more balanced constituent lengths.

4 Data preparation

4.1 Ngram index

As described in Section 3.1, we tolerantly retrieve
candidate lemmas using an Ngram index, in order
to limit the search space and allow for a quick can-
didate lookup during splitting.

Ngram Lemma length (LL) Lemmas
ˆhund 4 hund#13162
ˆhund 11 hundeführer#251,

hundehalter#81,
hundesteuer#64

ˆh*hn 4 hahn#2078,
huhn#1839,
hohn#506

Table 2: Examples from the German Ngram index

As search key, we use Ngrams of variable length
(N ≤ 15). Word-initial Ngrams are indicated by ˆ
and word-finalNgrams end on $. By usingNgrams,
we are able to capture any kind of transformation a
lemma can undergo when involved in compounding.

Sometimes, a transformation includes a charac-
ter replacement within the word (e.g., Umlautung).
This leads to a very small set of Ngrams a con-
stituent has in common with its underlying lemma.
For example Hühner and Huhn only have the bi-
grams ˆh and hn in common, which is also true for
many irrelevant words such as ˆHaarschnitt ‘hair-
cut’. In order to reduce noise and increase efficiency,
we include the wildcard ∗ for a single character in
Ngrams2. This way, Hühner and Huhn have the
common 5gram ˆH*hn. As a further cue, we con-
sider the lemma length (assuming that there is only
a minor difference to the constituent’s length).

For a given lemmatized and PoS-tagged corpus,
we index all content words (i.e., nouns, adjectives
and verbs) by generating all Ngrams and mapping
them to a list of frequency-ranked lemma-freq pairs.
Table 2 shows some examples for German3.

2For efficiency reasons, we add wildcard Ngrams only for
3 ≤ N ≤ 7.

3Note that the lemmas include compounds, because these
are necessary for our binary recursive splitter, described in Sec-
tion 5.

647

Language MOP Corpus frequency Examples

German
u/ü:$/er$ 117K <Huhn, Hühner> ‘chicken’, <Buch, Bücher> ‘book’
um$/en$ 264K <Studium, Studien> ‘study’, <Medium, Medien> ‘medium’

Dutch $/en$ 1.6M <arts, artsen> ‘doctor’, <band, banden> ‘tyre’
Afrikaans $/se$ 34K <proses, prosesse> ‘process’

Table 3: Examples of MOPs for German, Dutch and Afrikaans

4.2 Morphological operation patterns

Macherey et al., (2011) describe a representation of
compounding morphology using a single character
replacement at either the beginning, the middle or
the end of a word. For our experiments, we adopt
this format. Since it is possible that a morpholog-
ical operation takes place at several positions of a
word, we combine all atomic replacements into a
pattern describing a series of operations. This trans-
formation from a word Σ to a word Ω is referred
to as morphological operation pattern (MOP). For
compiling an MOP, we use the Levenshtein edit dis-
tance algorithm including the four operations IN-
SERT (adding a character), DELETE (removing a
character), REPLACE (exchanging a character σi by
ωi) and COPY (retaining a character). In a back-
trace step, we determine the first set of operations
that lead to a minimum edit distance. Except for
COPY, we interpret all operations as replacements
(insertion and deletion are replacements of or by an
empty element ε respectively). We merge all adja-
cent replacements by concatenating the source and
target characters. Word-initial source and target se-
quences start with ˆ and word-final sequences end on
$. Sequences of adjacent COPY operations are repre-
sented by ‘:’ and separate the merged replacements.
For example, in Hühner|suppe, the modifier lemma
Huhn is transformed to Hühner by replacing u by
ü (i.e., Umlautung) and adding the suffix er. The
corresponding MOP is ‘u/ü:$/er$’. The second
column in Table 3 shows some additional German,
Dutch and Afrikaans examples of MOPs.

As discussed in Section 3.2, we try to approxi-
mate compounding MOPs using inflectional MOPs.
In a lemmatized corpus, for each lemmatized word
token, we determine the MOP that represents the
transformation from lemma to word form. We col-
lect all inflectional MOPs with their token-based
corpus frequency. The third column in Table 3

shows the corpus frequencies for the corresponding
MOPs.

5 Compound splitting method
Our compound splitter can process compounds
composed of any content word type (i.e., nouns,
verbs and adjectives) and of any number of con-
stituents, and provides both the split points (e.g.,
Hühner|suppe) and the normalized constituents
(e.g., Huhn + Suppe). The splitter is designed recur-
sively, which allows us to represent the compound
split both hierarchical (i.e., as a tree structure) and as
a linear sequence. Figure 2 shows the architecture of
our splitting algorithm. The recursive main method
starts with the target word as a single constituent and
recursively splits the constituents produced by the
binary splitter (Section 5.1) until an atomic result is
returned. The binary splitter has two subtasks: (1)
for each potential constituent form, a set of candi-
date lemmas is retrieved (Section 5.2) and (2) all
candidate lemma combinations are ranked and the
best split is returned (Section 5.3).

5.1 Binary splitter

We first generate all possible binary splits with a
minimum constituent length of 2 (e.g., for Ölpreis
‘oil price’, we generate Öl|preis, . . . , Ölpre|is) and
add a non-split option. For each potential constituent
among the generated splits, we retrieve the M most
probable lemmas as described in Section 5.2. We
consider all M2 lemma combinations of all possible
splits and rank them as described in Section 5.3. The
highest-ranked split is returned.

5.2 Candidate lemma retrieval

In this step, we retrieve the M most probable can-
didate lemmas for a given constituent. For this task,
we make use of the Ngram index, described in Sec-
tion 4.1. Instead of applying MOPs directly which
would be the classical and more efficient way, we
decided to look up candidates using the Ngram in-

648

Figure 2: Architecture of our splitting algorithm

dex first, thereby following the assumption that there
is only a minor string difference between lemma and
constituent form (cf. Section 3.1). In a second step,
the inflectional MOPs are used to rank the candi-
date lemmas. While following this order, we put
less weight on our approximation and thereby avoid
false lemmas due to irrelevant inflectional MOPs.
The pseudocode for the candidate lemma retrieval
is given in Algorithm 1.

Algorithm 1 Candidate lemma retrieval
1: Constituent c
2: LLs← lemma lengths, ±∆ around len(c)
3: CLs← [] . the candidate lemmas
4: for L← len(c) to 1 do
5: LGs← generate all Lgrams of c
6: for Lg in LGs do
7: CLs← CLs + topλ(IDX[Lg][LLs])
8: if len(CLs) > 1 then
9: break . otherwise, L is decremented

10: score(CLs) . according to a lemma model
11: rank(CLs) . according to the scores
12: return topM (CLs)

For a given constituent c, we search for lemmas
with a minimum lemma length (LL) of 2 which
ranges between ±∆ around the length of c (lines
1-2). All retrieved candidate lemmas are stored in
the list CLs (line 3). Starting with the L = len(c),
we inspect all Lgrams of c (lines 4-5). For a given
Lgram, we retrieve the top λ most frequent lemmas
that have a length ±∆ around the length of c (lines

6-7). If there are no lemmas retrieved, we decre-
ment L (lines 8-9)4. All retrieved candidate lemmas
are scored (line 10) according to our lemma model,
for which we present two lemma features.

LP (li) = cf(li) · count(li,CLs) (1)
The first feature is based on the lemma promi-

nence (LP) as given in (1), i.e., we multiply the cor-
pus frequency (cf) of a lemma li (as given in the
Ngram index) with the token number of li in CLs
(i.e., with the prominence of li among all inspected
Lgrams).

The second feature estimates the suitability of
the MOP (MS) transforming the candidate lemma
li to the constituent form at hand, c, (represented
as ‘MOP [li, c]’), as given in (2). As the first com-
ponent, we use the corpus frequency extracted with
the inflectional MOPs as described in Section 4.2.
We rescale the MOP frequency with the resulting
edit distance between the candidate lemma li and
the constituent form at hand, c, (represented as
ED(li, c))5. As motivated in Section 3.1, we ex-
pect MOPs having a small edit distance to be more
prominent in compounding. Such MOPs are not
necessarily most frequent in inflection, e.g., the fre-
quent irregular Afrikaans verb wees (to be) leads to
MOPs like MOP[wees,is] = ˆwee/ˆi, which has
an ED of 3.

MS(li) =
cf(MOP [li, c])
ED(li, c) + 1

(2)

4For noise reduction due to lemmatizer errors, we can pre-
define a minimum number of L decrements.

5For avoiding a division by zero, we add 1.

649

All candidate lemmas are finally scored as prod-
uct of lemma prominence and MOP suitability, as
given in (3).

score(li) = LP (li) ·MS(li) (3)

We rank all candidate lemmas and return the top
M candidates (lines 11-12).

5.3 Best split determination
In the final step, we determine the best split among
all split combinations (i.e., pairs of retrieved can-
didate lemmas for modifier (lm) and head (lh), and
corresponding split point) and the non-split option.
For this task, we use a combination model, which
considers the interaction between lm and lh. In-
spired by Koehn and Knight (2003), as a first fea-
ture, we take the geometric mean of the products
of lemma score multiplied by the length of the cor-
responding constituent form, as given in (4). The
length factor promotes splits with more balanced
lengths (as motivated in Section 3.5), which miti-
gates the impact of short and high-frequent words
on the overall score. For binary splits, we use the
constituent set con = {lm, lh} and for the non-split
option, we use con = {lh}.

geoLen(con) = |con|

√ ∏
li∈con

score(li) · len(cli) (4)

The second feature is based on the assumption
that the PoS of a compound word Ψ usually equals
the PoS of its head lh, as discussed in Section 3.3.
Since our splitter works out of context, we try
to subsume all possible PoS tags by representing
them as a distribution over the PoS probabilities
p(PoS|word) = freq(PoS∩word)

freq(word) acquired from the
monolingual PoS-tagged corpus. The value of the
head-PoS-equality (hEQ) feature is defined as the
the cosine similarity between the PoS probability
distributions of compound word Ψ and head lh,
hEQ(Ψ, lh). If the PoS tag of the compound is un-
known, we take 1.0 as default value.

split(con) = geoLen(con) · hEQ(Ψ, lh) (5)

Finally, all candidate lemma combinations (in-
cluding the non-split option) are ranked according to
the splitting score given in (5). The highest-scored
split is returned as output of the binary splitter, being

subject to the recursive process. Figure 3 shows an
example of the recursive splitter output for the Ger-
man compound Studienbescheinigungsablaufdatum
‘enrollment certification expiration date’ with the re-
lated MOPs.

Studienbescheinigungsablaufdatum
$/s$

studienbescheinigung
um$/en$

studium bescheinigung

ablauf datum
en$/$

ablaufen datum

Figure 3: Example of a split tree structure with related MOPs

6 Experiments

In our experiments, we focus on German, Dutch and
Afrikaans, but expect to see similar performance for
other Germanic languages.

6.1 Data
We use the German and Dutch version of
Wikipedia6 and the Afrikaans Taalkommissie cor-
pus7. For tokenizing, PoS-tagging and lemmatizing
Wikipedia, we use Treetagger (Schmid, 1995).

Corpus # tokens # types
language words words lemmas MOPs
German 665M 9.0M 8.8M 1201
Dutch 114M 2.0M 1.9M 920

Afrikaans 57M 748K 696K 459
Table 4: Corpus statistics

We tokenize the Taalkommissie corpus using the
approach of Augustinus and Dirix (2013). We PoS-
tag the corpus using the tool described in Eiselen and
Puttkammer (2014) and use the lemmatizer of Peter
Dirix, the second author of the previous paper.

Table 4 shows some statistics of the three prepro-
cessed corpora. Since the Afrikaans corpus is one
order of magnitude smaller than the German corpus,
we expect a lower performance for the Afrikaans
splitter.

6{de,nl}.wikipedia.org
7Taalkommissie van die Suid-Afrikaanse Akademie vir

Wetenskap en Kuns (2011)

650

System SPAcc NormAcc
@1 @2 @3 @1 @2 @3

(A) LP.MSinfl 95.2%B,C 98.9%B,C 99.4%B,C 86.6% 94.6%B,C 96.5%B,C

(B) WH2012 93.3% 95.6% 95.7% 81.0% 85.9% 86.4%
(C) FF2010 91.4% 92.3% 93.0% 88.4%A,B 89.7% 90.2%
(D) LP.∅ 54.1% 70.5% 78.4% 28.4% 42.6% 50.8%
(E) LP.MSLanger 94.5% 98.7% 99.1% 87.1% 94.2% 95.4%
(F) LP.MSGS 95.4% 99.0% 99.4% 87.8% 95.6% 97.2%

Table 5: German results for binary compound splitting, scores δΦ outperform the system Φ significantly

6.2 Gold standard

For evaluating our splitting method on German,
we use the binary split compound set developed
for GermaNet8 by Henrich and Hinrichs (2011).
After removing hyphenated compounds9, it com-
prises 51,230 binary split samples. For Dutch and
Afrikaans, we use the split point gold standards de-
veloped by Verhoeven et al., (2014), which comprise
21,941 samples for Dutch and 17,369 for Afrikaans.

6.3 Evaluation measures

We evaluate the splitting quality with respect to two
disciplines: (1) determination of the correct split
points and (2) normalization of the resulting mod-
ifier constituents10. For both disciplines, we use the
accuracy measure as described in Koehn and Knight
(2003). The split point accuracy (SPAcc) refers to
the correctness of the split points (on word level)
and the normalization accuracy (NormAcc) mea-
sures the amount of both correct split points and
modifier lemmas. All systems presented in this pa-
per provide a ranked list of splits. This allows for
a more fine-grained ranking evaluation of the binary
splitting decisions with respect to the first n posi-
tions. Accuracy@n refers to the amount of correct
splits among the top n splits. We stop at n = 3, be-
cause we do not expect to see a crucial difference in
the performance gap for higher values of n.

8sfs.uni-tuebingen.de/GermaNet
9We consider hyphenated compounds as trivial cases of

splitting that can be disregarded for our purpose.
10Since for Germanic languages compounding morphology

is exclusively found on the modifier, we disregard the head.

6.4 Parameter setting and models in
comparison

There are three parameters presented in the candi-
date lemma retrieval. For efficiency reasons, we
set the number of lemmas retrieved per Lgram and
lemma length (λ) to 20 and the final number of re-
trieved candidate lemmas (M) to 3. For the maxi-
mum difference in length between lemma and con-
stituent form, we observed that ∆ = 2 covers all
compounding operations for Germanic languages.

For German, we compare our system based on in-
flectional MOPs (LP.MSinfl) against the LP baseline
(LP.∅), which lacks a linguistic restrictor after can-
didate lemma lookup from theNgram index, against
an upper bound (LP.MSGS), which uses the MOPs
and frequencies derived from the normalizations in
the gold standard and against a version that uses a
hand-crafted set of MOPs and frequencies derived
from Langer’s (1998) set of fillers (LP.MSLanger). In
addition, we compare our system against previous
work: the splitting methods of Fritzinger and Fraser
(2010) and of Weller and Heid (2012)11. For Dutch
and Afrikaans, we compare with the SPAcc numbers
of Verhoeven et al., (2014).

6.5 Results and discussion
Table 5 shows the German results for the binary
compound splitting. We present the split point accu-
racy (SPAcc) and the normalization accuracy (Nor-
mAcc) for the splits ranked @1-3. We first compare
LP.MSinfl against the previous work of FF2010 and
WH2012. Our system significantly12 outperforms
both systems with respect to SPAcc and reaches

11We use an updated version of Weller and Heid (2012) de-
veloped and provided to us by Marion Di Marco.

12Approximate randomization test (Yeh, 2000), p < 0.05

651

99.4% for SPAcc@3. While for NormAcc@1 our
splitter’s performance is less than 2 percentage point
lower than the system of FF2010, which heavily re-
lies on language-dependent and knowledge-rich re-
sources, we significantly outperform both systems
in comparison for NormAcc@2 and NormAcc@3.
This proves that one can attain state-of-the-art per-
formance on compound splitting by using language-
independent and unsupervised methods, and in par-
ticular by means of inflectional information.

In an error analysis, it turned out that FF2010
(i.e., SMOR) cannot process 2% of the gold samples.
However on a common processable test set, we still
find our system to outperform FF2010 significantly,
which indicates that the difference in performance
is not just a matter of coverage. WH2012 leaves
several compounds unsplit, for which our splitter
provides the correct analysis. This is partly due to
the hand-crafted transition rules of WH2012, which
cannot capture all morphological operations, such as
in Hilfs|bereitschaft ‘cooperativeness’, for which the
MOP e$/s$ (i.e., the combination of e-truncation
and s-suffixation) is not even covered by Langer’s
(1998) published collection.

To evaluate whether our assumption about the us-
ability of inflectional MOPs holds, we run some con-
trolled experiments with two variants of our system,
shown in the last two lines of Table 5. The exhaus-
tive set of inflectional MOPs (LP.MSinfl) shows com-
petitive performance in SPAcc with the hand-crafted
set of Langer (1998) (LP.MSLanger) and with the upper
bound (LP.MSGS). The latter outperforms LP.MSinfl

by only 1 percentage point in NormAcc.
Our separate evaluation of SPAcc and NormAcc

reveals a lower performance for the normalization
across all systems, as this is a much harder disci-
pline. In addition, we can conclude that normal-
ization requires more linguistic knowledge: while
the LP-baseline (LP.∅) underperforms heavily, both
FF2010 and LP.MSLanger, systems with a lot of lex-
ical and morphological information, outperform all
systems in comparison at NormAcc@1.

For illustrating the multilingual applicability of
our splitter, we perform an experiment on Dutch and
Afrikaans. Table 6 shows the SPAcc13 results for

13The Dutch and Afrikaans gold standard only provides split
points and no reliable normalized constituents.

N -ary splits. While Verhoeven et al., (2014) use a
supervised approach for predicting the correct split
points, our unsupervised splitter outperforms their
Dutch results significantly14. Although Dutch and
Afrikaans are similar languages, the SPAcc achieved
by our system for Afrikaans is 3.6% worse than the
method presented by Verhoeven et al., (2014). This
result is partly due to the crucial corpus size differ-
ences presented in Table 4.

System Dutch Afrikaans

LP.MSinfl 93.4% 84.7%
Verh.et.al.2014 91.5% 88.3%

Table 6: SPAcc results for N -ary splits in Dutch and Afrikaans

7 Conclusion

We presented a language-independent, unsupervised
compound splitter based on inflectional morphology
that significantly outperforms state-of-the-art meth-
ods in finding the correct split points, relying only on
monolingual PoS-tagged and lemmatized corpora.
We provided a comprehensive, intrinsic evaluation
of several systems in comparison for several lan-
guages on two separate disciplines: split point deter-
mination and constituent normalization. As a result,
we draw the conclusions that inflectional morphol-
ogy is a practical approximation for compounding
in Germanic languages and overcomes the neces-
sity of manual input, because both hand-crafted sets
of compounding operations and operations derived
from the gold standard lead to small differences in
performance only. In future work, we plan to adapt
our methods for learning compounding morphology
for languages such as Greek, that have a special
compound marker.

Acknowledgments

We thank the anonymous reviewers for their help-
ful feedback. We also thank our colleague Stefan
Müller for the discussions and feedback, and Marion
Di Marco and Fabienne Cap for providing their split-
ting methods. This research was funded by the Ger-
man Research Foundation (Collaborative Research
Centre 732, Project D11).

14z-test for proportions; p < 0.05

652

References

Liesbeth Augustinus and Peter Dirix. 2013. The IPP ef-
fect in Afrikaans: A Corpus Analysis. In Proceedings
of the 19th Nordic Conference of Computational Lin-
guistics (NODALIDA 2013), pages 213–225.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Predicting the Components of German Nomi-
nal Compounds. In ECAI, pages 470–474. IOS Press.

Claudia Bretschneider and Sonja Zillner. 2015. Seman-
tic Splitting of German Medical Compounds. In Text,
Speech, and Dialogue. Springer International Publish-
ing.

Roald Eiselen and Martin J. Puttkammer. 2014. De-
veloping Text Resources for Ten South African Lan-
guages. In Proceedings of the 9th International
Conference on Language Resources and Evaluation
(LREC 2014), pages 3698–3703.

Carla Parra Escartı́n. 2014. Chasing the Perfect Splitter:
A Comparison of Different Compound Splitting Tools.
In LREC 2014.

Fabienne Fritzinger and Alexander Fraser. 2010. How to
Avoid Burning Ducks: Combining Linguistic Analysis
and Corpus Statistics for German Compound Process-
ing. In Proceedings of the ACL 2010 Joint 5th Work-
shop on Statistical Machine Translation and Metrics
MATR, pages 224–234.

Verena Henrich and Erhard W. Hinrichs. 2011. Deter-
mining Immediate Constituents of Compounds in Ger-
maNet. In RANLP 2011, pages 420–426.

Philipp Koehn and Kevin Knight. 2003. Empirical meth-
ods for compound splitting. In EACL.

Stefan Langer. 1998. Zur Morphologie und Semantik
von Nominalkomposita. In KONVENS.

Klaus Macherey, Andrew M. Dai, David Talbot,
Ashok C. Popat, and Franz Och. 2011. Language-
independent Compound Splitting with Morphological
Operations. In ACL HLT 2011.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY,
USA.

Mariikka Haapalainen and Ari Majorin. 1995. GERT-
WOL und Morphologische Disambiguierung für das
Deutsche. Technical report.

Sonja Nießen and Hermann Ney. 2000. Improving SMT
quality with morpho-syntactic analysis. In COLING
2000, pages 1081–1085.

Helmut Schmid, Arne Fitschen, and Ulrich Heid. 2004.
SMOR: A German Computational Morphology Cov-
ering Derivation, Composition, and Inflection. In
LREC 2004, pages 1263–1266.

Helmut Schmid. 1995. Improvements in Part-of-Speech
Tagging with an Application to German. In ACL
SIGDAT-Workshop.

Sara Stymne. 2008. German Compounds in Factored
Statistical Machine Translation. In GoTAL.

Taalkommissie van die Suid-Afrikaanse Akademie vir
Wetenskap en Kuns. 2011. Taalkommissiekorpus
1.1. Technical report, CTexT, North West University,
Potchefstroom.

Ben Verhoeven, Menno van Zaanen, Walter Daelemans,
and Gerhard B van Huyssteen. 2014. Automatic Com-
pound Processing: Compound Splitting and Seman-
tic Analysis for Afrikaans and Dutch. In ComAComA
2014, pages 20–30.

Marion Weller and Ulrich Heid. 2012. Analyzing and
Aligning German compound nouns. In LREC 2012.

Alexander Yeh. 2000. More Accurate Tests for the Sta-
tistical Significance of Result Differences. In COL-
ING 2000.

653

Proceedings of NAACL-HLT 2016, pages 654–663,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Phonological Pun-derstanding

Aaron Jaech and Rik Koncel-Kedziorski and Mari Ostendorf
University of Washington

Seattle, WA
{ajaech,kedzior,ostendor}@uw.edu

Abstract

Many puns create humor through the rela-
tionship between a pun and its phonologically
similar target. For example, in “Don’t take ge-
ologists for granite” the word “granite” is a
pun with the target “granted”. The recovery of
the target in the mind of the listener is essen-
tial to the success of the pun. This work intro-
duces a new model for automatic target recov-
ery and provides the first empirical test for this
task. The model draws upon techniques for
automatic speech recognition using weighted
finite-state transducers, and leverages auto-
matically learned phone edit probabilities that
give insight into how people perceive sounds
and into what makes a good pun. The model
is evaluated on a small corpus where it is able
to automatically recover a large fraction of the
pun targets.

1 Introduction

From the high culture of Shakespeare’s plays
(Tanaka, 1992), to the depths of the YouTube com-
ments section, from advertising slogans (Keller,
2009) to conversations with nerdy parents, puns are
a versatile rhetorical device and their understand-
ing is essential to any comprehensive approach to
computational humor. Humor has been described as
“one of the most interesting and puzzling research
areas in the field of natural language understanding”
(Yang et al., 2015). Puns, in particular, offer an in-
teresting subject for study since their humor derives
from wordplay and double-meaning.

An important class of puns, known as parono-
masic puns, are those where one entity, the pun, is

phonologically similar to another, the target (Joseph,
2008). Consider an example from Crosbie (1977):

“Sign by gate to nudist colony: Come in. We
are Never Clothed.”

Here, “clothed” is the pun and “closed” is the tar-
get. Paronomasic puns are distinguished from ho-
mographic puns such as

“Two silkworms had a race. They ended up in
a tie.”

which puns on the two definitions of the word “tie”.
When the pun and target are homophonic this is
called a perfect pun, and when nearly homophonic
an imperfect pun (Zwicky and Zwicky, 1986) (or a
heterophonic pun (Hempelmann, 2003)). The fo-
cus of this work is to propose and evaluate a model
for target recovery of both perfect and imperfect
paronomasic puns, assuming that the location of the
pun word or word sequence.

Ritchie (2005) classifies puns in terms of whether
they are self-contained, i.e., based on general knowl-
edge and humorous in a variety of circumstances,
or contextually integrated, i.e. relying on a specific
context such as a visual context, knowledge of a re-
cent event or discussion. Many puns of this type are
associated with cartoons or images, e.g. a cartoon
with pies and cakes in the street having the caption

“The streets were oddly desserted”
(desserted/deserted). Contextually integrated puns
lose their humor out of context because the pun is
difficult to detect. However, target recovery is often
still possible, and thus this distinction does not play
a major role in the current study.

If a listener fails to recover the target of the pun
then the statement fails in its humor. The two chief

654

clues that the listener must rely on to perform tar-
get recovery are the phonetic information and lan-
guage context. This is analogous to the way in which
someone listening to speech uses the acoustic infor-
mation and language context to recover a sequence
of words from an audio source. In the words of
Hempelmann (2003), “the recovery of the target in
heterophonic puns is just a specific case of the com-
plex task of hearing.” The similarity between hear-
ing and target recovery suggests the use of meth-
ods from automatic speech recognition in building
a model for automatic target recovery.

The goal of this paper is to develop and test a
computational model for target recovery in puns.
Sentences with the position of the pun marked are
given as input and the model must output the tar-
get word sequence. As the focus is on paronomasic
puns, the relationship between the pun and the target
is primarily phonological, but surrounding language
context is also important for recovering the target.
This work has applications in natural language un-
derstanding of texts that contain humor. Further-
more, the insights gained from our model are use-
ful for improving pun generation in computational
humor systems.

2 Prior Work

Zwicky and Zwicky (1986) provided an analysis of
the properties of paronomasic puns, especially with
regard to the markedness of phonological segments.
They assembled a corpus of 2140 instances of seg-
mental relationships from imperfect pun/target pairs
for their analysis. By counting how many times each
phoneme was used in a pun or target, the authors
observe a behavior they refer to as ousting, a strong
asymmetry in phoneme substitution likelihood. For
instance, punners will rarely replace a ‘T’ phoneme
(IPA t) in the target word with ‘TH’ (T) in the pun,
but regularly replace ‘TH’ with ‘T.’ An example of
such a pun is

“I lost my temper in a fit of whiskey”
(fit/fifth)). Because of this asymmetry, we say that
’T’ ousts ’TH.’ Zwicky and Zwicky correlate the
ousting behavior evident in their pun data with the
phonological notion of markedness. Markedness
can be defined (if oversimplified) as “the tendency
for phonetic terms to be pronounced in a simple,

natural way” with regard to physiological, acoustic,
and perceptual factors (marked segments are more
complex) (Anderson and Lightfoot, 2002). They
conclude that marked segments tend to oust un-
marked segments (e.g. voiced stops oust their voice-
less counterparts).

This is followed-up by Sobkowiak (1991), whose
manual alignment of the phoneme sequences of
3,850 pun/target pairs allows for a more careful
study of the ousting behavior. This corpus, where
whole sequences of phonemes are aligned between
puns and targets, is a much richer resource for an-
alyzing ousting than the segment-only data used in
(Zwicky and Zwicky, 1986). Sobkowiak’s improved
data provides evidence against the conclusions of
Zwicky and Zwicky (1986). Rather, “it seems that
it is not the case that ‘marked ousts unmarked’ in
paronomasic puns.” Sobkowiak goes on to show
that puns more frequently involve changes to vowels
than consonants, noting that their information load
(i.e. contribution to target recoverability) is lighter.
Our data corroborates Sobkowiak’s claims regarding
the role of markedness in punning as well as the mu-
tability of vowels, and provides more details about
the specific nature of substitutions in a large corpus
of puns.

Building off of Sobkowiak’s work, Hempelmann
(2003) studies target recoverability, arguing that a
good model for target recovery provides necessary
groundwork for effective automatic pun generation.
He proposes a preliminary phonetic edit cost table
to be one part of a scoring system. The model is
based on the phoneme edit counts from Sobkowiak
(1991) with an ad-hoc formula for transforming the
counts into substitution costs. However, Hempel-
mann makes no effort to empirically test his model at
the recovery task. The model uses a subset of 1,182
puns from the 3,850 identified by Sobkowiak. This
subset is the data used for training our phonetic edit
models and we use Hempelmann’s cost function as
a baseline.

The task of automatic target recovery of parono-
masic puns has not been previously attempted. Re-
cently, Miller and Gurevych (2015) studied meth-
ods for automatic understanding of homographic
puns using methods from word-sense disambigua-
tion. Paronomasia is intentionally excluded from
their data.

655

3 Target Recovery

Following the convention of Miller and Gurevych
(2015), we assume that the position of the pun in the
input sentence is known. The target recovery task is
to identify the pun target given the pun and its left
and right word contexts.

3.1 Model

The model has three parts: a phonetic edit model,
a phonetic lexicon and a language model. The re-
covered target T ∗ is the word (or words) with the
maximum probability given the pun P according to

T ∗ = argmax
T

p(T |P) = argmax
T

p(P |T)p(T),

where p(P |T) is the phonetic edit model and p(T)
is the language model. The factorization into a lan-
guage model and a phonetic edit model is similar
to the classic approach to automatic speech recogni-
tion.

The implementation of the model uses weighted
finite-state transducers (WFSTs) which have been
adopted as a useful structure for speech decoding
due to their ability to efficiently represent each of
the relevant knowledge sources, i.e. phonetic infor-
mation, phonetic lexicon and language model, in a
single framework (Mohri et al., 2002; Hori et al.,
2007). Finite-state transducers are finite-state ma-
chines with an input and an output tape. We will
use WFSTs for our pun target recovery model. Each
of the phonetic edit model (PEM), phonetic lexicon
(L) and language model (LM) can be represented as
WFSTs, which are joined together by applying the
composition operation. The weights on the PEM
and LM are negative log-likelihoods, and the lexi-
con has no weighting. Each of these models will be
explained in further detail below. The target is given
by the shortest path in the WFST:

(LC⊕ P ◦ L−1 ◦ PEM ◦ L⊕ RC) ◦ LM,

where P is the pun and LC and RC are the left and
right word contexts. The symbols −1, ◦ and ⊕ de-
note the inverse, composition, and concatenation op-
erations respectively.

The sequence of operations P ◦ L−1 ◦ PEM ◦ L
converts a pun to its phonetic form, expands it to a

lattice based on phonetic confusions, and then con-
verts the phone lattice to a lattice of possible target
words. By concatenating the left and right word con-
texts and composing with the language model, each
path through the WFST is a target word sequence
with a weight equal to the combined phonetic edit
and language model scores. The ability to handle
multi-word puns and/or targets (e.g., the word se-
quence “no bell” can be matched to “Nobel”, using
an example from (Yang et al., 2015)) is made possi-
ble because the lexicon WFST L allows multiword
sequences.

Since the scores are negative log likelihoods, the
target hypothesis is just the shortest path in the
WFST. We score the model based on its accuracy
at identifying the target which must be an exact
match, ignoring punctuation. We disallow the pos-
sibility that the pun is hypothesized as a target, i.e.
homographic puns, in order to focus on the class of
puns whose relationship with their targets is primar-
ily phonological. The OpenFst library is used to per-
form all of the WFST operations (Allauzen et al.,
2007).

3.2 Phonetic Edit Model

The purpose of the phonetic edit model is to esti-
mate the probability of the pun phoneme sequence
given a candidate target phoneme sequence. We pre-
fer to learn a model from the data rather than adopt
an existing model that relies on phonetic features
and edit costs that were derived by hand (Kondrak,
2000). As shown by Ristad and Yianilos (1998),
a memoryless WFST model can learn a probabil-
ity distribution over edit operations with a princi-
pled objective, namely, to maximize the likelihood
of the source/target sequences in the training data.
In our case, the training data is pun/target phoneme
sequences. Memoryless, in this context, refers to
the fact that the model is not conditioning on pre-
vious symbols, i.e. there is only a single state in
the WFST. The model assumes that the phoneme se-
quence of the pun is generated through the stochastic
application of insertions, deletions, and substitutions
to the target phoneme sequence. During learning,
the model estimates the function p(y|x) where y is
a phoneme from the pun and x is a phoneme from
the target. When x = ε this is an insertion of y and
when y = ε it is a deletion of x.

656

Training uses the expectation-maximization algo-
rithm following the equations given by Oncina and
Sebban (2005) to estimate the conditional probabil-
ity distribution instead of the joint one as originally
derived by Ristad and Yianilos. The model is trained
to maximize the probability of the pun targets given
their sources subject to the constraint that the model
encode a probability distribution over all possible
string pairs. In the expectation step, puns are aligned
with their targets given the current model. Then,
the maximization step re-estimates the edit proba-
bilities given the current alignment. Edit probabil-
ities are initialized by giving a high probability to
keeping the same phoneme and uniform small prob-
abilities to all possible edits. (We initialized by giv-
ing ten times the probability to preserving the same
phoneme as to any possible edit operation.) Follow-
ing the convention of Sobkowiak (1991), vowels can
not align with consonants and vice-versa.

The training data consists of the 1,182 target
pun pairs taken from Appendix E of Hempelmann
(Hempelmann, 2003). These are a subset of the puns
that Sobkowiak took mostly from Crosbie’s “Dictio-
nary of Puns” and analyzed in his work.

3.3 Phonetic Lexicon

The lexicon models the pronunciation of each word
in the vocabulary. Pronunciations come from the
CMU pronunciation dictionary (Weide, 1998). This
dictionary has an inventory of 39 phonemes. If a
pun is not in the vocabulary of the dictionary, for ex-
ample if it is not a word, then its pronunciation is
generated automatically using the LOGIOS lexicon
tool.1 The same is not true for the targets, since they
are unknown beforehand. Thus, when the lexicon is
used to map puns to phonemes the vocabulary size
is essentially unlimited. But, when it is used to map
the phoneme lattice into a word lattice of potential
targets then the fixed vocabulary from the language
model is used.

The CMU dictionary includes multiple pronunci-
ations for some words. All pronunciations are used
with unweighted parallel paths. The version of the
dictionary used here includes stress markers and syl-
lable boundaries (Bartlett et al., 2009). In the sim-
plest version of our model, this information is ig-

1http://www.speech.cs.cmu.edu/tools/lextool.html

nored in order to reduce the number of learned pa-
rameters in the PEM.

After composing with the phonetic edit model and
the lexicon, we do a conservative pruning of the
WFST to remove highly improbable word sequences
based on the phonetic score and run epsilon removal
on the resulting lattice. This reduces the memory
footprint and allows use of a larger language model.

3.4 Language Model

A 230 million word corpus was formed from com-
ments obtained from Reddit, an online discussion
forum. These comments were collected from a wide
variety of forums, known as subreddits. Reddit con-
tributors tend to use a casual conversational style
that is a good match for the language used in com-
mon puns. All of the text data from Reddit was
tokenized using the NLTK tokenizer (Bird et al.,
2009). The tokenizer splits contractions into two to-
kens but we kept these as a single token to match
the pronunciation dictionary. We remove case infor-
mation. Punctuation is removed when evaluating the
correctness of the hypothesized targets, but punctu-
ation symbols are included in the language model.
It provides a useful context break in punning rid-
dles where the pun/target typically follows a ques-
tion mark or other punctuation.

The vocabulary is set by intersecting the vocab-
ulary from the CMU pronunciation dictionary with
the set of tokens that occur at least 30 times in the
language model training data. This gives us a 36,175
word vocabulary. As Sobkowiak (1991) observed,
the target tends to have a much higher unigram prob-
ability than the pun. This means that the vocabulary
size need not be too large to cover most of the tar-
gets.

The language model is a trigram model with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1999). Entropy pruning is used to reduce the size
of the language model (Stolcke, 2000). It is impor-
tant to perform the determinization and minimiza-
tion operations on the LM after converting it into
the FST representation, in order to reduce the size of
the model (Mohri et al., 2008). Because we are us-
ing a trigram model, only two words of context are
needed on each side of the pun.

657

3.5 Extending the Phoneme Edit Model with
Syllable Structure and Stress

For a listener to recognize the phonological distinct-
ness of the pun and the target, they should prefer-
ably differ in a perceptually salient position such as
a stressed syllable. In particular, we expect that puns
would take advantage of the increased acoustic en-
ergy in the onset and nucleus of a stressed syllable
and utilize these positions for phoneme changes.

To analyze this effect we used a syllabified ver-
sion of the CMU pronunciation dictionary (Bartlett
et al., 2009). We took the 1-best phonetic align-
ment of the training data and split it according to the
syllable boundaries of the pun. Then we computed
the probability of a phoneme change according to
the position in the syllable and the stress. Conso-
nants in the onset of a stressed syllable have a 40.3%
probability of changing between the target and pun.
The nucleus of a stressed syllable of has a 36.8%
probability of substitution. This is compared to a
31.8% probability of substitution for phonemes in
unstressed syllables and coda positions.

To incorporate this into an extension of the pho-
netic edit model, we created a three state model.
There is one default state and two special states for
the stressed syllable onset and nucleus respectively.
The phoneme edit probabilities p(y|x) were scaled
according to the state s and renormalized so that
p(y|x, s) is a valid probability distribution. When
a substitution does occur, we assume that the choice
of target phoneme is independent of the syllable po-
sition and stress. The net effect of the syllable ex-
tension to the PEM is to encourage substitution of
onsets and nuclei of stressed syllables and discour-
age it otherwise.

4 Experiments

4.1 Data

We collected 75 puns from various joke websites
such as Tumblr, Reddit, and Twitter and soliciting
examples from friends and colleagues.2 These were
collected without reference to the sources used by
Sobkowiak to assemble the puns used in building the
phonetic edit model. This data was used for test data
only and is completely separate from the training

2Data available at http://ssli.ee.washington.edu/data/puns.

data used by the language model and the phonetic
edit model. (It would be nice to have used some of
the 1,182 puns from Sobkowiak for test data but only
the isolated pun/target pairs were provided without
the necessary word contexts.) Pun locations were
marked in each sentence as the minimal set of words
that change between the pun and the target.

Note that the phonetic edit model is trained on ex-
clusively imperfect puns but it is tested on both per-
fect and imperfect puns (24 perfect and 51 imper-
fect). This creates a mismatch between the training
data and the test data. Target recovery is harder on
imperfect puns but having a mix of both types better
reflects what is commonly found in the wild.

4.2 Baseline Model

As a baseline model we replace our phonetic edit
model with the cost function proposed by Hempel-
mann, which we replicated based on details given
in Appendix G of his thesis (Hempelmann, 2003).
This cost function, which Hempelmann refers to as
“preliminary,” is the only published phonetic edit
model for paronomasic puns. The cost table is based
on the phoneme pair alignment counts from the
1,182 training pairs that were aligned by hand. The
phoneme alignment counts are converted to costs by
using simple ad-hoc equations. Vowel pair counts
are transformed to costs using cost = 0.3 − 0.3 ∗
count/161 and other pairs use cost = count−0.6.
Our model improves upon the baseline by avoiding
heuristic transformations. Since the phoneme sym-
bol set used by Hempelmann (based on (Sobkowiak,
1991)) differs from that used in the CMU dictio-
nary, the Hempelmann costs are mapped to match
the CMU inventory.

4.3 Results

We report the performance of our model in Table
1 using accuracy and mean reciprocal rank as met-
rics. If the correct target did not appear in our n-
best list then we use a value of zero for its recipro-
cal rank. Ties are broken randomly. The baseline
uses Hempelmann’s phonetic cost model plus the
LM, and we include two ablation models that use
just the LM or just the PEM. The other two models
use the LM with either the memoryless PEM or the
PEM with the syllable extension.

658

Accuracy
Model Perfect Imperfect Overall MRR

LM Only 13.0% 7.7% 9.3% 0.127
PEM Only 43.5% 9.6% 20.0% 0.282
LM + Hempelmann 47.8% 7.7% 29.3% 0.389
LM + PEM 73.9% 65.4% 68.0% 0.729
LM + Syll. PEM 73.9% 65.4% 68.0% 0.733

Table 1: Accuracy and mean reciprocal rank (MRR) for target recovery

Using the language model only gives poor perfor-
mance. It is only able to recover the target when the
target happens to be an idiomatic expression. The
PEM-only model does significantly better than using
the LM only, highlighting the importance of phonet-
ics in paronomasic puns. In the full system, Hempel-
mann’s cost matrix does not fare well compared to
the PEM model. The Hempelmann cost matrix does
a poor job of separating likely targets from the rest
of the vocabulary. Thus, many times the true tar-
get is pruned before the application of the language
model.

The LM + PEM model recovers the target more
than two-thirds of the time and has a mean reciprocal
rank of 0.729. When using the syllable extension to
the PEM, the results agree on the rank of the target
for all but five puns. For those five, the model with
the syllable extension improves the rank compared
to the basic PEM. Two puns from that set of five are

“If you’ve seen one shopping center you’ve
seen a mall”
“How does Moses make his tea? Hebrews it.”

(a mall/‘em all and Hebrews/he brews, respectively).
The hypothesized targets “immoral” and “he abuse”
outrank the true target for these puns in the basic
PEM model but not in the syllable one because they
change more phonemes in unstressed syllables.

Perfect puns are easier to recover than imperfect
ones. The LM + PEM model does well on both per-
fect and imperfect puns. As to be expected, the PEM
only model does very poorly on imperfect puns and
the LM only model does equally poorly on both per-
fect and imperfect.

Table 2 shows the top ranked hypothesis for a
sample pun using the LM + PEM model, where the
cost in this table is the negative log-likelihood. In
this case, the top ranked hypothesis was correct. The
second highest ranked hypothesis is a misspelling of

the target that is common enough for the language
model to also give it a high score.

An example where the model makes a mistake is:
“A Freudian slip is where you say one thing but
mean your mother”

The pattern of “one thing . . . another” is common in
English but, in this case, the target “another” is too
far away from “one thing” for the relationship to be
captured by the tri-gram language model.

5 Analysis

A consequence of using a stochastic model for pho-
netic edit costs is that there is a non-zero edit cost
between a phoneme and itself and that cost is differ-
ent depending on the phoneme. This highlights the
fact that we model the edit (or transformation) prob-
abilities of the pun/target corpus rather than phono-
logical similarity (which would be a symmetric cost
function). The analysis below shows that the edit
model is in fact capturing more than simple phono-
logical similarity.

5.1 Phoneme Edit Probabilities

Figures 1 and 2 show the probability of observing
a source phoneme (i.e. a phoneme appearing in the
pun) given each target phoneme for the vowel and
consonant pairs respectively. The numbers are to be
interpreted as percentages and values less than 1 are
not shown. The ‘.’ symbol is used for epsilon transi-
tions and indicates segment insertions and deletions.

Vowels. Regarding vowels, our data corroborates
some of the findings of Sobkowiak (1991). The
lower numbers along the diagonal in Figure 1 rel-
ative to Figure 2 indicates the violability of vowels
(39%) relative to consonants (34%) in paronoma-
sic puns. Our data also confirms that, where puns
are concerned, marked segments do not necessarily

659

Rank Cost Hypothesis
1 21.0 ... ONLY GOT MYSELF TO BLAME
2 23.2 ... ONLY GOT MY SELF TO BLAME
3 24.2 ... ONLY GOT A MYSELF TO BLAME
4 24.2 ... ONLY GOT MY YOURSELF TO BLAME

Source ... ONLY GOT MY SHELF TO BLAME

Table 2: Top ranked target LM + PEM hypotheses for the pun “A book fell on my head. I’ve only got my shelf to blame.”

Figure 1: Edit probabilities for vowels based on the LM + PEM

model.

oust unmarked. According to Zwicky and Zwicky
(1986), if “marked ousts unmarked” we would ex-
pect to see that tense vowels oust lax vowels. Rather,
what we find in this data is that the majority of vow-
els and diphthongs are ousted by AH (@), widely
considered an unmarked vowel. Puns demonstrating
this phenomenon include

“The pun is mightier than the sword”
“He’s an honest geologist, you can trust what
he sediment”

(pun/pen and sediment/said he meant, respectively).
We hypothesize that the low cost for substituting AH
for other vowels is due in part to the fact parono-
masic puns originally were a spoken phenomenon,
and so the substitution possibilities for a given tar-
get vowel depend significantly on the variety of re-
alizations of that vowel in speech. It is well at-
tested cross-linguistically that vowels undergo re-
duction in unstressed positions (Crosswhite, 2004).
In English running speech, this reduced form most

closely resembles AH (Burzio, 2007). The data pre-
sented here suggests that punners take advantage of
the commonality of running speech vowel reduction
when considering target recoverability, resulting in
the availability of AH as a replacement for most tar-
get vowels. Our model captures this fact by assign-
ing low cost to such a substitution.

Our data provides other insights into the nature
of vowel substitutions in puns. For instance, we see
that IY (i) is less likely to change in a pun than other
monophthongs, indicating a significant perceptual
distance between IY and its neighbors. Most likely
to change are the vowels AO (O) and UH (U). The
violability of AO is likely due to the AO/AA merger
present in many American English Dialects (Labov
et al., 2006), and in fact we see targets with AO fre-
quently mapping to puns with AA. The mutability of
UH is also interesting: while it, like other monoph-
thongs, is ousted by AH, it is also ousted by a closely
articulated marked counterpart, UW (u). This seems
to be the sole example in our data of marked vowels
ousting an unmarked vowel to a significant degree.

Another interesting feature of this data is the sub-
stitutability of ER (3~) and OY (OI), as in puns like

“The British used to dress their sandwiches
with earl and vinegar”
“In cooking class this week we’re loining how
to prepare tuna”

(earl/oil and loining/learning, respectively). These
edits seem to indicate punners’ awareness of rhotic-
ity variation among English dialects (Labov, 1972).

Consonants. In Figure 2, we see several expected
trends. D (d) ousting DH (D), T (t) ousting TH (T),
and V (v) ousting W (w) are all as expected accord-
ing to the “marked ousting unmarked” hypothesis of
Zwicky and Zwicky (1986). Yet we also see S (s)
ousting Z (z), which is an instance of the unmarked
voiceless alveolar fricative ousting the voiced, as
well as N (n) ousting NG (N), an instance of the

660

unmarked coronal ousting the marked velar. These
oustings, like the case of AH ousting other vowels,
are likely conditioned by segment frequency. For
N ousting NG, syllable structure may play a role as
well, as NG is restricted to codas whereas N is not.

An interesting feature of our consonant data is
the extreme violability of interdentals TH and DH,
which are more likely to map to T and D respectively
than to retain their identity in a paronomasic pun. In
addition to the “fit of whiskey” example mentioned
earlier, we have

“Disgusting wind knocked over my trash cans”
(disgusting/this gusting). This phenomenon is
known as “th-stopping” and is a common dialectal
feature of many variants of English, from those of
Philadelphia and New York to the Caribbean (Wells,
1982). This substitution supports the hypothesis that
the substitution possibilities for a segment depend
on the realizations of that segment which are com-
monly encountered in speech. Notably, T is signifi-
cantly more likely to replace TH than is F (f), despite
that the articulatory and acoustic similarity between
TH and F is greater.

Figure 2: Edit probabilities for consonants based on the LM +

PEM model.

5.2 Correlation with Human Ratings

Our phonetic edit model allows us to empirically
verify an untested assumption with respect to phono-
logical similarity from Fleischhacker (2002) “that

degree of representation in the pun corpus corre-
lates with pun goodness.” In another paper, she
repeats this assumption and adds the explanation
“Truly funny puns are generally those in which the
phonological relationship between pun and target is
. . . subtle but quickly recognizable” (Fleischhacker,
2005). Hempelmann writes that this assumption is
“unlikely” to be true.

We conducted a survey of native English speak-
ers where respondents were asked to rate 17 puns on
a five point scale: hilarious, funny, okay, bad, ter-
rible. The puns were selected from the test set to
have a variety of phonemic edit distances. Respon-
dents also had the option to indicate that they did not
understand the pun, in which case their answer was
ignored. A phonetic edit score was calculated for
each pun-target pair by averaging the log-likelihood
value from our model over the phonemes in the pun.
The order of the questions was randomized for each
respondent. Advertising for the survey was done us-
ing /r/SampleSize, a Reddit forum for recruiting sur-
vey participants. The 435 respondents gave us 7,135
ratings in total.

The relationship between phonetic edit cost and
goodness was measured using ordinal regression,
with clustered standard errors to account for the
fact that responses from the same person are not in-
dependent. We use the RMS package in R (Har-
rell Jr., 2015). The regression coefficient indicates
that decreased phonetic edit cost is indeed asso-
ciated with higher perceived goodness of the pun
with p < 0.0001. For visualization purposes we
mapped the categorical goodness ratings onto a nu-
meric scale from 1-5 to create an average goodness
rating for each pun. In Figure 3, we depict the pho-
netic edit cost vs. the average goodness rating for
each of the 17 puns. The line shown in that figure is
an outlier resistant linear regression.

The biggest outlier is

“They say a Freudian slip is when you say one
thing but really mean your mother.”

The pun is on “your mother” with “another” as the
target. This pun has the highest phonetic edit cost in
our sample but it makes up for it with more interest-
ing semantics than average.

661

Figure 3: Relationship between the LM + PEM phonetic edit

cost and goodness of the pun.

6 Conclusions and Future Work

The quality of our phonetic edit model is evident
from its performance at the target recovery task, as
well as the fact that it captures known linguistic phe-
nomena such as vowel reduction and dialectal fea-
tures. Furthermore, by collecting human ratings we
are able to empirically verify the previously untested
assumption that lower phonetic edit costs in puns
correlate with pun goodness.

The strength of the model can be leveraged to im-
prove the quality of pun generation and humor clas-
sification systems that have used weaker phonetic
edit models (Binsted, 1996; Valitutti, 2011; Raz,
2012). Some pun generation systems are limited to
exact homophones. In this work, we did not con-
sider homographic puns. In principle, our algorithm
can handle these by introducing an LM weight to
control the balance of PEM/LM scores. Pun genera-
tion is much more complicated than target recovery
as reflected in the complexity of proposed systems
for humor generation. However, improved under-
standing of puns by way of progress in the target
recovery task should also lead to corresponding im-
provements in the task of pun generation.

Our syllable extension to the PEM gave the best
performance, but only by a small margin. Extend-
ing the edit model further is a fruitful area for future
work but will likely require additional data.

In this work, we assume that the pun is given. Of
interest for future work is joint recognition of the

pun and its target. Preliminary experiments indicate
that the unigram word probabilities are a somewhat
strong feature for pun recognition but further work
is needed. For contextually-integrated puns, iden-
tifying the pun is likely to be more difficult, and
for some cases it would be useful to integrate image
cues.

Acknowledgments

We thank Arjun Sondhi for his assistance in design-
ing and analyzing the survey and Hope Boyarsky for
her help assembling our pun corpus. We also would
like to thank Nathan Loggins and the anonymous re-
viewers for their feedback on this work.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-

ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
general and efficient weighted finite-state transducer
library. In Implementation and Application of Au-
tomata, pages 11–23. Springer.

Stephen R Anderson and David W Lightfoot. 2002. The
language organ: Linguistics as cognitive physiology.
Cambridge University Press.

Susan Bartlett, Grzegorz Kondrak, and Colin Cherry.
2009. On the syllabification of phonemes. In Pro-
ceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
308–316. Association for Computational Linguistics.

Kim Binsted. 1996. Machine humour: An implemented
model of puns.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python. ” O’Reilly Me-
dia, Inc.”.

Luigi Burzio. 2007. Phonology and phonetics of en-
glish stress and vowel reduction. Language Sciences,
29(2):154–176.

Stanley F Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech & Language, 13(4):359–393.

John S Crosbie. 1977. Crosbie’s dictionary of puns.
New York: Harmony Books.

Katherine M. Crosswhite. 2004. Vowel reduction. In
Bruce Hayes, Robert Kirchner, and Donca Steriade,
editors, Phonetically based phonology, pages 191–
231. Pearson Education.

Heidi Fleischhacker. 2002. Onset transfer in reduplica-
tion. In LSA annual meeting. San Francisco: January,
pages 3–6.

662

Heidi Anne Fleischhacker. 2005. Similarity in phonol-
ogy: Evidence from reduplication and loan adapta-
tion. Ph.D. thesis.

Frank E Harrell Jr., 2015. rms: Regression Modeling
Strategies. R package version 4.3-0.

Christian F Hempelmann. 2003. Paronomasic puns: Tar-
get recoverability towards automatic generation.

Takaaki Hori, Chiori Hori, Yasuhiro Minami, and Atsushi
Nakamura. 2007. Efficient WFST-based one-pass
decoding with on-the-fly hypothesis rescoring in ex-
tremely large vocabulary continuous speech recogni-
tion. Audio, Speech, and Language Processing, IEEE
Transactions on, 15(4):1352–1365.

Sister Miriam Joseph. 2008. Shakespeare’s Use of the
Arts of Language. Paul Dry Books.

Stefan Daniel Keller. 2009. The development of Shake-
speare’s rhetoric: a study of nine plays, volume 136.

Grzegorz Kondrak. 2000. A new algorithm for the align-
ment of phonetic sequences. In Proceedings of the 1st
North American chapter of the Association for Compu-
tational Linguistics conference, pages 288–295. Asso-
ciation for Computational Linguistics.

William Labov, Sharon Ash, and Charles Boberg. 2006.
Atlas of north american english: Phonology and pho-
netics. Berlin: Mouton de Gruyter.

William Labov. 1972. Sociolinguistic patterns. Num-
ber 4. University of Pennsylvania Press.

Tristan Miller and Iryna Gurevych. 2015. Automatic
disambiguation of English puns.

M. Mohri, F. Pereira, and M. Riley. 2002. Weighted
finite-state transducers in speech recognition. Com-
puter Speech & Language, 16(1):69–88.

Mehryar Mohri, Fernando Pereira, and Michael Riley.
2008. Speech recognition with weighted finite-state
transducers. In Springer Handbook of Speech Process-
ing, pages 559–584. Springer.

Jose Oncina and Marc Sebban. 2005. Learning unbiased
stochastic edit distance in the form of a memoryless
finite-state transducer. In International Joint Confer-
ence on Machine Learning (2005). Workshop: Gram-
matical Inference Applications: Successes and Future
Challenges.

Yishay Raz. 2012. Automatic humor classification
on Twitter. In Proceedings of the NAACL Human
Language Technologies: Student Research Workshop,
pages 66–70. Association for Computational Linguis-
tics.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning
string-edit distance. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 20(5):522–532.

Graeme Ritchie. 2005. Computational mechanisms for
pun generation. In Proc. European Natural Language
Generation Workshop.

Włodzimierz Sobkowiak. 1991. Metaphonology of En-
glish paronomasic puns, volume 26. P. Lang.

Andreas Stolcke. 2000. Entropy-based pruning of back-
off language models. arXiv preprint cs/0006025.

Keiko Tanaka. 1992. The pun in advertising: A prag-
matic approach. Lingua, 87(1):91–102.

Alessandro Valitutti. 2011. How many jokes are really
funny? towards a new approach to the evaluation. In
Human-Machine Interaction in Translation: Proceed-
ings of the 8th International NLPCS Workshop, vol-
ume 41, page 189.

Robert L Weide. 1998. The cmu pronouncing dictionary.
URL: http://www.speech.cs.cmu.edu/cgibin/cmudict.

John C Wells. 1982. Accents of English, volume 1. Cam-
bridge University Press.

Diyi Yang, Alon Lavie, Chris Dyer, and Eduard Hovy.
2015. Humor recognition and humor anchor extrac-
tion. EMNLP.

Arnold Zwicky and Elizabeth Zwicky. 1986. Imperfect
puns, markedness, and phonological similarity: With
fronds like these, who needs anemones. Folia Linguis-
tica, 20(3/4):493–503.

663

Proceedings of NAACL-HLT 2016, pages 664–669,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Joint Model of Orthography and Morphological Segmentation

Ryan Cotterell Tim Vieira
Department of Computer Science
Johns Hopkins University, USA

{ryan.cotterell,tim.f.vieira}@gmail.com

Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
inquiries@cis.lmu.org

Abstract

We present a model of morphological seg-
mentation that jointly learns to segment and
restore orthographic changes, e.g., funniest 7→
fun-y-est. We term this form of analysis canon-
ical segmentation and contrast it with the tra-
ditional surface segmentation, which segments
a surface form into a sequence of substrings,
e.g., funniest 7→ funn-i-est. We derive an im-
portance sampling algorithm for approximate
inference in the model and report experimental
results on English, German and Indonesian.

1 Introduction

Morphological segmentation is useful for NLP appli-
cations, such as, automatic speech recognition (Afify
et al., 2006), keyword spotting (Narasimhan et al.,
2014), machine translation (Clifton and Sarkar, 2011)
and parsing (Seeker and Çetinoğlu, 2015). Prior work
cast the problem as surface segmentation: a word
form w is segmented into a sequence of substrings
whose concatenation isw. In this paper, we introduce
the problem of canonical segmentation: w is ana-
lyzed as a sequence of canonical morphemes, based
on a set of word forms that have been “canonically”
annotated for supervised learning. Each canonical
morpheme c corresponds to a surface morph s, de-
fined as its orthographic manifestation, i.e., as the
substring of w that is generated by applying editing
operations like insertion and deletion. Consider the
following example: funniest has a canonical segmen-
tation fun-y-est with three morphs funn-i-est. Arriv-
ing at the canonical analysis requires two edit op-
erations: delete n in funn and replace i with y in

funniest funyest fun y est

memikulmu menpikulmu men pikul mu

Zulassung zulassenung zu lassen ung

Orthography Underlying Form Segmentation

Figure 1: Examples of canonical segmentation for English
(top), Indonesian (middle) and German (bottom).

i. Figure 1 gives examples of orthography (i.e., the
concatentation of surface morphs), underlying form
(i.e., the concatentation of canonical morphemes) and
canonical segmentation in three languages.

Canonical segmentation is motivated in the fol-
lowing three ways: (i) Computational morphology
is the study of how words and their meanings are
composed from smaller units. This goal is better
supported by canonical morphemes than by surface
morphemes because the smaller units are more ac-
curately modeled. For funniest, composition can
reason with canonical morphemes fun and y, whereas
surface segmentation must work with funn and i.
(ii) Morphological analysis is typically done with
attribute-value pairs (AVP), e.g., [lemma=FUNNY,
degree=SUPER]. While AVP is a good represen-
tation for inflectional morphology, it is not pow-
erful enough for derivational morphology. If we
represent the derivation of funnier as [lemma=FUN,
deriv-suffix=-Y, degree=SUPER], then it is no
longer clear in this fixed representation whether

664

degree = SUPER applies to fun or fun+y.1 Canon-
ical segmentation is more flexible—allowing us to
express derivational relations without committing
to a fixed attribute-value structure, which are used
to study inflection. This point is important due to
the fundamental distinction between the creation of
words through inflection vs. through derivation. In-
flection alters words to express syntactic relations
(e.g., tense) with no major change in meaning nor
POS. For example, perturbed and perturbs are in-
flections of the verb perturb. On the other hand,
derivation modifies words more drastically—often
changing the meaning or POS. For example, the noun
perturbation derives from the verb stem perturb and
the suffix ation (Haspelmath and Sims, 2013). (iii)
Most NLP systems take word forms as atomic build-
ing blocks. We propose canonical morphemes, an
alternative representation that models the structure
of a language’s lexicon and supports applications
that benefit from access to the internal structure of
words. This includes access to internal morphologi-
cal structure, e.g., canonical morphemes like -y and
-ly are recognized (independent of their orthographic
manifestation) as derivational suffixes that cause pre-
dictable modifications; as well as access to internal
semantic structure, e.g., the canonical segmentations
of fun and funny share the canonical morpheme fun).

The contributions of this paper are as follows.
We present the challenging new task of canonical
segmentation. We develop a feature-rich structured
joint model for canonical segmentation, which
accounts for orthographic variation and segment-
level structure. We derive an efficient importance
sampling algorithm for approximate inference. We
present experiments on three languages: English,
German and Indonesian.

2 Model, Inference and Training

Our goal is canonical segmentation: identifying both
the canonical morphemes and the morphs (their or-
thographic manifestations) of a word. This task in-
volves segmenting the input as well as accounting
for orthographic changes occurring in the word for-
mation processes. Let w be the surface form, u the
orthographic underlying representation (UR) of w,
and s a labeled segmentation of u. Note: all random

1Note that funnest is a word of (colloquial) English.

variables are string-valued (Dreyer and Eisner, 2009).
For example, consider the word unhappiness:

unhappiness︸ ︷︷ ︸
w

transduction7→ unhappyness︸ ︷︷ ︸
u

segmentation7→ [prefix un][stem happy][suffix ness]︸ ︷︷ ︸
s

.

Note that our notion of an orthographic UR closely re-
sembles the phonological concept of a UR (Kenstow-
icz, 1994) and, indeed, many orthographic variations
are manifestations of phonology.

We model this process as a globally normalized
log-linear model of the conditional distribution,

p(s, u | w)=
1

Z(w)
exp
(
η>f(s, u)+ω>g(u,w)

)
,

where θ = {η,ω} are the model parameters, f
and g are, respectively, feature functions of the
segmentation-UR and UR-surface-form pairs and
Z(w) =

∑
s′,u′ exp

(
η>f(s′, u′) + ω>g(u′, w)

)
is

the partition function. We can view this model
as a conjunction of a finite-state transduction fac-
tor g (Dreyer et al., 2008) and a semi-Markov seg-
mentation factor f (Sarawagi and Cohen, 2004),
relating it to previous semi-CRF models of seg-
mentation.2 To fit the model, we maximize the
log-likelihood of the training data {(si, ui, wi)}Ni=1,
L(θ) =

∑N
i=1 log p(si, ui |wi), with respect to the

model parameters θ. Optimization is done with
gradient-based methods—requiring the computation
of logZ(w) and ∇ logZ(w), which is intractable.3

Thus, we turn to sampling (Rubinstein and Kroese,
2011) and stochastic gradient methods.

Features Our model includes several simple fea-
ture templates. The transduction factor of the model
is based on (Cotterell et al., 2014): we include fea-
tures that fire on individual edit actions as well as
conjunctions of edit actions and characters on the
surrounding context. For the semi-Markov factor, we
use the feature set of Cotterell et al. (2015a), which
2Our transduction factor maps surface forms w to UR strings
u of bounded length by imposing an insertion limit k. Thus,
|u| ≤ |w|+ k. Our experiments use k = 5.

3Since the semi-CRF features fire on substrings, we would need
a dynamic programming state for each substring of each of the
exponentially many settings of u.

665

includes indicator features on individual segments,
conjunctions of segments and segment labels and
conjunctions of segments and left and right context
on the input string. We also include a feature that
checks whether the segment is a word in ASPELL (or
a monolingual corpus).

Importance Sampling To approximately compute
the gradient for learning, we employ importance sam-
pling (MacKay, 2003, pp. 361–364). Rather than con-
sidering all underlying orthographic forms u, we use
samples taken from proposal distribution q—a distri-
bution over Σ∗. In the following equations, we omit
the dependence on w for notational brevity. Also,
let h(s, u) = f(s, u) + g(u,w). We now provide
the derivation of our importance sampling estimate
for the gradient of log-partition function, including
Rao-Blackwellization (Robert and Casella, 2013).

∇ logZ = E
(s,u)∼p

[h(s, u)] (1)

=
∑
s,u

p(s, u)h(s, u) (2)

=
∑
s,u

p(s|u)p(u)h(s, u) (3)

=
∑
u

p(u)
∑
s

p(s|u)h(s, u) (4)

=
∑
u

p(u) E
s∼p(·|u)

[h(s, u)] (5)

= E
u∼q

[
p(u)
q(u) E

s∼p(·|u)
[h(s, u)]

]
. (6)

The expectation Es∼p(·|u) [h(s, u)] is efficiently com-
puted with the semi-Markov generalization of the
forward-backward algorithm (Sarawagi and Cohen,
2004). The algorithm runs in O(n2 · t2) per sample
where n is the length of the string to be segmented
and t is the size of the label space. In our case, we
have three labels: prefix, stem and suffix so t = 3.

So long as q has support everywhere p does (i.e.,
p(u) > 0 ⇒ q(u) > 0), the estimate is unbi-
ased. Unfortunately, we can only efficiently compute
p(u) ∝ ∑

s exp(θ>h(s, u)) up to constant factor,
p(u) = p̄(u)/Zu. Thus, we use the indirect impor-
tance sampling estimator,

1∑m
i=1

p̄(u(i))

q(u(i))

m∑
i=1

p̄(u(i))
q(u(i))

E
s∼p(·|u(i))

[
h(s, u(i))

]
, (7)

where u(1). . . u(m) i.i.d.∼ q. The indirect estimator is
biased, but statistically consistent.4 We also note that
the particular instantiation of the indirect estimator
leverages an efficient dynamic program to compute
the expected features under p(·|u(i)). This has the
effect of decreasing the number of samples required
to get a useful estimate of the gradient. Comput-
ing p̄(u(i)) is a side effect of the dynamic program,
namely the normalization constant. As a proposal
distribution q, we use the following locally normal-
ized distribution,

q(u) =
exp(ω>g(u,w))∑
u′ exp(ω>g(u′, w))

. (8)

3 Related Work

Most work on morphological segmentation has been
unsupervised. The LINGUISTICA (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002) mod-
els rely on the minimum description length principle
(Cover and Thomas, 2012). In short, these meth-
ods seek to segment words while at the same time
minimizing the number of unique morphs discov-
ered, i.e., the complexity of the model. The MOR-
FESSOR model has additionally been augmented to
handle the semi-supervised scenario (Kohonen et al.,
2010). Goldwater et al. (2009) proposed a Bayesian
non-parametric approach to word and morphological
segmentation. Poon et al. (2009) used contrastive
estimation (Smith and Eisner, 2005) to learn a log-
linear model for segmentation fully unsupervised.

Few supervised techniques have been applied to
morphological segmentation. Ruokolainen et al.
(2013) applied a linear-chain CRF, showing that with
a minimal amount of labeled data the performance
of standard unsupervised and semi-supervised base-
lines are surpassed. In follow-up work (Ruokolainen
et al., 2014), they found that incorporating distribu-
tional character-level features acquired from large un-
labeled corpora improved the earlier model. Cotterell
et al. (2015a) showed that modeling morphotactics
with a semi-CRF improves results further.

The previously described approaches only attempt
to split words into a sequence of stem and affixes—
making it difficult to restore the underlying structure

4Informally, the indirect importance sampling estimate converges
to the true expectation as m→∞.

666

which has been “corrupted” by the orthographic pro-
cess. Our approach, however, is capable of restoring
the underlying morphemes, e.g., stopping 7→ stop-ing.
We note two exceptions to the above statement. Both
Dasgupta and Ng (2007) and Naradowsky and Gold-
water (2009) incorporate basic, heuristic spelling
rules into unsupervised induction algorithms. Re-
latedly, Cotterell et al. (2015b) induced a phonology
in an unsupervised manner. In contrast, our model
is fully supervised and supports rich features, which
enable accurate prediction on new words.

4 Experiments

We provide canonical segmentation experiments in
three languages: English, German and Indonesian.

4.1 Corpora

The English data was extracted from segmentations
derived from CELEX (Baayen et al., 1993). The
German data was extracted from DerivBase (Zeller
et al., 2013), which provides a collection of derived
forms and the transformation rules. We manipulated
these rules to create canonical segmentations.
Lastly, the Indonesian data was created from the
output of the MORPHIND analyzer (Larasati et al.,
2011), which we ran on an open-source corpus of
Indonesian.5 For each language we selected 10,000
forms at random from a uniform distribution over
types to form our corpus. We sampled 5 splits of
the data into 8000 training forms, 1000 development
forms and 1000 test forms. We have released all train,
development and test splits online with additional
documentation about their construction.6

4.2 Models

We train two versions of our proposed model. First,
we train a pipeline model, i.e., we train the transduc-
tion component and segmentation component inde-
pendently and decode sequentially. This approach is
faster both at train and at test but suffers from cas-
cading errors. Second, we train a joint model, the
transduction and the segmentation components are
trained to work well together.

5https://github.com/desmond86/
Indonesian-English-Bilingual-Corpus

6http://ryancotterell.github.io/
canonical-segmentation/

Joint Pipeline SemiCRF WFST

er
ro

r en 0.27 (.02) 0.33 (.01) 0.33 (.01) 0.63 (.00)
de 0.41 (.03) 0.53 (.02) 0.65 (.01) 0.74 (.01)
id 0.10 (.01) 0.22 (.01) 0.27 (.01) 0.71 (.00)

di
st

an
ce en 0.98 (.34) 0.63 (.04) 0.68 (.01) 1.35 (.01)

de 1.01 (.07) 1.10 (.04) 1.32 (.04) 4.24 (.20)
id 0.15 (.02) 0.36 (.03) 0.49 (.02) 2.13 (.00)

F
1

en 0.76 (.02) 0.70 (.02) 0.68 (.01) 0.53 (.02)
de 0.76 (.02) 0.71 (.01) 0.65 (.01) 0.59 (.02)
id 0.80 (.01) 0.75 (.01) 0.71 (.01) 0.62 (.02)

Table 1: Top: Error rate. Middle: Average edit distance.
Bottom: Mean morpheme F1 (higher better). Standard
deviation in parentheses. Best result on each line in bold.

Baseline: Semi-CRF Segmenter The first base-
line is a semi-CRF (Sarawagi and Cohen, 2004) that
segments the orthographic form into morphs with-
out canonicalization. Earlier work by Cotterell et
al. (2015a) applied this model to supervised mor-
phological segmentation. We use the feature set as
Cotterell et al. (2015a), but we do not incorporate
their augmented morphotactic state space.

Baseline: WFST Segmenter Our second baseline
is a weighted finite-state transducer (Mohri, 1997)
with a log-linear parameterization (Dreyer et al.,
2008). We use the stochastic contextual edit model
of Cotterell et al. (2014). We employ context n-gram
features (up to 6-grams) on the input string to the left
and right of the edit location in addition to 2-gram
features on the lower string. The context features are
then conjoined with the exact edit action. We refer
the reader to Cotterell et al. (2014) for more details.
The segmentation boundaries are marked as a distin-
guished symbol in the target string. This model is
not entirely suited for the task as it makes it difficult
to include the rich features we get through ASPELL.

Training and Decoding Details We train all
models with AdaGrad (Duchi et al., 2011; Bottou,
2010). For the joint model, we take 10 samples
(m = 10) for each gradient estimate. See Algorithm
3 of Bengio et al. (2003) for pseudocode for
SGD with importance sampling. The pipeline and
segmentation models use ordinary SGD. We use
L2 regularization with the regularization coefficient
chosen by based on development set performance.

Exact decoding, argmaxs,u p(s, u | w), is in-
tractable. Thus, we use a sampling approximation:

667

argmaxs,u(i) p(s, u(i) | w) where u(1). . . u(m) i.i.d.∼ q.
We use m = 1000 in our experiments. Conditioned
on each sample value for u, we use exact semi-CRF
Viterbi decoding to select s.

4.3 Evaluation Measures
Evaluating morphological segmentation is tricky.
The standard measure for the supervised task is bor-
der F1, which measures how often the segmentation
boundaries posited by the model are correct. How-
ever, this measure assumes that the concatenation
of the segments is identical to the input string (i.e.,
surface segmentation) and is thus not applicable
to canonical segmentation. On the other hand, the
Morpho Challenge competition (Kurimo et al., 2010)
uses a measure that samples a large number of word
pairs from a linguistic gold standard. A form is con-
sidered correct if the gold standard contains at least
one overlapping morph and the model posits at least
one overlapping morph—this is problematic because
for languages with multi-morphemic words (e.g.,
German), one should consider all morphs. Moreover,
we can actually recover the linguistically annotated
gold standard in contrast to unsupervised methods.

Instead, we report results under three measures: er-
ror rate, edit distance and morpheme F1. Error rate is
the proportion of analyses that are completely correct.
Since error rate gives no partial credit, we also report
edit distance between the predicted analysis and the
gold standard, where both are encoded as strings us-
ing a distinguished boundary character at segment
boundaries. Finally, morpheme F1 (van den Bosch
and Daelemans, 1999) considers overlap between the
set of morphemes in the model’s analysis and the set
of morphemes in the gold standard. In this case, pre-
cision asks how often did the predicted segmentation
contain morphemes in the gold standard and recall
asks how often were the gold standard morphemes in
the predicted segmentation.

4.4 Results and Error Analysis
Table 1 gives results for the three measures. Under
error rate and morpheme F1 our joint model per-
forms the best on all three languages, followed by
our pipeline model and then the two baselines. In
fact, we observe that error rate and F1 are quite corre-
lated in general. Under edit distance, the joint model
is the best model on German and Indonesian, but the

pipeline model is superior on English. Error analysis
indicates that the lower performance is due to spuri-
ous insertions. For example, our model incorrectly
analyzes ruby (stone) as ruble-y, mistaking the ruby
as an adjectival form of ruble (the Russian currency);
the correct analysis is ruby 7→ ruby. We believe
that a richer transduction component may fix some
of these problems. Overall, our joint model performs
well; it is on average within one edit operation of the
gold segmentation on three languages.

Unsurprisingly, the WFST performs poorly be-
cause it cannot leverage segment-level features (e.g.,
ASPELL features), which are available to the other
models. The performance of the semi-CRF is limited
by the orthographic changes in the language, which it
cannot model. German is rich in such changes, hence
the semi-CRF performs poorly and gets more than
half the test cases wrong.

5 Conclusion

We presented a joint model for the task of canonical
morphological segmentation, which extends exist-
ing approaches with the ability to learn orthographic
changes. We argue that canonical morphological
segmentation provides a useful analysis of linguistic
phenomena (e.g., derivational morphology) because
the sequence of morphemes is canonical—making it
evident, which words share morphemes. Our model
outperforms two baselines on three languages.

Acknowledgments

This material is based in part on research sponsored
by DARPA under agreement number FA8750-13-
2-0017 (the DEFT program) and the National Sci-
ence Foundation under Grant No. 1423276. RC was
funded by a DAAD Long-Term Research Grant. HS
was supported by DFG (SCHU 2246/4-2).

References

Mohamed Afify, Ruhi Sarikaya, Hong-Kwang Jeff Kuo,
Laurent Besacier, and Yuqing Gao. 2006. On the use
of morphological analysis for dialectal Arabic speech
recognition. In INTERSPEECH.

R Harald Baayen, Richard Piepenbrock, and Rijn van H.
1993. The CELEX lexical data base on CD-ROM.

Yoshua Bengio, Jean-Sébastien Senécal, et al. 2003.

668

Quick training of probabilistic neural nets by impor-
tance sampling. In AISTATS.

Léon Bottou. 2010. Large-scale machine learning with
stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In ACL.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2014.
Stochastic contextual edit distance and probabilistic
FSTs. In ACL.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015a. Labeled morphological seg-
mentation with semi-Markov models. In CoNLL.

Ryan Cotterell, Nanyun Peng, and Jason Eisner. 2015b.
Modeling word forms using latent underlying morphs
and phonology. TACL, 3:433–447.

Thomas M Cover and Joy A Thomas. 2012. Elements of
information theory. John Wiley & Sons.

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proceedings of the
ACL-02 workshop on Morphological and phonologi-
cal learning-Volume 6, pages 21–30. Association for
Computational Linguistics.

Sajib Dasgupta and Vincent Ng. 2007. High-performance,
language-independent morphological segmentation. In
NAACL.

Markus Dreyer and Jason Eisner. 2009. Graphical models
over multiple strings. In EMNLP.

Markus Dreyer, Jason R Smith, and Jason Eisner. 2008.
Latent-variable modeling of string transductions with
finite-state methods. In EMNLP.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learn-
ing Research, 12:2121–2159.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational lin-
guistics, 27(2):153–198.

Sharon Goldwater, Thomas L Griffiths, and Mark Johnson.
2009. A Bayesian framework for word segmentation:
Exploring the effects of context. Cognition, 112(1):21–
54.

Martin Haspelmath and Andrea Sims. 2013. Understand-
ing morphology. Routledge.

Michael Kenstowicz. 1994. Phonology in Generative
Grammar. Blackwell.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. 2010.
Semi-supervised learning of concatenative morphology.
In Proceedings of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology and
Phonology.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and Krista
Lagus. 2010. Morpho Challenge competition 2005–
2010: evaluations and results. In SIGMORPHON.

Septina Dian Larasati, Vladislav Kuboň, and Daniel Ze-
man. 2011. Indonesian morphology tool (morphind):
Towards an Indonesian corpus. In Systems and Frame-
works for Computational Morphology, pages 119–129.
Springer.

David JC MacKay. 2003. Information Theory, Inference
and Learning Algorithms. Cambridge University Press.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational linguis-
tics, 23(2):269–311.

Jason Naradowsky and Sharon Goldwater. 2009. Improv-
ing morphology induction by learning spelling rules.
In IJCAI.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword spot-
ting. In EMNLP.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation with
log-linear models. In NAACL. Association for Compu-
tational Linguistics.

Christian Robert and George Casella. 2013. Monte Carlo
statistical methods. Springer Science & Business Me-
dia.

Reuven Y Rubinstein and Dirk P Kroese. 2011. Sim-
ulation and the Monte Carlo method. John Wiley &
Sons.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and
Mikko Kurimo. 2013. Supervised morphological seg-
mentation in a low-resource learning setting using con-
ditional random fields. In CoNLL.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional random
fields. In EACL.

Sunita Sarawagi and William W Cohen. 2004. Semi-
Markov conditional random fields for information ex-
traction. In NIPS.

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morphological
segmentation and syntactic analysis. TACL.

Noah A. Smith and Jason Eisner. 2005. Contrastive
estimation: Training log-linear models on unlabeled
data. In ACL.

Antal van den Bosch and Walter Daelemans. 1999.
Memory-based morphological analysis. In ACL.

Britta D Zeller, Jan Snajder, and Sebastian Padó. 2013.
DErivBase: Inducing and evaluating a derivational mor-
phology resource for german. In ACL.

669

Proceedings of NAACL-HLT 2016, pages 670–680,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Syntactic Parsing of Web Queries with Question Intent

Yuval Pinter1, Roi Reichart1,2, and Idan Szpektor1

1Yahoo Research, Haifa 31905, Israel, {yuvalp, roiri, idan}@yahoo-inc.com
2Faculty of Industrial Engineering and Management, Technion, IIT

Abstract

Accurate automatic processing of Web queries is im-
portant for high-quality information retrieval from
the Web. While the syntactic structure of a large
portion of these queries is trivial, the structure of
queries with question intent is much richer. In this
paper we therefore address the task of statistical
syntactic parsing of such queries. We first show
that the standard dependency grammar does not ac-
count for the full range of syntactic structures man-
ifested by queries with question intent. To allevi-
ate this issue we extend the dependency grammar to
account for segments – independent syntactic units
within a potentially larger syntactic structure. We
then propose two distant supervision approaches for
the task. Both algorithms do not require manually
parsed queries for training. Instead, they are trained
on millions of (query, page title) pairs from the Com-
munity Question Answering (CQA) domain, where
the CQA page was clicked by the user who initiated
the query in a search engine. Experiments on a new
treebank1 consisting of 5,000 Web queries from the
CQA domain, manually parsed using the proposed
grammar, show that our algorithms outperform alter-
native approaches trained on various sources: tens of
thousands of manually parsed OntoNotes sentences,
millions of unlabeled CQA queries and thousands of
manually segmented CQA queries.

1 Introduction

As the World Wide Web grows in volume, it encompasses
ever-increasing amounts of text. A major gateway to this
invaluable resource is Web queries which users compose
to guide a search engine in retrieving the information they
desire to inspect. Automatic processing of Web queries is
therefore of utmost importance.

1This treebank has been released via Yahoo’s Webscope pro-
gram: webscope.sandbox.yahoo.com.

Previous research (Bergsma and Wang, 2007; Barr et
al., 2008) suggested that many Web queries are trivial in
structure, usually embodying entity lookup, e.g. “frozen”
or “condos in NY”. However, with the increasing popular-
ity of Community Question Answering (CQA) sites, such
as Yahoo Answers, StackOverflow and social QA forums,
more Web queries encompass information needs related
to questions that these sites can answer. We found that
this subcategory of queries, which we call CQA queries
(following Liu et al. (2011; Carmel et al. (2014)), exhibits
a wide range of structures. This suggests that the process-
ing of such queries, which constitute∼10% of all queries
issued to search engines (White et al., 2015), may benefit
from syntactic analysis (Tsur et al., 2016).

Recent progress in statistical parsing (Choi et al.,
2015) has resulted in models that are both fast, pars-
ing several hundred sentences per second, and accurate.
These parsers, however, still suffer from the problem
of domain adaptation (McClosky et al., 2010), excelling
mostly when their training and test domains are similar.
This problem is of particular importance in the hetero-
geneous Web (Petrov and McDonald, 2012) and is ex-
pected to worsen when addressing queries, due to their
non-standard grammatical conventions.

Some recent work addresses the syntactic analysis of
User Generated Content (UGC) (Petrov and McDonald,
2012; Eisenstein, 2013; Kong et al., 2014). Yet, these
efforts generally focus on UGC aspects related to gram-
matical mistakes made by users (Foster et al., 2008) and
to the unique writing conventions of specific Web plat-
forms, such as Twitter (Foster et al., 2011; Kong et al.,
2014). Our analysis of thousands of CQA queries, how-
ever, reveals that regardless of such issues, CQA queries
are generated by a well-defined grammar that sometimes
deviates from the one used to generate the standard writ-
ten language of edited resources such as newspapers.

Consequently, this work has two main contributions.
First, we extend the standard dependency grammar to de-

670

(a)
invent toy school project

root

nn
nn

dobj

(b)
invent toy school project

root

dobj nn

root

Figure 1: A two-segment query, parsed by an off-the shelf parser: (a) as
is, producing an incorrect noun phrase (“toy school project”); (b) after
correct segmentation.

scribe the syntax of queries with question intent. The ex-
tended grammar is driven by the concept of a syntactic
segment: an independent syntactic unit within a poten-
tially larger syntactic structure. A query may include
several segments, potentially related to each other se-
mantically but lacking an explicit syntactic connection.
Hence, query analysis consists of the query’s segments
and their internal dependency structure, and may be com-
plemented by the inter-segment semantic relationships.
Therefore, we constructed a new query treebank consist-
ing of 5,000 CQA queries, manually annotated accord-
ing to our extended grammar. A comparison of direct
application of an off-the-shelf parser (Clear (Choi and
McCallum, 2013)) trained on edited text (OntoNotes 5
(Weischedel et al., 2013)) to a raw query with the appli-
cation of the same parser to the gold-standard segments
of that query is given in Fig. 1.

Second, we develop two CQA query parsing algo-
rithms that can adapt any given off-the-shelf dependency
parser trained on standard edited text to produce syntactic
structures that conform to the extended grammar. Both
our algorithms employ distant supervision in the form
of a training set consisting of millions of (query, title)
pairs. The title is the title of the Yahoo Answers ques-
tion page that was clicked by the user who initiated the
query. The alignment between the query and the title
provides a valuable training signal for query segmenta-
tion and parsing, since the title is usually a grammatical
question. Both algorithms employ an off-the-shelf parser,
but differ on whether segmentation and parsing are per-
formed in a pipeline or jointly.

We compared our algorithms to several alternatives:
(a) Direct application of an off-the-shelf parser to queries;
(b) A supervised variant of our pipeline algorithm where
thousands of manually segmented queries replace the dis-
tant supervision source; and (c) A pipeline algorithm sim-
ilar to ours where segmentation is based on the predic-
tions of a query language model. We report results on two
query treebank tasks: (a) Dependency parsing, reporting
Unlabeled Attachment Score (UAS); and (b) Query seg-
mentation, which reflects the core aspect of the extended

grammar compared to the standard one.
In experiments on our new treebank, our joint model

outperformed the alternatives on UAS for the full test set
and for the subset of single-segment queries. Our pipeline
model excelled both on UAS and on segmentation F1 for
two large subsets that are automatically identifiable at test
time: (a) Queries that consist mostly of content words
(42.4% of the test set); and (b) Queries for which the
confidence score of the off-the-shelf parser is at most 0.8
(30% of the test set). It also beat all other models on the
subset of multi-segment queries.

2 Previous Work

The Web attracts considerable NLP research attention
(e.g. Eisenstein (2013)). Here we focus on grammar and
parsing of Web data in general and queries in particular.

Syntactic Query Analysis Web queries differ from
standard sentences in a number of aspects: they tend to
be shorter, not to follow standard grammatical conven-
tions, and to convey more information than can be di-
rectly inferred from their words. Consequently, a number
of works addressed their syntactic analysis. Allan and
Raghavan (2002) use part-of-speech (POS) tag patterns
in order to manually map very short queries into clarifi-
cation questions, which are then presented to the user to
help them clarify their intent. Barr et al. (2008) trained
POS taggers for Web queries and used a set of rules to
map the resulting tagged queries into one of seven syntac-
tic categories, whose merit is tested in the context of in-
formation retrieval tasks. Manshadi and Li (2009) and Li
(2010) addressed the task of semantic tagging and struc-
tural analysis of Web queries, focusing on noun phrase
queries. Bendersky et al. (2010) used the POS tags of the
top-retrieved documents to enhance the initial POS tag-
ging of query terms. Bendersky et al. (2011) proposed
a joint framework for annotating queries with POS tags
and phrase chunks. Ganchev et al. (2012) trained a POS
tagger on automatically tagged queries. The POS tags of
the training queries are projected from sentences contain-
ing the query terms within Web pages retrieved for them.
The retrieved sentences were POS tagged using an off-
the-shelf tagger. These works, as opposed to ours, do not
aim to produce a complete syntactic analysis of queries.

Syntactic Parsing of Web Data To the best of our
knowledge, only a handful of works have aimed at build-
ing syntactic parsers for Web data. Petrov and McDonald
(2012) conducted a shared task on parsing Web data from
the Google Web Treebank, consisting of texts from the
email, weblog, CQA, newsgroup, and review domains.
The participating systems relied mostly on existing do-
main adaptation techniques to adapt parsers trained on
existing treebanks of edited text to the Web. Foster et al.

671

(2011) took a similar approach for tweet parsing. Con-
trary to our approach, these works rely on existing gram-
matical frameworks, particularly phrase-structure and de-
pendency grammars, and do not aim at adapting them to
domains such as Web queries, where standard grammar
does not properly describe the language. This may be the
reason Web queries were not included in the shared task.

A work that is more related to ours is Kong et al.
(2014), who addressed the task of tweet parsing. Like
us, they adapt the grammatical annotation scheme to the
target linguistic domain and produce a multi-rooted syn-
tactic structure. However, CQA queries and tweets ex-
hibit different syntactic properties: (1) tweets often con-
sist of multiple sentences, while CQA queries are con-
cise in nature and usually correspond to a phrase, a frag-
ment of a sentence, or several of these concatenated; and
(2) queries are generated in order to retrieve information
from the Web. Tweets, on the other hand, usually aim to
convey a short message. These differences lead us to take
approaches substantially different from theirs.

3 CQA Query Grammar

3.1 Motivating Analysis

In this section we define the class of CQA queries and
analyze their properties in comparison with other writing
genres. This analysis will establish the motivation for the
extension of standard dependency grammar so that it ac-
counts for CQA queries (§3.2).

The data we analyzed consists of queries randomly
sampled from the Yahoo Answers log. In cases where a
searcher, after issuing a Web query on a search engine,
viewed a question page on Yahoo Answers, a popular
CQA site, this query is logged. From this log we sampled
100K queries for our analysis, as well as 5,000 additional
queries for constructing a query treebank (see §3.3).

According to Barr et al. (2008), who analyzed queries
from Yahoo’s search engine, 69.8% of general Web
queries are composed of a single noun phrase, leaving lit-
tle room for a meaningful taxonomy. Focusing on CQA
queries removes this bias and allows exploration of ad-
ditional syntactic categories of queries. Especially, we
would like to delve into the categories Barr et al. label
as word salad (e.g. “mp3s free”) and other-query (e.g.
“florida reading conference 2006”), cited as composing
8.1% and 6.8% of all queries respectively and for which
no analysis is offered.

To characterize the domain of CQA queries, we com-
pare its properties to those of other Web domain sam-
ples: (a) 100K general Web queries; (b) 120K titles of
questions posted on Yahoo Answers; and (c) 100K story
bodies from Yahoo News. In our analysis, individual sen-
tences were identified using the OpenNLP sentence split-

ting tool2, POS-tagged by the Stanford parser (Klein and
Manning, 2003)3 and syntactically parsed using the Clear
parser (Choi and McCallum, 2013)4.

Table 1 presents four measures of syntactic complex-
ity (four leftmost measure columns). The first column re-
ports the average number of word tokens per parsed item.
The second column contains the median and mean de-
pendency tree depths, defined as the number of edges in
the longest path from the root node to a leaf in the tree.
The third and fourth columns present the fraction of de-
pendency tree root edges that go to words POS-tagged
as nouns or as verbs, respectively. We use these last two
measures as proxies of the syntactic category of the in-
put text, with noun roots often indicating simple noun
phrases and verb roots often indicating more complex
syntactic forms that include a verb argument structure5.
Finally, the rightmost column of the table presents the
average parser confidence per item provided by Clear,
which we use as a proxy for parsing difficulty.

As the table shows, both CQA and general Web queries
are harder to parse (according to parser confidence) com-
pared to news article sentences and CQA question ti-
tles. Yet, CQA and general Web queries strongly differ
with respect to their syntactic complexity. Indeed, CQA
queries have substantially more tokens and deeper trees.
Moreover, while 62.9% of the root nodes in general query
parse trees govern a noun and 30.3% govern a verb, in
CQA queries the respective figures are flipped: 32.2%
and 62.7%, respectively.

3.2 Dependency Grammar Extension for Queries

Our analysis above reveals the special status of CQA
queries. Like general Web queries, CQA queries are hard
to parse. However, while the difficulty of parsing general
Web queries may result from their short length and shal-
low syntactic structure, CQA queries are longer and seem
to have a deeper syntactic structure.

Based on our manual inspection of thousands of the
queries used in the above analysis, we propose an exten-
sion of the standard dependency grammar so that it ac-
counts for CQA queries. Our reasoning is that the gram-
matical structure of CQA queries is a syntactic forest.
The query’s tokens are partitioned into one or more con-
tiguous syntactic segments, each representing a maximal
constituent unit syntactically independent of the other
units. The final syntactic representation of the query con-
sists of a set of trees produced according to the Stanford
Dependency schema (De Marneffe and Manning, 2008),

2opennlp.apache.org
3Manual inspection revealed that this parser outperforms the Stan-

ford tagger (Toutanova et al., 2003) on these sets.
4Version 2.0.1, parsing model 1.2. www.clearnlp.com
5We verified this hypothesis by manual inspection of the 1,000 de-

velopment set queries (see §3.3).

672

Corpus Average Median (mean) root→ NN∗ root→ V B∗ Average parser
token count tree depth edges (%) edges (%) confidence

News article sentences 18.4 6 (6.5) 12.0 84.8 0.898
CQA question titles 10.5 4 (4.5) 10.0 86.9 0.991
CQA queries 6.4 4 (3.7) 32.2 62.7 0.809
General queries 4.5 3 (3.0) 62.9 30.3 0.752

Table 1: Syntactic properties of four types of Web domains. The four leftmost properties are proxies of syntactic complexity. The fifth property
(parser confidence) is a proxy of parsing difficulty. The “root → NN∗ edges” and “root → V B∗ edges” columns present the fraction of edges
from the root of the parse tree that go to words POS-tagged as nouns and verbs respectively.

a.
make fake smoke

root

amod
dobj

b.

how is it done o’sullivan test

root root
advmod

auxpass

nsubjpass nn

c.
snowcap lard what animal

root root

nn det

Figure 2: Queries segmented and parsed according to our extended dependency grammar.

one tree per segment. Based on this observation, CQA
queries may consist of several syntactically independent
segments, as opposed to grammatical sentences which
consist of exactly one segment. Importantly, query seg-
ments are syntactically independent, although they tend
to be semantically related.

Figure 2 provides examples of parsed queries. Query
(a) consists of a single segment, a verb phrase rooted by
the word make. Query (b) is composed of two segments
that are syntactically independent, but semantically con-
nected. Particularly, the first segment is an interrogative
sentence rooted in the word done and the second is a noun
phrase which specifies the pronoun it from the first seg-
ment. Finally, query (c) consists of two segments, each
a noun phrase, presumably connected by an is-made-of
semantic relation. As in query (b), the segments of this
query are syntactically independent, but unlike query (b),
their semantic connection is more loose. The existence of
such loose connections motivates us to exclude semantic
subcategorization from the syntactic layer.

We note that the notion of segment has another mean-
ing, within the task of query segmentation (Bergsma and
Wang, 2007; Guo et al., 2008; Tan and Peng, 2008;
Mishra et al., 2011; Hagen et al., 2012). This task’s
goal is to identify words in the query that together form
compound concepts or phrases, like “Chicago Bulls”. As
such, this task differs from ours as it defines segmentation
in semantic rather than syntactic terms.

We also note that query segments are distinct from the
concept of fragments in constituency parsing. Marcus
et al. (1993) introduce fragments in order to overcome
problems involving the attachment point of various mod-
ifying phrases, e.g. in the sentence ‘In Asia, as [FRAG
in Europe], a new order is taking shape’. While proper
treatment of such phrases often requires extra syntactic
information, their syntactic connection to other parts of
the sentence is present, unlike between query segments.

3.3 Query Treebank
Following our proposed grammar, we constructed a tree-
bank by manually annotating 5,000 queries that landed on
Yahoo Answers (see §3.1). These queries were randomly
split into a 4,000-query test set and a 1,000-query devel-
opment set. Four human annotators segmented both sets,
and parsed the test set with unlabeled dependency trees
(including POS tags). The annotators’ sets did not over-
lap, yet cross-reviews were made in cases deemed diffi-
cult by them. On a validation set of 100 queries tagged by
all annotators, the agreement scores measured were 0.97
for segmentation and 0.96 for dependency edges.

To evaluate how well out-of-the-box parsers conform
with our grammar, we applied seven dependency parsers
to the 4,000-query test set. We trained all parsers on the
OntoNotes 5 training set 6 and applied them: (a) to each
gold-standard segment of each query; and (b) to full, un-
segmented, queries. For comparison we also recap the
performance of the parsers on the OntoNotes 5 test set as
reported in Choi et al. (2015). The same non-gold POS
tags were provided to all parsers (see §6.2).

The results, presented in Table 2, establish the diffi-
culty of our task: UAS differences between OntoNotes
and full queries range from 13.4% to 18.6%. Moreover,
injecting gold segmentation knowledge increases the per-
formance of the parsers by 5.3-5.9%, highlighting the
value of accurate segmentation in syntactic query anal-
ysis. Finally, the ranking of the parsers with respect to
their accuracy on queries differs from their ranking with
respect to accuracy on OntoNotes, raising Redshift to first
place and dropping RBG to last place.

Since knowledge of segment boundaries consistently
improves parsing quality in our analysis, we next present
two distant supervision approaches that attempt to dis-
cover the segments of an input query and return a parse
forest that adheres to the segment boundaries.

6This parser training convention was kept throughout the paper.

673

Parser ON5 Segmented Full
Queries Queries

Redshift (Honnibal et al., 2013) 91.0 82.5 76.6
Mate (Bohnet and Nivre, 2012) 91.6 81.4 75.5
Clear (Choi and McCallum, 2013) 91.3 80.7 75.4
SNN (Chen and Manning, 2014) 88.2 80.7 74.8
GN13 (Goldberg and Nivre, 2013) 89.2 80.5 74.8
Turbo (Martins et al., 2013) 89.6 79.4 73.9
RBG (Lei et al., 2014) 91.4 78.5 72.8

Table 2: UAS of out-of-the-box parsers trained on OntoNotes 5. RBG is reported on its best-performing setting, basic.

Question Title Associated Query (After segmentation) Segmentation Cue
1 How many crickets to feed 7 month old leopard gecko? [leopard gecko] [7 month old] [how many to feed] Reordering (x2)
2 Does any1 think that Heath Ledger is Cute? [heath ledger] [cute] Intruding BE
3 Does Beijing still have license plate restrictions? [beijing] [license plate restrictions] Intruding HAVE
4 Do you know the song “Little Sister” by Queens of the Stone Age? [little sister] [queens] Intruding IN
5 What came first the jedi or the sith? [what came first jedi] [sith] Intruding CC
6 What do you think of a double major in Finance and Marketing? [double major] [finance] [marketing] Intruding IN, CC

Table 3: Examples for title-query pairs with the resulting segmentation and the corresponding segmentation cues. Note that they do not necessarily
produce correct data.

4 A Pipeline Segmentation-Parsing Model

As our first approach, we present a query segmentation
algorithm which can be combined with an off-the-shelf
parser in two ways in order to form a pipeline query pars-
ing system: (a) first segmenting the query and then apply-
ing the parser to each of the segments; or (b) first parsing
the query and then fixing the resulting dependency tree
so that it conforms with the segmentation. In the sec-
ond setup the parser’s output is aligned against the seg-
mentation such that dependency edges which cross seg-
ment boundaries are re-assigned to become root edges. In
our experiments we found that, for all our tested pipeline
models, the first setup performed slightly better. We
therefore report results only for this setup.

Our segmentation algorithm is based on the observa-
tion that CQA queries are generated in order to express
a searcher’s need which is likely to be formulated as a
question on the web page that they then visit, and that
this paraphrasing can serve as a source for query seg-
mentation cues. The algorithm therefore inspects at train-
ing time (query,title) pairs where title is the title of a Ya-
hoo Answers question page that was clicked by the user
who initiated query. A query for which a full word-wise
alignment to the clicked question can be found is an-
notated with segmentation markers according to several
cues, then added to the training set.

Segmentation Cues The following cues are used for
detection of query segment boundaries:

• Reordering: a part of the query which appears in
the title out of order relative to another part of the
query is marked as a segmentation location on both
ends (ex. #1 in Table 3). This rule accounted for

about 32% of the segmentation cues.

• Intruding word classes: if between two words
which appear adjacent in the query there are words
of certain classes in the question title, the position
between them is marked for segmentation. These
classes include the verb BE and its conjugations (ex.
#2), HAVE and its conjugations (ex. #3), preposi-
tions (ex. #4, #6), and conjunctions (ex. #5, #6).
In addition, any multi-word intruding sequence that
contains a word of these classes in one of the last
three positions is construed as a cue.

Training Set Generation We started with a query log
for 60 million Yahoo Answers pages. We filtered out ti-
tles of more than 20 words, titles that do not start with a
question word, and titles that do not have an associated
query which after lowercasing and punctuation removal
contains only words from the title (as well as possibly
‘site:’ terms or the word ‘to’). The remaining 7.5 mil-
lion queries were automatically segmented according to
the above cues. A sample of 100 queries was found to
have a segmentation F1 score (defined in §6.2) of 64.5.

Model and Training We trained a linear chain CRF
with pairwise potentials (Lafferty et al., 2001)7 on the
set of 7.5M automatically segmented queries. The model
employs the following standard features: (a) unigram
and bigram word features (±2 and ±1 windows around
the represented word respectively); (b) unigram and bi-
gram POS features (in a ±2 window); (c) unigram
word+POS features (±1 window); and (d) distance of
word from start and end of query, as well as each distance
combined with word and/or POS.

7We used CRF++ (crfpp.googlecode.com)

674

Algorithm 1 Projection-based query parsing
1: function FINDPROJECTIONBASEDSEGMENTPARSE-

TREES(QUERY)
2: question← Q2Q(query)
3: parse← OffTheShelfParse(question)
4: for Node n in parse do
5: if n.text does not match token in query then
6: CollapseAllEdges(n, parse)
7: parse.remove(n)
8: segment-trees← ∅
9: for Node r in parse.root.children do

10: segment-trees.add(Tree(r))
return segment-trees

1: function COLLAPSEALLEDGES(N, PARSE)
2: in← n.incomingEdge
3: for Edge out in n.outgoingEdges do
4: label← GenerateLabel(in.type, out.type)
5: if n.POS is preposition or conjunction then
6: parse.addEdge(parse.root, out.target, ’root’)
7: else
8: parse.addEdge(in.source, out.target, label)

5 A Joint Projection-based Model
An alternative distant supervision approach is to employ
the (query,title) pair set in the training of a model that
maps queries to natural language questions. These in-
ferred questions are supposedly easier to parse as they
follow standard grammatical conventions. A query pars-
ing algorithm that employs such a mapping component
has three steps: first, a grammatical question with a sim-
ilar information need to that of the query is automati-
cally inferred. Then, the inferred question is parsed by
an off-the-shelf dependency parser, trained on a gram-
matical corpus. Finally, the question parse is projected
onto the query, inducing the query’s multi-rooted syn-
tactic forest. Algorithm 1 presents pseudo-code for the
projection-based query parsing algorithm.

The first step maps a given user query to a syn-
thetic natural-language question. For this step we imple-
mented the Query-to-Question (Q2Q) algorithm of Dror
et al. (2013). Q2Q maps queries into valid CQA ques-
tions by instantiating templates that were extracted out
of (query,title) pairs taken from the page view log of a
CQA site. We trained the Q2Q algorithm on millions
of (query,title) pairs taken from the Yahoo Answers log,
where each title starts with a question word and query
length ≥ 3.

Our algorithm obtains the top inferred Q2Q ques-
tion and parses it using an off-the-shelf parser, trained
on grammatical English sentences (lines 2-3 in Algo-
rithm 1). It then projects the question parse tree onto the
original query to generate its syntactic structure, in ac-
cordance with the extended dependency grammar (§3.2),
as follows. First (lines 4-7), the algorithm traverses the

question parse, removing all question tokens that do not
appear in the query and reassigning the dependents of
each removed token to be headed by its parent. In ad-
dition, as prepositions and conjunctions inserted by the
Q2Q templates are strong signals of segmentation, parse
subtrees governed by such nodes are also treated as sepa-
rate segments. Following this phase, all remaining ques-
tion tokens appear in the query. The algorithm is then left
with a syntactic forest, since the root node may have mul-
tiple children, each one defining a query segment. Lines
8-10 extract these segments and their parse trees.

Figure 3 shows the projection process for two queries,
the second of which demonstrates how an added prepo-
sition (‘on’) invokes segmentation. We emphasize that
the only manually annotated data required for the train-
ing of our joint model is a treebank of standard edited text
(OntoNotes 5), used for training the off-the-shelf parser.

Since we expect the projected query parse to produce
trees for contiguous segments, we only accept the top
Q2Q result where the query word order is maintained in
the question, and use an off-the-shelf parser which pro-
duces projective trees. In addition, the projection algo-
rithm may collapse several edges from the question tree
into a single edge within a query segment tree, leaving
the resulting label unspecified. In this work we evaluate
unlabeled parse trees and therefore defer the treatment of
this issue to future work (leaving GenerateLabel() in
line 4 of Algorithm 1 unspecified).

6 Experiments
6.1 Models
We evaluated the following models (summarized in Ta-
ble 4) on our new query treebank (§3.3):

Distant Supervision Models Our proposed pipeline
(§4) and joint (§5) models. Our pipeline model, de-
noted by DistPipe, performs query segmentation and then
parses each segment. Our projection-based joint model,
denoted by Q2QProj, parses an inferred question for the
query and projects the parse tree on the query. Both mod-
els use the Clear parser for parsing. Importantly, both our
models do not require any type of manually annotated
queries (parsed or segmented) for training.

The Q2Q algorithm employed by our joint model re-
turns a question for only 2954 of the 4000 test set queries.
We thus reverted to the full-query parsing baseline when
it returned no result.

Baselines The first natural baseline is the Clear parser,
which is employed by our models. We note that while
Clear is not constrained to output a single segment tree8,
in practice it generated a multi-segment structure for
∼2% of the development queries, compared to ∼25% of

8Personal communication with the authors.

675

are instant noodles bad for you

root

amod

nsubj

acomp

prep

pobj

=⇒
instant noodles bad

root root

amod

what is a command prompt on a mac

root

nsubj

det

nn

attr

prep

det

pobj

=⇒
command prompt mac

root root

nn

Figure 3: Question parse trees and their projections onto the queries they were generated for. Solid edges are preserved in the projection, dotted
edges are removed, and dashed edges are collapsed (in both cases demonstrated, into root edges).

Group Setup name Segmentation Process
Benchmark Gold gold pipeline
Ensemble Ens CRF ensemble pipeline

Supervised Sup supervised CRF pipeline
Distant DistPipe distant CRF pipeline

Supervision Q2QProj from question parse projection

Baselines Lm NNLM pipeline
Clear from parse parser only

Table 4: The algorithms evaluated in this work.

the queries in the gold standard annotation, making it ill-
qualified for multi-segment queries.

As a second baseline, denoted by Lm, we constructed
a pipeline model identical to ours expect that segmen-
tation is performed with a Language model (LM) based
approach. For this aim we applied a Neural-Network
language model (NNLM) (Mikolov, 2012) to each input
query. For each word the language model computes its
likelihood given the current model state, which is based
on previous words. We then used the 1,000-query devel-
opment set to find the optimal probability threshold for
which words with estimated probability under the thresh-
old are considered “surprising” and therefore mark the
beginning of a new segment. We learned a language
model9 with 200 dimensions over 20M randomly sam-
pled queries of length ≥ 3.

Supervised Models We further compare our distant su-
pervision approach to an algorithm that does use manu-
ally annotated queries for training, denoted by Sup. For
this aim we implemented a pipeline model identical to
ours, except that the pairwise linear-chain CRF is trained
on manually-annotated queries. The algorithm is trained
and tested following a 5-fold cross-validation protocol
over the 4,000-query test set.

Ensemble Model We also tested the complementary
aspects of distant and manual supervision by construct-

9NNLM implementation in rnnlm.org with default parameters.

ing the same pipeline model, except that segmentation
is based on both types of supervision sources. We ex-
perimented with various ensemble generation techniques,
and the one that has shown to work best was a method
that unifies the segmentation decisions of the distant-
supervised and supervised CRFs: the model, denoted by
Ens, considers a token to be a segment boundary if it is
considered to be so by at least one of the CRFs.

Gold Segmentation An upper-bound benchmark to our
pipeline approach. This is a pipeline model, denoted by
Gold, that is identical to ours, except that the segmenta-
tion is taken from the gold standard.

6.2 Evaluation Tasks and Data Pre-Processing
We consider two evaluation tasks: (a) Dependency pars-
ing, reporting Unlabeled Attachment Score (UAS); and
(b) Query Segmentation, reporting the F1 score, where
each segment is represented by its boundaries: in order
for an observed segment to be considered correct, both of
its ends must match those of a gold segment.

All tested algorithms, except for our joint model, di-
rectly segment and parse queries and hence require these
queries to be POS-tagged. Thus, we POS-tagged the test-
set queries with the OpenNLP10 POS tagger which was
adapted to queries using the self-training algorithm of
Ganchev et al. (2012). Our self-training set consisted of
14M (query,title) pairs from the Yahoo Answers log. This

10opennlp.apache.org

676

tagger reached 88.2% accuracy on our query treebank,
compared to 81.3% of the off-the-shelf tagger11.

Analyzing our development set we noticed that a very
strong indicator that a query is a grammatical, and thus
consists of a single segment, is when it starts with a WH-
word or an auxiliary verb. Hence, in all pipeline models,
except Gold, we do not segment such queries but rather
directly apply the Clear parser to them. In postmortem
analysis of the test set we found that this indicator was
correct for 93.2% of the 1600 detected queries with 40%
recall with respect to the single-segment queries subset.

6.3 Results
Tables 5 and 6 present the results of our experiments. The
All Queries column in Table 5 reports the performance of
the tested models on the full test set. Overall, methods
based on distant and manual supervision are superior to
the baseline methods in both measures. Interestingly, our
Q2QProj model performs best in terms of UAS (77.1%)
although its segmentation F1 is mediocre (63.5). In terms
of UAS, the distant-supervised and supervised models ap-
proach the performance of the upper bound gold standard
segmentation. For example, Q2QProj is outperformed by
Gold by only 3.6%. The Clear parser baseline, which is
not trained to identify multiple segments, lags 5.7-5.8 F1
points behind the models that employ CRF segmentation.
This is translated to a difference in UAS of up to 1.7%.
The Lm baseline, on the other hand, scores substantially
lower than the other models in both measures. This may
be an indication of the syntactic, rather than lexical, na-
ture of our task.

In development set experiments we were able to char-
acterize two subsets of queries on which our distant su-
pervised pipeline model performs particularly well, out-
performing even the supervised pipeline algorithm which
requires thousands of manually annotated queries for
training. One such set is the subset of queries that con-
tain at most one word not tagged with what we define to
be a content word POS, namely: noun, verb, adjective or
adverb (‘≤ 1 ncw’ column in Table 5). Intuitively, this
subset, which accounts for 42.4% of the test set, consists
of queries that convey larger amounts of semantic con-
tent and are structured less coherently. On this subset, our
DistPipe model outperforms the supervised Sup model by
4.1 segmentation F1 points, and by 1.7% in UAS.

The other subset, which accounts for 30% of the test
set, includes those queries for which the confidence score
of the Clear parser, when applied to the whole query, is
at most 0.8 (LowConf column in Table 5). This subset
singles out cases deemed difficult by the parser, indicat-
ing queries with non-standard syntax. Indeed, the perfor-
mance of all models substantially drops compared to the

11Several other taggers we experimented with gave similar accuracy
figures: ClearNLP, the Stanford tagger and the Stanford parser.

full set or the ‘≤ 1 ncw’ set. Here again, DistPipe im-
proves over Sup by 5.8 segmentation F1 points and 1.9%
in UAS, with additional gain by the ensemble model Ens.

Q2QProj performs lower than the pipeline models on
both subsets, suggesting that this approach does not work
for difficult queries as well as it does for more simple
queries. The decreased performance of the Clear baseline
on both these subsets compared to the entire test set is not
surprising, given their challenging syntactic properties.

Altogether, queries belonging to either of the two sub-
sets (or both) account for 50.2% of the full set, empha-
sizing the benefit of developing more sophisticated en-
semble approaches, based on the above characteristics of
queries and the individual tested models.

Next, we turn to Table 6, which compares the per-
formance of the various models on the test subsets
that consist of single-segment or multi-segment queries
only12. Our pipeline model, DistPipe, excels on the
multi-segment subset, achieving a segmentation F1 of
42.2 and UAS of 67.5% compared to only 23.5 and 64.3%
respectively of the fully supervised Sup model. Our joint
model Q2QProj achieves a UAS score similar to the su-
pervised model, though its segmentation performance is
lower. The ensemble model Ens provides additional im-
provement, hinting that the Sup and DistPipe models may
have learned somewhat different segmentation cues. The
segmentation F1 of Clear is as low as 2.2, as its training
set contains only single-segment sentences.

We note that the intersection between the multi-
segment subset and the ‘≤ 1 ncw’ subset is only 622
queries (63.4% of the multi-seg set, 36.7% of ‘≤ 1 ncw’),
and with LowConf it is only 524 queries (53.3% of the
multi-seg set, 43.7% of LowConf). This demonstrates
that our Dist model is of merit for a variety of query types.

On Single-segment queries, our joint model, Q2QProj,
achieves the best UAS. This may be because it pro-
vides the parser with more context for telegraphic single-
segment queries, so much so, that it even outperforms the
Gold benchmark. Both the Q2QProj and DistPipe mod-
els over-segment (86.5 and 86.8 F1), compared to the
near perfect single-segment detection of the supervised
Sup model (96.2). Still, these differences are only mildly
reflected in the UAS scores for single-segment queries.

6.4 Error Analysis
To better understand our distant-supervised signal, we
applied the CRF tagger introduced in §4 (without addi-
tional filtering) to the test set and analyzed two cases:
100 false positives – single-segment queries which were
incorrectly tagged with multiple segments, and 100 false
negatives – multi-segment queries the tagger was wrong
to tag as having a single segment.

12These subsets are extracted using the gold standard and are there-
fore not available to the models at inference time.

677

Test Set All Queries ≤ 1 ncw LowConf
Setup (N=4000) (N=1694) (N=1199)

F1 UAS F1 UAS F1 UAS
Gold 100 80.7 100 81.9 100 73.5
Ens 70.4 76.4 63.5 73.0 59.2 64.6
Sup 70.3 76 59.1 71.1 52.8 62.4
DistPipe 70.3 76.3 63.2 72.8 58.6 64.3
Q2QProj 63.5 77.1 53.1 70.5 47.2 61.1
Lm 37.2 66.6 31.6 59.9 30.8 54.4
Clear 64.6 75.4 51.3 69.5 42.9 60.7

Table 5: Performance of the various models on various automatically-extractable subsets of the data. All Queries is our test set, the others are its
subsets with: ≤ 1 ncw – at most one non-content word according to POS tags; LowConf – a Clear parser confidence score of at most 0.8. ‘F1’
denotes segmentation F1.

Test Set Multi-segment Single-segment
Setup (N=984) (N=3016)

S. F1 UAS S. F1 UAS
Gold 100 83.9 100 79.8
Ens 46.6 68.7 84.8 78.7
Sup 23.5 64.3 96.2 79.4
DistPipe 42.2 67.5 86.8 78.9
Q2QProj 21.2 64.3 86.5 80.9
Lm 29.6 60.4 41.6 68.4
Clear 2.2 60.5 96.9 79.8

Table 6: Performance on queries which have a single segment or mul-
tiple segments according to the gold standard.

Two types of queries cause most false positives cases.
The first type, making up 65% of the errors, is a full (or
nearly-full) question or sentence. In half of these cases,
a word in the middle of the query, which often marks
the beginning of a grammatical question, is incorrectly
marked as a segment start. Such an example is “[sher-
lock is the best show ever]”, where the underlined word
is the incorrectly tagged segment start. The other main
error is the segmentation of a query consisting of a single
noun phrase (19% of the cases), for example “[clothing
product testing]”.

Our false negative analysis discovered four main types
of errors, where a multi-segment query is not segmented.
The most frequent one (35%) is cases where the tagger
did not detect a syntactic cue for a segment start, e.g. in
“[grilling pork chops] [seasoning]”, where ‘and’ is po-
tentially missing. Another common mistake (24%) is a
named entity which is added as its own segment for con-
text (usually in the beginning or the end of the query).
Such a query is “[biotin] [mcg vs mg]”. The third type
of errors (17%) is queries for which segmentation de-
tection requires the understanding of the semantics be-
hind the query. One example is “[movies on youtube]
[list]”, where ‘youtube list’ was construed as a single
noun phrase. The forth type (11%) contains a reference

for a preferred content provider by the searcher on its own
segment, such as “[is illuminati good] [yahoo]”.

This analysis shows that the more frequent errors in-
volve semantics and require either a different segmenta-
tion approach, or more semantic-oriented features.

7 Conclusions
We studied the syntactic properties of Web queries with
question intent. We motivated the need to extend the de-
pendency grammar framework so that it accounts for such
queries, and constructed a new Query Treebank, anno-
tated according to the extended grammar. We then devel-
oped distant-supervised algorithms that can parse queries
according to our grammar. Our algorithms outperform
strong baselines, including a supervised model trained on
thousands of manually segmented queries.

In future work we would like to improve the query
analysis performance of our algorithms. In addition, we
plan to assess the contribution of query parsing to IR
tasks such as document retrieval and query reformulation.

Acknowledgments
We thank: Bettina Bolla and Shir Givoni, for their an-
notation work on Query Treebank; Avihai Mejer, for im-
plementing the Q2Q element of the projection algorithm;
and Joel Tetreault, for providing the infrastructure for the
experiments in Section 3.3.

References
James Allan and Hema Raghavan. 2002. Using part-of-speech

patterns to reduce query ambiguity. In Proceedings of SIGIR.
Cory Barr, Rosie Jones, and Moira Regelson. 2008. The lin-

guistic structure of english web-search queries. In Proceed-
ings of the Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguis-
tics.

Michael Bendersky, W Bruce Croft, and David A Smith.
2010. Structural annotation of search queries using pseudo-

678

relevance feedback. In Proceedings of the 19th ACM inter-
national conference on Information and knowledge manage-
ment, pages 1537–1540. ACM.

Michael Bendersky, W Bruce Croft, and David A Smith. 2011.
Joint annotation of search queries. In Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1. As-
sociation for Computational Linguistics.

Shane Bergsma and Qin Iris Wang. 2007. Learning noun
phrase query segmentation. In EMNLP-CoNLL. Citeseer.

Bernd Bohnet and Joakim Nivre. 2012. A transition-based
system for joint part-of-speech tagging and labeled non-
projective dependency parsing. In Proceedings of EMNLP-
CoNLL, pages 1455–1465. Association for Computational
Linguistics.

David Carmel, Avihai Mejer, Yuval Pinter, and Idan Szpektor.
2014. Improving term weighting for community question
answering search using syntactic analysis. In Proceedings
of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, CIKM 2014,
Shanghai, China, November 3-7, 2014, pages 351–360.

Danqi Chen and Christopher D Manning. 2014. A fast and
accurate dependency parser using neural networks. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), volume 1, pages
740–750.

Jinho D Choi and Andrew McCallum. 2013. Transition-based
dependency parsing with selectional branching. In ACL (1),
pages 1052–1062.

Jino Choi, Joel Tetreault, and Amanda Stent. 2015. It depends:
Dependency parser comparison using a web-based evalua-
tion tool. In Proceedings of ACL-IJCNLP.

Marie-Catherine De Marneffe and Christopher D Manning.
2008. The stanford typed dependencies representation.
In Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation, pages 1–
8. Association for Computational Linguistics.

Gideon Dror, Yoelle Maarek, Avihai Mejer, and Idan Szpektor.
2013. From Query to Question in One Click: Suggesting
Synthetic Questions to Searchers. In Proceedings of WWW
2013.

Jacob Eisenstein. 2013. What to do about bad language on the
internet. In Proceedings of NAACL-HLT.

Jennifer Foster, Joachim Wagner, and Josef van Genabith.
2008. Adapting a wsj-trained parser to grammatically noisy
text. In Proceedings of ACL-HLT: Short Papers.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner, Joseph
Le Roux, Stephen Hogan, Joakim Nivre, Deirdre Hogan,
Josef Van Genabith, et al. 2011. # hardtoparse: Pos tagging
and parsing the twitterverse. In proceedings of the Workshop
On Analyzing Microtext (AAAI 2011), pages 20–25.

Kuzman Ganchev, Keith Hall, Ryan McDonald, and Slav
Petrov. 2012. Using search-logs to improve query tagging.
In Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers).

Yoav Goldberg and Joakim Nivre. 2013. Training deterministic
parsers with non-deterministic oracles. Transactions of the
association for Computational Linguistics, 1:403–414.

Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. 2008. A uni-
fied and discriminative model for query refinement. In Pro-
ceedings of the 31st annual international ACM SIGIR confer-
ence on Research and development in information retrieval,
pages 379–386. ACM.

Matthias Hagen, Martin Potthast, Anna Beyer, and Benno Stein.
2012. Towards optimum query segmentation: in doubt with-
out. In Proceedings of CIKM.

Matthew Honnibal, Yoav Goldberg, and Mark Johnson. 2013.
A non-monotonic arc-eager transition system for dependency
parsing. In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning, pages 163–172.
Citeseer.

Dan Klein and Christopher D. Manning. 2003. Accurate unlex-
icalized parsing. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics - Volume 1.

Lingpeng Kong, Nathan Schneider, Swabha Swayamdipta,
Archna Bhatia, Chris Dyer, and Noah A. Smith. 2014. A
dependency parser for tweets. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

John Lafferty, Andrew McCallum, and Fernando CN Pereira.
2001. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In ICML.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014. Low-rank tensors for scoring dependency
structures. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, volume 1, pages
1381–1391.

Xiao Li. 2010. Understanding the semantic structure of noun
phrase queries. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics.

Qiaoling Liu, Eugene Agichtein, Gideon Dror, Evgeniy
Gabrilovich, Yoelle Maarek, Dan Pelleg, and Idan Szpek-
tor. 2011. Predicting web searcher satisfaction with existing
community-based answers. In Proceeding of the 34th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2011, Beijing, China,
July 25-29, 2011, pages 415–424.

Mehdi Manshadi and Xiao Li. 2009. Semantic tagging of web
search queries. In Proceedings of the ACL-IJCNLP.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice
Santorini. 1993. Building a large annotated corpus of en-
glish: The penn treebank. Computational linguistics.

André FT Martins, Miguel Almeida, and Noah A Smith. 2013.
Turning on the turbo: Fast third-order non-projective turbo
parsers. In ACL (2), pages 617–622. Citeseer.

David McClosky, Eugene Charniak, and Mark Johnson. 2010.
Automatic domain adaptation for parsing. In Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics.

Tomáš Mikolov. 2012. Statistical Language Models Based on
Neural Networks. Ph.D. thesis, Ph. D. thesis, Brno Univer-
sity of Technology.

Nikita Mishra, Rishiraj Saha Roy, Niloy Ganguly, Srivatsan
Laxman, and Monojit Choudhury. 2011. Unsupervised
query segmentation using only query logs. In Proceedings
of WWW, pages 91–92.

679

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. In Notes of the First
Workshop on Syntactic Analysis of Non-Canonical Language
(SANCL), volume 59. Citeseer.

Bin Tan and Fuchun Peng. 2008. Unsupervised query segmen-
tation using generative language models and wikipedia. In
Proceedings of WWW.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of HLT-
NAACL.

Gilad Tsur, Yuval Pinter, Idan Szpektor, and David Carmel.
2016. Identifying web queries with question intent. In Pro-
ceedings of WWW.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen
Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mo-
hammed El-Bachouti, Robert Belvin, and Ann Houston,
2013. OntoNotes Release 5.0.

Ryen W. White, Matthew Richardson, and Wen-tau Yih. 2015.
Questions vs. queries in informational search tasks. In Pro-
ceedings of WWW’15 Companion, pages 135–136. WWW.

680

Proceedings of NAACL-HLT 2016, pages 681–691,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Visualizing and Understanding Neural Models in NLP

Jiwei Li1, Xinlei Chen2, Eduard Hovy2 and Dan Jurafsky1

1Computer Science Department, Stanford University, Stanford, CA 94305, USA
2Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

{jiweil,jurafsky}@stanford.edu {xinleic,ehovy}@andrew.cmu.edu

Abstract

While neural networks have been successfully
applied to many NLP tasks the resulting vector-
based models are very difficult to interpret.
For example it’s not clear how they achieve
compositionality, building sentence meaning
from the meanings of words and phrases. In
this paper we describe strategies for visual-
izing compositionality in neural models for
NLP, inspired by similar work in computer
vision. We first plot unit values to visualize
compositionality of negation, intensification,
and concessive clauses, allowing us to see well-
known markedness asymmetries in negation.
We then introduce methods for visualizing a
unit’s salience, the amount that it contributes
to the final composed meaning from first-order
derivatives. Our general-purpose methods may
have wide applications for understanding com-
positionality and other semantic properties of
deep networks.

1 Introduction

Neural models match or outperform the performance
of other state-of-the-art systems on a variety of NLP
tasks. Yet unlike traditional feature-based classifiers
that assign and optimize weights to varieties of hu-
man interpretable features (parts-of-speech, named
entities, word shapes, syntactic parse features etc) the
behavior of deep learning models is much less easily
interpreted. Deep learning models mainly operate
on word embeddings (low-dimensional, continuous,
real-valued vectors) through multi-layer neural ar-
chitectures, each layer of which is characterized as
an array of hidden neuron units. It is unclear how

deep learning models deal with composition, imple-
menting functions like negation or intensification, or
combining meaning from different parts of the sen-
tence, filtering away the informational chaff from the
wheat, to build sentence meaning.

In this paper, we explore multiple strategies to in-
terpret meaning composition in neural models. We
employ traditional methods like representation plot-
ting, and introduce simple strategies for measur-
ing how much a neural unit contributes to meaning
composition, its ‘salience’ or importance using first
derivatives.

Visualization techniques/models represented in
this work shed important light on how neural mod-
els work: For example, we illustrate that LSTM’s
success is due to its ability in maintaining a much
sharper focus on the important key words than other
models; Composition in multiple clauses works com-
petitively, and that the models are able to capture neg-
ative asymmetry, an important property of semantic
compositionally in natural language understanding;
there is sharp dimensional locality, with certain di-
mensions marking negation and quantification in a
manner that was surprisingly localist. Though our
attempts only touch superficial points in neural mod-
els, and each method has its pros and cons, together
they may offer some insights into the behaviors of
neural models in language based tasks, marking one
initial step toward understanding how they achieve
meaning composition in natural language processing.

The next section describes some visualization mod-
els in vision and NLP that have inspired this work.
We describe datasets and the adopted neural mod-
els in Section 3. Different visualization strategies
and correspondent analytical results are presented

681

separately in Section 4,5,6, followed by a brief con-
clusion.

2 A Brief Review of Neural Visualization

Similarity is commonly visualized graphically, gen-
erally by projecting the embedding space into two
dimensions and observing that similar words tend
to be clustered together (e.g., Elman (1989), Ji and
Eisenstein (2014), Faruqui and Dyer (2014)). (Karpa-
thy et al., 2015) attempts to interpret recurrent neural
models from a statical point of view and does deeply
touch compositionally of meanings. Other relevant
attempts include (Fyshe et al., 2015; Faruqui et al.,
2015).

Methods for interpreting and visualizing neural
models have been much more significantly explored
in vision, especially for Convolutional Neural Net-
works (CNNs or ConvNets) (Krizhevsky et al., 2012),
multi-layer neural networks in which the original ma-
trix of image pixels is convolved and pooled as it is
passed on to hidden layers. ConvNet visualizing tech-
niques consist mainly in mapping the different layers
of the network (or other features like SIFT (Lowe,
2004) and HOG (Dalal and Triggs, 2005)) back to
the initial image input, thus capturing the human-
interpretable information they represent in the input,
and how units in these layers contribute to any final
decisions (Simonyan et al., 2013; Mahendran and
Vedaldi, 2014; Nguyen et al., 2014; Szegedy et al.,
2013; Girshick et al., 2014; Zeiler and Fergus, 2014).
Such methods include:

(1) Inversion: Inverting the representations by
training an additional model to project outputs from
different neural levels back to the initial input images
(Mahendran and Vedaldi, 2014; Vondrick et al., 2013;
Weinzaepfel et al., 2011). The intuition behind re-
construction is that the pixels that are reconstructable
from the current representations are the content of the
representation. The inverting algorithms allow the
current representation to align with corresponding
parts of the original images.

(2) Back-propagation (Erhan et al., 2009; Si-
monyan et al., 2013) and Deconvolutional Networks
(Zeiler and Fergus, 2014): Errors are back propa-
gated from output layers to each intermediate layer
and finally to the original image inputs. Deconvolu-
tional Networks work in a similar way by projecting
outputs back to initial inputs layer by layer, each layer

associated with one supervised model for projecting
upper ones to lower ones These strategies make it
possible to spot active regions or ones that contribute
the most to the final classification decision.

(3) Generation: This group of work generates im-
ages in a specific class from a sketch guided by al-
ready trained neural models (Szegedy et al., 2013;
Nguyen et al., 2014). Models begin with an image
whose pixels are randomly initialized and mutated
at each step. The specific layers that are activated
at different stages of image construction can help in
interpretation.

While the above strategies inspire the work we
present in this paper, there are fundamental differ-
ences between vision and NLP. In NLP words func-
tion as basic units, and hence (word) vectors rather
than single pixels are the basic units. Sequences of
words (e.g., phrases and sentences) are also presented
in a more structured way than arrangements of pixels.
In parallel to our research, independent researches
(Karpathy et al., 2015) have been conducted to ex-
plore similar direction from an error-analysis point of
view, by analyzing predictions and errors from a re-
current neural models. Other distantly relevant works
include: Murphy et al. (2012; Fyshe et al. (2015) used
an manual task to quantify the interpretability of se-
mantic dimensions by presetting human users with a
list of words and ask them to choose the one that does
not belong to the list. Faruqui et al. (2015). Similar
strategy is adopted in (Faruqui et al., 2015) by ex-
tracting top-ranked words in each vector dimension.

3 Datasets and Neural Models

We explored two datasets on which neural models
are trained, one of which is of relatively small scale
and the other of large scale.

3.1 Stanford Sentiment Treebank

Stanford Sentiment Treebank is a benchmark dataset
widely used for neural model evaluations. The
dataset contains gold-standard sentiment labels for
every parse tree constituent, from sentences to
phrases to individual words, for 215,154 phrases in
11,855 sentences. The task is to perform both fine-
grained (very positive, positive, neutral, negative and
very negative) and coarse-grained (positive vs neg-
ative) classification at both the phrase and sentence
level. For more details about the dataset, please refer

682

to Socher et al. (2013).
While many studies on this dataset use recursive

parse-tree models, in this work we employ only stan-
dard sequence models (RNNs and LSTMs) since
these are the most widely used current neural models,
and sequential visualization is more straightforward.
We therefore first transform each parse tree node to
a sequence of tokens. The sequence is first mapped
to a phrase/sentence representation and fed into a
softmax classifier. Phrase/sentence representations
are built with the following three models: Standard
Recurrent Sequence with TANH activation functions,
LSTMs and Bidirectional LSTMs. For details about
the three models, please refer to Appendix.

Training AdaGrad with mini-batch was used for
training, with parameters (L2 penalty, learning rate,
mini batch size) tuned on the development set. The
number of iterations is treated as a variable to tune
and parameters are harvested based on the best per-
formance on the dev set. The number of dimensions
for the word and hidden layer are set to 60 with 0.1
dropout rate. Parameters are tuned on the dev set.
The standard recurrent model achieves 0.429 (fine
grained) and 0.850 (coarse grained) accuracy at the
sentence level; LSTM achieves 0.469 and 0.870, and
Bidirectional LSTM 0.488 and 0.878, respectively.

3.2 Sequence-to-Sequence Models

SEQ2SEQ are neural models aiming at generating
a sequence of output texts given inputs. Theoreti-
cally, SEQ2SEQ models can be adapted to NLP tasks
that can be formalized as predicting outputs given in-
puts and serve for different purposes due to different
inputs and outputs, e.g., machine translation where
inputs correspond to source sentences and outputs to
target sentences (Sutskever et al., 2014; Luong et al.,
2014); conversational response generation if inputs
correspond to messages and outputs correspond to
responses (Vinyals and Le, 2015; Li et al., 2015).
SEQ2SEQ need to be trained on massive amount of
data for implicitly semantic and syntactic relations
between pairs to be learned.

SEQ2SEQ models map an input sequence to a vec-
tor representation using LSTM models and then se-
quentially predicts tokens based on the pre-obtained
representation. The model defines a distribution over
outputs (Y) and sequentially predicts tokens given

inputs (X) using a softmax function.

P (Y |X) =
ny∏
t=1

p(yt|x1, x2, ..., xt, y1, y2, ..., yt−1)

=
ny∏
t=1

exp(f(ht−1, eyt))∑
y′ exp(f(ht−1, ey′))

where f(ht−1, eyt) denotes the activation function be-
tween ht−1 and eyt , where ht−1 is the representation
output from the LSTM at time t− 1. For each time
step in word prediction, SEQ2SEQ models combine
the current token with previously built embeddings
for next-step word prediction.

For easy visualization purposes, we turn to the
most straightforward task—autoencoder— where in-
puts and outputs are identical. The goal of an autoen-
coder is to reconstruct inputs from the pre-obtained
representation. We would like to see how individual
input tokens affect the overall sentence representa-
tion and each of the tokens to predict in outputs. We
trained the auto-encoder on a subset of WMT’14 cor-
pus containing 4 million english sentences with an
average length of 22.5 words. We followed training
protocols described in (Sutskever et al., 2014).

4 Representation Plotting

We begin with simple plots of representations to shed
light on local compositions using Stanford Sentiment
Treebank.

Local Composition Figure 1 shows a 60d heat-
map vector for the representation of selected
words/phrases/sentences, with an emphasis on extent
modifications (adverbial and adjectival) and negation.
Embeddings for phrases or sentences are attained by
composing word representations from the pretrained
model.

The intensification part of Figure 1 shows sugges-
tive patterns where values for a few dimensions are
strengthened by modifiers like “a lot” (the red bar
in the first example) “so much” (the red bar in the
second example), and “incredibly”. Though the pat-
terns for negations are not as clear, there is still a
consistent reversal for some dimensions, visible as a
shift between blue and red for dimensions boxed on
the left.

We then visualize words and phrases using t-sne
(Van der Maaten and Hinton, 2008) in Figure 2, de-

683

Intensification

Negation

Figure 1: Visualizing intensification and negation. Each
vertical bar shows the value of one dimension in the final
sentence/phrase representation after compositions. Em-
beddings for phrases or sentences are attained by compos-
ing word representations from the pretrained model.

liberately adding in some random words for com-
parative purposes. As can be seen, neural models
nicely learn the properties of local compositionally,
clustering negation+positive words (‘not nice’, ’not
good’) together with negative words. Note also the
asymmetry of negation: “not bad” is clustered more
with the negative than the positive words (as shown
both in Figure 1 and 2). This asymmetry has been
widely discussed in linguistics, for example as aris-
ing from markedness, since ‘good’ is the unmarked
direction of the scale (0; Horn, 1989; Fraenkel and
Schul, 2008). This suggests that although the model
does seem to focus on certain units for negation in
Figure 1, the neural model is not just learning to ap-
ply a fixed transform for ‘not’ but is able to capture

the subtle differences in the composition of different
words.

Concessive Sentences In concessive sentences,
two clauses have opposite polarities, usually related
by a contrary-to-expectation implicature. We plot
evolving representations over time for two conces-
sives in Figure 3. The plots suggest:

1. For tasks like sentiment analysis whose goal is
to predict a specific semantic dimension (as opposed
to general tasks like language model word predic-
tion), too large a dimensionality leads to many dimen-
sions non-functional (with values close to 0), causing
two sentences of opposite sentiment to differ only in a
few dimensions. This may explain why more dimen-
sions don’t necessarily lead to better performance on
such tasks (For example, as reported in (Socher et al.,
2013), optimal performance is achieved when word
dimensionality is set to between 25 and 35).

2. Both sentences contain two clauses connected
by the conjunction “though”. Such two-clause sen-
tences might either work collaboratively— models
would remember the word “though” and make the
second clause share the same sentiment orientation
as first—or competitively, with the stronger one dom-
inating. The region within dotted line in Figure 3(a)
favors the second assumption: the difference between
the two sentences is diluted when the final words (“in-
teresting” and “boring”) appear.

Clause Composition In Figure 4 we explore this
clause composition in more detail. Representations
move closer to the negative sentiment region by
adding negative clauses like “although it had bad
acting” or “but it is too long” to the end of a simply
positive “I like the movie”. By contrast, adding a
concessive clause to a negative clause does not move
toward the positive; “I hate X but ...” is still very
negative, not that different than “I hate X”. This dif-
ference again suggests the model is able to capture
negative asymmetry (0; Horn, 1989; Fraenkel and
Schul, 2008).

5 First-Derivative Saliency

In this section, we describe another strategy which
is is inspired by the back-propagation strategy in
vision (Erhan et al., 2009; Simonyan et al., 2013). It
measures how much each input unit contributes to

684

Figure 2: t-SNE Visualization on latent representations for modifications and negations.

the final decision, which can be approximated by first
derivatives.

More formally, for a classification model, an input
E is associated with a gold-standard class label c.
(Depending on the NLP task, an input could be the
embedding for a word or a sequence of words, while
labels could be POS tags, sentiment labels, the next
word index to predict etc.) Given embeddings E for
input words with the associated gold class label c, the
trained model associates the pair (E, c) with a score
Sc(E). The goal is to decide which units of E make
the most significant contribution to Sc(e), and thus
the decision, the choice of class label c.

In the case of deep neural models, the class score
Sc(e) is a highly non-linear function. We approxi-
mate Sc(e) with a linear function of e by computing
the first-order Taylor expansion

Sc(e) ≈ w(e)T e+ b (1)

where w(e) is the derivative of Sc with respect to the
embedding e.

w(e) =
∂(Sc)
∂e

|e (2)

The magnitude (absolute value) of the derivative in-
dicates the sensitiveness of the final decision to the
change in one particular dimension, telling us how
much one specific dimension of the word embedding
contributes to the final decision. The saliency score
is given by

S(e) = |w(e)| (3)

5.1 Results on Stanford Sentiment Treebank

We first illustrate results on Stanford Treebank. We
plot in Figures 5, 6 and 7 the saliency scores (the
absolute value of the derivative of the loss function
with respect to each dimension of all word inputs) for
three sentences, applying the trained model to each
sentence. Each row corresponds to saliency score
for the correspondent word representation with each
grid representing each dimension. The examples are
based on the clear sentiment indicator “hate” that
lends them all negative sentiment.

“I hate the movie” All three models assign high
saliency to “hate” and dampen the influence of other
tokens. LSTM offers a clearer focus on “hate” than
the standard recurrent model, but the bi-directional
LSTM shows the clearest focus, attaching almost
zero emphasis on words other than “hate”. This is
presumably due to the gates structures in LSTMs and
Bi-LSTMs that controls information flow, making
these architectures better at filtering out less relevant
information.

“I hate the movie that I saw last night” All three
models assign the correct sentiment. The simple
recurrent models again do poorly at filtering out ir-
relevant information, assigning too much salience to
words unrelated to sentiment. However none of the
models suffer from the gradient vanishing problems
despite this sentence being longer; the salience of
“hate” still stands out after 7-8 following convolu-
tional operations.

685

Figure 3: Representations over time from LSTMs. Each
column corresponds to outputs from LSTM at each time-
step (representations obtained after combining current
word embedding with previous build embeddings). Each
grid from the column corresponds to each dimension of
current time-step representation. The last rows correspond
to absolute differences for each time step between two
sequences.

“I hate the movie though the plot is interesting”
The simple recurrent model emphasizes only the sec-
ond clause “the plot is interesting”, assigning no
credit to the first clause “I hate the movie”. This
might seem to be caused by a vanishing gradient, yet
the model correctly classifies the sentence as very
negative, suggesting that it is successfully incorpo-
rating information from the first negative clause. We
separately tested the individual clause “though the
plot is interesting”. The standard recurrent model
confidently labels it as positive. Thus despite the
lower saliency scores for words in the first clause,
the simple recurrent system manages to rely on that

clause and downplay the information from the latter
positive clause—despite the higher saliency scores
of the later words. This illustrates a limitation of
saliency visualization. first-order derivatives don’t
capture all the information we would like to visualize,
perhaps because they are only a rough approximate
to individual contributions and might not suffice to
deal with highly non-linear cases. By contrast, the
LSTM emphasizes the first clause, sharply dampen-
ing the influence from the second clause, while the
Bi-LSTM focuses on both “hate the movie” and “plot
is interesting”.

5.2 Results on Sequence-to-Sequence
Autoencoder

Figure 9 represents saliency heatmap for auto-
encoder in terms of predicting correspondent token
at each time step. We compute first-derivatives for
each preceding word through back-propagation as de-
coding goes on. Each grid corresponds to magnitude
of average saliency value for each 1000-dimensional
word vector. The heatmaps give clear overview about
the behavior of neural models during decoding. Ob-
servations can be summarized as follows:

1. For each time step of word prediction, SEQ2SEQ

models manage to link word to predict back to cor-
respondent region at the inputs (automatically learn
alignments), e.g., input region centering around to-
ken “hate” exerts more impact when token “hate” is
to be predicted, similar cases with tokens “movie”,
“plot” and “boring”.

2. Neural decoding combines the previously built
representation with the word predicted at the cur-
rent step. As decoding proceeds, the influence of
the initial input on decoding (i.e., tokens in source
sentences) gradually diminishes as more previously-
predicted words are encoded in the vector representa-
tions. Meanwhile, the influence of language model
gradually dominates: when word “boring” is to be
predicted, models attach more weight to earlier pre-
dicted tokens “plot” and “is” but less to correspon-
dent regions in the inputs, i.e., the word “boring” in
inputs.

6 Average and Variance

For settings where word embeddings are treated as
parameters to optimize from scratch (as opposed to
using pre-trained embeddings), we propose a second,

686

Figure 4: t-SNE Visualization for clause composition.

Figure 5: Saliency heatmap for for “I hate the movie .” Each row corresponds to saliency scores for the correspondent
word representation with each grid representing each dimension.

Figure 6: Saliency heatmap for “I hate the movie I saw last night .” .

surprisingly easy and direct way to visualize impor-
tant indicators. We first compute the average of the
word embeddings for all the words within the sen-
tences. The measure of salience or influence for a
word is its deviation from this average. The idea is
that during training, models would learn to render
indicators different from non-indicator words, en-

abling them to stand out even after many layers of
computation.

Figure 8 shows a map of variance; each grid cor-
responds to the value of ||ei,j − 1

NS

∑
i′∈NS

ei′j ||2
where ei,j denotes the value for j th dimension of
word i and N denotes the number of token within the
sentences.

687

Figure 7: Saliency heatmap for “I hate the movie though the plot is interesting .” .

Figure 8: Variance visualization.

As the figure shows, the variance-based salience
measure also does a good job of emphasizing the rel-
evant sentiment words. The model does have short-
comings: (1) it can only be used in to scenarios where
word embeddings are parameters to learn (2) it’s clear
how well the model is able to visualize local compo-
sitionality.

7 Conclusion

In this paper, we offer several methods to help vi-
sualize and interpret neural models, to understand
how neural models are able to compose meanings,

demonstrating asymmetries of negation and explain
some aspects of the strong performance of LSTMs at
these tasks.

Though our attempts only touch superficial points
in neural models, and each method has its pros and
cons, together they may offer some insights into the
behaviors of neural models in language based tasks,
marking one initial step toward understanding how
they achieve meaning composition in natural lan-
guage processing. Our future work includes using
results of the visualization be used to perform error
analysis, and understanding strengths limitations of

688

Figure 9: Saliency heatmap for SEQ2SEQ auto-encoder in
terms of predicting correspondent token at each time step.

different neural models.

8 Acknowledgement

The authors want to thank Sam Bowman, Percy
Liang, Will Monroe, Sida Wang, Chris Manning and
other members of the Stanford NLP group, as well
as anonymous reviewers for their helpful advice on
various aspects of this work. This work partially sup-
ported by NSF Award IIS-1514268. Jiwei Li is sup-
ported by Facebook fellowship, which we gratefully
acknowledge. Any opinions, findings, and conclu-

sions or recommendations expressed in this material
are those of the authors and do not necessarily reflect
the views of NSF or Facebook.

References
Herbert H. Clark and Eve V. Clark. 1977. Psychology

and language: An introduction to psycholinguistics.
Harcourt Brace Jovanovich.

Navneet Dalal and Bill Triggs. 2005. Histograms of ori-
ented gradients for human detection. In Computer Vi-
sion and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, volume 1, pages 886–
893. IEEE.

Jeffrey L. Elman. 1989. Representation and structure in
connectionist models. Technical Report 8903, Center
for Research in Language, University of California, San
Diego.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and
Pascal Vincent. 2009. Visualizing higher-layer features
of a deep network. Dept. IRO, Université de Montréal,
Tech. Rep.

Manaal Faruqui and Chris Dyer. 2014. Improving vector
space word representations using multilingual correla-
tion. In Proceedings of EACL, volume 2014.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcom-
plete word vector representations. arXiv preprint
arXiv:1506.02004.

Tamar Fraenkel and Yaacov Schul. 2008. The meaning of
negated adjectives. Intercultural Pragmatics, 5(4):517–
540.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian Mur-
phy, and Tom M Mitchell. 2015. A compositional
and interpretable semantic space. Proceedings of the
NAACL-HLT, Denver, USA.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. 2014. Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. In Computer
Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 580–587. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Laurence R. Horn. 1989. A natural history of negation,
volume 960. University of Chicago Press Chicago.

Yangfeng Ji and Jacob Eisenstein. 2014. Representation
learning for text-level discourse parsing. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics, volume 1, pages 13–24.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

689

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objective
function for neural conversation models. arXiv preprint
arXiv:1510.03055.

David G Lowe. 2004. Distinctive image features from
scale-invariant keypoints. International journal of com-
puter vision, 60(2):91–110.

Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals,
and Wojciech Zaremba. 2014. Addressing the rare
word problem in neural machine translation. arXiv
preprint arXiv:1410.8206.

Aravindh Mahendran and Andrea Vedaldi. 2014. Under-
standing deep image representations by inverting them.
arXiv preprint arXiv:1412.0035.

Brian Murphy, Partha Pratim Talukdar, and Tom M
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embedding.
In COLING, pages 1933–1950.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2014. Deep
neural networks are easily fooled: High confidence
predictions for unrecognizable images. arXiv preprint
arXiv:1412.1897.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional
recurrent neural networks. Signal Processing, IEEE
Transactions on, 45(11):2673–2681.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
2013. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv
preprint arXiv:1312.6034.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of the conference on empirical methods in
natural language processing (EMNLP), volume 1631,
page 1642. Citeseer.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems,
pages 3104–3112.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199.

Laurens Van der Maaten and Geoffrey Hinton. 2008. Vi-
sualizing data using t-sne. Journal of Machine Learn-
ing Research, 9(2579-2605):85.

Oriol Vinyals and Quoc Le. 2015. A neural conversational
model. arXiv preprint arXiv:1506.05869.

Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, and
Antonio Torralba. 2013. Hoggles: Visualizing object
detection features. In Computer Vision (ICCV), 2013
IEEE International Conference on, pages 1–8. IEEE.

Philippe Weinzaepfel, Hervé Jégou, and Patrick Pérez.
2011. Reconstructing an image from its local descrip-
tors. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 337–344.
IEEE.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and
understanding convolutional networks. In Computer
Vision–ECCV 2014, pages 818–833. Springer.

Appendix

Recurrent Models A recurrent network succes-
sively takes word wt at step t, combines its vector
representation et with previously built hidden vector
ht−1 from time t− 1, calculates the resulting current
embedding ht, and passes it to the next step. The
embedding ht for the current time t is thus:

ht = f(W · ht−1 + V · et) (4)

where W and V denote compositional matrices. If
Ns denote the length of the sequence, hNs represents
the whole sequence S. hNs is used as input a softmax
function for classification tasks.

Multi-layer Recurrent Models Multi-layer recur-
rent models extend one-layer recurrent structure by
operation on a deep neural architecture that enables
more expressivity and flexibly. The model associates
each time step for each layer with a hidden represen-
tation hl,t, where l ∈ [1, L] denotes the index of layer
and t denote the index of time step. hl,t is given by:

ht,l = f(W · ht−1,l + V · ht,l−1) (5)

where ht,0 = et, which is the original word embed-
ding input at current time step.

Long-short Term Memory LSTM model, first
proposed in (Hochreiter and Schmidhuber, 1997),
maps an input sequence to a fixed-sized vector by se-
quentially convoluting the current representation with
the output representation of the previous step. LSTM
associates each time epoch with an input, control and
memory gate, and tries to minimize the impact of
unrelated information. it, ft and ot denote to gate

690

states at time t. ht denotes the hidden vector out-
putted from LSTM model at time t and et denotes
the word embedding input at time t. We have

it = σ(Wi · et + Vi · ht−1)
ft = σ(Wf · et + Vf · ht−1)
ot = σ(Wo · et + Vo · ht−1)
lt = tanh(Wl · et + Vl · ht−1)
ct = ft · ct−1 + it × lt
ht = ot ·mt

(6)

where σ denotes the sigmoid function. it, ft and
ot are scalars within the range of [0,1]. × denotes
pairwise dot.

A multi-layer LSTM models works in the same
way as multi-layer recurrent models by enable multi-
layer’s compositions.

Bidirectional Models (Schuster and Paliwal,
1997) add bidirectionality to the recurrent framework
where embeddings for each time are calculated both
forwardly and backwardly:

h→t = f(W→ · h→t−1 + V→ · et)
h←t = f(W← · h←t+1 + V← · et)

(7)

Normally, bidirectional models feed the concatena-
tion vector calculated from both directions [e←1 , e→NS

]
to the classifier. Bidirectional models can be simi-
larly extended to both multi-layer neural model and
LSTM version.

691

Proceedings of NAACL-HLT 2016, pages 692–702,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bilingual Word Embeddings from Parallel and Non-parallel Corpora for
Cross-Language Text Classification

Aditya Mogadala
Institute AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

aditya.mogadala@kit.edu

Achim Rettinger
Institute AIFB

Karlsruhe Institute of Technology
Karlsruhe, Germany

rettinger@kit.edu

Abstract

In many languages, sparse availability of re-
sources causes numerous challenges for tex-
tual analysis tasks. Text classification is one of
such standard tasks that is hindered due to lim-
ited availability of label information in low-
resource languages. Transferring knowledge
(i.e. label information) from high-resource to
low-resource languages might improve text
classification as compared to the other ap-
proaches like machine translation. We intro-
duce BRAVE (Bilingual paRAgraph VEctors),
a model to learn bilingual distributed repre-
sentations (i.e. embeddings) of words with-
out word alignments either from sentence-
aligned parallel or label-aligned non-parallel
document corpora to support cross-language
text classification. Empirical analysis shows
that classification models trained with our
bilingual embeddings outperforms other state-
of-the-art systems on three different cross-
language text classification tasks.

1 Introduction

The availability of language-specific annotated re-
sources is crucial for the efficiency of natural lan-
guage processing tasks. Still, many languages lack
rich annotated resources that support various tasks
such as part-of-speech tagging, dependency parsing
and text classification. While the growth of multi-
lingual information on the web has provided an op-
portunity to build these missing annotated resources,
but still lots of manual effort is required to achieve
high quality resources for every language separately.

Another possibility is to utilize the unlabeled
data present in those languages or transfer knowl-

edge from annotation-rich languages. For the
first alternative, recent advancements made in
learning monolingual distributed representations of
words (Mikolov et al., 2013a; Pennington et al.,
2014; Levy and Goldberg, 2014) (i.e. monolin-
gual word embeddings) capturing syntactic and se-
mantic information in an unsupervised manner was
useful in numerous NLP tasks (Collobert et al.,
2011). However, this may not be sufficient for
several other tasks such as cross-language informa-
tion retrieval (Grefenstette, 2012), cross-language
word semantic similarity (Vulić and Moens, 2014),
cross-language text classification (CLTC, hence-
forth) (Klementiev et al., 2012; Xiao and Guo, 2013;
Prettenhofer and Stein, 2010; Tang and Wan, 2014)
and machine translation (Zhao et al., 2015) due to
irregularities across languages. In these kind of sce-
narios, transfer of knowledge can be useful.

Several approaches (Hermann and Blunsom,
2014; Sarath Chandar et al., 2014; Gouws et al.,
2015; Coulmance et al., 2015) tried to induce
monolingual distributed representations into a lan-
guage independent space (i.e. bilingual or multilin-
gual word embeddings) by jointly training on pair
of languages. Although the overall goal of these
approaches is to capture linguistic regularities in
words that share same semantic and syntactic space
across languages, they differ in their implementa-
tion. One set of methods either perform offline
alignment of trained monolingual embeddings or
jointly-train both monolingual and cross-lingual ob-
jectives, while the other set uses only cross-lingual
objective. Jointly-trained or offline alignment meth-
ods can be further divided based on the type of par-

692

Cross-Language Setups
Objective Method Tasks Parallel Corpus

(Klementiev et al., 2012) CLDC Word-Aligned
(Zou et al., 2013) MT,NER Word-Aligned

Monolingual+ (Mikolov et al., 2013b) MT Word-Aligned
Cross-lingual (Faruqui and Dyer, 2014) Word Similarity Word-Aligned

(Lu et al., 2015) Word Similarity Word-Aligned
(Gouws and Søgaard, 2015) POS,SuS Word-Aligned
(Gouws et al., 2015) CLDC,MT Sentence-Aligned
(Coulmance et al., 2015) CLDC,MT Sentence-Aligned

Cross-lingual (Hermann and Blunsom, 2014) CLDC Sentence-Aligned
(Sarath Chandar et al., 2014) CLDC Sentence-Aligned
(Luong et al., 2015) Word Similarity, CLDC Sentence-Aligned
(Pham et al., 2015) CLDC Sentence-Aligned

Table 1: Summary of bilingual or multilingual embedding methods that support Cross-language Document Classification (CLDC), Machine Trans-
lation (MT), Named Entity Recognition (NER), Part-of-Speech Tagging (POS), Super Sense Tagging (SuS).

allel corpus (e.g. word-aligned, sentence-aligned)
they use for learning the cross-lingual objective. Ta-
ble 1 summarizes different setups to learn bilingual
or multilingual embeddings for the various tasks.

Methods in the Table 1 that use word-aligned
parallel corpus as offline alignment (Mikolov et
al., 2013b; Faruqui and Dyer, 2014) assume sin-
gle correspondence between the words across lan-
guages and ignore polysemy. While, the jointly-
train methods (Klementiev et al., 2012) that use
word-alignment parallel corpus and consider poly-
semy perform computationally expensive operation
of considering all possible interactions between the
pairs of words in vocabulary of two different lan-
guages. Methods (Hermann and Blunsom, 2014;
Sarath Chandar et al., 2014) that overcame the
complexity issues of word-aligned models by us-
ing sentence-aligned parallel corpora limits them-
selves to only cross-lingual objective, thus mak-
ing these approaches unable to explore monolin-
gual corpora. Jointly-trained models (Gouws et al.,
2015; Coulmance et al., 2015) overcame the issues
of both word-aligned and purely cross-lingual ob-
jective models by using monolingual and sentence-
aligned parallel corpora. Nonetheless, these ap-
proaches still have certain drawbacks such as us-
age of only bag-of-words from the parallel sen-
tences ignoring order of words. Thus, they are
missing to capture the non-compositional meaning
of entire sentence. Also, learned bilingual em-
beddings were heavily biased towards the sampled
sentence-aligned parallel corpora. It is also some-

times hard to acquire sentence-level parallel corpora
for every language pair. To subdue this concern,
few approaches (Rajendran et al., 2015) used pivot
languages like English or comparable document-
aligned corpora (Vulić and Moens, 2015) to learn
bilingual embeddings specific to only one task.

This major downside can be observed in other
aforementioned methods also, which are inflexible
to handle different types of parallel corpora and
have a tight-binding between cross-lingual objec-
tives and the parallel corpora. For example, a
method using sentence-level parallel corpora can-
not be altered to leverage document-level parallel
corpora (if available) that might have better per-
formance for some tasks. Also, none of the ap-
proaches do leverage widely available label/class-
aligned non-parallel documents (e.g. sentiment la-
bels, multi-class datasets) across languages which
share special semantics such as sentiment or corre-
lation between concepts as opposed to parallel texts.

In this paper, we introduce BRAVE a jointly-
trained flexible model that learns bilingual embed-
dings based on the availability of the type of cor-
pora (e.g. sentence-aligned parallel or label/class-
aligned non-parallel document) by just altering the
cross-lingual objective. BRAVE leverages para-
graph vector embeddings (Le and Mikolov, 2014)
of the monolingual corpora to effectively conceal
semantics of the text sequences across languages
and build a cross-lingual objective. Method closely
related to our approach is by Pham et al. (2015)
who uses shared context sentence vector across lan-

693

guages to learn multilingual text sequences.
The main contributions of this paper are:

• We jointly train monolingual part of parallel
corpora with the improved cross-lingual align-
ment function that extends beyond bag-of-word
models.

• Introduced a novel approach to leverage non-
parallel data sets such as label or class aligned
documents in different languages for learning
bilingual cues.

• Experimental evaluation on three different
CLTC tasks, namely cross-language docu-
ment classification, multi-label classification
and cross-language sentiment classification us-
ing learned bilingual word embeddings.

2 Related Work

Most of the related work can be associated to the
approaches that aim to learn latent topics across lan-
guages or distributed representations of the words
and larger pieces of text for supporting various
cross-lingual tasks.

2.1 Cross-Language Latent Topics
Various approaches have been proposed to identify
latent topics in monolingual (Blei, 2012; Rus et al.,
2013) and multilingual (Mimno et al., 2009; Fuku-
masu et al., 2012) scenarios for cross-language se-
mantic word similarity and document comparison.
Extraction of cross-language latent topics or con-
cepts use context-insensitive (Zhang et al., 2010)
and context-sensitive methods (Vulić and Moens,
2014) to build word co-occurrence statistics for doc-
ument representations.

2.2 Distributed Representations
Continuous word representations (Bengio et al.,
2003; Mikolov et al., 2013a; Pennington et al., 2014)
was further extended to multilingual (Hermann and
Blunsom, 2014; Kočiský et al., 2014; Coulmance
et al., 2015), bilingual (Gouws et al., 2015; Vulić
and Moens, 2015; Luong et al., 2015) and polylin-
gual (Al-Rfou et al., 2013) settings by projecting
multiple or pair of languages into the shared seman-
tic space. Also, word representations were extended
to meet larger textual units like phrases, sentences

and documents either monolingual (Socher et al.,
2012; Le and Mikolov, 2014) or bilingual (Pham et
al., 2015). Some approaches fine tuned the embed-
dings for specific tasks such as cross-lingual senti-
ment analysis (Zhou et al., 2015b), cross-language
POS tagging (Gouws and Søgaard, 2015), machine
translation (Cho et al., 2014) etc.

3 BRAVE Model

In this section, we present the BRAVE model along
with its variations whose aim is to learn bilingual
embeddings that can generalize across different lan-
guages.

3.1 Bilingual Paragraph Vectors (BRAVE)

Most of the NLP tasks require fixed-length vectors.
Tasks like CLTC also require fixed-length vectors to
incorporate inherent semantics of sentences or doc-
uments. Distributed representation of sentences and
documents i.e. paragraph vectors (Le and Mikolov,
2014) are designed to out-perform certain text clas-
sification tasks by overcoming constraints posed by
the bag-of-words models.

Here, we leverage paragraph vectors distributed
memory model (PV-DM) as the monolingual objec-
tive M(·) and jointly optimize with bilingual reg-
ularization function ϕ(·) for learning bilingual em-
beddings similar to the earlier approaches (Gouws
et al., 2015; Coulmance et al., 2015). Equation 1
shows the formulation of the overall objective func-
tion that is minimized.

L = min
θl1 ,θl2

∑
lε{l1,l2}

∑
Cl

Ml(wt, h; θl) +
λϕ(θl1 , θl2)

2

(1)
Here, C l represent the corpus of individual lan-

guages (i.e. l1 or l2). Given any sequence of words
(wl1, w

l
2...w

l
T) in C l, wt is the predicted word in a

context h constrained on paragraph p (i.e. sentence
or document) and sequence of words.

Formally, the first term (i.e. M(·)) in the Equa-
tion 1 maximizes the average log probability based
on word vector matrix W l and a unique paragraph
vector matrix P l. Equation 2 represents the average
log probability.

Ml(wt, h; θl) =
ΣT−k
t=k y

l
wt
− log(

∑
i e
yl

i)
T

(2)

694

where each yli is log-probability of predicted word
i and is given by Equation 3.

yl = b+ Uh(wlt−k....w
l
t+k;W

l, P l) (3)

To optimize for efficiency, hierarchical soft-
max (Mnih and Hinton, 2009) is used in training
with U and b as parameters. Binary Huffmann tree
is utilized to represent hierarchial softmax (Mikolov
et al., 2013a). Analogous to Pham et al., (2015),
we also derive h by concatenating paragraph vec-
tor from P l with the average of word vectors in W l.
This helps to fine tune both word and paragraph vec-
tors independently.

Now, to capture the bilingual cues, the regulariza-
tion function (ϕ(·)) is learned in two different ways.
In the first approach a sentence-aligned parallel cor-
pora is used, while in the second approach a label-
aligned document corpora.

3.2 BRAVE with Sentence-Aligned Parallel
corpora (BRAVE-S)

To compute the bilingual regularization func-
tion ϕ(·), we slightly deviate from earlier ap-
proaches (Gouws et al., 2015). Instead of simply
performing L2-loss between the mean of word vec-
tors in each sentence pair (sl1j ,sl2j) of the sentence-
aligned parallel corpus (PC) at each training step.
We use the concept of elastic net regularization (Zou
and Hastie, 2005) and employ linear combination of
L2-loss between sentence paragraph vectors SP l1j
and SP l2j ∈ Rd precomputed from the monolin-
gual term M(·) with L2-loss between the mean of
word vectors observed in sentences. This induces
a constraint on the usage of monolingual part of
parallel training data to learn M(·). At the same
time, it has an advantage of using combination of
paragraph and word vectors which combines com-
positional and non-compositional meanings of sen-
tences.

Also, it eliminates the need for word-alignment
and makes an assumption that each word observed
in the sentence of language l1 can potentially find its
alignment in the sentence of language l2. Theoret-
ically, low value of ϕ(·) ensures that words across
languages which are similar are embedded closer
to each other. Equation 4 shows the regularization

term.

α||SP l1j −SP l2j ||2+(1−α)|| 1
m

m∑
wiεs

l1
j

W l1
i −

1
n

n∑
wkεs

l2
j

W l2
k ||2

(4)
Where W l1

i and W l2
k represent word embeddings

obtained for the words wi and wk in each sentence
(sj) of lengthm and n in languages l1 and l2 respec-
tively.

3.3 BRAVE with Non-Parallel Document
Corpora (BRAVE-D)

Sometimes it is hard to acquire sentence-aligned
parallel corpora for many languages. Availability
of non-parallel corpora such as topic-aligned (e.g.
Wikipedia) or label/class-aligned document corpora
(e.g. sentiment analysis and multi-class classifica-
tion data sets) in different languages can be lever-
aged to learn bilingual embeddings for perform-
ing CLTC. Earlier approaches like CL-LSI (Du-
mais et al., 1997) and CL-KCCA (Vinokourov et
al., 2003) were used to learn bilingual document
spaces for the tasks comparable to CLTC. Although
these approaches provide decent results, they face
serious scalability issues and are mostly limited
to Wikipedia. Cross-lingual latent topic extraction
models (Vulić and Moens, 2014) showed promising
results for the tasks like word-level or phrase-level
translations, but have certain drawbacks for CLTC
tasks.

Here, we propose a two step approach to build
bilingual embeddings with label/class-aligned doc-
ument corpora.

• In the first step, we perform manifold align-
ment using Procrustes analysis (Wang and Ma-
hadevan, 2008) between sets of documents be-
longing to same class/label in different lan-
guages. This will help to identify the closest
alignment of a document in language l1 with a
document in another language l2.

• In the second step, we use the pair of partially
aligned documents belonging to same class or
label in different languages to extract bilin-
gual cues similar to the approach mentioned in
§ 3.2. Only difference being paragraph vector
is learned for the entire document.

695

Step-1:
Let Sl1 and Sl2 be the sets containing languages l1
and l2 training documents associated to label or a
class. Below, we provide the three step procedure
to attain partial alignment between the documents
present in these sets.

• Learning low-dimensional embeddings of the
sets (Sl1 , Sl2) is key for alignment. We
use document paragraph vectors (Le and
Mikolov, 2014) to learn low-dimensional em-
beddings of the documents in each language.
Let X l1 and X l2 be the low-dimensional em-
beddings of Sl1 and Sl2 respectively.

• To find the optimal values of transformation,
Procrustes superimposition is done by translat-
ing, rotating and scaling the objects (i.e. rows
of X l2 is transformed to make it similar to the
rows of X l1). Transformation is achieved by

– Translation: Taking mean of all the
members of set to make centroids
(
∑|Sl1 |

i=1
Xl1

|Sl1 | ,
∑|Sl2 |

i=1
Xl2

|Sl2 |) lie at origin.

– Scaling and Rotation: The rotation and
scaling that maximizes the alignment is
given by orthogonal matrix (Q) and scal-
ing factor (k). They are obtained by
minimizing orthogonal Procrustes prob-
lem (Schönemann, 1966) and is provided
by Equation 5.

arg min
k,Q
||X l1 −X l2∗ ||F (5)

where X l2∗ a matrix of transformed X l2

values given by kX l2Q and ||.||F is the
Frobenius norm constrained over QTQ =
I .

• If Sl2∗ represents the new document set obtained
after identifying the close alignment among
documents in Sl1 and Sl2 with cosine similarity
betweenX l1 andX l2∗ , then the partially aligned
corpora {Sl1 , Sl2∗ } contains one-to-one corre-
spondence between the two languages docu-
ments that are used to learn bilingual cues in
the second step.

From perturbation theory of spectral
spaces (Kostrykin et al., 2003) it can be under-
stood that the difference between low-dimensional

embedding subspaces (i.e. X l1 and X l2∗) is always
bounded, thus the new alignment obtained between
document sets {Sl1 , Sl2∗ } is insensitive to perturba-
tions. Which also means that Procrustes analysis
has provided best possible document alignments.
Step-2:
Now, document pairs (dl1j ,dl2j) of the partially-
aligned corpus (PAC) is used to compute bilingual
regularization function ϕ(·). At each training
step, L2-loss of precomputed document paragraph
vectors DP l1j and DP l2j ∈ Rd obtained from
the monolingual term M(·) is combined with
the L2-loss between vector of words weighted by
the probability of their occurrence in a particular
label/class of entire PAC. Consideration of word
probabilities will help to induce label/class specific
information. Equation 6 provides the regularization
term.

α||DP l1j −DP l2j ||2

+ (1− α)||
m∑

wiεd
l1
j

pwi
W l1
i∑

m pwi

−
n∑

wkεd
l2
j

qwk
W l2
k∑

n qwk

||2 (6)

Where wi,wk are words and their embeddings
W l1
i ,W l2

k observed in each document (dj) of length
m and n in languages l1 and l2 respectively. While,
pwi and qwk

represents probability of occurrence of
words wi and wk in a specific label/class of entire
PAC. Figure- 1 shows overall goal of both the ap-
proaches.

4 Experiments

In this section, we report results on three differ-
ent CLTC tasks to comprehend whether our learned
bilingual embeddings are semantically useful across
languages. First, cross-language document classi-
fication (CLDC) task proposed by Klementiev et
al. (2012) using the subset of Reuters RCV1/RCV2
corpora (Lewis et al., 2004). Second, a multi-label
CLDC task with more languages using TED corpus1

of Hermann et al. (2014) . Subsequently, a cross-
language sentiment classification (CLSC) proposed
by Prettenhofer et al., (2010) on a multi-domain sen-
timent dataset.

1http://www.clg.ox.ac.uk/tedcorpus

696

Figure 1: Bilingual word embeddings learned using sentence or document paragraph vectors (SP/DP) along with word vectors.

4.1 Parallel and Non-Parallel Corpora

For sentence-aligned parallel corpora, Europarl-
v7 2(EP) is used as both monolingual and parallel
training data. While for label-aligned non-parallel
document corpora, only training and testing collec-
tions of the cross-language multi-domain Amazon
product reviews(CL-APR) (Prettenhofer and Stein,
2010) corpus with sentiment labels is used.

4.2 Implementation

Our implementation launches monolingual para-
graph vector (Le and Mikolov, 2014) threads for
each language along with bilingual regularization
thread. Word and paragraph embeddings matrices
are initialized with normal distribution (µ = 0 and
σ2 = 0.1) for each language and all threads access
them asynchronously. Following Pham et al. (2015)
suggested combination (P=5*W) of paragraph and
word embeddings, we chose paragraph embeddings
with dimensionality of 200 and 640 when word em-
beddings are of 40 and 128 dimensions respectively.
Asynchronous stochastic gradient descent (ASGD)
is used to update parameters (i.e. P l,W l,U and b)
and train the model.

For each training pair in parallel or non-parallel
corpora, initially monolingual threads sample con-
text h with window size of 8 from a random para-
graph (i.e. sentence or document) in each lan-
guage. Then the bilingual regularization thread
along with monolingual threads make update to pa-
rameters asynchronously. Learning rate is set to
0.001 which decrease with the increase of epochs,
while α is chosen to be 0.6 (can be fine tuned based
on empirical analysis) to give more weight to para-
graph vectors. All models are trained for 50 epochs.

2http://www.statmt.org/europarl/

4.3 Document Representation
Documents are represented with tf-idf weighted sum
of embedding vectors of the words that are present
in them.

4.4 Results
The experimental results for each of the CLTC tasks
are presented separately.

4.4.1 Cross-language Document Classification
(CLDC) - RCV1/RCV2

Goal of this task is to classify target language doc-
uments with the labeled examples from the source
language. To achieve it, we used the subset of
Reuters RCV1/RCV2 corpora as the training and
evaluation sets and replicated the experimental set-
ting of Klementiev et al. (2012). From the En-
glish, German, French and Spanish collection of the
dataset, only those documents are selected which
was labeled with a single topic (i.e. CCAT, ECAT,
GCAT and MCAT). For the classification experi-
ments, 1000 labeled documents from source lan-
guage are selected to train a multi-class classifier
using averaged perceptron (Freund and Schapire,
1999; Collins, 2002) and 5000 documents were used
as the testing data.

English-German, English-French and English-
Spanish portion of EP corpora (i.e. each with
around 1.9M sentence-pairs) is used both as mono-
lingual and parallel training data with BRAVE-S
approach to build vocabulary of around 85k En-
glish, 144k German, 119k French and 118k Spanish.
While training and testing collections belonging to
all domains in English-German, English-French lan-
guages of CL-APR ((i.e. around 12,000 document-
pairs)) was used both as monolingual and partially
aligned data with BRAVE-D approach to build vo-
cabulary of around 21k English, 22k German and

697

Model Dim en→ de de→ en en→ fr fr→ en en→ es es→ en
Majority class 40 46.8 46.8 22.5 25.0 15.3 22.2
MT 40 68.1 67.4 76.3 71.1 52.0 58.4
I-Matrix (Klementiev et al., 2012) 40 77.6 71.1 74.5 61.9 31.3 63.0
BAE-cr (Sarath Chandar et al., 2014) 40 91.8 74.2 84.6 74.2 49.0 64.4
CVM-Add (Hermann and Blunsom, 2014) 40 86.4 74.7 - - - -
DWA (Kočiský et al., 2014) 40 83.1 75.4 - - - -
BilBOWA (Gouws et al., 2015) 40 86.5 75 - - - -
UnsupAlign (Luong et al., 2015) 40 87.6 77.8 - - - -
Trans-gram (Coulmance et al., 2015) 40 87.8 78.7 - - - -
BRAVE-S(EP) 40 88.1 78.9 79.2 77.8 56.9 67.6
BRAVE-D(CL-APR) 40 69.4 67.9 64.1 56.5 - -
CVM-BI (Hermann and Blunsom, 2014) 128 86.1 79.0 - - - -
UnsupAlign (Luong et al., 2015) 128 88.9 77.4 - - - -
BRAVE-S(EP) 128 89.7 80.1 82.5 79.5 60.2 70.4
BRAVE-D(CL-APR) 128 70.4 70.6 66.2 57.6 - -

Table 2: CLDC Accuracy with 1000 labeled examples on RCV1/RCV2 Corpus. en/de, en/fr and en/es results of Majority class, MT, I-Matrix and
BAE-cr are adopted from Sarath Chandar et al., (2014)

18k French. Further, documents in the training and
testing data of RCV1/RCV2 corpora are represented
as described in § 4.3 with the vocabulary built. Ta-
ble 2 shows the comparison of our approaches with
the existing systems.

4.4.2 Multi-label CLDC - TED Corpus

To understand the applicability of our approaches
to wider range of languages3 and class labels, we
perform experiments with the subset of TED cor-
pus (Hermann and Blunsom, 2014). Aim of this
task is same as § 4.4.1, but experiments were con-
ducted with larger variety of languages and class la-
bels. TED Corpus contains English transcriptions
and their sentence-aligned translations for 12 lan-
guages from the TED conference. Entire corpus is
further classified into 15 topics (i.e. class labels)
based on the most frequent keywords appearing in
them.

To conduct our experiments, we follow the single
mode setting of Hermann et al. (2014) (i.e. embed-
dings are learned only from a single language pair).
Entire language pair (i.e. en→L2) training data of
the TED corpus is used both as monolingual and
parallel training data to learn bilingual word embed-
dings with dimensionality of 128 using BRAVE-S
approach. Bilingual word embeddings of 128 di-
mensions learned with EP and CL-APR are also

3Our goal is not to evaluate shared multilingual semantic
representation.

used for comparison. Documents in the training and
testing data of TED corpus are represented as de-
scribed in § 4.3 using each of these embeddings.
A multi-class classifier using averaged perceptron is
built using training documents in source language to
be applied on target language testing data for pre-
dicting the class labels. Table 3 shows the cumula-
tive F1-scores.

4.4.3 Cross-language Sentiment Classification
(CLSC)

The objective of the third CLTC task is to iden-
tify sentiment polarity (e.g. positive or negative)
of the data in target language by exploiting the
labeled data in source language. We chose sub-
set of publicly available Amazon product reviews
(CL-APR) (Prettenhofer and Stein, 2010) dataset
mainly English(E), German(G) and French(F) lan-
guages belonging to three different product cate-
gories (books(B), dvds(D) and music(M)) to con-
duct our experiments. For each language-category
pair, corpus consists of training, testing sets com-
prising 1000 positive and 1000 negative reviews
each with an additional unlabeled reviews varying
from 9,000 to 170,000.

We constructed 12 different CLSC tasks using dif-
ferent languages (i.e. E,G and F) for three categories
(i.e. B,D and M). For example, EFM refers English
music reviews as source language and French mu-
sic reviews as target language. Bilingual word em-
beddings with dimensionality of 128 learned with

698

Method de es fr it nl pt po ro ru tr
en→ L2
MT-Baseline 0.465 0.518 0.526 0.514 0.505 0.470 0.445 0.493 0.432 0.409
DOC/ADD 0.424 0.383 0.476 0.485 0.264 0.354 0.402 0.418 0.448 0.452
DOC/BI 0.428 0.416 0.445 0.473 0.219 0.400 0.403 0.467 0.421 0.457
BRAVE-S(TED) 0.484 0.436 0.456 0.507 0.328 0.506 0.453 0.488 0.456 0.491
BRAVE-S(EP) 0.418 0.365 0.387 0.418 0.284 0.454 0.412 0.424 - -
BRAVE-D(CL-APR) 0.385 - 0.212 - - - - - - -
L2→ en
MT-Baseline 0.469 0.486 0.358 0.481 0.463 0.374 0.460 0.486 0.404 0.441
DOC/ADD 0.476 0.422 0.464 0.461 0.251 0.338 0.400 0.407 0.471 0.435
DOC/BI 0.442 0.365 0.479 0.460 0.235 0.380 0.393 0.426 0.467 0.477
BRAVE-S(TED) 0.492 0.495 0.465 0.475 0.384 0.388 0.442 0.464 0.457 0.484
BRAVE-S(EP) 0.458 0.404 0.437 0.443 0.338 0.312 0.374 0.418 - -
BRAVE-D(CL-APR) 0.366 - 0.278 - - - - - - -

Table 3: Cumulative F1-scores on TED Corpus using training data in English language and evaluation on other languages (i.e. German (de),
Spanish (es), French (fr), Italian (it), Dutch (nl), Portugese (pt), Polish (po), Romanian (ro), Russian (ru) and Turkish (tr)) and vice versa. MT-
Baseline, DOC/ADD, DOC/BI represents single language pair of Hermann et al., (2014) as document features. Underline shows the best results
amongst embedding models.

Cross-Language Sentiment Classification (en→L2 and Vice versa)
Task CL-SCL CL-SSMC CL-SLF CL-DCI100 BSE BRAVE-S BRAVE-D

(EP) (CL-APR)
EFB 79.86±0.22 83.05±0.26 82.61±0.25 82.30 - 72.24±0.31 82.57±0.33
EFD 78.80±0.25 82.70±0.20 82.70±0.45 82.40 - 74.95±0.25 82.90±0.35
EFM 75.95±0.31 80.46±0.20 80.19±0.40 81.05 - 72.80±0.20 80.70±0.45
FEB 77.26±0.22 80.05±0.26 80.48±0.33 - - 75.45±0.38 80.28±0.21
FED 76.57±0.20 79.40±0.28 78.76±0.38 - - 73.75±0.26 79.80±0.15
FEM 76.76±0.25 78.82±0.17 79.18±0.33 - - 73.66±0.17 78.56±0.33
EGB 77.77±0.28 81.88±0.42 79.91±0.47 81.40 80.27±0.50 75.95±0.16 81.75±0.45
EGD 79.93±0.23 82.25±0.20 81.86±0.31 79.95 77.16±0.30 78.30±0.42 81.56±0.26
EGM 73.95±0.30 81.30±0.20 79.59±0.42 83.30 77.98±0.51 75.95±0.33 81.20±0.17
GEB 77.85±0.27 79.06±0.23 78.61±0.34 - - 72.25±0.20 80.23±0.17
GED 77.83±0.33 80.89±0.16 80.27±0.35 - - 73.28±0.23 80.78±0.20
GEM 77.37±0.34 79.85±0.17 79.80±0.26 - - 74.41±0.22 79.77±0.36

Table 4: Average classification accuracies and standard deviations for 12 CLSC tasks. Results of other baselines are adopted from CL-SCL (Pret-
tenhofer and Stein, 2010), CL-SSMC (Xiao and Guo, 2002), CL-SLF (Zhou et al., 2015a), CL-DCI100 (Esuli and Fernandez, 2015) and BSE (Tang
and Wan, 2014)

BRAVE-S and BRAVE-D are used to represent each
review as described in § 4.3. To have fair compari-
son with earlier approaches, sentiment classification
model is then trained with libsvm4 default parame-
ter settings using source language training reviews5

to classify target language test reviews. Table 4
shows the accuracy and standard deviation results
after we randomly chose subset of target language
testing documents and repeated the experiment for

4https://www.csie.ntu.edu.tw/ cjlin/libsvm/
5We do not use 100 labeled target language reviews in model

training, as it was shown by earlier approaches that 100 labeled
target language reviews does not have much impact.

10 times for all CLSC tasks.

5 Discussion

First CLTC task (i.e. CLDC) results presented in Ta-
ble 2 shows that BRAVE-S was able to outperform
most of the existing systems. Success of BRAVE-
S can be attributed to its ability to incorporate both
non-compositional and compositional meaning ob-
served in entire sentence and the individual words
respectively. Thus making it different from other
models which use only bag-of-words (Gouws et al.,
2015) or bi-grams (Hermann and Blunsom, 2014).

Similarly, second CLTC task (i.e. multi-label

699

Top-3 Nearest Neighbors (Euclidean Distance)
English Words Models German French
great wachstum éminent

BRAVE-S super maintenus
spielen m’efforcerai
schärfe festival

BRAVE-D mögen interressante
kraftvolle attachant

bored boykottiert ennuyé
BRAVE-S leere précédera

ausgehen compromettent
ableben réserve

BRAVE-D lichtblick intensité
traurigen consterné

Table 5: Nearest Neighbors for English Words in German and French.

CLDC) results presented in Table 3 shows that
BRAVE-S learned with the training data of TED cor-
pus outperformed single mode DOC/* embedding
models (Hermann and Blunsom, 2014), BRAVE-
S learned with EP and BRAVE-D. The BRAVE-
S(TED) was able to capture better linguistic regu-
larities across languages that is more specific to the
corpus, than the general purpose bilingual embed-
dings learned with EP. Though in some cases, all
our embedding models could not outperform ma-
chine translation baseline. This can be due to the
asymmetry between languages induced by the lan-
guage specific words which could not find its equiv-
alents in English.

Also, it can be apprehended from the Table 2 and
Table 3 that BRAVE-D results are not as expected.
Though being a general approach like BRAVE-S
which can capture both non-compositional and com-
positional meaning from larger pieces of texts, min-
imal overlap of vocabulary learned with BRAVE-
D using cross-language sentiment label-aligned cor-
pora with other domains (i.e. Reuters and TED) pro-
duce unfavorable results. Thus, we understand that
the choice of label/class-aligned corpora is crucial.

Final CLTC task (i.e. CLSC) results presented
in Table 4 shows that BRAVE-D outperforms other
baseline approaches in most of the cases. As
BRAVE-D learns bilingual word embeddings us-
ing CL-APR, it was able to inherently encom-
pass sentiment label information effectively like ear-
lier approaches (Tang and Wan, 2014; Zhou et
al., 2015b) than the general purpose embeddings
learned using BRAVE-S with EP and similar ap-

proaches (Meng et al., 2012). Thus making it
more suitable for sentiment classification task. Also
unlike CL-SSMC (Xiao and Guo, 2002) and CL-
SLF (Zhou et al., 2015a), BRAVE-D is not highly
parameter dependent where the results of the for-
mer approaches show big variance based on the pa-
rameter settings. To visualize the difference in em-
beddings learned with BRAVE-S and BRAVE-D,
we selected sentiment words and identified cross-
language nearest neighbors in Table 5. It can be
observed that BRAVE-D was able to identify better
sentiment (either positive or negative) word neigh-
bors than BRAVE-S.

6 Conclusion and Future Work

In this paper, we presented an approach that lever-
ages paragraph vectors to learn bilingual word em-
beddings with sentence-aligned parallel and label-
aligned non-parallel corpora. Empirical analysis ex-
hibited that embeddings learned from both of these
types of corpora have shown good impact on CLTC
tasks. In future, we aim to extend the approach
to learn multilingual semantic spaces with more la-
bels/classes.

Acknowledgments

The research leading to these results has received
funding from the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant
agreement no. 611346.

700

References
R. Al-Rfou, B. Perozzi, and S. Skiena. 2013. Polyglot:

Distributed word representations for multilingual nlp.
In CoNLL.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. 2003.
A neural probabilistic language model. The Journal of
Machine Learning Research., 3:1137–1155.

D. M. Blei. 2012. Probabilistic topic models. Communi-
cations of the ACM., 55(4):77–84.

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio. 2014. Learning phrase
representations using rnn encoder-decoder for statisti-
cal machine translation. In EMNLP.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. In ACL-EMNLP., pages 1–8.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. The Journal
of Machine Learning Research., 12:2493–2537.

J. Coulmance, J. M. Marty, G. Wenzek, and A. Benhal-
loum. 2015. Trans-gram, fast cross-lingual word-
embeddings reyes- mannde= reginait- femmefr. In
EMNLP.

S. T. Dumais, Todd A. Letsche, Michael L. Littman,
and Thomas K. Landauer. 1997. Automatic cross-
language retrieval using latent semantic indexing. In
AAAI spring symposium on cross-language text and
speech retrieval.

A. Esuli and A. M. Fernandez. 2015. Distributional cor-
respondence indexing for cross-language text catego-
rization. In Advances in Information Retrieval., pages
104–109.

M. Faruqui and C. Dyer. 2014. Improving vector space
word representations using multilingual correlation.
In ACL.

Y. Freund and R. E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm. The Journal
of Machine Learning Research., 37(3):277–296.

K. Fukumasu, Koji Eguchi, and Eric P. Xing. 2012.
Symmetric correspondence topic models for multilin-
gual text analysis. In NIPS, pages 1295–1303.

S. Gouws and A. Søgaard. 2015. Simple task-specific
bilingual word embeddings. In NAACL-HLT., pages
1386–1390.

S. Gouws, Y. Bengio, and G. Corrado. 2015. Bilbowa:
Fast bilingual distributed representations without word
alignments. In ICML.

G. Grefenstette. 2012. Cross-language information re-
trieval. Springer Science and Business Media, 2.

K. M. Hermann and P. Blunsom. 2014. Multilingual
models for compositional distributed semantics. In
ACL.

A. Klementiev, I. Titov, and B. Bhattarai. 2012. Inducing
crosslingual distributed representations of words. In
COLING.

T. Kočiský, K. M. Hermann, and P. Blunsom. 2014.
Learning bilingual word representations by marginal-
izing alignments. In ACL, pages 224–229.

V. Kostrykin, K. Makarov, and A. Motovilov. 2003. On a
subspace perturbation problem. American Mathemat-
ical Society., pages 3469–3476.

Q. Le and T. Mikolov. 2014. Distributed representations
of sentences and documents. In ICML, pages 1188–
1196.

O. Levy and Y. Goldberg. 2014. Dependency based word
embeddings. In ACL., pages 302–308.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. 2004. Rcv1:
A new benchmark collection for text categorization re-
search. The Journal of Machine Learning Research.,
5:361–397.

A. Lu, W. Wang, M. Bansal, K. Gimpel, and K. Livescu.
2015. Deep multilingual correlation for improved
word embeddings. In NAACL-HLT.

T. Luong, H. Pham, and C. D. Manning. 2015. Bilin-
gual word representations with monolingual quality in
mind. In First Workshop on Vector Space Modeling
for Natural Language Processing., pages 151–159.

X. Meng, F. Wei, X. Liu, M. Zhou, G. Xu, and H. Wang.
2012. Cross-lingual mixture model for sentiment clas-
sification. In ACL., pages 572–581.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013a.
Efficient estimation of word representations in vector
space. In arXiv preprint arXiv:1301.3781.

T. Mikolov, Q. V. Le, and I. Sutskever. 2013b. Exploiting
similarities among languages for machine translation.
In arXiv preprint arXiv:1309.4168.

D. Mimno, Hanna M. Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In EMNLP, pages 880–889.

A. Mnih and G. E. Hinton. 2009. A scalable hierarchical
distributed language model. In NIPS., pages 1081–
1088.

J. Pennington, R. Socher, and C. D. Manning. 2014.
Glove: Global vectors for word representation. In
EMNLP.

H. Pham, M. T. Luong, and C. D. Manning. 2015. Learn-
ing distributed representations for multilingual text se-
quences. In NAACL-HLT, pages 88–94.

P. Prettenhofer and B. Stein. 2010. Cross-language text
classification using structural correspondence learn-
ing. In ACL., pages 1118–1127.

J. Rajendran, M. M. Khapra, S. Chandar, and B. Ravin-
dran. 2015. Bridge correlational neural networks for
multilingual multimodal representation learning. In
arXiv preprint arXiv:1510.03519.

701

V. Rus, M. C. Lintean, R. Banjade, N. B. Niraula, and
D. Stefanescu. 2013. Semilar: The semantic simi-
larity toolkit. In ACL(Conference System Demonstra-
tions), pages 163–168.

A. P. Sarath Chandar, S. Lauly, H. Larochelle, M. Khapra,
B. Ravindran, V. C. Raykar, and A. Saha. 2014. An
autoencoder approach to learning bilingual word rep-
resentations. In NIPS., pages 1853–1861.

P. H. Schönemann. 1966. A generalized solution of the
orthogonal procrustes problem. The Journal of Psy-
chometrika., 31(1):1–10.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. 2012.
Semantic compositionality through recursive matrix-
vector spaces. In EMNLP, pages 1201–1211.

X. Tang and X. Wan. 2014. Learning bilingual em-
bedding model for cross-language sentiment classi-
fication. In Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), 2014 IEEE/WIC/ACM In-
ternational Joint Conferences., volume 2, pages 134–
141.

A. Vinokourov, J. Shawe-Taylor, and N. Cristianini.
2003. Inferring a semantic representation of text via
cross-language correlation analysis. In NIPS., pages
1497–1504.

I. Vulić and M. F. Moens. 2014. Probabilistic models of
cross-lingual semantic similarity in context based on
latent cross-lingual concepts induced from comparable
data. In EMNLP.

I. Vulić and M. F. Moens. 2015. Bilingual word em-
beddings from non-parallel document-aligned data ap-
plied to bilingual lexicon induction. In ACL.

C. Wang and S. Mahadevan. 2008. Manifold alignment
using procrustes analysis. In ICML., pages 1120–
1127.

M. Xiao and Y. Guo. 2002. Semi-supervised matrix
completion for cross-lingual text classification. In
AAAI.

M. Xiao and Y. Guo. 2013. Semi-supervised represen-
tation learning for cross-lingual text classification. In
EMNLP., pages 1465–1475.

D. Zhang, Qiaozhu Mei, and ChengXiang Zhai. 2010.
Cross-lingual latent topic extraction. In ACL, pages
1128–1137.

K. Zhao, H. Hassan, and M. Auli. 2015. Learning trans-
lation models from monolingual continuous represen-
tations. In NAACL-HLT.

G. Zhou, T. He, J. Zhao, and W. Wu. 2015a. A sub-
space learning framework for cross-lingual sentiment
classification with partial parallel data. In IJCAI.

H. Zhou, L. Chen, F. Shi, and D. Huang. 2015b. Learn-
ing bilingual sentiment word embeddings for cross-
language sentiment classification. In ACL, pages 430–
440.

H. Zou and T. Hastie. 2005. Regularization and vari-
able selection via the elastic net. The Journal of the
Royal Statistical Society: Series B (Statistical Method-
ology)., 67(2):301–320.

W. Y. Zou, R. Socher, D. M. Cer, and C. D. Manning.
2013. Bilingual word embeddings for phrase-based
machine translation. In EMNLP., pages 1393–1398.

702

Proceedings of NAACL-HLT 2016, pages 703–713,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Joint Learning with Global Inference
for Comment Classification in Community Question Answering

Shafiq Joty, Lluı́s Màrquez and Preslav Nakov
ALT Research Group

Qatar Computing Research Institute — HBKU, Qatar Foundation
{sjoty,lmarquez,pnakov}@qf.org.qa

Abstract

This paper addresses the problem of comment
classification in community Question Answer-
ing. Following the state of the art, we ap-
proach the task with a global inference pro-
cess to exploit the information of all com-
ments in the answer-thread in the form of a
fully connected graph. Our contribution com-
prises two novel joint learning models that are
on-line and integrate inference within learn-
ing. The first one jointly learns two node- and
edge-level MaxEnt classifiers with stochastic
gradient descent and integrates the inference
step with loopy belief propagation. The sec-
ond model is an instance of fully connected
pairwise CRFs (FCCRF). The FCCRF model
significantly outperforms all other approaches
and yields the best results on the task to date.
Crucial elements for its success are the global
normalization and an Ising-like edge potential.

1 Introduction

Online community fora have been gaining a lot of
popularity in recent years. Many of them, such as
Stack Exchange1, are quite open, allowing anybody
to ask and anybody to answer a question, which
makes them very valuable sources of information.
Yet, this same democratic nature resulted in some
questions accumulating a large number of answers,
many of which are of low quality. While nowa-
days online fora are typically searched using stan-
dard search engines that index entire threads, this is
not optimal, as it can be very time-consuming for a
user to go through and make sense of a long thread.

1http://stackexchange.com/

Q: hello guys and gals..could anyone of u knows where
to buy a good and originals RC helicopters and toy
guns here in qatar..im longin for this toys but its
nowhere to find.. thanks

A1 Go to Doha city center you may get it at 4 floor.
Local: Good, Human: Good

A2 “Hobby Shop” in City center has these toys with orig-
inal motors. They are super cool.. U will love that
shop..and will definetly buy one :) Have fun :)
Local: Good, Human: Good

A3 IM selling all my rc nitro helicopters. call me at
5285113.. (1)TREX 600 new/ (1) TREX500 (1)
SHUTTLERG (1) FUTABA ... [truncated]
Local: Good, Human: Bad

A4 Hobby Shop- City Centre
Local: Bad, Human: Good

A5 OMG!! :— Guns and helicopters??!!
Local: Good, Human: Bad

A6 Speed Marine- Salwa Road I think these guys r the
best in town...
Local: Good, Human: Good

A7 City center, i’ve seen wonderful collection.. Its some
wer besides the kids fun place..
Local: Bad, Human: Good

A8 try the shop in city center. they have many RC toys
for sale there. and for the toy guns, in your talking
baout airsoft i think its prohibited here. good luck
Local: Good, Human: Good

Figure 1: Example answer-thread with human an-
notations and automatic predictions by a local clas-
sifier at the comment level.

703

Thus, the creation of automatic systems for Com-
munity Question Answering (cQA), which could
provide efficient and effective ways to find good an-
swers in a forum, has received a lot of research atten-
tion recently (Duan et al., 2008; Li and Manandhar,
2011; dos Santos et al., 2015; Zhou et al., 2015a;
Wang and Ittycheriah, 2015; Tan et al., 2015; Feng
et al., 2015; Nicosia et al., 2015; Barrón-Cedeño et
al., 2015; Joty et al., 2015). There have been also re-
lated shared tasks at SemEval-20152 and SemEval-
20163 (Nakov et al., 2015; Nakov et al., 2016).

In this paper, we focus on the particular problem
of classifying comments in the answer-thread of a
given question as good or bad answers. Figure 1
presents an excerpt of a real example from the Qatar-
Living dataset from SemEval-2015 Task 3. There is
a question on top (Q) followed by eight comments
(A1, A2, · · · , A8). According to the human annota-
tions (‘Human’), all comments but 3 and 5 are good
answers to Q. The comments also contain the predic-
tions of a good-vs-bad binary classifier trained with
state-of-the-art features on this dataset (Nicosia et
al., 2015); its errors are highlighted in red. Many
comments are short, making it difficult for the clas-
sifier to make the right decisions, but some errors
could be corrected using information in the other
comments. For instance, comments 4 and 7 are sim-
ilar to each other, but also to comments 2 and 8
(‘Hobby shop’, ‘City Center’, etc.). It seems rea-
sonable to think that similar comments should have
the same labels, so comments 2, 4, 7 and 8 should
all be labeled consistently as good comments.

Indeed, recent work has shown the benefit of us-
ing varied thread-level information for answer clas-
sification, either by developing features modeling
the thread structure and dialogue (Barrón-Cedeño et
al., 2015), or by applying global inference mecha-
nisms at the thread level using the predictions of lo-
cal classifiers (Joty et al., 2015). We follow the sec-
ond approach, assuming a graph representation of
the answer-thread, where nodes are comments and
edges represent pairwise (similarity) relations be-
tween them. Classification decisions are at the level
of nodes and edges, and global inference is used to
get the best label assignment to all comments.

2http://alt.qcri.org/semeval2015/task3/
3http://alt.qcri.org/semeval2016/task3/

Our main contribution is to propose online mod-
els for learning the decisions jointly, incorporat-
ing the inference inside the joint learning algo-
rithm. Building on the ideas from papers coupling
learning and inference for NLP structure prediction
problems (Punyakanok et al., 2005; Carreras et al.,
2005), we propose joint learning of two MaxEnt
classifiers with stochastic gradient descent, integrat-
ing global inference based on loopy belief propaga-
tion. We also propose a joint model with global nor-
malization, that is an instance of Fully Connected
Conditional Random Fields (Murphy, 2012). We
compare our joint models with the previous state of
the art for the comment classification problem. We
find that the coupled learning-and-inference model
is not competitive, probably due to the label bias
problem. On the contrary, the fully connected CRF
model improves results significantly over all rivaling
models, yielding the best results on the task to date.

In the remainder of this paper, after discussing re-
lated work in Section 2, we introduce our joint mod-
els in Section 3. We then describe our experimental
settings in Section 4. The experiments and analy-
sis of results are presented in Section 5. Finally, we
summarize our contributions with future directions
in Section 6.

2 Related Work

The idea of using global inference based on lo-
cally learned classifiers has been tried in various
settings. In the family of graph-based inference,
Pang and Lee (2004) used local classification scores
with proximity information as edge weights in a
graph-cut inference to collectively identify subjec-
tive sentences in a review. Thomas et al. (2006) used
the same framework to classify congressional tran-
scribed speeches. They applied a classifier to pro-
vide edge weights that reflect the degree of agree-
ment between speakers. Burfoot et al. (2011) ex-
tended the framework by including other inference
algorithms such as loopy belief propagation and
mean-field.

“Learning and inference under structural and lin-
guistic constraints” (Roth and Yih, 2004) is a frame-
work to combine the predictions of local classifiers
in a global decision process solved by Integer Linear
Programming.

704

The framework has been applied to many NLP
structure prediction problems, including shallow
parsing (Punyakanok and Roth, 2000), semantic role
labeling (Punyakanok et al., 2004), and joint learn-
ing of entities and relations (Roth and Yih, 2004).
Further work explored the possibility of coupling
learning and inference in the previous setting. For
instance, Carreras et al. (2005) presented a model
for parsing that jointly trains several local decisions
with a perceptron-like algorithm that gets feedback
after inference. Punyakanok et al. (2005) studied
empirically and theoretically the cases in which this
inference-based learning strategy is superior to the
decoupled approach.

On the particular problem of comment classifica-
tion in cQA, we find some work exploiting thread-
level information. Hou et al. (2015) used features
about the position of the comment in the thread.
Barrón-Cedeño et al. (2015) developed more elab-
orated global features to model thread structure and
the interaction among users. Other work exploited
global inference algorithms at the thread-level. For
instance, (Zhou et al., 2015c; Zhou et al., 2015b;
Barrón-Cedeño et al., 2015) treated the task as se-
quential classification, using a variety of machine
learning algorithms to label the sequence of time-
sorted comments: LSTMs, CRFs, SVMhmm, etc.
Finally, Joty et al. (2015) showed that exploiting the
pairwise relations between comments (at any dis-
tance) is more effective than the sequential informa-
tion. Their results are the best on this task to date.
In this paper, we assume the same setting (cf. Sec-
tion 3) and we experiment with new models to do
learning jointly with inference in the same manner
as in (Punyakanok et al., 2005), and also using fully
connected pairwise CRFs.

3 Our Model

Given a forum question Q and a thread of answers
T = {A1, A2, · · · , An}, the task is to classify each
answer Ai in the thread into one of K possible
classes based on its relevance to the question. We
represent each thread as a fully-connected graph,
where each node represents an answer in the thread.

Given this setting, there exist at least three funda-
mentally different approaches to learn classification
functions.

First, the traditional approach of learning a local
classifier ignoring the structure in the output and us-
ing it to predict the label of each node Ai separately.
This approach only considers correlations between
the label of Ai and features extracted from Ai.

The second approach, adopted by Joty et al.
(2015), is to first learn two local classifiers sepa-
rately: (i) a node-level classifier to predict the label
for each individual node, and (ii) an edge-level clas-
sifier to predict whether the two nodes connected by
an edge should have the same label or not (assuming
a fully connected graph). The predictions of the lo-
cal classifiers are then used in a global inference al-
gorithm (e.g., graph-cut) to perform collective clas-
sification by maintaining structural constraints in the
output. There are two issues with this model: (i) the
local classifiers are trained separately; (ii) by decou-
pling learning from inference, this approach can lead
to suboptimal solutions, as Punyakanok et al. (2005)
pointed out.

The third approach, which we adopt in this pa-
per, is to model the dependencies between the out-
put variables while learning the classification func-
tions jointly by optimizing a global performance cri-
terion. The dependencies are captured using node-
level and edge-level factors defined over a fully con-
nected graph. The idea is that incorporating struc-
tural constraints in the form of all-pair relations dur-
ing training can yield a better solution that directly
optimizes an objective function for the target task.

Before we present our models in subsections 3.1
and 3.2, let us first introduce the notation that we
will use. Each thread T = {A1, A2, · · · , An} is
represented by a complete graph G = (V,E). Each
node i ∈ V in the graph is associated with an input
vector xi, which represents the features of an an-
swer Ai, and an output variable yi ∈ {1, 2, · · · ,K},
representing the class label. Similarly, each edge
(i, j) ∈ E is associated with an input feature vector
φ(xi,xj), derived from the node-level features, and
an output variable yi,j ∈ {1, 2, · · · , L}, representing
the labels for the pair of nodes. We use ψn(yi|xi,v)
and ψe(yi,j |φ(xi,xj),w) to denote the node-level
and the edge-level classification functions, respec-
tively. We call ψn and ψe factors, which can be ei-
ther normalized (e.g., probabilities) or unnormalized
quantities. The model parameters θ = [v,w] are to
be learned during training.

705

3.1 Joint Learning of Two Classifiers with
Global Thread-Level Inference

Our aim is to train the local classifiers so that they
produce correct global classification. To this end, in
our first model we train the node- and the edge-level
classifiers jointly based on global feedback provided
by a global inference algorithm. The global feed-
back determines how much to adjust the local classi-
fiers so that the classifiers and the inference together
produce the desired result. We use log-linear models
(aka maximum entropy) for both classifiers:

ψn(yi = k|xi,v) =
exp(vT

k xi)∑K
k′=1 exp(vT

k xi)
(1)

ψe(yi,j = l|φ(xi,xj),w)=
exp(wT

l φ(xi,xj))∑L
l′=1 exp(wT

l′φ(xi,xj))
(2)

The log likelihood (LL) for one data point (x,y)
(i.e., a thread) can be written as follows:

f(θ) =
∑
i∈V

K∑
k=1

yk
i

[
vT

k xi − logZ(v,xi)
]
+

∑
(i,j)∈E

L∑
l=1

yl
i,j

[
wT

l φ(xi,xj)− logZ(w,xi,xj)
]

(3)

where yki and yli,j are the gold labels for i-th node
and (i, j)-th edge expressed in 1-of-K (or 1-of-L)
encoding, respectively, and Z(·) terms are the local
normalization constants.

We give a pseudocode in Algorithm 1 that trains
this model in an online fashion using feedback from
the loopy belief propagation (LBP) inference algo-
rithm (to be described later in Section 3.1.1). Specif-
ically, the marginals from the LBP are used in a
stochastic gradient descent (SGD) algorithm, which
has the following (minibatch) update rule:

θt+1 = θt − ηt
1
N
f ′(θt) (4)

where θt and ηt are the model parameters and the
learning rate at step t, respectively, and 1

N f
′(θt) is

the mean gradient for the minibatch (a thread). For
our maximum entropy models, the gradients become

f ′(v) =
∑
i∈V

[βn(yi)− yi] .xi (5)

f ′(w) =
∑

(i,j)∈E

[βe(yi,j)− yi,j] .φ(xi,xj) (6)

Algorithm 1: Joint learning of local classifiers
with global thread-level inference

1. Initialize the model parameters v and w;
2. repeat

for each thread G = (V,E) do
a. Compute node and edge probabilities
ψn(yi|xi,v) and ψe(yi,j |φ(xi,xj),w);
b. Infer node and edge marginals βn(yi)
and βe(yi,j) using sum-product LBP;
c. Update: v = v − η

|V |f
′(v);

d. Update: w = w − η
|E|f

′(w);
end

until convergence;

In the above equations, β and y are the marginals
and the gold labels, respectively.

Note that when applying the model to the test
threads, we need to perform the same global infer-
ence to get the best label assignments.

3.1.1 Inference Using Belief Propagation
Belief Propagation or BP (Pearl, 1988) is a mes-

sage passing algorithm for inference in probabilis-
tic graphical models. It supports (i) sum-product,
to compute the marginal distribution for each un-
observed variable, i.e., p(yi|x, θ); and (ii) max-
product, to compute the most likely label configu-
ration, i.e., argmaxy p(y|x, θ). We describe here
the variant that operates on undirected graphs (aka
Markov random fields) with pairwise factors, which
uses the following equations:

µi→j(yj) =
∑
yi

ψn(yi)ψe(yi,j)
∏

k∈N(i)\j
µk→i(yi) (7)

βn(yi) ≈ ψn(yi)
∏

j∈N(i)

µj→i(yi) (8)

where µi→j is a message from node i to node j,
N(i) are the nodes neighbouring i, and ψn(yi) and
ψe(yi,j) are the node and the edge factors.

The algorithm proceeds by sending messages on
each edge until the node beliefs βn(yi) stabilize.
The edge beliefs can be written as follows:

βe(yi,j) ≈ ψe(yi,j)× µi→j(yi)× µj→i(yj) (9)

706

y2

y3

y1

x1

x3

x2

(a) Locally normalized joint model

y2

y3

y1

x1

x3

x2

(b) Globally normalized joint model

Figure 2: Graphical representation of our two joint models: (a) a joint model with locally normalized factors;
(b) a joint model with global normalization, i.e., a fully connected conditional random field.

The node and the edge marginals are then com-
puted by normalizing the node and the edge beliefs,
respectively. By replacing the summation with a
max operation in Equation 7, we can get the most
likely label configuration (i.e., argmax over labels).

BP is guaranteed to converge to an exact solution
if the graph is a tree. However, exact inference is in-
tractable for general graphs, i.e., graphs with loops.
Despite this, it has been advocated by Pearl (1988) to
use BP in loopy graphs as an approximation scheme;
see also (Murphy, 2012), page 768. The algorithm is
then called “loopy” BP, or LBP. Although LBP gives
approximate solutions for general graphs, it often
works well in practice (Murphy et al., 1999), outper-
forming other methods such as mean field (Weiss,
2001) and graph-cut (Burfoot et al., 2011).

It is important to mention that the approach
presented above (i.e., subsection 3.1) is similar
in spirit to the approach of Collins (2002), Car-
reras and Màrquez (2003) and Punyakanok et al.
(2005). The main difference is that they use a
Perceptron-like online algorithm, where the up-
dates are done based on the best label configuration
(i.e., argmaxy p(y|x, θ)) rather than the marginals.

One can use graph-cut (applicable only for binary
output variables) or max-product LBP for the decod-
ing task. However, this yields a discontinuous esti-
mate (even with averaged perceptron) for the gra-
dient (see Section 5). For the same reason, we use
sum-product LBP rather than max-product LBP.

3.2 A Joint Model with Global Normalization

Although the approach of updating the parameters
of the local classifiers based on the global inference
might seem like a natural extension to train the clas-
sifiers jointly, it suffers from at least two problems.
First, since the node and the edge scores are nor-
malized locally (see Equations 1 and 2), this ap-
proach leads to the so-called label bias problem, pre-
viously discussed by Lafferty et al. (2001). Namely,
due to the local normalization, local features at any
node do not influence states of other nodes in the
graph. Second, the two classifiers use their own fea-
ture sets. However, the same feature sets that give
optimal results locally (i.e., when trained on local
objectives), may not work well when the models are
trained jointly based on the global feedback. In or-
der to address these issues, below we propose a dif-
ferent model.

In our second approach, we seek to build a joint
model with global normalization. We define the fol-
lowing conditional joint distribution:

p(y|v,w,x) =
1

Z(v,w,x)

∏
i∈V

ψn(yi|x,v) ·∏
(i,j)∈E

ψe(yi,j |x,w) (10)

where ψn and ψe are the node and edge factors, and
Z(·) is the global normalization constant that en-
sures a valid probability distribution.

707

This model is essentially a fully connected condi-
tional random field or FCCRF (Murphy, 2012). Fig-
ure 2 shows the differences between the two models
with the standard graphical model representation.4

The global normalization allows CRFs to take long-
range interactions into account. Similar to our pre-
vious model, we use a log-linear representation for
the factors:

ψn(yi|x,v) = exp(vTφ(yi,x)) (11)
ψe(yi,j |x,w) = exp(wTφ(yi,j ,x)) (12)

where φ(·) is a feature vector derived from the inputs
and the labels. The LL for one data point becomes

f(θ) =
∑
i∈V

vTφ(yi,x) +
∑

(i,j)∈E

wTφ(yi,j ,x)

− logZ(v,w,x) (13)

This objective is convex, so we can use gradient-
based methods to find the global optimum. The gra-
dients have the following form:

f ′(v) =
∑
i∈V

φ(yi,x)− E[φ(yi,x)] (14)

f ′(w) =
∑

(i,j)∈E

φ(yi,j ,x)− E[φ(yi,j ,x)] (15)

where E[φ(.)] terms denote the expected feature vec-
tor. Traditionally, CRFs have been trained using of-
fline methods like limited-memory BFGS. Online
training of CRFs using SGD was proposed by Vish-
wanathan et al. (2006). To compare our two meth-
ods, we use SGD to train our CRF models. The
pseudocode is very similar to Algorithm 1.

3.2.1 Modeling Edge Factors
One crucial aspect in the joint models described

above is the modeling of edge factors. The tradi-
tional way is to define edge factors, where yi,j spans
over all possible state transitions, that is K2 differ-
ent transitions, each of which is associated with a
weight vector. This method has the advantage that
it models transitions in a fine-grained way, but, in
doing so, it also increases the number of model pa-
rameters, which may result in overfitting.

4Edge level features and output variables are not shown in
Figure 2 to avoid visual clutter.

Alternatively, one can define Ising-like edge fac-
tors, where we only distinguish between two transi-
tions: (i) same, when yi = yj and (ii) different, when
yi 6= yj . This modeling involves tying one set of pa-
rameters for all same transitions, and another set for
all different transitions.

4 Experimental Setting

In this section, we describe our experimental set-
ting. We first introduce the dataset we use, then we
present the features and the models that we compare.

4.1 Datasets and Evaluation

We experimented with the dataset from SemEval-
2015 Task 3 on Answer Selection for Community
Question Answering (Nakov et al., 2015). The
dataset contains question-answer threads from the
Qatar Living forum.5 Each thread consists of a ques-
tion followed by one or more (up to 143) comments.
The dataset is split into training, development and
test sets, with 2,600, 300, and 329 questions, and
16,541, 1,645, and 1,976 answers, respectively.

Each comment in the dataset is annotated with
one of the following labels, reflecting how well it an-
swers the question: Good, Potential, Bad, Dialogue,
Not English, and Other. At SemEval-2015 Task 3,
the latter four classes were merged into BAD at test-
ing time, and the evaluation measure uses a macro-
averaged F1 over the three classes: Good, Poten-
tial, and BAD. Unfortunately, the Potential class was
both the smallest (covering about 10% of the data),
and also the noisiest and the hardest to predict; yet,
its impact was magnified by the macro-averaged F1.
Thus, subsequent work has further merged Potential
under BAD (Barrón-Cedeño et al., 2015; Joty et al.,
2015), and has used for evaluation F1 with respect to
the Good category (or just accuracy). For our exper-
iments below, we also report F1 for the Good class
and the overall accuracy. We further perform sta-
tistical significance tests using an approximate ran-
domization test based on accuracy.6 We used SIGF
V.2 (Padó, 2006) with 10,000 iterations.

5http://www.qatarliving.com/forum
6Significance tests operate on individual instances rather

than individual classes; thus, they are not applicable for F1.

708

4.2 Features

For comparison, we use the features from our previ-
ous work (Joty et al., 2015) to implement all classi-
fiers in our models and baselines. There are two sets
of features, corresponding to the two main classifi-
cation problems in the models: node-level (i.e., clas-
sifying a comment as good or bad) and edge-level
(i.e., classifying a pair of comments as having the
same or different labels).

The features for node-level classification include
three types of information: (i) a variety of textual
similarity measures computed between the ques-
tion and the comment, (ii) several boolean features
capturing the presence of certain relevant words
or patterns, e.g., URLs, emails, positive/negative
words, acknowledgements, forum categories, pres-
ence of long words, etc., and (iii) a set of global
features modeling dialogue and user interactions in
the answer-thread. The features in the last two cate-
gories are manually engineered (Nicosia et al., 2015;
Barrón-Cedeño et al., 2015).

The features we use for edge-level classification
include (i) all features from the node classification
problem coded as the absolute value of the differ-
ence between the two comments, (ii) a variety of
text similarity features between the two comments,
(iii) the good/bad predictions of the node-level clas-
sifier on the two comments involved in the edge de-
cision. See (Joty et al., 2015) and (Barrón-Cedeño et
al., 2015) for a detailed description of the features.

4.3 Methods Compared

We experimentally compare our above-described
joint models to some baselines and to the state of the
art for this problem. We briefly describe all models
below, together with the names used in the tables of
results.

Independent Comment Classification (ICC)
These are binary classifiers to label thread com-
ments independently into good and bad categories.
The simplest baseline (Majority) classifies all
examples with the most frequent category. We also
train a MaxEnt classifier with stochastic gradient
descent (SGD) and a voted perceptron (ICCME and
ICCPerc, respectively).

Learning-and-Inference Models (LI) This is the
approach presented by Joty et al. (2015), who report
the best results on the task. The model is explained
in Section 3. We experiment with MaxEnt classifiers
trained on-line with SGD and two different inference
strategies, graph-cut and loopy BP (LIME−GC and
LIME−LBP , in our notation).

Joint Learning and Inference Models These are
our new models. First, we experiment with the
model for joint learning of two classifiers coupled
with thread-level inference (Section 3.1). We have
two versions, one using MaxEnt classifiers and the
other using averaged Perceptron. The inference al-
gorithm is loopy BP in both cases. We call these
methods JointME−LBP and JointPerc−LBP , respec-
tively. Second, we experiment with the joint model
with global normalization (cf. Section 3.2). We
call it FCCRF, for fully connected CRF. We use the
Ising-like edge factors defined in Section 3.2.1.

5 Evaluation

All results we report below are calculated in the test
set, using parameters tuned on the development set.

Our main results are shown in Table 1, where we
report accuracy (Acc) as well as precision (P), recall
(R) and F1-score (F1) for the good class.

The models are organized in four blocks. On top,
we see that the majority class baseline achieves ac-
curacy of 50.5%, as the dataset is very well balanced
between the classes.

In block II, we find the results for the local classi-
fiers, ICCME and ICCPerc, which achieve very sim-
ilar results. They are comparable to MaxEnt in Ta-
ble 2, where we report the best published results on
this dataset; yet, our classifiers are trained on-line.

Block III in the table reports results for models
that train two local MaxEnt classifiers and then per-
form thread-level inference using either graph-cut
(LIME−GC) or loopy BP (LIME−LBP).7 This yields
improvements over the ICC models with the thread-
level inference in block II, which is consistent with
the findings of (Joty et al., 2015); however, the dif-
ference in terms of accuracy is not statistically sig-
nificant (p-value = 0.09).

7Given that MaxEnt and Perceptron perform comparably in
this setting, we have just used MaxEnt as it provides directly the
class probabilities needed for the thread-level inference.

709

Model Learning Inference P R F1 Acc
I. Majority – – 50.5 100.0 67.1 50.5
II. ICCME Local, SGD – 75.1 85.8 80.1 78.5

ICCPerc Local, Voted – 76.6 82.4 79.4 78.4
III. LIME−GC Local, SGD Graph-cut 77.4 83.6 80.4 79.4

LIME−LBP Local, SGD LBP 76.4 84.6 80.3 79.1
IV. JointME−LBP 2 classifiers, Joint, SGD LBP 76.1 84.4 80.0 78.7

JointPerc−LBP 2 classifiers, Joint, AVG LBP 77.1 74.5 75.8 76.0
FCCRF Joint, SGD LBP 77.3 86.2 81.5 80.5

Table 1: Results of all compared models on the test set. The best results are boldfaced.

Model P R F1 Acc
MaxEnt classifier 75.7 84.3 79.8 78.4
Linear CRF 74.9 83.5 78.9 77.5
MaxEnt+ILP 77.0 83.5 80.2 79.1
MaxEnt+GraphCut 78.3 82.9 80.6 79.8
Our method (FCCRF) 77.3 86.2 81.5 80.5

Table 2: Comparison to the best published results on
the same datasets, as reported in (Joty et al., 2015).

Comparing our LIME−GC to MaxEnt+GraphCut
in Table 2, we see that we are slightly worse: -0.2 in
F1-score, and -0.4 in accuracy. It turns out that this
is due to our on-line MaxEnt classifier for the pair-
wise classification being slightly worse (-0.4 accu-
racy points absolute), which could explain the lower
performance after the graph-cut inference.

Next, block IV shows that the fully connected
CRF model (FCCRF) improves over the models in
block III by more than one point absolute in both F1

and accuracy. The improvement is statistically sig-
nificant (p-value = 0.04); especially noticeable is the
increase in recall (+2.6 points). This result is also
an improvement over the state of the art, as Table 2
shows.

Again in block IV, we can see that the two mod-
els that perform joint training of two classifiers
and then integrate inference in the training loop,
JointME−LBP and JointPerc−LBP , do not work well
and fall below the learning and inference models
from block III. As we explained above, these models
have two major disadvantages compared to FCCRF:
(i) the local normalization of node and edge scores
is prone to label bias issues; (ii) each of the two clas-
sifiers uses its own feature set, which might not be
optimal when they are trained jointly based on the
global feedback.

Notice that the version using Perceptron,
JointPerc−LBP , works bad in this setting. Since
updates are done after each thread-level inference,
we could not use a voted perceptron, but an aver-
aged one (Collins, 2002). Moreover, it did not yield
probabilities but real-valued scores, which we had
to remap to the [0;1] interval using a sigmoid.

5.1 CRF Variants Analysis

Table 3 compares different variants of CRF. The first
two rows show the results for the commonly used
linear-chain CRF (LCCRF) of order 1 and 2. We
can see that these models fall two accuracy (and F1)
points below FCCRF, which indicates that the pair-
wise relations between non-consecutive comments
provide additional relevant information for the task.
The fourth row shows the results when we eliminate
the edge-level features and we consider state tran-
sitions using the bias features only: the decrease in
performance is tiny, which means that what matters
is to model the interaction in the first place; the par-
ticular features used are less important. More no-
ticeable is the effect of using Ising-like modeling of
the edge factors in our FCCRF model. If we use
finer-grained edge factors for each of the four com-
binations (Good-Good, Good-Bad, Bad-Good, and
Bad-Bad), the performance decreases significantly,
mostly due to a drop in recall (see ‘FCCRF (4C)’).

5.2 Error Analysis

Next, we get a closer look at the predictions made
by our best Local (ICCME), Inference (LIME−GC),
and Global (FCCRF) models. We focus on questions
for which there are at least two comments. There
were 280 such test questions (out of 329), with a
total of 1,927 comments.

710

Model P R F1 Acc
LCCRF (ord=1) 76.1 83.2 79.4 78.3
LCCRF (ord=2) 76.8 82.1 79.3 78.4
FCCRF 77.3 86.2 81.5 80.5
FCCRF-noFeatures 77.2 86.0 81.4 80.1
FCCRF (4C) 78.8 79.7 79.3 79.0

Table 3: Results for different variants of the joint
CRF model on the test set.

The Local, the Inference, and the Joint mod-
els made correct predictions for 78.7%, 79.1% and
80.4% of the comments, respectively. We can see
that the Inference model behaves more like Local,
and not so much like Joint. This is indeed further
confirmed when we look at the agreement between
each pair of models: Local vs. Inference has 6.0%
disagreement, for Local vs. Joint it is 9.9%, and for
Inference vs. Joint it is 8.8%.

Figure 3 compares the three models vs. the
gold human labels on a particular test question
(ID=Q2908; some long comments are truncated and
the four omitted answers were classified correctly by
all three classifiers). We can see that the Joint model
is more robust than the Local one: while Joint cor-
rects two of the three wrong classifications of Local,
Inference makes two further errors instead.

6 Conclusion

We have proposed two learning methods for com-
ment classification in community Question Answer-
ing. We depart from the state-of-the-art knowl-
edge that exploiting the interrelations between all
the comments in the answer-thread is beneficial for
the task. Thus, we take as our baseline the learn-
ing and inference model from Joty et al. (2015), in
which the answer-thread is modeled as a fully con-
nected graph. Our contribution consists of moving
the framework to on-line learning and proposing two
models for coupling learning with inference.

Our first model learns jointly the two MaxEnt
classifiers with SGD and incorporates the graph in-
ference at every step with loopy belief propagation.
This model, due to its local normalization, suffers
from the label bias problem. The alternative we pro-
posed is to use an instance of a Fully Connected CRF
that operates on the same graph and considers the
node and edge factors with a shared set of features.

Q: I have a female friend who is leaving for a teaching
job in Qatar in January. What would be a useful
portable gift to give her to take with her?

A1 A couple of good best-selling novels. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A5 A big box of decent tea.... like “Scottish blend” or
“Tetleys”.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A6 Bacon. Nice bread, bacon, bacon, errmmm bacon
and a pork joint..
Loc: Good, Inf: Bad, Jnt: Good, Hum: Good

A8 Go to Tesco buy some good latest DVD.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Good

A9 Couple of good novels, All time favorite movies, ..
Loc: Good, Inf: Bad, Jnt: Good, Hum: Good

A10 Agree I do the same Indorachel..But some time you
get a good copy some time a bad one.. [. . .]
Loc: Good, Inf: Good, Jnt: Good, Hum: Bad

A11 Ditto on the books and dvd’s. Excedrin.
Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good

A12 Ditto on the bacon, pork sausage, pork chops,
ham,..can you tell we miss pork! [. . .]
Loc: Bad, Inf: Bad, Jnt: Good, Hum: Good

Figure 3: Sample test question with a thread of com-
ments and, for each comment, decisions by the local
(Loc), the global inference (Inf), and the global joint
(Jnt) classifiers, as well as by the human annotators.

One of the main advantages is that the normalization
is global. We experimented with the SemEval-2015
Task 3 dataset and we confirmed the advantage of
the FCCRF model, which outperforms all baselines
and achieves better results than the state of the art.

In the near future, we plan to apply the FCCRF
model to the full cQA task, i.e., finding good an-
swers to newly-asked questions using previously-
asked questions and their answer threads. In this
setting, we want to experiment with (i) ranking com-
ments (instead of classifying them), (ii) exploiting
the similarities between the new question and the
questions in the database and also the relations be-
tween comments across different answer-threads.

Acknowledgments
This research was performed by the Arabic Lan-
guage Technologies (ALT) group at the Qatar Com-
puting Research Institute (QCRI), HBKU, part of
Qatar Foundation. It is part of the Interactive sYs-
tems for Answer Search (IYAS) project, which is
developed in collaboration with MIT-CSAIL.

711

References
Alberto Barrón-Cedeño, Simone Filice, Giovanni

Da San Martino, Shafiq Joty, Lluı́s Màrquez, Preslav
Nakov, and Alessandro Moschitti. 2015. Thread-level
information for comment classification in community
question answering. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing, ACL-IJCNLP ’15,
pages 687–693, Beijing, China.

Clinton Burfoot, Steven Bird, and Timothy Baldwin.
2011. Collective classification of congressional floor-
debate transcripts. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies - Volume 1, HLT
’11, pages 1506–1515, Portland, Oregon.

Xavier Carreras and Lluı́s Màrquez. 2003. Online learn-
ing via global feedback for phrase recognition. In
Proceedings of the 17th Annual Conference on Neural
Information Processing Systems, NIPS ’03, Whistler,
Canada. MIT Press.

Xavier Carreras, Lluı́s Màrquez, and Jorge Castro. 2005.
Filtering–ranking perceptron learning for partial pars-
ing. Machine Learning, 60:41–71.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. In Proceedings of
the 2002 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’02, pages 1–8,
Philadelphia, Pennsylvania, USA.

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), ACL-
IJCNLP ’15, pages 694–699, Beijing, China.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying ques-
tion topic and question focus. In Proceedings of the
46th Annual Meeting of the Association for Compu-
tational Linguistics and the Human Language Tech-
nology Conference, ACL-HLT ’08, pages 156–164,
Columbus, Ohio, USA.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task. In
Proceedings of the 2015 IEEE Workshop on Automatic
Speech Recognition and Understanding, ASRU ’15,
pages 813–820, Scottsdale, Arizona, USA.

Yongshuai Hou, Cong Tan, Xiaolong Wang, Yaoyun
Zhang, Jun Xu, and Qingcai Chen. 2015. HITSZ-

ICRC: Exploiting classification approach for answer
selection in community question answering. In Pro-
ceedings of the 9th International Workshop on Seman-
tic Evaluation, SemEval ’15, pages 196–202, Denver,
Colorado, USA.

Shafiq Joty, Alberto Barrón-Cedeño, Giovanni
Da San Martino, Simone Filice, Lluı́s Màrquez,
Alessandro Moschitti, and Preslav Nakov. 2015.
Global thread-level inference for comment clas-
sification in community question answering. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing,
EMNLP ’15, pages 573–578, Lisbon, Portugal.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, pages 282–289, San
Francisco, California, USA.

Shuguang Li and Suresh Manandhar. 2011. Improv-
ing question recommendation by exploiting informa-
tion need. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, ACL ’11,
pages 1425–1434, Portland, Oregon, USA.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan.
1999. Loopy belief propagation for approximate in-
ference: An empirical study. In Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intel-
ligence, UAI’99, pages 467–475, Stockholm, Sweden.

Kevin Murphy. 2012. Machine Learning A Probabilistic
Perspective. The MIT Press.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
SemEval-2015 task 3: Answer selection in commu-
nity question answering. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Se-
mEval ’15, pages 269–281, Denver, Colorado, USA.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim Frei-
hat, Jim Glass, and Bilal Randeree. 2016. SemEval-
2016 task 3: Community question answering. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation, SemEval ’16, San Diego, Califor-
nia, USA.

Massimo Nicosia, Simone Filice, Alberto Barrón-
Cedeño, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessandro
Moschitti, Kareem Darwish, Lluı́s Màrquez, Shafiq
Joty, and Walid Magdy. 2015. QCRI: Answer selec-
tion for community question answering - experiments
for Arabic and English. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Se-
mEval ’15, pages 203–209, Denver, Colorado, USA.

712

Sebastian Padó, 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Bo Pang and Lillian Lee. 2004. A sentimental ed-
ucation: Sentiment analysis using subjectivity sum-
marization based on minimum cuts. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04, pages 271–278,
Barcelona, Spain.

Judea Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers Inc., San Francisco, California,
USA.

Vasin Punyakanok and Dan Roth. 2000. Shallow parsing
by inferencing with classifiers. In Proceedings of the
2nd Workshop on Learning Language in Logic and the
4th Conference on Computational Natural Language
Learning - Volume 7, ConLL ’00, pages 107–110, Lis-
bon, Portugal.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zi-
mak. 2004. Semantic role labeling via integer linear
programming inference. In Proceedings of the 20th In-
ternational Conference on Computational Linguistics,
COLING ’04, Geneva, Switzerland.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zi-
mak. 2005. Learning and inference over constrained
output. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, IJCAI’ 05, pages
1124–1129, Edinburgh, Scotland.

Dan Roth and Wen-tau Yih. 2004. A linear programming
formulation for global inference in natural language
tasks. In Proceedings of the HLT-NAACL 2004 Work-
shop: Eighth Conference on Computational Natural
Language Learning, CoNLL ’04, pages 1–8, Boston,
Massachusetts, USA.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. LSTM-
based deep learning models for non-factoid answer se-
lection. arXiv preprint arXiv:1511.04108.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
the 2006 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’06, pages 327–335,
Sydney, Australia.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W.
Schmidt, and Kevin P. Murphy. 2006. Accelerated
training of conditional random fields with stochastic
gradient methods. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML ’06,
pages 969–976, Pittsburgh, Pennsylvania, USA.

Zhiguo Wang and Abraham Ittycheriah. 2015. Faq-
based question answering via word alignment. arXiv
preprint arXiv:1507.02628.

Yair Weiss. 2001. Comparing the mean field method and
belief propagation for approximate inference in MRFs.
Advanced Mean Field Methods.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015a. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), ACL-
IJCNLP ’15, pages 250–259, Beijing, China.

Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, Buzhou
Tang, and Xiaolong Wang. 2015b. Answer sequence
learning with neural networks for answer selection in
community question answering. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics, pages 713–718, Beijing, China.

Xiaoqiang Zhou, Baotian Hu, Jiaxin Lin, Yang Xiang,
and Xiaolong Wang. 2015c. ICRC-HIT: A deep learn-
ing based comment sequence labeling system for an-
swer selection challenge. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Se-
mEval ’15, pages 210–214, Denver, Colorado, USA.

713

Proceedings of NAACL-HLT 2016, pages 714–719,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Weak Semi-Markov CRFs for NP Chunking in Informal Text

Aldrian Obaja Muis and Wei Lu
Singapore University of Technology and Design
{aldrian muis,luwei}@sutd.edu.sg

Abstract

This paper introduces a new annotated cor-
pus based on an existing informal text corpus:
the NUS SMS Corpus (Chen and Kan, 2013).
The new corpus includes 76,490 noun phrases
from 26,500 SMS messages, annotated by uni-
versity students. We then explored several
graphical models, including a novel variant
of the semi-Markov conditional random fields
(semi-CRF) for the task of noun phrase chunk-
ing. We demonstrated through empirical eval-
uations on the new dataset that the new vari-
ant yielded similar accuracy but ran in signif-
icantly lower running time compared to the
conventional semi-CRF.

1 Introduction

Processing user-generated text data is getting more
popular recently as a way to gather information,
such as collecting facts about certain events (Rit-
ter et al., 2015), gathering and identifying user pro-
files (Layton et al., 2010; Li et al., 2014; Spitters et
al., 2015), or extracting information in open domain
(Ritter et al., 2012; Mitchell et al., 2015).

Most recent work focus on the texts generated
through Twitter, which, due to the design of Twitter,
contain a lot of announcement-like messages mostly
intended for general public. In contrast, SMS was
designed as a way to communicate short personal
messages to a known person, and hence SMS mes-
sages tend to be more conversational and more in-
formal compared to tweets.

As conversational texts, SMS data often contains
references to named entities such as people and lo-
cations relevant to certain events. Recognizing those

Hmm Dr teh says the research presentation
should still prepare, butshe’s not to sure
whether they’d time to present

Figure 1: Sample SMS, with NPs underlined

references will be useful for further NLP tasks. One
way to recognize those named entities is to first cre-
ate a list of candidates, which can be further filtered
to get the desired named entities. Nadeau (Nadeau
and Sekine, 2007) lists several methods that work
upon candidates for NER. As all named entities are
nouns, recognizing noun phrases (NP) is therefore a
task that can be potentially useful for further steps in
the NLP pipeline to build upon. Figure 1 shows an
example SMS message within which noun phrases
are highlighted. As can be seen from this example,
recognizing the NP information on such a dataset
presents some additional challenges over conven-
tional NP recognition tasks. Specifically, the texts
are highly informal and noisy, with misspelling er-
rors and without grammatical structures. The correct
casing and punctuation information is often missing.
The lack of spaces between adjacent words makes
the detection of NP boundaries more challenging.

Furthermore, the lack of available annotated data
for such informal datasets prevents researchers from
understanding what effective models can be used to
resolve the above issues. In this work, we focus
on tackling these issues while making the following
two main contributions:

• We build a new corpus of SMS data that is fully
annotated with noun phrase information.

• We propose and build a new variant of semi-

714

Markov CRF (Sarawagi and Cohen, 2004) for
the task of NP chunking on our corpus, which
is faster and yields a performance similar to the
conventional semi-Markov CRF models.

2 NP-annotated SMS Corpus

Our text corpus comes from the NUS SMS Corpus
(Chen and Kan, 2013), containing 55,835 SMS mes-
sages from university students, mostly in English.
We used the 2011 version of the corpus, containing
45,718 messages, as it is more relevant to modern
phone models using full keyboard layout.

We note that there are a small portion of the
messages written in non-English language, such as
Tamil and Chinese. As we are focusing on English,
we excluded messages written by non-native En-
glish speakers based on the metadata (21.3% of all
messages). We also excluded messages which con-
tain only one word (6.1%) and we remove duplicate
messages (8.1%). 1

We assigned the remaining 27,700 messages to 64
university students who conduct annotations, each
annotating 500 with 100 messages co-annotated by
two other annotators. After manual verification we
excluded annotations with low quality from 3 stu-
dents. We used the resulting 26,500 messages as our
dataset. The students were asked to annotate the top-
level noun phrases found in each message using the
BRAT rapid annotation tool2, where they were in-
structed to highlight character spans to be marked
as noun phrases. The number of noun phrases per
message can be found in Table 1.

Due to the noisy nature of SMS messages, there
may not be proper capitalization or punctuation, and
in some cases there might be missing spaces be-
tween words. Figure 1 shows a sample SMS mes-
sage taken from the corpus. We can see that “Dr teh”
is not properly capitalized and “she” in “butshe’s”
is missing spaces around it. NPs which do not have
clear boundaries (improper NPs) constitutes 4.0% of
all NPs.

We then use this dataset to evaluate some models
on base NP chunking task, where, given a text, the

1We also manually excluded some messages (ID 1017-
4016) which are mostly not written in English (4.0% of all mes-
sages).

2http://brat.nlplab.org

#SMS #NPs #improper #tokens
total 26,500 76,490 3,066 (4.0) 359,009
train 21,200 61,212 2,406 (3.9) 287,590
dev 2,650 7,617 338 (4.4) 35,470
test 2,650 7,661 322 (4.2) 35,949

Table 1: Number of messages, NPs, number of improper NPs

(as percentage in brackets), which are NPs that end in a middle

of a word, and number of tokens.

system should return a list of character spans denot-
ing the noun phrases found in the text.

3 Models

In this paper, we will build our models based on
a class of discriminative graphical models, namely
conditional random fields (CRFs) (Lafferty et al.,
2001), for extracting NPs. The edges in the graph
represents the dependencies between states and the
features are defined over each edge in the graph.
Though CRFs are undirected graphical models, we
can use directed acyclic graphs with a root, a leaf,
and some inner nodes to represent label sequences3.
A path in the graph from the root to the leaf rep-
resents one possible label assignment to the input.
In the labeled instance, there will be only one sin-
gle path from the root to the leaf, while for the un-
labeled instance, the graph will compactly encode
all possible label assignments. The learning proce-
dure is essentially the process that tries to tune the
feature weights such that the true structures get as-
signed higher weights as compared to all other alter-
native structures in the graph.

In general, a CRF tries to maximize the following
objective function:

L(T) =∑
(x,y)∈T

 ∑
e∈E(x,y)

wT f(e)− logZw(x)

− λ||w||2 (1)

where T is the training set, (x,y) is a training in-
stance consisting of the sentence x and the label
sequence y ∈ Yn for a label set Y , w is the fea-
ture weight vector, E(x,y) is the set of edges which
form the path in the labeled instance, f(e) is the fea-
ture vector of the edge e, Zw(x) is the normaliza-

3Extension to directed hypergraphs is possible. See (Lu and
Roth, 2015).

715

tion term which sums over all possible paths from
the root to the leaf node, and λ is the regularization
parameter.

The set of edges and features defined in each
model affects the feature expectation and the nor-
malization term. Computation of the normalization
term, being the highest in time complexity, will de-
termine the overall complexity of training the model.
The set of edges and the normalization term in each
model will be described in the following sections.

3.1 Linear CRF
A linear-chain CRF, or linear CRF is a standard ver-
sion of CRF which was introduced in (Lafferty et
al., 2001), where each word in the sentence is given
a set of nodes representing the possible labels, and
edges are present between any two nodes from ad-
jacent words, forming a trellis graph. Here we con-
sider only the first-order linear CRF.

The normalization term Zw(x) is calculated as:

n∑
i=1

∑
y∈Y

∑
y′∈Y

wT fx(y′, y, i) (2)

where fx(y′, y, i) represents the feature vector on the
edge connecting state y′ at position i − 1 to state y
at position i. The time complexity of the inference
procedure for this model is O(n |Y|2).
3.2 Semi-CRF
In semi-CRF (Sarawagi and Cohen, 2004), in addi-
tion to the edges defined in linear CRF, there are ad-
ditional edges from a node to all nodes up to L next
words away, representing a segment within which
the words will be labeled with a single label.

The normalization term Zw(x) is calculated as:

n∑
i=1

∑
y∈Y

L∑
k=1

∑
y′∈Y

wTgx(y′, y, i− k, i) (3)

where gx(y′, y, i−k, i) represents the feature vector
on the edge connecting state y′ at position i − k to
state y at position i. The time complexity for this
model is O(nL |Y|2).
3.3 Weak Semi-CRF
Note that in semi-CRF, each node is connected to
L × |Y| next nodes. Intuitively, the model tries to

decide the next segment length and type at the same
time. We propose a weaker variant that makes the
two decisions separately by restricting each node to
connect to either only the nodes of the same label up
to L next words away, or to all the nodes only in the
next word. We call this Weak Semi-CRF.

To implement this, we need to split the original
nodes into Begin and End nodes, representing the
start and end of a segment. The End nodes connect
only to the very next Begin nodes of any label, while
the Begin nodes connect only to the End nodes of
same label up to next L words. The term Zw(x) is:

n∑
i=1

∑
y∈Y

∑
y′∈Y

wT fx(y′, y, i)+
L∑
k=1

wTgx(y, i− k, i)


(4)
where gx(y, i−k, i) represents the feature vector on
the edge connecting the Begin node with state y at
position i− k to the End node with the same state y
at position i. Note that, different from the gx func-
tion defined in Equation (3), this new gx function is
defined over a single (current) y label only, making
the time complexity O(n |Y|2 + nL |Y|). Theoret-
ically this model is slightly more efficient than the
conventional semi-CRF model.

Unlike conventional (first-order) semi-Markov
CRF, this new model does not allow us to capture
the dependencies between one segment and its ad-
jacent segment’s label information. We argue that,
however, such dependencies can be less crucial for
our task. We will empirically assess this aspect
through experiments. Figure 2 illustrates the differ-
ences among the three models.

4 Features

In linear CRF, the baseline feature set considers the
previous word, current word, and the tag transition.

In semi-CRF, following (Sarawagi and Cohen,
2004) we put all words not part of a noun phrase in
its own segment, and put each noun phrase in one
segment, possibly spanning over multiple words.
Here we set L = 6 and ignored NPs with more than
six words during training, which is less than 0.5% of
all NPs. For each segment, we defined the following
features as the baseline: (1) indexed words inside
current segment, running from the start and from the
end of the segment, (2) the word before and after

716

Linear CRF Semi CRF Weak Semi-CRF

Figure 2: Graphical illustrations of the differences between three models. The bold arrows represent the path in each model to

label “Dr Teh” as a noun phrase. For Linear CRF, this is a simplified diagram; in the implementation we used the “BIO” approach

to represent text chunks. The underlined nodes in Weak Semi-CRF are the Begin nodes.

current segment, and (3) the labels of last segment
and current segment.

In weak semi-CRF we use the same feature set as
semi-CRF, adjusting the features accordingly where
segment-specific features (1) are defined only in the
Begin-End edges, and transition features (3) are de-
fined only in the End-Begin edges.

For each model we then add the character pre-
fixes and suffixes up to length 3 for each word (+a),
Brown cluster (Brown et al., 1992) for current word
(+b), and word shapes (+s). For Brown cluster fea-
tures we used 100 clusters trained on the whole NUS
SMS Corpus. The cluster information is then used
directly as a feature.

Word shapes can be considered a generic repre-
sentation of words that retains only the “shape” in-
formation, such as whether it starts with capital let-
ter or whether it contains digits. The Brown clusters
and word shapes features are applied to each of the
word features described in each model.

5 Experiments

All models were built by us using Java, and were
optimized with L-BFGS. Models are all tuned in the
development set for optimal λ. The optimal λ values
are noted in Table 2.

Since the models that we consider are all word-
based 4, we tokenize the corpus using a regex-based
tokenizer similar to the wordpunct_tokenize
function in Python NLTK package. We also in-
cluded some rules to consider special anonymization
tokens in the SMS dataset (Chen and Kan, 2013).

The gold character spans are converted into word

4We experimented with character-based models, but they do
not perform well. We leave them for future investigations.

Linear CRF Semi-CRF Weak Semi-CRF
base 0.125 2.0 2.0

+s 0.25 1.0 2.0
+b 0.5 1.0 2.0
+b+s 0.5 2.0 2.0

+a 1.0 2.0 2.0
+a +s 2.0 1.0 2.0
+a+b 1.0 2.0 2.0
+a+b+s 2.0 2.0 2.0

Table 2: Tuned regularization parameter λ from the set {0.125,

0.25, 0.5, 1.0, 2.0} for various feature sets. +a, +b, and +s refer

to the affix, Brown cluster, and word shape features respectively.

labels in BIO format, reducing or extending the
character spans as necessary to the closest word
boundaries. The converted annotations are regarded
as gold word spans. Note that this conversion is
lossy due to the presence of improper NPs, which
makes it impossible for the converted format to rep-
resent the original gold standard.

We evaluated the models in the original character-
level spans and also in the converted word-level
spans, to see the impact of the lossy conversion on
the scores. In character-level evaluation, the system
output is converted back into character boundaries
and compared with the original gold standard, while
in the word-level evaluation, the system output is
compared directly with the gold word spans. For this
reason, we anticipate that the scores in word-level
evaluation will be higher than in the character-level
evaluation. The results are shown in Table 3. The
scores for “Gold” in the character-level evaluation
mark the upperbound of word-based models due to
the presence of improper NPs.

The average time per training iteration on the base
models is 1.311s, 2.072s, and 1.811s respectively for
Linear CRF, Semi-CRF, and Weak Semi-CRF.

717

Character-level Eval. Word-level Eval.
Prec Rec F Prec Rec F

Linear CRF
base 72.29 70.13 71.19 74.04 71.93 72.97

+s 72.56 70.50 71.52 74.38 72.38 73.36
+b 72.48 71.82 72.15 74.32 73.77 74.04
+b+s 72.90 72.10 72.50 74.70 73.99 74.34

+a 72.56 72.41 72.49 74.66 74.62 74.64
+a +s 72.65 71.93 72.29 74.69 74.07 74.38
+a+b 72.63 72.80 72.71 74.70 75.00 74.85
+a+b+s 72.63 72.74 72.68 74.77 74.99 74.88

Semi-CRF
base 74.94 73.80 74.37 76.50 75.45 75.97

+s 75.14 73.48 74.30 76.81 75.23 76.01
+b 73.95 74.50 74.22 75.82 76.50 76.15
+b+s 73.79 74.08 73.93 75.67 76.09 75.88

+a 74.31 75.08 74.69 76.20 77.11 76.65
+a +s 74.36 74.49 74.42 76.32 76.57 76.44
+a+b 74.30 74.88 74.58 76.20 76.92 76.55
+a+b+s 74.24 74.93 74.58 76.23 77.06 76.64

Weak Semi-CRF
base 74.84 73.94 74.39 76.47 75.67 76.07

+s 74.84 72.67 73.74 76.50 74.40 75.43
+b 74.13 74.12 74.12 75.97 76.08 76.02
+b+s 74.19 74.21 74.20 76.06 76.19 76.13

+a 74.07 75.13 74.60 76.02 77.23 76.62
+a +s 74.47 74.49 74.48 76.44 76.58 76.51
+a+b 74.08 74.57 74.32 76.01 76.64 76.32
+a+b+s 74.19 74.43 74.31 76.15 76.52 76.33

Gold 95.96 95.81 95.88 100.0 100.0 100.0

Table 3: Scores on test set (both character-level and word-level

evaluation) using optimal λ. +a, +b, and +s refer to the affix,

Brown cluster, and word shape features respectively. Best F1

scores are underlined, and values which are not significantly

different in 95% confidence interval are in bold

5.1 Discussion

First, we see that the two semi-CRF models perform
better compared to the baseline linear CRF model,
showing the benefit of using segment features over
only single word features.

It is also interesting that, while being a weaker
version of the semi-CRF, the weak semi-CRF can
actually perform in the same level within 95% con-
fidence interval as the conventional semi-CRF. This
shows that some of the dependencies in the con-
ventional semi-CRF do not really contribute to the
strength of semi-CRF over standard linear CRF. As
noted in Section 3.3, weak semi-CRF makes the de-
cision on the segment type and length separately.
This means there is enough information in the lo-
cal features to decide the segment type and length
separately, and so we can remove some combined
features while retaining the same performance.

This result, coupled with the fact that the weak
semi-CRF requires 12.5% less time than the conven-

tional semi-CRF (1.811s vs 2.072s), shows the po-
tentials of using this weak semi-CRF as an alterna-
tive of the conventional semi-CRF. With more label
types (here only two), the difference will be larger,
since the weak semi-CRF is linear in number of label
types, while conventional semi-CRF is quadratic.

6 Related Work

Ritter et al. (2011) previously showed that off-the-
shelf NP-chunker performs worse on informal text.
Then they trained a linear-CRF model on additional
in-domain data, reducing the error up to 22%. How-
ever no results on semi-CRF was given.

Semi-CRF has proven effective in chunking tasks.
Other variants of semi-CRF models also exist.
Nguyen et al. (2014) explored the use of higher-
order dependencies to improve the performance of
semi-CRF models on synthetic data and on hand-
writing recognition. They exploited the sparsity of
label sequence in order to make the training efficient.

It is also known that feature selection is an impor-
tant aspect when trying to use semi-CRF models to
improve on the linear CRF. Andrew (2006) reported
an error reduction of up to 25% when using features
that are best exploited by semi-CRF.

7 Conclusion and Future Work

In this paper we present a new NP-annotated SMS
corpus, together with a novel variant of the semi-
CRF model, which runs in significantly lower
time while maintaining similar accuracy on the NP
chunking task on the new dataset. Future work in-
cludes the application of the weak semi-CRF model
to other structured prediction problems, as well as
performing investigations on handling other types of
informal or noisy texts such as speech transcripts.
We make the code and data available for download
at http://statnlp.org/research/ie/.

Acknowledgements

We would like to thank Alexander Binder, Jie Yang,
Dinh Quang Thinh as well as the 64 undergraduate
students who helped us with annotations. We would
also like to thank the three anonymous reviewers for
their helpful comments. This work is supported by
SUTD grant SRG ISTD 2013 064 and MOE Tier 1
grant SUTDT12015008.

718

References

Galen Andrew. 2006. A hybrid Markov/semi-Markov
conditional random field for sequence segmentation.
In Proc. EMNLP’06.

Peter F. Brown, Peter V. DeSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
Based n-gram Models of Natural Language. Compu-
tational Linguistics, 18(4):467–479.

Tao Chen and Min-Yen Kan. 2013. Creating a live,
public short message service corpus: the NUS SMS
corpus. In Language Resources and Evaluation, vol-
ume 47, pages 299–335. Springer Netherlands.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data.
In International Conference on Machine Learning
(ICML), pages 282–289.

Robert Layton, Paul Watters, and Richard Dazeley. 2010.
Authorship Attribution for Twitter in 140 Characters
or Less. In 2010 Second Cybercrime and Trustworthy
Computing Workshop, pages 1–8.

Jiwei Li, Alan Ritter, and Eduard Hovy. 2014.
Weakly Supervised User Profile Extraction from Twit-
ter. In Association for Computational Linguistics,
pages 165–174.

Wei Lu and Dan Roth. 2015. Joint mention extraction
and classification with mention hypergraphs. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 857–867,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Tom M. Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, Justin Betteridge, Andrew Carl-
son, Bhavana Dalvi Mishra, Matthew Gardner, Bryan
Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn
Mazaitis, Thahir Mohamed, Ndapa Nakashole, Em-
manouil Antonios Platanios, Alan Ritter, Mehdi
Samadi, Burr Settles, Richard Wang, Derry Wijaya,
Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Mal-
colm Greaves, and Joel Welling. 2015. Never-Ending
Learning. In AAAI Conference on Artificial Intelli-
gence, pages 2302–2310.

David Nadeau and Satoshi Sekine. 2007. A survey of
named entity recognition and classification. Lingvisti-
cae Investigationes, 30(1):3–26.

Viet Cuong Nguyen, Nan Ye, Wee Sun Lee, and
Hai Leong Chieu. 2014. Conditional Random Field
with High-order Dependencies for Sequence Labeling
and Segmentation. Journal of Machine Learning Re-
search 2014, 15:981–1009.

Alan Ritter, Sam Clark, and Oren Etzioni. 2011. Named
entity recognition in tweets: an experimental study.

In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1524–1534, Edinburgh.

Alan Ritter, Oren Etzioni, and Sam Clark. 2012. Open
Domain Event Extraction from Twitter. In Proceed-
ings Workshop on Text Mining, ACM International
Conference on Knowledge Discovery and Data Min-
ing 2012 (KDD’12).

Alan Ritter, Evan Wright, William Casey, and Tom M.
Mitchell. 2015. Weakly Supervised Extraction of
Computer Security Events from Twitter. In Proceed-
ings of the 24th International Conference on World
Wide Web, volume i, pages 896–905.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In Advances in Neural Information Process-
ing Systems 17, pages 1185–1192.

Martijn Spitters, Femke Klaver, Gijs Koot, and Mark van
Staalduinen. 2015. Authorship Analysis on Dark
Marketplace Forums. In Proceedings of the IEEE
European Intelligence & Security Informatics Confer-
ence 2015 (EISIC 2015).

719

Proceedings of NAACL-HLT 2016, pages 720–730,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

What to talk about and how? Selective Generation using
LSTMs with Coarse-to-Fine Alignment

Hongyuan Mei
UChicago, TTI-Chicago
hongyuan@uchicago.edu

Mohit Bansal
TTI-Chicago

mbansal@ttic.edu

Matthew R. Walter
TTI-Chicago

mwalter@ttic.edu

Abstract
We propose an end-to-end, domain-
independent neural encoder-aligner-decoder
model for selective generation, i.e., the
joint task of content selection and surface
realization. Our model first encodes a full
set of over-determined database event records
via an LSTM-based recurrent neural network,
then utilizes a novel coarse-to-fine aligner to
identify the small subset of salient records to
talk about, and finally employs a decoder to
generate free-form descriptions of the aligned,
selected records. Our model achieves the
best selection and generation results reported
to-date (with 59% relative improvement in
generation) on the benchmark WEATHER-
GOV dataset, despite using no specialized
features or linguistic resources. Using an
improved k-nearest neighbor beam filter
helps further. We also perform a series of
ablations and visualizations to elucidate the
contributions of our key model components.
Lastly, we evaluate the generalizability of
our model on the ROBOCUP dataset, and get
results that are competitive with or better than
the state-of-the-art, despite being severely
data-starved.

1 Introduction

We consider the important task of producing a natu-
ral language description of a rich world state rep-
resented as an over-determined database of event
records. This task, which we refer to as selective
generation, is often formulated as two subproblems:
content selection, which involves choosing a sub-
set of relevant records to talk about from the ex-
haustive database, and surface realization, which is
concerned with generating natural language descrip-
tions for this subset. Learning to perform these tasks

jointly is challenging due to the uncertainty in decid-
ing which records are relevant, the complex depen-
dencies between selected records, and the multiple
ways in which these records can be described.

Previous work has made significant progress on
this task (Chen and Mooney, 2008; Angeli et al.,
2010; Kim and Mooney, 2010; Konstas and Lap-
ata, 2012). However, most approaches solve the
two content selection and surface realization sub-
tasks separately, use manual domain-dependent re-
sources (e.g., semantic parsers) and features, or em-
ploy template-based generation. This limits do-
main adaptability and reduces coherence. We take
an alternative, neural encoder-aligner-decoder ap-
proach to free-form selective generation that jointly
performs content selection and surface realization,
without using any specialized features, resources, or
generation templates. This enables our approach to
generalize to new domains. Further, our memory-
based model captures the long-range contextual de-
pendencies among records and descriptions, which
are integral to this task (Angeli et al., 2010).

We formulate our model as an encoder-aligner-
decoder framework that uses recurrent neural net-
works with long short-term memory units (LSTM-
RNNs) (Hochreiter and Schmidhuber, 1997) to-
gether with a coarse-to-fine aligner to select and
“translate” the rich world state into a natural lan-
guage description. Our model first encodes the
full set of over-determined1 event records using a
bidirectional LSTM-RNN. A novel coarse-to-fine
aligner then reasons over multiple abstractions of
the input to decide which of the records to discuss.
The model next employs an LSTM decoder to gen-

1By “over-determined”, we mean that there are extraneous
and redundant records present in the database.

720

erate natural language descriptions of the selected
records.

The use of LSTMs, which have proven effective
for similar long-range generation tasks (Sutskever et
al., 2014; Vinyals et al., 2015b; Karpathy and Fei-
Fei, 2015), allows our model to capture the long-
range contextual dependencies that exist in selec-
tive generation. Further, the introduction of our pro-
posed variation on alignment-based LSTMs (Bah-
danau et al., 2014; Xu et al., 2015) enables our
model to learn to perform content selection and sur-
face realization jointly, by aligning each generated
word to an event record during decoding. Our novel
coarse-to-fine aligner avoids searching over the full
set of over-determined records by employing two
stages of increasing complexity: a pre-selector and
a refiner acting on multiple abstractions (low- and
high-level) of the record input. The end-to-end na-
ture of our framework has the advantage that it can
be trained directly on corpora of record sets paired
with natural language descriptions, without the need
for ground-truth content selection.

We evaluate our model on a benchmark weather
forecasting dataset (WEATHERGOV) and achieve
the best results reported to-date on content selection
(12% relative improvement in F-1) and language
generation (59% relative improvement in BLEU),
despite using no domain-specific resources. We
also perform a series of ablations and visualiza-
tions to elucidate the contributions of the primary
model components, and also show improvements
with a simple, k-nearest neighbor beam filter ap-
proach. Finally, we demonstrate the generalizability
of our model by directly applying it to a benchmark
sportscasting dataset (ROBOCUP), where we get re-
sults competitive with or better than state-of-the-art,
despite being extremely data-starved.

2 Related Work

Selective generation is a task where a natural lan-
guage description is produced for a salient subset of
a rich world state represented as an over-determined
database of event records. A good deal of atten-
tion in this area has been paid to the individual
content selection and selective realization subprob-
lems. With regards to the former, Barzilay and Lee
(2004) model the content structure from unanno-

tated documents and apply it to the application of
text summarization. Barzilay and Lapata (2005)
treat content selection as a collective classification
problem and simultaneously optimize the local label
assignment and their pairwise relations. Liang et al.
(2009) address the related task of aligning a set of
records to given textual description clauses. They
propose a generative semi-Markov alignment model
that jointly segments text sequences into utterances
and associates each to the corresponding record.

Surface realization is often treated as a problem
of producing text according to a given representation
(Reiter et al., 2000). Walker et al. (2001) and Stent
et al. (2004) design trainable sentence planners to
generate sentences (and their combinations) for con-
text planning and dialog, relying upon various lin-
guistics features. Soricut and Marcu (2006) propose
a language generation system that uses the WIDL-
representation, a formalism used to compactly rep-
resent probability distributions over finite sets of
strings. Wong and Mooney (2007) and Lu and
Ng (2011) use synchronous context-free grammars
to generate natural language sentences from formal
meaning representations. Similarly, Belz (2008) em-
ploys probabilistic context-free grammars to per-
form surface realization. Other effective approaches
include the use of tree conditional random fields (Lu
et al., 2009) and template extraction within a log-
linear framework (Angeli et al., 2010).

Recent work seeks to solve the full selective
generation problem through a single framework.
Chen and Mooney (2008) and Chen et al. (2010)
learn alignments between comments and their cor-
responding event records using a translation model
for parsing and generation. Kim and Mooney (2010)
implement a two-stage framework that decides what
to discuss using a combination of the methods of
Lu et al. (2008) and Liang et al. (2009), and then
produces the text based on the generation system of
Wong and Mooney (2007).

Angeli et al. (2010) propose a unified concept-
to-text model that treats joint content selection and
surface realization as a sequence of local decisions
represented by a log-linear model. Similar to other
work, they train their model using external align-
ments from Liang et al. (2009). Generation then fol-
lows as inference over this model, where they first
choose an event record, then the record’s fields (i.e.,

721

attributes), and finally a set of templates that they
then fill in with words for the selected fields. Their
ability to model long-range dependencies relies on
their choice of features for the log-linear model,
while the template-based generation further employs
some domain-specific features for fluent output.

Konstas and Lapata (2012) propose an alternative
method that simultaneously optimizes the content
selection and surface realization problems. They
employ a probabilistic context-free grammar that
specifies the structure of the event records, and then
treat generation as finding the best derivation tree
according to this grammar. However, their method
still selects and orders records in a local fashion via
a Markovized chaining of records. Konstas and La-
pata (2013) improve upon this approach with global
document representations. However, this approach
also requires alignment during training, which they
estimate using the method of Liang et al. (2009).

We treat the problem of selective generation as
end-to-end learning via a recurrent neural network
encoder-aligner-decoder model, which enables us
to jointly learn content selection and surface re-
alization directly from database-text pairs, without
the need for an external aligner or ground-truth se-
lection labels. The use of LSTM-RNNs enables
our model to capture the long-range dependencies
that exist among the records and natural language
output. Additionally, the model does not rely on
any manually-selected or domain-dependent fea-
tures, templates, or parsers, and is thereby general-
izable. The alignment-RNN approach has recently
proven successful for generation-style tasks, e.g.,
machine translation (Bahdanau et al., 2014) and im-
age captioning (Xu et al., 2015). Since selective
generation requires identifying the small number of
salient records among an over-determined database,
we avoid performing exhaustive search over the full
record set, and instead propose a novel coarse-to-
fine aligner that divides the search complexity into
pre-selection and refinement stages.

3 Task Definition

We consider the problem of generating a natural
language description for a rich world state speci-
fied in terms of an over-determined set of records
(database). This problem requires deciding which
of the records to discuss (content selection) and

r1:N :

temperature(time=17-06, min=48, mean=53, max=61)

windSpeed(time=17-06, min=3, mean=6, max=11)

windDir(time=17-06, mode=SSW)

gust(time=17-06, min=0, mean=0, max=0)

skyCover(time=17-21, mode=0-25)

skyCover(time=02-06, mode=75-100)

precipChance(time=17-06, min=2, mean=14, max=20)

rainChance(time=17-06, mode=someChance)

x1:N :
“a 20 percent chance of showers after midnight. increas-

ing clouds, with a low around 48 southwest wind between

5 and 10 mph”

(a) WEATHERGOV

r1:N :

pass(arg1=purple6, arg2=purple3)

kick(arg1=purple3)

badPass(arg1=purple3, arg2=pink9)

turnover(arg1=purple3, arg2=pink9)

x1:N : “purple3 made a bad pass that was picked off by pink9”

(b) ROBOCUP

Figure 1: Sample database-text pairs chosen from the
(a) WEATHERGOV and (b) ROBOCUP datasets.

how to discuss them (surface realization). Train-
ing data consists of scenario pairs (r(i), x(i)) for
i = 1, 2, . . . , n, where r(i) is the complete set of
records and x(i) is the natural language description
(Fig. 1). At test time, only the records are given. We
evaluate our model in the context of two publicly-
available benchmark selective generation datasets.

WEATHERGOV The weather forecasting dataset
(see Fig. 1(a)) of Liang et al. (2009) consists of
29528 scenarios, each with 36 weather records (e.g.,
temperature, sky cover, etc.) paired with a natural
language forecast (28.7 avg. word length).

ROBOCUP We evaluate our model’s generaliz-
ability on the sportscasting dataset of Chen and
Mooney (2008), which consists of only 1539 pairs
of temporally ordered robot soccer events (e.g., pass,
score) and commentary drawn from the four-game
2001–2004 RoboCup finals (see Fig. 1(b)). Each
scenario contains an average of 2.4 event records
and a 5.7 word natural language commentary.

4 The Model

We formulate selective generation as inference
over a probabilistic model P (x1:T |r1:N), where

722

LSTM LSTM LSTM

Std. align. Refiner

LSTM LSTM

Pre-selec.

Figure 2: Our model architecture with a bidirectional
LSTM encoder, coarse-to-fine aligner, and decoder.

r1:N = (r1, r2, . . . , rN) is the input set of over-
determined event records,2 x1:T = (x1, x2, . . . , xT)
is the generated description with xt being the word
at time t and x0 being a special start token:

x∗1:T = arg max
x1:T

P (x1:T |r1:N) (1a)

= arg max
x1:T

T∏
t=1

P (xt|x0:t−1, r1:N) (1b)

The goal of inference is to generate a natural lan-
guage description for a given set of records. An
effective means of learning to perform this gen-
eration is to use an encoder-aligner-decoder archi-
tecture with a recurrent neural network, which has
proven effective for related problems in machine
translation (Bahdanau et al., 2014) and image cap-
tioning (Xu et al., 2015). We propose a variation on
this general model with novel components that are
well-suited to the selective generation problem.

Our model (Fig. 2) first encodes each input record
rj into a hidden state hj with j ∈ {1, . . . , N} us-
ing a bidirectional recurrent neural network (RNN).
Our novel coarse-to-fine aligner then acts on a con-
catenation mj of each record and its hidden state

2These records may take the form of an unordered set
or have a natural ordering (e.g., temporal in the case of
ROBOCUP). In order to make our model generalizable, we treat
the set as a sequence and use the order specified by the dataset.
We note that it is possible that a different ordering will yield
improved performance, since ordering has been shown to be
important when operating on sets (Vinyals et al., 2015a).

as multi-level representation of the input to compute
the selection decision zt at each decoding step t. The
model then employs an RNN decoder to arrive at the
word likelihood P (xt|x0:t−1, r1:N) as a function of
the multi-level input and the hidden state of the de-
coder st−1 at time step t − 1. In order to model the
long-range dependencies among the records and de-
scriptions (which is integral to effectively perform-
ing selective generation (Angeli et al., 2010; Kon-
stas and Lapata, 2012; Konstas and Lapata, 2013)),
our model employs LSTM units as the nonlinear en-
coder and decoder functions.

Encoder Our LSTM-RNN encoder (Fig. 2)
takes as input the set of event records rep-
resented as a sequence r1:N = (r1, r2, . . . , rN)
and returns a sequence of hidden annotations
h1:N = (h1, h2, . . . , hN), where the annotation hj
summarizes the record rj . This results in a represen-
tation that models the dependencies that exist among
the records in the database.We adopt an encoder ar-
chitecture similar to that of Graves et al. (2013)

iej
fej
oej
gej

 =


σ
σ
σ

tanh

T e
(
rj
hj−1

)
(2a)

cej = fej � cej−1 + iej � gej (2b)

hj = oej � tanh(cej) (2c)

where T e is an affine transformation, σ is the logis-
tic sigmoid that restricts its input to [0, 1], iej , f

e
j ,

and oej are the input, forget, and output gates of the
LSTM, respectively, and cej is the memory cell acti-
vation vector. The memory cell cej summarizes the
LSTM’s previous memory cej−1 and the current in-
put, which are modulated by the forget and input
gates, respectively. Our encoder operates bidirec-
tionally, encoding the records in both the forward
and backward directions, which provides a better
summary of the input records. In this way, the hid-
den annotations hj = (

−→
h >j ;
←−
h >j)> concatenate for-

ward
−→
h j and backward

←−
h j annotations, each deter-

mined using Equation (2c).

Coarse-to-Fine Aligner Having encoded the in-
put records r1:N to arrive at the hidden annotations
h1:N , the model then seeks to select the content at
each time step t that will be used for generation. Our

723

model performs content selection using an extension
of the alignment mechanism proposed by Bahdanau
et al. (2014), which allows for selection and genera-
tion that is independent of the ordering of the input.

In selective generation, the given set of event
records is over-determined with only a small subset
of salient records being relevant to the output natu-
ral language description. Standard alignment mech-
anisms limit the accuracy of selection and genera-
tion by scanning the entire range of over-determined
records. In order to better address the selective
generation task, we propose a coarse-to-fine aligner
that prevents the model from being distracted by
non-salient records. 3 Our model aligns based on
multiple abstractions of the input: both the origi-
nal input record as well as the hidden annotations
mj = (r>j ;h>j)>, an approach that has previously
been shown to yield better results than aligning
based only on the hidden state (Mei et al., 2015).

Our coarse-to-fine aligner avoids searching over
the full set of over-determined records by using two
stages of increasing complexity: a pre-selector and
refiner (Fig. 2). The pre-selector first assigns to each
record a probability pj of being selected, while the
standard aligner computes the alignment likelihood
wtj over all the records at each time step t during
decoding. Next, the refiner produces the final se-
lection decision by re-weighting the aligner weights
wtj with the pre-selector probabilities pj :

pj = sigmoid
(
q> tanh(Pmj)

)
(3a)

βtj = v>tanh(Wst−1 + Umj) (3b)

wtj = exp(βtj)/
∑
j

exp(βtj) (3c)

αtj = pjwtj/
∑
j

pjwtj (3d)

zt =
∑
j

αtjmj (3e)

where P , q, U ,W , v are learned parameters. Ideally,
the selection decision would be based on the highest-
value alignment zt = mk where k = arg maxj αtj .
However, we use the weighted average (Eqn. 3e) as
its soft approximation to maintain differentiability of
the entire architecture.

3 Our coarse-to-fine nomenclature is based on the alignment
inference at successively finer granularities.

The pre-selector assigns large values (pj > 0.5)
to a small subset of salient records and small val-
ues (pj < 0.5) to the rest. This modulates the stan-
dard aligner, which then has to assign a large weight
wtj in order to select the j-th record at time t. In
this way, the learned prior pj makes it difficult for
the alignment (attention) to be distracted by non-
salient records. Further, we can relate the output
of the pre-selector to the number of records that are
selected. Specifically, the output pj expresses the
extent to which the j-th record should be selected.
The summation

∑N
j=1 pj can then be regarded as

a real-valued approximation to the total number of
pre-selected records (denoted as γ), which we regu-
larize towards, based on validation (see Eqn. 5).

Decoder Our architecture uses an LSTM decoder
that takes as input the current context vector zt,
the last word xt−1, and the LSTM’s previous hid-
den state st−1. The decoder outputs the conditional
probability distribution Px,t = P (xt|x0:t−1, r1:N)
over the next word, represented as a deep output
layer (Pascanu et al., 2014),

idt
fdt
odt
gdt

 =


σ
σ
σ

tanh

T d

Ext−1

st−1

zt

 (4a)

cdt = fdt � cdt−1 + idt � gdt (4b)

st = odt � tanh(cdt) (4c)

lt = L0(Ext−1 + Lsst + Lzzt) (4d)

Px,t = softmax (lt) (4e)

where E (an embedding matrix), L0, Ls, and Lz are
parameters to be learned.

Training and Inference We train the model us-
ing the database-record pairs (r1:N , x1:T) from the
training corpora so as to maximize the likelihood of
the ground-truth language description x∗1:T (Eqn. 1).
Additionally, we introduce a regularization term
(
∑N

j=1 pj − γ)2 that enables the model to influence
the pre-selector weights based on the aforemen-
tioned relationship between the output of the pre-
selector and the number of selected records. More-
over, we also introduce the term (1.0 − max(pj)),
which accounts for the fact that at least one record
should be pre-selected. Note that when γ is equal to
N , the pre-selector is forced to select all the records

724

(pj = 1.0 for all j), and the coarse-to-fine alignment
reverts to the standard alignment introduced by Bah-
danau et al. (2014). Together with the negative log-
likelihood of the ground-truth description x∗1:T , our
loss function becomes

L = − logP (x∗1:T |r1:N) +G (5a)

= −
T∑
t=1

logP (x∗t |x0:t−1, r1:N) +G (5b)

G =

 N∑
j=1

pj − γ
2

+
(
1−max(pj)

)
(5c)

Having trained the model, we generate the natu-
ral language description by finding the maximum a
posteriori words under the learned model (Eqn. 1).
4 For inference, we perform greedy search starting
with the first word x1. Beam search offers a way to
perform approximate joint inference — however, we
empirically found that beam search does not perform
any better than greedy search on the datasets that we
consider, an observation that is shared with previous
work (Angeli et al., 2010). We later discuss an al-
ternative k-nearest neighbor-based beam filter (see
Sec 6.2).

5 Experimental Setup

Datasets We analyze our model on the benchmark
WEATHERGOV dataset, and use the data-starved
ROBOCUP dataset to demonstrate the model’s gen-
eralizability. Following Angeli et al. (2010), we
use WEATHERGOV training, development, and test
splits of size 25000, 1000, and 3528, respectively.
For ROBOCUP, we follow the evaluation method-
ology of previous work (Chen and Mooney, 2008),
performing three-fold cross-validation whereby we
train on three games (approximately 1000 scenarios)
and test on the fourth. Within each split, we hold
out 10% of the training data as the development set
to tune the early-stopping criterion and γ. We then
report the standard average performance (weighted
by the number of scenarios) over these four splits.

Dataset Processing In this section, we present the
implementation details regarding our data prepro-
cessing. We use WEATHERGOV as an example here,

4Numerical values are also generated exactly as any other
token in the vocabulary.

since it is our primary dataset, and the same recipe
is followed for ROBOCUP.

For tokenization of the textual descriptions, we
simply treat as token each string unit delimited by
a space, which includes regular words (“sunny”),
punctuation (“,”), and numerical values (“20”). A
special token is added to represent the beginning and
end of the entire textual description. This operation
results in a vocabulary of size 338, and we did not
filter out any rare tokens. Moreover, in this setup,
numerical values are also generated as any other to-
ken during decoding period.

For event record representation, we represent each
event as a fixed-length vector, concatenated by mul-
tiple “attribute (field) vectors”. Each attribute vec-
tor represents either a 1) record type (e.g., “rain-
Chance”) with a one-hot vector, 2) record time
slot (e.g., “06:00–21:00”) with a one-hot vector, 3)
record mode (e.g., “SSE”) with a one-hot vector, or,
4) record value (e.g., “20”) with a 0-1 vector. The 0-
1 vector for record value is simply the signed binary
representation of this number. We choose the usage
of 0-1 binary representation vectors for numbers be-
cause it allows us to share binning-style information
between nearby numbers (whereas a one-hot vector
is sparse).

Training Details On WEATHERGOV, we lightly
tune the number of hidden units and γ on the de-
velopment set according to the generation metric
(BLEU), and choose 500 units from {250, 500, 750}
and γ = 8.5 from {6.5, 7.5, 8.5, 10.5, 12.5}. For
ROBOCUP, we only tune γ on the development set
and choose γ = 5.0 from the set {1.0, 2.0, . . . , 6.0}.
However, we do not retune the number of hidden
units on ROBOCUP. For each iteration, we ran-
domly sample a mini-batch of 100 scenarios during
back-propagation and use Adam (Kingma and Ba,
2015) for optimization. Training typically converges
within 30 epochs. We select the model according to
the BLEU score on the development set.5

Evaluation Metrics We consider two metrics as a
means of evaluating the effectiveness of our model
on the two selective generation subproblems. For
content selection, we use the F-1 score of the set of

5We implement our model in Theano (Bergstra et al., 2010;
Bastien et al., 2012) and will make the code publicly available.

725

Table 1: Primary WEATHERGOV results

Method F-1 sBLEU cBLEU

KL12 – 33.70 –
KL13 – 36.54 –
ALK10 65.40 38.40 51.50
Our model 73.21 61.01 70.39

selected records as defined by the harmonic mean of
precision and recall with respect to the ground-truth
selection record set. We define the set of selected
records as consisting of the record with the largest
selection weight αti computed by our aligner at each
decoding step t.

We evaluate the quality of surface realization us-
ing the BLEU score6 (a 4-gram matching-based pre-
cision) (Papineni et al., 2001) of the generated de-
scription with respect to the human-created refer-
ence. To be comparable to previous results on
WEATHERGOV, we also consider a modified BLEU
score (cBLEU) that does not penalize numerical de-
viations of at most five (Angeli et al., 2010) (i.e.,
to not penalize “low around 58” compared to a ref-
erence “low around 60”). On ROBOCUP, we also
evaluate the BLEU score in the case that ground-
truth content selection is known (sBLEUG), to be
comparable to previous work.

6 Results and Analysis

We analyze the effectiveness of our model on
the benchmark WEATHERGOV (as primary) and
ROBOCUP (as generalization) datasets. We also
present several ablations to illustrate the contribu-
tions of the primary model components.

6.1 Primary Results (WEATHERGOV)

We report the performance of content selection and
surface realization using F-1 and two BLEU scores
(standard sBLEU and the customized cBLEU of An-
geli et al. (2010)), respectively (Sec. 5). Table 1
compares our test results against previous meth-
ods that include KL12 (Konstas and Lapata, 2012),
KL13 (Konstas and Lapata, 2013), and ALK10 (An-
geli et al., 2010). Our method achieves the best
results reported to-date on all three metrics, with
relative improvements of 11.94% (F-1), 58.88%

6We compute BLEU using the publicly available evaluation
provided by Angeli et al. (2010).

(sBLEU), and 36.68% (cBLEU) over the previous
state-of-the-art.

6.2 Beam Filter with k-Nearest Neighbors

We perform greedy search as an approximation to
full inference over the set of decision variables
(Eqn. 1). We considered beam search as an alterna-
tive, but as with previous work on this dataset (An-
geli et al., 2010), we found that greedy search still
yields better BLEU performance (Table 2).

Table 2: Effect of beam width

Beam width M 1 2 5 10

dev sBLEU 65.58 64.70 57.02 47.07
dev cBLEU 75.78 74.91 65.83 54.19

As an alternative, we consider a beam filter based
on a k-nearest neighborhood. First, we generate the
M -best description candidates (i.e., a beam width
of M) for a given input record set (database) us-
ing standard beam search. Next, we find the K
nearest neighbor database-description pairs from the
training data, based on the cosine similarity of each
neighbor database with the given input record. We
then compute the BLEU score for each of the M de-
scription candidates relative to the K nearest neigh-
bor descriptions (as references) and select the candi-
date with the highest BLEU score. We tune K and
M on the development set and report the results in
Table 3. Table 4 presents the test results with this
tuned setting (M = 2, K = 1), where we achieve
BLEU scores better than our primary greedy results.

Table 3: k-NN beam filter (dev set)

sBLEU M = 2 M = 5 M = 10

K = 1 65.99 65.88 65.65
K = 2 65.89 65.98 65.83
K = 5 65.64 65.45 65.41
K = 10 65.91 65.89 65.12

cBLEU M = 2 M = 5 M = 10

K = 1 76.21 76.13 75.98
K = 2 75.99 76.03 75.82
K = 5 75.90 75.63 75.41
K = 10 75.95 75.87 75.23

726

Record details:
id-0: temperature(time=06-21, min=52, mean=63, max=71); id-2: windSpeed(time=06-21, min=8, mean=17, max=23);
id-3: windDir(time=06-21, mode=SSE); id-4: gust(time=06-21, min=0, mean=10, max=30);
id-5: skyCover(time=6-21, mode=50-75); id-10: precipChance(time=06-21, min=19, mean=32, max=73);
id-15: thunderChance(time=13-21, mode=SChc)

Figure 3: An example generation for a set of records from WEATHERGOV.

Table 4: k-NN beam filter (test set)

Primary k-NN (M = 2, K = 1)

sBLEU 61.01 61.76
cBLEU 70.39 71.23

6.3 Ablation Analysis (WEATHERGOV)

Next, we present several ablations to analyze the
contribution of our model components.7

Aligner Ablation First, we evaluate the contribu-
tion of our proposed coarse-to-fine aligner by com-
paring our model with the basic encoder-aligner-
decoder model introduced by Bahdanau et al. (2014)
(which we originally started with). Table 5 reports
the results demonstrating that our two-level aligner
yields superior F-1 and BLEU scores relative to a
standard aligner.8

Table 5: Coarse-to-fine aligner ablation (dev set)

Aligner F-1 sBLEU cBLEU

Basic 60.35 63.54 74.90
Coarse-to-fine 76.28 65.58 75.78

7These results are based on our primary model of Sec. 6.1
and on the development set.

8The same improvement trends hold on the test set. More-
over, our two-level aligner (and the basic aligner) model is sub-
stantially better than having no aligner at all, i.e., a simple
encoder-decoder model of Sutskever et al. (2014).

Encoder Ablation Next, we consider the effec-
tiveness of the encoder. Table 6 compares the results
with and without the encoder on the development
set, and demonstrates that there is a significant gain
from encoding the event records using the LSTM-
RNN. We attribute this improvement to the LSTM-
RNN’s ability to capture the relationships that exist
among the records, which is known to be essential
to selective generation (Barzilay and Lapata, 2005;
Angeli et al., 2010).

Table 6: Encoder ablation (dev set)

Encoder F-1 sBLEU cBLEU

With 76.28 65.58 75.78
Without 57.45 56.47 68.63

6.4 Qualitative Analysis (WEATHERGOV)

Output Examples Fig. 3 shows an example
record set with its output description and record-
word alignment heat map. As shown, our model
learns to align records with their corresponding
words (e.g., windDir and “southeast,” temperature
and “71,” windSpeed and “wind 10,” and gust and
“winds could gust as high as 30 mph”). It also learns
the subset of salient records to talk about (matching
the ground-truth description perfectly for this ex-
ample, i.e., a standard BLEU of 100.00). We also
see some word-level mismatch, e.g., “cloudy” mis-

727

aligns to id-0 temp and id-10 precipChance, which
we attribute to the high correlation between these
types of records (“garbage collection” in Liang et
al. (2009)).

Word Embeddings (Trained & Pretrained)
Training our decoder has the effect of learning em-
beddings for the words in the training set (via the
embedding matrix E in Eqn. 4). Here, we ex-
plore the extent to which these learned embeddings
capture semantic relationships among the training
words. Table 7 presents nearest neighbor words for
some of the common words from the WEATHER-
GOV dataset (according to cosine similarity in the
embedding space).

Table 7: Nearest neighbor word for example words

Word Nearest neighbor

gusts gust
clear sunny

isolated scattered
southeast northeast

storms winds
decreasing falling

We also consider different ways of using pre-
trained word embeddings (Mikolov et al., 2013) to
bootstrap the quality of our learned embeddings.
One approach initializes our embedding matrix with
the pre-trained vectors and then refines the embed-
ding based on our training corpus. The second con-
catenates our learned embedding matrix with the
pre-trained vectors in an effort to simultaneously ex-
ploit general similarities as well as those learned
for the domain. As shown previously for other
tasks (Vinyals et al., 2014; Vinyals et al., 2015b), we
find that the use of pre-trained embeddings results in
negligible improvements (on the development set).

6.5 Out-of-Domain Results (ROBOCUP)

We use the ROBOCUP dataset to evaluate the
domain-independence of our model. The dataset
is severely data-starved with only 1000 (approx.)
training pairs, which is much smaller than is typi-
cally necessary to train RNNs. This results in higher
variance in the trained model distributions, and we
thus adopt the standard denoising method of ensem-
bles (Sutskever et al., 2014; Vinyals et al., 2015b;

Zaremba et al., 2014).9

Table 8: ROBOCUP results

Method F-1 sBLEU sBLEUG

CM08 72.00 – 28.70
LJK09 75.70 – –
CKM10 79.30 – –
ALK10 79.90 – 28.80
KL12 – 24.88 30.90
Our model 81.58 25.28 29.40

Following previous work, we perform two exper-
iments on the ROBOCUP dataset (Table 8), the first
considering full selective generation and the second
assuming ground-truth content selection at test time.
On the former, we obtain a standard BLEU score
(sBLEU) of 25.28, which exceeds the best score of
24.88 (Konstas and Lapata, 2012). Additionally,
we achieve an selection F-1 score of 81.58, which
is also the best result reported to-date. In the case
of assumed (known) ground-truth content selection,
our model attains an sBLEUG score of 29.40, which
is competitive with the state-of-the-art.10

7 Conclusion

We presented an encoder-aligner-decoder model for
selective generation that does not use any spe-
cialized features, linguistic resources, or genera-
tion templates. Our model employs a bidirec-
tional LSTM-RNN model with a novel coarse-to-
fine aligner that jointly learns content selection and
surface realization. We evaluate our model on
the benchmark WEATHERGOV dataset and achieve
state-of-the-art selection and generation results. We
achieve further improvements via a k-nearest neigh-
bor beam filter. We also present several model ab-
lations and visualizations to elucidate the effects of
the primary components of our model. Moreover,
our model generalizes to a different, data-starved do-
main (ROBOCUP), where it achieves results compet-
itive with or better than the state-of-the-art.

Acknowledgments

We thank Gabor Angeli, David Chen, Ioannis Kon-
stas, and the reviewers for their helpful comments.

9We use an ensemble of five randomly initialized models.
10The Chen and Mooney (2008) sBLEUG result is from An-

geli et al. (2010).

728

References

Gabor Angeli, Percy Liang, and Dan Klein. 2010. A
simple domain-independent probabilistic approach to
generation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 502–512.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Regina Barzilay and Mirella Lapata. 2005. Collective
content selection for concept-to-text generation. In
Proceedings of the Human Language Technology Con-
ference and the Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP), pages
331–338.

Regina Barzilay and Lillian Lee. 2004. Catching the
drift: Probabilistic content models, with applications
to generation and summarization. In Proceedings of
the Conference of the North American Chapter of the
Association for Computational Linguistics Human
Language Technologies (NAACL HLT), pages 113–
120.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. NIPS
Workshop on Deep Learning and Unsupervised Fea-
ture Learning.

Anja Belz. 2008. Automatic generation of
weather forecast texts using comprehensive probabilis-
tic generation-space models. Natural Language Engi-
neering, 14(04):431–455.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Scientific Computing
with Python Conference (SciPy).

David L. Chen and Raymond J. Mooney. 2008. Learning
to sportscast: a test of grounded language acquisition.
In Proceedings of the International Conference on Ma-
chine Learning (ICML), pages 128–135.

David L. Chen, Joohyun Kim, and Raymond J. Mooney.
2010. Training a multilingual sportscaster: Using per-
ceptual context to learn language. Journal of Artificial
Intelligence Research, 37:397–435.

Alex Graves, Mohamed Abdel-rahman, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6645–6649.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
3128–3137.

Joohyun Kim and Raymond J Mooney. 2010. Gen-
erative alignment and semantic parsing for learning
from ambiguous supervision. In Proceedings of the
International Conference on Computational Linguis-
tics (COLING), pages 543–551.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings of
the International Conference on Learning Representa-
tions (ICLR).

Ioannis Konstas and Mirella Lapata. 2012. Unsuper-
vised concept-to-text generation with hypergraphs. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguis-
tics Human Language Technologies (NAACL HLT),
pages 752–761.

Ioannis Konstas and Mirella Lapata. 2013. Inducing doc-
ument plans for concept-to-text generation. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1503–
1514.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less supervi-
sion. In Proceedings of the Joint Conference of the
Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on
Natural Language Processing (ACL/IJCNLP), pages
91–99.

Wei Lu and Hwee Tou Ng. 2011. A probabilistic forest-
to-string model for language generation from typed
lambda calculus expressions. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1611–1622.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S Zettle-
moyer. 2008. A generative model for parsing natural
language to meaning representations. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 783–792.

Wei Lu, Hwee Tou Ng, and Wee Sun Lee. 2009. Natu-
ral language generation with tree conditional random
fields. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 400–409.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2015. Listen, attend, and walk: Neural mapping of
navigational instructions to action sequences. arXiv
preprint arXiv:1506.04089.

729

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. 2014. How to construct deep re-
current neural networks. In Proceedings of the In-
ternational Conference on Learning Representations
(ICLR).

Ehud Reiter, Robert Dale, and Zhiwei Feng. 2000.
Building natural language generation systems, vol-
ume 33. MIT Press.

Radu Soricut and Daniel Marcu. 2006. Stochastic lan-
guage generation using WIDL-expressions and its ap-
plication in machine translation and summarization.
In Proceedings of the International Conference on
Computational Linguistics and the Annual Meeting of
the Association for Computational Linguistics (COL-
ING/ACL), pages 1105–1112.

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex infor-
mation presentation in spoken dialog systems. In Pro-
ceedings of the 42nd annual meeting on association
for computational linguistics, page 79. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Lee. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems (NIPS).

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2014.
Grammar as a foreign language. arXiv preprint
arXiv:1412.7449.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015a. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015b. Show and tell: A neural image
caption generator. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 3156–3164.

Marilyn A Walker, Owen Rambow, and Monica Rogati.
2001. Spot: A trainable sentence planner. In Pro-
ceedings of the second meeting of the North American
Chapter of the Association for Computational Linguis-
tics on Language technologies, pages 1–8. Association
for Computational Linguistics.

Yuk Wah Wong and Raymond J Mooney. 2007. Gen-
eration by inverting a semantic parser that uses statis-
tical machine translation. In Proceedings of the Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics Human Language
Technologies (NAACL HLT), pages 172–179.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In Proceedings of the International Confer-
ence on Machine Learning (ICML).

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv

preprint arXiv:1409.2329.

730

Proceedings of NAACL-HLT 2016, pages 731–739,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Generation from Abstract Meaning Representation using Tree Transducers

Jeffrey Flanigan♠ Chris Dyer♠ Noah A. Smith♥ Jaime Carbonell♠
♠School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
♥Computer Science & Engineering, University of Washington, Seattle, WA, USA

{jflanigan,cdyer,jgc}@cs.cmu.edu, nasmith@cs.washington.edu

Abstract

Language generation from purely semantic
representations is a challenging task. This pa-
per addresses generating English from the Ab-
stract Meaning Representation (AMR), con-
sisting of re-entrant graphs whose nodes are
concepts and edges are relations. The new
method is trained statistically from AMR-
annotated English and consists of two major
steps: (i) generating an appropriate spanning
tree for the AMR, and (ii) applying tree-to-
string transducers to generate English. The
method relies on discriminative learning and
an argument realization model to overcome
data sparsity. Initial tests on held-out data
show good promise despite the complexity of
the task. The system is available open-source
as part of JAMR at:
http://github.com/jflanigan/jamr

1 Introduction

We consider natural language generation from the
Abstract Meaning Representation (AMR; Banarescu
et al., 2013). AMR encodes the meaning of a sen-
tence as a rooted, directed, acyclic graph, where con-
cepts are nodes, and edges are relationships among
the concepts.

Because AMR models propositional meaning1

while abstracting away from surface syntactic re-
alizations, and is designed with human annotation
in mind, it suggests a separation of (i) engineering
the application-specific propositions that need to be

1In essence, AMR handles semantic roles, entity types,
within-sentence coreference, discourse connectives, modality,
negation, and some other phenomena.

communicated about from (ii) general-purpose re-
alization details, modeled by a generator shareable
across many applications. The latter is our focus
here.

Because any AMR graph has numerous valid re-
alizations, and leaves underspecified many impor-
tant details—including tense, number, definiteness,
whether a concept should be referred to nominally
or verbally, and more—transforming an AMR graph
into an English sentence is a nontrivial problem.

To our knowledge, our system is the first for gen-
erating English from AMR. The approach is a sta-
tistical natural language generation (NLG) system,
trained discriminatively using sentences in the AMR
bank (Banarescu et al., 2013). It first transforms
the graph into a tree, then decodes into a string us-
ing a weighted tree-to-string transducer and a lan-
guage model (Graehl and Knight, 2004). The de-
coder bears a strong similarity to state-of-the-art ma-
chine translation systems (Koehn et al., 2007; Dyer
et al., 2010), but with a rule extraction approach tai-
lored to the NLG problem.

2 Overview

Generation of English from AMR graphs is accom-
plished as follows: the input graph is converted to
a tree, which is input into the weighted intersection
of a tree-to-string transducer (§4) with a language
model. The output English sentence is the (ap-
proximately) highest-scoring sentence according to
a feature-rich discriminatively trained linear model.
After discussing notation (§3), we describe our ap-
proach in §4. The transducer’s rules are extracted
from the limited AMR corpus and learned general-

731

izations; they are of four types: basic rules (§5),
synthetic rules created using a specialized model
(§6), abstract rules (§7), and a small number of
handwritten rules (§8).

3 Notation and Definitions

AMR graphs are directed, weakly connected graphs
with node labels from the set of concepts LN and
edge labels from the set of relations LE .

AMR graphs are transformed to eliminate cycles
(details in §4); we refer to the resulting tree as a
transducer input representation (TI representa-
tion). For a node n with label C and outgoing edges
n

L1−→ n1, . . . , n
Lm−−→ nm sorted lexicographically

by Li (each an element of LE), the TI representa-
tion of the tree rooted at n is denoted:2

(X C (L1 T1) . . . (Lm Tm)) (1)

where each Ti is the TI representation of the tree
rooted at ni. See Fig. 1 for an example. A LISP-like
textual formatting of the TI representation in Fig. 1
is:

(X want-01 (ARG0 (X boy)) (ARG1 (X ride-01

(ARG0 (X bicycle (mod (X red)))))))

To ease notation, we use the function sort [] to lex-
icographically sort edge labels in a TI representa-
tion. Using this function, an equivalent way of rep-
resenting the TI representation in Eq. 1, if the Li are
unsorted, is:

(X C sort [(L1 T1) . . . (Lm Tm)])

The TI representation is converted into a word se-
quence using a tree-to-string transducer. The tree
transducer formalism we use is one-state extended
linear, non-deleting tree-to-string (1-xRLNs) trans-
ducers (Huang et al., 2006; Graehl and Knight,
2004).3

Definition 1. (From Huang et al., 2006.) A 1-
xRLNs transducer is a tuple (N,Σ,W,R) whereN

2If there are duplicate child edge labels, then the conver-
sion process is ambiguous and any of the conversions can be
used. The ordering ambiguity will be handled later in the tree-
transducer rules.

3Multiple states would be useful for modeling dependencies
in the output, but we do not use them here.

want-01

boy

ride-01

bicycle

red

ARG0
ARG1

ARG1

mod

ARG0

want-01

X

ARG0 ARG1

X X

boy

bicycle mod

X

red

ride-01 ARG0

X

The boy wants to ride the red bicycle .

Figure 1: The generation pipeline. An AMR graph
(top), with a deleted re-entrancy (dashed), is con-
verted into a transducer input representation (TI rep-
resentation, middle), which is transduced to a string
using a tree-to-string transducer (bottom).

is the set of nonterminals (relation labels and X), Σ
is the input alphabet (concept labels), W is the out-
put alphabet (words), and R is the set of rules. A
rule inR is a tuple (t, s, φ) where:

1. t is the LHS tree, whose internal nodes are la-
beled by nonterminal symbols, and whose fron-
tier nodes are labeled terminals from Σ or vari-
ables from a set X = {X1, X2, . . .};

732

2. s ∈ (X ∪W)∗ is the RHS string;

3. φ is a mapping from X to nonterminals N .

A rule is a purely lexical rule if it has no variables.
As an example, the tree-to-string transducer rules

which produce the output sentence from the TI rep-
resentation in Fig. 1 are:

(X want-01 (ARG0 X1) (ARG1 X2))→
The X1 wants to X2 .

(X ride-01 (ARG1 X1))→ ride the X1

(X bicycle (mod X1))→ X1 bicycle
(X red)→ red
(X boy)→ boy (2)

Here, all Xi are mapped by a trivial φ to the nonter-
minal X .

The output string of the transducer is the target
projection of the derivation, defined as follows:
Definition 2. (From Huang et al., 2006.) A deriva-
tion d, its source and target projections, denoted
S(d) and E(d) respectively, are recursively defined
as follows:

1. If r = (t, s, φ) is a purely lexical rule, then
d = r is a derivation, where S(d) = t and
E(d) = s;

2. If r = (t, s, φ) is a rule, and di is a (sub)-
derivation with the root symbol of its source
projection maching the corresponding substi-
tion node in r, i.e., root(S(di)) = φ(xi), then
d = r(d1, . . . , dm) is also a derivation, where
S(d) = [xi 7→ S(di)]t and E(d) = [xi 7→
E(di)]s.

The notation [xi 7→ yi]t is shorthand for the result of
substituting yi for each xi in t, where xi ranges over
all variables in t.

The set of all derivations of a target string e with
a transducer T is denoted

D(e, T) = {d | E(d) = e}
where d is a derivation in T .

We use a shorthand notation for the transducer
rules that will be useful when discussing rule extrac-
tion and synthetic rules. Let fi be a TI representa-
tion. The TI representation has the form

fi = (X C (L1 T1) . . . (Lm Tm))

where Li ∈ LE and T1, . . . , Tm are TI representa-
tions.4 Let A1, . . . An ∈ LE . We use

(fi, A1, . . . , An)→ r (3)

as shorthand for the rule:

(X C sort [(L1 T1) . . . (Lm Tm)
(A1 X1) . . . (An Xn)])→ r (4)

Note r must contain the variables X1 . . . Xn. In
(3) and (4), argument slots with relation labels Ai
have been added as children to the root node of the
TI representation fi.

For example, the shorthand for the transducer
rules in (2) is:

((X want-01),ARG0,ARG1)→
The X1 wants to X2 .

((X ride-01),ARG1)→ ride the X1

((X bicycle),mod)→ X1 bicycle
((X red))→ red (5)

4 Generation

To generate a sentence e from an input AMR graph
G, a spanning tree G′ of G is computed, then trans-
formed into a string using a tree-to-string transducer.

Spanning tree. The choice of the graph G’s span-
ning tree G′ could have a big effect on the output,
since the transducer’s output will always be a pro-
jective reordering of the tree’s leaves. Our spanning
tree results from a breadth-first-search traversal, vis-
iting child nodes in lexicographic order of the re-
lation label (inverse relations are visited last). The
edges traversed are included in the tree. This sim-
ple heuristic is a baseline which can potentially be
improved in future work.

Decoding. Let T = (N,Σ,W,R) be a tree-to-
string transducer. The output sentence is the highest
scoring transduction of G′:

e = E
(

arg max
d∈D(G′,T)

score(d;θ)

)
(6)

4If fi is just a single concept with no children, then m = 0
and fi = (X C).

733

Eq. 6 is solved approximately using the cdec de-
coder for machine translation (Dyer et al., 2010).
The score of the transduction is a linear function
(with coefficients θ) of a vector of features in-
cluding the output sequence’s language model log-
probability and features associated with the rules in
the derivation (denoted f ; Table 1):

score(d;θ) = θLM log(pLM(E(d))) +
∑
r∈d

θ>f(r)

The feature weights are trained on a development
dataset using MERT (Och, 2003).

In the next four sections, we describe the rules
extracted and generalized from the training corpus.

5 Inducing Basic Rules

The basic rules, denoted RB , are extracted from
the training AMR data using an algorithm sim-
ilar to extracting tree transucers from tree-string
aligned parallel corpora (Galley et al., 2004). In-
formally, the rules are extracted from a sentence
w = 〈w1, . . . , wn〉 with AMR graph G as follows:

1. The AMR graph and the sentence are aligned;
we use the JAMR aligner from Flanigan et
al. (2014), which aligns non-overlapping sub-
graphs of the graph to spans of words. The sub-
graphs that JAMR aligns are called fragments.
In JAMR’s aligner, all fragments are trees.

2. G is replaced by its spanning tree by deleting
relations that use a variable in the AMR anno-
tation.

3. In the spanning tree, for each node i, we
keep track of the word indices b(i) and e(i)
in the original sentence that trap all of i’s de-
scendants. (This is calculated using a simple
bottom-up propagation from the leaves to the
root.)

4. For each aligned fragment i, a rule is extracted
by taking the subsequence 〈wb(i) . . . we(i)〉 and
“punching out” the spans of the child nodes
(and their descendants) and replacing them
with argument slots.

See Fig. 2 for examples.
More formally, assume the nodes in G are num-

bered 1, . . . , N and the fragments are numbered

1, . . . , F . Let nodes : {1, . . . , F} → 2{1,...,N} and
root : {1, . . . , F} → {1, . . . , N} be functions that
return the nodes in a fragment and the root of a frag-
ment, respectively, and let children : {1, . . . , N} →
2{1,...,N} return the child nodes of a node. We con-
sider a node aligned if it belongs to an aligned frag-
ment. Let the span of an aligned node i be denoted
by endpoints ai and a′i; for unaligned nodes, ai =∞
and a′i = −∞ (depicted with superscripts in Fig. 2).
The node alignments are propagated by defining b(·)
and e(·) recursively, bottom up:

b(i) = min(aj , min
j∈children(i)

b(j))

e(i) = max(a′j , max
j∈children(i)

e(j))

Also define functions b̃ and ẽ, from fragment indices
to integers, as:

b̃(i) = b(root(i))

ẽ(i) = e(root(i))

For fragment i, let Ci = children(root(i)) −
nodes(i), which is the children of the fragment’s
root concept that are not included in the fragment.
Let fi be the TI representation for fragment i.5 If Ci
is empty, then the rule extracted for fragment i is:

ri : (fi)→ wb̃(i):ẽ(i) (7)

Otherwise, let m = |Ci|, and denote the edge labels
from root(i) to elements of Ci as A1(i) . . . Am(i).
For j ∈ {1, . . . ,m}, let kj select the elements ckj

of Ci in ascending order of b(kj). Then the rule ex-
tracted for fragment i is:

ri : (fi, Ak1(i), . . . Akm(i))→
wb̃(i):b̃(k1) X1 wẽ(k1):b̃(k2) X2 . . .

. . . wẽ(km−1):b̃(km)Xm wẽ(km):ẽ(i) (8)

A rule is only extracted if the fragment i is aligned
and the child spans do not overlap. Fig. 2 gives an
example of a tree annotated with alignments, b and
e, and the extracted rules.

5I.e., the nodes in fragment i, with the edges between them,
represented as a TI representation.

734

Name Description
Rule 1 for every rule
Basic 1 for basic rules, else 0
Synthetic 1 for synthetic rules, else 0
Abstract 1 for abstract rules, else 0
Handwritten 1 for handwritten rules, else 0
Rule given concept log(number of times rule extracted / number of times concept observed in training

data) (only for basic rules, 0 otherwise)
. . . without sense same as above, but with sense tags for concepts removed

Synthetic score model score for the synthetic rule (only for synthetic rules, 0 otherwise)
Word count number of words in the rule
Stop word count number of words not in a stop word list
Bad stop word number of words in a list of meaning-changing stop words, such as “all, can, could,

only, so, too, until, very”
Negation word number of words in “no, not, n’t”

Table 1: Rule features in the transducer. There is also an indicator feature for every handwritten rule.

6 Modeling Synthetic Rules

The synthetic rules, denoted RS(G), are created
to generalize the basic rules and overcome data
sparseness resulting from our relatively small train-
ing dataset. Our synthetic rule model considers an
AMR graph G and generates a set of rules for each
node in G. S synthetic rule’s LHS is a TI represen-
tation f with argument slots A1 . . . Am (this is the
same form as the LHS for basic rules). For each
node in G, one or more LHS are created (we will
discuss this further below), and for each LHS, a set
of k-best synthetic rules are produced. The simplest
case of a LHS is just a concept and argument slots
corresponding to each of its children.

For a given LHS, the synthetic rule model cre-
ates a RHS by concatenating together a string inW ∗

(called a concept realization and corresponding
to the concept fragment) with strings in W ∗XW ∗
(called an argument realization and corresponding
to the argument slots). See the top of Fig. 3 for a syn-
thetic rule with concept and argument realizations
highlighted.

Synthetic rules have the form:

r : (f,A1, . . . Am)→ (9)

lk1Xk1rk1 . . . lkcXkcrkc c

lkc+1Xkc+1rkc+1 . . . lkmXkmrkm

where:

• f is a TI representation.

• Each Ai ∈ LE .

• 〈k1, . . . , km〉 is a permutation of 〈1, . . . ,m〉
• c ∈ W ∗ is the realization of TI representa-

tion f .

• Each li, ri ∈ W ∗ and Xi ∈ X . Let Ri =
〈li, ri〉 denote the realization of argument i.

• c ∈ [0,m] is the position of c among the real-
izations of the arguments.

Let F be the space of all possible TI represen-
tations. Synthetic rules make use of three lookup
tables (which are partial functions) to provide can-
didate realizations for concepts and arguments: a ta-
ble for concept realizations lex : F → 2W

∗
, a table

for argument realizations when the argument is on
the left left lex : F × LE → 2W

∗
, and a table for

argument realizations when the argument is on the
right right lex : F × LE → 2W

∗
. These tables are

constructed during basic rule extraction, the details
of which are discussed below .

Synthetic rules are selected using a linear
model with features g and coefficients φ, which
scores each RHS for a given LHS. For LHS =
(f,A1, . . . Am), the RHS is specified completely by
c, c, R1, . . . , Rm and a permutation k1, . . . , km. For
each node in G, and for each TI representation f in
the domain of lex that matches the node, a LHS is
created, and a set of K synthetic rules is produced
for each c ∈ lex (f). The rules produced are the

735

0 The 1 ((boy) 2 wants 3 to 4 (ride 5 the 6 ((red) 7

bicycle))) 8

(a) Sentence annotated with indexes, and bracketed accord-
ing to b(i) and e(i) from the graph in (b).

want-01[2,3]

[1,8]

boy[1,2]
[1,2] ride-01 [4,5]

[4,8]

bicycle [7,8]

[6,8]

red [6,7]
[6,7]

ARG0 ARG1

ARG1

mod

(b) Tree annotated with ai, a′
i (superscripts)

and b(i), e(i) (subscripts).

want-01

X

ARG0 ARG1

X1 X2

X

ride-01 ARG0

X1

X1 wants to X2

ride the X1

bicycle mod

X1

X

X1 bicycle

X

boy

boy
X

red

red

(c) Extracted rules.

Figure 2: Example rule extraction from an AMR-
annotated sentence.

to DEST

ARG0 ride-01 DEST

ARG0 was

ARG0

the ARG0

rides to the DEST

ride-01

X

ARG0 DEST

X1 X2

the X1 rides to the X2

Figure 3: Synthetic rule generation for the rule
shown at top. In the rule RHS, the realization for
ARG0 is blue, the realization for DEST is red, and
the realization for ride-01 is black. For a fixed per-
mutation of the concept and arguments, choosing the
argument realizations can be seen as a sequence la-
beling problem (bottom). The highlighted sequence
corresponds to the rule at top.

K-best solutions to:

arg max
c,k1...km,R1,...,Rm

(c∑
i=1

ψ>g(Rki
, Aki

, c, i, c)

+ψ>g(〈ε, ε〉, ∗, c, c+ 1, c)

+
m∑

i=c+1

ψ>g(Rki
, Aki

, c, i+ 1, c)
)

(10)

where the max is over c ∈ 0 . . .m, k1, . . . , km is
any permutation of 1, . . . ,m, and Ri ∈ left lex (Ai)
for i < c and Ri ∈ right lex (Ai) for i > c. ∗ is used
to denote the concept position. ε is the empty string.

The best solution to Eq. 10 is found exactly by
brute force search over concept position c ∈ [0,m+
1] and the permutation k1, . . . , km. With fixed
concept position and permutation, each Ri for the
arg max is found independently. To obtain the ex-
act K-best solutions, we use dynamic programming
with a K-best semiring (Goodman, 1999) to keep
track of the K best sequences for each concept posi-
tion and permutation, and take the bestK sequences
over all values of c and k·.

The synthetic rule model’s parameters are esti-
mated using basic rules extracted from the training
data. Basic rules are put into the form of Eq. 9 by

736

Feature name Value
POS + Ai + “dist” |c− i|
POS + Ai + side 1.0
POS + Ai + side + “dist” |c− i|
POS + Ai + Ri + side 1.0
c + Ai + “dist” |c− i|
c + Ai + side 1.0
c + Ai + side + “dist” |c− i|
c + POS + Ai + side + “dist” |c− i|

Table 2: Synthetic rule model features. POS is the
most common part-of-speech tag sequence for c,
“dist” is the string “dist”, and side is “L” if i < c,
“R” otherwise. + denotes string concatenation.

segmenting the RHS into the form

l1X1r1 . . . c . . . lmXmrm (11)

by choosing c, li, ri ∈ W ∗ for i ∈ {1, . . . ,m}. An
example segmentation is the rule RHS in Fig. 3.

Segmenting the RHS of the basic rules into the
form of Eq. 11 is done as follows: c is the aligned
span for f . For the argument realizations, arguments
to the left of c pick up words to their right, and argu-
ments to the right pick up words to their left. Specif-
ically, for i < c (Ri to the left of c but not next to
c), li is empty and ri contains all words between ai
and ai+1. For i = c (Ri directly to the left of c), li is
empty and ri contains all words between ac and c.
For i > c+1, li contains all words between ai−1 and
ai, and for i = c + 1, li contains all words between
c and ai.

The tables for lex , left lex , and right lex are popu-
lated using the segmented basic rules. For each ba-
sic rule extracted from the training corpus and seg-
mented according to the previous paragraph, f → c
is added to lex , andAki

→ 〈li, ri〉 is added to left lex
for i ≤ c and right lex for i > c. The permutation ki
is known during extraction in Eq. 8.

The parameters ψ are trained using Ada-
Grad (Duchi et al., 2011) with the perceptron loss
function (Rosenblatt, 1957; Collins, 2002) for 10
iterations over the basic rules. The features g are
listed in Table 2.

7 Abstract Rules

Like the synthetic rules, the abstract rules RA(G)
generalize the basic rules. However, abstract rules

Split Sentences Tokens
Train 10,000 210,000
Dev. 1,400 29,000
Test 1,400 30,000
MT09 204 5,000

Table 3: Train/dev./test/MT09 split.

are much simpler generalizations which use part-
of-speech (POS) tags to generalize. Abstract rules
make use of a POS abstract rule table, which is
a table listing every combination of the POS of the
concept realization, the child arguments’ labels, and
rule RHS with the concept realization removed and
replaced with ∗. This table is populated from the
basic rules extracted from the training corpus. An
example entry in the table is:

(VBD,ARG0,DEST)→
X1 〈∗〉 to the X2

For the LHS (f,A1, . . . Am), an abstract rule is
created for each member of c ∈ lex (f) and the
most common POS tag p for c by looking up p,
A1, . . . Am in the POS abstract rule table, finding
the common RHS, and filling in the concept posi-
tion with c. The set of all such rules is returned.

8 Handwritten Rules

We have handwritten rules for dates, conjunctions,
multiple sentences, and the concept have-org-role-
91. We also create pass-through rules for concepts
by removing sense tags and quotes (for string liter-
als).

9 Experiments

We evaluate on the AMR Annotation Release ver-
sion 1.0 (LDC2014T12) dataset. We follow the rec-
ommended train/dev./test splits, except that we re-
move MT09 data (204 sentences) from the training
data and use it as another test set. Statistics for this
dataset and splits are given in Table 3. We use a 5-
gram language model trained with KenLM (Heafield
et al., 2013) on Gigaword (LDC2011T07), and use
100-best synthetic rules.

We evaluate with the Bleu scoring metric (Pap-
ineni et al., 2002) (Table 4). We report single ref-

737

Rules Test MT09
Full 22.1 21.2
Full − basic 22.1 20.9
Full − synthetic 9.1 7.8
Full − abstract 22.0 21.2
Full − handwritten 21.9 20.5

Table 4: Uncased Bleu scores with various types of
rules removed from the full system.

erence Bleu for the LCD2014T12 test set, and four-
reference Bleu for the MT09 set. We report ablation
experiments for different sources of rules. When
ablating handwritten rules, we do not ablate pass-
through rules.

The full system achieves 22.1 Bleu on the test
set, and 21.2 on MT09. Removing the synthetic
rules drops the results to 9.1 Bleu on test and 7.8 on
MT09. Removing the basic and abstract rules has
little impact on the results. This may be because the
synthetic rule model already contains much of the
information in the basic and abstract rules. Remov-
ing the handwritten rules has a slightly larger effect,
demonstrating the value of handwritten rules in this
statistical system.

10 Related Work

There is a large body of work for statistical and non-
statistical NLG from a variety of input representa-
tions. Statistical NLG systems have been built for
input representations such as HPSG (Nakanishi et
al., 2005), LFG (Cahill and Van Genabith, 2006;
Hogan et al., 2007), and CCG (White et al., 2007),
as well as surface and deep syntax (Belz et al.,
2011). The deep syntax representations in Bohnet
et al. (2010) and Belz et al. (2011) share similari-
ties with AMR: the representations are graphs with
re-entrancies, and have an concept inventory from
PropBank (Palmer et al., 2005).

The Nitrogen and Halogen systems (Langkilde
and Knight, 1998; Langkilde, 2000) used an input
representation that was a precursor to the modern
version of AMR, which was also called AMR, al-
though it was not the same representation as Ba-
narescu et al. (2013).

Techniques from statistical machine translation
have been applied to the problem of NLG (Wong

and Mooney, 2006), and many grammar-based ap-
proaches can be formulated as weighted tree-to-
string transducers. Jones et al. (2012) developed
technology for generation and translation with syn-
chronous hyperedge replacement (SHRG) gram-
mars applied to the GeoQuery corpus (Wong and
Mooney, 2006), which in principle could be applied
to AMR generation.

11 Conclusion

We have presented a two-stage method for natural
language generation from AMR, setting a baseline
for future work. We have also demonstrated the im-
portance of modeling argument realization for good
performance. Our feature-based, tree-transducer ap-
proach can be easily extended with rules and fea-
tures from other sources, allowing future improve-
ments.

Acknowledgments

The authors would like to thank Adam Lopez and
Nathan Schneider for valuable feedback, and Sam
Thomson and the attendees of the Fred Jelinek
Memorial Workshop in 2014 in Prague for help-
ful discussions. This work is supported by the
U.S. Army Research Office under grant number
W911NF-10-1-0533. Any opinion, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not nec-
essarily reflect the view of the U.S. Army Research
Office or the United States Government.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation for
sembanking. In Proc. of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse.

Anja Belz, Michael White, Dominic Espinosa, Eric Kow,
Deirdre Hogan, and Amanda Stent. 2011. The first
surface realisation shared task: Overview and evalua-
tion results. In Proc. of the 13th European Workshop
on Natural Language Generation.

Bernd Bohnet, Leo Wanner, Simon Mille, and Alicia
Burga. 2010. Broad coverage multilingual deep sen-
tence generation with a stochastic multi-level realizer.
In Proc. of COLING.

738

Aoife Cahill and Josef Van Genabith. 2006. Robust pcfg-
based generation using automatically acquired LFG
approximations. In Proc. of COLING-ACL.

Michael Collins. 2002. Discriminative training methods
for hidden Markov models: Theory and experiments
with perceptron algorithms. In Proc. of EMNLP.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proc. of
ACL.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the abstract meaning represen-
tation. In Proc. of ACL.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2004. What’s in a translation rule? In Proc.
of HLT-NAACL.

Joshua Goodman. 1999. Semiring parsing. CL, 25(4).
Jonathan Graehl and Kevin Knight. 2004. Training tree

transducers. In Proc. of HLT-NAACL.
Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,

and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proc. of ACL.

Deirdre Hogan, Conor Cafferkey, Aoife Cahill, and Josef
Van Genabith. 2007. Exploiting multi-word units
in history-based probabilistic generation. In Proc. of
ACL.

Liang Huang, Kevin Knight, and Aravind Joshi. 2006.
Statistical syntax-directed translation with extended
domain of locality. In Proc. of AMTA.

Bevan Jones, Jacob Andreas, Daniel Bauer, Karl Moritz
Hermann, and Kevin Knight. 2012. Semantics-
based machine translation with hyperedge replacement
grammars. In Proc. of COLING.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for
statistical machine translation. In Proc. of ACL.

Irene Langkilde and Kevin Knight. 1998. Generation
that exploits corpus-based statistical knowledge. In
Proc. of COLING-ACL.

Irene Langkilde. 2000. Forest-based statistical sentence
generation. In Proc. of NAACL 2000.

Hiroko Nakanishi, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic models for disambiguation of an
HPSG-based chart generator. In Proc. of IWPT.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proc. of ACL.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. CL, 31(1).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proc. of ACL.

Frank Rosenblatt. 1957. The perceptron—a perceiving
and recognizing automaton. Technical Report 85-460-
1, Cornell Aeronautical Laboratory.

Michael White, Rajakrishnan Rajkumar, and Scott Mar-
tin. 2007. Towards broad coverage surface realiza-
tion with CCG. In Proc. of the Workshop on Using
Corpora for NLG: Language Generation and Machine
Translation.

Yuk Wah Wong and Raymond J Mooney. 2006. Learn-
ing for semantic parsing with statistical machine trans-
lation. In Proc. of HLT-NAACL.

739

Proceedings of NAACL-HLT 2016, pages 740–750,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Corpus and Semantic Parser for
Multilingual Natural Language Querying of OpenStreetMap

Carolin Haas
Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

haas1@cl.uni-heidelberg.de

Stefan Riezler
Computational Linguistics & IWR

Heidelberg University
69120 Heidelberg, Germany

riezler@cl.uni-heidelberg.de

Abstract

We present a corpus of 2,380 natural language
queries paired with machine readable formu-
lae that can be executed against world wide
geographic data of the OpenStreetMap (OSM)
database. We use the corpus to learn an ac-
curate semantic parser that builds the basis
of a natural language interface to OSM. Fur-
thermore, we use response-based learning on
parser feedback to adapt a statistical machine
translation system for multilingual database
access to OSM. Our framework allows to map
fuzzy natural language expressions such as
“nearby”, “north of”, or “in walking distance”
to spatial polygons on an interactive map. Fur-
thermore, it combines syntactic complexity
and compositionality with a reasonable lexical
variability of queries, making it an interesting
new publicly available dataset for research on
semantic parsing.

1 Introduction

OpenStreetMap1 (OSM) is a community-built
database of geographic data, containing user-
contributed local and up-to-date information about
landmarks all over the world. Currently, the
database contains over 3 billion data objects and is
continuously growing with contributions from over
2 million registered users. While the main API is op-
timized for editing map data, there exists an API that
allow to filter map data based on search criteria such
as location, type of objects, or features with which
objects are tagged. However, issuing a query that is

1http://www.openstreetmap.org

executable against the OSM database still requires
detailed knowledge of database internals, something
that cannot be expected from a layman user.

The goal of our work is the development of an
interface to OSM that lets a user ask a question
in natural language, which is then parsed into a
database query that is executable against a web-
based filtering tool and returns OSM data on an
interactive map. For example, we want a user
without detailed knowledge of OSM to be able to
ask questions that embrace the “fuzziness” of nat-
ural language, for example, “What are the loca-
tions, names and telephone numbers of hotels in
Paris with wheelchair access that are close to the
station Gare du Nord?”. To find such informa-
tion one would have to issue a query that requires
detailed knowledge of the database and the query
language: “area[name=‘Paris’]→.a;node(area.a)
[name=‘Gare du Nord’]→.b;node(around.b:1000)
[tourism=‘hotel’][wheelchair=‘yes’];out;”. Addi-
tionally, we present an adaptation of a statistical ma-
chine translation (SMT) system for multilingual ac-
cess to OSM by response-based learning from parser
executability of translated queries.

As a starting point for our natural language in-
terface we built a corpus of 2,380 natural lan-
guage queries paired with machine readable lan-
guage (MRL) formulae that we used to extract a se-
mantic parser. We chose to manually creating a cor-
pus of MRLs from which structure and weights of a
semantic parser can be learned for three reasons:

Online availability: We want to be able to present
the OSM community with a set of sample ques-
tions that can be executed and whose database

740

query representation can be inspected. We
hope it will be inspiring and helpful for OSM
users and developers to see how complex geo-
graphical facts can be issued as simple natural
language queries that are parsed into executable
filters on OSM objects.

Accuracy: For an online natural language interface,
high accuracy of semantic parsing is crucial.
So far, semi-automatic methods of constructing
semantic parsers without bootstrapping from
MRLs could not reach the accuracy of semantic
parsers extracted from manually created MRLs
(Wang et al., 2015). The semantic parser we ex-
tracted by simple monolingual machine transla-
tion (Andreas et al., 2013) achieves a F1 score
of 77.3% for answer retrieval on our data.

Complexity: Our corpus adds a new and complex
domain for research on semantic parsing: Com-
pared to existing corpora such as GEOQUERY

(Wong and Mooney, 2006) or FREE917 (Cai
and Yates, 2013), our corpus combines the
compositionality and syntactic complexity of
the former corpus with a lexical variation that
constitutes a healthy middle ground between
closed and open domains.

Our contributions in this paper are threefold:
First, we introduce OSM as a new knowledge base
that has not, to the best of our knowledge, been used
for question answering, and offer a new corpus to the
research community. Second, we show that a parser
read off the corpus achieves promising parsing accu-
racy and can be used to adapt SMT to multilingual
database access. Third, our work builds the basis of
a natural language interface to OSM that will be en-
abling for interesting directions of future research,
e.g., response-based learning to improve semantic
parsing and multilingual database access.

2 Related Work

The common approach to semantic parsing is a man-
ual annotation of a corpus with natural language ut-
terances and machine readable formulae which are
then used to learn the structure and weights of a se-
mantic parser. Corpora that have been used for train-
ing and testing a number of semantic parsers are
GEOQUERY (Zelle and Mooney, 1996; Kate et al.,

users 2,389,374
objects 3,464,399,738

nodes 3,139,787,926
ways 320,775,580

relations 3,836,232
tags 1,259,132,137
distinct tags 76,204,309
distinct keys 57,159

Table 1: Statistics of OSM as of December 14th, 2015

2005) and FREE917 (Cai and Yates, 2013). While
GEOQUERY queries are restricted to the closed do-
main of US geography, the structural complex-
ity of the questions is higher than for FREE917,
which focuses on open domain queries. Seminal
work on building semantic parsers from the GEO-
QUERY meaning representations are Zettlemoyer
and Collins (2005) or Wong and Mooney (2006).
Later approaches try to learn semantic parsers from
question-answer pairs only, for example, Liang et
al. (2009) for GEOQUERY, or Kwiatkowski et al.
(2013) or Berant et al. (2013) for FREE917. Newer
research attempts to close the gap between lexical
variability and structural complexity (Vlachos and
Clark, 2014; Artzi et al., 2015; Pasupat and Liang,
2015), however, answer retrieval accuracy is low if
semantic parsers cannot be bootstrapped from a cor-
pus of queries and MRLs (Wang et al., 2015; Pasu-
pat and Liang, 2015).

Our approach treats semantic parsing as a mono-
lingual machine translation problem in which natu-
ral language is translated into the machine readable
language. This approach is convenient because one
can make use of the efficient and robust decoders
that are freely available for SMT. Despite the sim-
plicity of the approach, Andreas et al. (2013) have
shown that highly accurate semantic parsers can be
trained from annotated data.

OSM has previously been used by Boye et al.
(2014) for pedestrian routing using a dialogue sys-
tem, however, no details on semantic parsing and no
resource are provided.

Our SMT tuning experiment builds on the work
of Riezler et al. (2014) and Haas and Riezler (2015)
who applied response-based learning for SMT to the
GEOQUERY and FREE917 domains, respectively.

741

Figure 1: Illustration of a possible entity (here:

way) on the Overpass turbo website for the query

“area[name=‘Paris’]→.a;node(area.a)[name=‘Gare du

Nord’]→.b;node(around.b:1000[tourism=‘hotel’][wheelchair=

‘yes’] ;out;”. The way consists of several nodes that together

span the outline of the relevant building. Clicking on the way

gives all the key-value pairs registered for this way in the

database.

3 OpenStreetMap

OpenStreetMap is a freely available map of the
world, annotated by volunteers and editable by any-
one. Entered GPS points, referred to as nodes,
constitute the basis of the database and currently
amount to over 3 billion examples (see Figure 1
for more statistics on the OSM database). Nodes
can be given tags which are key-value pairs, such
as “amenity=restaurant”, “highway=living street”
or “abandoned:tourism=theme park”. In total there
are over 76 million distinct tags which are based
on 57,159 unique keys. Nodes may be grouped to-
gether to form ways. Ways can be given their own
set of tags and are for example used to display roads
or building outlines. Both nodes and ways may be
joined to be part of a relation which is used to model
the interdependence of several objects. A relation
can for example be employed to delineate bus lines
or to define administrative boundaries. As relations
can also be part of other relations, one can even ex-

press hierarchical structures.
The Overpass API2 can be used to query the

database made up of the aforementioned nodes,
ways and relations. It can efficiently extract the cor-
rect subset of database objects that satisfy the en-
tered constraints. The following constraints are most
relevant for our corpus creation later on:
• The simplest constraints require the database

objects to have certain keys or key-value pairs.
For example to search for hotels, one would use
“node[tourism=‘hotel’];out;”.
• Overpass can find ways and relations that form

a filled polygon. Based on this, Overpass is
able to search for database objects in only the
specified area, such as a town or country. To
search for hotels in Paris, the corresponding
Overpass would be: “area[name=‘Paris’]→.a;
node(area.a)[tourism=‘hotel’];out;”.
• The operator called around allows the

user to search for a database object in
a certain radius around another object.
For hotels in a radius of 1,000 metres
around Gare du Nord in Paris, the Overpass
query would be: “area[name=‘Paris’]→.a;
node(area.a)[name=‘Gare du Nord’]→.b;
node(around.b:1000)[tourism=‘hotel’];out;”.

Further tools related to OSM are Overpass turbo3,
a web interface that allows users to run Overpass
queries, and the Overpass turbo Query Wizard,
which supports querying by predefined human read-
able shorthands to executable Overpass queries. A
screenshot of the map and an example database en-
try for an Overpass query is shown in Figure 1.

4 Query Creation

Since even the Overpass Query Wizard requires
users to be familiar with the tag set of OSM
key-value pairs, it unusable for users with only
casual or no knowledge of OSM’s internal struc-
ture. Nonetheless, we could use parts of the user
query log to formulate natural language ques-
tions. For example users would enter the query
“(node[”abandoned:tourism”=”theme park”];
way[”abandoned:tourism”=”theme park”]; rela-

2http://wiki.openstreetmap.org/wiki/
Overpass_API

3http://overpass-turbo.eu/

742

query

area

keyval

name Paris

nwr

keyval

tourism hotel

keyval

wheelchair yes

findkey

name

Figure 2: The question “Which hotels in Paris have wheelchair

access?” with MRL “query(area(keyval(name,’Paris’)),

nwr(keyval(tourism,’hotel’),keyval(wheelchair,’yes’)), find-

key(name))” can be presented as a tree. A preorder traversal

gives: “query@3 area@1 keyval@2 name@0 Paris@s nwr@2

keyval@2 tourism@0 hotel@s keyval@2 wheelchair@0 yes@s

findkey@1 name@0”

tion[”abandoned:tourism”=”theme park”];);out;”
which we then extended to “When did
the abandoned theme parks close?”
and added the corresponding MRL
“query(nwr(keyval(’abandoned:tourism’,’theme
park’)),qtype(findkey(’end date’)))”. Additionally
we often had to provide a reference point for the
queries, as users usually searched their current map
cut-out and while all abandoned theme parks in
the world is a short list, all restaurants for example
would be too many to realistically handle. Thus
we fell back to 3 chosen cities in those cases,
Heidelberg, Paris and Edinburgh. In sum, most of
the queries are based on OSM user queries that
were issued to the Overpass turbo Query Wizard
and shared among users; others were written by
the first author with an utilization of the underlying
Overpass API in mind.

5 Machine Readable Language (MRL)

Our corpus creation process was guided by the goal
to pair a diverse range of questions with machine
readable language (MRL) formulae. These should
include the most important OSM tags so that the
parser is able to learn a mapping between these tags
and the different corresponding natural language ex-
pressions.

To answer concise questions without including
superfluous details, the MRL needs to be able to ex-
tract more specific information instead of a list of
all database objects as in the underlying Overpass

result. The MRL thus wraps around Overpass and
contains additional indicators about what informa-
tion should be returned from a database object, for
example just its GPS coordinates, or a website ad-
dress, or the number of returned objects.

Given the above consideration, we define our
MRL as a variable free language that focuses on
practicality and speed, akin in style to the GEO-
QUERY MRL language. It is unambiguously defined
via a context-free grammar (CFG) so that one can
always ascertain whether or not a formula is valid.
While the written form of the MRL is a bracket
structure, this structure can easily be encoded as a
tree by taking a pre-order traversal which makes it
easy and efficient to work with. An example CFG
tree for a MRL is given in Figure 2. In the follow-
ing, we list the operators of our MRL.

Query Operator. A single database query is en-
coded in the operator query() which will hold the
Overpass query as well as further specifications
about what kind of answer should be retrieved. A
few operators are directly derived from Overpass,
merely re-written as a tree structure. As such OSM
key-value pairs are encoded using the operator key-
val() which takes 2 arguments, the first being the key
and the second the value. The area operator from
Overpass directly translates to the operator area().
Nodes, ways and relations are grouped together un-
der the nwr() operator which will supply the union
of the query run with the 3 types in turn. This is nec-
essary because often buildings, e.g. schools, may be
represented as any of the 3 types depending on how
specific the annotator wanted to be. Both area() and
nwr() then take one ore more keyval() arguments. If
area() and nwr() appear as siblings in the tree (for an
example see Figure 2), then only the objects that lie
within area() will be searched to determine if they
fulfil the nwr() constraints.

Meta Operators. In order to add specificity be-
yond the lists returned by Overpass, each MRL for-
mula needs one or more of the following meta pa-
rameters to be valid; the meta parameters in turn
are held by the operator qtype(). The operator
latlong() retrieves the geographical coordinates of
the database objects. For a node this is simply its
recorded GPS point. In the case of ways and re-
lations the centre of the associated nodes is calcu-

743

Figure 3: Mapping of natural language question to MRL (via semantic parsing) and to structured database query, returning a set of

database objects (via Overpass API) which may be represented as XML documents, from which the correct answer is retrieved.

lated. findkey() searches for a specific key (such
as name or website) in the database objects of the
retrieved set and returns its value. count() simply
counts the number of elements in the retrieved set.
least() checks for the existence of at least x elements
in the returned set, whereas x is defined in a sec-
ond meta function topx() which returns the top x
elements of a set. topx() may also be used in con-
junction with latlong() and findkey().

Additionally the user can ask for the distance
between two points of interests. This operator,
dist() needs to be supplied with two separate query()
operators using the latlong() meta operator, and
can return the value in either kilometres or miles
(unit(mi/km)). In conjunction with that the user can
inquire if the point of interest is still within walking
distance (for(“walk”)), or if a car is recommended
(for(“car”)).

Fuzzy Language Operators. Fuzzy terms such as
“nearby”, “within walking distance” and “closest”
can be modelled by making use of the around op-
erator from Overpass. around() searches for points
of interest (supplied via search()) in the vicinity of
another (supplied using center()). If only the x clos-
est points are to be returned, topx() can be added.
The radius is defined via dist(). This information
can occur either explicitly (“No further than 200m
away”), or implicitly (“Give me a cinema with a car
park close by” implies that the car park should be in

walking distance). For the implicit case 4 options are
available: walking distance, within town distance,
out of town distance, and day trip distance. Choos-
ing the appropriate distance in the implicit case is
of particular difficulty because often a term such as
“close by” implies a different distance depending on
the surrounding context. For example, “a close by
airport” may imply day trip distance, while “a close
by restaurant” at most implies a just out of town dis-
tance (see also Minock and Mollevik (2013)).

Another set of fuzzy terms are the cardinal direc-
tions, either within an area() operator (“Where are
hotels in the north of Paris?”), or beyond an nwr()
operator (“Where are hotels north of Gare du Nord
in Paris?”). The correct operator, north(), east(),
south() or west(), follows after query(), if present.

Further Operators. Some further operators were
needed to model the MRL formula for complex
questions. and() is used when the user asks for two
different nuggets of information (“Where is the clos-
est bakery and the closest butcher?” or “Give me
the website and name of ...”). or() is used to create
unions, as for example, needed in a sentence such as
“Give me the closest bar or restaurant.” “*” can be
used as a wild card in a value position, e.g. [‘his-
toric’=*] will returned any historic objects, be it a
castle, a monument or something else. nodup() re-
turns a set with no duplicates. This is, for example,
needed in “Which cuisines are there?”.

744

Figure 4: Histogram of the gold formulae sizes

NLMAPS GEOQUERY FREE917

sent. 2,380 880 917
tokens 25,906 6,660 6,785
types 1002 296 2,038
avg. sent. length. 10.88 7.57 7.4
avg. types per sent. 0.42 0.34 2.22
avg. singleton per sent. 0.1 0.1 1.52
avg. NT per sent. 21 16 16
FRES 82.18 86.61 83.77

Figure 5: Corpus statistics of the corpora NLMAPS, GEO-

QUERY, FREE917. NT stands for non-terminal and FRES is

the Flesch Reading Ease Score (Flesch, 1974).

The complete pipeline process leading from nat-
ural language question to an appropriate answer can
be seen in Figure 3. The natural language question
is first translated by the semantic parser into a MRL,
from which the Overpass query is deterministically
extracted, while keeping a list of the relevant fur-
ther indicators. These indicators then operate on the
database objects returned by the Overpass query to
form the answer.

6 Corpus Statistics

Our corpus, called NLMAPS, is more than twice as
large as GEOQUERY or FREE917. In the following,
we present a comparison of the lexical and syntactic
complexity of the three corpora. All statistics re-
ported in Figure 5 are normalized by the number of
sentences.

Lexically, NLMAPS is more diverse than GEO-
QUERY, as can be seen by the average number of
types, but less so compared to FREE917 due to the
fact that the OSM database is still a somewhat more
closed domain compared to Freebase. Syntactically
however, NLMAPS is with 3 more words on aver-
age per sentence more complex than GEOQUERY

and FREE917, which have nearly identical sentence
length. As a further test, we ran the Stanford Parser
(Klein and Manning, 2003) on the queries to gener-
ate syntactic parse trees. We then counted the num-
ber of non-terminals required to produce the parse
tree. This result reaffirms what the simpler sentence
length already reported: the language in NLMAPS is
more complex than in the other two corpora, which
have identical complexity.

In Figure 4 we report the number of operators and

values needed to construct the different gold formu-
lae. While there are a few questions that need a
formula shorter than 10, the vast majority needs a
length of around 15, followed by a long tail of sizes
with decreasing frequency of up to 36. The fact that
many of the gold formulae are in fact longer than
the average sentence length shows that the questions
are far from trivial and require elaborate database
queries to be answered. The last measure we re-
port is the Flesch Reading Ease Score (Flesch, 1974)
which is usually used to asses the text difficulty for
readers. In this score, a lower number indicates a
harder text. NLMAPS receives the lowest number,
indicating it as the most complex corpus.

Overall we can infer that NLMAPS provides a
good balance between lexical diversity as well as
stability for a machine learning algorithm to learn.
With regards to syntactic complexity, NLMAPS eas-
ily supersedes the other two corpora. We conclude
this section with a few example sentences:

What are the websites and
names of the museums or art
centers in walking distance of
the Eiffel Tower?

What are the opening times of
the Sainsbury’s Local closest
to the Edinburgh Waverley in
Edinburgh?

What are the peaks in the
north of Languedoc-Roussillon
called and how high are they?

7 Semantic Parsing

We treat semantic parsing as an SMT problem, us-
ing our own implementation of the framework in-

745

Precision Recall F1

1 +intersect +stem +cdec 84.69 62.42 71.87
2 +intersect +stem +cdec +sparse 84.40 65.8 73.951

3 +intersect +stem +cdec +pass +cfg 89.45 65.19 75.411

4 +intersect +stem +cdec +sparse +pass +cfg 89.04 68.3 77.31,2,3

Table 2: Semantic Parsing results on NLMAPS (split 1500/880 for train/test set) using different settings. Tuning was carried out

on the training set. In the case of MERT tuning, the results are averaged over 3 runs due to the randomness MERT introduces.

Best results are indicated in bold face. Statistical significance in terms of F1 of system differences at p < 0.05 are indicated by

experiment number in superscript.

troduced by Andreas et al. (2013) who have shown
that this approach achieves state-of-the-art perfor-
mance on GEOQUERY. In this framework it is cru-
cial that the MRL can be represented as a tree. A
pre-order tree traversal can give a unique string in
which each node is a word (i.e. surrounded by white
space). Once the MRL has been converted into
such a structure (for an example see Figure 2), a
word aligner, here GIZA++ (Och and Ney, 2003),
can be used to generate word-to-word alignments in
both translation directions which can then be com-
bined with various heuristics (Koehn, 2010, Chap-
ter 4.5.3). From the next step onwards we use the
freely available SMT framework CDEC (Dyer et al.,
2010). After building a language model for the tar-
get (MRL) side, SCFG grammars for hierarchical
phrases for tuning and testing were extracted. Ex-
periments in n-gram order showed that 5-gram mod-
els are sufficient for language modelling.

At test time, a critical issue is the fact that mono-
lingual SMT does not ensure that the translations are
valid MRL formulae. Thus a k-best list (sorted from
most probable to least) is generated which needs to
be traversed until a valid formula is found. Experi-
mentation with the k-best list size showed that 100 is
a good trade-off between speed and performance. A
bigger size of k might enable us to find a valid (and
correct) formula further down the k-best, however,
we verified experimentally that in most cases no op-
tion in the extended k-best list contained a valid for-
mula either.

Once a valid formula is found, it is executed
against a database and the resulting answer is com-
pared to the answer the gold formula provides. Only
exact matches are considered correct. We report
Precision, Recall and F1-score to evaluate the se-

mantic parser.4

Table 2 shows experimental results for different
settings of semantic parsing on NLMAPS. Statis-
tical significance of system differences in terms of
F1 was assessed by an Approximate Randomiza-
tion test (Noreen, 1989). For the word-alignment
step, we found that the choice of the strategy for
combining word alignments from both translation
directions is crucial to the semantic parser’s perfor-
mance. The intersect strategy performs significantly
better than any other, suggesting that high precision
alignments are very important when using a mono-
lingual SMT approach for semantic parsing. Fur-
ther, stemming the words on the NL side is also
always significantly better than not doing so. In
a next step we compare the use of dense features
(Dyer et al., 2010) in conjunction with the tuning
algorithm MERT (Och, 2003) and additional sparse
features (Simianer et al., 2012). As MERT cannot
handle such a large amount of features, we paired
the sparse features with the tuning algorithm MIRA

(Crammer and Singer, 2003). Because MERT suffers
from optimizer instability (Clark et al., 2011) due to
random initialization, the experiments 1 & 3 in Ta-
ble 2 report the average result based on 3 different
MERT runs. Another variation we tested is the use of
the NLMAPS CFG to check whether or not a trans-
lation is a valid MRL, instead of a quicker check
that only ensures that a translation can be parsed
as a tree. This variation is indicated with “+cfg”.
Lastly, while the system was able to directly learn
the mapping of named entities previously seen dur-

4Recall is defined as the percentage of correct answers out of
all examples, Precision the percentage of correct answers out of
all examples with an answer, and F1-score the harmonic mean
between the two aforementioned.

746

ing training, this is not possible for new named en-
tities. These unknown named entities will automati-
cally be passed through by the SMT system but they
will be missing the marker of where in the tree they
belong. As named entities always have to be in a
value position in the corresponding MRL and val-
ues are always leave nodes, this can easily be rec-
tified by appending the marker for a leave node to
passed through words (“+pass”). Of course, when
stemming is used, one has to also keep track of the
unstemmed form. The decision of which route to go
with named entities is left up to the SMT system.

Overall, the modules tested in Table 2 add up to
a total F1 score of 77.3%. Given the complexity of
our corpus and the simplicity of the semantic parser,
this is a promising result.

8 Multilingual Parsing

Riezler et al. (2014) and Haas and Riezler (2015)
have shown how to use semantic parsers for GEO-
QUERY and FREE917, respectively, to adapt an
SMT system for multilingual database access. In
this section we show that our semantic parser can
be used for response-based learning of an SMT sys-
tem to allow multilingual natural language queries
to OSM, here German. To this end, a SMT sys-
tem first translates the question from German to En-
glish and then the translation is passed to the seman-
tic parser to answer the question. The SMT system
uses the feedback from the parser, i.e. the knowl-
edge whether or not the question could be parsed to
the correct answer, to improve translations.

More formally, assume an SMT system with a
joint feature representation φ(x, y) for input sen-
tences x and output translations y ∈ Y (x), that uses
a linear scoring function to predict the most likely
translation ŷ = arg maxy∈Y (x)w

>φ(x, y). We de-
fine a cost function c(y(i), y) = (1−BLEU(y(i), y))
based on sentence-wise BLEU (Nakov et al., 2012)
and a binary feedback function e(y) ∈ {1, 0}. The
binary function evaluates to 1 if and only if a natu-
ral language’s semantic parse receives the same an-
swer as the corresponding gold parse. Training is
performed by moving w closer to a hope translation
y+ while pushing it away from a fear translation y−.
Both y+ and y− have a high model score. y+ incor-
porates the hope for a best translation to have a low

cost and positive feedback. y− is feared due to a
high cost and negative feedback, thus we define:

y+ = arg max
y∈Y (x(i)):e(y)=1

(
s(x(i), y;w)− c(y(i), y)

)
,

y− = arg max
y∈Y (x(i)):e(y)=0

(
s(x(i), y;w) + c(y(i), y)

)
.

The algorithm, called REBOL (Riezler et al.,
2014), proceeds by iterating over the training data,
predicting the top translation ŷ, and receiving feed-
back for this translation from a semantic parser. If
the feedback is positive, ŷ is set equal to y+, other-
wise to y−. The algorithm then searches the k-best
list for the missing y− or y+, respectively, and per-
forms an update that adds the feature vector of y+

onto w, and subtracts the feature vector of y−.
For our experiment, the NLMAPS questions were

translated by the first author into German. As parser
we chose to use number 3 (+intersect +stem +cdec
+pass +cfg) from Table 2, deciding against the use of
sparse features due speed reasons. The CDEC (Dyer
et al., 2010) decoder was used for machine trans-
lation from German to English. Here we employ
its standard features plus additional sparse features5

and the COMMON CRAWL6 (Smith et al., 2013) cor-
pus to built the baseline SMT system.

REBOL is compared to a baseline system with-
out discriminative training (CDEC) and to a stochas-
tic (sub)gradient descent variant of RAMPION (Gim-
pel and Smith, 2012). Both baseline systems do
not make use of the feedback from the semantic
parser. While both REBOL and RAMPION assume
the availability of both a reference translation and
a gold parse, response-based learning can also suc-
ceed without any access to reference translations or
even to gold standard parses. Riezler et al. (2014)
introduced an algorithm, called EXEC, that only re-
lies on task-based feedback and omits the cost func-
tion based on sentence-wise BLEU. Collecting real
world data for this algorithm is realistic for an on-
line interface to OSM since it only requires a user to
pose a question and then indicate if it was answered
to their satisfaction.

5https://github.com/pks/cdec-dtrain
6http://www.statmt.org/wmt13/

training-parallel-commoncrawl.tgz

747

method P R F1 BLEU

1CDEC 67.8 24.89 36.41 38.3
2EXEC 75.2 31.36 44.271 40.851

3RAMPION 78.21 38.75 51.821,2 51.821,2

4REBOL 80.76 41.02 54.411,2,3 51.881,2

Table 3: SMT results on NLMAPS, reporting Precision (P), Re-

call (R) and their harmonic mean (F1). Best results are indi-

cated in bold face. Statistical significance of result differences

at p < 0.05 are indicated by algorithm number in superscript.

While we do report BLEU (Papineni et al., 2002),
the primary goal in our work is to achieve highest
possible F1 score. This is vital because our ultimate
aim is to give users asking German questions the
correct answer, whereas the English translation from
which BLEU is be calculated is only an intermediate
result that is irrelevant for the task goal.

To test significance of F1 and BLEU, we again
use Approximate Randomization. Before training,
we split of 200 sentences from the training set to use
as held out data (dev set). RAMPION, REBOL and
EXEC ran for 50 epochs and then the dev set was
used to pinpoint the best epoch for each algorithm.
In the case of RAMPION, the best epoch equalled
the epoch in which the dev set achieved the highest
BLEU score (epoch 20). For REBOL and EXEC, on
the other hand, this decision was made by the high-
est F1 score on the dev set (epoch 40 and 6 respec-
tively). The learning rate for both algorithms was set
on a per feature basis using Adadelta (Zeiler, 2012).

As shown in Table 3, REBOL can significantly im-
prove in terms of F1 and BLEU over the CDEC base-
line. It is also significantly better than RAMPION in
terms of F1 while being able to keep up in BLEU.
Should reference translations not be available, EXEC

shows that it can still significantly outperform the
CDEC baseline, it however cannot keep up with RE-
BOL or RAMPION which have a more detailed su-
pervision signal available to them.

9 Conclusion

We presented an approach to query the OSM
database for complex geographical facts via natural
language questions. The key technology is a seman-
tic parser that is trained in supervised fashion from
a large set of questions annotated with executable

MRLs. Our corpus is larger than previous annotated
question-answer corpora, while including a wide va-
riety of challenging questions.

Terms such as “nearby”, “in the south of ”, “within
x miles” are particularly well-suited for a natural lan-
guage query interface that allows to map the fuzzi-
ness of natural language to flexible spatial poly-
gons. Our corpus is publicly available7 and a web-
site where users can query OSM using natural lan-
guage is under development8. This in turn will give
us new and more realistic data which we can use
to extend the corpus and to improve the semantic
parser.

An online version of our natural language inter-
face to OSM will be enabling for various interesting
directions of future research: Besides the possibil-
ity to gain new and more realistic data which we
can use to extend the corpus, the semantic parser
can be improved itself by response-based learning,
where supervision signals can be extracted from
the executed parses of new user queries against the
database (Kwiatowski et al. (2013), Berant et al.
(2013), Goldwasser and Roth (2013), inter alia). In
a similar way, multilingual database access can be
enhanced by adapting an SMT system by response-
based learning, using executability of a parse of a
translated query as supervision signal (Riezler et al.,
2014). Both cases of response-based learning only
require a user who issues a query and gives feed-
back on whether the proposed OSM object was the
intended answer. Such an interactive scenario en-
ables further research on alternative algorithms for
learning from partial feedback (Szepesvári, 2009;
Bubeck and Cesa-Bianchi, 2012).

Acknowledgments

We would like to thank the OSM developers Roland
Olbricht and Martin Raifer for their support and for
contributing a dataset of shared user queries. The
research reported in this paper was supported in part
by DFG grant RI-2221/2-1 “Grounding Statistical
Machine Translation in Perception and Action”.

7www.cl.uni-heidelberg.de/nlmaps
8nlmaps.cl.uni-heidelberg.de

748

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proceedings of the 51st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Sofia, Bul-
garia.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR. In
Proceedings of the Conference on Empirical Methods
on Natural Language Processing (EMNLP), Lisbon,
Portugal.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Seattle, WA.

Johan Boye, Morgan Fredriksson, Jana Gtze, and Jrgen
Knigsmann. 2014. A demonstration of a natural-
language pedestrian routing system. In Proceedings
of the 5th international workshop on spoken dialogue
systems (IWSDS), Napa, USA.

Sébastian Bubeck and Nicolò Cesa-Bianchi. 2012. Re-
gret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in
Machine Learning, 5(1):1–122.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon ex-
tenstion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (ACL),
Sofia, Bulgaria.

Jonathan Clark, Chris Dyer, Alon Lavie, and Noah Smith.
2011. Better hypothesis testing for statistical machine
translation: Controlling for optimizer instability. In
Proceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Portland,
OR.

Koby Crammer and Yoram Singer. 2003. Ultraconserva-
tive online algorithms for multiclass problems. Jour-
nal of Machine Learning Research, 3:951–991.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), Uppsala, Sweden.

Rudolf Flesch. 1974. The Art of Readable Writing: With
the Flesch Readability Formula. Harper & Row.

Kevin Gimpel and Noah A. Smith. 2012. Structured
ramp loss minimization for machine translation. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(HLT-NAACL), Stroudsburg, PA.

Dan Goldwasser and Dan Roth. 2013. Learning from
natural instructions. Machine Learning, 94(2):205–
232.

Carolin Haas and Stefan Riezler. 2015. Response-
based learning for machine translation of open-domain
database queries. In Proceedings of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics (NAACL), Denver, CO.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to transform natural to formal lan-
guages. In Proceedings of AAAI, Pittsburgh, PA.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the 41st
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 423–430.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Seattle, WA.

Tom Kwiatowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), Seattle, WA.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning dependency-based compositional semantics.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies (ACL-HLT), Portland, OR.

Michael Minock and Johan Mollevik. 2013. Context-
dependent ’near’ and ’far’ in spatial databases via su-
pervaluation. Data Knowl. Eng., 86:295–305.

Preslav Nakov, Francisco Guzmán, and Stephan Vogel.
2012. Optimizing for sentence-level bleu+1 yields
short translations. In Proceedings of the 24th In-
ternational Conference on Computational Linguistics
(COLING), Bombay, India.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses: An Introduction. Wiley, New
York.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
Human Language Technology Conference and the 3rd
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT-NAACL),
Edmonton, Cananda.

749

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics (ACL), Stroudsburg, PA.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP), Beijing, China.

Stefan Riezler, Patrick Simianer, and Carolin Haas. 2014.
Response-based learning for grounded machine trans-
lation. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (ACL),
Baltimore, MD.

Patrick Simianer, Stefan Riezler, and Chris Dyer. 2012.
Joint feature selection in distributed stochastic learn-
ing for large-scale discriminative training in SMT. In
Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), Jeju Is-
land, South Korea.

Jason Smith, Herve Saint-Amand, Magdalena Plamada,
Philipp Koehn, Chris Callison-Burch, and Adam
Lopez. 2013. Dirt cheap web-scale parallel text from
the Common Crawl. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguis-
tics (ACL), Sofia, Bulgaria.

Csaba Szepesvári. 2009. Algorithms for Reinforcement
Learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool.

Andreas Vlachos and Stephen Clark. 2014. A new
corpus and imitation learning framework for context-
dependent semantic parsing. Transactions of the Asso-
ciation for Computational Linguistics (TACL), 2:547–
559.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (ACL-IJCNLP), Beijing, China.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine trans-
lation. In Proceedings of the Human Language
Technology Conference of the North American Chap-
ter of the Association for Computational Linguistics
(HLT/NAACL).

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. arXiv:1212.5701 [cs.LG].

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic pro-
gramming. In Proceedings of AAAI, Portland, OR.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the Conference on Uncertainty in Arti-
ficial Intelligence (UAI), Edinburgh, Scotland, UK.

750

Proceedings of NAACL-HLT 2016, pages 751–761,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Natural Language Communication with Robots

Yonatan Bisk
Information Sciences Institute
Univ. of Southern California

ybisk@isi.edu

Deniz Yuret
Koç University

Computer Engineering
dyuret@ku.edu.tr

Daniel Marcu
Information Sciences Institute &
Department of Computer Science

Univ. of Southern California
marcu@isi.edu

Abstract

We propose a framework for devising empiri-
cally testable algorithms for bridging the com-
munication gap between humans and robots.
We instantiate our framework in the context
of a problem setting in which humans give
instructions to robots using unrestricted natu-
ral language commands, with instruction se-
quences being subservient to building com-
plex goal configurations in a blocks world. We
show how one can collect meaningful training
data and we propose three neural architectures
for interpreting contextually grounded natural
language commands. The proposed architec-
tures allow us to correctly understand/ground
the blocks that the robot should move when
instructed by a human who uses unrestricted
language. The architectures have more diffi-
culty in correctly understanding/grounding the
spatial relations required to place blocks cor-
rectly, especially when the blocks are not eas-
ily identifiable.

1 Motivation

Much of the progress in Natural Language Process-
ing can be attributed to defining problems of broad
interest (e.g. parsing and machine translation); col-
lecting or creating publicly available corpora that en-
code meaningful 〈input, output〉 samples (e.g. Penn
TreeBank and LDC Parallel Corpora); and devising
simple, objective and computable evaluation met-
rics to automatically assess the performance of algo-
rithms designed to solve the problems of interest, in-
dependent of the approach or technology used (e.g.
ParseEval and Bleu).

As robots become increasingly ubiquituous, we
need to learn to interact with them intelligently, in
the same manner we interact with members of our
own species. To make rapid progress in this area, we
propose to use an intellectual framework that has the
same ingredients that have transformed our field: ap-
pealing science problem definitions; publicly avail-
able datasets; and easily computable, objective eval-
uation metrics.

In this paper, we study the problem of Human-
Robot Natural Language Communication in a set-
ting inspired by a traditional AI problem – blocks
world (Winograd, 1972). After reviewing previous
work (Section 2), we propose a novel Human-Robot
Communication Problem that is testable empirically
(Section 3.1) and we describe the publicly available
datasets (Section 3.2) and evaluation metric that we
devised to support our research (Section 6). We then
introduce a set of algorithms for solving our problem
and we evaluate their performance both objectively
and subjectively (Sections 4–8).

2 Previous work

Most research on Human-Robot Interac-
tion (Klingspor et al., 1997; Thompson et al.,
1993; Mavridis, 2015) bridges the gap between
natural language commands and the physical world
via a set of pre-defined templates characterized
by a small vocabulary and grammar. Progress on
language in this area has largely focused on ground-
ing visual attributes (Kollar et al., 2013; Matuszek
et al., 2014) and on learning spatial relations and
actions for small vocabularies with hard-coded ab-
stract concepts (Steels and Vogt, 1997; Roy, 2002;

751

Guadarrama et al., 2013). Language is sometimes
grounded into simple actions (MacMahon et al.,
2006; Yu and Siskind, 2013) but the data, while
multimodal, is relatively formulaic, the vocabularies
are small, and the grammar is constrained. Although
robots have significantly increased their autonomy
and ability to plan, that has not resulted, to date,
in more flexible human-robot communication
protocols that would enable robots to understand
free-er form language and/or acquire simple and
complex concepts via human-robot interactions.

Recently the connection between less formulaic
language and simple actions has been explored suc-
cessfully in the context of simulated worlds (Brana-
van et al., 2009; Goldwasser and Roth, 2011; Brana-
van et al., 2011; Artzi and Zettlemoyer, 2013; An-
dreas and Klein, 2015) and videos (Malmaud et al.,
2015; Venugopalan et al., 2015). However, to our
knowledge, there is no body of work that focuses on
understanding the relation between natural language
and complex actions and goals or on explaining flex-
ibly the actions taken by a robot in natural language
utterances. As observed by Klingspor (1997), there
is a big gap between the formulaic interactions that
are typical of state-of-the-art human-robot commu-
nications and human-human interactions, which are
more abstract.

3 A Framework for Human-Robot Natural
Language Communication Research

3.1 Problem Definition

Problem-Solution Sequences. In order to build
models that understand the ambiguous and com-
plex language used by people when communicat-
ing to solve a task, we adopt the Problem-Solution
Sequence (PSS) framework proposed by Bisk et
al. (2016). Problem-Solution Sequences provide
high and low level descriptions of actions in service
of a goal; more specifically, they are sequences of
images that encode what a robot might see as it goes
about accomplishing a goal. In this paper, we work
with PSSs specific to a simple world that has blocks
placed on a table and a robot that can visually in-
spect the table and manipulate the blocks on it.

Figure 1 shows four intermediate block configura-
tions of a PSS the robot observes as it transforms the
initial state block configuration (random) into the fi-

1 coca cola , hp , nvidia .
2 nvidia , to the right of hp
3 place the nvidia block east of the hp block .
4 move the nvidia block to the right of the hp block
5 place the nvidia block to the east of the hp block .
6 move the nvidia block directly to the right of the

hp block .
7 move the nvidia block just to the right of the hp

block in line with the mercedes block .
8 put the nvidia block on the right end of the row of

blocks that includes the coca cola and hp blocks .
9 put the nvidia block on the same row as the coca

cola block , in the first open space to the right of
the coca cola block .

Table 1: Examples of the type of natural language instructions

seen in our corpus that verbalize the action needed to transition

from t8 to t9 in Figure 1.

nal one (the number five). The PSS makes explicit
the natural language instructions that a human may
give to a robot in order to transform the configura-
tion in an Imagei into the configuration in an Imagej
- the two configurations may correspond to one robot
action (for adjacent states in the sequence) or to a se-
quence of robot actions (for non-adjacent states). To
account for language variance, each simple action or
sequence of actions is associated with a set of alter-
native natural language instructions. For example,
nine descriptions of the same action (t8 → t9) from
Figure 1 are shown in Table 1.

We see some structural similarity between the ut-
terances, but they require different amounts of in-
ference to understand, use different (potentially syn-
onymous) language, and choose different blocks as
contextual anchors for proper interpretation. Despite
this, they each describe the action with equal preci-
sion. The natural language instructions encode im-
plicitly partial or full descriptions of the world (“in
line with” or “first open space”).

Simple Instruction/Command Understanding.
The problem definition we focus on in this paper is
that of simple instruction/command understanding:
given a state of the world, Imagei, and a human-like
natural language command, C, we would like to in-
fer the target world, Imagei+1, that a robot should
construct if it understood C. If we assume, for sim-
plicity, that only one block can be moved at a time,
command understanding has a straightforward se-

752

t0: Initial state t8 t9 t20: Final drawing
Figure 1: Above are four states in a 20-action sequence for drawing the digit 5. The world state can be encoded for the learner as

IDs and locations or raw images. Annotations are provided between every adjacent state (See Table 1) or between sequences (e.g.

t8 → t20: Create a four-line diagonal which moves to the southeast. Starting with Heineken ...) to describe multi-action plans.

mantics: understanding a command amounts to in-
ferring that the block at location (x, y, z)S needs
to be moved and the location (x, y, z)T where the
block needs to be moved. The rest of the blocks are
not affected by the move.

3.2 Data
We follow Bisk et al. (2016)’s methodology and col-
lect PSSs specific to both goal oriented and random
actions.1 Our discussion focuses primarily on the
goal oriented data, wherein blocks are used to draw
configurations/scenes that look like the digits zero
through nine. To create these abstract drawings in
a diverse and natural manner, configurations are de-
rived from actual hand-written digits in the MNIST
corpus (LeCun et al., 1998). These digits provide
an easily recognizable target goal when arranging
blocks. To create a sequence of actions that draws
out these digits, the MNIST images were sharpened
and down-sampled until each had at most 20 active
pixels which could be replaced with blocks. The
blocks were either decorated with brands (as shown
above) or with the numbers one through twenty.

These block configurations were placed into a vir-
tual world and scrambled until the board’s initial
state was unrecognizable. This was achieved by ran-
domly relocating adjacent blocks to new locations
in the world. Once every block had been placed at
a new location, the world appears random (for ex-
ample, Image0 in Figure 1), but when these random
actions are played in reverse, the sequence of moves
recreates the digit in a deliberate and ordered man-
ner. Each of these actions are then shown to Ama-
zon Mechanical Turkers. To ensure that our robot

1All data (both single actions and sequences) and
links to code are available at http://nlg.isi.edu/
language-grounding/

learns to understand human-like commands, turkers
were asked to provide instructions they would give
to another person in order to transform a block con-
figuration corresponding to a first image (ti) into a
second block configuration corresponding to an im-
age (ti+1). Each image pair was presented to three
turkers, each of whom had to provide three different
instructions for achieving the same goal.

A total of 100 digits sequences were annotated
(10 drawings for every digits). The sequences were
split so that half were decorated with numbers and
half with logos. The sides of every block have a dif-
ferent color and a logo or number is overlayed on
every side. Eight sequences for every digit are in-
cluded in Training, one for development and two for
testing. Overall, the training data has 11,871 com-
mands, while the development and test corpora each
have 1,719 and 3,177 commands, respectively.

For each learning example, we thus have access
to an input that consists of an Imagei (what the
robot sees), the (x, y, z) coordinates of each block in
Imagei (a discrete representation of the world corre-
sponding to the image), and a natural language com-
mand that a robot needs to understand in order to
operate on the world in Imagei. The output consists
of an Imagei+1 (what the robot should build) and the
(x, y, z) coordinates of each block in Imagei+1.

The training/development/test sections of the data
contain ∼177K/31K/48K tokens for the decorated
blocks. The overall lexical type and token counts
for our data are presented in Table 2. To compute
statistics all text was lower-cased and tokenized us-
ing Stanford’s CoreNLP (Manning et al., 2014). For
the MNIST configurations, digits 0-9 are present in
the test data as drawn with both logos and numbered
blocks. In contrast, only half the digits appear with

753

MNIST Blank
Types Tokens Types Tokens

Train 1,506 177K 961 58K
Dev 583 31K 444 8K
Test 645 48K 575 17K

Total 1,359 / 257K 1,172 / 84K

Table 2: Type and token counts for the Logo and Number dec-

orated block data sets (left) and the Blank blocks (right).

a given decoration in the development data.
Perhaps because annotators were not constrained

or told they were giving instructions to a robot, the
breadth of constructions and variance in command
length is substantial. For example, the length of the
commands varies wildly. Table 3 shows the num-
ber of training commands in a given length range.
Some commands span multiple sentences. The av-
erage command length is 15 tokens with a standard
deviation of 8.

The free form nature of the language and task al-
lows for both utilitarian descriptions as well as more
flowery instructions which utilize the full three-
dimensional world:

take a plunger . plunge the top of the adidas
block . lift it into the air , and place it directly to
the left of the burgerking block , making sure the
right edge of the adidas block and the left edge
of the burgerking block are touching . remove the
plunger .

Random Blank Blocks. In both Table 2 and 3 we
also present statistics on a second much more chal-
lenging dataset of blank blocks used to build ran-
dom configurations. For this data, blocks were ran-
domly placed alongside each other, on top of one an-
other, or randomly scattered in the space. Addition-
ally, these blocks have no identifying labels so they
are more difficult to describe, making the ground-
ing problem difficult. This leads to more interest-
ing language with more spatial cues and counting
(e.g. third block from the top...). This manifests as
much longer descriptions averaging 23.5 words with
a standard deviation of 9 words. We see this length
bias in Table 3. Finally, this data also presents the
challenge of stack creation in the third-dimension.
As capturing the language and phenomena of this
data is largely out of the scope of our current work,
we present baseline results to demonstrate its dif-

of Commands
Command Length (l) MNIST Random

1 ≤ l ≤ 5 81 0
5 < l ≤ 10 3,817 61
10 < l ≤ 20 5,752 995
20 < l ≤ 40 2,028 1,329
40 < l ≤ 80 192 107

Table 3: A breakdown of the number of commands in the train-

ing data by the number of tokens per sentence.

ficulty in the hope of motivating future research.
The complete blank blocks corpus consists of 2,493
training commands, 360 for development and 720
for testing or a total of ∼58K/8K/17K tokens.

4 Learning Problems of Interest

Implicitly encoded in our data are three tasks
with varying amounts of abstraction and context-
specific language: Entity grounding, Spatial Rela-
tion grounding, and Planning.

Entity Grounding. As one would expect based
on Gricean maxims, there are many ways an object
might be referred to in everyday speech. These are
context specific and depend on the perceived am-
biguity of a scene. For example, the decoration of
blocks with logos allows for easy indexing (“nvidia
block”) which uniquely identifies the referent. If a
human feels the brand is not sufficiently recogniz-
able they may choose to describe Texaco as “the star
block”, or Mercedes as “three lines in a circle”. In
these cases, the speaker is appealing to more basic
geometric knowledge in lieu of brand recognition.

The introduction of numbered blocks complicates
the grounding as many actions also contain mea-
sures of how far to move a block:

put block 10 four spaces below block 9 .

In this case, the user has decided to denote the block
IDs with the numerals 0-9, but distances by spelling
out the number. As is to be expected, most strategies
do not hold across users, and an individual user may
be very inconsistent:

move block seven two spaces to the right of block 6

This inconsistency, while difficult for a learner, in-
troduces no actual ambiguity for a fluent speaker.

754

Finally, blank block descriptions use lots of spa-
cial references the involve often complicated recur-
sive structure:

Move the block that is to the [left of [the block
closest to [the right side of the table]]] so that
it is on top of the block that is at the [top of the
[group of blocks [closest to the [left side of the
table]]]].

It follows that an important subtask for our mod-
els/algorithms is to correctly ground the entities ref-
erenced in naturally occurring commands. In gen-
eral this may require a thorough understanding of
syntax and scoping.

Spatial Relation Grounding. Another subtask is
that of understanding spacial relations. Again, we
are presented with lots of linguistic ambiguity which
can be resolved by the shared context and references
of the speaker and listener. For example, the first
command in Table 1 is simply a list of three brands:

coca cola, hp, nvidia.

This statement on its own is meaningless, but in the
context of an image that contains the first two brands
in sequence from left to right, the list implies that the
final logo should be appended to the existing line.

Naturally occurring commands also assume basic
knowledge of physics. The final description in Ta-
ble 1, asks that we place a block in the “first open
space to the right ...”. Implicit in this statement is a
shared understanding that two blocks cannot occupy
the same space. This implies that a human or robot
knows to search for the open space, which may be
arbitrarily far away. Knowledge of physics or ba-
sic geometric shapes appears to be common in the
instructions and injecting this knowledge into our
models may be helpful.

use block 2 as a bridge to complete the diagonal
line formed by blocks 17 , 8 , 6 , 4 and 1 .

Finally, when analyzing the data, we found that
command givers would often create an ad hoc grid to
assist in specifying where a block should be placed.
This was particularly common when placing the first
block (t0 → t1) to start the drawing. This initial
block may need to be placed in a position that is
not near any existing blocks. Common solutions in-
clude specifying midpoints between blocks to center
a conversation:

place the adidas block in the column between
the columns that contain the mercedes and esso
blocks , but two block spaces below either .

Often the referenced blocks may be very far apart
but appear opposite one another and equidistant
from a useful reference point in space.

Plan Recognition. The third problem of interest is
plan recognition. The annotation of sequences of ac-
tions shows that natural commands are also used in a
manner that assumes the ability to plan and execute
individual and complex actions:

slide the adidas block 2 blocks straight up . then
slide it 6 block spaces to the left .

The models we introduce in this paper have diffi-
culty dealing with these kind of commands.

5 Models

In order to correctly interpret commands in context,
we need models that ground entities and understand
spatial relations, shapes, and the compositionality of
language. This is a large and fertile space for ex-
ploration. In contrast with previous work which at-
tempts to produce deep semantic interpretations of
commands (Kim and Mooney, 2012; Dukes, 2014),
in this paper we explore the degree to which we
can solve our communication problem using seman-
tic free models. We are quick to note though that
our framework can also assess the performance of
semantic-heavy approaches.

We outline here three basic neural models that
provide a set of reasonable baselines for other re-
searchers interested in solving this problem. Each
approach assumes less knowledge injection than the
previous. As discussed in Section 3.1, in all three
models, the eventual output is a tuple specifying
where to find the block to move and where to move
it: (x, y, z)S and (x, y, z)T . For each model pre-
sented below we will try both simple feed-forward
and recurrent neural network architectures for en-
coding the input utterance.

5.1 Model Architecture

The goal of our models is to convert an utterance
and world state into a location prediction in the
world. We tackle this problem by breaking the
problem into four steps: Encoding, Representation,
Grounding, Prediction. Components of this pipeline

755

Encoder

W1

H
id

de
n

W1

Wn

...

...

+ (x,y,z)

W
or

ld
 (3

x2
0)

H
id

de
n

Se
m

an
tic

s
2

Se
m

an
tic

s
3

*

Se
m

an
tic

s
1

H
id

de
n

Representation Grounding Prediction

Figure 2: Our models all follow the above architecture. 1-Hot

word vectors (orange) are fed as input to a Feed-Forward or Re-

current Neural Network for encoding. A semantic representa-

tion is extracted (green), which in conjunction with knowledge

of the world (blue) is grounded to predict an action.

can be trained independently (Sections 5.2 and 5.3)
or jointly as a single End-to-End model (Section
5.4). This division of labor also allows for differing
amounts of human intervention both during training
and in the interpretation of actions and bears some
resemblance to (Andreas et al., 2016). Specifically,
we will first present results where the model predicts
a fixed semantic interpretation of actions which are
easily human interpretable (Encoder + Representa-
tion). In this setting, the experimenter/human then
must convert the semantics to actions in the world.
Second, we remove the human interpreter and train
a model for Grounding and Predicting from our se-
mantic representation. Finally, we maintain our ar-
chitecture but remove the human entirely, forcing
the model to both converge to and interpret its own
internal semantic representation.

The model architecture, regardless of how it is
trained, at least implicitly, encodes our beliefs about
the best way to solve the learning problem: per-
forming single actions requires identifying anchors
in the world that can be used as spacial referents
from which a target location can be offset.

5.2 Discrete Predictions of a Fixed Semantics
Our first model assumes a setup with very simple se-
mantics. Despite all blocks existing in a real-valued
world, we will assume that a final location is param-
eterized by knowledge of a reference block and the

direction from the reference to the target position.
Move the Adidas block to the right of the BMW.

For example, in the simple command above, we can
distill three pieces of relevant information:

Source: Adidas
Reference: BMW
Direction: right (east)

By assuming a grid world, BMW can be con-
verted to its location in the world (x, y, z)BMW,
which we shift east by changing the y component
to yield: (x, y + δ, z). In practice we define a set of
nine relative positions:

NW
(x-ẟ, y+ẟ, z)

N
(x, y+ẟ, z)

NE
(x+ẟ, y+ẟ, z)

NW
(x-ẟ, y, z)

TOP
(x, y, z+ẟ)

E
(x+ẟ, y, z)

SW
(x-ẟ, y-ẟ, z)

S
(x, y-ẟ, z)

SE
(x+ẟ, y-ẟ, z)

First our model produces an encoding of the sen-
tence. We present two approaches:

Feed-Forward Neural Network (FFN): This
model produces a sentence encoding by concatenat-
ing one-hot word vectors as input to a hidden layer.
We pad sentences so all inputs are the same length.

Recurrent Neural Network (RNN): In contrast,
the RNN encoder consumes the full sentence, each
word passing through a hidden layer one at a time,
before returning a final representation.

Additionally, in both encoding approaches, words
which only occur a single time during training are
replaced with an UNK token.

We use a single hidden layer architecture with a
softmax for prediction and and train with cross en-
tropy loss. We train a separate model for each pre-
diction (The Encoder and Representation stages of
Figure 2). Once three versions of the model have
been used to predict the Source, Reference and Di-
rection, this triple is used to compute both the source
(x, y, z)S and target (x, y, z)T locations. The for-
mer is computed via a simple look-up table, while
the latter amends the reference look-up with the ap-
propriate offset from the aforementioned grid.

When the model predicts a reference block which
is not on the board (not all configurations use all 20
blocks) we set the reference location to the center of
the board and then apply the relative position trans-
formation to this hallucinated block location.

756

5.3 Continuous Valued Predictions From a
Semantic Triple

At this point, we have constructed a model for pre-
dicting a specific semantic triple, but rely on the
human to convert its output to physical locations
given the current state of the world. To address this,
we train a simple architecture which is shown the
world and automatically learn direction offsets (the
Grounding and Prediction stages of Figure 2).

The model takes knowledge of the Source, Refer-
ence and Direction and passes them to two hidden
layers. One is multiplied by the world (a 3 × 20
matrix of coordinates) and then both are summed to
produce a final (x, y, z) prediction. The world ma-
trix columns are the locations of each block, with
a fixed ordering. If any block is missing from the
configuration the matrix is padded with [-1,-1,-1].
This component of the network is then trained with
a mean-square error regression loss.

Running this model on the predicted representa-
tion of Section 5.2 creates a simple pipeline from
Sentence and World representations to location pre-
dictions, with no human intervention. We are par-
ticularly interested in this model’s performance be-
cause its intermediary representation is forced to
conform to the simple, interpretable semantics we
chose for this domain and task.

5.4 End-to-End Model

Finally, we present a single model which takes as
input the sentence and world as before and predicts
either the location of the block to move or its final
location. This corresponds to training the neural ar-
chitecture (Figure 2). We train the model twice, once
to predict the source location (x, y, z)S and a second
time to predict the target location (x, y, z)T . While
the model architecture implicitly assumes the pres-
ence of an internal semantics we do not train it di-
rectly, but rather rely on the model to discover one
based solely on its prediction error in the world. This
approach is likely to allow for easier future exten-
sions that encode finer-grained direction information
and scaling (see analysis in Section 8).

6 Evaluation Metric

In our formulation, understanding a command C in
the context of a world configuration Imagei amounts

to inferring the block (x, y, z)S that needs to be
moved and the target location (x, y, z)T where the
block needs to be moved to. Given that we control
the manner in which the data is generated, we al-
ways have access to the gold interpretation of com-
mand C. Therefore, it is trivial to measure the per-
formance of various command understanding algo-
rithms by tracking two metrics: (i) we measure our
ability to identify the block to be moved (and ref-
erence/direction information when available) using
standard accuracy figures; (ii) and we measure our
ability to select and place the block to be moved by
measuring the distance between our predicted loca-
tions and the gold locations.

The first evaluation is presented in Table 4 under
the S, R, and D columns. The distance errors are
computed in terms of block lengths and we present
the mean and median errors both for the source
block’s initial and final location.

7 Baselines and Human Performance

Since the gold annotations make explicit only the
block to move and its target location, the Fixed Se-
mantics models do not have gold training data for
predicting the reference block used for anchoring or
the direction to offset. To remedy this, we use a
simple string matching heuristic that chooses a ref-
erence block during training and that computes a
“gold” direction from its location. The reference is
chosen as the closest block mentioned in the sen-
tence, other than the source.

Oracle. To evaluate the strength of this heuristic,
we perform an oracle evaluation (Table 4): we as-
sume perfect knowledge of the source block that is
moved; we apply our string matching heuristic to
choose a reference block; and then assume perfect
knowledge of the quadrant in which we place the
block that is moved. For the blank blocks, our string
matching heuristic fails, so we simply use the closest
block to the target location to the reference location.
This, unsurprisingly, leads to higher error.

Human Performance. We randomly sampled 50
utterances from each dataset to evaluate human per-
formance. The participants in our experiment were
not affiliated with the project and were not provided
any guidance about the task; for example, they were

757

MNIST Patterns with labeled blocks Random Patterns with blank blocks
Source Target Source Target

Med Mean Med Mean S R D Med Mean Med Mean S R D

Human Performance 0.00 0.00 0.21 0.53 100 0.00 0.30 0.37 1.39 93

Oracle – – 0.00 0.45 100 100 100 – – 1.00 1.09 100 100 100

FF
N Discrete Predictions 0.00 0.49 1.09 2.17 93 69 63 5.28 5.09 5.51 5.46 9 15 32

Continuous Predictions 0.49 1.00 1.59 2.42 4.25 4.04 3.86 3.93
End-to-End 0.02 0.38 1.14 1.81 3.45 3.52 3.60 3.94

R
N

N Discrete Predictions 0.00 0.14 0.00 0.98 98 92 78 5.29 5.00 5.51 5.57 10 7 46

Continuous Predictions 0.47 0.64 1.23 1.60 4.16 4.05 3.71 3.87
End-to-End 0.03 0.19 0.53 1.05 3.29 3.47 3.60 3.70

Center Baseline – – 3.46 3.43 100 – – 4.09 4.06 100

Random Baseline 6.37 6.49 6.12 6.21 5 5 11 4.90 4.97 5.51 5.44 10 11 12

Table 4: Model error when trained on only the subset of the data with decorated blocks or blank blocks. Where appropriate S,

R, and D are the model’s predictive accuracy at identifying the Source, Reference and Direction. All models are evaluated on the

Median and Mean prediction error the source block and its final target location. Distances are presented in block-lengths.

not told about the high-level goal of drawing a num-
ber. Despite this, Table 4 shows human performance
is very similar to Oracle performance. Although hu-
mans did not place blocks in line “perfectly”, they
were comparable to or outperformed the oracle.

Baselines. Finally, Table 4 also shows the results
obtained by two baseline models. One (Center) has
perfect knowledge of the source block to move, but
always places it in the center of the table. The sec-
ond baseline (Random), chooses random values for
the source, reference, and direction. As expected,
the performance of these baselines is abysmal.

8 Results

The results in Table 4 show that there is a massive
difference in performance between block configura-
tions that use blocks marked with identifiers (logos
and digits) and those without. When the blocks are
marked with clearly identifiable logos, all models
outperform our baselines by a wide margin. How-
ever, when blocks are blank the situation is flipped.

The results in Table 4 also highlight a notice-
able gap in performance between the simplest Dis-
crete model and the two location predicting mod-
els. The comparable performance of the Con-
tinuous and End-to-End models on labeled blocks
seems to imply that the End-to-End model is captur-
ing/discovering similar anchoring information with-
out being explicitly told to do so. On the blank block

data, the End-to-End model performs best by learn-
ing its own more appropriate representation.

Parameters. Where appropriate, we used 256 unit
hidden-layers, 0.5 dropout, and the Adam optimizer
with a learning rate of 0.001. With the exception of
the FFN Discrete Predictions model, SGD parameter
grid-search did not yield an improvement.

8.1 Subjective Error Analysis

In Table 5, we collected 50 of our models worst er-
rors on the decorated blocks data and categorized
them into five classes of error. Eliminating most of
these errors require more knowledge or a richer rep-
resentation than currently afforded by our simple se-
mantic triples. This is often due to the use of multi-
ple reference blocks, but grammatical ambiguity and
a knowledge of some basic geometric primitives also
account for many of the mistakes.

8.2 Future Work on Blank Blocks

One of the most jarring results we present is the
the clear performance gap between easily grounded
blocks (MNIST data) and the Blank blocks (Ran-
dom) which require a much richer understanding of
the world. We do not believe this is due to additional
complexity in the types of relations present in the
data, but rather the difficulty in grounding the refer-
ences. When analyzing the data we see that much
of the data still follow a very simple (Source, Ref-

758

Error Type Count Example

Multi-Relation Actions 20 Place block 20 parallel with the 8 block and slightly to the right of the 6 block.
Place block 15 on the same vertical column as blocks 16 and 17, and two rows

above blocks 11 and 3.

Geometric Understanding 10 Continue the diagonal row of 20, 19 and 15 downward with 13.
Put block 12 in the column between the columns with blocks 4 and 13, and on

the same row as the lowest block on the board.

Grammatical Ambiguity 10 19 moved from behind the 8 to under the 18th block.
Burger King tile should be directly above the Coca Cola tile. Move Coca Cola.

Grounding Names 5 Put the block that looks like a taurus symbol just above the bird.

Understanding Distance 5 move the texaco block 5 block lengths above the BMW block

Table 5: We performed a subjective error analysis of the results of our Fixed Semantics model using the RNN encoder. Example

sentences and the frequency of each type of error are reported above from the worst 50 errors on the development data.

Scene Utterance

Move the block that is cur-
rently located closest to the
top left corner to the bottom
left of the table, slightly
higher than the block in the
bottom right corner.

Error: 7.29 Block lengths

Move the block closest to
the top left corner so it is
above half a block length to
the right of the blocks near
the lower left corner of the
table.

Error: 0.94 Block lengths

Table 6: Above are two commands and the worlds they apply

to. Below we see the prediction error of our best model.

erence, Direction) paradigm, but automatically ex-
tracting that semantics is now more difficult and the
purview for future work with scene understanding.

To remove the possibility that this performance
difference is due to sparsity, we down-sampled the
training data from the decorated blocks to match that
of the blank ones. We found the development errors
grew (Average 0.27 and 1.35 on source and target,
respectively) but were still substantially lower than
those observed with blank block data.

Because extracting the semantics for training is so
difficult, a particularly nice result is that while the
End-to-End model was slightly weaker than the oth-
ers on the MNIST based data, it actually performs
best in this domain, where we cannot provide an ex-

plicit training signal for the representation.
The nature of the language in the blank blocks dif-

fers quite dramatically due to this grounding diffi-
culty. Table 6 shows the two sentences we perform
best (and worst) on in the development data and that
make use of a reference and direction.

9 Conclusion

We showed how human-robot communication can
be attacked within an empirical framework that
supports alternative models to be evaluated and
compared using objective metrics. We intro-
duced a set of simple algorithms for human-robot,
in-context command/instruction understanding that
should serve as strong baselines for future research
in this field. The datasets present unique and impor-
tant challenges for NLU, in which the interpretation
of the language has varying amounts of dependence
on the world in which it is uttered. The datasets we
created in support of this work are made publicly
available and should support the development of in-
creasingly sophisticated models and algorithms for
solving the problem defined in this paper, as well as
additional problems that concern human-robot com-
munication.

Acknowledgments

This work was supported by Contract W911NF-15-
1-0543 with the US Defense Advanced Research
Projects Agency (DARPA) and the Army Research
Office (ARO).

759

References

Jacob Andreas and Dan Klein. 2015. Alignment-
based compositional semantics for instruction follow-
ing. In Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing, pages
1165–1174, Lisbon, Portugal, September. Association
for Computational Linguistics.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural
networks for question answering. arXiv preprint
arXiv:1601.01705.

Yoav Artzi and Luke S Zettlemoyer. 2013. Weakly Su-
pervised Learning of Semantic Parsers for Mapping
Instructions to Actions. Transactions of the Associ-
ation for Computational Linguistics, pages 49–62.

Yonatan Bisk, Daniel Marcu, and William Wong. 2016.
Towards a dataset for human computer communica-
tion via grounded language acquisition. In Proceed-
ings of the AAAI’16 Workshop on Symbiotic Cognitive
Systems.

SRK Branavan, Harr Chen, Luke S Zettlemoyer, and
Regina Barzilay. 2009. Reinforcement Learning for
Mapping Instructions to Actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, Suntec,
Singapore, August.

S R K Branavan, David Silver, and Regina Barzilay.
2011. Learning to Win by Reading Manuals in a
Monte-Carlo Framework. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
268–277, Portland, Oregon, USA, June.

Kais Dukes. 2014. Semeval-2014 task 6: Supervised
semantic parsing of robotic spatial commands. In Pro-
ceedings of the 8th International Workshop on Seman-
tic Evaluation (SemEval 2014), pages 45–53, Dublin,
Ireland, August.

Dan Goldwasser and Dan Roth. 2011. Learning From
Natural Instructions. In Twenty-Second International
Joint Conferences on Artificial Intelligence.

Sergio Guadarrama, Lorenzo Riano, Dave Golland,
Daniel Göhring, Jia Yangqing, Dan Klein, Pieter
Abbeel, and Trevor Darrell. 2013. Grounding Spatial
Relations for Human-Robot Interaction . In IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 1640–1647.

Joohyun Kim and Raymond Mooney. 2012. Unsuper-
vised pcfg induction for grounded language learning
with highly ambiguous supervision. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational

Natural Language Learning, pages 433–444, Jeju Is-
land, Korea, July.

Volker Klingspor, John Demiris, and Michael Kaiser.
1997. Human-Robot-Communication and Machine
Learning. Applied Artificial Intelligence Journal,
11:719–746.

Thomas Kollar, Jayant Krishnamurthy, and Grant
Strimel. 2013. Toward Interactive Grounded Lan-
guage Acquisition. In Robotics: Science and Systems.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
November.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: Connecting language,
knowledge, and action in route instructions. In Pro-
ceedings of the 21st National Conference on Artificial
Intelligence - Volume 2, AAAI’06, pages 1475–1482.
AAAI Press.

Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nicholas Johnston, Andrew Rabinovich, and Kevin
Murphy. 2015. Whats cookin? interpreting cooking
videos using text, speech and vision. In Proceedings
of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 143–152, Denver,
Colorado, May–June.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Association for Computational Lin-
guistics (ACL) System Demonstrations, pages 55–60.

Cynthia Matuszek, Liefeng Bo, Luke S Zettlemoyer, and
Dieter Fox. 2014. Learning from Unscripted Deictic
Gesture and Language for Human-Robot Interactions.
In Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence.

Nikolaos Mavridis. 2015. A review of verbal and
non-verbal human–robot interactive communication.
Robotics and Autonomous Systems, 63:22–35, Jan-
uary.

Deb K Roy. 2002. Learning visually grounded words
and syntax for a scene description task. Computer
speech & language, 16(3-4):353–385, July.

Luc Steels and Paul Vogt. 1997. Grounding Adaptive
Language Games in Robotic Agents. Proceedings of
the Fourth European Conference on Artificial Life.

H. Thompson, A. Anderson, E. Bard, G. Doherty-
Sneddon, A. Newlands, and C. Sotillo. 1993. The
HCRC map task corpus: natural dialogue for speech
recognition. In HLT ’93: Proc. of the workshop on
Human Language Technology, pages 25–30. ACL.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond Mooney, and Kate

760

Saenko. 2015. Translating videos to natural language
using deep recurrent neural networks. In Proceedings
of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1494–1504, Den-
ver, Colorado, May–June.

Terry Winograd. 1972. Understanding Natural Lan-
guage. Academic Press.

Haonan Yu and Jeffrey Mark Siskind. 2013. Grounded
language learning from video described with sen-
tences. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 53–63, Sofia, Bulgaria,
August.

761

Proceedings of NAACL-HLT 2016, pages 762–766,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Inter-document Contextual Language Model

Quan Hung Tran and Ingrid Zukerman and Gholamreza Haffari
Faculty of Information Technology

Monash University, Australia
hung.tran,ingrid.zukerman,gholamreza.haffari@monash.edu

Abstract

In this paper, we examine the impact of
employing contextual, structural information
from a tree-structured document set to derive a
language model. Our results show that this in-
formation significantly improves the accuracy
of the resultant model.

1 Introduction

Conventional Language Models (LMs) are based on
n-grams, and thus rely upon a limited number of
preceding words to assign a probability to the next
word in a document. Recently, Mikolov et al. (2010)
proposed a Recurrent Neural Network (RNN) LM
which uses a vector representation of all the pre-
ceding words in a sentence as the context for lan-
guage modeling. This model, which theoretically
can utilize an infinite context window within a sen-
tence, yields an LM with lower perplexity than that
of n-gram-based LMs. However, the model does not
leverage the wider contextual information provided
by words in other sentences in a document or in re-
lated documents.

Several researchers have explored extending the
contextual information of an RNN-based LM.
Mikolov and Zweig (2012) proposed a context-
dependent RNN LM that employs Latent Dirich-
let Allocation for modeling a long span of context.
Wang and Cho (2015) offered a bag-of-words repre-
sentation of preceding sentences as the context for
the RNN LM. Ji et al. (2015) used a Document-
Context LM (DCLM) to leverage both intra- and
inter-sentence context.

These works focused on contextual information
at the document level for LM, but did not con-
sider information at the inter-document level. Many
document sets on the Internet are structured, which
means there are connections between different docu-
ments. This phenomenon is prominent in social me-
dia, where all the posts are directly linked to several
other posts. We posit that these related documents
could hold important information about a particu-
lar post, including the topic and language use, and
propose an RNN-based LM architecture that utilizes
both intra- and inter-document contextual informa-
tion. Our approach, which was tested on the social
media dataset reddit, yielded promising results,
which significantly improve on the state of the art.

2 Dataset

We used pre-collected reddit data,1 which as of
December, 2015, consists of approximately 1.7 bil-
lion comments in JSON format. A comment thread
starts with a “topic”, which might be a link or an im-
age. The users then begin to comment on the topic,
or reply to previous comments. Over time, this pro-
cess creates a tree-structured document repository
(Figure 1), where a level indicator is assigned to
each comment, e.g., a response to the root topic is
assigned level 1, and the reply to a level n com-
ment is assigned level n + 1. We parsed the raw
data in JSON format into a tree structure, removing
threads that have less than three comments, contain
deleted comments, or do not have comments above

1https://www.reddit.com/r/datasets/
comments/3bxlg7/i_have_every_publicly_
available_reddit_comment

762

Figure 1: reddit example

Table 1: Dataset statistics

of # of # of # of
threads posts sentences tokens

training 1500 14592 40709 648624

testing 500 5007 13612 217164

validation 100 968 2762 44575

level 2. We randomly selected 2100 threads that fit
these criteria. The data were then split into train-
ing/testing/validation sets. Table 1 displays some
statistics of our dataset.

3 Baseline Neural Language Models

Our inter-document contextual language model
scaffolds on the RNN LM (Mikolov et al., 2010) and
DCLMs (Ji et al., 2015), as described below.

RNN-LSTM. Given a sentence {xt}t∈[1,...,N],
where xt is the vector representation of the t-th word
in the sentence, and N is the length of the sentence,
Mikolov et al.’s (2010) RNN LM can be defined as:

ht = f(ht−1,xt) (1)

yt ∼ softmax (Woht−1 + bo) (2)

where ht is the hidden unit at word t, and yt is
the prediction of the t-th word given the previous
hidden unit ht−1. The function f in Equation 1
can be any non-linear function. Following the ap-
proach in (Sundermeyer et al., 2012) and (Ji et al.,
2015), we make use of Long Short-Term Memory
(LSTM) units (Hochreiter and Schmidhuber, 1997)
rather than the simple hidden units used in the orig-
inal RNN LM. In our work, the word representation

xt is obtained from the one-hot representation using
an affine transformation, as follows:

xt = Wpot + bp (3)

where ot is the one-hot representation, Wp is the
projection matrix, and bp is a bias term.

Document Context LMs (DCLMs). We re-
implemented two of Ji et al.’s (2015) DCLMs as our
baselines,2 viz Context-to-context (Figure 2a) and
Context-to-output (Figure 2b). These models extend
the RNN-LSTM model by leveraging information
from preceding sentences.

The context-to-context model (ccDCLM) con-
catenates the final hidden unit of the previous sen-
tence with the word vectors of the current sentence.
Thus, Equation 1 becomes:

hit = f(hit−1,x
′
i,t) (4)

x′i,t = concat
(
xi,t,h

i−1
Ni−1

)
(5)

where Ni−1 is the length of the previous sentence
in the document, xi,t is the vector representation of
the t-th word in the i-th sentence, x′i,t is the con-
catenation of the vector representation xi,t and the
previous sentence’s final hidden unit hi−1

Ni−1
.

The context-to-output model (coDCLM) applies
the additional information directly to the word-
decoding phase. Thus, Equation 2 becomes:

yi,t ∼ softmax
(
Woh

i
t−1 +W ′

oh
i−1
Ni−1

+ bo
)

(6)

4 Inter-document Context Language
Model

We now extend the DCLM by leveraging the in-
formation at the inter-document level, taking ad-
vantage of the structure of the repository — a tree
in reddit. Specifically, by harnessing the infor-
mation in documents related to a target document,
i.e., its siblings and parent, the LM is expected to
contain additional relevant information, and hence
lower perplexity. Formally, let’s call the sentence-
level context vector hs, the parent document context

2Ji et al.’s three options performed similarly.

763

(a) ccDCLM (b) coDCLM (c) Our model (PS-ccDCLM)

Figure 2: Contextual language models; see Sections 3 and 4 for detailed descriptions.

vector hp, the sibling context vector hl, and the over-
all context vector hc. Our framework is defined as:

hc = gh(hs,hl,hp) (7)

x′i,t = gi(xi,t,hc) (8)

ht = f(ht−1,x
′
t) (9)

yt ∼ softmax
(
go(ht−1,x

′
t,hc)

)
(10)

We use the last hidden vector of the RNNs as the
representation of the parent post, the older-sibling,
and the previous sentence. The definition of the con-
text function (gh), the input function (gi), and the
word-decoding function (go) yields different config-
urations.

We also explored two strategies of training the
models: Disconnected (disC) and Fully Connected
(fulC). In the disC-trained models, the error signal
within a time step (i.e. a post or sentence) only af-
fects the parameters in that time step. This is in con-
trast to the fulC-trained models, where the error sig-
nal is propagated to the previous time steps, hence
influencing parameters in those time steps too.

4.1 Analysis of our modelling approach
In this section, we empirically analyze different
training and modelling decisions within our frame-
work, namely DC vs FC training, as well as contex-
tual information from parent vs sibling.

The Setup. For our analysis, we employed a sub-
set of the data described in Table 1 which contains
450 threads split into training/testing/validation sets
with 300/100/50 threads respectively. The hidden-
vector and word-vector dimensions were set to 50
and 70, respectively. The models were implemented
in Theano (Bastien et al., 2012; Bergstra et al.,
2010), and trained with RMSProp (Tieleman and
Hinton, 2012).

Table 2: disC/fulC-trained models vs the baselines.

Model Training Perplexity

6-gram na 205

RNN-LSTM na 182

ccDCLM disC 185

coDCLM disC 181

ccDCLM fulC 176

coDCLM fulC 172

disC vs fulC. We first compared the disC and fulC
strategies, at the sentence level only, in order to se-
lect the best strategy in a known setting. To this ef-
fect, we re-implemented Ji et al.’s (2015) DCLMs
with the disC strategy, noting that Ji et al.’s original
sentence-based models are fulC-trained. The results
of this experiment appear in Table 2 which further
compares these models with the following baselines:
(1) vanila RNN-LSTM, and (2) a 6-gram LM with
Kneser-Ney smoothing3 (Kneser and Ney, 1995).
The disC-trained models showed no improvement
over the RNN-LSTM, and lagged behind their fulC-
trained counterparts. The lower performance of the
disC-trained models may be due to not fully lever-
aging the contextual information; disC-training lose
information, as the error signal from the current time
step is not used to calibrate the parameters of pre-
vious time steps. Therefore, we make use of fulC
strategy to train our models in the rest of this paper.

Parent vs Sibling Context. The inter-document
information in reddit’s case may come from a par-
ent post, sibling posts or both. We tested our models
with different combinations of inter-document con-

3Tested with the SRILM toolkit (Stolcke et al., 2011).

764

text information to reflect these options. At present,
we consider only the closest older-sibling of a post,
as it is deemed the most related; different combina-
tions of sibling posts are left for future work. We
tested the following three context-to-context config-
urations: parent only (P-ccDCLM), sibling only (S-
ccDCLM), and parent and sibling (PS-ccDCLM),
which define the context function as Equation 11,
12 and 13 respectively. The three configurations use
the same word-decoding function (Equation 15) and
the same input function (Equation 14).

hc = concat (hs,hp) (11)

hc = concat (hs,hl) (12)

hc = concat (hs,hl,hp) (13)

x′i,t = concat (xi,t,hc) (14)

yi,t ∼ softmax (Woht−1 + bo) (15)

The results of this experiment appear in the first
three rows of Table 3, which shows that the best-
performing model is PS-ccDCLM.

As discussed by Ji et al. (2015), the coDCLM
makes the hidden units of the previous sentence have
no effect on the hidden units of the current sen-
tence. While this configuration might have some
advantages (Ji et al., 2015), applying it directly to
a larger context may lead to complications. Suppose
we use the last hidden unit of the previous docu-
ment as the context for the next document. With
the context-to-output approach, the last hidden unit
summarizes only the information in the last sentence
of the previous document, and doesn’t reflect the en-
tire document. We address this problem by not using
the context-to-output approach in isolation. Instead,
we use the context-to-output approach in tandem
with the context-to-context approach of ccDCLM.
This approach was tested in an additional parent-
sibling configuration (PS-ccoDCLM), as an alterna-
tive to the best performing context-to-context con-
figuration. The PS-ccoDCLM is similar to the PS-
ccDCLM except for the decoding equation, which is
changed into Equation 16.

yi,t ∼ softmax
(
Woh

i
t−1 +W ′

ohc + bo
)

(16)

Based on the results of these trials, we chose the
best-performing PS-ccDCLM (Figure 2c) as our fi-
nal system.

Table 3: Comparing models incorporating parent (P)
and/or sibling (S) contextual information.

Systems Perplexity

P-ccDCLM 172

S-ccDCLM 174

PS-ccDCLM 168

PS-ccoDCLM 175

Table 4: Results on the entire dataset.

Systems Perplexity

6-gram 209

RNN-LSTM 184

ccDCLM 168

coDCLM 176

PS-ccDCLM 159

4.2 Results
The model perplexity obtained by the baselines and
our best-performing model for the test set (Table 1)
is shown in Table 4 — our system (PS-ccDCLM)
statistically significantly outperforms the best base-
line (ccDCLM), with α = 0.01, using the Fried-
man test. The inter-sentence contextual informa-
tion under the context-to-context regime (ccDCLM)
decreases model perplexity by 9% compared to the
original RNN-LSTM, while the inter-document con-
textual information (PS-ccDCLM) reduces perplex-
ity by a further 5% compared to ccDCLM.

5 Discussion and Future Work
Our results show that including inter-document con-
textual information yields additional improvements
to those obtained from inter-sentence information.
However, as expected, the former are smaller than
the latter, as sentences in the same post are more re-
lated than sentences in different posts. At present,
we rely on the final hidden-vector of the sentences
and the posts for contextual information. In the fu-
ture, we propose to explore other options, such as
additional models to combine the contextual infor-
mation from all siblings in the tree structure, and ex-
tending our model to structures beyond trees.

765

References
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. Deep
Learning and Unsupervised Feature Learning NIPS
2012 Workshop.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June. Oral Presenta-
tion.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer,
and Jacob Eisenstein. 2015. Document context lan-
guage models. arXiv preprint arXiv:1511.03962.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for M-gram language modeling. In
ICASSP-95, volume 1, pages 181–184. IEEE.

Tomas Mikolov and Geoffrey Zweig. 2012. Context de-
pendent recurrent neural network language model. In
SLT, pages 234–239.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In INTERSPEECH
2010, pages 1045–1048.

Andreas Stolcke, Jing Zheng, Wen Wang, and Victor
Abrash. 2011. SRILM at sixteen: Update and
outlook. In Proceedings of IEEE Automatic Speech
Recognition and Understanding Workshop, page 5.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In INTERSPEECH, pages 194–197.

Tijmen. Tieleman and Geoffrey Hinton. 2012. Neu-
ral Networks for Machine Learning. http://www.
youtube.com/watch?v=O3sxAc4hxZU. [On-
line].

Tian Wang and Kyunghyun Cho. 2015. Larger-
context language modelling. arXiv preprint
arXiv:1511.03729.

766

Proceedings of NAACL-HLT 2016, pages 767–777,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Ultradense Word Embeddings by Orthogonal Transformation

Sascha Rothe and Sebastian Ebert and Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
{sascha|ebert}@cis.lmu.de

Abstract

Embeddings are generic representations that
are useful for many NLP tasks. In this paper,
we introduce DENSIFIER, a method that learns
an orthogonal transformation of the embed-
ding space that focuses the information rele-
vant for a task in an ultradense subspace of a
dimensionality that is smaller by a factor of
100 than the original space. We show that
ultradense embeddings generated by DENSI-
FIER reach state of the art on a lexicon creation
task in which words are annotated with three
types of lexical information – sentiment, con-
creteness and frequency. On the SemEval2015
10B sentiment analysis task we show that no
information is lost when the ultradense sub-
space is used, but training is an order of mag-
nitude more efficient due to the compactness
of the ultradense space.

1 Introduction

Embeddings are useful for many tasks, including
word similarity (e.g., Pennington et al. (2014)),
named entity recognition (NER) (e.g., Collobert et
al. (2011)) and sentiment analysis (e.g., Kim (2014),
Kalchbrenner et al. (2014), Severyn and Moschitti
(2015)). Embeddings are generic representations,
containing different types of information about a
word. Statistical models can be trained to make best
use of these generic representations for a specific ap-
plication like NER or sentiment analysis (Ebert et
al., 2015).

Our hypothesis in this paper is that the informa-
tion useful for any given task is contained in an ul-
tradense subspace Eu. We propose the new method

DENSIFIER to identify Eu. Given a set of word em-
beddings, DENSIFIER learns an orthogonal transfor-
mation of the original space Eo on a task-specific
training set. The orthogonality of the transformation
can be considered a hard regularizer.

The benefit of the proposed method is that embed-
dings are most useful if learned on unlabeled cor-
pora and performance-enhanced on a broad array of
tasks. This means we should try to keep all informa-
tion offered by them. Orthogonal transformations
“reorder” the space without adding or removing in-
formation and preserve the bilinear form, i.e., Eu-
clidean distance and cosine. The transformed em-
beddings concentrate all information relevant for the
task in Eu.

The benefits of Eu compared to Eo are (i) high-
quality and (ii) efficient representations. (i) DENSI-
FIER moves non-task-related information outside of
Eu, i.e., into the orthogonal complement of Eu. As
a result, Eu provides higher-quality representations
for the task than Eo; e.g., noise that could result in
overfitting is reduced in Eu compared to Eo. (ii) Eu
has a dimensionality smaller by a factor of 100 in our
experiments. As a result, training statistical models
on these embeddings is much faster. These models
also have many fewer parameters, thus again helping
to prevent overfitting, especially for complex, deep
neural networks.

We show the benefits of ultradense representa-
tions in two text polarity classification tasks (Sem-
Eval2015 Task 10B, Czech movie reviews).

In the most extreme form, ultradense representa-
tions – i.e., Eu – have a single dimension. We ex-
ploit this for creating lexicons in which words are

767

annotated with lexical information, e.g., with senti-
ment. Specifically, we create high-coverage lexicons
with up to 3 million words (i) for three lexical prop-
erties: for sentiment, concreteness and frequency;
(ii) for five languages: Czech, English, French, Ger-
man and Spanish; (iii) for two domains, Twitter and
News, in a domain adaptation setup.

The main advantages of this method of lexicon
creation are: (i) We need a training lexicon of only a
few hundred words, thus making our method effec-
tive for new domains and languages and requiring
only a minimal manual annotation effort. (ii) The
method is applicable to any set of embeddings, in-
cluding phrase and sentence embeddings. Assum-
ing the availability of a small hand-labeled lexicon,
DENSIFIER automatically creates a domain depen-
dent lexicon based on a set of embeddings learned
on a large corpus of the domain. (iii) While the in-
put lexicon is discrete – e.g., positive (+1) and nega-
tive (-1) sentiment – the output lexicon is continuous
and this more fine-grained assessment is potentially
more informative than a simple binary distinction.

We show that lexicons created by DENSIFIER beat
the state of the art on SemEval2015 Task 10E (deter-
mining association strength).

One of our goals is to make embeddings more
interpretable. The work on sentiment, concrete-
ness and frequency we present in this paper is a
first step towards a general decomposition of embed-
ding spaces into meaningful, dense subspaces. This
would lead to cleaner and more easily interpretable
representations – as well as representations that are
more effective and efficient.

2 Model

Let Q ∈ Rd×d be an orthogonal matrix that trans-
forms the original word embedding space into a
space in which certain types of information are
represented by a small number of dimensions.
Concretely, we learn Q such that the dimensions
Ds ⊂ {1, . . . , d} of the resulting space corre-
spond to a word’s sentiment information and the
{1, . . . , d}\Ds remaining dimensions correspond to
non-sentiment information. Analogously, the sets of
dimensions Dc and Df correspond to a word’s con-
creteness information and frequency information,
respectively. In this paper, we assume that these

properties do not correlate and therefore the ultra-
dense subspaces do not overlap, e.g., Ds ∩Dc = ∅.
However, this might not be true for other settings,
e.g., sentiment and semantic information.

If ew ∈ Eo ⊂ Rd is the original embedding
of word w, the transformed representation is Qew.
We use ∗ as a placeholder for s, c and f and call
d∗ = |D∗| the dimensionality of the ultradense sub-
space of ∗. For each ultradense subspace, we create
P ∗ ∈ Rd∗×d, an identity matrix for the dimensions
in D∗ ⊂ {1, . . . , d}. Thus, the ultradense represen-
tation u∗w ∈ Eu ⊂ Rd∗ of ew is defined as:

u∗w := P ∗Qew (1)

2.1 Separating Words of Different Groups
We assume to have a lexicon resource l in which
each word w is annotated for a certain information
as either l∗(w) = +1 (positive, concrete, frequent)
or l∗(w) = −1 (negative, abstract, infrequent). Let
L∗6∼ be a set of word index pairs (v, w) for which
l∗(v) 6= l∗(w) holds. We want to maximize:∑

(v,w)∈L∗6∼
‖u∗v − u∗w‖ (2)

Thus, our objective is given by:

argmax
Q

∑
(v,w)∈L∗6∼

‖P ∗Q(ew − ev)‖ (3)

or, equivalently, by:

argmin
Q

∑
(v,w)∈L∗6∼

−‖P ∗Q(ew − ev)‖ (4)

subject to Q being an orthogonal matrix.

2.2 Aligning Words of the Same Group
Another goal is to minimize the distance of two
words of the same group. Let L∗∼ be a set of word
index pairs (v, w) for which l∗(v) = l∗(w) holds.
In contrast to Eq. 3, we now want to minimize each
distance. Thus, the objective is given by:

argmin
Q

∑
(v,w)∈L∗∼

‖P ∗Q(ew − ev)‖ (5)

subject to Q being an orthogonal matrix.
The intuition behind the two objectives is graphi-

cally depicted in Figure 1.

768

dislike

like

peace

war

do

chocolate

don't

money

max

max

min

Q
dislike

like

peacewar
do

chocolate

don't

money

max

max

min

sentiment
dimension

non-sentiment
dimensions

Figure 1: The original word embedding space (left) and the transformed embedding space (right). The training objective for Q is

to minimize the distances in the sentiment dimension between words of the same group (e.g., positive/green: “like” & “peace”) and

to maximize the distances between words of different groups (e.g., negative/red & positive/green: “war” & “peace”; not necessarily

antonyms).

2.3 Training
We combine the two objectives in Eqs. 3/5 for each
subspace, i.e., for sentiment, concreteness and fre-
quency, and weight them with α∗ and 1−α∗. Hence,
there is one hyperparameter α∗ for each subspace.
We then perform stochastic gradient descent (SGD).
Batch size is 100 and starting learning rate is 5, mul-
tiplied by .99 in each iteration.

2.4 Orthogonalization
Each step of SGD updates Q. The updated matrix
Q′ is in general no longer orthogonal. We therefore
reorthogonalize Q′ in each step based on singular
value decomposition:

Q′ = USV T

where S is a diagonal matrix, and U and V are or-
thogonal matrices. The matrix

Q := UV T

is the nearest orthogonal matrix to Q′ in both the
2-norm and the Frobenius norm (Fan and Hoffman,
1955). (Formalizing our regularization directly as
projected gradient descent would be desirable. How-
ever, gradient descent includes an additive operation
and orthogonal matrices are not closed under sum-
mation.)

SGD for this problem is sensitive to the learning
rate. If the learning rate is too large, a large jump

results and the reorthogonalized matrix Q basically
is a random new point in the parameter space. If
the learning rate is too small, then learning can take
long. We found that our training regime of start-
ing at a high learning rate (5) and multiplying by
.99 in each iteration is effective. Typically, the cost
initially stays about constant (random jumps in pa-
rameter space), then cost steeply declines in a small
number of about 50 iterations (sweet spot); the curve
flattens after that. Training Q took less than 5 min-
utes per experiment for all experiments in this paper.

3 Lexicon Creation

For lexicon creation, the input is a set of embed-
dings and a lexicon resource l, in which words are
annotated for a lexical information such as senti-
ment, concreteness or frequency. DENSIFIER is
then trained to produce a one-dimensional ultra-
dense subspace. The output is an output lexicon.
It consists of all words covered by the embedding
set, each associated with its one-dimensional ultra-
dense subspace representation (which is simply a
real number), an indicator of the word’s strength for
that information.

The embeddings and lexicon resources used in
this paper cover five languages and three domains
(Table 1). The Google News embeddings for En-
glish1 and the FrWac embeddings for French2 are

1https://code.google.com/p/word2vec/
2http://fauconnier.github.io/

769

train test
#tokens #types resource ∩ #words resource ∩ #words τ

1 sent CZ web 2.44 3.3 SubLex 1.0 2,492 4,125 SubLex 1.0 319 500 .580
2 sent DE web 1.34 8.0 German PC 10,718 37,901 German PC 573 1,000 .654
3 sent ES web 0.37 3.7 full-strength 824 1,147 full-strength 185 200 .563
4 sent FR web 0.12 1.6 FEEL 7,496 10,979 FEEL 715 1,000 .544
5 sent EN twitter 3.34 5.4 WHM all 12,601 19,329 Trial 10E 198 200 .661
6 sent EN news 3.00 100.0 WHM train 7,633 10,270 WHM val 952 1,000 .622
7 conc EN news 3.00 100.0 BWK 14,361 29,954 BWK 8,694 10,000 .623
8 freq EN news 3.00 100.0 word2vec order 4,000 4,000 word2vec order 1,000 1,000 .361
9 freq FR web 0.12 1.6 word2vec order 4,000 4,000 word2vec order 1,000 1,000 .460

Table 1: Results for lexicon creation. #tokens: size of embedding training corpus (in billion). #types: size of output lexicon (in

million). For each resource, we give its size (“#words”) and the size of the intersection of resource and embedding set (“∩”).

Kendall’s τ is computed on “∩”.

publicly available. We use word2vec to train 400-
dimensional embeddings for English on a 2013
Twitter corpus of size 5.4×109. For Czech, German
and Spanish, we train embeddings on web data of
sizes 3.3, 8.0 and 3.8×109, respectively. We use the
following lexicon resources for sentiment: SubLex
1.0 (Veselovská and Bojar, 2013) for Czech; WHM
for English [the combination of MPQA (Wilson et
al., 2005), Opinion Lexicon (Hu and Liu, 2004)
and NRC Emotion lexicons (Mohammad and Tur-
ney, 2013)]; FEEL (Abdaoui et al., 2014) for French;
German Polarity Clues (Waltinger, 2010) for Ger-
man; and the sentiment lexicon of Pérez-Rosas et
al. (2012) for Spanish. For concreteness, we use
BWK, a lexicon of 40,000 English words (Brysbaert
et al., 2014). For frequency, we exploit the fact
that word2vec stores words in frequency order; thus,
the ranking provided by word2vec is our lexicon re-
source for frequency.

For a resource/embedding-set pair (l, E), we in-
tersect the vocabulary of l with the top 80,000 words
of E to filter out noisy, infrequent words that tend to
have low quality embeddings and we do not want
them to introduce noise when training the transfor-
mation matrix.

For the sentiment and concreteness resources,
l∗(w) ∈ {−1, 1} for all words w covered. We cre-
ate a resource lf for frequency by setting lf (w) = 1
for the 2000 most frequent words and lf (w) = −1
for words at ranks 20000-22000. 1000 words ran-
domly selected from the 5000 most frequent are
the test set.3 We designate three sets of dimen-

3The main result of the frequency experiment below is that

sions Ds, Dc and Df to represent sentiment, con-
creteness and frequency, respectively, and arbitrar-
ily set (i) Dc = {11} for English and Dc = ∅ for
the other languages since we do not have concrete-
ness resources for them, (ii) Ds = {1} and (iii)
Df = {21}. Referring to the lines in Table 1, we
then learn six orthogonal transformation matricesQ:
for CZ-web (1), DE-web (2), ES-web (3), FR-web
(4, 9), EN-twitter (5) and EN-news (6, 7, 8).

4 Evaluation

4.1 Top-Ranked Words

Table 2 shows the top 10 positive/negative words
(i.e., most extreme values on dimension Ds) when
we apply the transformation to the corpora EN-
twitter, EN-news and DE-web and the top 10 con-
crete/abstract words (i.e., most extreme values on di-
mension Dc) for EN-news. For EN-twitter (leftmost
double column), the selected words look promising:
they contain highly domain-specific words such as
hashtags (e.g., #happy). This is surprising because
there is not a single hashtag in the lexicon resource
WHM that DENSIFIER was trained on. Results for
the other three double columns show likewise ex-
treme examples for the corresponding information
and language. This initial evaluation indicates that
our method effectively learns high quality lexicons
for new domains. Figure 3 depicts values for se-
lected words for the three properties. Illustrative ex-
amples are “brother” / “brotherhood” for concrete-
ness and “hate” / “love” for sentiment.

τ is low even in a setup that is optimistic due to train/test over-
lap; presumably it would be even lower without overlap.

770

EN-twitter EN-news EN-news DE-web
positive negative positive negative concrete abstract positive negative
#blessed rape expertise angry tree fundamental herzlichen gesperrt

inspiration racist delighted delays truck obvious kenntnisse droht
blessed horrible honored worse kitchen legitimate hervorragende verurteilt

inspiring nasty thank anger dog reasonable ideale gefahr
foundation jealousy wonderful foul bike optimistic bestens falsche

provide murder commitment blamed bat satisfied glückwunsch streit
wishes waste affordable blame garden surprising optimale angst

dedicated mess passion complained homer honest anregungen krankheit
offers disgusting exciting bad bed regard freuen falschen

#happy spam flexibility deaths gallon extraordinary kompetenzen verdacht
Table 2: Top 10 words in the output lexicons for the domains Twitter and News (English) and Web (German).

4.2 Quality of Predictions

Table 1 presents experimental results. In each case,
we split the resource into train/test, except for Twit-
ter where we used the trial data of SemEval2015
Task 10E for test. We train DENSIFIER on train and
compute Kendall’s τ on test. The size of the lexicon
resource has no big effect; e.g., results for Spanish
(small resource; line 3) and French (large resource;
line 4) are about the same. See Section 5.2 for a
more detailed analysis of the effect of resource size.

The quality of the output lexicon depends strongly
on the quality of the underlying word embeddings;
e.g., results for French (small embedding train-
ing corpus; line 4) are worse than results for En-
glish (large embedding training corpus; line 6) even
though the lexicon resources have comparable size.

In contrast to sentiment/concreteness, τ values for
frequency are low (lines 8-9). For the other three
languages we obtain τ ∈ [.34, .46] for frequency
(not shown). This suggests that word embeddings
represent sentiment and concreteness much better
than frequency. The reason for this likely is the
learning objective of word embeddings: modeling
the context. Infrequent words can occur in frequent
contexts. Thus, the frequency information in a sin-
gle word embedding is limited. In contrast negative
words are likely to occur in negative contexts.

The nine output lexicons in Table 1 – each a list
of words annotated with predicted strength on one of
three properties – are available at www.cis.lmu.
de/˜sascha/Ultradense/.

τ
system all ∩

1 Amir et al. (2015) .626†

2 Hamdan et al. (2015) .621†

3 Zhang et al. (2015) .591†

4 Özdemir and Bergler (2015) .584†

5 Plotnikova et al. (2015) .577†

6 DENSIFIER .654† .650†
7 Sentiment140 .508† .538†

8 DENSIFIER, trial only .627†

Table 3: Results for Lexicon Creation. The first column gives

the correlation with the entire test lexicon of SemEval2015 10E,

the last column only on the intersection of our output lexicon

and Sentiment140. Of the 1315 words of task 10E, 985 and

1308 are covered by DENSIFIER and Sentiment140, respec-

tively. †: significantly worse than the best (bold) result in the

same column (α = .05, Fisher z-transformation).

4.3 Determining Association Strength

We also evaluate lexicon creation on SemEval2015
Task 10E. As before, the task is to predict the sen-
timent score of words/phrases. We use the trial
data of the task to tune the hyperparameter, αs =
.4. Out-of-vocabulary words were predicted as neu-
tral (7/1315). Table 3 shows that the lexicon com-
puted by DENSIFIER (line 5, Table 1) has a τ of
.654 (line 6, column all), significantly better than
all other systems, including the winner of SemEval
2015 (τ = .626, line 1). DENSIFIER also beats Sen-
timent140 (Mohammad et al., 2013), a widely used
semi-automatic sentiment lexicon. The last column
is τ on the intersection of DENSIFIER and Senti-
ment140. It shows that DENSIFIER again performs
significantly better than Sentiment140.

771

0 50 100 150 200 250 300
size of subspace

0

0.2

0.4

0.6

0.8

co
rr

el
at

io
n

Ultradense
PCA
Random

10 1 10 2 10 3 10 4

size of lexicon

0.3

0.4

0.5

0.6

0.7

co
rr

el
at

io
n

Sentiment
Concreteness

Figure 2: Kendall’s τ versus subspace size (top) and training resource size (bottom). See lines 6 & 8, Table 1, for train/test split.

4.4 Text Polarity Classification

We now show that ultradense embeddings decrease
model training times without any noticeable de-
crease in performance compared to the original em-
beddings. We evaluate on SemEval2015 Task 10B,
classification of Twitter tweets as positive, nega-
tive or neutral. We reimplement the linguistically-
informed convolutional neural network (lingCNN)
of Ebert et al. (2015) that has close to state-of-the-
art performance on the task. We do not use sentence-
based features to focus on the evaluation of the em-
beddings. We initialize the first layer of lingCNN,
the embedding layer, in three different ways: (i)
400-dimensional Twitter embeddings (Section 3);
(ii) 40-dimensional ultradense embeddings derived
from (i); (iii) 4-dimensional ultradense embeddings
derived from (i). The objective weighting isαs = .4,
optimized on the development set.

The embedding layer converts a sentence into a
matrix of word embeddings. We also add linguistic
features for words, such as sentiment lexicon scores.
The combination of embeddings and linguistic fea-
tures is the input for a convolution layer with filters
spanning 2-5 words (100 filters each). This is fol-

lowed by a max pooling layer, a rectifier nonlinear-
ity (Nair and Hinton, 2010) and a fully connected
softmax layer predicting the final label. The model
is trained with SGD using AdaGrad (Duchi et al.,
2011) and `2 regularization (λ = 5× 10−5). Learn-
ing rate is 0.01. Mini-batch size is 100.

We follow the official guidelines and use the Sem-
Eval2013 training and development sets as train-
ing set, the SemEval2013 test set as development
set and the SemEval2015 test set to report final
scores (Nakov et al., 2013; Rosenthal et al., 2015).
We report macro F1 of positive and negative classes
(the official SemEval evaluation metric) and accu-
racy over the three classes. Table 4 shows that 40-
dimensional ultradense embeddings perform almost
as well as the full 400-dimensional embeddings (no
significant difference according to sign test). Train-
ing time is shorter by a factor of 21 (85/4 exam-
ples/second). The 4-dimensional ultradense embed-
dings lead to only a small loss of 1.5% even though
the size of the embeddings is smaller by a factor of
100 (again not a significant drop). Training time is
shorter by a factor of 44 (178/4).

We perform the same experiment on CSFD, a

772

lang. embeddings #dim acc F1 ex./sec
en original 400 .666 .623 4
en DENSIFIER 40 .662 .620 85
en DENSIFIER 4 .646 .608 178
cz original 400 .803 .802 1
cz DENSIFIER 40 .803 .801 24
cz DENSIFIER 4 .771 .769 83

Table 4: Performance on Text Polarity Classification

Czech movie review dataset (Habernal et al., 2013),
to show the benefits of ultradense embeddings for a
low-resource language where only one rather small
lexicon is available. As original word embed-
dings we train new 400 dimensional embeddings
on a large Twitter corpus (3.3 ×109 tokens). We
use DENSIFIER to create 40 and 4 dimensional
embeddings out of these embeddings and SubLex
1.0 (Veselovská and Bojar, 2013). Word polarity
features are also taken from SubLex. A simple bi-
nary negation indicator is implemented by searching
for all tokens beginning with “ne”. Since that in-
cludes superlative forms having the prefix “nej”, we
remove them with the exception of common negated
words, such as “nejsi” – “you are not”. We randomly
split the 91,000 dataset instances into 90% train and
10% test and report accuracy and macro F1 score
over all three classes.

Table 4 shows that what we found for English is
also true for Czech. There is only a small perfor-
mance drop when using ultradense embeddings (not
significant for 40 dimensional embeddings) while
the speed improvement is substantial.

5 Parameter Analysis

In this section, we analyze two parameters: size of
ultradense subspace and size of lexicon resource.
We leave an evaluation of another parameter, the
size of the embedding training corpus, for future
work, but empirical results suggest that this corpus
should ideally have a size of several billion tokens.

5.1 Size of Subspace

With the exception of the two text polarity classifi-
cation experiments, all our subspaces have dimen-
sionality d∗ = 1. The question arises: does a one-
dimensional space perhaps have too low a capacity
to encode all relevant information and could we fur-
ther improve our results by increasing the dimen-

sionality of the subspace to values d∗ > 1? The
lexicon resources that we train and test on are all bi-
nary; thus, if we use values d∗ > 1, then we need to
map the subspace embeddings to a one-dimensional
scale for evaluation. We do this by training, on the
train part of the resource, a linear transformation
from the ultradense subspace to the one-dimensional
scale (e.g., to the sentiment scale).

Figure 2 compares different values of ds for
three different types of subspaces in this setup,
i.e., the setup in which the subspace representa-
tions are mapped via linear transformation to a one-
dimensional sentiment value: (i) Random: we take
the first ds dimensions of the original embeddings;
(ii) PCA: we compute a PCA and take the first ds

principal components; (iii) Ultradense subspace of
dimensionality ds. We use the word embeddings
and lexicon resources of line 6 in Table 1. For ran-
dom, the performance starts dropping when the sub-
space is smaller than 200 dimensions. For PCA, the
performance is relatively stable until the subspace
becomes smaller than 100. In contrast, ultradense
subspaces have almost identical performance for all
values of ds, even for ds = 1. This suggests that
a single dimension is sufficient to encode all senti-
ment information needed for sentiment lexicon cre-
ation. However, for other sentiment tasks more di-
mensions may be needed, e.g., for modeling differ-
ent emotional dimensions of polarity: fear, sadness,
anger etc.

An alternative approach to create a low-
dimensional space is to simply train low-
dimensional word2vec embeddings. The following
experiment suggests that this does not work very
well. We used word2vec to train 60-dimensional
twitter embeddings with the same settings as
on line 5 in Table 1. While the correlation for
400-dimensional embeddings shown in Table 1 is
.661, the correlation of 60-dimensional embeddings
is only .568. Thus, even though we show that the
information in 400-dimensional embeddings that
is relevant for sentiment can be condensed into a
single dimension, hundreds of dimensions seem to
be needed if we use word2vec to collect sentiment
information. If we run word2vec with a small
dimensionality, only a subset of available sentiment
information is “harvested” from the corpus.

773

po
si

tiv
e

ne
ga

tiv
e

abstract

concrete

friend

friendship

enemy
#friday

#monday

:)

:(
happy

#happy

#sad

#follower

#unfollow

child

childhood

brother

brotherhood

romance

#lovelove

hate

journey

roadtrip

democracy

dictatorship

dictator

president
money

pregnant

abortion

trophy

success

baby

robbery

sun

cappuccino

tea

chocolate

puke

hangover

hurt

pain

#starwars

#sotrue#storyofmylife

#thatawkwardmoment

#goaway

#wedding

#valentinesday #hiring

#proud

#hipster

#lol

vacation

homesick

coconut beach

slum

Figure 3: Illustration of EN-twitter output lexicon: DENSIFIER values are x coordinate (sentiment), y coordinate (concreteness)

and font size (frequency)

5.2 Size of Training Resource

Next, we analyze what size of training resource is
required to learn a good transformation Q. Labeled
resources covering many words may not be available
or suffer from lack of quality. We use the settings of
lines 6 (sentiment) and 7 (concreteness) in Table 1.
Figure 2 shows that a small training resource of 300
entries is sufficient for high performance. This sug-
gests that DENSIFIER can create a high quality out-
put lexicon for a new language by hand-labeling
only 300 words; and that a small, high-quality re-
source may be preferable to a large lower-quality re-
source (semi-automatic or out of domain).

To provide further evidence for this, we train
DENSIFIER on only the trial data of SemEval2015
task 10E. To convert the continuous trial data to bi-
nary −1 / 1 labels, we discard all words with sen-
timent values between −0.5 and 0.5 and round the
remaining values, giving us 39 positive and 38 neg-
ative training words. The resulting lexicon has τ =
.627 (Table 3, line 8).4 This is worse than τ =

4Here, we tune αs on train (equals trial data of Sem-
Eval2015 task 10E). This seems to work due to the different

.654 (line 6) for the setup in which we used sev-
eral large resources, but still better than all previ-
ous work. This indicates that DENSIFIER is espe-
cially suited for languages or domains for which lit-
tle training data is available.

6 Related Work

To the best of our knowledge, this paper is the first to
train an orthogonal transformation to reorder word
embedding dimensions into ultradense subspaces.
However, there is much prior work on postprocess-
ing word embeddings.

Faruqui et al. (2015) perform postprocessing
based on a semantic lexicon with the goal of fine-
tuning word embeddings. Their transformation is
not orthogonal and therefore does not preserve dis-
tances. They show that their approach optimizes
word embeddings for a given application, i.e., word
similarity, but also that it worsens them for other ap-
plications like detecting syntactic relations. Faruqui
et al. (2015)’s approach also does not have the bene-

objectives for training (maximize/minimize difference) and de-
velopment (correlation).

774

fit of ultradense embeddings, in particular the benefit
of increased efficiency.

In a tensor framework, Rothe and Schütze (2015)
transform the word embeddings to sense (synset)
embeddings. In their work, all embeddings live in
the same space whereas we explicitly want to change
the embedding space to create ultradense embed-
dings with several desirable properties.

Xing et al. (2015) restricted the work of Mikolov
et al. (2013) to an orthogonal transformation to en-
sure that normalized embeddings stay normalized.
This transformation is learned between two embed-
ding spaces of different languages to exploit simi-
larities. They normalized word embeddings in a first
step, something that did not improve our results.

As a reviewer pointed out, our method is also
related to Oriented PCA (Diamantaras and Kung,
1996). However in contrast to PCA a solution for
Oriented PCA is not orthogonal.

Sentiment lexicons are often created semi-
automatically, e.g., by extending manually labeled
seed sets of sentiment words or adding for each word
its syno-/antonyms. Alternatively, words frequently
cooccurring with a seed set of manually labeled sen-
timent words are added (Turney, 2002; Kiritchenko
et al., 2014). Heerschop et al. (2011) used Word-
Net together with a PageRank-based algorithm to
propagate the sentiment of the seed set to unknown
words. Scheible (2010) presented a semi-automatic
approach based on machine translation of sentiment
lexicons. The winning system of SemEval2015 10E
(Amir et al., 2015) was based on structured skip-
gram embeddings with 600 dimensions and support
vector regression with RBF kernels. Hamdan et al.
(2015), the second ranked team, used the average of
six sentiment lexicons as a final sentiment score, a
method that cannot be applied to low resource lan-
guages. We showed that the lexicons created by
DENSIFIER achieve better performance than other
semi-automatically created lexicons.

Tang et al. (2014b) train sentiment specific em-
beddings by extending Collobert & Weston’s model
and Tang et al. (2014a)’s skip-gram model. The
first model automatically labels tweets as posi-
tive/negative based on emoticons, a process that can-
not be easily transferred to other domains like news.
The second uses the Urban Dictionary to expand a
small list of 350 sentiment seeds. In our work, we

showed that a training resource of about the same
size is sufficient without an additional dictionary.
DENSIFIER differs from this work in that it does not
need a text corpus, but can transform existing, pub-
licly available word embeddings. DENSIFIER is in-
dependent of the embedding learning algorithm and
therefore extensible to other word embedding mod-
els like GloVe (Pennington et al., 2014), to phrase
embeddings (Yu and Dredze, 2015) and even to sen-
tence embeddings (Kiros et al., 2015).

7 Conclusion

We have introduced DENSIFIER, a method that is
trained to focus embeddings used for an application
to an ultradense subspace that contains the informa-
tion relevant for the application. In experiments on
SemEval, we demonstrate two benefits of the ultra-
dense subspace. (i) Information is preserved even
if we focus on a subspace that is smaller by a fac-
tor of 100 than the original space. This means that
unnecessary noisy information is removed from the
embeddings and robust learning without overfitting
is better supported. (ii) Since the subspace is 100
times smaller, models that use the embeddings as
their input representation can be trained more effi-
ciently and have a much smaller number of parame-
ters. The subspace can be learned with just 80−300
training examples, achieving state-of-the-art results
on lexicon creation.

We have shown in this paper that up to three or-
thogonal ultradense subspaces can be created. Many
training datasets can be restructured as sets of simi-
lar/dissimilar pairs. For instance, in part-of-speech
tasks verb/verb pairs would be similar, verb/noun
pairs dissimilar. Hence, our objective is widely ap-
plicable. In future work, we will explore the possi-
bility of factoring all information present in an em-
bedding into a dozen or so orthogonal subspaces.
This factorization would not change the information
embeddings contain, but it would make them more
compact for any given application, more meaningful
and more interpretable.

The nine large DENSIFIER lexicons shown in Ta-
ble 1 are publicly available.5

Acknowledgments. We gratefully acknowledge
the support of DFG: grant SCHU 2246/10-1.

5www.cis.lmu.de/˜sascha/Ultradense/

775

References
Amine Abdaoui, Jérôme Azé, Sandra Bringay, and Pascal

Poncelet. 2014. FEEL: French Extended Emotional
Lexicon: ISLRN: 041-639-484-224-2.

Silvio Amir, Ramón Astudillo, Wang Ling, Bruno Mar-
tins, Mario J. Silva, and Isabel Trancoso. 2015. Inesc-
id: A regression model for large scale twitter sentiment
lexicon induction. In Proceedings of SemEval.

Marc Brysbaert, Amy Beth Warriner, and Victor Kuper-
man. 2014. Concreteness ratings for 40 thousand gen-
erally known english word lemmas. Behavior research
methods, 46(3):904–911.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR, 12:2493–2537.

K. I. Diamantaras and S. Y. Kung. 1996. Principal Com-
ponent Neural Networks: Theory and Applications.
John Wiley & Sons, Inc.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12:2121–2159.

Sebastian Ebert, Ngoc Thang Vu, and Hinrich Schütze.
2015. A Linguistically Informed Convolutional Neu-
ral Network. In Proceedings of WASSA.

Ky Fan and Alan J Hoffman. 1955. Some metric in-
equalities in the space of matrices. volume 6, pages
111–116.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In Pro-
ceedings of NAACL.

Ivan Habernal, Tomáš Ptáček, and Josef Steinberger.
2013. Sentiment Analysis in Czech Social Media Us-
ing Supervised Machine Learning. In Proceedings of
WASSA.

Hussam Hamdan, Patrice Bellot, and Frederic Bechet.
2015. Lsislif: Feature extraction and label weight-
ing for sentiment analysis in twitter. In Proceedings
of SemEval.

Bas Heerschop, Alexander Hogenboom, and Flavius
Frasincar. 2011. Sentiment lexicon creation from lex-
ical resources. In Business Information Systems.

Minqing Hu and Bing Liu. 2004. Mining and Summa-
rizing Customer Reviews. In Proceedings of KDD.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of EMNLP.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Moham-
mad. 2014. Sentiment analysis of short informal texts.
JAIR, pages 723–762.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Pro-
ceedings of NIPS.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a Word-Emotion Association Lexicon. Com-
putational Intelligence, 29(3).

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the State-of-the-
Art in Sentiment Analysis of Tweets. In Proceedings
of SemEval.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Lin-
ear Units Improve Restricted Boltzmann Machines. In
Proceedings of ICML.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wilson.
2013. SemEval-2013 Task 2: Sentiment Analysis in
Twitter. In Proceedings of SemEval.

Canberk Özdemir and Sabine Bergler. 2015. Clac-
sentipipe: Semeval2015 subtasks 10 b,e, and task 11.
In Proceedings of SemEval.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of EMNLP.

Verónica Pérez-Rosas, Carmen Banea, and Rada Mihal-
cea. 2012. Learning Sentiment Lexicons in Spanish.
In Proceedings of LREC.

Nataliia Plotnikova, Micha Kohl, Kevin Volkert, Stefan
Evert, Andreas Lerner, Natalie Dykes, and Heiko Er-
mer. 2015. Klueless: Polarity classification and asso-
ciation. In Proceedings of SemEval.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M. Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. SemEval-2015 Task 10: Sentiment Anal-
ysis in Twitter. In Proceedings of SemEval.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings for
synsets and lexemes. In Proceedings of ACL.

Christian Scheible. 2010. Sentiment translation through
lexicon induction. In Proceedings of ACL, Student Re-
search Workshop.

Aliaksei Severyn and Alessandro Moschitti. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. In Proceed-
ings of SemEval.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014a. Building large-scale twitter-specific sen-
timent lexicon : A representation learning approach.
In Proceedings of COLING.

776

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014b. Learning Sentiment-Specific
Word Embedding for Twitter Sentiment Classification.
In Proceedings of ACL.

Peter D. Turney. 2002. Thumbs Up or Thumbs Down?
Semantic Orientation Applied to Unsupervised Classi-
fication of Reviews. In Proceedings of ACL.

Kateřina Veselovská and Ondřej Bojar. 2013. Czech
SubLex 1.0.

Ulli Waltinger. 2010. GermanPolarityClues: A Lexi-
cal Resource for German Sentiment Analysis. In Pro-
ceedings of LREC.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of HLT/EMNLP.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015.
Normalized word embedding and orthogonal trans-
form for bilingual word translation. In Proceedings
of NAACL.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. TACL, 3:227–242.

Zhihua Zhang, Guoshun Wu, and Man Lan. 2015. Ecnu:
Multi-level sentiment analysis on twitter using tradi-
tional linguistic features and word embedding features.
In Proceedings of SemEval.

777

Proceedings of NAACL-HLT 2016, pages 778–788,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Separating Actor-View from Speaker-View Opinion Expressions using
Linguistic Features

Michael Wiegand and Marc Schulder
Spoken Language Systems

Saarland University
D-66123 Saarbrücken, Germany

michael.wiegand@lsv.uni-saarland.de

marc.schulder@lsv.uni-saarland.de

Josef Ruppenhofer
Dept. of Information Science

and Language Technology
Hildesheim University

D-31141 Hildesheim, Germany
ruppenho@uni-hildesheim.de

Abstract

We examine different features and classifiers
for the categorization of opinion words into
actor and speaker view. To our knowledge,
this is the first comprehensive work to address
sentiment views on the word level taking into
consideration opinion verbs, nouns and adjec-
tives. We consider many high-level features
requiring only few labeled training data. A de-
tailed feature analysis produces linguistic in-
sights into the nature of sentiment views. We
also examine how far global constraints be-
tween different opinion words help to increase
classification performance. Finally, we show
that our (prior) word-level annotation corre-
lates with contextual sentiment views.

1 Introduction

While there has been much research in sentiment
analysis on the tasks of subjectivity detection and
polarity classification, there has been less work on
other types of categorizations that can be imposed
upon subjective expressions.

In this paper, we focus on the views that an opin-
ion expression evokes. By views, we understand the
perspective of the holder of some opinion. We dis-
tinguish between the two most common types: ex-
pressions conveying sentiment of the entities partic-
ipating in the event denoted by the opinion word,
referred to as actor views (e.g. disappointed in (1)
or praised in (2)), and expressions conveying sen-
timent of the speaker of the utterance, referred to as
speaker views (e.g. excelled in (3) or wasted in (4)).

(1) Party members were disappointedactor at the election outcome.

(2) All representatives praisedactor the final agreement.
(3) Sarah excelledspeaker in virtually every subject.
(4) The government wastedspeaker a lot of money.

The distinction between those categories is relevant
for related tasks in sentiment analysis, most impor-
tantly, opinion holder and target extraction. This has
already been demonstrated for verbs (Wiegand and
Ruppenhofer, 2015). For example, even though the
noun Peter has the same grammatical relation to the
opinion verb in (5) & (6), in the former sentence it
is a holder but in the latter it is a target. Similar
cases can be observed for opinion nouns (7) & (8)
and opinion adjectives (9) & (10). Only the knowl-
edge of sentiment views helps us to assign opinion
roles correctly.

(5) [Peter]Holder criticizesverbactor Mary.
(6) [Peter]Target cheatedverb

speaker in the exam.
(7) [Peter’s]Holder beliefnoun

actor is that all people should be treated
equally.

(8) [Peter’s]Target misbehaviournoun
speaker is unbearable.

(9) [Peter]Holder is disappointedadj
actor .

(10) [Peter]Target is intelligentadjspeaker .

While the distinction of sentiment views is not new,
we put a different emphasis on this task. Our focus
is on the prior meaning that opinion words evoke.
Hence we consider this as a word-level task. Every
opinion word from a sentiment lexicon is to be cat-
egorized as conveying either an actor or a speaker
view. Our aim is to find comprehensive methods to
automatically categorize opinion words of various
parts of speech (verbs, nouns, adjectives). The re-
sulting lexical resources are indispensable for open-
domain categorization. Previous work focused on
contextual classification of sentiment views (Johans-

778

son and Moschitti, 2013). Wiegand and Ruppen-
hofer (2015) showed that while prior lexical knowl-
edge of sentiment views is effective in transferring
opinion role extractors to other domains, this does
not apply to contextual classifiers.

In this work, we focus on linguistic properties for
predicting sentiment views. We examine in how far
morphological information can be used. Distribu-
tional and syntactic information is also considered.
In terms of lexical resources, we examine WordNet
and FrameNet. We show that information from a
sentiment lexicon can give some additional clues.

In order to combine the different features to pre-
dict the sentiment views evoked by opinion words
we employ supervised classification. As a classi-
fier, we use Markov Logic Networks (Richardson
and Matthew, 2006) since they do not only allow us
to define features for instances (i.e. opinion words)
but also to formulate global constraints between dif-
ferent instances. The latter cannot be expressed by
traditional classifiers (e.g. SVM). We examine two
types of constraints: consistency between instances
that are distributionally similar and consistency be-
tween morphologically related instances.

Finally, we also examine the relationship between
prior lexical information (i.e. our approach) and
contextual annotation in the MPQA corpus.

2 Related Work

The annotation scheme of the MPQA corpus (Wiebe
et al., 2005) was the first work to address the dis-
tinction between different sentiment views. The two
sentiment views are referred to as direct subjectivity
(=actor view) and expressive subjectivity (=speaker
view). In subsequent research, some approaches
have been proposed to distinguish these two cate-
gories in the MPQA corpus. The most extensive
work is Johansson and Moschitti (2013). Since
MPQA provides annotation regarding sentiment in
context, sentiment views are exclusively considered
in contextual classification. The fact that it is the
opinion words that convey those views, as we do in
this paper, is not addressed. Unlike in this paper, the
focus of Johansson and Moschitti (2013) is also on
optimizing a machine-learning classifier, in particu-
lar to model the interaction between different sub-
jective phrases within the same sentence.

Actor View Speaker View
Part of Speech Freq Perc Freq Perc
adjective 223 8.9 2279 91.1
noun 487 29.1 1189 70.9
verb 618 52.6 557 47.4

Table 1: Distribution of the different sentiment views.

Some of the lexical resources we examine, i.e.
WordNet (§4.1) and FrameNet (§4.2), have also
been employed in Breck et al. (2007) who, like Jo-
hansson and Moschitti (2013), also deal with con-
textual (sentiment) classification. However, the au-
thors do not examine in how far these individual re-
sources separate speaker and actor views.

Maks and Vossen (2012b) link sentiment views to
opinion words as part of a lexicon model for senti-
ment analysis. Maks and Vossen (2012a) also exam-
ine a corpus-driven method to induce opinion words
for the different sentiment views. The authors, how-
ever, conclude that their approach, which sees news
articles as a source for actor views and news com-
ments as a source for speaker views, is not suffi-
ciently effective.

The work most closely related to our research is
Wiegand and Ruppenhofer (2015). Opinion words
are categorized according to their sentiment view.
Our work substantially goes beyond that previous
research: Firstly, Wiegand and Ruppenhofer (2015)
only consider distributional similarity for inducing
opinion views. In this work, we consider various
linguistic features and also compare this with distri-
butional information. Secondly, Wiegand and Rup-
penhofer (2015) only consider opinion verbs, while
we also consider opinion nouns and opinion adjec-
tives.

Wiegand and Ruppenhofer (2015) distinguish be-
tween two types of actor views, agent views and pa-
tient views. The former take their opinion holder as
an agent and their target as a patient (typical verbs
are criticize, love, believe), while the latter align
their roles inversely (typical verbs are disappoint,
please, interest). Since this distinction between ac-
tor views does not exist among nouns or adjectives,
we consider one merged (actor-view) category for
all three parts of speech in this paper.

779

3 Data

We manually annotated all verbs, nouns and adjec-
tives contained in the Subjectivity Lexicon (Wilson
et al., 2005) for view type. The dataset comprises
2502 adjectives, 1676 nouns and 1175 verbs. Since
our new dataset1 is an extension of the dataset from
Wiegand and Ruppenhofer (2015), we adhere to the
annotation process proposed in that paper. That is,
the basis of the annotation were online dictionaries
(e.g. Macmillan Dictionary) which provide both a
word definition and example sentences. Each word
is either labeled as primarily conveying an actor or
a speaker view. (Our categorization is binary.) On a
subset of 250 words for each part of speech, we com-
puted an interannotation agreement (Cohen’s κ) of
61.9, 71.9 and 60.1 for verbs, nouns and adjectives,
respectively. This agreement can be considered sub-
stantial (Landis and Koch, 1977). Table 1 shows the
distribution of the different sentiment views among
the different parts of speech.

The expressions comprising our gold standard do
not represent anywhere near the full set of English
subjective words with these parts of speech. Other-
wise, an automatic categorization would not be nec-
essary in the presence of our gold standard. The
classification approach that we propose in this pa-
per, which works well with few labeled training
data, would also be helpful for categorizing senti-
ment views on much larger sets of subjective expres-
sions.

4 Feature Design

4.1 WordNet

WordNet (Miller et al., 1990) is the largest lexical
ontology for the English language. It is organized in
synsets. However, we want to assign categories to
words. Due to the lack of robust word sense disam-
biguation, in order to use this resource, we consider
the union of synsets in which a word with the same
part of speech to be categorized is contained.

4.1.1 Gloss Information (GLOSS)
One common way to harness WordNet is by tak-

ing into account its glosses. A gloss represents some

1available at: www.coli.uni-saarland.de/

˜miwieg/naacl_2016_views_data.tgz

explanatory text for each synset, usually some defi-
nition of the concept. We use the words from those
glosses as features in a supervised classifier. We as-
sume that opinion words conveying the same senti-
ment view also contain similar glosses.

Glosses are a special type of feature. It is basically
a bag-of-words feature set, i.e. a low-level feature
set, which is known to be sparse yet effective when
sufficient training data are used. All the other fea-
tures presented in this paper are high-level features,
i.e. more frequently occurring features already being
effective if only few labeled data are used. Glosses
are one of the most frequently used features for lexi-
con induction tasks in sentiment analysis (Esuli and
Sebastiani, 2005; Andreevskaia and Bergler, 2006;
Gyamfi et al., 2009; Choi and Wiebe, 2014; Kang
et al., 2014). We will consider them as a baseline,
showing that our proposed high-level features are
more suitable for our task.

4.1.2 Lexicographer Files (LEX)

Lexicographer files organize the synset inventory
of WordNet into a coarse-grained set of semantic
categories. In total, there are 45 categories for the
three parts of speech we consider.2 The advantage
of such a coarse-grained inventory is that it should
require only few labeled training data in supervised
classification.

4.2 FrameNet (FN)

FrameNet (Baker et al., 1998) is a semantic resource
that has been found useful for subtasks of sentiment
analysis related to ours, i.e. opinion holder/target
extraction (Bethard et al., 2004; Kim and Hovy,
2006). It includes a large set of more than 1, 200
semantic frames that comprise words with similar
semantic behaviour. As a feature we use the frame-
membership of the opinion words, assuming that
different frames are associated with different senti-
ment views. We use FrameNet version 1.5.

4.3 Subcategorization Frames (SUB)

Subcategorization frames could also be predictive.
For example, actor views demand the presence of an

2For adjectives there exist only two categories. These are too
general for our task. Instead we use the lexicographer files of
all nouns and verbs occurring in the glosses of those adjectives.

780

Type Affixes Used
Sentiment -able, dis-, mis-, over-, under-, -(i)sm
Neutral adj → noun: -cy, -ity, -ness; adj/noun → verb: -ize;

verb → adj: -ed, -ing; verb → noun: -ion, -ing

Table 2: Affixes used as features.

explicit entity that utters some opinion, i.e. the opin-
ion holder. For a speaker view, this entity remains
implicit. This should be reflected in the argument
valence of the respective opinion words. We employ
the subcategorization frames encoded in COMLEX
(Grishman et al., 1994) for verbs and adjectives, and
NOMLEX (Macleod et al., 1998) for nouns.

4.4 Morphological Information (MORPH)

As morphological information, we consider deriva-
tional affixes. Table 2 lists our choice of prefixes
and suffixes. We only included affixes that occurred
at least 10 times in our dataset.

We distinguish between sentiment and neutral af-
fixes. The sentiment affixes are affixes which, due to
their meaning, suggest a sentiment view. For exam-
ple, mis- as in misinterpret indicates that the speaker
believes that a given interpretation is incorrect. -able
as in admirable has the meaning of capable of which
corresponds to an evaluation of the speaker. We
could only find sentiment affixes for speaker views.

The neutral affixes that we use specify which
kinds of bases they can combine with. For example,
the noun suffix -ness as in foolishness indicates that
the word originates from an adjective (i.e. foolish).
Even though this knowledge is syntactic, it may give
us some clue as to what sentiment view an opinion
word conveys. Table 1 shows that adjectives pre-
dominantly carry speaker views. Therefore, a noun
ending in -ness (thus originating from an adjective)
may be similarly likely to convey a speaker view.

4.5 Context Patterns (PATT)

Wiegand and Ruppenhofer (2015) proposed patterns
for actor-view and speaker-view verbs. For actor
views (PATT actor), they rely on prototypical opin-
ion holders (protoOHs), i.e. common nouns, such
as opponents or critics, that act like opinion hold-
ers (Wiegand and Klakow, 2011). If a verb often
co-occurs with an opinion holder – Wiegand and
Ruppenhofer (2015) take protoOHs as a proxy –
then this is a good indicator of being an actor view

(speaker views, per definition, do not have any opin-
ion holder as their dependent). ProtoOHs can simi-
larly be used to extract actor-view nouns and adjec-
tives. For speaker views (PATT speaker), Wiegand
and Ruppenhofer introduced reproach patterns, e.g.
blamed for X as in (11). These patterns can also be
applied to nouns (12) but not to adjectives. For the
latter, we did not find any pattern. The patterns were
applied to the North American News Text Corpus
(LDC95T21).

(11) The UN was blamed for misinterpretingverb climate data.
(12) The UN was blamed for the misinterpretationnoun of climate

data.

4.6 Polarity Information (POLAR)

We also investigate in how far polarity information
correlates with sentiment views. This information is
obtained from the Subjectivity Lexicon (Wilson et
al., 2005). Each opinion word is assigned a polarity
type, i.e. positive, negative or neutral.

5 Markov Logic Networks and Global
Constraints

Markov Logic Networks (MLNs) are a supervised
classifier combining first-order logic with probabili-
ties. MLNs are a set of pairs (Fi, wi) where Fi is a
first-order logic formula and wi a real valued weight
associated with Fi. They build a template for con-
structing a Markov network given a set of constants
C . The probability distribution that is estimated is a
log-linear model

P (X = x) =
1

Z
exp

(

k
∑

i=1

wini(x)

)

(1)

where ni(x) is the number of groundings in Fi in x
and Z is a normalization constant. As an implemen-
tation, we use thebeast (Riedel, 2008).

We employ MLNs since they allow us (in addi-
tion to including ordinary features, i.e. §4.1-§4.6)
to formulate constraints holding between individual
instances. Such global constraints have been effec-
tively exploited with MLNs in related tasks, such
as semantic-role labeling (Meza-Ruiz and Riedel,
2009), anaphora resolution (Hou et al., 2013), ques-
tion answering (Khot et al., 2015) and discourse-
based sentiment analysis (Zirn et al., 2011). We
formulate three such constraints. Two of them are

781

Abbrev. Constraint as Logic Formula
w2v ∀x[∀y[∀z[∀u[[Opin.Word(x)∧Opin.Word(y)∧Word2Vec-Similar(x, y)∧ViewOf (z, x)∧ViewOf (u, y)] → (z==u)]]]]
lin ∀x[∀y[∀z[∀u[[Opin.Word(x)∧Opin.Word(y)∧DekangLin-Similar(x, y)∧ViewOf (z, x)∧ViewOf (u, y)] → (z==u)]]]]
morph ∀x[∀y[∀z[∀u[[Opin.Word(x)∧Opin.Word(y)∧MorphRelated (x, y)∧ViewOf (z, x)∧ViewOf (u, y)] → (z==u)]]]]

Table 3: Global constraints enforcing sentiment view consistency as incorporated in MLNs.

based on the two most effective types of word simi-
larities from Wiegand and Ruppenhofer (2015). The
first word similarity measures the cosine of word
vectors representing opinion words produced by
Word2Vec-embeddings (Mikolov et al., 2013). The
second word similarity is represented by the met-
ric of Lin (1998), which exploits the rich set of
dependency-relation labels in the context of distri-
butional similarity.3 The third type of consistency
considers morphological relatedness by which we
understand two words deriving from two different
parts of speech but belonging to the same lexical root
and therefore carrying similar meaning (e.g. happi-
ness.noun and happy.adj). We obtain that type of
relatedness from WordNet (Miller et al., 1990).

Table 3 lists our constraints. They state that if
for two opinion words some similarity or morpho-
logical relatedness holds, then these words should
convey the same sentiment view. For the two types
of word-similarity consistencies we considered the
top 3 most similar words for each noun, and the top
5 most similar words for each verb and adjective.
These values were determined empirically. For the
generation of word vectors, we used 200 dimensions
along the default configuration of Word2Vec. Word
similarity and word vectors were generated from the
North American News Text Corpus.

6 Experiments

For our evaluation of supervised classification, we
focus on a setting in which only few labeled training
data are available. We sampled from our gold stan-
dard 20% of the labeled training data. The remain-
ing 80% are used as test data. This process was re-
peated five times. We report performance averaged
over these five (test) samples. We focus on small
training sizes since we think that for the given lex-
icon induction task, we should pursue an approach
that requires little human annotation. Moreover, we

3WordNet is not a good option for measuring similarity, as
many synonyms of the same synset have different sentiment
views, e.g. comment.noun (actor) vs. gossip.noun (speaker).

show that our approach yields good results despite
the absence of large amounts of training data.

6.1 High-Precision Features
Before we evaluate supervised classification, we
look for each part of speech at the 10 features with
the highest precision (for each of the two views) as
displayed in Table 4. This provides a good overview
of the quality of different features. Since we do
not have an equal class distribution, we also list
a baseline-precision that always predicts the senti-
ment view under consideration. Since this is just
an exploratory experiment, we measure precision on
the entire dataset. We exclude the WordNet glosses
(§4.1.1) from our analysis as we found individual
words from glosses too difficult to interpret.

Table 4 shows that features from all feature
groups (§4.1-§4.6) achieve a high precision. Sub-
categorization features (§4.3) are very predictive for
verbs conveying actor views. The frame types that
are predictive mostly have in common that one of
their arguments is some proposition (13)-(17). This
is also true for adjectives (18).
(13) PP-HOW-TO-INF: They agreeactor [with him]PP [how to solve

the problem]HOW -TO-INF .
(14) NP-TOBE: They believeactor [him]NP [to be honest]TOBE .
(15) NP-ADJP-PRED: They consideractor [him]NP

[foolish]ADJP-PRED .
(16) NP-TO-INF: He allowedactor [her]NP [to go]TO-INF .
(17) S: They thoughtactor [he was always late]S .
(18) THAT-S-ADJ: They were awareactor [that he was

sick]THAT-S-ADJ .

FrameNet-frames (§4.2) achieve high precision; but
the only frame with good coverage is Stimulus-focus
for adjectives conveying a speaker view.

There are fewer lexicographer files (§4.1.2) than
FrameNet-frames in Table 4, but some of them
have high coverage, most notably LEX person for
speaker-view nouns and LEX feeling for actor-view
nouns. Given the strength of LEX person, we con-
clude that most opinion nouns denoting persons tend
to be speaker views (e.g. idiot or loser). There are
also several predictive lexicographer files whose la-
bel seems fairly unintuitive, e.g. LEX weather for

782

Speaker View
adj (always-predict-this-view prec: 91.1) noun (always-predict-this-view prec: 70.9) verb (always-predict-this-view prec: 47.4)
Feature Prec Freq Feature Prec Freq Feature Prec Freq
SUB EXTRAP-FOR-TO-INF 100.0 104 FN Killing 100.0 11 MORPH mis- 92.3 13
FN Desirability 100.0 48 LEX animal 91.7 24 LEX weather 84.2 19
FN Expertise 100.0 31 FN Catastrophe 90.9 11 FN Prevarication 81.8 11
FN Morality-evaluation 100.0 30 LEX body 90.9 11 MORPH over- 78.6 14
FN Candidness 100.0 20 MORPH -cy 90.6 32 FN Killing 76.9 13
FN Usefulness 100.0 19 MORPH -ity 90.2 132 FN Self-motion 75.0 16
FN Praiseworthiness 100.0 15 MORPH mis- 90.0 20 MORPH -ize 73.5 200
FN Stimulus-focus 99.1 113 LEX substance 87.0 23 LEX change 64.8 270
LEX plant 98.7 79 LEX food 84.2 19 PATT speaker 62.7 252
MORPH -able 98.3 172 LEX person 83.5 267 FN Communication-noise 62.5 16

Actor View
adj (always-predict-this-view prec: 8.9) noun (always-predict-this-view prec: 29.1) verb (always-predict-this-view prec: 52.6)
Feature Prec Freq Feature Prec Freq Feature Prec Freq
FN Experiencer-focus 81.8 11 FN Emotion-directed 95.1 41 FN Experiencer-focus 100.0 21
SUB THAT-S-ADJ 75.9 54 FN Experiencer-focus 92.9 14 SUB PP-HOW-TO-INF 100.0 13
FN Emotion-directed 74.6 67 PATT actor 83.0 53 SUB NP-TOBE 100.0 12
SUB ADJ-TO-INF 38.7 31 FN Judgment 73.3 15 SUB NP-ADVP-PRED 100.0 11
MORPH -ed 29.2 288 LEX feeling 65.7 268 SUB NP-ADJP-PRED 94.4 18
PATT actor 26.3 335 FN Medical-conditions 61.5 13 FN Judgment-direct-address 92.8 14
MORPH dis- 25.4 71 FN Hostile-encounter 58.3 12 SUB NP-TO-NP 92.3 13
LEX weather 22.2 18 SUB NOM-INTRANS-RECIP 57.1 14 SUB NP-TO-INF 91.7 12
LEX feeling 18.1 695 POLAR neutral 54.8 93 SUB NP-ING-OC 90.9 11
SUB ADJ-PP 17.2 548 LEX relation 53.8 26 SUB S 90.4 52

Table 4: High-precision features (minimal frequency > 10).

speaker-view verbs or LEX animal for speaker-view
nouns. These are not errors, however. They actually
concern words that convey opinions in metaphorical
usage. For instance, cloud (a typical weather verb)
conveys a speaker view if it is used metaphorically
as in The stroke clouded memories of her youth.
Nouns denoting animals, such as bull and dragon,
convey a speaker view if they are meant to describe
a human being (She is a real dragon!). Other noun
classes follow this pattern, e.g. body (parts) with
terms such as backbone or bum.

Simple morphological features (§4.4) also seem
to be meaningful. In particular, the noun suffix -ity
(occurring 132 times in our set of opinion nouns) is
indicative of speaker views. The relevant nouns are
derived from adjectives (Table 2) and the set of ad-
jectives predominantly conveys speaker views (Ta-
ble 1).

Even plain polarity information (§4.6) has some
significance. Neutral sentiment verbs often convey
an actor view, such as opinion, utterance or view.

The fact that the pattern-feature (§4.5) also ap-
pears on the list of actor-view nouns and adjectives
suggests that it is not only effective for verbs as
shown in Wiegand and Ruppenhofer (2015) but also
for nouns and adjectives.

Classifier(s) Description
graph graph-based induction approach as proposed in

Wiegand and Ruppenhofer (2015)
mlnlocal Markov Logic Networks with only local features,

i.e. features from §4
svm Support Vector Machines using exactly the same

features as mlnlocal

mlnw2v ,
mlnlin ,
mlnmorph

Markov Logic Networks with global constraints
from Table 3

mln+graph Markov Logic Networks that uses the output of
graph as a further feature

Table 5: Description of the different classifiers.

Finally, we performed an ablation experiment in
which we trained a classifier with all of these fea-
tures in MLNs and compared it to another classifier
in which each of the feature groups (POLAR, LEX,
MORPH etc.) was removed, one by one. We com-
puted statistical significance (t-test), testing whether
the classifier trained on a feature set in which one
feature group was removed performs significantly
worse than a classifier with all features. We found
that, at a significance level p < 0.05, this is always
the case, with the exception of LEX (here, the sig-
nificance level is p = 0.0552). This is proof that
features from most feature groups contain informa-
tion that is to some extent complementary.

783

6.2 Classification
Table 5 lists the different types of classifiers we
consider. As one baseline, we consider the graph-
based approach graph from Wiegand and Ruppen-
hofer (2015) which starts with the seeds gained by
the surface patterns (§4.5)4 and then runs label prop-
agation (Talukdar et al., 2008) based on a distri-
butional similarity graph (using the metric by Lin
(1998)). graph is the only classifier not depending
on manually labeled training data. So far, it has only
been examined on verbs. As a further baseline, we
consider our features from §4 on an SVM. (We use
SVMlight (Joachims, 1999).) It should be consid-
ered as a state-of-the-art classifier that, unlike mln,
cannot incorporate global constraints (Table 3).

Table 6 shows the results. Both graph and svm
are significantly outperformed. graph performs bet-
ter on verbs (in terms of F-score) than on nouns and
adjectives. It is also for these parts of speech that
the global constraints w2v and lin notably improve
the performance of mln. Global constraints have a
lesser impact on verbs. However, a combination of
global constraints is effective, as well as a combi-
nation of graph and mln. The best overall results
are obtained by the combination of mln with global
constraints and graph. These results suggest that our
new features (including global constraints) are use-
ful and complementary to previous work, i.e. graph.

Figure 1 compares the feature derived from Word-
Net glosses (§4.1.1), a standard feature for lexicon
induction, with the remaining features we use on a
learning curve. This feature performs poorly if only
few labeled training data are used. Our proposed
feature set is consistently better. The combination
of glosses and our proposed features is only helpful
if many labeled training instances are used (> 60%).

6.3 Prior Labels and Context Labels
So far, we have considered sentiment views as prior
information of words. Now we relate those labels to
sentiment views annotated in context. For that, we
consider the view annotation in the MPQA corpus.

Table 7 shows that prior labels of opinion words
largely coincide with the respective context labels.

4Since the surface patterns for speaker views from Wiegand
and Ruppenhofer (2015) cannot be applied to adjectives (§4.5),
we instead used the effective suffix feature MORPH -able (Ta-
ble 4) for generating speaker-view seeds of opinion adjectives.

 60

 65

 70

 75

 80

 10 20 30 40 50 60 70

F
-s

co
re

Percentage of Labeled Data

MLNs with all features
MLNs with all features except WordNet glosses

MLNs with only WordNet glosses

Figure 1: WordNet gloss feature vs. the remaining features
(results averaged over all three parts of speech).

context
verbs nouns adjectives

prior actor speaker actor speaker actor speaker
actor 2926 834 1671 802 269 81
speaker 119 810 151 2150 354 3489

Table 7: Comparison of prior labels and context labels.

This proves that it is a valid approach to compile lex-
icons with sentiment views, which can subsequently
be used in contextual sentiment-view classification.

However, in Table 7, we still observe mismatches
between prior and contextual labels. This mostly
concerns actor-view words in speaker-view con-
texts. We examine this mismatch more closely on
nouns (highlighted in gray) where this confusion is
greatest. In MPQA, most subjective expressions that
are annotated are sequences of tokens rather than
individual words. We found that the largest set of
disagreements derives from the nature of MPQA’s
contextual annotation. The annotators were asked to
label spans that expressed opinions that are salient
in the document context. Often these are larger
spans composed of multiple smaller subjective ex-
pressions. The component expressions were not
kept track of because the opinion expressed by the
larger span was more salient on the document level.

For example, the annotation of the subjective
phrase this must be a warning as a speaker view
(containing the actor noun warning), in our opin-
ion is primarily triggered by the epistemic modal
verb must, which signals that the speaker feels com-
pelled to come to the conclusion that this is a warn-

784

graph
graph svm mlnlocal mlnmorph mlnw2v mlnlin mlnmorph+lin mlnmorph+w2v+lin +mlnlocal +mlnmorph+w2v+lin

adj F1 53.1 54.2 69.0◦ 69.0◦ 71.1◦ 72.3◦•⋄ 73.0◦•⋄† 70.8◦ 70.4◦•⋄ 73.6◦•⋄
Acc 91.4•⋄ 91.6• 89.8 89.7 92.8◦•⋄ 93.3◦•⋄† 93.3◦•⋄† 93.3◦•⋄† 90.6 93.6◦•⋄†

noun F1 66.1 69.6 72.4◦ 73.3◦• 74.7◦•⋄‡ 73.9◦• 75.3◦•⋄‡ 75.4◦•⋄‡ 73.9◦• 76.9◦•⋄†‡
Acc 70.7 78.2 77.7 79.0• 80.2◦•⋄ 79.9◦•⋄ 81.1◦•⋄†‡ 81.6◦•⋄†‡ 78.7◦ 82.2◦•⋄†‡

verb F1 71.0◦•⋄†‡ 69.6 69.1 69.6 69.6 69.8 70.2• 70.4• 71.8◦•⋄†‡ 72.7◦•⋄†‡∗
Acc 71.1◦•⋄†‡ 69.7 69.2 69.6 69.7 69.9 70.3• 70.5• 71.9◦•⋄†‡ 72.8◦•⋄†‡∗

statistical significance testing (paired t-test, significance level p < 0.05) ◦: better than svm; •: better than mlnlocal ; ⋄: better than mlnmorph ; †:
better than mlnw2v ; ‡: better than mlnlin ; ∗: better than graph (measured for verbs only)

Table 6: Comparison of different classifiers (for training, 20% of the labeled data were sampled; the test data are the remaining

80%; this procedure is repeated 5 times; results represent averages over the 5 test samples).

ing. The actor view of warning is not invalidated by
this: it is just backgrounded relative to the speaker
view introduced by the modal verb, which, going in
parallel with its greater prominence, is also the syn-
tactic governor of the verb phrase be a warning, of
which the actor view warning is part. Our evalua-
tion scheme might thus detect a match between our
prior annotation for the modal must and the MPQA’s
larger phrase. But since the less prominent actor
view was not picked up by the MPQA annotators,
our prior annotation has no counterpart. Copula con-
structions similarly represent instances, where the
speaker performs a speech act (e.g. a warning) by
using the copular construction (e.g. This is a warn-
ing). Here, the speaker is identical to the actor of the
warning. Practically, it makes no difference whether
we call such a case speaker or actor view, as long as
we can recognize that the actor is the speaker.

In order to show that the annotation of MPQA fo-
cuses on the more salient opinions and thus senti-
ment views as conveyed by less prominent expres-
sions are not considered (and largely account for the
mismatches in Table 7), we designed a supervised
classifier whose features indicate whether a mention
of an actor-view expression in a subjective phrase is
salient. The features are displayed in Table 8.

The key salience features regarding speaker
views, i.e. modal and copular, were already dis-
cussed above. Features indicating the salience of
the actor-view word address the subcategorization
frame of the word. Cases in which there is a per-
son as some subcategorized argument (personArg)
often imply an opinion holder. The presence of
an (explicit) opinion holder indicates an actor view.
A proposition as argument of an opinion word is
typically the proposition of some opinion holder

(propArg) and not of the speaker of the utterance.

For this experiment we take the detection of sub-
jective phrases as given. (Only the information
regarding contextual sentiment views is withheld.)
This allows us to define features that explicitly look
into the entire text span constituting the subjective
phrase in which each opinion word is contained. The
two length features (shortPhrase and longPhrase)
make use of this information. If a phrase is long,
chances are high that there are other more salient
opinion words contained than the one under con-
sideration. In short subjective phrases, the pres-
ence of other salient words in it is unlikely. This
is supported by the fact that the average length of
subjective phrases with a speaker view (in which
an actor-view opinion noun occurs) are 5.4 tokens
while actor-view phrases (that include an actor-view
noun) only have an average length of 2.3 tokens.

The majority features (majActor and majSpeaker)
also exploit the information of the entire subjective
phrase. We argue that the sentiment view of the
phrase is likely to coincide with the view of the ma-
jority of the opinion words contained in that phrase.

Table 9 shows how these features separate the
mentions of an actor-view opinion noun into contex-
tual actor views and speaker views. We report clas-
sification using an SVM (10-fold cross-validation).
With only those few features, we largely outperform
the baseline always classifying an instance as an ac-
tor view (i.e. the majority class). Table 10 displays
the precision of each individual feature, supporting
that these features are effective. These experiments
show that there is indeed a systematic relationship
between salience and contextual sentiment views.

785

Abbreviation Features Indicating Contextual ACTOR View
personArg a person is argument of opinion word; persons may

indicate opinion holders; (explicit) opinion holders
indicate absence of speaker view (his warning of a
catastrophe)

propArg a proposition is argument of the opinion word
(warning that this fish is not fit to eat); propositions
are typically arguments of actor-views words

lightVerb opinion word is governed by light verb (they is-
sued/gave a warning), light verbs indicate the pres-
ence of an actor outside of the maximal phrase of a
subjective noun

shortPhrase opinion word is part of short subjective phrase (< 3
tokens); short phrases make embedding of another
more salient (speaker-view) word unlikely

majActor majority of other opinion words in subjective phrase
are actor-view words

Abbreviation Features Indicating Contextual SPEAKER View
copula opinion word is part of copula construction (this is

a warning) – see discussion in §6.3
modal opinion word is in modal scope (this must be a

warning) – see discussion in §6.3
emphasis opinion word is accompanied by emphatic cue, e.g.

!, quotation (they gave him a “warning”), (rhetoric)
question; emphases typically originate from speaker

precededByAs preceded by as (this was regarded [as an urgent
warning]as-phrase), as-phrase typically occurs as
an argument of categorization predicates regard,
view, see, consider etc. – with these predicates an
as-phrase often conveys a speaker view, especially
since the predicates often have no explicit holder

longPhrase opinion word is part of long subjective phrase (> 4
tokens); long phrases make embedding of another
more salient (speaker-view) word likely

majSpeaker majority of other opinion words in subjective phrase
are speaker-view words

Table 8: Salience features for detecting contextual views (given
a mention of a prior actor-view opinion noun).

Majority Class. Proposed Features
Acc 65.9 F1 39.7 Acc 78.7 F1 73.5

Table 9: Contextual classification of opinion nouns with a prior

actor view (using feature set from Table 8).

Actor View shortPhrase: 88.5; lightVerb: 85.8; personArg: 81.0;
propArg: 74.6; majActor: 72.9

Speaker View precededByAs: 90.9; majSpeaker: 90.0; modal:
79.6; longPhrase: 73.3; copula: 61.9; emphasis: 57.5

Table 10: Precision of features from Table 8.

7 Conclusion

We examined different types of features and classi-
fiers for the categorization of sentiment views that
opinion words convey. We found that many features
are effective for this task. A detailed feature anal-
ysis provided linguistic insights into the nature of
sentiment views. As a classifier, MLNs performed
best. This classifier has the advantage that global
constraints can be incorporated, which raises classi-
fication performance on nouns and adjectives. Our
approach outperforms a previously proposed graph-
based approach evaluated on opinion verbs. We also
demonstrated that prior sentiment views correlate
with contextual sentiment views on MPQA.

Acknowledgements

The authors would like to thank Stephanie Köser for
annotating the dataset presented in this paper. We are
also grateful to Sebastian Riedel, Manfred Klenner, Don
Tuggener and Cäcilia Zirn for advising us on Markov
Logic Networks. The authors were partially supported
by the German Research Foundation (DFG) under grants
RU 1873/2-1 and WI 4204/2-1.

References

Alina Andreevskaia and Sabine Bergler. 2006. Min-
ing WordNet for a Fuzzy Sentiment: Sentiment Tag
Extraction from WordNet Glosses. In Proceedings
of the Conference on European Chapter of the Asso-
ciation for Computational Linguistics (EACL), pages
209–216, Trento, Italy.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proceed-
ings of the International Conference on Computational
Linguistics and Annual Meeting of the Association for
Computational Linguistics (COLING/ACL), pages 86–
90, Montréal, Quebec, Canada.

Steven Bethard, Hong Yu, Ashley Thornton, Vasileios
Hatzivassiloglou, and Dan Jurafsky. 2004. Extract-
ing Opinion Propositions and Opinion Holders using
Syntactic and Lexical Cues. In Computing Attitude
and Affect in Text: Theory and Applications. Springer-
Verlag.

Eric Breck, Yejin Choi, and Claire Cardie. 2007. Iden-
tifying Expressions of Opinion in Context. In Pro-
ceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), pages 2683–2688, Hyder-
abad, India.

786

Yoonjung Choi and Janyce Wiebe. 2014. +/-
EffectWordNet: Sense-level Lexicon Acquisition for
Opinion Inference. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1181–1191, Doha, Qatar.

Andrea Esuli and Fabrizio Sebastiani. 2005. Determin-
ing the semantic orientation of terms through gloss
classification. In Proceedings of the ACM Inter-
national Conference on Information and Knowledge
Management (CIKM), pages 617–624, Bremen, Ger-
many.

Ralph Grishman, Catherine McKeown, and Adam Mey-
ers. 1994. COMLEX Syntax: Building a Computa-
tional Lexicon. In Proceedings of the International
Conference on Computational Linguistics (COLING),
pages 268–272, Kyoto, Japan.

Yaw Gyamfi, Janyce Wiebe, Rada Mihalcea, and Cem
Akkaya. 2009. Integrating Knowledge for Subjec-
tivity Sense Labeling. In Proceedings of the Human
Language Technology Conference of the North Ameri-
can Chapter of the ACL (HLT/NAACL), pages 10–18,
Boulder, CO, USA.

Yufang Hou, Katja Markert, and Michael Strube. 2013.
Global Inference for Bridging Anaphora Resolution.
In Proceedings of the Human Language Technology
Conference of the North American Chapter of the ACL
(HLT/NAACL), pages 907–917, Atlanta, GA, USA.

Thorsten Joachims. 1999. Making Large-Scale SVM
Learning Practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning, pages 169–184. MIT Press.

Richard Johansson and Alessandro Moschitti. 2013. Re-
lational Features in Fine-Grained Opinion Analysis.
Computational Linguistics, 39(3):473–509.

Jun Seok Kang, Song Feng, Leman Akoglu, and Yejin
Choi. 2014. ConnotationWordNet: Learning Conno-
tation over the Word+Sense Network. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pages 1544–1554, Balti-
more, MD, USA.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff,
Ashish Sabharwal, Peter Clark, and Oren Etzioni.
2015. Exploring Markov Logic Networks for Ques-
tion Answering. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 685–694, Lisbon, Portugal.

Soo-Min Kim and Eduard Hovy. 2006. Extracting Opin-
ions, Opinion Holders, and Topics Expressed in Online
News Media Text. In Proceedings of the ACL Work-
shop on Sentiment and Subjectivity in Text, pages 1–8,
Sydney, Australia.

J. Richard Landis and Gary G. Koch. 1977. The Mea-
surement of Observer Agreement for Categorical Data.
Biometrics, 33(1):159–174.

Dekang Lin. 1998. Automatic Retrieval and Clustering
of Similar Words. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
and International Conference on Computational Lin-
guistics (ACL/COLING), pages 768–774, Montreal,
Quebec, Canada.

Catherine Macleod, Ralph Grishman, Adam Meyers,
Leslie Barrett, and Ruth Reeves. 1998. NOMLEX:
A Lexicon of Nominalizations. In Proceedings of EU-
RALEX, pages 187–193, Liège, Belgium.

Isa Maks and Piek Vossen. 2012a. Building a fine-
grained subjectivity lexicon from a web corpus. In
Proceedings of the Conference on Language Re-
sources and Evaluation (LREC), pages 3070–3076, Is-
tanbul, Turkey.

Isa Maks and Piek Vossen. 2012b. A lexicon model for
deep sentiment analysis and opinion mining applica-
tions. Decision Support Systems, 53:680–688.

Ivan Meza-Ruiz and Sebastian Riedel. 2009. Jointly
Identifying Predicates, Arguments and Senses using
Markov Logic. In Proceedings of the Human Lan-
guage Technology Conference of the North American
Chapter of the ACL (HLT/NAACL), pages 155–163,
Boulder, CO, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations (ICLR), Scottsdale, AZ, USA.

George Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine Miller. 1990. Introduc-
tion to WordNet: An On-line Lexical Database. Inter-
national Journal of Lexicography, 3:235–244.

Matthew Richardson and Pedro Matthew. 2006. Markov
Logic Networks. Machine Learning, 62(1–2):107–
136.

Sebastian Riedel. 2008. Improving the Accuracy and
Efficiency of MAP Inference for Markov Logic. In
Proceedings of the Annual Conference on Uncertainty
in AI (UAI), pages 468–475, Helsinki, Finland.

Partha Pratim Talukdar, Joseph Reisinger, Marius Pasca,
Deepak Ravichandran, Rahul Bhagat, and Fernando
Pereira. 2008. Weakly-Supervised Acquisition of
Labeled Class Instances using Graph Random Walks.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
582–590, Honolulu, HI, USA.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating Expressions of Opinions and Emotions
in Language. Language Resources and Evaluation,
39(2/3):164–210.

Michael Wiegand and Dietrich Klakow. 2011. Proto-
typical Opinion Holders: What We can Learn from

787

Experts and Analysts. In Proceedings of Recent Ad-
vances in Natural Language Processing (RANLP),
pages 282–288, Hissar, Bulgaria.

Michael Wiegand and Josef Ruppenhofer. 2015. Opin-
ion Holder and Target Extraction based on the Induc-
tion of Verbal Categories. In Proceedings of the Con-
ference on Computational Natural Language Learning
(CoNLL), pages 215–225, Beijing, China.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-level
Sentiment Analysis. In Proceedings of the Conference
on Human Language Technology and Empirical Meth-
ods in Natural Language Processing (HLT/EMNLP),
pages 347–354, Vancouver, BC, Canada.

Cäcilia Zirn, Mathias Niepert, Heiner Stuckenschmidt,
and Michael Strube. 2011. Fine-Grained Sentiment
Analysis with Structural Features. In Proceedings of
the International Joint Conference on Natural Lan-
guage Processing (IJCNLP), pages 336–344, Chiang
Mai, Thailand.

788

Proceedings of NAACL-HLT 2016, pages 789–799,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Clustering for Simultaneous Extraction of
Aspects and Features from Reviews

Lu Chen1∗, Justin Martineau2, Doreen Cheng2, Amit Sheth1

1 Kno.e.sis Center, Wright State University
Fairborn, OH 45435 USA

2 Samsung Research America, Silicon Valley
San Jose, CA 95134 USA

{chen, amit}@knoesis.org
justin.m@samsung.com
doreenycheng@yahoo.com

Abstract

This paper presents a clustering approach that
simultaneously identifies product features and
groups them into aspect categories from on-
line reviews. Unlike prior approaches that first
extract features and then group them into cat-
egories, the proposed approach combines fea-
ture and aspect discovery instead of chaining
them. In addition, prior work on feature ex-
traction tends to require seed terms and fo-
cus on identifying explicit features, while the
proposed approach extracts both explicit and
implicit features, and does not require seed
terms. We evaluate this approach on reviews
from three domains. The results show that
it outperforms several state-of-the-art methods
on both tasks across all three domains.

1 Introduction

If you are thinking of buying a TV for watching
football, you might go to websites such as Amazon
to read customer reviews on TV products. How-
ever, there are many products and each of them may
have hundreds of reviews. It would be helpful to
have an aspect-based sentiment summarization for
each product. Based on other customers’ opinions
on multiple aspects such as size, picture quality,
motion-smoothing, and sound quality, you might be
able to make the decision without going through all
the reviews. To support such summarization, it is
essential to have an algorithm that extracts product
features and aspects from reviews.

∗This author’s research was done during an internship with
Samsung Research America.

Features are components and attributes of a prod-
uct. A feature can be directly mentioned as an opin-
ion target (i.e., explicit feature) or implied by opin-
ion words (i.e., implicit feature). Different feature
expressions may be used to describe the same aspect
of a product. Aspect can be represented as a group of
features. Consider the following review sentences,
in which we denote explicit and implicit features in
boldface and italics, respectively.

1. This phone has great display and perfect size.
It’s very fast with all great features.

2. Good features for an inexpensive android. The
screen is big and vibrant. Great speed makes
smooth viewing of tv programs or sports.

3. The phone runs fast and smooth, and has great
price.

In review 1, display is an explicit feature, and
opinion word “fast” implies implicit feature speed.
The task is to identify both explicit and implicit fea-
tures, and group them into aspects, e.g., {speed, fast,
smooth}, {size, big}, {price, inexpensive}.

Many existing studies (Hu and Liu, 2004; Su et
al., 2006; Qiu et al., 2009; Hai et al., 2012; Xu et
al., 2013) have focused on extracting features with-
out grouping them into aspects. Some methods have
been proposed to group features given that feature
expressions have been identified beforehand (Zhai et
al., 2010; Moghaddam and Ester, 2011; Zhao et al.,
2014), or can be learned from semi-structured Pros
and Cons reviews (Guo et al., 2009; Yu et al., 2011).
In recent years, topic models have been widely stud-
ied for their use in aspect discovery with the advan-
tage that they extract features and group them simul-
taneously. However, researchers have found some

789

limitations of such methods, e.g., the produced top-
ics may not be coherent or directly interpretable as
aspects (Chen et al., 2013; Bancken et al., 2014),
the extracted aspects are not fine-grained (Zhang and
Liu, 2014), and it is ineffective when dealing with
aspect sparsity (Xu et al., 2014).

In this paper, we present a clustering algorithm
that extracts features and groups them into aspects
from product reviews. Our work differs from prior
studies in three ways. First, it identifies both features
and aspects simultaneously. Existing clustering-
based solutions (Su et al., 2008; Lu et al., 2009;
Bancken et al., 2014) take a two-step approach that
first identifies features and then employs standard
clustering algorithms (e.g., k-means) to group fea-
tures into aspects. We propose that these two steps
can be combined into a single clustering process,
in which different words describing the same as-
pect can be automatically grouped into one clus-
ter, and features and aspects can be identified at the
same time. Second, both explicit and implicit fea-
tures are extracted and grouped into aspects. While
most existing methods deal with explicit features
(e.g., “speed”, “size”), much less effort has been
made to identify implicit features implied by opin-
ion words (e.g., “fast”, “big”), which is challeng-
ing because many general opinion words such as
“good” or “great” do not indicate product features,
therefore they should not be identified as features or
grouped into aspects. Third, it is unsupervised and
does not require seed terms, hand-crafted patterns,
or any other labeling efforts.

Specifically, the algorithm takes a set of reviews
on a product (e.g., TV, cell phone) as input and pro-
duces aspect clusters as output. It first uses a part-of-
speech tagger to identify nouns/noun phrases, verbs
and adjectives as candidates. Instead of applying the
clustering algorithm to all the candidates, only the
frequent ones are clustered to generate seed clusters,
and then the remaining candidates are placed into
the closest seed clusters. This does not only speed
up the algorithm, but it also reduces the noise that
might be introduced by infrequent terms in the clus-
tering process. We propose a novel domain-specific
similarity measure incorporating both statistical as-
sociation and semantic similarity between a pair of
candidates, which recognizes features referring to
the same aspects in a particular domain. To further

improve the quality of clusters, several problem-
specific merging constraints are used to prevent the
clusters referring to different aspects from being
merged during the clustering process. The algorithm
stops when it cannot find another pair of clusters sat-
isfying these constraints.

This algorithm is evaluated on reviews from three
domains: cell phone, TV and GPS. Its effective-
ness is demonstrated through comparison with sev-
eral state-of-the-art methods on both tasks of feature
extraction and aspect discovery. Experimental re-
sults show that our method consistently yields bet-
ter results than these existing methods on both tasks
across all the domains.

2 Related Work

Feature and aspect extraction is a core component
of aspect-based opinion mining systems. Zhang and
Liu (2014) provide a broad overview of the tasks and
the current state-of-the-art techniques.

Feature identification has been explored in many
studies. Most methods focus on explicit features,
including unsupervised methods that utilize associ-
ation rules (Hu and Liu, 2004; Liu et al., 2005),
dependency relations (Qiu et al., 2009; Xu et al.,
2013), or statistical associations (Hai et al., 2012)
between features and opinion words, and supervised
ones that treat it as a sequence labeling problem
and apply Hidden Markov Model (HMM) or Condi-
tional Random Fields (CRF) (Jin et al., 2009; Yang
and Cardie, 2013) to it. A few methods have been
proposed to identify implicit features, e.g., using
co-occurrence associations between implicit and ex-
plicit features (Su et al., 2006; Hai et al., 2011;
Zhang and Zhu, 2013), or leveraging lexical rela-
tions of words in dictionaries (Fei et al., 2012).
Many of these techniques require seed terms, hand-
crafted rules/patterns, or other annotation efforts.

Some studies have focused on grouping features
and assumed that features have been extracted be-
forehand or can be extracted from semi-structured
Pros and Cons reviews. Methods including simi-
larity matching (Carenini et al., 2005), topic mod-
eling (Guo et al., 2009; Moghaddam and Ester,
2011), Expectation-Maximization (EM) based semi-
supervised learning (Zhai et al., 2010; Zhai et al.,
2011), and synonym clustering (Yu et al., 2011) have

790

been explored in this context.
To extract features and aspects at the same time,

topic model-based approaches have been explored
by a large number of studies in recent years. Stan-
dard topic modeling methods such as pLSA (Hof-
mann, 2001) and LDA (Blei et al., 2003) are ex-
tended to suit the peculiarities of the problem, e.g.,
capturing local topics corresponding to ratable as-
pects (Titov and McDonald, 2008a; Titov and Mc-
Donald, 2008b; Brody and Elhadad, 2010), jointly
extracting both topic/aspect and sentiment (Lin and
He, 2009; Jo and Oh, 2011; Kim et al., 2013;
Wang and Ester, 2014), incorporating prior knowl-
edge to generate coherent aspects (Mukherjee and
Liu, 2012; Chen et al., 2013; Chen et al., 2014), etc.

Very limited research has focused on exploring
clustering-based solutions. Su et al. (2008) pre-
sented a clustering method that utilizes the mutual
reinforcement associations between features and
opinion words. It employs standard clustering algo-
rithms such as k-means to iteratively group feature
words and opinion words separately. The similarity
between two feature words (or two opinion words)
is determined by a linear combination of their intra-
similarity and inter-similarity. Intra-similarity is the
traditional similarity, and inter-similarity is calcu-
lated based on the degree of association between
feature words and opinion words. To calculate the
inter-similarity, a feature word (or an opinion word)
is represented as a vector where each element is
the co-occurrence frequency between that word and
opinion words (or feature words) in sentences. Then
the similarity between two items is calculated by
cosine similarity of two vectors. In each iteration,
the clustering results of one type of data items (fea-
ture words or opinion words) are used to update the
pairwise similarity of the other type of items. After
clustering, the strongest links between features and
opinion words form the aspect groups. Mauge et al.
(2012) first trained a maximum-entropy classifier to
predict the probability that two feature expressions
are synonyms, then construct a graph based on the
prediction results and employ greedy agglomerative
clustering to partition the graph to clusters. Bancken
et al. (2014) used k-medoids clustering algorithm
with a WordNet-based similarity metric to cluster
semantically similar aspect mentions.

These existing clustering methods take two steps.

In the first step, features are extracted based on as-
sociation rules or dependency patterns, and in the
second step features are grouped into aspects using
clustering algorithms. In contrast, our method ex-
tracts features and groups them at the same time.
Moreover, most of these methods extract and group
only explicit features, while our method deals with
both explicit and implicit features. The method pro-
posed in (Su et al., 2008) also handles implicit fea-
tures (opinion words), but their similarity measure
largely depends on co-occurrence between features
and opinion words, which may not be efficient in
identifying features that are semantically similar but
rarely co-occur in reviews.

3 The Proposed Approach

Let X = {x1, x2, ..., xn} be a set of candidate fea-
tures extracted from reviews of a given product (e.g.,
TV, cell phone). Specifically, by using a part-of-
speech tagger1, nouns (e.g., “battery”) and two con-
secutive nouns (e.g., “battery life”) are identified as
candidates of explicit features, and adjectives and
verbs are identified as candidates of implicit fea-
tures. Stop words are removed from X . The algo-
rithm aims to group similar candidate terms so that
the terms referring to the same aspect are put into
one cluster. At last, the important aspects are se-
lected from the resulting clusters, and the candidates
contained in these aspects are identified as features.

3.1 A Clustering Framework

Algorithm 1 illustrates the clustering process. The
algorithm takes as input a set X that contains n can-
didate terms, a natural number k indicating the num-
ber of aspects, a natural number s (0 < s ≤ n) indi-
cating the number of candidates that will be grouped
first to generate the seed clusters, and a real number
δ indicating the upper bound of the distance between
two mergeable clusters. Instead of applying the ag-
glomerative clustering to all the candidates, it first
selects a set X ′ ⊆ X of s candidates that appear
most frequently in the corpus for clustering. The
reasons for this are two-fold. First, the frequently
mentioned terms are more likely the actual features
of customers’ interests. By clustering these terms
first, we can generate high quality seed clusters.

1http://nlp.stanford.edu/software/tagger.shtml

791

Second, as the clustering algorithm requires pair-
wise distances between candidates/clusters, it could
be very time-consuming if there are a large number
of candidates. We can speed up the process by clus-
tering only the most frequent ones.

Algorithm 1: Clustering for Aspect Discovery
Input: X = {x1, ..., xn}, k, s, δ
Output: {Aj}kj=1

1 Select the top s most frequent candidates from
X: X ′ = {x′1, ..., x′s};

2 Set C1 ← {x′1}, ..., Cs ← {x′s};
3 Set Θ← {C1, ..., Cs};
4 while there exist a pair of mergeable clusters

from Θ do
5 Select a pair of closest clusters Cl and Cm

such that VIOLATE-CONSTRAINTS(Cl, Cm,
δ) is false;

6 Cm ← Cl ∪ Cm;
7 Θ← Θ− {Cl};
8 for xi ∈ X −X ′ do
9 Select the closest clusters Cd from Θ such

that VIOLATE-CONSTRAINTS({xi}, Cd, δ) is
false;

10 if there exist such cluster Cd then
11 Cd ← Cd ∪ {xi};
12 {Aj}kj=1 ← SELECT(Θ, k);

The clustering starts with every frequent term x′i
in its own cluster Ci, and Θ is the set of all clusters.
In each iteration, a pair of clusters Cl and Cm that
are most likely composed of features referring to the
same aspect are merged into one. Both a similarity
measure and a set of constraints are used to select
such pair of clusters. We propose a domain-specific
similarity measure that determines how similar the
members in two clusters are regarding the particular
domain/product. Moreover, we add a set of merg-
ing constraints to further ensure that the terms from
different aspects would not be merged. The cluster-
ing process stops when it cannot find another pair
of clusters that satisfy the constraints. We call the
obtained clusters in Θ the seed clusters. Next, the
algorithm assigns each of the remaining candidate
xi ∈ X −X ′ to its closest seed cluster that satisfies
the merging constraints. At last, k clusters are se-

lected from Θ as aspects2. Based on the idea that the
frequent clusters are usually the important aspects
of customers’ interests, we select the top k clusters
having the highest sum of members’ frequencies of
occurrence. From the k aspects, the nouns and noun
phrases (e.g., “speed”, “size”) are recognized as ex-
plicit features, and the adjectives and verbs (e.g.,
“fast”, “big”), are recognized as implicit features.

3.2 Domain-specific Similarity

The similarity measure aims to identify terms refer-
ring to the same aspect of a product. Prior studies
(Zhai et al., 2010; Zhai et al., 2011) have shown
that general semantic similarities learned from the-
saurus dictionaries (e.g., WordNet) do not perform
well in grouping features, mainly because the sim-
ilarities between words/phrases are domain depen-
dent. For example, “ice cream sandwich” and “op-
erating system” are not relevant in general, but
they refer to the same aspect in cell phone re-
views3; “smooth” and “speed” are more similar in
cell phone domain than they are in hair dryer do-
main. Methods based on distributional informa-
tion in a domain-specific corpus are usually used
to determine the domain-dependent similarities be-
tween words/phrases. However, relying completely
on the corpus may not be sufficient either. For ex-
ample, people usually use “inexpensive” or “great
price” instead of “inexpensive price”; similarly, they
use “running fast” or “great speed” instead of “fast
speed”. Though “inexpensive” and “price” or “fast”
and “speed” refer to the same aspect, we may not
find they are similar based on their context or co-
occurrences in the corpus.

We propose to estimate the domain-specific sim-
ilarities between candidates by incorporating both
general semantic similarity and corpus-based statis-
tical association. Formally, let G be a n×n similar-
ity matrix, where Gij is the general semantic sim-
ilarity between candidates xi and xj , Gij ∈ [0, 1],
Gij = 1 when i = j, and Gij = Gji. We use
UMBC Semantic Similarity Service4 to get G. It
combines both WordNet knowledge and statistics

2If k is larger than the number of clusters obtained, all the
clusters are selected as aspects.

3Ice Cream Sandwich is a version of the Android mobile
operating system.

4http://swoogle.umbc.edu/SimService/index.html

792

from a large web corpus to compute the semantic
similarity between words/phrases (Han et al., 2013).

Let T be a n × n association matrix, where Tij
is the pairwise statistical association between xi
and xj in the domain-specific corpus, Tij ∈ [0, 1],
Tij = 1 when i = j, and Tij = Tji. We use normal-
ized pointwise mutual information (NPMI) (Bouma,
2009) as the measure of association to get T , that is,

NPMI(xi, xj) =
log Nf(xi,xj)

f(xi)f(xj)

− log f(xi,xj)
N

,

where f(xi) (or f(xj)) is the number of documents
where xi (or xj) appears, f(xi, xj) is the number
of documents where xi and xj co-occur in a sen-
tence, and N is the total number of documents in
the domain-specific corpus. NPMI is the normaliza-
tion of pointwise mutual information (PMI), which
has the pleasant property NPMI(xi, xj) ∈ [−1, 1]
(Bouma, 2009). The values of NPMI are rescaled to
the range of [0, 1], because we want Tij ∈ [0, 1].

A candidate xi can be represented by the i-th row
in G or T , i.e., the row vector gi: or ti:, which tells
us what xi is about in terms of its general semantic
similarities or statistical associations to other terms.
The cosine similarity between two vectors ~u and ~v
can be calculated as:

cosine(~u,~v) =
~u · ~v

‖ ~u ‖‖ ~v ‖ =
∑n

i=1 uivi√∑n
i=1 u

2
i

√∑n
i=1 v

2
i

.

By calculating the cosine similarity between two
vectors of xi and xj (i 6= j), we get the following
similarity metrics:

simg(xi, xj) = cosine(gi:, gj:),
simt(xi, xj) = cosine(ti:, tj:),
simgt(xi, xj) = max(cosine(gi:, tj:), cosine(ti:, gj:)).

simg(xi, xj) provides the comparison between gi:
and gj:. Similar row vectors in G indicate simi-
lar semantic meanings of two terms (e.g., “price”
and “inexpensive”). simt(xi, xj) provides the com-
parison between ti: and tj:. Similar row vectors
in T indicate similar context of two terms in the
domain, and terms that occur in the same con-
texts tend to have similar meanings (Harris, 1954)
(e.g., “ice cream sandwich” and “operating sys-
tem”). simgt(xi, xj) provides the comparison be-
tween the row vector in G and the row vector in T

of two terms. simgt(xi, xj) is designed to get high
value when the terms strongly associated with xi (or
xj) are semantically similar to xj (or xi). By this
measure, the domain-dependent synonyms such as
“smooth” and “speed” (in cell phone domain) can
be identified because the word “smooth” frequently
co-occurs with some other words (e.g., “fast”, “run”)
that are synonymous with the word “speed”.

Because Gij ∈ [0, 1] and Tij ∈ [0, 1], the values
of simg(xi, xj), simt(xi, xj), and simgt(xi, xj)
range from 0 to 1. In addition, simg(xi, xj) =
simg(xj , xi), simt(xi, xj) = simt(xj , xi) and
simgt(xi, xj) = simgt(xj , xi). When i = j,
we set all the similarity metrics between xi and
xj to 1. Finally, the domain-specific similarity
between xi and xj (i 6= j) is defined as the
weighted sum of the above three similarity metrics:
sim(xi, xj) = wgsimg(xi, xj) +wtsimt(xi, xj) +
wgtsimgt(xi, xj), where wg, wt and wgt denote the
relative weight of importance of the three similar-
ity metrics, respectively. The values of the weight
ranges from 0 to 1, and wg + wt + wgt = 1.

Based on the domain-specific similarities between
candidates, we now define the distance measures of
clustering as:

distavg(Cl, Cm) =

∑
xi′∈Cl

∑
xj′∈Cm

(1− sim(xi′ , xj′))

|Cl| × |Cm| ,

r(Cl) = argmaxxi′∈Cl
f(xi′),

distrep(Cl, Cm) = 1− sim(r(Cl), r(Cm)),

where distavg(Cl, Cm) is the average of candidate
distances between clusters Cl and Cm, r(Cl) is the
most frequent member (i.e., representative term) in
cluster Cl, and distrep(Cl, Cm) is the distance be-
tween the representative terms of two clusters. The
two clusters describing the same aspect should be
close to each other in terms of both average distance
and representative distance, thus the final distance is
defined as the maximum of these two:

dist(Cl, Cm) = max(distavg(Cl, Cm), distrep(Cl, Cm)).

3.3 Merging Constraints
Prior studies (Wagstaff et al., 2001) have explored
the idea of incorporating background knowledge as
constraints on the clustering process to further im-
prove the performance. Two types of constraints are
usually considered: must-link constraints specifying

793

that two objects (e.g., words) must be placed in the
same cluster, and cannot-link constraints specifying
that two objects cannot be placed in the same cluster.
We also add problem-specific constraints that spec-
ify which clusters cannot be merged together, but in-
stead of manually creating the cannot-links between
specific words, our cannot-link constraints are auto-
matically calculated during the clustering process.

Specifically, two clusters cannot be merged if they
violate any of the three merging constraints: (1) The
distance between two clusters must be less than a
given value δ (see Algorithm 1). (2) There must
be at least one noun or noun phrase (candidate of
explicit feature) existing in one of the two clusters.
Because we assume an aspect should contain at least
one explicit feature, and we would not get an aspect
by merging two non-aspect clusters. (3) The sum of
frequencies of the candidates from two clusters co-
occurring in the same sentences must be higher than
the sum of frequencies of them co-occurring in the
same documents but different sentences. The idea is
that people tend to talk about different aspects of a
product in different sentences in a review, and talk
about the same aspect in a small window (e.g., the
same sentence).

4 Experiments

In this section, we evaluate the effectiveness of the
proposed approach on feature extraction and aspect
discovery. Table 1 describes the datasets from three
different domains that were used in the experiments.
The cell phone reviews were collected from the on-
line shop of a cell phone company, and the GPS and
TV reviews were collected from Amazon.

Three human annotators manually annotate the
datasets to create gold standards of features and as-
pects. These annotators first identify feature expres-
sions from reviews independently. The expressions
that were agreed by at least two annotators were se-
lected as features. Then the authors manually spec-
ified a set of aspects based on these features, and
asked three annotators to label each feature with
an aspect category. The average inter-annotator
agreement on aspect annotation was κ = 0.687
(stddev = 0.154) according to Cohen’s Kappa
statistic. To obtain the gold standard annotation of
aspects, the annotators discussed to reach an agree-

ment when there was a disagreement on the aspect
category of a feature. We are making the datasets
and annotations publicly available5.

Table 1 shows the number of reviews, aspects,
unique explicit/implicit features manually identified
by annotators, and candidates of explicit (i.e., noun
and noun phrase) and implicit (i.e., adjective and
verb) features extracted from the datasets in three
domains.

Cell phone GPS TV
Reviews 500 500 500
Aspects 46 37 34
Features (expl.) 419 637 485
Features (impl.) 339 492 277
Candidates (expl.) 1,248 2,078 2,333
Candidates (impl.) 1,115 1,779 1,690

Table 1: Data sets and gold standards.

We use “CAFE” (Clustering for Aspect and
Feature Extraction) to denote the proposed method.
We assume the number of aspects k is specified by
the users, and set k = 50 throughout all the exper-
iments. We use s = 500, δ = 0.8, wg = wt =
0.2, wgt = 0.6 as the default setting of CAFE, and
study the effect of parameters in Section “Influence
of Parameters”. In addition, we evaluate each indi-
vidual similarity metric – “CAFE-g”, “CAFE-t” and
“CAFE-gt” denote the variations of “CAFE” that
use simg(xi, xj), simt(xi, xj), and simgt(xi, xj)
as the similarity measure, respectively. We empir-
ically set δ = 0.4 for “CAFE-g”, δ = 0.84 for
“CAFE-t” and δ = 0.88 for “CAFE-gt”.

4.1 Evaluations on Feature Extraction
We compared CAFE against the following two state-
of-the-art methods on feature extraction:
• PROP: A double propagation approach (Qiu

et al., 2009) that extracts features using hand-
crafted rules based on dependency relations be-
tween features and opinion words.
• LRTBOOT: A bootstrapping approach (Hai et

al., 2012) that extracts features by mining pair-
wise feature-feature, feature-opinion, opinion-
opinion associations between terms in the cor-
pus, where the association is measured by the
likelihood ratio tests (LRT).

Both methods require seeds terms. We ranked
the feature candidates by descending document fre-

5http://knoesis.wright.edu/researchers/luchen/download/naacl16 aspects.zip

794

Cell-phone GPS TV
Method Precision Recall F-score Precision Recall F-score Precision Recall F-score macro-averaged F-score
PROP 0.3489 0.6503 0.4541 0.3157 0.8222 0.4562 0.2851 0.8454 0.4264 0.4456

LRTBOOT 0.3819 0.8112 0.5193 0.5342 0.7488 0.6235 0.4572 0.7340 0.5635 0.5688
CAFE 0.6421 0.5929 0.6165 0.7197 0.7064 0.7130 0.6086 0.7155 0.6577 0.6624

CAFE-g 0.6822 0.5667 0.6191 0.6831 0.6154 0.6475 0.5959 0.6330 0.6139 0.6268
CAFE-t 0.4761 0.5833 0.5243 0.5765 0.6845 0.6259 0.4892 0.7175 0.5817 0.5773

CAFE-gt 0.5519 0.6000 0.5749 0.6512 0.6028 0.6261 0.5445 0.7320 0.6245 0.6085

Table 2: Experimental results of feature extraction.

●●●

●
●

●

●●
●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
recall

pr
ec

is
io

n

Method ●PROP LRTBOOT CAFE

(a) Cell Phone

●

●
●

●
●

●●
●

●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
recall

pr
ec

is
io

n
Method ●PROP LRTBOOT CAFE

(b) GPS

●●

●
●

●
●

●●●

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall

pr
ec

is
io

n

Method ●PROP LRTBOOT CAFE

(c) TV

Figure 1: Precision-recall curves at various parameter settings for three feature extraction methods.

quency and manually selected the top 10 genuine
features as seeds for them. According to the study
(Hai et al., 2012), the performance for LRTBOOT
remained almost constant when increasing the seeds
from 1 to 50. Three association thresholds need to
be specified for LRTBOOT. Following the original
study in which the experiments were conducted on
cell-phone reviews, we set ffth = 21.0, ooth =
12.0, and performed grid search for the value of
foth. The best results were achieved at foth = 9.0
for cell-phone reviews, and at foth = 12.0 for GPS
and TV reviews.

The results were evaluated by precision = Nagree

Nresult
,

recall = Nagree

Ngold
, and F-score = 2×precision×recall

precision+recall ,
where Nresult and Ngold are the number of features
in the result and the gold standard, respectively, and
Nagree is the number of features that are agreed by
both sides. Because PROP and LRTBOOT extract
only explicit features, the evaluation was conducted
on the quality of explicit features. The performance
of identifying implicit features will be examined by
evaluation on aspect discovery, because implicit fea-
tures have to be merged into aspects to be detected.

Table 2 shows the best results (in terms of F-
score) of feature extraction by different methods.
Both PROP and LRTBOOT obtain high recall and
relatively low precision. CAFE greatly improves
precision, with a relatively small loss of recall,
resulting in 21.68% and 9.36% improvement in
macro-averaged F-score over PROP and LRTBOOT,

respectively. We also plot precision-recall curves
at various parameter settings for CAFE and LRT-
BOOT in Figure 1. For CAFE, we kept s = 500,
wg = wt = 0.2, wgt = 0.6, and increased δ from
0.64 to 0.96. For LRTBOOT, we kept ffth =
21.0, ooth = 12.0, and increased foth from 6.0
to 30.0. For PROP, only one precision-recall point
was obtained. From Figure 1, we see that the curve
of CAFE lies well above those of LRTBOOT and
PROP across three datasets. Though LRTBOOT
achieved similar precision as CAFE did at the re-
call rate of approximately 0.37 for GPS reviews and
at the recall rate of approximately 0.49 for TV re-
views, it performed worse than CAFE at increasing
recall levels for both datasets.

The key difference between CAFE and the base-
lines is that CAFE groups terms into clusters and
identifies the terms in the selected aspect clusters as
features, while both baselines enlarge a feature seed
set by mining syntactical or statistical associations
between features and opinion words. The results
suggest that features can be more precisely identified
via aspect clustering. Generally, CAFE is superior
to its variations, and CAFE-g outperforms CAFE-gt
and CAFE-t.

4.2 Evaluations on Aspect Discovery
For comparison with CAFE on aspect discovery, we
implemented the following three methods:
• MuReinf: A clustering method (Su et al.,

2008) that utilizes the mutual reinforcement as-

795

sociation between features and opinion words
to iteratively group them into clusters. Sim-
ilar to the proposed method, it is unsuper-
vised, clustering-based, and handling implicit
features.
• L-EM: A semi-supervised learning method

(Zhai et al., 2011) that adapts the Naive
Bayesian-based EM algorithm to group syn-
onym features into categories. Because semi-
supervised learning needs some labeled ex-
amples, the proposed method first automati-
cally generates some labeled examples (i.e., the
groups of synonym feature expressions) based
on features sharing common words and lexical
similarity.
• L-LDA: A baseline method (Zhai et al., 2011)

that is based on LDA. The same labeled exam-
ples generated by L-EM are used as seeds for
each topic in topic modeling.

These three methods require features to be ex-
tracted beforehand, and focus on grouping features
into aspects. Both LRTBOOT and CAFE are used to
provide the input features to them. We set α = 0.6
for MuReinf, because their study (Su et al., 2008)
showed that the method achieved best results at α >
0.5. All three methods utilize dictionary-based se-
mantic similarity to some extent. Since CAFE uses
the UMBC Semantic Similarity Service, we use the
same service to provide the semantic similarity for
all the methods.

Cell-phone GPS TV macro-average
LRTBOOT + MuReinf 0.7182 0.8031 0.7747 0.7653

LRTBOOT + L-EM 0.6633 0.6893 0.7138 0.6888
LRTBOOT + L-LDA 0.7653 0.7198 0.7664 0.7505

CAFE + MuReinf 0.7973 0.8212 0.8334 0.8173
CAFE + L-EM 0.7581 0.7772 0.7879 0.7744

CAFE + L-LDA 0.7904 0.8144 0.8247 0.8098
CAFE 0.8041 0.8238 0.8326 0.8202

CAFE-g 0.7382 0.7534 0.8205 0.7707
CAFE-t 0.7868 0.8050 0.7965 0.7961

CAFE-gt 0.8073 0.7716 0.7906 0.7898

Table 3: Rand Index of aspect identification.

The results were evaluated using Rand Index
(Rand, 1971), a standard measure of the similarity
between the clustering results and a gold standard.
Given a set of n objects and two partitions of them,
the Rand Index is defined as 2(a+b)

n×(n−1) . The idea is
that the agreements/disagreements between two par-
titions are checked on n × (n − 1) pairs of objects.

Among all the pairs, there are a pairs belonging to
the same cluster in both partitions, and b pairs be-
longing to different clusters in both partitions. In
this study, the gold standard and the aspect clusters
may not share the exact same set of features due to
the noise in feature extraction, therefore we consider
n the number of expressions in the union of two sets.

Table 3 shows the Rand Index achieved by dif-
ferent methods. Among the methods that generate
partitions of the same features provided by CAFE,
CAFE achieves the best macro-averaged Rand In-
dex, followed by CAFE + MuReinf, CAFE + L-
LDA, and CAFE + L-EM. CAFE outperforms the
variations using the single similarity metric, i.e.,
CAFE-g, CAFE-t and CAFE-gt. The results imply
the effectiveness of our domain-specific similarity
measure in identifying synonym features in a par-
ticular domain. Using the input features from LRT-
BOOT, the performance of MuReinf, L-EM and L-
LDA decrease on all three domains, compared with
using the input features from CAFE. The decrease
is more significant for L-EM and L-LDA than for
MuReinf, which suggest that the semi-supervised
methods L-EM and L-LDA are more dependent on
the quality of input features.

Table 4 illustrates a sample of the discovered as-
pects and features by CAFE. The algorithm identi-
fies the important aspects in general sense as well
as the important aspects that are not so obvious thus
could be easily missed by human judges, e.g., suc-
tion cup for GPS and glare for TV. In addition,
both explicit and implicit features are identified and
grouped into the aspects, e.g., expensive and price,
big and size, sensitive and signal, etc.

4.3 Influence of Parameters

We varied the value of δ (distance upper bound), s
(the number of frequent candidates selected to gen-
erate seed clusters) and wgt (the weight of simgt) to
see how they impact the results of CAFE, for both
feature extraction (in terms of F-Score) and aspect
discovery (in terms of Rand Index). Both F-score
and Rand Index increases rapidly at first and then
slowly decreases as we increase δ from 0.64 to 0.96
(see the left subplot in Figure 2). Because more
clusters are allowed to be merged as we increase δ,
which is good at first but then it introduces more
noise than benefit. Based on the experiments on

796

Cell-phone GPS TV
screen, display, touch, button, pixel screen,
icon, amold display, pressed, click, navigate

direction, route, road, instructions, streets,
highway, side, lane, exit, intersection, track

picture, hd picture, image, scene, photo,
action scenes, view, visual, show, present

battery, life, battery life, power, backup
battery, spare, recharge, powered, plug, lasted

map, point, information, interest, info, data,
map loading, accurate, search, locate, listed

cable, channel, cable box, station, wire,
antenna tuner, format, transmission

camera, picture, video, photo, zoom, motion
videos, gallery, fuzzy, grainy, shooting, recorded

signal, satellite, antenna, receiver, radio, fm
transmitter,traffic receiver, sensor, sensitive

sound, speaker, volume, noise, hum, echo,
audible, tinny, muffled, hissing, loud, pitched

call, car, speaker, call quality, call reminder,
drop, connect, answered, clear, hear, speak

voice, voice recognition, microphone, speaker,
volume, guy voice, robot voice, repeat, loud

price, market, cost, tax, credit, sale, discount,
purchase, expensive, worth, saved, cheap

size, hand, screen size, finger, font size, width,
tiny, huge, bigger, larger, big, carry, small, large

suction cup, windshield, bean bag, mount,
attachment, unit fall, attaching, pulling, break

glare, reflection, sunlight, lamp, daylight, blind,
flickering, dim, fluorescent, dark, reflective

Table 4: Examples of discovered aspects and features by the proposed approach CAFE. Explicit and implicit features are denoted
in boldface and italics, respectively. The first term in each cluster is the representative term of that aspect.

●

●

●

●

● ●

●

● ●

●

●

●

● ●
●

●
● ●

0.14
0.18
0.22
0.26
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
0.66
0.70
0.74
0.78
0.82

0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96
δ

R
es

ul
t

Domain, Measure
●

●

Cell−phone, F1 GPS, F1 TV, F1
Cell−phone, RI GPS, RI TV, RI

● ● ● ● ●
●

●
● ●

●

●
●

● ● ●
● ● ●

● ●

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

0.82

0.86

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
s (as % of all candidates)

R
es

ul
t

Domain, Measure
●

●

Cell−phone, F1 GPS, F1 TV, F1
Cell−phone, RI GPS, RI TV, RI

●

●

●

●

●

●●●●

●

●

●●

●

●
●●●

0.46

0.50

0.54

0.58

0.62

0.66

0.70

0.74

0.78

0.82

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
wgt (wt =0.2, wg =1.0− wt − wgt)

R
es

ul
t

Domain, Measure
●

●

Cell−phone, F1 GPS, F1 TV, F1
Cell−phone, RI GPS, RI TV, RI

Figure 2: CAFE parameter tuning: feature quality in terms of F-score (F1) and aspect quality in terms of Rand Index (RI). The
default setting is s = 500, δ = 0.8, wg = wt = 0.2, wgt = 0.6. We keep other parameters as the default setting when we tune an
individual parameter.

three domains, the best results can be achieved when
δ is set to a value between 0.76 and 0.84. The mid-
dle subplot illustrates the impact of s, which shows
that CAFE generates better results by first clustering
the top 10%-30% most frequent candidates. Infre-
quent words/phrases are usually more noisy, and the
results could be affected more seriously if the noises
are included in the clusters in the early stage of clus-
tering. Experiments were also conducted to study
the impact of the three similarity metrics. Due to the
space limit, we only display the impact of wgt and
wg given wt = 0.2. As we can see from the right
subplot in Figure 2, setting wgt or wg to zero ev-
idently decreases the performance, indicating both
similarity metrics are useful. The best F-score and
Rand Index can be achieved when we set wgt to 0.5
or 0.6 across all three domains.

5 Conclusion

In this paper, we proposed a clustering approach
that simultaneously extracts features and aspects
of a given product from reviews. Our approach
groups the feature candidates into clusters based on
their domain-specific similarities and merging con-
straints, then selects the important aspects and iden-
tifies features from these aspects. This approach has

the following advantages: (1) It identifies both as-
pects and features simultaneously. The evaluation
shows its accuracy on both tasks outperforms the
competitors. (2) Both explicit and implicit features
can be identified and grouped into aspects. The map-
pings of implicit features into explicit features are
accomplished naturally during the clustering pro-
cess. (3) It does not require labeled data or seed
words, which makes it easier to apply and broader in
application. In our future work, instead of selecting
aspects based on frequency, we will leverage domain
knowledge to improve the selection.

Acknowledgments

We would like to thank Lushan Han and UMBC
Ebiquity Lab for kindly allowing us to access their
Semantic Similarity Service. This research was
partially supported by NSF awards CNS-1513721
“Context-Aware Harassment Detection on Social
Media” and EAR-1520870 “Hazards SEES: Social
and Physical Sensing Enabled Decision Support for
Disaster Management and Response”.

797

References
Wouter Bancken, Daniele Alfarone, and Jesse Davis.

2014. Automatically detecting and rating product
aspects from textual customer reviews. In DMNLP
Workshop at ECML/PKDD.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Gerlof Bouma. 2009. Normalized (pointwise) mutual in-
formation in collocation extraction. GSCL, pages 31–
40.

Samuel Brody and Noemie Elhadad. 2010. An unsuper-
vised aspect-sentiment model for online reviews. In
NAACL, pages 804–812.

Giuseppe Carenini, Raymond T Ng, and Ed Zwart. 2005.
Extracting knowledge from evaluative text. In K-CAP,
pages 11–18.

Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun
Hsu, Malu Castellanos, and Riddhiman Ghosh. 2013.
Exploiting domain knowledge in aspect extraction. In
EMNLP, pages 1655–1667.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In ACL, pages 347–358.

Geli Fei, Bing Liu, Meichun Hsu, Malu Castellanos, and
Riddhiman Ghosh. 2012. A dictionary-based ap-
proach to identifying aspects im-plied by adjectives for
opinion mining. In COLING, page 309.

Honglei Guo, Huijia Zhu, Zhili Guo, XiaoXun Zhang,
and Zhong Su. 2009. Product feature categorization
with multilevel latent semantic association. In CIKM,
pages 1087–1096.

Zhen Hai, Kuiyu Chang, and Jung-jae Kim. 2011. Im-
plicit feature identification via co-occurrence associ-
ation rule mining. In Computational Linguistics and
Intelligent Text Processing, pages 393–404.

Zhen Hai, Kuiyu Chang, and Gao Cong. 2012. One seed
to find them all: mining opinion features via associa-
tion. In CIKM, pages 255–264.

Lushan Han, Abhay Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. Umbc ebiquity-
core: Semantic textual similarity systems. In the Sec-
ond Joint Conference on Lexical and Computational
Semantics, pages 44–52.

Zellig S Harris. 1954. Distributional structure. Word.
Thomas Hofmann. 2001. Unsupervised learning by

probabilistic latent semantic analysis. Machine learn-
ing, 42(1-2):177–196.

Minqing Hu and Bing Liu. 2004. Mining opinion fea-
tures in customer reviews. In AAAI, pages 755–760.

Wei Jin, Hung Hay Ho, and Rohini K Srihari. 2009.
Opinionminer: a novel machine learning system for

web opinion mining and extraction. In SIGKDD,
pages 1195–1204.

Yohan Jo and Alice H Oh. 2011. Aspect and senti-
ment unification model for online review analysis. In
WSDM, pages 815–824.

Suin Kim, Jianwen Zhang, Zheng Chen, Alice H Oh, and
Shixia Liu. 2013. A hierarchical aspect-sentiment
model for online reviews. In AAAI.

Chenghua Lin and Yulan He. 2009. Joint sentiment/topic
model for sentiment analysis. In CIKM, pages 375–
384.

Bing Liu, Minqing Hu, and Junsheng Cheng. 2005.
Opinion observer: analyzing and comparing opinions
on the web. In WWW, pages 342–351.

Yue Lu, ChengXiang Zhai, and Neel Sundaresan. 2009.
Rated aspect summarization of short comments. In
WWW, pages 131–140.

Samaneh Moghaddam and Martin Ester. 2011. Ilda: in-
terdependent lda model for learning latent aspects and
their ratings from online product reviews. In SIGIR,
pages 665–674.

Arjun Mukherjee and Bing Liu. 2012. Aspect extraction
through semi-supervised modeling. In ACL, pages
339–348.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen. 2009.
Expanding domain sentiment lexicon through double
propagation. In IJCAI, pages 1199–1204.

William M Rand. 1971. Objective criteria for the evalu-
ation of clustering methods. Journal of the American
Statistical association, 66(336):846–850.

Qi Su, Kun Xiang, Houfeng Wang, Bin Sun, and Shi-
wen Yu. 2006. Using pointwise mutual information
to identify implicit features in customer reviews. In
ICCPOL, pages 22–30.

Qi Su, Xinying Xu, Honglei Guo, Zhili Guo, Xian Wu,
Xiaoxun Zhang, Bin Swen, and Zhong Su. 2008. Hid-
den sentiment association in chinese web opinion min-
ing. In WWW, pages 959–968.

Ivan Titov and Ryan McDonald. 2008a. Modeling on-
line reviews with multi-grain topic models. In WWW,
pages 111–120.

Ivan Titov and Ryan T McDonald. 2008b. A joint model
of text and aspect ratings for sentiment summarization.
In ACL, pages 308–316.

Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan
Schrödl, et al. 2001. Constrained k-means cluster-
ing with background knowledge. In ICML, volume 1,
pages 577–584.

Hao Wang and Martin Ester. 2014. A sentiment-aligned
topic model for product aspect rating prediction. In
EMNLP, pages 1192–1202.

798

Liheng Xu, Kang Liu, Siwei Lai, Yubo Chen, and Jun
Zhao. 2013. Mining opinion words and opinion tar-
gets in a two-stage framework. In ACL, pages 1764–
1773.

Yinqing Xu, Tianyi Lin, Wai Lam, Zirui Zhou, Hong
Cheng, and Anthony Man-Cho So. 2014. Latent as-
pect mining via exploring sparsity and intrinsic infor-
mation. In CIKM, pages 879–888.

Bishan Yang and Claire Cardie. 2013. Joint inference for
fine-grained opinion extraction. In ACL, pages 1640–
1649.

Jianxing Yu, Zheng-Jun Zha, Meng Wang, and Tat-Seng
Chua. 2011. Aspect ranking: identifying important
product aspects from online consumer reviews. In
ACL, pages 1496–1505.

Zhongwu Zhai, Bing Liu, Hua Xu, and Peifa Jia. 2010.
Grouping product features using semi-supervised
learning with soft-constraints. In COLING, pages
1272–1280.

Zhongwu Zhai, Bing Liu, Hua Xu, and Peifa Jia. 2011.
Clustering product features for opinion mining. In
WSDM, pages 347–354.

Lei Zhang and Bing Liu. 2014. Aspect and entity extrac-
tion for opinion mining. In Data Mining and Knowl-
edge Discovery for Big Data, pages 1–40.

Yu Zhang and Weixiang Zhu. 2013. Extracting implicit
features in online customer reviews for opinion min-
ing. In WWW companion, pages 103–104.

Li Zhao, Minlie Huang, Haiqiang Chen, Junjun Cheng,
and Xiaoyan Zhu. 2014. Clustering aspect-related
phrases by leveraging sentiment distribution consis-
tency. In EMNLP, pages 1614–1623.

799

Proceedings of NAACL-HLT 2016, pages 800–810,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Opinion Holder and Target Extraction on Opinion Compounds – A
Linguistic Approach

Michael Wiegand and Christine Bocionek
Spoken Language Systems

Saarland University
D-66123 Saarbrücken, Germany

michael.wiegand@lsv.uni-saarland.de

cbocionek@lsv.uni-saarland.de

Josef Ruppenhofer
Dept. of Information Science

and Language Technology
Hildesheim University

D-31141 Hildesheim, Germany
ruppenho@uni-hildesheim.de

Abstract

We present an approach to the new task of
opinion holder and target extraction on opin-
ion compounds. Opinion compounds (e.g.
user rating or victim support) are noun com-
pounds whose head is an opinion noun. We
do not only examine features known to be ef-
fective for noun compound analysis, such as
paraphrases and semantic classes of heads and
modifiers, but also propose novel features tai-
lored to this new task. Among them, we ex-
amine paraphrases that jointly consider hold-
ers and targets, a verb detour in which noun
heads are replaced by related verbs, a global
head constraint allowing inferencing between
different compounds, and the categorization
of the sentiment view that the head conveys.

1 Introduction

One of the key subtasks in sentiment analysis is
opinion role extraction. It can be divided into the
extraction of opinion holders (OH), i.e. entities ex-
pressing an opinion, and the extraction of opinion
targets (OT), i.e. entities or propositions at which
sentiment is directed. This task is vital for various
applications involving sentiment analysis, e.g. opin-
ion summarization or opinion question answering.

Opinion role extraction is commonly regarded as
a task in lexical semantics. An opinion is evoked by
some opinion word, e.g. criticized in (1), skeptical
in (2) or intentions in (3), and its opinion roles are
usually realized as syntactic dependents. Opinion
words come in many shapes, the most frequent types
being opinion verbs (1), opinion adjectives (2) and
opinion nouns (3). These types of opinion words

have extensively been studied in various sentiment-
related corpora, such as MPQA (Wiebe et al., 2005).

(1) [Peter OH] criticizedverb [Mary OT].
(2) [Mary OH] was skepticaladj [about the plan OT].
(3) [Peter OH] had firm intentionsnoun [to quit his job OT].

In this work, we examine opinion roles that are re-
alized in opinion compounds. We define an opinion
compound (Table 1) as a noun compound, i.e. a se-
quence of two nouns, where the second noun, i.e.
the head, is an opinion expression. The first noun,
i.e. the modifier, can represent an opinion holder
(4)-(5), an opinion target (6)-(7) or neither (8)-(9).
Our aim is to automatically classify the modifier into
these categories. This task is challenging as, unlike
with opinion roles expressed in the syntax (1)-(3),
the immediate context of compounds does not con-
tain explicit cues as to the relation between head and
modifier. Moreover, due to the high productivity of
compounding, this task cannot be solved by com-
piling a (finite) compound lexicon that encodes for
each compound the category of its modifier.

(4) [user OH] rating (i.e. user rates something)
(5) [consumer OH] uncertainty (i.e. consumers are uncertain)
(6) [victim OT] support (i.e. support for victims)
(7) [test OT] anxiety (i.e. having anxiety towards test taking)
(8) spring upswing (i.e. economic upswing in spring)
(9) phone harassment (i.e. harassment inflicted via phone)

Notice that we focus exclusively on opinion role ex-
traction. We do not try to detect the polarity asso-
ciated with the compound. Neither do we consider
implicature-related information about effects (Deng
and Wiebe, 2014), but only inherent sentiment.

We study opinion role extraction on opinion com-
pounds in German. German is known for its frequent

800

compounds user rating; victim support; spring upswing
immediate constituents user; victim; spring rating; support; upswing
grammatical function modifier head

Table 1: Internal structure of opinion compounds.

use of noun compounds. In the STEPS-corpus, the
benchmark dataset for German opinion role extrac-
tion (Ruppenhofer et al., 2014), almost every other
sentence contains an opinion compound.

Compounds can also be commonly found in other
key languages, such as English. Since the methods
we apply to this task and the issues that they address
are not language specific, our approach can be repli-
cated on other languages.

Apart from examining traditional features from
noun compound analysis, in this paper, we also in-
troduce novel features specially designed for the
analysis of opinion compounds.

We also created a new gold standard for this
task (see also §3). The STEPS-corpus, as such,
is fairly small and only contains about 200 unique
compounds. We considered this amount insuffi-
cient for producing a gold standard. Also, none
of the existing datasets on noun compounds (Lauer,
1995; Barker and Szpakowicz, 1998; Nastase and
Szpakowicz, 2003; Girju et al., 2009; Kim and Bald-
win, 2005; Tratz and Hovy, 2010; Dima et al., 2014)
contain any information regarding opinion roles.

2 Related Work

With regard to opinion role extraction, many fea-
tures for supervised learning have been explored.
They typically address the relationship between
opinion word and opinion role on the basis of sur-
face patterns (Choi et al., 2005), part-of-speech in-
formation (Wiegand and Klakow, 2010), syntactic
information (Kessler and Nicolov, 2009; Jakob and
Gurevych, 2010) or semantic role labeling (Johans-
son and Moschitti, 2013; Deng and Wiebe, 2015).
The majority of those features cannot be applied to
our task since for opinion compounds, there is no
context between opinion role and opinion word.

In the area of noun compound analysis, there are
two predominant approaches. On the one hand, lexi-
cal resources, such as WordNet (Miller et al., 1990),
are employed in order to assign semantic categories
to head and modifier and infer from those labels the

Dataset I Dataset II
2000 compounds 1000 compounds

389 (unique) heads 247 (unique) heads
category of modifier role no role holder target
frequency 937 1063 450 580
proportion (in %) 46.85 53.15 45.00 58.00

Table 2: The two different datasets.

underlying relation (Rosario and Hearst, 2001; Kim
and Baldwin, 2005; Girju et al., 2005; Girju et al.,
2009). On the other hand, paraphrases that contain
co-occurrences of head and modifier are exploited
(Girju et al., 2009; Nakov and Hearst, 2013). In or-
der to increase coverage, paraphrases can be auto-
matically acquired (Butnariu and Veale, 2008; Kim
and Nakov, 2011). Cross-lingual information has
also been harnessed for this task (Girju, 2007).

3 Data & Annotation

We created a new dataset1 by retrieving opinion
compounds from the deWaC-corpus (Baroni et al.,
2009) comprising 1.7 billion words. (Word embed-
dings (§5.2 & §5.6) and word similarity graphs (§5.7
& §6.4) were also created from this corpus.)

In German, noun compounds are typically real-
ized as single tokens. In order to obtain a set of opin-
ion compounds, we extracted all noun compounds
from deWaC whose second morpheme is an opin-
ion noun. Morphological analysis was carried out
using morphisto (Zielinski and Simon, 2009).2 As
opinion nouns, we used the nouns from the PolArt
sentiment lexicon (Klenner et al., 2009). Unfor-
tunately, this lexicon is lacking in neutral opinion
nouns, such as Meinung (opinion) or Erwartung (ex-
pectation) which frequently occur in compounds,
e.g. Expertenmeinung (expert opinion) or Kunden-
erwartungen (customer expectations). Therefore,
we translated the 235 neutral opinion nouns from the
(English) Subjectivity Lexicon (Wilson et al., 2005)
into German.

From the opinion compounds extracted from
deWaC, we created two manually annotated datasets
(Table 2). We use more than one dataset as we con-
sider our task as a multi-stage task as shown in Fig-
ure 1. We believe that this is necessary as differ-

1available at: www.coli.uni-saarland.de/

˜miwieg/naacl_2016_op_compounds_data.tgz
2The data release provides more details regarding the gold

standard, e.g. how compound instances were sampled.

801

Each question (indicated by a rhombus) can be modeled with one binary supervised classifier. We build 3 classifiers, thus excluding the second
question because of its simplicity.

Figure 1: Generic pipeline for processing opinion compounds.

ent types of knowledge are required for the different
steps. In the first step (Dataset I), the compounds
containing some opinion role (4)-(7) are separated
from those not containing any role at all (8)-(9). At
this stage, holders are not distinguished from tar-
gets. This is done in the second step which exclu-
sively focuses on opinion roles. This step is fur-
ther divided into two substeps. First, one checks
whether the modifier denotes a person. A modifier
representing an opinion role but not denoting a per-
son (e.g. test anxiety) can only be a target. Since
this is a simple classification step (provided a lexical
resource is available which tells persons apart from
non-persons, e.g. WordNet), we have no dataset for
it. The greater challenge lies in all those compounds
whose modifier is a person and for which we already
know that it is either holder or target (e.g. user rating
or victim support). Only for those cases do we pro-
duce another dataset (Dataset II). Note that in this
dataset the two roles are not completely disjoint. In
3% of the compounds, the modifier represents both
holder and target. Prominent examples are recipro-
cal relationships, e.g. Geschwisterneid (sibling jeal-
ousy).

On a sample of 200 compounds extracted from
each of the two datasets we measured inter-
annotation agreement. On the first dataset, we ob-
tained Cohen’s κ = 0.60, while on the second, we
obtained κ = 0.60 for holders and κ = 0.62 for tar-
gets, respectively. These scores can be interpreted as
substantial agreement (Landis and Koch, 1977).

4 Classifiers and the Three Different Tasks

We solve the given task as a supervised classification
problem. As a classifier, we employ Markov Logic
Networks (MLNs). We use this classifier because it
allows us to integrate all of our features, including
global constraints (see discussion in §5.5).

We consider 3 different tasks (bold rhombuses
in Figure 1): the detection of opinion roles (Dataset
I), the detection of opinion holders (Dataset II) and
the detection of opinion targets (Dataset II). Each
task is modeled as a binary classifier. Even though
the latter two tasks use the same dataset, we can-
not train just one single binary classifier as there are
compounds whose modifiers represent both holder
and target, e.g. Geschwisterneid (sibling jealousy).3

5 Feature Design

Our core global features, which are used for all
three tasks (§4), include the two predominant ap-
proaches for compound analysis, i.e. (plain) para-
phrases (§5.1) and semantic knowledge (§5.4). We
extend the paraphrase approach with two major in-
novations. First, we examine a verb detour (§5.2)
by which we gain important information regarding
the syntactic relationship between the modifier and
the head of the compound. Secondly, we show that
joint paraphrases (§5.3) considering both holder and

3For the holder-detection task, the modifier of such com-
pounds are considered a holder, while for the target-detection
task, they are considered a target. For the holder-detection task,
we have the two classes holder and no holder, while for the
target-detection task, the classes are target and no target.

802

Global Features
features used on all three tasks
(i.e. Datasets I and II)

PARA (§5.1-5.3), SEM
(§5.4), HEAD (§5.5)

Local Features
feature used only on task Role
(i.e. Dataset I)

SUBJ (§5.6)

feature used only on task Holder
and task Target (i.e. Dataset II)

VIEW (§5.7)

Table 3: Division of global and local features.

target are better than paraphrases focusing on only
one role. We argue that for our task, (syntactic) am-
biguity rather than lack of coverage is the pressing
problem. Therefore, we do not focus on paraphrase
acquisition but introduce new disambiguation fea-
tures. Beside the extensions to paraphrases men-
tioned above, we introduce a global head constraint
(§5.5) as an additional global feature. As a local
feature for the initial role classification, we perform
subjectivity detection on the compound (§5.6). And
finally, we use the sentiment view that the head of
the compound evokes (§5.7) as a local feature in the
holder and target classification tasks.

Table 3 lists which feature is used in which task.
If a feature is restricted to a specific task (i.e. it is a
local feature), then this is motivated below in the rel-
evant subsection introducing the respective feature.

5.1 Plain Paraphrases (PARAplain)
An established method for computing the relation
expressed by a compound is to consider paraphrases,
that is, co-occurrences of the head and modifier as
individual constituents accompanied by some pre-
dictive context. For example, the compound Ex-
pertenauffassung (expert view) can be paraphrased
by Auffassung unter Experten (view among experts).
The preposition unter (among) is an explicit lexi-
cal clue for the (implicit) relation holding between
head and modifier in the compound. As paraphrases
we manually collected 18 frequent dependency rela-
tions that typically hold between an opinion noun
and its opinion holder (10) or its opinion target
(11).4 (The data release provides more information
including a full list of all paraphrases.) For each
compound, we check in deWaC whether head and
modifier can be observed in any of those relations.

(10) objpunter(among)(<opinion noun>, <holder>): Auffassung

4We obtain dependency parses by ParZu (Sennrich et al.,
2009).

unter Experten (view among experts)
(11) objpauf (towards)(<opinion noun>, <target>): Hass auf Chris-

ten (hatred towards Christians)

We consider each of those selected dependency
relations as an individual feature, i.e. we do not
explicitly group the chosen relations to holder and
target. Assuming that the predictiveness of the dif-
ferent relations varies, this encoding allows a super-
vised classifier to appropriately weight each relation.

5.2 Verb Detour Paraphrases (PARAverb)
Some of the paraphrases from §5.1 are ambiguous.
This particularly concerns objpvon(of) which occurs
with approx. 40% of the compounds of our dataset.
On the first reading illustrated by (12)a), we observe
a modifier being a holder, while, on the second read-
ing shown by (13)a), the modifier is a target.

For heads being deverbal nouns (e.g. comment
or assessment), this ambiguity can often be resolved
by considering morphologically related verbs. In
(12)b) and (13)b), the two modifiers no longer share
the same dependency relation to the opinion word.
Opinion holders tend to occur in subject position
(12)b) while targets occur in object position (13)b).
Wiegand and Klakow (2012) identify these depen-
dency relations for the two different opinion roles
as the most frequent ones. So for deverbal nouns,
which make up 57% of the heads of our compounds,
we add a feature that checks in deWaC whether the
modifier is more often observed as a subject or an
object of a verb related to the head. (Wiegand and
Klakow (2012) actually consider semantic roles, i.e.
agent and patient, instead of dependency relations.
Due to the lack of robust semantic role-labeling for
German, we use dependency relations as a proxy.
That is, we identify agents with the dependency re-
lation subj and patients with the relation obj.)

(12) paraphrases for Leserkommentar (reader comments):
a) Kommentarnoun [von Lesern objpvon]

(commentnoun [of readers objpof
]).

b) Lesersubj kommentierenverb ein Ereignis.
(Readerssubj commentverb on an event.)

(13) paraphrases for Schülerbeurteilung (student assessment):
a) Beurteilungnoun [von Schülern objpvon]

(assessmentnoun [of students objpof
])

b) Lehrer beurteilenverb Schülerobj .
(Teachers assessverb studentsobj .)

Even though the disambiguation of deverbal noun
compounds with the help of verb relations has been

803

examined before (Lapata, 2002), it has not been ex-
ploited for an actual application, such as opinion role
extraction. Neither has it been compared against
plain paraphrases, which use the head noun of the
compound directly (§5.1).

Our use of verb semantics for compound analysis
is also different from its predominant use in previous
work (Kim and Baldwin, 2006; Nakov and Hearst,
2013) where noun compounds are considered whose
parts represent arguments of an abstract verbal re-
lation (e.g. malaria mosquito are arguments of re-
lation ‘mosquito causes malaria’). Thus, the aim
has been to predict verbs for those compounds that
match those abstract relations (e.g. to cause). We are
looking for different verbs, namely those that are the
morphological basis for the head noun.

For this verb detour, we produce a mapping from
nouns (i.e. the heads of our opinion compounds) to
verbs by combining distributional and string simi-
larity. We extracted the verbs most similar to each
of these nouns (we use top 100). For that we in-
duce vector representations of all head nouns of our
gold standard and all existing German verbs using
the embedding toolkit Word2Vec (Mikolov et al.,
2013).5 For each noun, we select the verb with the
highest cosine-similarity that has at least a Leven-
shtein (string) similarity (Levenshtein, 1966) of 3.
This high threshold ensures that nouns which are not
deverbal nouns are not mapped to any verb. Against
a manual mapping, our automatic method produced
an F-score of 76.1 (at a precision of 77.1).

5.3 Joint Paraphrases (PARAjoint)

Another way of reducing the ambiguity of para-
phrases is to employ paraphrases that jointly con-
sider opinion holder and target (Table 4). We as-
sume that the presence of one ambiguous depen-
dency relation is less problematic in the presence
of another less ambiguous relation. The ambigu-
ity can be resolved by method of elimination. For
instance, even though objpvon/of (Widerstand/resis-
tance, Bauern/farmers) is ambiguous, in the first ex-
ample of Table 4, it can only represent a holder,
since the second relation objpgegen/against (Wider-
stand/resistance, Gesetz/regulation) implies a target.

5We used the cbow-model with 200 dimensions. All re-
maining parameters are set to their respective default values.

We also use paraphrases in which the compound
itself occurs (second and third pattern type of Table
4). Since, in the first example of the second pat-
tern type, only the relation objpmit/with (Zufrieden-
heit/satisfaction, Unternehmen/company) is indica-
tive of a target, the modifier is likely to be a holder.
(The example of the third pattern type follows an
analogous pattern to extract a target.) The second
example (of the second pattern type) Sprengstoffan-
schlag (bomb attack) illustrates that paraphrases can
also be used to infer the absence of opinion roles.
Sprengstoff (explosive) cannot be a target because of
the other target relation that is present. It cannot be
a holder either as it is not a person.

The fourth pattern type in Table 4 considers pat-
terns involving possessive pronouns. They typically
represent holders, so the remaining dependency re-
lation can only represent a target.

Similar to §5.1, we encode the joint-paraphrase
patterns by their individual dependency relations.
That is, the first example in Table 4 would be rep-
resented as the feature objpmodifier

von objpgegen.

5.4 Semantic Knowledge (SEM)

We use GermaNet (Hamp and Feldweg, 1997), the
German version of WordNet, to look up the hyper-
nyms of each modifier and each head. The hyper-
nymy relation is the most frequently used seman-
tic relation employed for noun compound analysis
(Girju et al., 2005; Nastase et al., 2006; Girju et
al., 2009; Tratz and Hovy, 2010). Hypernyms allow
some generalization over the lexical units represent-
ing the heads and modifiers of our compounds. By
manual inspection, we found that there are several
hypernyms that correlate with a category we want
to predict. For example, heads having the hyper-
nym politische Handlung (political act) typically in-
dicate holders as in Arbeiterunruhe (worker unrest)
or Studentenrebellion (student rebellion). Hyper-
nyms may also serve as negative cues. For exam-
ple, heads having the hypernym Verbrechen (crime)
are typically contained in compounds whose modi-
fiers represent neither a holder nor a target, such as
Steuervergehen (tax offense) or Autodiebstahl (car
theft).

804

Pattern Type Example Compound Label Example Sentence

<head> <holder> <target>

Bauernwiderstand holder Widerstand [von Bauern objpvon] [gegen das Gesetz objpgegen]
(farmer resistance) (resistance [of farmers objpof

] [against the regulation objpagainst
])

Schülerbeurteilung target Beurteilung [der Lehrer gmod] [von Schülern objpvon]
(student assessment) ([teachers’ possessive] assessment [of students objpof

])

<compound> <target>

Mitarbeiterzufriedenheit holder Mitarbeiterzufriedenheit [mit dem Unternehmen objpmit
]

(staff satisfaction) (staff satisfaction [with their companyobjpwith
])

Sprengstoffanschlag no role Sprengstoffanschlag [auf Touristen objpauf
]

(bomb attack) (bomb attack [on tourists objpon])

<compound> <holder> Prüfungsangst target Prüfungsangst [unter Schülern objpunter]

(test anxiety) (test anxiety [among students objpamong])

<possessive> <head> <target> Kinderfreundlichkeit target [seine possessive] Freundlichkeit [gegenüber Kindern objpgegenueber
]

(child friendliness) ([his possessive] friendliness [towards children objptowards
])

Table 4: Illustration of patterns for joint paraphrases.

Head Preference Examples
Haltung
(attitude)

holder Arbeitgeberhaltung (employer attitude), Autorenhaltung (author attitude), Konsumentenhaltung (consumer
attitude), Verbraucherhaltung (customer attitude), Zuschauerhaltung (viewer attitude)

Verehrung
(worship)

target Ahnenverehrung (ancestor worship), Heldenverehrung (hero worship), Ikonenverehrung (icon worship),
Kaiserverehrung (emperor worship), Märtyrerverehrung (martyr worship)

Attentat
(attack)

no role Bombenattentat (bombing attack), Flugzeugattentat (aircraft attack), Selbstmordattentat (suicide attack),
Sprengstoffattentat (explosive attack), Säureattentat (acid attack)

Table 5: Illustration of selectional preferences of heads of opinion compounds.

5.5 Head Constraint (HEAD)

We observed that many heads have a strong selec-
tional preference as to what type they select as a
modifier. This is illustrated in Table 5. There are
heads that prefer opinion holders as modifiers (e.g.
Haltung (attitude)), heads that prefer targets (e.g.
Verehrung (worship)) or heads that prefer no role
(e.g. Attentat (attack)). This is further substantiated
by Table 6 showing the high average role-purity of
compound groups sharing the same head. Purity is
measured by the proportion of the most frequent role
occurring within each group of compounds sharing
the same head.6 Given this selectional preference,
we formulate a global head constraint (Table 7) that
if two compounds have the same head, their modi-
fiers should convey the same opinion role.

In order to implement this constraint in a super-
vised classifier we employ Markov Logic Networks
(MLNs), which combine first-order logic with prob-
abilities. As a tool, we use thebeast (Riedel, 2008).
MLNs have been effectively used in various related
NLP tasks, such as discourse-based sentiment analy-
sis (Zirn et al., 2011), semantic-role labeling (Meza-
Ruiz and Riedel, 2009), anaphora resolution (Hou et
al., 2013) or question answering (Khot et al., 2015).

6On average, a head occurs in 5 different compounds on
Dataset I, and in 4 different compounds on Dataset II.

Dataset I 88.86 Dataset II 91.36

Table 6: Role-purity of compounds with the same head.

MLNs are a set of pairs (Fi, wi) where Fi is a
first-order logic formula and wi an associated real-
valued weight. They build a template for construct-
ing a Markov network given a set of constants C .
The probability distribution that is estimated is a log-
linear model

P (X = x) =
1

Z
exp

(

k
∑

i=1

wini(x)

)

(1)

where ni(x) is the number of groundings in Fi in x
and Z is some normalization constant.

5.6 Subjectivity Disambiguation (SUBJ)
Many opinion words are known to be ambiguous.
Some of their senses convey subjectivity while oth-
ers do not (Akkaya et al., 2009). 13% of the com-
pounds in Dataset I (Figure 1) are not subjective due
to an ambiguous head. The modifier of such com-
pounds neither represents a holder or a target. Ex-
amples are Luftdruck (air pressure) or Strömungs-
widerstand (flow resistance). Dataset II exclusively
contains compounds whose modifiers are holders or
targets. By definition, all those compounds are sub-
jective. So a subjectivity feature may only be useful
for the role-detection task, which uses Dataset I.

805

∀c1[∀c2[∀h[∀r1[∀r2[[isCompound(c1)∧ isCompound (c2)∧ isHeadOf (h, c1)∧ isHeadOf (h, c2)∧ isRoleOfModifierOf (r1, c1)∧
isRoleOfModifierOf (r2, c2)] → (r1 == r2)]]]]]

Table 7: Head constraint as logic formula.

For a feature indicating the subjectivity of a com-
pound, we cannot look up the compounds in a senti-
ment lexicon since they are rarely included. Instead,
we compute the 100 most similar German nouns for
every compound and use as a feature the proportion
of opinion nouns (according to the PolArt sentiment
lexicon) on that list. Opinion nouns on that similar-
ity list are less likely to be compounds and therefore
more likely to be found in a sentiment lexicon. As in
§5.2, similarity is measured by the cosine between
two Word2Vec-vector embeddings. As a result, we
find, for example, for Luftdruck (air pressure), other
non-subjective terms, such as Temperatur (temper-
ature) or Luftfeuchtigkeit (humidity), while for the
subjective compound Hexenglaube (witch belief),
we find the subjective expressions Aberglaube (su-
perstition) or Häresie (heresy).

5.7 Sentiment Views (VIEW)

Our final feature considers the sentiment view (Wie-
gand and Ruppenhofer, 2015) that an opinion noun,
in our case the head of the compound, conveys.
We distinguish between speaker views, expressions
conveying sentiment of the speaker of the utterance
(e.g. mistake, finesse, noise), and actor views, ex-
pressions conveying sentiment of the entities partic-
ipating in the event denoted by the opinion noun
(e.g. support, criticism, rating). Nouns convey-
ing speaker views have an implicit opinion holder
(i.e. the speaker). Therefore, if such a noun is the
head of an opinion compound, the modifier can-
not be a holder but only a target, e.g. Arztfehler
(doctor’s mistake), Kinderlärm (children’s noise) or
Neonazipropaganda (neonazi propaganda). Only
heads conveying an actor view can take modifiers
to represent a holder (Nutzerwertung/user rating) or
a target (Opferunterstützung/victim support). Senti-
ment views may be helpful on Dataset II (Figure 1),
where we have to decide between holders and tar-
gets. 40.3% of those heads convey a speaker view.

So far, the detection of sentiment views on a lexi-
cal level has only been examined for opinion verbs.
Wiegand and Ruppenhofer (2015) propose a boot-

strapping approach in which seed verbs for the dif-
ferent sentiment views are automatically extracted.7

Then, a label propagation algorithm (Talukdar et al.,
2008) is run on a word-similarity graph generated
from the opinion verbs. Thus labels from the seeds
can be expanded to the remaining opinion verbs.
The nodes in the graph correspond to the opinion
verbs. The best performing graph is based on the
similarity metric introduced in Lin (1998).

A critical step is the seed generation. Wiegand
and Ruppenhofer (2015) extract seeds representing
actor views by looking for opinion words frequently
co-occurring with prototypical opinion holders (pro-
toOHs). These are common nouns, such as oppo-
nents or critics, that typically act as opinion hold-
ers (Wiegand and Klakow, 2011). By definition,
such explicit opinion holders indicate an actor view.
Seeds for speaker-view verbs are obtained by ex-
tracting verbs co-occurring with reproach-patterns,
such as obji(beschuldigt/blamed for, <verb>) (14)
that matches in (15).

(14) Pattern: obji(beschuldigt/blamed for, <speaker-view verb>)
(15) Die UNO wurde beschuldigt, [die Klimadaten fehlgedeutetverb

zu haben obji]. (The UN was blamed for misinterpretingverb

climate data.)
(16) Pattern: objg(beschuldigt/blamed for, <speaker-view noun>)
(17) Die UNO wurde [der Fehldeutungnoun objg] von Kli-

madaten beschuldigt. (The UN was blamed for the
misinterpretationnoun of climate data.)

This bootstrapping approach can be immediately ap-
plied to our setting. In the word-similarity graph,
the opinion verbs are replaced by opinion nouns.
With protoOHs, not only actor-view verbs but also
actor-view nouns can be extracted. Similarly, the re-
proach-patterns work for both verbs (15) and nouns
(17). (Only the dependency relation changes from
obji (14) to objg (16).) ProtoOHs and reproach pat-
terns are simply translated from English to German.

7Wiegand and Ruppenhofer (2015) consider two types of
actor views, agent view and patient view. The former take their
opinion holder as an agent (typical verbs are criticize or sup-
port), while the latter align holders to patients (typical verbs are
disappoint or please). Since this distinction of actor views does
not exist among nouns, we combine them into a single category
in this paper.

806

6 Experiments

We consider one binary MLN classifier for each of
our three tasks (§4). Most of our features are fre-
quently occurring features (e.g. paraphrases (§5.1),
subjectivity feature (§5.6), sentiment views (§5.7)).
Supervised classifiers only require few training data
in order to assign appropriate weights to such fea-
tures. Therefore, we sample 20% of the instances for
each task of the respective dataset as training data.
We test on the remaining 80% of the dataset. This
procedure is repeated 5 times. The 5 training sam-
ples within each task are disjoint. We report macro-
average F-score averaged over the 5 test samples.

We will first evaluate global features and then pro-
ceed to the local features. A division of our feature
set into these groups was presented in Table 3.

6.1 Evaluation of Global Features

Table 8 compares the features that can be applied
on all three tasks. On average, PARA (§5.1-§5.3) is
slightly better than SEM (§5.4). Since their combi-
nation always results in a significant improvement,
we conclude that these features contain complemen-
tary information. In the majority of cases, HEAD
(§5.5) also yields significant improvement.

Table 9 compares the different subtypes of para-
phrases (§5.1-§5.3). For all tasks, notable improve-
ments are obtained by adding the other types of para-
phrases to the plain paraphrases. While the joint
paraphrases improve the plain paraphrases on all
tasks, for the verb detour, improvements can be ob-
served only for the extraction of holders and targets.
However, this improvement is significantly better
than that of the joint paraphrases. In summary, in or-
der to obtain best possible results on all three types
of classifications, we need all types of paraphrases.

6.2 Evaluation of the Local Feature for Role
Detection

Table 10 examines the impact of the subjectivity fea-
ture (§5.6). We closely compare this feature with
the head constraint since we found both features
only working in combination with other features. In
terms of statistical significance, the head constraint
is more effective than the subjectivity feature.

Tasks
Features Role Holder Target
SEM 54.75 58.82 58.10
SEM+HEAD 56.33◦ 60.88◦ 60.33◦
PARA 62.62 57.01 57.46
PARA+HEAD 63.82∗† 59.07∗ 60.64∗

PARA+SEM 63.92† 60.28 62.20‡
PARA+SEM+HEAD 65.26∗†‡ 61.58∗† 63.27◦‡

statistical significance testing (paired t-test): ◦: better than w/o
+HEAD (p < 0.1); ∗: better than w/o +HEAD (p < 0.05); †: better

than SEM+HEAD (p < 0.05); ‡: better than PARA+HEAD
(p < 0.05)

Table 8: F-scores of features applicable to all tasks.

Tasks
Features Role Holder Target
PARAplain 58.34 52.55 51.64
PARAplain+joint 62.34∗ 54.87∗ 54.96∗
PARAplain+verb 58.85 57.51∗† 58.43∗†
PARAplain+joint+verb 62.62∗ 57.01∗† 57.46∗†

statistical significance testing (paired t-test, significance level
p < 0.05) ∗: better than PARAplain ; †: better than PARAplain+joint

Table 9: F-scores of paraphrase features.

6.3 Evaluation of the Local Feature for the
Detection of Holders and Targets

Table 11 examines the impact of the sentiment-view
feature (§5.7). We evaluate two variants of this fea-
ture. VIEWgold is a manual view annotation of all
opinion head nouns. It should be considered an up-
per bound. The second variant, VIEWboot , employs
the views as produced automatically by the boot-
strapping approach outlined in §5.7.8

Table 11 shows that this feature has a notable im-
pact on both PARAplain (i.e. the simplest feature set)
and SEM+PARA+HEAD (i.e. the most complex
feature set). This underlines that sentiment views
are an important aspect for opinion role extraction.

8Note that unlike Wiegand and Ruppenhofer (2015) we
manually removed incorrect seeds from the set of automatically
generated seeds (this affects less than 9% of the seeds).

Features SEM PARA PARA+SEM
+HEAD +HEAD +HEAD

54.75 56.33† 62.62 63.82‡ 63.92 65.26‡
+SUBJ 56.37◦ 58.57◦† 63.07 64.76∗‡ 64.57 66.42◦‡

statistical significance testing (paired t-test) ◦: better than w/o +SUBJ
(p < 0.1); ∗: better than w/o +SUBJ (p < 0.05); †: better than w/o

+HEAD (p < 0.1); ‡: better than w/o +HEAD (p < 0.05)

Table 10: Comparison of SUBJ and HEAD evaluated on task

Role (Dataset I); evaluation measure: F-score.

807

PARAplain PARA+SEM+HEAD
+VIEW +VIEW

Task VIEWgold boot gold boot gold
Holder 42.4 52.6 59.5∗ 64.8∗ 61.6 64.7∗ 71.2∗†
Target 43.6 51.6 61.7∗ 65.1∗ 63.3 66.5∗ 73.4∗†

statistical significance testing (paired t-test, significance level
p < 0.05) ∗: better than w/o +VIEW; †: better than +VIEWboot

Table 11: F-scores of sentiment view features.

all words in the sentences (bag of words)
brown clusters of all words in the sentences (bag of clusters)
part-of-speech sequences between head and modifier mentions
part-of-speech tags before/after modifier mentions
part-of-speech tags before/after head mentions
dependency paths between head and modifier mentions
proportion of opinion words in the sentences

each training/test instance represents the set of all sentences in which
head and modifier of a specific compound co-occur

Table 12: Features for distant supervision (baseline) classifier.

6.4 Comparison against Baselines

Table 13 compares the best result from our previous
experiments against 3 baselines. The first is a ma-
jority classifier predicting the majority class.

The second baseline is a classifier inspired by dis-
tant supervision (Mintz et al., 2009). As in our
paraphrase features, this classifier considers the con-
text in which modifier and head of a compound
occur as separate constituents. The difference is,
however, that we consider every such co-occurrence
(within the same sentence) as a context that con-
veys the same relation as the one that is (implicitly)
conveyed by the compound. Even though such an
assumption is naive, it has been shown to produce
quite reasonable performance in relation extraction
(Mintz et al., 2009). The advantage of such an ap-
proach is that a generic relation extraction/opinion
role extraction classifier can be trained on the re-
sulting data. Unlike our proposed method, it does
not require features tailored to the specific task (e.g.
manually written paraphrases). Since the result-

Tasks
Features Role Holder Target

BASELINES Majority 34.70 35.49 36.71
Distant Superv. 54.85 47.71 45.72
Distributional 58.15 52.91 52.72

our approach (best feature sets) 66.42∗ 64.71∗ 66.50∗
∗: better than all baselines according to statistical significance testing

(paired t-test, significance level at p < 0.05)

Table 13: Comparison of our approach against baselines; eval-

uation measure: F-score.

ing feature set (see also Table 12) is fairly high-
dimensional, we employ a support vector machine.
As an implementation, we use SVMlight (Joachims,
1999).

The third baseline is a distributional approach
in which label propagation is performed on a word-
similarity graph for compounds. The fundamental
difference between that baseline and our proposed
approach is that no relationship between head and
modifier is modeled but just the contexts of the com-
pounds themselves. We use the same (distributional)
similarity metric to form the word-similarity graph
and the same label propagation algorithm for this
task as we did for bootstrapping sentiment views
in §5.7. The only difference is that the nodes in
the graph are opinion compounds instead of opinion
nouns. The training data for the second and third
baseline are the same compounds as in our previous
experiments.

Table 13 shows that our proposed method sub-
stantially outperforms the baselines.

7 Conclusion

We presented an approach to the new task of opinion
role extraction on opinion compounds. We produced
a gold standard and proposed a method for classifi-
cation. We did not only consider established fea-
tures for noun compound analysis, i.e. paraphrases
and semantic classes of heads and modifiers, but also
proposed useful new features tailored to our task.
We examined paraphrases that jointly consider hold-
ers and targets, a verb detour in which noun heads
are replaced by related verbs, a global head con-
straint, and an auxiliary classification categorizing
the sentiment view of the head of the compound.
None of these features is language-specific.

Acknowledgements

We would like to thank Ines Rehbein for interesting dis-
cussions and helpful feedback on earlier drafts of the pa-
per. The authors were partially supported by the German
Research Foundation (DFG) under grants RU 1873/2-1
and WI 4204/2-1.

808

References

Cem Akkaya, Janyce Wiebe, and Rada Mihalcea. 2009.
Subjectivity Word Sense Disambiguation. In Proceed-
ings of EMNLP, pages 190–199.

Ken Barker and Stan Szpakowicz. 1998. Semi-
Automatic Recognition of Noun ModifierRelation-
ships. In Proceedings of COLING/ACL, pages 96–
102.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetti. 2009. The WaCky Wide Web: A Col-
lection of Very Large Linguistically Processed Web-
Crawled Corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Cristina Butnariu and Tony Veale. 2008. A Concept-
Centered Approach to Noun-Compound Interpreta-
tion. In Proceedings of COLING, pages 81–88.

Yejin Choi, Claire Cardie, Ellen Riloff, and Siddharth
Patwardhan. 2005. Identifying Sources of Opinions
with Conditional Random Fields and Extraction Pat-
terns. In Proceedings of HLT/EMNLP, pages 355–
362.

Lingjia Deng and Janyce Wiebe. 2014. Sentiment Prop-
agation via Implicature Constraints. In Proceedings of
EACL, pages 377–385.

Lingjia Deng and Janyce Wiebe. 2015. Joint Predic-
tion for Entity/Event-Level Sentiment Analysis using
Probabilistic Soft Logic Models. In Proceedings of
EMNLP, pages 179–189.

Corina Dima, Verena Henrich, Erhard Hinrichs, and
Christina Hoppermann. 2014. How to Tell a Schnee-
mann from a Milchmann: An Annotation Scheme
for Compound-Internal Relations. In Proceedings of
LREC, pages 1194–1201.

Roxana Girju, Dan Moldovan, Marta Tatu, and Daniel
Antohe. 2005. On the semantics of noun compounds.
Computer Speech and Language, 19:479–496.

Roxana Girju, Preslav Nakov, Vivi Nastase, Stan Sz-
pakowicz, Peter Turney, and Deniz Yuret. 2009.
Classification of semantic relations between nominals.
Language Resources and Evaluation, 43(2):105–121.

Roxana Girju. 2007. Improving the Interpretation of
Noun Phrases with Cross-linguistic Information. In
Proceedings of ACL, pages 568–575.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet - a
Lexical-Semantic Net for German. In Proceedings of
ACL workshop Automatic Information Extraction and
Building of Lexical Semantic Resources for NLP Ap-
plications, pages 9–15.

Yufang Hou, Katja Markert, and Michael Strube. 2013.
Global Inference for Bridging Anaphora Resolution.
In Proceedings of HLT/NAACL, pages 907–917.

Niklas Jakob and Iryna Gurevych. 2010. Extracting
Opinion Targets in a Single- and Cross-Domain Set-
ting with Conditional Random Fields. In Proceedings
of EMNLP, pages 1035–1045.

Thorsten Joachims. 1999. Making Large-Scale SVM
Learning Practical. In B. Schölkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods - Sup-
port Vector Learning, pages 169–184. MIT Press.

Richard Johansson and Alessandro Moschitti. 2013. Re-
lational Features in Fine-Grained Opinion Analysis.
Computational Linguistics, 39(3):473–509.

Jason S. Kessler and Nicolas Nicolov. 2009. Targeting
Sentiment Expressions through Supervised Ranking of
Linguistic Configurations. In Proceedings of ICWSM.

Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff,
Ashish Sabharwal, Peter Clark, and Oren Etzioni.
2015. Exploring Markov Logic Networks for Ques-
tion Answering. In Proceedings of EMNLP, pages
685–694.

Su Nam Kim and Timothy Baldwin. 2005. Automatic
Interpretation of Noun Compounds Using Wordnet
Similarity. In Proceedings of IJCNLP, pages 945–956.
Springer.

Su Nam Kim and Timothy Baldwin. 2006. Interpreting
Semantic Relations in Noun Compounds via Verb. In
Proceedings of COLING/ACL, pages 491–498.

Su Nam Kim and Preslav Nakov. 2011. Large-Scale
Noun Compound Interpretation Using Bootstrapping
and the Web as a Corpus. In Proceedings of EMNLP,
pages 648–658.

Manfred Klenner, Angela Fahrni, and Stefanos Petrakis.
2009. PolArt: A Robust Tool for Sentiment Analysis.
In Proceedings of NoDaLiDa, pages 235–238.

J. Richard Landis and Gary G. Koch. 1977. The Mea-
surement of Observer Agreement for Categorical Data.
Biometrics, 33(1):159–174.

Maria Lapata. 2002. The Disambiguation of Nominal-
izations. Computational Linguistics, 28(3):357–388.

Mark Lauer. 1995. Designing Statistical Language
Learners: Experiments on Noun Compounds. Ph.D.
thesis, Department of Computing, Macquarie Univer-
sity, Australia.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710.

Dekang Lin. 1998. Automatic Retrieval and Clustering
of Similar Words. In Proceedings of ACL/COLING,
pages 768–774.

Ivan Meza-Ruiz and Sebastian Riedel. 2009. Jointly
Identifying Predicates, Arguments and Senses using
Markov Logic. In Proceedings of HLT/NAACL, pages
155–163.

809

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations (ICLR).

George Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine Miller. 1990. Introduc-
tion to WordNet: An On-line Lexical Database. Inter-
national Journal of Lexicography, 3:235–244.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant Supervision for Relation Ex-
traction without Labeled Data. In Proceedings of
ACL/IJCNLP, pages 1003–1011.

Preslav I. Nakov and Marti A. Hearst. 2013. Semantic
Interpretation of Nouns Compounds Using Verbal and
Other Paraphrases. ACM Transactions on Speech and
Language Processing, 10(3).

Vivi Nastase and Stan Szpakowicz. 2003. Exploring
Noun-Modifier Semantic Relations. In Proceedings of
IWCS, pages 285–301.

Vivi Nastase, Jelber Sayyad-Shirabad, Marina Sokolova,
and Stan Szpakowicz. 2006. Learning Noun-Modifier
Semantic Relations with Corpus-based and WordNet-
based Features. In Proceedings of AAAI, pages 781–
786.

Sebastian Riedel. 2008. Improving the Accuracy and
Efficiency of MAP Inference for Markov Logic. In
Proceedings of UAI, pages 468–475.

Barbara Rosario and Marti Hearst. 2001. Classify-
ing the Semantic Relations in Noun Compounds via
a Domain-Specific Lexical Hierarchy. In Proceedings
of EMNLP.

Josef Ruppenhofer, Julia Maria Struß, Jonathan Sonntag,
and Stefan Gindl. 2014. IGGSA-STEPS: Shared
Task on Source and Target Extraction from Politi-
cal Speeches. Journal for Language Technology and
Computational Linguistics, 29(1):33–46.

Rico Sennrich, Gerold Schneider, Martin Volk, and Mar-
tin Warin. 2009. A New Hybrid Dependency Parser
for German. In Proceedings of GSCL, pages 115–124.

Partha Pratim Talukdar, Joseph Reisinger, Marius Pasca,
Deepak Ravichandran, Rahul Bhagat, and Fernando
Pereira. 2008. Weakly-Supervised Acquisition of La-
beled Class Instances using Graph Random Walks. In
Proceedings of EMNLP, pages 582–590.

Stephen Tratz and Eduard Hovy. 2010. A Taxonomy,
Dataset, and Classifier for Automatic Noun Com-
pound Interpretation. In Proceedings of ACL, pages
678–687.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating Expressions of Opinions and Emotions
in Language. Language Resources and Evaluation,
39(2/3):164–210.

Michael Wiegand and Dietrich Klakow. 2010. Convo-
lution Kernels for Opinion Holder Extraction. In Pro-
ceedings of HLT/NAACL, pages 795–803.

Michael Wiegand and Dietrich Klakow. 2011. Prototyp-
ical Opinion Holders: What We can Learn from Ex-
perts and Analysts. In Proceedings of RANLP, pages
282–288.

Michael Wiegand and Dietrich Klakow. 2012. Gener-
alization Methods for In-Domain and Cross-Domain
Opinion Holder Extraction. In Proceedings of EACL,
pages 325–335.

Michael Wiegand and Josef Ruppenhofer. 2015. Opin-
ion Holder and Target Extraction based on the Induc-
tion of Verbal Categories. In Proceedings of CoNLL,
pages 215–225.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing Contextual Polarity in Phrase-level
Sentiment Analysis. In Proceedings of HLT/EMNLP,
pages 347–354.

Andrea Zielinski and Christian Simon. 2009. Mor-
phisto – An Open Source Morphological Analyzer for
German. In Proceedings of the 2009 Conference on
Finite-State Methods and Natural Language Process-
ing: Post-proceedings of the 7th International Work-
shop FSMNLP 2008, pages 224–231. IOS Press Ams-
terdam, The Netherlands.

Cäcilia Zirn, Mathias Niepert, Heiner Stuckenschmidt,
and Michael Strube. 2011. Fine-Grained Sentiment
Analysis with Structural Features. In Proceedings of
IJCNLP, pages 336–344.

810

Proceedings of NAACL-HLT 2016, pages 811–817,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Capturing Reliable Fine-Grained Sentiment Associations
by Crowdsourcing and Best–Worst Scaling

Svetlana Kiritchenko and Saif M. Mohammad
National Research Council Canada

{svetlana.kiritchenko,saif.mohammad}@nrc-cnrc.gc.ca

Abstract

Access to word–sentiment associations is use-
ful for many applications, including senti-
ment analysis, stance detection, and linguistic
analysis. However, manually assigning fine-
grained sentiment association scores to words
has many challenges with respect to keeping
annotations consistent. We apply the annota-
tion technique of Best–Worst Scaling to ob-
tain real-valued sentiment association scores
for words and phrases in three different do-
mains: general English, English Twitter, and
Arabic Twitter. We show that on all three do-
mains the ranking of words by sentiment re-
mains remarkably consistent even when the
annotation process is repeated with a different
set of annotators. We also, for the first time,
determine the minimum difference in senti-
ment association that is perceptible to native
speakers of a language.

1 Introduction

Word–sentiment associations, commonly captured
in sentiment lexicons, are useful in automatic sen-
timent prediction (Pontiki et al., 2014; Rosenthal
et al., 2014), stance detection (Mohammad et al.,
2016a; Mohammad et al., 2016b), literary analysis
(Hartner, 2013; Kleres, 2011; Mohammad, 2012),
detecting personality traits (Grijalva et al., 2015;
Mohammad and Kiritchenko, 2015), and other ap-
plications. Manually created sentiment lexicons are
especially useful because they tend to be more accu-
rate than automatically generated lexicons; they can
be used to automatically generate large-scale lexi-
cons (Tang et al., 2014; Esuli and Sebastiani, 2006);

they can be used to evaluate different methods of
automatically creating sentiment lexicons; and they
can be used for linguistic analyses such as examin-
ing how sentiment is composed in phrases and sen-
tences.

The sentiment of a phrase can differ significantly
from the sentiment of its constituent words. Sen-
timent composition is the determining of sentiment
of a multi-word linguistic unit, such as a phrase or
a sentence, from its constituents. Lexicons that in-
clude sentiment associations for phrases as well as
for their constituent words are useful in studying
sentiment composition. We refer to them as senti-
ment composition lexicons (SCLs). We created SCLs
for three domains, and all three were used in recent
SemEval shared tasks. We refer to the lexicon cre-
ated for the English Twitter domain as the SemEval-
2015 English Twitter Sentiment Lexicon; for the gen-
eral English domain as the SemEval-2016 General
English Sentiment Modifiers Lexicon; and for the
Arabic Twitter domain as the SemEval-2016 Ara-
bic Twitter Sentiment Lexicon. Note that the English
Twitter lexicon was first described in (Kiritchenko et
al., 2014), whereas the other two are novel contribu-
tions presented in this paper.

Most existing manually created sentiment lex-
icons tend to provide only lists of positive and
negative words with very coarse levels of senti-
ment (Stone et al., 1966; Hu and Liu, 2004; Wil-
son et al., 2005; Mohammad and Turney, 2013).
The coarse-grained distinctions may be less use-
ful in downstream applications than having access
to fine-grained (real-valued) sentiment association
scores. Only a small number of manual lexicons

811

capture sentiment associations at a fine-grained level
(Bradley and Lang, 1999; Warriner et al., 2013).
This is not surprising because obtaining real-valued
sentiment annotations has several challenges. Re-
spondents are faced with a higher cognitive load
when asked for real-valued sentiment scores for
terms as opposed to simply classifying terms as ei-
ther positive or negative. Besides, it is difficult for
an annotator to remain consistent with his/her anno-
tations. Further, the same sentiment association may
map to different sentiment scores in the minds of dif-
ferent annotators; for example, one annotator may
assign a score of 0.6 and another 0.8 for the same
degree of positive association. One could overcome
these problems by providing annotators with pairs of
terms and asking which is more positive (a compar-
ative approach), however that requires a much larger
set of annotations (order N2, where N is the num-
ber of terms to be annotated). Best–Worst Scaling
(BWS) is an annotation technique, commonly used
in marketing research (Louviere and Woodworth,
1990), that exploits the comparative approach to an-
notation while keeping the number of required an-
notations small.

In this work, we investigate the applicability
and reliability of the Best–Worst Scaling annotation
technique in capturing word–sentiment associations
via crowdsourcing. Our main contributions are as
follows:

1. We create fine-grained sentiment composition
lexicons for Arabic Twitter and general English
(in addition to our earlier work on English Twit-
ter) using Best–Worst Scaling. The lexicons in-
clude entries for single words as well as multi-
word phrases. The sentiment scores are real val-
ues between -1 (most negative) and +1 (most pos-
itive).

2. We show that the annotations on all three do-
mains are reliable; re-doing the annotation with
different sets of annotators produces a very sim-
ilar order of terms—an average Spearman rank
correlation of 0.98. Furthermore, we show that
reliable rankings can be obtained with just two or
three annotations per BWS question. (Warriner et
al. (2013) and Graham et al. (2015) have shown
that conventional rating-scale methods require a
much higher number of responses (15 to 20)).

3. We examine the relationship between ‘differen-
ce in the sentiment scores between two terms’
and ‘agreement amongst annotators’ when asked
which term is more positive. We show that agree-
ment grows rapidly and reaches 90% when the
difference in sentiment scores is about 0.4 (20%
of interval between -1 and 1).

4. We calculate the minimum difference in sentime-
nt scores of two terms that is perceptible to na-
tive speakers of a language. For sentiment scores
between -1 (most negative) and 1 (most positive),
we show that the perceptible difference is about
0.08 for English and Arabic speakers. Knowing
the least perceptible difference helps researchers
better understand sentiment composition. For ex-
ample, consider the task of determining whether
an adjective significantly impacts the sentiment
of the noun it qualifies. This can be accomplished
by determining whether the difference in senti-
ment scores between the combined phrase and
the constituent noun alone is greater than the least
perceptible difference.

The data and code created as part of this project (the
lexicons, the annotation questionnaire, and the code
to generate BWS questions) are made available.1

2 Capturing Fine-Grained Sentiment
Associations By Manual Annotation

We now describe how we created three lexicons,
through manual annotation, that each provide real-
valued sentiment association scores.

2.1 Best–Worst Scaling Method of Annotation
Best–Worst Scaling (BWS), also sometimes referred
to as Maximum Difference Scaling (MaxDiff), is
an annotation scheme that exploits the comparative
approach to annotation (Louviere and Woodworth,
1990; Cohen, 2003; Louviere et al., 2015). Annota-
tors are given four items (4-tuple) and asked which
item is the Best (highest in terms of the property of
interest) and which is the Worst (least in terms of
the property of interest). These annotations can then
be easily converted into real-valued scores of asso-
ciation between the items and the property, which
eventually allows for creating a ranked list of items
as per their association with the property of interest.

1www.saifmohammad.com/WebPages/BestWorst.html

812

Given n terms to be annotated, the first step is
to randomly sample this set (with replacement) to
obtain sets of four terms each, 4-tuples, that satisfy
the following criteria:

1. no two 4-tuples have the same four terms;

2. no two terms within a 4-tuple are identical;

3. each term in the term list appears approxi-
mately in the same number of 4-tuples;

4. each pair of terms appears approximately in the
same number of 4-tuples.

In practice, around 1.5×n to 2×n BWS questions,
where n is the number of items, are sufficient to ob-
tain reliable scores. We annotated terms for the three
lexicons separately, and generated 2×n 4-tuples for
each set.

Next, the sets of 4-tuples were annotated through
a crowdsourcing platform, CrowdFlower. The
annotators were presented with four terms at a
time, and asked which term is the most positive
(or least negative) and which is the most nega-
tive (or least positive). Below is an example an-
notation question.2 (The Arabic data was anno-
tated through a similar questionnaire in Arabic.)

Focus terms:
1. th*nks 2. doesn’t work 3. w00t 4. #theworst

Q1: Identify the term that is associated with the most
amount of positive sentiment (or least amount of nega-
tive sentiment) – the most positive term:
1. th*nks 2. doesn’t work 3. w00t 4. #theworst

Q2: Identify the term that is associated with the most
amount of negative sentiment (or least amount of posi-
tive sentiment) – the most negative term:
1. th*nks 2. doesn’t work 3. w00t 4. #theworst

Each 4-tuple was annotated by ten respondents.

The responses were then translated into real-
valued scores and also a ranking of terms by sen-
timent for all the terms through a simple counting
procedure: For each term, its score is calculated as
the percentage of times the term was chosen as the
most positive minus the percentage of times the term
was chosen as the most negative (Orme, 2009; Flynn
and Marley, 2014). The scores range from -1 (the
most negative) to 1 (the most positive).

2The full sets of instructions for both English and Arabic
datasets are available at:
http://www.saifmohammad.com/WebPages/BestWorst.html

2.2 Lexicons Created With Best–Worst Scaling

SEMEVAL-2015 ENGLISH TWITTER LEXICON:
This lexicon is comprised of 1,515 high-frequency
English single words and simple negated expres-
sions commonly found in tweets. The set includes
regular English words as well as some misspelled
words (e.g., parlament), creatively-spelled words
(e.g., happeee), hashtagged words (e.g., #loveu-
mom), and emoticons.

SEMEVAL-2016 ARABIC TWITTER LEXICON:
This lexicon was created in a similar manner as
the English Twitter Lexicon but using Arabic words
and negated expressions commonly found in Arabic
tweets. It has 1,367 terms.

SEMEVAL-2016 GENERAL ENGLISH SENTIMENT

MODIFIERS LEXICON aka SENTIMENT COMPOSI-
TION LEXICON FOR NEGATORS, MODALS, AND

DEGREE ADVERBS (SCL-NMA): This lexicon
consists of all 1,621 positive and negative single
words from Osgood’s seminal study on word mean-
ing (Osgood et al., 1957) available in General In-
quirer (Stone et al., 1966). In addition, it includes
1,586 high-frequency phrases formed by the Osgood
words in combination with simple negators such as
no, don’t, and never, modals such as can, might, and
should, or degree adverbs such as very and fairly.
More details on the lexicon creation and an analysis
of the effect of different modifiers on sentiment can
be found in (Kiritchenko and Mohammad, 2016).

Table 1 shows example entries from each lexicon.
The complete lists of modifiers used in the three lex-
icons are available online.3 Details on the use of
these lexicons in SemEval shared tasks can be found
in (Rosenthal et al., 2015; Kiritchenko et al., 2016).

3 Quality of Annotations

3.1 Agreement and Reproducibility

Let majority answer refer to the option chosen most
often for a BWS question. The percentage of re-
sponses that matched the majority answer were as
follows: 82% for the English Twitter Lexicon, 80%
for the Arabic Twitter Lexicon, and 80% for the
General English Lexicon.

3www.saifmohammad.com/WebPages/SCL.html#ETSL
www.saifmohammad.com/WebPages/SCL.html#ATSL
www.saifmohammad.com/WebPages/SCL.html#NMA

813

Table 1: Example entries from the three lexicons.

Lexicon, Term Sentiment
SemEval-2015 English Twitter Lexicon

yummm 0.813
cant waitttt 0.656
#feelingsorryformyself -0.547
:’(-0.563

SemEval-2016 Arabic Twitter Lexicon�éJ
k. ð 	QË @ �èXAª�Ë@# (marital happiness) 0.800
	á�
�®K
(certainty) 0.675
	áºÓ@ B (not possible) -0.400

H. AëP@ (terrorism) -0.925

SemEval-2016 General English Lexicon
would be very easy 0.431
did not harm 0.194
increasingly difficult -0.583
severe -0.833

Annotations are reliable if similar results are ob-
tained from repeated trials. To test the reliability of
our annotations, we randomly divided the sets of ten
responses to each question into two halves and com-
pared the rankings obtained from these two groups
of responses. The Spearman rank correlation coef-
ficient between the two sets of rankings produced
for each of the three lexicons was found to be at
least 0.98. (The Pearson correlation coefficient be-
tween the two sets of sentiment scores for each lex-
icon was also at least 0.98.) Thus, even though an-
notators might disagree about answers to individual
questions, the aggregated scores produced by apply-
ing the counting procedure on the BWS annotations
are remarkably reliable at ranking terms.

Number of annotations needed: Even though
we obtained ten annotations per BWS question, we
wanted to determine the least number of annotations
needed to obtain reliable sentiment scores. For ev-
ery k (where k ranges from 1 to 10), we made the
following calculations: for each BWS question, we
randomly selected k annotations and calculated sen-
timent scores based on the selected subset of annota-
tions. We will refer to these sets of scores for the dif-
ferent values of k as S1, S2, and so on until S10. This
process was repeated ten times for each k. The aver-
age Spearman rank correlation coefficient between
S1 and S10 was 0.96, between S2 and S10 was 0.98,
and S3 and S10 was 0.99. This shows that as few as
two or three annotations per BWS question are suf-
ficient to obtain reliable sentiment scores. Note that

Figure 1: Rank vs. sentiment scores in SCL-NMA.

with 2 × n BWS questions (for n terms), each term
occurs in eight 4-tuples on average, and so even just
one annotation per BWS question means that each
term is assessed eight times.

3.2 Distribution of Sentiment Scores

Figure 1 gives an overview of the sentiment scores
in SCL-NMA. Each term in the lexicon is shown as
a dot in the corresponding plot. The x-axis is the
rank of each term in the lexicon when the terms are
ordered from most positive to least positive. The y-
axis is the real-valued sentiment score obtained from
the BWS annotations. Observe that the lexicon has
entries for the full range of sentiment scores (-1 to
1); that is, there are no significant gaps—ranges of
sentiment scores for which the lexicon does not in-
clude any terms. The dashed red line indicates a uni-
form spread of scores, i.e., the same number of terms
are expected to fall into each same-size interval of
scores. Observe that the lexicon has slightly fewer
terms in the intervals with very high and very low
sentiment scores. Similar figures (not shown here)
were obtained for the other two lexicons.

3.3 Perception of Sentiment Difference

The created lexicons capture sentiment associations
at a fine level of granularity. Thus, these annota-
tions can help answer key questions such as: (1) If
native speakers of a language are given two terms
and asked which is more positive, how does human
agreement vary with respect to the amount of differ-
ence in sentiment between the two focus terms? It is
expected that the greater the difference in sentiment,
the higher the agreement, but the exact shape of this
increase in agreement has not been shown till now.
(2) What least amount of difference in sentiment is
perceptible to native speakers of a language?

814

Figure 2: SCL-NMA: Human agreement on annotating
term w1 as more positive than term w2 for pairs with
difference in scores d = score(w1) - score(w2). The x-
axis represents d. The y-axis plots the avg. percentage of
human annotations that judge term w1 as more positive
than term w2 (thick line) and the corresponding 99.9%-
confidence lower bound (thin blue line).

Agreement vs. Sentiment Difference: For each
word pair w1 and w2 such that score(w1) −
score(w2) ≥ 0, we count the number of BWS an-
notations from which we can infer that w1 is more
positive than w2 and divide this number by the to-
tal number of BWS annotations from which we can
infer either that w1 is more positive than w2 or that
w2 is more positive thanw1. (We can infer thatw1 is
more positive thanw2 if in a 4-tuple that has bothw1

and w2 the annotator selected w1 as the most posi-
tive orw2 as the least positive. The case forw2 being
more positive than w1 is similar.) This ratio is the
human agreement for w1 being more positive than
w2, and we expect that it is correlated with the sen-
timent difference d = score(w1) − score(w2). To
get more reliable estimates, we average the human
agreement for all pairs of terms whose sentiment dif-
fers by d ± 0.01. Figure 2 shows the resulting av-
erage human agreement on SCL-NMA. Similar fig-
ures (not shown here) were obtained for the English
and Arabic Twitter data. Observe that the agreement
grows rapidly with the increase in score differences.
Given two terms with sentiment differences of 0.4
or higher, more than 90% of the annotators correctly
identify the more positive term.

Least Difference in Sentiment that is Percep-
tible to Native Speakers: In psychophysics, there
is a notion of least perceptible difference (aka just-
noticeable difference)—the amount by which some-
thing that can be measured (e.g., weight or sound
intensity) needs to be changed in order for the differ-

ence to be noticeable by a human (Fechner, 1966).
Analogously, we can measure the least perceptible
difference in sentiment. If two words have close to
identical sentiment associations, then it is expected
that native speakers will choose each of the words
about the same number of times when forced to pick
a word that is more positive. However, as the differ-
ence in sentiment starts getting larger, the frequency
with which the two terms are chosen as most posi-
tive begins to diverge. At one point, the frequencies
diverge so much that we can say with high confi-
dence that the two terms do not have the same sen-
timent associations. The average of this minimum
difference in sentiment score is the least percepti-
ble difference for sentiment. To determine the least
perceptible difference, we first obtain the 99.9%-
confidence lower bounds on the human agreement
(see the thin blue line in Figure 2). The least per-
ceptible difference is the point starting at which
the lower bound consistently exceeds 50% thresh-
old (i.e., the point starting at which we observe
with 99.9% confidence that the human agreement
is higher than chance). The least perceptible dif-
ference when calculated from SCL-NMA is 0.069,
from the English Twitter Lexicon is 0.080, and from
the Arabic Twitter Lexicon is 0.087. Observe, that
the estimates are very close to each other despite
being calculated from three completely independent
datasets. Kiritchenko and Mohammad (2016) use
the least perceptible difference to determine whether
a modifier significantly impacts the sentiment of the
word it composes with.

4 Conclusions
We obtained real-valued sentiment association
scores for single words and multi-word phrases
in three domains (general English, English Twit-
ter, and Arabic Twitter) by manual annotation and
Best–Worst Scaling. Best–Worst Scaling exploits
the comparative approach to annotation while keep-
ing the number of annotations small. Notably, we
showed that the procedure when repeated produces
remarkably consistent rankings of terms by senti-
ment. This reliability allowed us to determine the
value of the psycho-linguistic concept—least per-
ceptible difference in sentiment. We hope these find-
ings will encourage further use of Best–Worst Scal-
ing in linguistic annotation.

815

References
Margaret M Bradley and Peter J Lang. 1999. Affective

norms for English words (ANEW): Instruction manual
and affective ratings. Technical report, The Center for
Research in Psychophysiology, University of Florida.

Steven H. Cohen. 2003. Maximum difference scaling:
Improved measures of importance and preference for
segmentation. Sawtooth Software, Inc.

Andrea Esuli and Fabrizio Sebastiani. 2006. SENTI-
WORDNET: A publicly available lexical resource for
opinion mining. In Proceedings of the 5th Confer-
ence on Language Resources and Evaluation (LREC),
pages 417–422.

Gustav Fechner. 1966. Elements of psychophysics. Vol.
I. New York: Holt, Rinehart and Winston.

T. N. Flynn and A. A. J. Marley. 2014. Best-worst scal-
ing: theory and methods. In Stephane Hess and An-
drew Daly, editors, Handbook of Choice Modelling,
pages 178–201. Edward Elgar Publishing.

Yvette Graham, Nitika Mathur, and Timothy Baldwin.
2015. Accurate evaluation of segment-level machine
translation metrics. In Proceedings of the Annual Con-
ference of the North American Chapter of the ACL
(NAACL), pages 1183–1191.

Emily Grijalva, Daniel A. Newman, Louis Tay, M. Brent
Donnellan, P.D. Harms, Richard W. Robins, and Taiyi
Yan. 2015. Gender differences in narcissism: A meta-
analytic review. Psychological bulletin, 141(2):261–
310.

Marcus Hartner. 2013. The lingering after-effects in the
reader’s mind – an investigation into the affective di-
mension of literary reading. Journal of Literary The-
ory Online.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 168–
177, New York, NY, USA.

Svetlana Kiritchenko and Saif M. Mohammad. 2016.
The effect of negators, modals, and degree adverbs on
sentiment composition. In Proceedings of the Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA).

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts. Journal of Artificial Intelligence Research,
50:723–762.

Svetlana Kiritchenko, Saif M. Mohammad, and Moham-
mad Salameh. 2016. SemEval-2016 Task 7: De-
termining sentiment intensity of English and Arabic
phrases. In Proceedings of the International Work-
shop on Semantic Evaluation (SemEval), San Diego,
California, June.

Jochen Kleres. 2011. Emotions and narrative analysis:
A methodological approach. Journal for the Theory of
Social Behaviour, 41(2):182–202.

Jordan J. Louviere and George G. Woodworth. 1990.
Best-worst analysis. Working Paper. Department of
Marketing and Economic Analysis, University of Al-
berta.

Jordan J. Louviere, Terry N. Flynn, and A. A. J. Marley.
2015. Best-Worst Scaling: Theory, Methods and Ap-
plications. Cambridge University Press.

Saif M. Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion categories from
tweets. Computational Intelligence, 31(2):301–326.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Saif M. Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016a. A
dataset for detecting stance in tweets. In Proceed-
ings of 10th edition of the the Language Resources and
Evaluation Conference (LREC), Portorož, Slovenia.

Saif M. Mohammad, Parinaz Sobhani, and Svetlana Kir-
itchenko. 2016b. Stance and sentiment in tweets. Spe-
cial Section of the ACM Transactions on Internet Tech-
nology on Argumentation in Social Media, Submitted.

Saif M Mohammad. 2012. From once upon a time
to happily ever after: Tracking emotions in mail and
books. Decision Support Systems, 53(4):730–741.

Bryan Orme. 2009. Maxdiff analysis: Simple counting,
individual-level logit, and HB. Sawtooth Software,
Inc.

Charles E Osgood, George J Suci, and Percy Tannen-
baum. 1957. The measurement of meaning. Univer-
sity of Illinois Press.

Maria Pontiki, Harris Papageorgiou, Dimitrios Galanis,
Ion Androutsopoulos, John Pavlopoulos, and Suresh
Manandhar. 2014. SemEval-2014 Task 4: Aspect
based sentiment analysis. In Proceedings of the 8th
International Workshop on Semantic Evaluation (Se-
mEval), Dublin, Ireland.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and Veselin
Stoyanov. 2014. SemEval-2014 Task 9: Sentiment
analysis in Twitter. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval),
pages 73–80, Dublin, Ireland, August.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif Mohammad, Alan Ritter, and Veselin Stoyanov.
2015. SemEval-2015 Task 10: Sentiment analysis in
Twitter. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval), pages 450–
462, Denver, Colorado.

Philip Stone, Dexter C. Dunphy, Marshall S. Smith,
Daniel M. Ogilvie, and associates. 1966. The General

816

Inquirer: A Computer Approach to Content Analysis.
The MIT Press.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014. Building large-scale Twitter-specific senti-
ment lexicon: A representation learning approach. In
Proceedings of the International Conference on Com-
putational Linguistics (COLING), pages 172–182.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and domi-
nance for 13,915 English lemmas. Behavior Research
Methods, 45(4):1191–1207.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Joint Con-
ference on HLT and EMNLP, pages 347–354, Strouds-
burg, PA, USA.

817

Proceedings of NAACL-HLT 2016, pages 818–827,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Mapping Verbs In Different Languages to Knowledge Base Relations
using Web Text as Interlingua

Derry Tanti Wijaya
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

dwijaya@cs.cmu.edu

Tom M. Mitchell
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

tom.mitchell@cs.cmu.edu

Abstract

In recent years many knowledge bases (KBs)
have been constructed, yet there is not yet
a verb resource that maps to these growing
KB resources. A resource that maps verbs
in different languages to KB relations would
be useful for extracting facts from text into
the KBs, and to aid alignment and integration
of knowledge across different KBs and lan-
guages. Such a multi-lingual verb resource
would also be useful for tasks such as machine
translation and machine reading. In this pa-
per, we present a scalable approach to auto-
matically construct such a verb resource us-
ing a very large web text corpus as a kind of
interlingua to relate verb phrases to KB rela-
tions. Given a text corpus in any language
and any KB, it can produce a mapping of that
language’s verb phrases to the KB relations.
Experiments with the English NELL KB and
ClueWeb corpus show that the learned English
verb-to-relation mapping is effective for ex-
tracting relation instances from English text.
When applied to a Portuguese NELL KB and
a Portuguese text corpus, the same method au-
tomatically constructs a verb resource in Por-
tuguese that is effective for extracting relation
instances from Portuguese text.

1 Introduction

In recent years a variety of large knowledge bases
(KBs) have been constructed e.g., Freebase (Bol-
lacker et al., 2008), DBpedia (Auer et al., 2007),
NELL (Carlson et al., 2010), and Yago (Suchanek
et al., 2007). These KBs consist of (1) an on-
tology that defines a set of categories (e.g.,Sport-

sTeam, City), (2) another part of the ontology that
defines relations with these categories as argument
types (e.g., teamPlaysInCity(SportsTeam, City)),
(3) KB entities which instantiate these categories
(e.g., Steelers∈ SportsTeam), and (4) KB entity
pairs which instantiate these relations (e.g., (Steel-
ers, Pittsburgh) ∈ teamPlaysInCity). The KB on-
tology also specifies constraints (e.g., mutual exclu-
sion, subset) among KB categories and relations.

Despite recent progress in KB construction, there
is not yet a verb resource that maps to these KBs:
one that contains verb phrases1 that identify KB re-
lations. Such a verb resource can be useful to aid KB
relation extraction. A distribution of verb phrases
associated with any given KB relation is also a KB-
independent representation of that relation’s seman-
tics which can form the basis of aligning ontologies
across arbitrary KBs (Wijaya et al., 2013). Given
a KB and verb resources in different languages that
map to the KB, we can also begin to align knowl-
edge expressed in different languages.

We introduce here an approach to mapping verb
phrases to KB relations using a very large ClueWeb
corpus (Callan et al., 2009) as a kind of interlin-
gua. Our approach grounds each KB relation in-
stance (e.g.,teamPlaysInCity(Steelers, Pittsburgh))
in mentions of its argument pair in this text, then
represents the relation in terms of the verb phrases
that connect these paired mentions (see Fig. 1). For
a high coverage mapping, we train on both labelled
and unlabelled data using expectation maximization
(EM). We introduce argument type checking during

1In this paper we use the term “verb phrase” and “verb” in-
terchangeably; both referring to either verb or verb+preposition

818

Figure 1: Mapping verb phrases to relations in KB through

Web-text as interlingua. Each relation instance is grounded by

its mentions in the Web-text. The verbs that co-occur with men-

tions of the relation’s instances are mapped to that relation.

the EM process to ensure only verbs whose argu-
ment types match the relation’s argument types are
mapped to the relation. We also incorporate con-
straints defined in the KB ontology to find a verb to
relation mapping consistent with these constraints.

Our contributions are: (1) We propose a scal-
able EM-based method that automatically maps verb
phrases to KB relations by using the mentions of
the verb phrases with the relation instances in a
very large unlabeled text corpus. (2) We demon-
strate the effectiveness of the resource for extract-
ing relation instances in NELL KB. Specifically,
it improves the recall of both the supervised- and
the unsupervised- verb-to-relation mapping; demon-
strating the benefit of semi-supervised learning on
unlabeled Web-scale text. (3) We demonstrate the
flexibility of the method, which is both KB- and
language-independent, by using the same method
for constructing English verb resource to automat-
ically construct a Portuguese verb resource. (4) We
make our verb resources publicly available2.

2 Method

2.1 Terminology

We define a NELL KB to be a 6-tuple
(C, IC , R, IR, Subset,Mutex). C is the set of cate-
gories e.g.,SportsTeami.e.,cj ∈ C = {c1, ..., c|C|}.
IC is the set of category instances which are

2http://www.cs.cmu.edu/%7Edwijaya/mapping.html

entity-category pairs e.g., (Cleveland, City) i.e., IC

= {(em, cj) | em ∈ cj , cj ∈ C}.
R is the set of relations e.g.,teamPlaysInCity

i.e., ri ∈ R = {r1, ..., r|R|}. We also defineftype

to be a function that when applied to a relation
ri returns the argument type signature of the rela-
tion ftype(ri) = (cj , ck) for somecj , ck ∈ C e.g.,
ftype(teamPlaysInCity) = (SportsTeam, City).

IR is the set of relation instances which
are entity-relation-entity triples e.g., (Cava-
liers, teamPlaysInCity, Cleveland) i.e., IR =
{(em,ri,en) | (em, en) ∈ ri, ri ∈ R, em ∈ cj , en ∈
ck, ftype(ri) = (cj , ck)}; IR = Ir1 ∪ Ir2 ∪ ... Ir|R|

.
Subset is the set of all subset constraints among

relations in R i.e., Subset = {(i, k) : Iri ⊆
Irk

}. For example{(person,ceoOf, company)} ⊆
{(person,worksFor, company)}.

Mutex is the set of all mutual exclusion con-
straints among relations inR i.e.,Mutex = {(i, k) :
Iri ∩ Irk

= φ}. For example{(drug,hasSideEffect,
physiologicalCondition)} ∩ {(drug, possiblyTreats,
physiologicalCondition)} = φ.

Each KB entityem can be referred to by one or
more noun phrases (NPs). For example, the entity
Cavaliers, can be referred to in text using either the
NP “Cleveland Cavaliers”or the NP“The Cavs”3.
We defineNen(em) to be the set of English NPs cor-
responding to entityem.

We defineSV O to be the English Subject-Verb-
Object (SVO) interlingua4 consisting of tuples of the
form (nps, vp, npo, w), wherenps andnpo are noun
phrases (NP) corresponding to subject and object,
respectively,vp is a verb phrase that connects them,
andw is the count of the tuple.

2.2 Data Construction

We construct a datasetD for mapping English verbs
to NELL KB relations. First, we convert each tu-
ple in SV O to its equivalent entity pair tuple(s) in
SV O′ = {(em, vp, en, w) | nps ∈ Nen(em), npo ∈
Nen(en), (nps, vp, npo, w) ∈ SV O}. Then, we
constructD from SV O′ as a collection of labeled
and unlabeled instances.

3defined by thecanReferTorelation in NELL KB
4We use 600 million SVO triples collected from the entire

ClueWeb (Callan et al., 2009) of about 230 billion tokens with
some filtering described in Section 3.1.

819

The set of labeled instances isD` =
{(y(em,en), v(em,en))} wherey(em,en) ∈ {0, 1}|R|

is a bit vector of label assignment, each bit repre-
senting whether the instance belongs to a particular
relation i.e.,yi

(em,en) = 1 ⇐⇒ (em, en) ∈ ri and

0 otherwise.v(em,en) ∈ R|V | is a |V |-dimensional
vector of verb phrase counts that connectem and
en in SV O′ (V is the set of all verb phrases) i.e.,
vp
(em,en)

is the number of times the verb phrasevp

connectsem anden in SV O′.
The collection of unlabeled instances is con-

structed from entity pairs inSV O′ whose label
assignmenty are unknown (its bits are all zero)
i.e., Du = {(y(em,en), v(em,en)) | (em, ∗, en, ∗) ∈
SV O′, (em, ∗, en) /∈ IR}.

An instance in our datasetd(em,en) ∈ D is
therefore either a labeled or unlabeled tuple i.e.,
d(em,en) = (y(em,en), v(em,en)).

We letftype(d(em,en)) return the argument type of
the instance i.e.,ftype(d(em,en)) = (cj , ck) where
(em, cj) and(en, ck) ∈ IC .

We let fverb(d(em,en)) return the set of all verb
phrases that co-occur with the instance inSV O′ i.e.,
fverb(d(em,en)) = {vp | (em, vp, en, ∗) ∈ SV O′}.

When applied to a relationri, we letfverb(ri) re-
turn the set of all verb phrases that co-occur with
instances inD whose types match that of the rela-
tion i.e., fverb(ri) = {vp | ∃ d(em,en) ∈ D, vp ∈
fverb(d(em,en)), ftype(d(em,en)) = ftype(ri)}.

2.3 Model

We train a Naive Bayes classifier on our dataset.
Given as input a collectionD` of labeled instances
andDu of unlabeled instances, it outputs a classi-
fier, θ̂, that takes an unlabeled instance and predicts
its label assignment i.e., for each unlabeled instance
d(em,en) ∈ Du the classifier predicts the label as-
signmenty(em,en) usingv(em,en) as features:

P (yi
(em,en) = 1 | d(em,en); θ̂)

=
P (ri|θ̂)P (d(em,en)| ri; θ̂)

P (d(em,en)|θ̂)

=

P (ri|θ̂)
|V |∏

p=1
P (vp|ri; θ̂)

v
p
(em,en)

|R|∑

k=1
P (rk|θ̂)

|V |∏

p=1
P (vp|rk; θ̂)

v
p
(em,en)

(1)

If the task is to classify the unlabeled instance into
a single relation, only the bit of the relation with the
highest posterior probability is set i.e,yk

(em,en) = 1

wherek = arg maxi P (yi
(em,en) = 1 | d(em,en); θ̂).

2.3.1 Parameter Estimation

To estimate model parameters (the relation
prior probabilities θ̂ri ≡ P (ri|θ̂) and prob-
abilities of a verb given a relation̂θvp|ri

≡

P (vp|ri; θ̂)) from both labeled and unlabeled data,
we use an Expectation Maximization (EM) algo-
rithm (Nigam et al., 2006). The estimates are
computed by calculating a maximum a posteriori
estimate ofθ, i.e. θ̂ = arg maxθ L(θ|D) =
arg maxθ log(P (D | θ)P (θ)).

The first term,P (D | θ) is calculated by the prod-
uct of all the instance likelihoods:

P (D | θ)

=
∏

d(em,en)∈Du

|R|∑

i=1

P (ri|θ)P (d(em,en)|ri; θ)

×
∏

d(em,en)∈D`

∑

{i|yi
(em,en)

=1}

P (ri|θ)P (d(em,en)|ri; θ)

(2)

The second term,P (θ), the prior distribution
over parameters is represented by Dirichlet priors:

P (θ) ∝
|R|∏

i=1
((θri)

α1−1
|V |∏

p=1
(θvp|ri

)α2−1) where α1

and α2 are parameters that effect the strength of
the priors. In this paper we setα1 = 2 andα2 =
1 + σ(P e(vp|ri)), whereP e(vp|ri) is the initial bias
of the verb-to-relation mapping. Thus, in this paper
we defineP (θ) as:

P (θ) =

|R|∏

i=1

(P (ri|θ)

|V |∏

p=1

(P (vp|ri; θ)σ(P e(vp|ri))) (3)

We can see from this thatσ(P e(vp|ri)) is a con-
jugate prior onP (vp|ri; θ) with σ as the confidence
parameter. This conjugate prior allows incorpora-
tion of any existing knowledge (Section 2.3.2) we
may have about the verb-to-relation mapping.

From Equation 2, we see thatlog P (D|θ)
contains a log of sums, which makes a maxi-
mization by partial derivatives computationally in-
tractable. Using EM, we instead maximize theex-
pected log likelihood of the data with respect to

820

the posterior distribution of they labels given by:
arg maxθ E(y|D;θ)[log P (D|θ)].

In the E-step, we use the current estimates of the
parameterŝθt to computêyt = E[y|D; θ̂t] the ex-
pected label assignments according to the current
model. In practice it corresponds to calculating the
posterior distribution over they labels for unlabeled
instancesP (yi

(em,en) = 1 | d(em,en); θ̂
t) (Equation

1) and using the estimates to compute its expected
label assignment̂yt

(em,en).
In the M-step, we calculate a new maximum

a posteriori estimate for̂θ(t+1) which maximizes
the expected log likelihood of the complete data,
Lc(θ|D; ŷt) = log(P (θt)) + ŷt [log P (D|θt)]:

Lc(θ|D; ŷt) = log(P (θt))

+
∑

d(em,en)∈D

|R|∑

i=1

yti
(em,en) log P (ri|θ)P (d(em,en)|ri; θ)

(4)

Lc(θ|D; y) boundsL(θ|D) from below (by ap-
plication of Jensen’s inequalityE[log(X)] ≤
log(EX)). The EM algorithm produces parameter
estimateŝθ that correspond to a local maximum of
Lc(θ|D; y). The relation prior probabilities are thus
estimated using current label assignments as:

P (ri|θ̂
(t+1)) =

1 +
∑

d(em,en)∈D

yti
(em,en)

|R| + |D|
(5)

The verb-to-relation mapping probabilities are es-
timated in the same manner:

P (vp | ri; θ̂(t+1)) =

σ
(t+1)
i (P e(vp | ri)) +

∑

d(em,en)∈D
vp
(em,en)

yti
(em,en)

σ
(t+1)
i +

|V |∑

s=1

∑

d(em,en)∈D
vs
(em,en)

yti
(em,en)

(6)

We start withσ = |V | and gradually reduce the
impact of prior by decayingσ with a decay parame-
ter of 0.8 at each iteration in the manner of (Lu and
Zhai, 2008)). This will allow the EM to gradually
pick up more verbs from the data to map to relations.

EM iteratively computes parametersθ1, ...,θt us-
ing the above E-step and M-step update rule at each
iterationt, halting when there is no further improve-
ment in the value ofLc(θ|D; y).

2.3.2 Prior Knowledge

In our prior P (θ), we incorporate knowledge
about verb-to-relation mappings from the text pat-
terns learned by NELL to extract relations. This is
our way ofaligning our verb-to-relation mappings
with NELL’s current extractions. Coupled Pattern
Learner (CPL) (Carlson et al., 2010) is a component
in NELL that learns these contextual patterns for ex-
tracting instances of relations and categories.

We consider only CPL’s extraction patterns that
contain verb phrases. Given a setEri of CPL’s ex-
traction patterns for a relationri, andEri,vp as the
set of extraction patterns inEri that contains the

verb phrasevp, we computeP e(vp | ri) =
| Eri,vp |
| Eri |

and use them as priors in our classifier (Equation 3).5

2.3.3 Argument Type Checking

Although some verbs are ambiguous (e.g., the
verb “play” may express several relations:mu-
sicianPlaysMusicalInstrument, athletePlaysSport,
actorPlaysMovie, etc), knowing the types of the
verbs’ arguments can help disambiguate the verbs
(e.g., the verb “play” that takes amusicalInstru-
ment type as object is more likely to express the
musicianPlaysMusicalInstrumentrelation). There-
fore, we incorporate argument type checking in our
EM process to ensure that it maps verbs to relations
whose argument types match:

• In the E-Step, we make sure that unlabeled
instances are only labeled with relations that
have the same argument types as the instance
and that share some verbs with the instance.
In other words, in the E-step we compute
P (yi

(em,en) = 1 | d(em,en)) if ftype(ri) =

ftype(d(em,en)) and
(
f(verb)(ri)∪ {vp|Eri,vp 6=

∅}
)
∩ f(verb)(d(em,en)) 6= ∅.

• In the M-step, we make sure that verbs are
only mapped to relations whose argument types
match at least one of the instances that co-occur
with the verbs inSV O′. In other words, in the
M-step we computeP (vp | ri) if vp ∈ fverb(ri)
or Eri,vp 6= ∅.

5We manually add a few verb phrases for relations whoseEr

is an empty set when possible, to set the EM process on these
relations with good initial guesses of the parameters. In average,
each relation has about 6 verb patterns in total as priors.

821

2.3.4 Incorporating Constraints

In the E-step, for each unlabeled instance, given
the probabilities over relation labelsP (yi

(em,en) =

1 | d(em,en); θ̂
t), and Subset and Mutex con-

straints6, similar to (Dalvi et al., 2015), we use a
Mixed-Integer Program (MIP) to produce its bit vec-
tor of label assignment as output:ŷt

(em,en).
The constraints among relations are incorporated

as constraints on bits in this bit vector. For exam-
ple, if for an unlabeled instance (Jeff Bezos, Ama-
zon), a bit corresponding to the relationceoOf is set
then the bit corresponding to the relationworksFor
should also be set due to the subset constraint:ceoOf
⊆ worksFor. For the same instance, the bit cor-
responding tocompetesWithshould not be set due
to the mutual exclusion constraintceoOf ∩ com-
petesWith= φ. The MIP formulation for each un-
labeled instance thus tries to maximize the sum of
probabilities of selected relation labels after penaliz-
ing for violation of constraints (Equation 7), where
ζik are slack variables forSubset constraints andδik

are slack variables forMutex constraints:

maximize
y(em,en),ζik,δik

(|R|∑

i=1

yi
(em,en) × P (yi

(em,en) = 1|d(em,en); θ̂
t)

−
∑

(i,k)∈Subset

ζik −
∑

(i,k)∈Mutex

δik

)

subject to,

yi
(em,en) ≤ yk

(em,en) + ζik, ∀(i, k) ∈ Subset

yi
(em,en) + yk

(em,en) ≤ 1 + δik, ∀(i, k) ∈ Mutex

ζik, δik ≥ 0, yi
(em,en) ∈ {0, 1}, ∀i, k (7)

Our algorithm that includes argument type check-
ing and constraints is summarized in Algorithm 1.

2.4 Portuguese Verb Mapping

To map Portuguese verbs to relations in Portuguese
NELL, which is an automatically and independently
constructed KB separate from English NELL, we
use the Portuguese NELL and Portuguese text cor-
pus SV Opt

7 and construct a datasetDpt. Given

6The Subset and Mutex constraints are obtained
as part of the NELL KB ontology, which is publicly
available at the NELL Read The Web project website:
http://rtw.ml.cmu.edu/resources/.

7We obtain the Portuguese SVO from the NELL-Portuguese
team at Federal University of Sao Carlos.

Algorithm 1 The EM Algorithm for Verb-to-RelationMapping

Input: D = D` ∪ Du and an initial naive Bayes classifierθ1 from
labeled documentsD` only (using Equations 5 and 6)

Output: θT that include verbs to relations mappings given by
P (vp|ri; θ

T)
1: for t = 1 ...T do
2: E-Step:
3: for d(em,en) ∈ Du do
4: ComputeP (yi

(em,en)
= 1|d(em,en); θ

t) ∀ri ∈ R that
satisfy argument types checking (Equation 1)

5: Find a consistent label assignmentyt
(em,en)

by solving
MIP (Equation 7)

6: end for
7: M-step: Recompute model parametersθt+1 based on current

label assignments (Equation 5 and 6) respecting argument type
checking

8: if convergence (Lc(θt+1), Lc(θt)) then
9: break

10: end if
11: end for
12: return θT

English Portuguese Portuguese
NELL NELL NELL +en

|R| 317 302 302
|IR| 135,267 5,675 12,444
|D`| 85,192 2,595 5,412
|Du| 240,490 595,274 1,186,329

Table 1: Statistics of KB facts and dataset constructed

Dpt, we follow the same approach as before to find
a mapping of Portuguese verbs to relations. Since
Portuguese NELL is newly constructed, it contains
fewer facts (category and relation instances) than
English NELL, and hence its datasetD`

pt has fewer
labeled instances (see Table 1).

Adding more relation instances to Portuguese
NELL can result in more labeled instances in the
datasetDpt, a more productive EM, and a better
verb-to-relation mapping. Since each category and
each relation in Portuguese NELL ontology has a
one-to-one mapping in English NELL ontology, we
can add relation instances to Portuguese NELL from
the corresponding English NELL relations.

English NELL however, has only English noun
phrases (NPs) to refer to entities in its relation in-
stances. To add more labeled instances inDpt us-
ing English relation instances, we need to find in-
stantiations of these English relation instances in
PortugueseSV Opt, which translates to finding Por-
tuguese NPs that refer to English NELL entities. For
example, Portuguese NP: “Artria torcica interna” for
English NELL entity:internal mammary artery.

To automatically translate English NELL enti-

822

Figure 2: Mapping NELL entityBrad Pitt to DBPedia.

ties to Portuguese NPs, we use DBPedia (Auer et
al., 2007) which has structured information about
Wikipedia pages in many languages. The idea is
to map each English NELL entityem to its corre-
sponding English DBPedia page and therefore its
Portuguese DBPedia page8. We use the structured
information of the Portuguese page in DBPedia: its
title and label as the set of Portuguese NPs corre-
sponding to the English entity,Npt(em).

More specifically, for each English NELL en-
tity em with English NPs that can refer to it,
Nen(em), we findcandidateEnglish DBPedia pages
that can refer to the entity. We do this by com-
puting Jaccard similarities (Jaccard, 1912; Chap-
man, 2009) of the entity’s NPs with titles and la-
bels of English DBPedia pages. We select pages
with Jaccard similarities of more than 0.6 as can-
didates e.g., for English NELL entityBrad Pitt we
find candidate English pages:http://dbpedia.

org/page/Brad_Pitt (Brad Pitt, the US actor)
and http://dbpedia.org/page/Brad_Pitt_

(boxer) (Brad Pit, the Australian boxer).
Then, we construct a graph containing nodes that

are: (1) the NELL entity that we want to map to
DBPedia, (2) its candidate DBPedia pages, (3) other
entities that have relations to the entity in NELL KB,
and (4) the candidate DBPedia pages of these other
entities (see Fig. 2 for the NELL entityBrad Pitt).

We add as edges to this graph: (1) the can-refer-
to edges between entities in NELL and their can-
didate pages in DBPedia (dashed edges in Fig. 2),
(2) the relation edges between the entities in NELL
KB (black edges), and (3) the hyperlink edges be-

8Almost every DBPedia English page has a corresponding
Portuguese page

tween the pages in DBPedia (gray edges). In this
graph we want to use the knowledge that NELL has
already learned about the entity to narrow its candi-
dates down to the page that the entity refers to. The
idea is that relatedness among the entities in NELL
implies relatedness among the DBPedia pages that
refer to the entities. We use Personalized Page Rank
(Page et al., 1999) to rank candidate DBPedia pages
in this graph and pick the top ranked page as the
page that can refer to the NELL entity.

For example, to find the DBPedia page that can
refer to our NELL entityBrad Pitt, we use NELL’s
knowledge about this entity to rank its candidate
pages. As seen in Fig. 2, DBPedia page ofBrad
Pitt, the US actor (dbpedia:brad pitt) is highly con-
nected to other pages (dbpedia:angelina jolie, db-
pedia:douglas pitt, dbpedia:usa) that are in turn
connected to the NELL entityBrad Pitt. dbpe-
dia:brad pitt is thus ranked highest and picked as
the page that can refer to the NELL entityBrad Pitt.

Once we have an English DBPedia page that can
refer to the NELL entityem, we can obtain the cor-
responding Portuguese page from DBPedia. The ti-
tle and label of the Portuguese page becomes the set
of Portuguese NPs that can refer to the NELL en-
tity i.e., Npt(em) (see Table 2 for examples). Us-
ing Npt(em) we find instantiations of English re-
lation instances inSV Opt to add as labeled in-
stances inDpt. Portuguese NELL enriched with En-
glish NELL (i.e., Portuguese NELL+en) has more
than double the amount of relation instances, la-
beled and unlabeled instances (Table 1) than Por-
tuguese NELL. In the experiments, we observe that
this translates to a better verb-to-relation mapping.

Mapping NELL to DBPedia is also useful because
it can align existing knowledge and add new knowl-
edge to NELL. For example, by mapping to DBPe-
dia, we can resolve abbreviations (e.g., the NELL
entity: COO as “Chief Operations Officer” in En-
glish or “Diretor de Operaç̃oes” in Portuguese), or
resolve a person entity (e.g., the NELL entity:Uta-
maroas “Kitagawa Utamaro”, the virtual artist).

3 Experiments

3.1 Pre-processing

For better coverage of verbs, we lemmatize verbs in
the EnglishSV O (using Stanford CoreNLP (Man-

823

English NELL entity PortugueseNPs
Amazonian Brown Brocket “Veado-Roxo”,“Fuboca”

COO “Diretor de Operaç̃oes”
Utamaro “KitagawaUtamaro”

Notopteridae “Peixe-faca”
1967 Arab Israeli War “Guerra dos SeisDias”,

“Guerra de1967”
Food Products “ProdutosAlimenticios”,

“Alimento”, “Comida”, ...

Table 2: Example Portuguese NPs learned for NELL entities

ning et al., 2014)). We lemmatize verbs in Por-
tugueseSV Opt (using LemPORT (Rodrigues et al.,
2014)) and expand contracted prepositions.

For better precision and to make our method scale
to a large text corpus, we focus on mapping verbs
that are important for a relation based on how often
the verbs co-occur with entity pairs that match the
relation’s argument type. For each argument type in
the EnglishSV O we consider only the top 50 verbs
(in terms oftf-idf scores) for mapping. We usetf-idf
scores to adjust for the fact that some verbs appear
more frequently in general. For each of these verbs,
we also use only the top 50 entity pairs that co-occur
with the verb in theSV O (in terms of co-occurrence
counts) to construct our datasetD.

For Portuguese verb-to-relation mapping, since
SV Opt is much smaller than the EnglishSV O (i.e.,
it contains only about 22 million entity pair-verb
triples compared to the 600 million triples in the En-
glish SV O), we use all the Portuguese entity pairs
and verbs for mapping. To adjust for the fact that
some verbs appear more frequently in general, we
usetf-idf scores instead of co-occurrence counts for
the values ofv(em,en) in the M-step (Equation 6).

3.2 Evaluation

We set aside 10% ofD` for testing. Given a test
instancet(em,en) and the trained model, we can pre-
dict the label assignmenty(em,en) using Eq. 1. This
simulates the task of relation extraction where we
predict relation(s) that exist between the entity pair
in t(em,en).

We compare predicted labels of these test in-
stances to the actual labels and measure precision,
recall and F1 values of the prediction. We evalu-
ate NELL relations that have more than one labeled
instances inD` (constructed using the method de-
scribed in section 2.2). For experiments on the En-
glish NELL, we evaluate 77 relations, with an aver-

Figure 3: Performance on leaf relations.

age of 23 (and a median of 11)training instances
per relations. For experiments on the Portuguese
NELL+en, which is Portuguese NELL enriched with
relation instances from English NELL, we evaluate
85 relations, with an average of 31 (and a median of
10) training instances per relations. We compare the
prediction produced by our approach:EM with that
of other systems:CPL, DIRT , andNB.

In CPL, we obtain verb-to-relation mapping
weights from NELL’s CPL patterns and hand-
labeled verb phrases (see Section 2.3.2). InDIRT ,
we obtain verb-to-relation mapping weights in an
unsupervised manner (Lin and Pantel, 2001) based
on their mutual information over labeled training in-
stances. In Naive Bayes (NB) we learn the verb-to-
relation mapping weights from labeled training in-
stances. In contrast to the other systems,EM allows
learning from both labeled and unlabeled instances.

To make other systems comparable to our pro-
posed method, ForNB and DIRT we add CPL
weights as priors to their verb-to-relation mapping
weights. For all these other systems, we also incor-
porate type-checking during prediction in that unla-
beled instances are only labeled with relations that
have the same argument types as the instance.

We show the micro-averaged performance of the
systems onleaf relations of English NELL and Por-
tuguese NELL (Fig. 3), where we do not incorpo-
rate constraints and classify each test instance into
a single relation. We observe in both English and

824

Figure 4: Performance on all relations.

Portuguese NELL that the verb-to-relation mapping
obtained byEM results in predictions that have a
much higher recall and comparable precision.

In Figure 3, we also observe a gain in performance
when we runEM on Portuguese NELL+en which is
Portuguese NELL enriched with relation instances
from English NELL obtained using our DBPedia
linking in section 2.4. More labeled instances results
in higher recall and precision. This shows the useful-
ness of aligning and merging knowledge from many
different KBs to improve verb-to-relation mapping
and relation extraction in general.

We show the micro-averaged performance of the
systems onall relations of English NELL and Por-
tuguese NELL (Fig. 4). Here, we incorporate hi-
erarchical and mutual exclusive constraints between
relations in ourEM , allowing a test instance to be
classified into more than one relation while respect-
ing these constraints. Like before, we observe that
the verb-to-relation mapping obtained byEM results
in predictions with a much higher recall and compa-
rable precision to other systems which do not incor-
porate constraints between relations.

In the experiments we also observe thatNB per-
forms comparably or better thanDIRT . We hypothe-
size that it is becauseNB obtains its verb-to-relation
mapping in a supervised manner whileDIRT ob-
tains its mapping in an unsupervised manner.

We also conduct experiments to investigate how
much influence type-checking has on prediction. We
show performance over instances whose types alone
are not enough to disambiguate their assignments

Figure 5: Performance on English NELL relations with and

without type-checking.

Relation Verbs Proposed
NewInstances

bookWriter a1 be written bya2, (Dracula, Bram Stoker),
a2 write a1 (Divine Comedy, Dante)

city- a1 be known asa2, (Amman, Philadelphia),
Also- a2 be known asa1, (Chennai, Madras),

KnownAs a2 be renameda1, (Southport, Smithville)
liderDe- a1 fundadora2, (Jimmy Wales, Wikipedia),

Organizacao a1 ceo de/ema2 (Chad Hurley, Youtube)
pessoa- a1 ser condenar aa2, (Pedrinho Matador,

Acusada- a1 ser acusar dea2, Homicidios),
DoCrime a1 serprender (Omid Tahvili,

pora2 Trafico de Drogaso)

Table 3: Some relations’ verbs and proposed new instances

(i.e., when more than one relation shares their ar-
gument type signatures) to see the merits of verb-to-
relation mapping on prediction (Fig. 5). We observe
that verbs learned byEM results in a better predic-
tion even when used without type-checking (EM (-)
Type) than using type-checking alone (by picking
majority class among relations that have the correct
type) (Type Only). Adding type checking improves
performance even further (EM). This shows how
verbs learning is complementary to type-checking.

The results of our experiments also highlight the
merit of learning from a large, though unlabeled cor-
pus to improve the coverage of verb-to-relation map-
ping and hence the recall of predictions. We also
observe the usefulness of incorporating constraints
and for merging knowledge from multiple KBs to
improve performance. Another advantage ofEM is
that it produces relation labels for unlabeled data not
yet in NELL KB. We show some of these new pro-
posed relation instances as well as some of the verb-

825

to-relation mapping obtained byEM (Table 3).
EM learns in average 177 English verbs and 3310

Portuguese verbs per relation; and propose in av-
erage 1695 new instances per relation for English
NELL, and 6426 new instances per relation for Por-
tuguese NELL. It learns less English verbs than Por-
tuguese due to the filtering of English data (Sec-
tion 3.1) and a high degree of inflection in Por-
tuguese verbs. The smaller size of Portuguese KB
also means more of its proposed instances are new.

4 Related Work

Existing verb resources are limited in their ability to
map to KBs. Some existing resources classify verbs
into semantic classes either manually (e.g. WordNet
(Miller et al., 1990)) or automatically (e.g. DIRT
(Lin and Pantel, 2001)). However, these classes
are not directly mapped to KB relations. Other re-
sources provide relations between verbs and their ar-
guments in terms of semantic roles (e.g. PropBank
(Kingsbury and Palmer, 2002), VerbNet (Kipper et
al., 2000), FrameNet (Ruppenhofer et al., 2006)).
However, it is not directly clear how the verbs map
to relations in specific KBs.

Most existing verb resources are also manually
constructed and not scalable. A verb resource that
maps to KBs should grow in coverage with the KBs,
possibly by leveraging large corpora such as the
Web for high coverage mapping. One system that
leverages Web-text as an interlingua is (Wijaya et
al., 2013). However, they use it to map KBs to
KBs, and obtain a verb-to-relation mapping only in-
directly. They also compute heuristic confidences
in verb-to-relation mappings from label propagation
scores, which are not probabilities. In contrast, we
map verbs directly to relations, and obtainP (vp|ri)
as an integral part of our EM process.

In terms of systems that learn mappings of tex-
tual patterns to KB relations, CPL (Carlson et al.,
2010) is one system that is most similar to our pro-
posed approach in that it also learns text patterns for
KB relations in a semi-supervised manner and uses
constraints in KB ontology to couple the learning to
produce extractors consistent with these constraints.
However, CPL uses a combination of heuristics in
its learning, while we use EM. In our experiments,
we use CPL patterns that contain verbs as priors and

show that our approach outperforms CPL in terms
of effectiveness for extracting relation instances.

In terms of the relation extraction, there are
distantly-supervised methods that can produce verb
groupings as a by product of relation extraction. One
state-of-the-art uses matrix factorization and univer-
sal schemas to extract relations (Riedel et al., 2013).
In this work, they populate a database of a uni-
versal schema (which involves surface form predi-
cates and relations from pre-existing KBs such as
Freebase) by using matrix factorization models that
learn latent feature vectors for relations and entity
tuples. One can envision obtaining a verb group-
ing for a particular relation by predicting verb sur-
face forms that occur between entity tuples that are
instances of the relation. However, unlike our pro-
posed method that learns mapping between typed-
verbs to relations, they do not incorporate argument
types in their learning, preferring to learn latent en-
tity representation from data. Although this im-
proves relation extraction, they observe that it hurts
performance of surface form prediction because a
single surface pattern (like “visit”) can have mul-
tiple argument types (person-visit-location, person-
visit-person, etc). Unlike our method, it is not clear
in their method how argument types of surface pat-
terns can be dealt with. Furthermore, it is not clear
how useful prior constraints between relations (sub-
set, mutex, etc.) can be incorporated in their method.

5 Conclusion

In this paper, we introduce an EM-based approach
with argument type checking and ontological con-
straints to automatically map verb phrases to KB re-
lations. We demonstrate that our verb resource is
effective for extracting KB relation instances while
improving recall; highlighting the value of learn-
ing from large scale unlabeled Web text. We also
show the flexibility of our method. Being KB-, and
language-independent, our method is able to con-
struct a verb resource for any language, given a KB
and a text corpus in that language. We illustrate this
by building a verb resource in Portuguese and in En-
glish which are both effective for extracting KB rela-
tions. Future work will explore the use of our multi-
lingual verb resource for relation extraction by read-
ing natural language text in multiple languages.

826

Acknowledgments

We thank members of the NELL team at CMU and
Federal University of Sao Carlos for their helpful
datasets, comments, and suggestions. This research
was supported by DARPA under contract number
FA8750-13-2-0005.

References

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. InThe
semantic web.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. InSIGMOD.

J. Callan, M. Hoy, C. Yoo, and L. Zhao. 2009.
Clueweb09 data set.boston.lti.cs.cmu.edu.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka Jr, and Tom M Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. InAAAI, volume 5, page 3.

Sam Chapman. 2009. Simmetrics. URL
http://sourceforge. net/projects/simmetrics/. SimMet-
rics is a Similarity Metric Library, eg from edit dis-
tance’s (Levenshtein, Gotoh, Jaro etc) to other met-
rics,(eg Soundex, Chapman). Work provided by UK
Sheffield University funded by (AKT) an IRC spon-
sored by EPSRC, grant number GR N, 15764.

Bhavana Dalvi, Einat Minkov, Partha P Talukdar, and
William W Cohen. 2015. Automatic gloss finding
for a knowledge base using ontological constraints. In
Proceedings of the Eighth ACM International Confer-
ence on Web Search and Data Mining, pages 369–378.
ACM.

Paul Jaccard. 1912. The distribution of the flora in the
alpine zone.New phytologist, 11(2):37–50.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. InLREC. Citeseer.

Karin Kipper, Hoa Trang Dang, and Martha Palmer.
2000. Class-based construction of a verb lexicon. In
AAAI/IAAI, pages 691–696.

Dekang Lin and Patrick Pantel. 2001. Discovery of infer-
ence rules for question-answering.Natural Language
Engineering, 7(04):343–360.

Yue Lu and Chengxiang Zhai. 2008. Opinion integra-
tion through semi-supervised topic modeling. InPro-
ceedings of the 17th international conference on World
Wide Web, pages 121–130. ACM.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.

2014. The Stanford CoreNLP natural language pro-
cessing toolkit. InProceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990. In-
troduction to wordnet: An on-line lexical database*.
International journal of lexicography, 3(4):235–244.

Kamal Nigam, Andrew McCallum, and Tom Mitchell.
2006. Semi-supervised text classification using em.
Semi-Supervised Learning, pages 33–56.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1999. The pagerank citation ranking:
bringing order to the web.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas.

Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo
Gomes. 2014. Lemport: a high-accuracy cross-
platform lemmatizer for portuguese.Maria João
Varanda Pereira Jośe Paulo Leal, page 267.

Josef Ruppenhofer, Michael Ellsworth, Miriam RL
Petruck, Christopher R Johnson, and Jan Scheffczyk.
2006. Framenet ii: Extended theory and practice.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM.

Derry Wijaya, Partha Pratim Talukdar, and Tom Mitchell.
2013. Pidgin: ontology alignment using web text as
interlingua. InProceedings of the 22nd ACM inter-
national conference on Conference on information &
knowledge management, pages 589–598. ACM.

827

Proceedings of NAACL-HLT 2016, pages 828–838,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Comparing Convolutional Neural Networks
to Traditional Models for Slot Filling

Heike Adel and Benjamin Roth and Hinrich Schütze
Center for Information and Language Processing (CIS)

LMU Munich
Oettingenstr. 67, 80538 Munich, Germany

heike@cis.lmu.de

Abstract

We address relation classification in the con-
text of slot filling, the task of finding and eval-
uating fillers like “Steve Jobs” for the slot X
in “X founded Apple”. We propose a convo-
lutional neural network which splits the input
sentence into three parts according to the re-
lation arguments and compare it to state-of-
the-art and traditional approaches of relation
classification. Finally, we combine different
methods and show that the combination is bet-
ter than individual approaches. We also ana-
lyze the effect of genre differences on perfor-
mance.

1 Introduction

Structured knowledge about the world is useful for
many natural language processing (NLP) tasks, such
as disambiguation, question answering or semantic
search. However, the extraction of structured infor-
mation from natural language text is challenging be-
cause one relation can be expressed in many differ-
ent ways. The TAC Slot Filling (SF) Shared Task
defines slot filling as extracting fillers for a set of
predefined relations (“slots”) from a large corpus of
text data. Exemplary relations are the city of birth
of a person or the employees or founders of a com-
pany. Participants are provided with an evaluation
corpus and a query file consisting of pairs of enti-
ties and slots. For each entity slot pair (e.g. “Ap-
ple” and “founded by”), the systems have to return
the second argument (“filler”) of the relation (e.g.
“Steve Jobs”) as well as a supporting sentence from
the evaluation corpus. The key challenge in slot

filling is relation classification: given a sentence s
of the evaluation corpus containing the name of a
queried entity (e.g., “Apple”) and a filler candidate
(e.g., “Steve Jobs”), we need to decide whether s ex-
presses the relation (“founded by”, in this case). We
will refer to the mentions of the two arguments of
the relation as name and filler. Performance on re-
lation classification is crucial for slot filling since its
effectiveness directly depends on it.

In this paper, we investigate three complementary
approaches to relation classification.

The first approach is pattern matching, a leading
approach in the TAC evaluations. Fillers are vali-
dated based on patterns. In this work, we consider
patterns learned with distant supervision and pat-
terns extracted from Universal Schema relations.

The second approach is support vector machines.
We evaluate two different feature sets: a bag-of-
word feature set (BOW) and more sophisticated skip
n-gram features.

Our third approach is a convolutional neural net-
work (CNN). CNNs have been applied to NLP tasks
like sentiment analysis, part-of-speech tagging and
semantic role labeling. They can recognize phrase
patterns independent of their position in the sen-
tence. Furthermore, they make use of word embed-
dings that directly reflect word similarity (Mikolov
et al., 2013). Hence, we expect them to be ro-
bust models for the task of classifying filler candi-
dates and to generalize well to unseen test data. In
this work, we train different variants of CNNs: As
a baseline, we reimplement the recently developed
piecewise CNN (Zeng et al., 2015). Then, we ex-
tend this model by splitting the contexts not only for

828

pooling but also for convolution (contextwise CNN).
Currently, there is no benchmark for slot fill-

ing. Therefore, it is not possible to directly com-
pare results that were submitted to the Shared Task
to new results. Comparable manual annotations for
new results, for instance, cannot be easily obtained.
There are also many different system components,
such as document retrieval from the evaluation cor-
pus and coreference resolution, that affect Shared
Task performance and that are quite different in na-
ture from relation classification. Even in the sub-
task of relation classification, it is not possible to
directly use existing relation classification bench-
marks (e.g. Riedel et al. (2013), Hendrickx et al.
(2010)) since data and relations can be quite differ-
ent. Many benchmark relations, for instance, corre-
spond to Freebase relations but not all slots are mod-
eled in Freebase and some slots even comprise more
than one Freebase relation. While most relation clas-
sification benchmarks either use newswire or web
data, the SF task includes documents from both do-
mains (and discussion fora). Another difference to
traditional relation classification benchmarks arises
from the pipeline aspect of slot filling. Depending
on the previous steps, the input for the relation clas-
sification models can be incomplete, noisy, include
coreferent mentions, etc.

The official SF Shared Task evaluations only as-
sess whole systems (with potential subsequent faults
in their pipelines (Pink et al., 2014)). Thus, we ex-
pect component wise comparisons to be a valuable
addition to the Shared Task: With comparisons of
single components, teams would be able to improve
their modules more specifically. To start with one
of the most important components, we have created
a benchmark for slot filling relation classification,
based on 2012 – 2014 TAC Shared Task data. It
will be described below and published along with
this paper.1 In addition to presenting model results
on this benchmark dataset, we also show that these
results correlate with end-to-end SF results. Hence,
optimizing a model on this dataset will also help im-
proving results in the end-to-end setting.

In our experiments, we found that our models suf-
fer from large genre differences in the TAC data.
Hence, the SF Shared Task is a task that conflates an

1http://cistern.cis.lmu.de

investigation of domain (or genre) adaptation with
the one of slot filling. We argue that both problems
are important NLP problems and provide datasets
and results for both within and across genres. We
hope that this new resource will encourage others
to test their models on our dataset and that this will
help promote research on slot filling.

In summary, our contributions are as follows.
(i) We investigate the complementary strengths and
weaknesses of different approaches to relation clas-
sification and show that their combination can better
deal with a diverse set of problems that slot filling
poses than each of the approaches individually. (ii)
We propose to split the context at the relation ar-
guments before passing it to the CNN in order to
better deal with the special characteristics of a sen-
tence in relation classification. This outperforms the
state-of-the-art piecewise CNN. (iii) We analyze the
effect of genre on slot filling and show that it is an
important conflating variable that needs to be care-
fully examined in research on slot filling. (iv) We
provide a benchmark for slot filling relation classifi-
cation that will facilitate direct comparisons of mod-
els in the future and show that results on this dataset
are correlated with end-to-end system results.

Section 2 gives an overview of related work. Sec-
tion 3 discusses the challenges that slot filling sys-
tems face. In Section 4, we describe our slot filling
models. Section 5 presents experimental setup and
results. Section 6 analyzes the results. We present
our conclusions in Section 7 and describe the re-
sources we publish in Section 8.

2 Related Work

Slot filling. The participants of the SF Shared Task
(Surdeanu, 2013) are provided with a large text cor-
pus. For evaluation, they get a collection of queries
and need to provide fillers for predefined relations
and an offset of a context which can serve as a justi-
fication. Most participants apply pipeline based sys-
tems. Pink et al. (2014) analyzed sources of recall
losses in these pipelines. The results of the systems
show the difficulty of the task: In the 2014 evalua-
tion, the top-ranked system had an F1 of .37 (Angeli
et al., 2014a). To train their models, most groups use
distant supervision (Mintz et al., 2009). The top-
ranked systems apply machine learning based ap-

829

proaches rather than manually developed patterns or
models (Surdeanu and Ji, 2014). The methods for
extracting and scoring candidates range from pat-
tern based approaches (Gonzàlez et al., 2012; Liu
and Zhao, 2012; Li et al., 2012; Qiu et al., 2012;
Roth et al., 2014) over rule based systems (Varma
et al., 2012) to classifiers (Malon et al., 2012; Roth
et al., 2013). The top ranked system from 2013
used SVMs and patterns for evaluating filler candi-
dates (Roth et al., 2013); their results suggest that
n-gram based features are sufficient to build reli-
able classifiers for the relation classification module.
They also show that SVMs outperform patterns.

CNNs for relation classification. Zeng et al.
(2014) and Dos Santos et al. (2015) apply CNNs to
the relation classification SemEval Shared Task data
from 2010 and show that CNNs outperform other
models. We train CNNs on noisy distant supervised
data since (in contrast to the SemEval Shared Task)
clean training sets are not available. Malon et al.
(2012) describe a CNN for slot filling that is based
on the output of a parser. We plan to explore pars-
ing for creating a more linguistically motivated input
representation in the future.

Baseline models. In this paper, we will compare
our methods against traditional relation classifica-
tion models: Mintz++ (Mintz et al., 2009; Surdeanu
et al., 2012) and MIMLRE (Surdeanu et al., 2012).
Mintz++ is a model based on the Mintz features (lex-
ical and syntactic features for relation extraction). It
was developed by Surdeanu et al. (2012) and used
as a baseline model by them. MIMLRE is a graph-
ical model designed to cope with multiple instances
and multiple labels in distant supervised data. It is
trained with Expectation Maximization.

Another baseline model which we use in this work
is a piecewise convolutional neural network (Zeng
et al., 2015). This recently published network is de-
signed especially for the relation classification task
which allows to split the context into three parts
around the two relation arguments. While it uses
the whole context for convolution, it performs max
pooling over the three parts individually. In contrast,
we propose to split the context even earlier and ap-
ply the convolutional filters to each part separately.

Genre dependency. There are many studies
showing the genre dependency of machine learn-
ing models. In 2012, the SANCL Shared Task fo-

cused on evaluating models on web data that have
been trained on news data (Petrov and McDonald,
2012). The results show that POS tagging perfor-
mance can decline a lot when the genre is changed.
For other NLP tasks like machine translation or sen-
timent analysis, this is also a well-known challenge
and domain adaptation has been extensively stud-
ied (Glorot et al., 2011; Foster and Kuhn, 2007).
We do not investigate domain adaptation per se, but
show that the genre composition of the slot filling
source corpus poses challenges to genre independent
models.

3 Challenges of Slot Filling

Slot filling includes NLP challenges of various na-
tures. Given a large evaluation corpus, systems first
need to find documents relevant to the entity of
the query. This involves challenges like alternate
names for the same entity, misspellings of names
and ambiguous names (different entities with the
same name). Then for each relevant document, sen-
tences with mentions of the entity need to be ex-
tracted, as well as possible fillers for the given slot.
In most cases, coreference resolution and named en-
tity recognition tools are used for these tasks. Fi-
nally, the systems need to decide which filler candi-
date to output as the solution for the given slot. This
step can be reduced to relation classification. It is
one of the most crucial parts of the whole pipeline
since it directly influences the quality of the final
output. The most important challenges for rela-
tion classification for slot filling are little or noisy
(distant supervised) training data, data from differ-
ent domains and test sentences which have been ex-
tracted with a pipeline of different NLP components.
Thus, their quality directly depends on the perfor-
mance of the whole pipeline. If, for example, sen-
tence splitting fails, the input can be incomplete or
too long. If coreference resolution or named en-
tity recognition fails, the relation arguments can be
wrong or incomplete.

4 Models for Relation Classification

Patterns. The first approach we evaluate for rela-
tion classification is pattern matching. For a given
sentence, the pattern matcher classifies the relation
as correct if one of the patterns matches; otherwise

830

the candidate is rejected. In particular, we apply
two different pattern sets: The first set consists of
patterns learned using distant supervision (PATdist).
They have been used in the SF challenge by the top-
ranked system in the 2013 Shared Task (Roth et al.,
2013). The second set contains patterns from univer-
sal schema relations for the SF task (PATuschema).
Universal schema relations are extracted based on
matrix factorization (Riedel et al., 2013). In this
work, we apply the universal schema patterns ex-
tracted for slot filling by Roth et al. (2014).

Support vector machines (SVMs). Our sec-
ond approach is support vector machines. We eval-
uate two different feature sets: bag-of-word fea-
tures (SVMbow) and skip n-gram features (SVM-
skip). Based on the results of Roth et al. (2013), we
will not use additional syntactic or semantic features
for our classifiers. For SVMbow, the representation
of a sentence consists of a flag and four bag-of-word
vectors. Let m1 and m2 be the mentions of name
and filler (or filler and name) in the sentence, with
m1 occurring before m2. The binary flag indicates
in which order name and filler occur. The four BOW
vectors contain the words in the sentence to the left
of m1, between m1 and m2, to the right of m2 and
all words of the sentence. For SVMskip, we use the
previously described BOW features and additionally
a feature vector which contains skip n-gram features.
They wildcard tokens in the middle of the n-gram
(cf. Roth et al. (2013)). In particular, we use skip
3-grams, skip 4-grams and skip 5-grams. A possi-
ble skip 4-gram of the context “, founder and direc-
tor of”, for example, would be the string “founder
of”, a pattern that could not have been directly ex-
tracted from this context otherwise. We train one
linear SVM (Fan et al., 2008) for each relation and
feature set and tune parameter C on dev.

Convolutional neural networks (CNNs). CNNs
are increasingly applied in NLP (Collobert et al.,
2011; Kalchbrenner et al., 2014). They extract n-
gram based features independent of the position in
the sentence and create (sub-)sentence representa-
tions. The two most important aspects that make this
possible are convolution and pooling. Max pooling
(Collobert et al., 2011) detects the globally most rel-
evant features obtained by local convolution.

Another promising aspect of CNNs for relation
classification is that they use an embedding based in-

put representation. With word embeddings, similar
words are represented by similar vectors and, thus,
we can recognize (near-)synonyms – synonyms of
relation triggers as well as of other important con-
text words. If the CNN has learned, for example,
that the context “is based in” triggers the relation lo-
cation of headquarters and that “based” has a simi-
lar vector representation as “located”, it may recog-
nize the context “is located in” correctly as another
trigger for the same relation even if it has never seen
it during training. In the following paragraphs, we
describe the different variants of CNNs which we
evaluate in this paper. For each variant, we train
one binary CNN per slot and optimize the number
of filters (∈ {300, 1000, 3000}), the size of the hid-
den layer (∈ {100, 300, 1000}) and the filter width
(∈ {3, 5}) on dev. We use word2vec (Mikolov et al.,
2013) to pre-train word embeddings (dimensionality
d = 50) on a May-2014 English Wikipedia corpus.

Piecewise CNN. Our baseline CNN is the model
developed by Zeng et al. (2015). It represents the
input sentence by a matrix of word vectors, applies
several filters for convolution and then divides the
resulting n-gram representation into left, middle and
right context based on the positions m1 and m2 of
name and filler (see SVM description). For each of
the three parts, one max value is extracted by pool-
ing. The results are passed to a softmax classifier.

Contextwise CNN. In contrast to the piecewise
CNN, we propose to split the context before con-
volution as shown in Figure 1. Hence, similar to
our BOW vectors for the SVM, we split the origi-
nal context words into left, middle and right context.
Then, we apply convolution and pooling to each of
the contexts separately. In contrast to the piecewise
CNN, there is no convolution across relation argu-
ments. Thus, the network learns to focus on the con-
text words and cannot be distracted by the presence
of (always present) relation arguments. The filter
weights W are shared for the three contexts. Our in-
tuition is that the most important sequence features
we want to extract by convolution can appear in two
or three of the regions. Weight sharing also reduces
the number of parameters and increases robustness.
We also found in initial experiments that sharing fil-
ter weights across left, middle, right outperformed
not sharing weights. The results of convolution are
pooled using k-max pooling (Kalchbrenner et al.,

831

 w
1
 w

2
 … w

c-1
 w

c
 <> w

c+1
w

c+2
 … w

2c-1
w

2c
 <> w

2c+1
w

2c+2
 … w

3c-1
w

3c

w
or

dv
ec

to
r,

ca
se

 in
di

ca
to

r

k-max pooling k-max pooling k-max pooling

* W * W * W

flatten flatten flatten

0 | 1
softmax

fully connected MLP

n

h hidden units

left context middle context right context

1/0
concat

input sentence

split at relation arguments

Figure 1: Contextwise CNN for relation classification

2014): only the k = 3 maximum values of each
filter application are kept. The pooling results are
then concatenated to a single vector and extended
by a flag indicating whether the name or the filler
appeared first in the sentence.

In initial experiments, we found that a fully con-
nected hidden layer after convolution and pooling
leads to a more powerful model. It connects the rep-
resentations of the three contexts and, thus, can draw
conclusions based on cooccurring patterns across
contexts. Therefore, the result vector after convolu-
tion and pooling is fed into a fully connected hidden
layer. A softmax layer makes the final decision.

For a fair comparison of models, we also add a
hidden layer to the piecewise CNN and apply k-
max pooling there as well. Thus, the number of pa-
rameters to learn is the same for both models. We
call this model CNNpieceExt. The key difference
between CNNpieceExt and CNNcontext is the time
when the context is split into three parts: before or
after convolution. This affects the windows of words
to which the convolutional filters are applied.

Model combination (CMB). To combine a setM
of models for classification, we perform a simple lin-

ear combination of the scores of the models:

qCMB =
∑

m=1...M

αmqm

where qm is the score of model m and αm is its
weight (optimized on dev using grid search). All
weights sum to 1.

For a comparison of different combination possi-
bilities, see, for example, (Viswanathan et al., 2015).

5 Experiments and Results

5.1 Training Data

We used distant supervision for generating training
data. We created a set of (subject, relation, object)
tuples by querying Freebase (Bollacker et al., 2008)
for relations that correspond to the slot relations.
Then we scanned the following corpora for sen-
tences containing both arguments of a relation in the
tuple set: (i) the TAC source corpus (TAC, 2014), (ii)
a snapshot of Wikipedia (May 2014), (iii) the Free-
base description fields, (iv) a subset of Clueweb2,
(v) a New York Times corpus (LDC2008T19). The
resulting sentences are positive training examples.
Based on the tuple set, we selected negative exam-
ples by scanning the corpora for sentences that (i)
contain a mention of a name occurring in a tuple,
(ii) do not contain the correct filler, (iii) contain a
mention different from the correct filler, but with the
same named entity type (based on CoreNLP NER
(Manning et al., 2014)). All negative examples for
date slots, for instance, are sentences containing an
incorrect date.

This procedure gave us a large but noisy train-
ing set for most slots. In order to reduce incor-
rect labels, we applied a self-training procedure: We
trained SVMs on the SF dataset created by Angeli
et al. (2014b). With the resulting SVMs, we pre-
dicted labels for our training set. If the predicted
label did not match the distant supervised label, we
deleted the corresponding training example (Min et
al., 2012). This procedure was conducted in sev-
eral iterations on different chunks of the training set.
Finally, the SF dataset and the filtered training ex-
amples were merged. (We do not use the SF dataset
directly because (i) it provides few examples per slot

2http://lemurproject.org/clueweb12

832

(min: 1, max: 4960) and (ii) it consists of exam-
ples for which the classifiers of Angeli et al. (2014b)
were indecisive, i.e., presumably contexts that are
hard to classify.) Since their contexts are similar, we
also merged city, state-or-province and country slots
to one location slot.

5.2 Evaluation Data

One of the main challenges in building and evaluat-
ing relation classification models for SF is the short-
age of training and evaluation data. Each group has
their own datasets and comparisons across groups
are difficult. Therefore, we have developed a script
that creates a clean dataset based on manually an-
notated system outputs from previous Shared Task
evaluations. In the future, it can be used by all par-
ticipants to evaluate components of their slot filling
systems.3 The script only extracts sentences that
contain mentions of both name and filler. It con-
ducts a heuristic check based on NER tags to de-
termine whether the name in the sentence is a valid
mention of the query name or is referring to another
entity. In the latter case, the example is filtered out.
One difficulty is that many published offsets are in-
correct. We tried to match these using heuristics. In
general, we apply filters that ensure high quality of
the resulting evaluation data even if that means that
a considerable part of the TAC system output is dis-
carded. In total, we extracted 39,386 high-quality
evaluation instances out of the 59,755 system output
instances published by TAC and annotated as either
completely correct or completely incorrect.

A table in the supplementary material4 gives
statistics: the number of positive and negative exam-
ples per slot and year (without duplicates). For 2013,
the most examples were extracted. The lower num-
ber for 2014 is probably due to the newly introduced
inference across documents. This limits the number
of sentences with mentions of both name and filler.
The average ratio of positive to negative examples is
1:4. The number of positive examples per slot and
year ranges from 0 (org:member of, 2014) to 581
(per:title, 2013), the number of negative examples
from 5 (org:website, 2014) to 1886 (per:title, 2013).

3http://cistern.cis.lmu.de. We publish scripts
since we cannot distribute data.

4also available at http://cistern.cis.lmu.de

In contrast to other relation classification bench-
marks, this dataset is not based on a knowledge
base (such as Freebase) and unrelated text (such as
web documents) but directly on the SF assessments.
Thus, it includes exactly the SF relations and ad-
dresses the challenges of the end-to-end task: noisy
data, possibly incomplete extractions of sentences
and data from different domains.

We use the data from 2012/2013 as development
and the data from 2014 as evaluation set.

5.3 Experiments
We evaluate the models described in Section 4, se-
lect the best models and combine them.

Experiments with patterns. First, we compare
the performance of PATdist and PATuschema on our
dataset. We evaluate the pattern matchers on all slots
presented in Table 1 and calculate their average F1

scores on dev. PATdist achieves a score of .35, PAT-
uschema of .33. Since it performs better, we use
PATdist in the following experiments.

Experiments with SVMs. Second, we train and
evaluate SVMbow and SVMskip. Average F1 of
SVMskip and SVMbow are .62 and .59, respec-
tively. Thus, we use SVMskip. We expected that
SVMskip beats SVMbow due to its richer feature
set, but SVMbow performs surprisingly well.

Experiments with CNNs. Finally, we compare
the performance of CNNpiece, CNNpieceExt and
CNNcontext. While the baseline network CNN-
piece (Zeng et al., 2015) achieves F1 of .52 on dev,
CNNpieceExt has an F1 score of .55 and CNNcon-
text an F1 of .60. The difference of CNNpiece and
CNNpieceExt is due to the additional hidden layer
and k-max pooling. The considerable difference
in performance of CNNpieceExt and CNNcontext
shows that splitting the context for convolution has
a positive effect on the performance of the network.

Overall results. Table 1 shows the slot wise re-
sults of the best patterns (PATdist), SVMs (SVM-
skip) and CNNs (CNNcontext). Furthermore, it
provides a comparison with two baseline models:
Mintz++ and MIMLRE. SVM and CNN clearly out-
perform these baselines. They also outperform PAT
for almost all slots. The difference between dev and
eval results varies a lot among the slots. We suspect
that this is a result of genre differences in the data
and analyze this in Section 6.4.

833

Mintz++ MIMLRE PATdist SVMskip CNNcontext CMB
dev eval dev eval dev eval dev eval dev eval dev eval

per:age .84 .71 .83 .73 .69 .80 .86 .74 .83 .76 .86 .77
per:alternate names .29 .03 .29 .03 .50 .50 .35 .02 .32 .04 .50 .50
per:children .76 .43 .77 .48 .10 .07 .81 .68 .82 .61 .87 .76
per:cause of death .76 .42 .75 .36 .44 .11 .82 .32 .77 .52 .82 .31
per:date of birth 1.0 .60 .99 .60 .67 .57 1.0 .67 1.0 .77 1.0 .67
per:date of death .67 .45 .67 .45 .30 .32 .79 .54 .72 .48 .79 .54
per:empl memb of .38 .36 .41 .37 .24 .22 .42 .36 .41 .37 .47 .39
per:location of birth .56 .22 .56 .22 .30 .30 .59 .27 .59 .23 .74 .36
per:loc of death .65 .41 .66 .43 .13 .00 .64 .34 .63 .28 .70 .35
per:loc of residence .14 .11 .15 .18 .10 .03 .31 .33 .20 .23 .31 .31
per:origin .40 .48 .42 .46 .13 .11 .65 .64 .43 .39 .65 .59
per:parents .64 .59 .68 .65 .27 .38 .65 .79 .65 .78 .72 .71
per:schools att .75 .78 .76 .75 .27 .26 .78 .71 .72 .55 .79 .71
per:siblings .66 .59 .64 .59 .14 .50 .60 .68 .63 .70 .65 .70
per:spouse .58 .23 .59 .27 .40 .53 .67 .32 .67 .30 .78 .57
per:title .49 .39 .49 .40 .48 .42 .54 .48 .57 .46 .59 .46
org:alternate names .49 .46 .50 .48 .70 .71 .62 .62 .65 .66 .72 .67
org:date founded .41 .71 .42 .73 .47 .40 .57 .70 .64 .71 .68 .68
org:founded by .60 .62 .70 .65 .39 .62 .77 .74 .80 .68 .85 .77
org:loc of headqu .13 .19 .14 .20 .39 .30 .43 .42 .43 .45 .50 .46
org:members .58 .06 .55 .16 .03 .29 .70 .13 .65 .04 .76 .13
org:parents .32 .14 .36 .17 .31 .18 .37 .20 .41 .16 .52 .21
org:subsidiaries .32 .43 .35 .35 .32 .56 .38 .37 .36 .44 .42 .49
org:top memb empl .35 .44 .37 .46 .53 .46 .43 .55 .43 .53 .58 .51
average .53 .41 .54 .42 .35 .36 .62 .48 .60 .46 .68 .53

Table 1: Performance on Slot Filling benchmark dataset (dev: data from 2012/2013, eval: from 2014). CMB denotes the combina-

tion of PATdist, SVMskip and CNNcontext.

Slot wise results of the other models (PAT-
uschema, SVMbow, CNNpiece, CNNpieceExt) can
be found in the supplementary material.

Comparing PAT, SVM and CNN,5 different pat-
terns emerge for different slots. Each is best on a
subset of the slots (see bold numbers). This indi-
cates that relation classification for slot filling is not
a uniform problem: each slot has special properties
and the three approaches are good at modeling a
different subset of these properties. Given the big
differences, we expect to gain performance by com-
bining the three approaches. Indeed, CMB (PATdist
+ SVMskip + CNNcontext), the combination of the
three best performing models, obtains the best re-
sults in average (in bold).

Section 6.3 shows that the performance on our
dataset is highly correlated with SF end-to-end per-

5In prior experiments, we also compared with recurrent neu-
ral networks. RNN performance was comparable to CNNs, but
required much more training time and parameter tuning. There-
fore, we focus on CNNs in this paper. See also Vu et al. (2016).

formance. Thus, our results indicate that a combina-
tion of different models ist the most promising ap-
proach to getting good performance on slot filling.

6 Analysis

6.1 Contribution of Each Model

To see how much each model contributes to CMB,
we count how often each weight between 0.0 and
1.0 is selected for the linear interpolation. The re-
sults are plotted as a histogram (Figure 2). A weight
of 0.0 means that the corresponding model does not
contribute to CMB. We see that all three models con-
tribute to CMB for most of the slots. The CNN, for
instance, is included in the combination for 14 of 24
slots.

6.2 Comparison of CNN to Traditional Models

Our motivation for using a CNN is that convolution
and max pooling can recognize important n-grams
independent of their position in the sentence. To in-

834

 0

 2

 4

 6

 8

 10

 12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

n
u

m
b

e
r

o
f

w
e

ig
h

t
se

le
ct

io
n

PAT
SVM
CNN

Figure 2: # times each weight is selected in CMB

vestigate this effect, we select for each CNN the top
five kernels whose activations are the most corre-
lated with the final score of the positive class. Then
we calculate which n-grams are selected by these
kernels in the max pooling step. This corresponds to
those n-grams which are recognized by the kernel to
be the most informative for the given slot. Figure 3
shows the result for an example sentence express-
ing the slot relation org:parents. The height of a bar
is the number of times that the 3-gram around the
corresponding word was selected by k-max pooling;
e.g., the bar above “newest” corresponds to the tri-
gram “its newest subsidiary”. The figure shows that
the convolutional filters are able to learn phrases that
trigger a relation, e.g., “its subsidiary”. In contrast
to patterns, they do not rely on exact matches. The
first reason is embeddings. They generalize similar
words and phrases by assigning similar word vectors
to them. For PAT and SVM, this type of generaliza-
tion is more difficult. The second type of generaliza-
tion that the CNN learns concerns insertions, similar
to skip n-gram features. The recognition of impor-
tant phrases in convolution is robust against inser-
tions. An example is “newest” in Figure 3, a word
that is not important for the slot.

A direct comparison of results with PAT shows
that the CNN has better eval scores for about 67%
of the slots (see Table 1). Our reasoning above can
explain this. Compared to the SVM, the CNN gen-
eralizes better to unseen data in only 42% of all
cases. The fact that this does not happen in more
cases shows the power of the skip n-gram features
of the SVM: they also provide a kind of generaliza-
tion against insertions. The SVM might also need
less data to train than the CNN. Nevertheless, the

 1

 2

 3

 4

In
fu

tu
re

qu
ar

te
rs ,

<f
ill

er
> 's

ut
ili

ty
di

vi
si

on w
ill

in
cl

ud
e its

ne
w

es
t

su
bs

id
ia

ry ,
<n

am
e>

ra
ilr

oa
d .

p
o

o
lin

g
 r

e
su

lt

top 1
top 3
top 5

Figure 3: Analysis of convolution and pooling

final scores show that the CNN performs almost as
well as the SVM in average (.60 vs .62 on dev, .46 vs
.48 on eval) and contributes to a better combination
score.

6.3 Correlation with End-to-end Results

In this section, we show that using the dataset we
provide with this paper allows tuning classification
models for the end-to-end SF task. For each model
and each possible combination of models, we cal-
culate average results on our evaluation set as well
as final F1 scores when running the whole slot fill-
ing pipeline with our in-house system. The best re-
sults of our slot filling system are an F1 of .29 on
the 2013 queries and of .25 on the 2014 queries. We
calculate Pearson’s correlation coefficient to assess
correlation of relation classification and end-to-end
performances for the n different system configura-
tions (i.e., model combinations). The correlation of
the results on our eval dataset with the SF results on
2013 queries is .89, the correlation with the SF re-
sults on 2014 queries is .82. This confirms that good
results on the dataset we propose lead to good results
on the slot filling end-to-end task.

6.4 Effect of Genre and Time

The TAC source corpus consists of about 1M news
documents, 1M web documents and 100K docu-
ments from discussion forums (TAC, 2014). The
distribution of these different genres in the extracted
assessment data is as shown in Table 2.

The proportion of non-news more than doubled
from 12.5% to 26.6%. Thus, when using 2012/2013
as the development and 2014 as the test set, we are
faced with a domain adaptation problem.

835

2012/3 2014
news 87.5% 73.4%
web + forums 12.5% 26.6%

Table 2: Distribution of genres

In this section, we show the effect of domain dif-
ferences on our models in more detail. For our genre
analysis, we retrain our models on genre specific
training sets WEB and NEWS⊂ and show within-
genre as well as cross-genre evaluations. To avoid
performance differences due to different training set
sizes, we reduced the news training set to the same
size as the web training set. We refer to this subset
as NEWS⊂.

Cross-genre evaluation. Table 3 shows results
of testing models trained on genre-specific data: on
data of the same genre and on data of the other genre.
We present results only for a subset of relations in
this paper, however, the numbers for the other slots
follow the same trends.

Models trained on news (left part) show clearly
higher performance in the within-genre evaluation
than cross-genre. For models trained on web (right
part), this is different. We suspect that the reason
is that web data is much noiser and thus less pre-
dictable, even for models trained on web. For all
evaluations, the differences among dev and eval are
quite large. Especially for slot filling on web (bot-
tom part of Table 3), the results on dev do not seem
much related to the results on eval. This domain ef-
fect increases the difficulties of training robust re-
lation classification models for slot filling. It can
also explain why optimizing models for unseen data
(with unknown genre distributions) as in Table 1 is
challenging. Since slot filling by itself is a challeng-
ing task, even in the absence of domain differences,
we will distribute two splits: a split by year and a
split by genre. For training and tuning models for
the slot filling research challenge, the year split can
be used to cover the challenge of mixing different
genres. For experiments on domain adaptation or
genre-specific effects, our genre split can be used.

7 Conclusion

In this paper, we presented different approaches to
slot filling relation classification: patterns, support
vector machines and convolutional neural networks.

Train on NEWS⊂ Train on WEB
SVM CNN SVM CNN

dev ev dev ev dev ev dev ev

Te
st

on
ne

w
s per:age .79 .80 .88 .87 .78 .76 .85 .83

per:children .85 .86 .78 .78 .75 .80 .00 .07
per:spouse .74 .64 .76 .71 .77 .65 .73 .67
org:alt names .22 .32 .69 .67 .65 .70 .66 .66
org:loc headqu .51 .50 .53 .51 .51 .53 .53 .50
org:parents .30 .32 .29 .34 .26 .33 .30 .34

Te
st

on
w

eb

per:age .33 .73 .57 .83 .00 .67 .57 .83
per:children .59 .33 .70 .33 .63 .57 .00 .00
per:spouse .52 .50 .60 .57 .56 .57 .67 .62
org:alt names .27 .19 .51 .37 .60 .49 .56 .38
org:loc headqu .39 .46 .43 .44 .44 .48 .36 .47
org:parents .09 .08 .11 .07 .10 .08 .15 .08

Table 3: Genre specific F1 scores. Genre specific training data

(of the same sizes). Top: news results. Bottom: web results.

We investigated their complementary strengths and
weaknesses and showed that their combination can
better deal with a diverse set of problems that slot
filling poses than each of the approaches individu-
ally. We proposed a contextwise CNN which out-
performs the recent state-of-the-art piecewise CNN.
Furthermore, we analyzed the effect of genre on slot
filling and showed that it needs to be carefully ex-
amined in research on slot filling. Finally, we pro-
vided a benchmark for slot filling relation classifi-
cation that will facilitate direct comparisons of ap-
proaches in the future.

8 Additional Resources

We publish the scripts that we developed to extract
the annotated evaluation data and our splits by genre
and by year as well as the dev/eval splits.

Acknowledgments

Heike Adel is a recipient of the Google European
Doctoral Fellowship in Natural Language Process-
ing and this research is supported by this fellowship.

This research was also supported by Deutsche
Forschungsgemeinschaft: grant SCHU 2246/4-2.

We would like to thank Gabor Angeli for his help
with the Mintz++ and MIMLRE models.

836

References
Gabor Angeli, Sonal Gupta, Melvin Jose, Christopher D.

Manning, Christopher Re, Julie Tibshirani, Jean Y.
Wu, Sen Wu, and Ce Zhang. 2014a. Stanfords 2014
slot filling systems. In TAC.

Gabor Angeli, Julie Tibshirani, Jean Y. Wu, and Christo-
pher D. Manning. 2014b. Combining distant and par-
tial supervision for relation extraction. In EMNLP.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In ACM SIGMOD.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR.

Cı́cero Nogueira Dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In ACL.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A li-
brary for large linear classification. JMLR.

George Foster and Roland Kuhn. 2007. Mixture-model
adaptation for SMT. In Workshop on SMT.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.

E. Gonzàlez, H. Rodrı́guez, J. Turmo, P. R. Comas,
A. Naderi, A. Ageno, E. Sapena, M. Vila, and M. A.
Martı́. 2012. The TALP participation at TAC-KBP
2012. In TAC.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav
Nakov, Diarmuid Ó Séaghdha, Sebastian Padó, Marco
Pennacchiotti, Lorenza Romano, and Stan Szpakow-
icz. 2010. Semeval-2010 task 8: Multi-way classifi-
cation of semantic relations between pairs of nominals.
In SemEval. ACL.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In ACL.

Yan Li, Sijia Chen, Zhihua Zhou, Jie Yin, Hao Luo, Liyin
Hong, Weiran Xu, Guang Chen, and Guo Jun. 2012.
PRIS at TAC 2012 KBP track. In TAC.

Fang Liu and Jun Zhao. 2012. Sweat2012: Pattern based
English slot filling system for knowledge base popula-
tion at TAC 2012. In TAC.

Christopher Malon, Bing Bai, and Kazi Saidul Hasan.
2012. Slot-filling by substring extraction at TAC KBP
2012 (team papelo). In TAC.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In ACL: System Demonstrations.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Workshop at ICLR.

Bonan Min, Xiang Li, Ralph Grishman, and Ang Sun.
2012. New york university 2012 system for KBP slot
filling. In TAC.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In ACL-IJCNLP.

Slav Petrov and Ryan McDonald. 2012. Overview of the
2012 shared task on parsing the web. In SANCL.

Glen Pink, Joel Nothman, and James R Curran. 2014.
Analysing recall loss in named entity slot filling. In
EMNLP.

Xin Ying Qiu, Xiaoting Li, Weijian Mo, Manli Zheng,
and Zhuhe Zheng. 2012. GDUFS at slot filling TAC-
KBP 2012. In TAC.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In HLT-
NAACL.

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mittul
Singh, and Dietrich Klakow. 2013. Effective slot fill-
ing based on shallow distant supervision methods. In
TAC.

Benjamin Roth, Emma Strubell, John Sullivan, Lakshmi
Vikraman, Kate Silverstein, and Andrew McCallum.
2014. Universal schema for slot-filling, cold-start
KBP and event argument extraction: UMAss IESL at
TAC KBP 2014. In TAC.

Mihai Surdeanu and Heng Ji. 2014. Overview of the
English slot filling track at the TAC 2014 knowledge
base population evaluation. In TAC.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and
Christopher D Manning. 2012. Multi-instance multi-
label learning for relation extraction. In EMNLP-
CoNLL.

Mihai Surdeanu. 2013. Overview of the TAC 2013
knowledge base population evaluation: English slot
filling and temporal slot filling. In TAC.

TAC. 2014. Task description for English slot fill-
ing at TAC KBP 2014. http://surdeanu.
info/kbp2014/KBP2014_TaskDefinition_
EnglishSlotFilling_1.1.pdf.

Vasudeva Varma, Bhaskar Ghosh, Mohan Soundararajan,
Deepti Aggarwal, and Priya Radhakrishnan. 2012.
IIIT Hyderabad at TAC 2012. In TAC.

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In ACL.

837

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hinrich
Schütze. 2016. Combining recurrent and convolu-
tional neural networks for relation classification. In
HLT-NAACL.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and
Jun Zhao. 2014. Relation classification via convolu-
tional deep neural network. In COLING.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In EMNLP.

838

Proceedings of NAACL-HLT 2016, pages 839–849,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Corpus and Cloze Evaluation for Deeper Understanding of
Commonsense Stories

Nasrin Mostafazadeh1, Nathanael Chambers2, Xiaodong He3, Devi Parikh4,
Dhruv Batra4, Lucy Vanderwende3, Pushmeet Kohli3, James Allen1,5

1 University of Rochester, 2 United States Naval Academy, 3 Microsoft Research, 4 Virginia Tech,
5 The Institute for Human & Machine Cognition

{nasrinm,james}@cs.rochester.edu, nchamber@usna.edu,
{parikh,dbatra}@vt.edu, {xiaohe,lucyv,pkohli}@microsoft.com

Abstract

Representation and learning of commonsense
knowledge is one of the foundational prob-
lems in the quest to enable deep language un-
derstanding. This issue is particularly chal-
lenging for understanding casual and corre-
lational relationships between events. While
this topic has received a lot of interest in the
NLP community, research has been hindered
by the lack of a proper evaluation framework.
This paper attempts to address this problem
with a new framework for evaluating story
understanding and script learning: the ‘Story
Cloze Test’. This test requires a system to
choose the correct ending to a four-sentence
story. We created a new corpus of 50k
five-sentence commonsense stories, ROCSto-
ries, to enable this evaluation. This corpus is
unique in two ways: (1) it captures a rich set of
causal and temporal commonsense relations
between daily events, and (2) it is a high qual-
ity collection of everyday life stories that can
also be used for story generation. Experimen-
tal evaluation shows that a host of baselines
and state-of-the-art models based on shallow
language understanding struggle to achieve a
high score on the Story Cloze Test. We discuss
these implications for script and story learn-
ing, and offer suggestions for deeper language
understanding.

1 Introduction

Story understanding is an extremely challenging
task in natural language understanding with a long-
running history in AI (Charniak, 1972; Winograd,
1972; Turner, 1994; Schubert and Hwang, 2000).

Recently, there has been a renewed interest in story
and narrative understanding based on progress made
in core NLP tasks. This ranges from generic story
telling models to building systems which can com-
pose meaningful stories in collaboration with hu-
mans (Swanson and Gordon, 2008). Perhaps the
biggest challenge of story understanding (and story
generation) is having commonsense knowledge for
the interpretation of narrative events. The question
is how to provide commonsense knowledge regard-
ing daily events to machines.

A large body of work in story understanding
has focused on learning scripts (Schank and Abel-
son, 1977). Scripts represent structured knowledge
about stereotypical event sequences together with
their participants. It is evident that various NLP
applications (text summarization, co-reference res-
olution, question answering, etc.) can hugely ben-
efit from the rich inferential capabilities that struc-
tured knowledge about events can provide. Given
that developing hand-built scripts is extremely time-
consuming, there is a serious need for automati-
cally induced scripts. Most relevant to this issue is
work on unsupervised learning of ‘narrative chains’
(Chambers and Jurafsky, 2008) and event schemas
(Chambers and Jurafsky, 2009; Balasubramanian et
al., 2013; Cheung et al., 2013; Nguyen et al., 2015).
The first requirement of any learner is to decide on
a corpus to drive the learning process. We are fore-
most interested in a resource that is full of temporal
and causal relations between events because causal-
ity is a central component of coherency. Personal
stories from daily weblogs are good sources of com-
monsense causal information (Gordon and Swan-

839

son, 2009; Manshadi et al., 2008), but teasing out
useful information from noisy blog entries is a prob-
lem of its own. Consider the following snippet from
ICWSM 2011 Spinn3r Dataset of Weblog entries
(Burton et al., 2009):

“I had an interesting day in the studio today. It was so in-
teresting that I took pictures along the way to describe it to
you. Sometimes I like to read an autobiography/biography
to discover how someone got from there to here.....how they
started, how they traveled in mind and spirit, what made
them who they are now. Well, today, my work was a little
like that.”

This text is full of discourse complexities. A host
of challenging language understanding tasks are re-
quired to get at the commonsense knowledge em-
bedded within such text snippets. What is needed
is a simplified version of these narratives. This pa-
per introduces a new corpus of such short common-
sense stories. With careful prompt design and mul-
tiple phases of quality control, we collected 50k
high quality five-sentence stories that are full of
stereotypical causal and temporal relations between
events. The corpus not only serves as a resource for
learning commonsense narrative schemas, but is also
suitable for training story generation models. We de-
scribe this corpus in detail in Section 3.

This new corpus also addresses a problem facing
script learning over the past few years. Despite the
attention scripts have received, progress has been in-
hibited by the lack of a systematic evaluation frame-
work. A commonly used evaluation is the ‘Narra-
tive Cloze Test’ (Chambers and Jurafsky, 2008) in
which a system predicts a held-out event (a verb
and its arguments) given a set of observed events.
For example, the following is one such test with a
missing event: {X threw, pulled X, told X, ???, X
completed}1. As is often the case, several works
now optimize to this specific test, achieving higher
scores with shallow techniques. This is problematic
because the models often are not learning common-
sense knowledge, but rather how to beat the shallow
test.

This paper thus introduces a new evaluation
framework called the Story Cloze Test. Instead of
predicting an event, the system is tasked with choos-
ing an entire sentence to complete the given story.

1Narrative cloze tests were not meant to be human solvable.

We collected 3,742 doubly verified Story Cloze Test
cases. The test is described in detail in Section 4.

Finally, this paper proposes several models, in-
cluding the most recent state-of-the-art approaches
for the narrative cloze test, for tackling the Story
Cloze Test. The results strongly suggest that achiev-
ing better than random or constant-choose perfor-
mance requires richer semantic representation of
events together with deeper levels of modeling the
semantic space of stories. We believe that switching
to the Story Cloze Test as the empirical evaluation
framework for story understanding and script learn-
ing can help direct the field to a new direction of
deeper language understanding.

2 Related Work

Several lines of research have recently focused on
learning narrative/event representations. Chambers
and Jurafsky first proposed narrative chains (Cham-
bers and Jurafsky, 2008) as a partially ordered set
of narrative events that share a common actor called
the ‘protagonist’. A narrative event is a tuple of
an event (a verb) and its participants represented as
typed dependencies. Several expansions have since
been proposed, including narrative schemas (Cham-
bers and Jurafsky, 2009), script sequences (Regneri
et al., 2010), and relgrams (Balasubramanian et al.,
2013). Formal probabilistic models have also been
proposed to learn event schemas and frames (Che-
ung et al., 2013; Bamman et al., 2013; Chambers,
2013; Nguyen et al., 2015). These are trained on
smaller corpora and focus less on large-scale learn-
ing. A major shortcoming so far is that these models
are mainly trained on news articles. Little knowl-
edge about everyday life events are learned.

Several groups have directly addressed script
learning by focusing exclusively on the narrative
cloze test. Jans et al. (Jans et al., 2012) redefined
the test to be a text ordered sequence of events,
whereas the original did not rely on text order
(Chambers and Jurafsky, 2008). Since then, oth-
ers have shown language-modeling techniques per-
form well (Pichotta and Mooney, 2014a; Rudinger et
al., 2015). This paper shows that these approaches
struggle on the richer Story Cloze evaluation.

There has also been renewed attention toward
natural language comprehension and commonsense

840

reasoning (Levesque, 2011; Roemmele et al., 2011;
Bowman et al., 2015). There are a few recent frame-
works for evaluating language comprehension (Her-
mann et al., 2015; Weston et al., 2015), including
the MCTest (Richardson et al., 2013) as a notable
one. Their framework also involves story compre-
hension, however, their stories are mostly fictional,
on average 212 words, and geared toward children in
grades 1-4. Some progress has been made in story
understanding by limiting the task to the specific do-
mains and question types. This includes research on
understanding newswire involving terrorism scripts
(Mueller, 2002), stories about people in a restau-
rant where a reasonable number of questions about
time and space can be answered (Mueller, 2007),
and generating stories from fairy tales (McIntyre and
Lapata, 2009). Finally, there is a rich body of work
on story plot generation and creative or artistic story
telling (Méndez et al., 2014; Riedl and León, 2008).
This paper is unique to these in its corpus of short,
simple stories with a wide variety of commonsense
events. We show these to be useful for learning,
but also for enabling a rich evaluation framework for
narrative understanding.

3 A Corpus of Short Commonsense Stories

We aimed to build a corpus with two goals in mind:

1. The corpus contains a variety of commonsense
causal and temporal relations between every-
day events. This enables learning narrative
structure across a range of events, as opposed
to a single domain or genre.

2. The corpus is a high quality collection of non-
fictional daily short life stories, which can be
used for training rich coherent story-telling
models.

In order to narrow down our focus, we carefully
define a narrative or story as follows: ‘A narrative
or story is anything which is told in the form of
a causally (logically) linked set of events involv-
ing some shared characters’. The classic definition
of a story requires having a plot, (e.g., a charac-
ter following a goal and facing obstacles), however,
here we are not concerned with how entertaining
or dramatic the stories are. Instead, we are con-
cerned with the essence of actually being a logi-

cally meaningful story. We follow the notion of
‘storiness’ (Forster, 1927; Bailey, 1999), which is
described as “the expectations and questions that
a reader may have as the story develops”, where
expectations are ‘common-sense logical inferences’
made by the imagined reader of the story.

We propose to satisfy our two goals by asking
hundreds of workers on Amazon Mechanical Turk
(AMT) to write novel five-sentence stories. The five-
sentence length gives enough context to the story
without allowing room for sidetracks about less im-
portant or irrelevant information in the story. In this
Section we describe the details about how we col-
lected this corpus, and provide statistical analysis.

3.1 Data Collection Methodology
Crowdsourcing this corpus makes the data collec-
tion scalable and adds to the diversity of stories. We
tested numerous pilots with varying prompts and in-
structions. We manually checked the submitted sto-
ries in each pilot and counted the number of sub-
missions which did not have our desired level of co-
herency or were specifically fictional or offensive.
Three people participated in this task and they iter-
ated over the ratings until everyone agreed with the
next pilot’s prompt design. We achieved the best re-
sults when we let the workers write about anything
they have in mind, as opposed to mandating a pre-
specified topic. The final crowdsourcing prompt can
be found in supplementary material.

The key property that we had enforced in our
final prompt was the following: the story should
read like a coherent story, with a specific begin-
ning and ending, where something happens in be-
tween. This constraint resulted in many causal and
temporal links between events. Table 1 shows the
examples we provided to the workers for instruct-
ing them about the constraints. We set a limit of
70 characters to the length of each sentence. This
prevented multi-part sentences that include unnec-
essary details. The workers were also asked to pro-
vide a title that best describes their story. Last but
not least, we instructed the workers not to use quo-
tations in their sentences and avoid using slang or
informal language.

Collecting high quality stories with these con-
straints gives us a rich collection of commonsense
stories which are full of stereotypical inter-event re-

841

The little puppy thought he was a great basketball player. He challenged the kitten to a friendly game. The kitten agreed.
Kitten started to practice really hard. Eventually the kitten beat the puppy by 40 points.
Bill thought he was a great basketball player. He challenged Sam to a friendly game. Sam agreed. Sam started to practice
really hard. Eventually Sam beat Bill by 40 points.
I am happy with my life. I have been kind. I have been successful. I work out. Why not be happy when you can?
The city is full of people and offers a lot of things to do. One of my favorite things is going to the outdoor concerts. I also
like visiting the different restaurants and museums. There is always something exciting to do in the city.
The Smith family went to the family beach house every summer. They loved the beach house a lot. Unfortunately there was
a bad hurricane once. Their beach house was washed away. Now they lament the loss of their beach house every summer.
Miley was in middle school. She lived in an apartment. Once Miley made a mistake and cheated in one of her exams. She
tried to hide the truth from her parents. After her parents found out, they grounded her for a month.
Miley was in middle school. She usually got good grades in school . Once Miley made a mistake and cheated in one of her
exams. She tried to hide the truth from her parents. After her parents found out, they grounded her for a month.

Table 1: Examples of good and bad stories provided to the crowd-sourced workers. Each row emphasizes
one of the three properties that each story should satisfy: (1) being realistic, (2) having clear beginning and
ending, and (3) not stating anything irrelevant to the story.

X challenge Y Y agree play Y practice Y beat X

Figure 1: An example narrative chain with charac-
ters X and Y.

lations. For example, from the good story in first
row of Table 1, one can extract the narrative chain
represented in Figure 1. Developing a better se-
mantic representation for narrative chains which can
capture rich inter-event relations in these stories is a
topic of future work.

Quality Control: One issue with crowdsourcing
is how to instruct non-expert workers. This task is a
type of creative writing, and is trickier than classifi-
cation and tagging tasks. In order to ensure we get
qualified workers, we designed a qualification test
on AMT in which the workers had to judge whether
or not a given story (total five stories) is an accept-
able one. We used five carefully selected stories to
be a part of the qualification test. This not only elim-
inates any potential spammers on AMT, but also pro-
vides us with a pool of creative story writers. Fur-
thermore, we qualitatively browsed through the sub-
missions and gave the workers detailed feedback be-
fore approving their submissions. We often bonused
our top workers, encouraging them to write new sto-
ries on a daily basis.

Statistics: Figure 2 shows the distribution of
number of tokens of different sentence positions.
The first sentence tends to be shorter, as it usually
introduces characters or sets the scene, and the fifth

sentence is longer, providing more detailed conclu-
sions to the story. Table 2 summarizes the statistics
of our crowdsourcing effort. Figure 3 shows the dis-
tribution of the most frequent 50 events in the cor-
pus. Here we count event as any hyponym of ‘event’
or ‘process’ in WordNet (Miller., 1995). The top two
events, ‘go’ and ‘get’, each comprise less than 2% of
all the events, which illustrates the rich diversity of
the corpus.

Figure 2: Number of tokens in each sentence posi-
tion.

submitted stories 49,895
approved stories 49,255
workers participated 932
Average # stories by one worker 52.84
Max # stories written by one worker 3,057
Average work time among workers (minute) 4.80
Median work time among workers (minute) 2.16
Average payment per story (cents) 26

Table 2: Crowdsourcing worker statistics.

Figure 4 visualizes the n-gram distribution of our
story titles, where each radial path indicates an n-

842

Figure 3: Distribution of top 50 events in our corpus.

gram sequence. For this analysis we set n=5, where
the mean number of tokens in titles is 9.8 and me-
dian is 10. The ‘end’ token distinguishes the actual
ending of a title from five-gram cut-off. This fig-
ure demonstrates the range of topics that our workers
have written about. The full circle reflects on 100%
of the title n-grams and the n-gram paths in the faded
3/4 of the circle comprise less than 0.1% of the n-
grams. This further demonstrates that the range of
topics covered by our corpus is quite diverse. A full
dynamic visualization of these n-grams can be found
here: http://goo.gl/Qhg60B.

Figure 4: N-gram distribution of story titles.

3.2 Corpus Release

The corpus is publicly available to the com-
munity and can be accessed through http:
//cs.rochester.edu/nlp/rocstories,
which will be grown even further over the coming
years. Given the quality control pipeline and the
creativity required from workers, data collection
goes slowly.

We are also making available semantic parses of
these stories. Since these stories are not newswire,
off-the-shelf syntactic and shallow semantic parsers
for event extraction often fail on the language. To
address this issue, we customized search param-
eters and added a few lexical entries2 to TRIPS
broad-coverage semantic parser3, optimizing its per-
formance on our corpus. TRIPS parser (Allen et
al., 2008) produces state-of-the-art logical forms for
input stories, providing sense disambiguated and
ontology-typed rich deep structures which enables
event extraction together with semantic roles and
coreference chains throughout the five sentences.

3.3 Temporal Analysis

Being able to temporally order events in the stories
is a pre-requisite for complete narrative understand-
ing. Temporal analysis of the events in our short
commonsensical stories is an important topic of fur-
ther research on its own. In this Section, we sum-
marize two of our analyses regarding the nature of
temporal ordering of events in our corpus.

Shuffling Experiment: An open question in any
text genre is how text order is related to tempo-
ral order. Do the sentences follow the real-world
temporal order of events? This experiment shuf-
fles the stories and asks AMT workers to arrange
them back to a coherent story. This can shed light
on the correlation between the original position of
the sentences and the position when another human
rearranges them in a commonsensically meaningful
way. We set up this experiment as follows: we sam-
pled two sets of 50 stories from our corpus: Good-
Stories50 and Random-Stories50. Good-Stories50

4 is
sampled from a set of stories written by top workers

2For example, new informal verbs such as ‘vape’ or ‘vlog’
have been added to the lexicon of this semantic parser.

3http://trips.ihmc.us/parser/cgi/step
4This set can be found here: https://goo.gl/VTnJ9s

843

Good-Stories50 Random-Stories50

% perfectly ordered, taking majority ordering for each of the 50 stories 100 86
% all sentences perfectly ordered, out of 250 orderings 95.2 82.4
% ≤ 1 sentences misplaced, rest flow correctly, out of 250 orderings 98.0 96.0
% correct placements of each position, 1 to 5 98.8, 97.6, 96, 96, 98.8 95.6, 86, 86.8, 91.2, 96.8

Table 3: Results from the human temporal shuffling experiment.

who have shown shown consistent quality through-
out their submissions. Random-Stories50

5 is a ran-
dom sampling from all the stories in the corpus.
Then we randomly shuffled the sentences in each
story and asked five crowd workers on AMT to rear-
range the sentences.

Table 3 summarizes the results of this experiment.
The first row shows the result of ordering if we
take the absolute majority ordering of the five crowd
workers as the final ordering. The second row shows
the result of ordering if we consider each of the 250
(50 stories x 5 workers ordering each one) ordering
cases independently. As shown, the good stories are
perfectly ordered with very high accuracy. It is im-
portant to note that this specific set rarely had any
linguistic adverbials such as ‘first’, ‘then’, etc. to
help human infer the ordering, so the main factors
at play are the following: (1) the commonsensical
temporal and causal relation between events (narra-
tive schemas), e.g., human knows that first some-
one loses a phone then starts searching; (2) the nat-
ural way of narrating a story which starts with intro-
ducing the characters and concludes the story at the
end. The role of the latter factor is quantified in the
misplacement rate of each position reported in Table
3, where the first and last sentences are more often
correctly placed than others. The high precision of
ordering in sentences 2 up to 4 further verifies the
richness of our corpus in terms of logical relation
between events.

TimeML Annotation: TimeML-driven analysis
of these stories can give us finer-grained insight
about temporal aspect of the events in this corpus.
We performed a simplified TimeML-driven (Puste-
jovsky et al., 2003) expert annotation of a sample of
20 stories6. Among all the temporal links (TLINK)
annotated, 62% were ‘before’ and 10% were ‘simul-
taneous’. We were interested to know if the actual
text order mirrors real-world order of events. We

5This set can be found here: https://goo.gl/pgm2KR
6The annotation is available: http://goo.gl/7qdNsb

found that sentence order matches TimeML order
55% of the time. A more comprehensive study of
temporal and causal aspects of these stories requires
defining a specific semantic annotation framework
which covers not only temporal but also causal re-
lations between commonsense events. This is cap-
tured in a recent work which introduces a Causal and
Temporal Relation Scheme (CaTeRS) for semantic
annotation of event structures (Mostafazadeh et al.,
2016).

4 A New Evaluation Framework
As described earlier in the introduction, the common
evaluation framework for script learning is the ‘Nar-
rative Cloze Test’ (Chambers and Jurafsky, 2008),
where a system generates a ranked list of guesses for
a missing event, given some observed events. The
original goal of this test was to provide a compara-
tive measure to evaluate narrative knowledge. How-
ever, gradually, the community started optimizing
towards the performance on the test itself, achiev-
ing higher scores without demonstrating narrative
knowledge learning. For instance, generating the
ranked list according to the event’s corpus frequency
(e.g., always predicting ‘X said’) was shown to be
an extremely strong baseline (Pichotta and Mooney,
2014b). Originally, narrative cloze test chains were
extracted by hand and verified as gold chains. How-
ever, the cloze test chains used in all of the most
recent works are not human verified as gold.

It is evident that there is a need for a more system-
atic automatic evaluation framework which is more
in line with the original deeper script/story under-
standing goals. It is important to note that reorder-
ing of temporally shuffled stories (Section 3.3) can
serve as a framework to evaluate a system’s story un-
derstanding. However, reordering can be achieved
to a degree by using various surface features such as
adverbials, so this cannot be a foolproof story un-
derstanding evaluation framework. Our ROCStories
corpus enables a brand new framework for evalu-
ating story understanding, called the ‘Story Cloze

844

Test’.

4.1 Story Cloze Test

The cloze task (Taylor, 1953) is used to evaluate
a human (or a system) for language understanding
by deleting a random word from a sentence and
having a human fill in the blank. We introduce
‘Story Cloze Test’, in which a system is given a
four-sentence ‘context’ and two alternative endings
to the story, called ‘right ending’ and ‘wrong end-
ing’. Hence, in this test the fifth sentence is blank.
Then the system’s task is to choose the right end-
ing. The ‘right ending’ can be viewed as ‘entailing’
hypothesis in a classic Recognizing Textual Entail-
ment (RTE) framework (Giampiccolo et al., 2007),
and ‘wrong’ ending can be seen as the ’contradict-
ing’ hypothesis. Table 4 shows three example Story
Cloze Test cases.

Story Cloze Test will serve as a generic story
understanding evaluation framework, also applica-
ble to evaluation of story generation models (for
instance by computing the log-likelihoods assigned
to the two ending alternatives by the story genera-
tion model), which does not necessarily imply re-
quirement for explicit narrative knowledge learning.
However, it is safe to say that any model that per-
forms well on Story Cloze Test is demonstrating
some level of deeper story understanding.

4.2 Data Collection Methodology

We randomly sampled 13,500 stories from ROCSto-
ries Corpus and presented only the first four sen-
tences of each to AMT workers. For each story,
a worker was asked to write a ‘right ending’ and a
‘wrong ending’. The workers were prompted to sat-
isfy two conditions: (1) the sentence should follow
up the story by sharing at least one of the characters
of the story, and (2) the sentence should be entirely
realistic and sensible when read in isolation. These
conditions make sure that the Story Cloze Test cases
are not trivial. More details on this setup is described
in the supplementary material.

Quality Control: The accuracy of the Story
Cloze Test can play a crucial role in directing the
research community in the right trajectory. We im-
plemented the following two-step quality control:

1. Qualification Test: We designed a qualification

test for this task, where the workers had to choose
whether or not a given ‘right ending’ and ‘wrong
ending’ satisfy our constraints. At this stage we
collected 13,500 cloze test cases.

2. Human Verification: In order to further validate
the cloze test cases, we compiled the 13,500
Story Cloze Test cases into 2×13, 500 = 27, 000
full five-sentence stories. Then for each story we
asked three crowd workers to verify whether or
not the given sequence of five sentences makes
sense as a meaningful and coherent story, rating
within {-1, 0, 1}. Then we filtered cloze test
cases which had ‘right ending’ with all ratings 1
and ‘wrong ending’ with all ratings 0. This pro-
cess ensures that there are no boundary cases of
‘right ending’ and ‘wrong ending’. This resulted
in final 3,742 test cases, which was randomly di-
vided into validation and test Story Cloze Test
sets. We also made sure to remove the original
stories used in the validation and test set from our
ROCStories Corpus.

Statistics: Table 5 summarizes the statistics of
our crowdsourcing effort. The Story Cloze Test sets
can also be accessed through our website.

5 Story Cloze Test Models

In this Section we demonstrate that Story Cloze
Test cannot be easily tackled by using shallow tech-
niques, without actually understanding the underly-
ing narrative. Following other natural language in-
ference frameworks such as RTE, we evaluate sys-
tem performance according to basic accuracy mea-
sure, which is defined as #correct

#test cases . We present the
following baselines and models for tackling Story
Cloze Test. All of the models are tested on the vali-
dation and test Story Cloze sets, where only the val-
idation set could be used for any tuning purposes.
1. Frequency: Ideally, the Story Cloze Test cases
should not be answerable without the context. For
example, if for some context the two alternatives
are ‘He was mad after he won’7 and ‘He was
cheerful after he won’, the first alternative is sim-
ply less probable in real world than the other one.
This baseline chooses the alternative with higher

7Given our prompt that the ‘wrong ending’ sentences should
make sense in isolation, such cases should be rare in our dataset.

845

Context Right Ending Wrong Ending
Tom and Sheryl have been together for two years. One day,
they went to a carnival together. He won her several stuffed
bears, and bought her funnel cakes. When they reached the
Ferris wheel, he got down on one knee.

Tom asked Sheryl to marry him. He wiped mud off of his boot.

Karen was assigned a roommate her first year of college.
Her roommate asked her to go to a nearby city for a concert.
Karen agreed happily. The show was absolutely exhilarat-
ing.

Karen became good friends
with her roommate.

Karen hated her roommate.

Jim got his first credit card in college. He didn’t have a job
so he bought everything on his card. After he graduated he
amounted a $10,000 debt. Jim realized that he was foolish
to spend so much money.

Jim decided to devise a plan for
repayment.

Jim decided to open another
credit card.

Table 4: Three example Story Cloze Test cases, completed by our crowd workers.

cases collected 13,500
workers participated 282
Average # cases written by one worker 47.8
Max # cases written by one worker 1461
Average payment per test case (cents) 10
Size of the final set (verified by human) 3,744

Table 5: Statistics for crowd-sourcing Story Cloze
Test instances.

search engine8 hits of the main event (verb) together
with its semantic roles (e.g., ‘I*poison*flowers’ vs
‘I*nourish*flowers’). We extract the main verb
and its corresponding roles using TRIPS semantic
parser.
2. N-gram Overlap: Simply chooses the alterna-
tive which shares more n-grams with the context.
We compute Smoothed-BLEU (Lin and Och, 2004)
score for measuring up to four-gram overlap of an
alternative and the context.
3. GenSim: Average Word2Vec: Choose the hy-
pothesis with closer average word2vec (Mikolov et
al., 2013) embedding to the average word2vec em-
bedding of the context. This is basically an en-
hanced word overlap baseline, which accounts for
semantic similarity.
4. Sentiment-Full: Choose the hypothesis that
matches the average sentiment of the context. We
use the state-of-the-art sentiment analysis model
(Manning et al., 2014) which assigns a numerical
value from 1 to 5 to a sentence.
5. Sentiment-Last: Choose the hypothesis that
matches the sentiment of the last context sentence.

8https://developers.google.com/
custom-search/

6. Skip-thoughts Model: This model uses Skip-
thoughts’ Sentence2Vec embedding (Kiros et al.,
2015) which models the semantic space of novels.
This model is trained on the ‘BookCorpus’ (Zhu et
al., 2015) (containing 16 different genres) of over
11,000 books. We use the skip-thoughts embedding
of the alternatives and contexts for making decision
the same way as with GenSim model.

7. Narrative Chains-AP: Implements the standard
approach to learning chains of narrative events based
on Chambers and Jurafsky (2008). An event is rep-
resented as a verb and a typed dependency (e.g., the
subject of runs). We computed the PMI between all
event pairs in the Associate Press (AP) portion of
the English Gigaword Corpus that occur at least 2
times. We run coreference over the given story, and
choose the hypothesis whose coreferring entity has
the highest average PMI score with the entity’s chain
in the story. If no entity corefers in both hypotheses,
it randomly chooses one of the hypotheses.

8. Narrative Chains-Stories: The same model as
above, but trained on ROCStories.

9. Deep Structured Semantic Model (DSSM):
This model (Huang et al., 2013) is trained to project
the four-sentences context and the fifth sentence into
the same vector space. It consists of two separate
deep neural networks for learning jointly the em-
bedding of the four-sentences context and the fifth
sentence, respectively. As suggested in Huang et al.
(2013), the input of the DSSM is based on context-
dependent characters, e.g., the distribution count of
letter-trigrams in the context and in the fifth sen-
tence, respectively. The hyper parameters of the
DSSM is determined on the validation set, while the

846

Consta
nt-c

hoose-
first

Freq
uency

N-gram
-overl

ap

GenSim

Sentim
ent-F

ull

Sentim
ent-L

ast

Skip-th
oughts

Narr
ati

ve-C
hain

s-A
P

Narr
ati

ve-C
hain

s-S
torie

s

DSSM
Human

Validation Set 0.514 0.506 0.477 0.545 0.489 0.514 0.536 0.472 0.510 0.604 1.0
Test Set 0.513 0.520 0.494 0.539 0.492 0.522 0.552 0.478 0.494 0.585 1.0

Table 6: The accuracy of various models on The Story Cloze validation and test sets.

model’s parameters are trained on the ROCStories
corpus. In our experiment, each of the two neural
networks in the DSSM has two layers: the dimen-
sion of the hidden layer is 1000, and the dimension
of the embedding vector is 300. At runtime, this
model picks the candidate with the largest cosine
similarity between its vector representation and the
context’s vector representation.

The results of evaluating these models on the
Story Cloze validation and test sets are shown in Ta-
ble 6. The constant-choose-first (51%) and human
performance (100%) is also provided for compari-
son. Note that these sets were doubly verified by
human, hence it does not have any boundary cases,
resulting in 100% human performance. The DSSM
model achieves the highest accuracy, but only 7.2
points higher than constant-choose-first. Error anal-
ysis on the narrative chains model shows why this
and other event-based language models are not suf-
ficient for the task: often, the final sentences of
our stories contain complex events beyond the main
verb, such as ‘Bill was highly unprepared’ or ‘He
had to go to a homeless shelter’. Event language
models only look at the verb and syntactic relation
like ‘was-object’ and ‘go-to’. In that sense, going to
a homeless shelter is the same as going to the beach.
This suggests the requirement of having richer se-
mantic representation for events in narratives. Our
proposed Story Cloze Test offers a new challenge to
the community.

6 Discussion

There are three core contributions in this paper: (1)
a new corpus of commonsense stories, called ROC-
Stories, (2) a new evaluation framework to evalu-
ate script/story learners, called Story Cloze Test, and
(3) a host of first approaches to tackle this new test

framework. ROCStories Corpus is the first crowd-
sourced corpus of its kind for the community. We
have released about 50k stories, as well as valida-
tion and test sets for Story Cloze Test. This dataset
will eventually grow to 100k stories, which will be
released through our website. In order to continue
making meaningful progress on this task, although it
is possible to keep increasing the size of the training
data, we expect the community to develop models
that will learn to generalize to unseen commonsense
concepts and situations.

The Story Cloze Test proved to be a challenge to
all of the models we tested. We believe it will serve
as an effective evaluation for both story understand-
ing and script knowledge learners. We encourage
the community to benchmark their progress by re-
porting their results on Story Cloze test set. Com-
pared to the previous Narrative Cloze Test, we found
that one of the early models for that task actually
performs worse than random guessing. We can con-
clude that Narrative Cloze test spurred interest in
script learning, however, it ultimately does not eval-
uate deeper knowledge and language understanding.

Acknowledgments

We would like to thank the amazing crowd workers
whose endless hours of daily story writing made this
research possible. We thank William de Beaumont
and Choh Man Teng for their work on TRIPS parser.
We thank Alyson Grealish for her great help in the
quality control of our corpus. This work was sup-
ported in part by Grant W911NF-15-1-0542 with the
US Defense Advanced Research Projects Agency
(DARPA), the Army Research Office (ARO) and the
Office of Naval Research (ONR). Our data collec-
tion effort was sponsored by Nuance Foundation.

847

References
James F. Allen, Mary Swift, and Will de Beaumont.

2008. Deep semantic analysis of text. In Proceedings
of the 2008 Conference on Semantics in Text Process-
ing, STEP ’08, pages 343–354, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Paul Bailey. 1999. Searching for storiness: Story-
generation from a reader’s perspective. In AAAI Fall
Symposium on Narrative Intelligence.

Niranjan Balasubramanian, Stephen Soderland, Oren Et-
zioni Mausam, and Oren Etzioni. 2013. Generating
coherent event schemas at scale. In EMNLP, pages
1721–1731.

David Bamman, Brendan OConnor, and Noah Smith.
2013. Learning latent personas of film characters.
ACL.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. Learning natural lan-
guage inference from a large annotated corpus. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 632–642,
Stroudsburg, PA. Association for Computational Lin-
guistics.

K. Burton, A. Java, , and I. Soboroff. 2009. The
icwsm 2009 spinn3r dataset. In In Proceedings of the
Third Annual Conference on Weblogs and Social Me-
dia (ICWSM 2009), San Jose, CA.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Kath-
leen McKeown, Johanna D. Moore, Simone Teufel,
James Allan, and Sadaoki Furui, editors, ACL, pages
789–797. The Association for Computer Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 2 - Volume 2, ACL ’09,
pages 602–610, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In EMNLP,
volume 13, pages 1797–1807.

Eugene Charniak. 1972. Toward a model of children’s
story comprehension. December.

Jackie Cheung, Hoifung Poon, and Lucy Vanderwende.
2013. Probabilistic frame induction. In ACL.

E.M. Forster. 1927. Aspects of the Novel. Edward
Arnold, London.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third pascal recognizing tex-
tual entailment challenge. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Para-

phrasing, RTE ’07, pages 1–9, Stroudsburg, PA, USA.
ACL.

Andrew S. Gordon and Reid Swanson. 2009. Identify-
ing Personal Stories in Millions of Weblog Entries. In
Third International Conference on Weblogs and Social
Media, Data Challenge Workshop, San Jose, CA, May.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages
1693–1701. Curran Associates, Inc.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using click-
through data. In Proceedings of the 22Nd ACM
International Conference on Information & Knowl-
edge Management, CIKM ’13, pages 2333–2338, New
York, NY, USA. ACM.

Bram Jans, Steven Bethard, Ivan Vulić, and
Marie Francine Moens. 2012. Skip n-grams
and ranking functions for predicting script events. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 336–344. Association for Computational
Linguistics.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urtasun,
and Sanja Fidler. 2015. Skip-thought vectors. NIPS.

Hector J. Levesque. 2011. The winograd schema chal-
lenge. In AAAI Spring Symposium: Logical Formal-
izations of Commonsense Reasoning. AAAI.

Chin-Yew Lin and Franz Josef Och. 2004. Automatic
evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. In
Proceedings of the 42Nd Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’04, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Mehdi Manshadi, Reid Swanson, and Andrew S. Gor-
don. 2008. Learning a Probabilistic Model of Event
Sequences From Internet Weblog Stories. In 21st Con-
ference of the Florida AI Society, Applied Natural Lan-
guage Processing Track, Coconut Grove, FL, May.

Neil McIntyre and Mirella Lapata. 2009. Learning to tell
tales: A data-driven approach to story generation. In

848

Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of
the AFNLP, pages 217–225, Singapore.

Gonzalo Méndez, Pablo Gervás, and Carlos León. 2014.
A model of character affinity for agent-based story
generation. In 9th International Conference on
Knowledge, Information and Creativity Support Sys-
tems, Limassol, Cyprus, 11/2014. Springer-Verlag,
Springer-Verlag.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neu-
ral Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 3111–3119.

G. Miller. 1995. Wordnet: A lexical database for english.
In In Communications of the ACM.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James F. Allen, and Lucy Vanderwende.
2016. Caters: Causal and temporal relation scheme
for semantic annotation of event structures. In Pro-
ceedings of the The 4th Workshop on EVENTS: Def-
inition, Detection, Coreference, and Representation,
San Diego, California, June. Association for Compu-
tational Linguistics.

Erik T. Mueller. 2002. Understanding script-based sto-
ries using commonsense reasoning. Cognitive Systems
Research, 5:2004.

Erik T. Mueller. 2007. Modeling space and time in nar-
ratives about restaurants. LLC, 22(1):67–84.

Kiem-Hieu Nguyen, Xavier Tannier, Olivier Ferret, and
Romaric Besançon. 2015. Generative event schema
induction with entity disambiguation. In Proceedings
of the 53rd annual meeting of the Association for Com-
putational Linguistics (ACL-15).

Karl Pichotta and Raymond J Mooney. 2014a. Statisti-
cal script learning with multi-argument events. EACL
2014, page 220.

Karl Pichotta and Raymond J. Mooney. 2014b. Statis-
tical script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics (EACL 2014), Gothenburg, Sweden, April.

James Pustejovsky, Jos Castao, Robert Ingria, Roser
Saur, Robert Gaizauskas, Andrea Setzer, and Graham
Katz. 2003. Timeml: Robust specification of event
and temporal expressions in text. In in Fifth Interna-
tional Workshop on Computational Semantics (IWCS-
5.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web

experiments. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 979–988. Association for Computational Lin-
guistics.

Matthew Richardson, Christopher J. C. Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP, pages 193–203. ACL.

M. Riedl and Carlos León. 2008. Toward vignette-based
story generation for drama management systems. In
Workshop on Integrating Technologies for Interactive
Stories - 2nd International Conference on INtelligent
TEchnologies for interactive enterTAINment, 8-10/1.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of Plausible Alterna-
tives: An Evaluation of Commonsense Causal Reason-
ing. In AAAI Spring Symposium on Logical Formal-
izations of Commonsense Reasoning, Stanford Univer-
sity, March.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP-15).

Roger C. Schank and Robert P. Abelson. 1977. Scripts,
Plans, Goals and Understanding: an Inquiry into Hu-
man Knowledge Structures. L. Erlbaum, Hillsdale, NJ.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic logic meets little red riding hood: A com-
prehensive, natural representation for language un-
derstanding. In Natural Language Processing and
Knowledge Representation: Language for Knowledge
and Knowledge for Language. MIT/AAAI Press.

Reid Swanson and Andrew S. Gordon. 2008. Say Any-
thing: A Massively collaborative Open Domain Story
Writing Companion. In First International Confer-
ence on Interactive Digital Storytelling, Erfurt, Ger-
many, November.

Wilson L Taylor. 1953. Cloze procedure: a new tool for
measuring readability. Journalism quarterly.

Scott R. Turner. 1994. The creative process: A computer
model of storytelling. Hillsdale: Lawrence Erlbaum.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. CoRR,
abs/1502.05698.

Terry Winograd. 1972. Understanding Natural Lan-
guage. Academic Press, Inc., Orlando, FL, USA.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watch-
ing movies and reading books. In arXiv preprint
arXiv:1506.06724.

849

Proceedings of NAACL-HLT 2016, pages 850–855,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Dynamic Entity Representation with Max-pooling Improves
Machine Reading

Sosuke Kobayashi and Ran Tian and Naoaki Okazaki and Kentaro Inui
Tohoku University, Japan

{sosuke.k, tianran, okazaki, inui}@ecei.tohoku.ac.jp

Abstract

We propose a novel neural network model for
machine reading, DER Network, which ex-
plicitly implements a reader building dynamic
meaning representations for entities by gath-
ering and accumulating information around
the entities as it reads a document. Eval-
uated on a recent large scale dataset (Her-
mann et al., 2015), our model exhibits bet-
ter results than previous research, and we
find that max-pooling is suited for model-
ing the accumulation of information on enti-
ties. Further analysis suggests that our model
can put together multiple pieces of informa-
tion encoded in different sentences to an-
swer complicated questions. Our code for the
model is available at https://github.
com/soskek/der-network

1 Introduction

Machine reading systems (Poon et al., 2010;
Richardson et al., 2013) can be tested on their
ability to answer queries about contents of doc-
uments that they read, thus a central problem is
how the information of documents should be orga-
nized in the system and retrieved by the queries.
Recently, large scale datasets of document-query-
answer triples have been constructed from online
newspaper articles and their summaries (Hermann
et al., 2015), by replacing named entities in the
summaries with placeholders to form Cloze (Tay-
lor, 1953) style questions (Figure 1). These datasets
have enabled training and testing of complicated
neural network models of hypothesized machine
readers (Hermann et al., 2015; Hill et al., 2015).

(@entity1) @entity0 may be @entity2 in the popular
@entity4 superhero films , but he recently dealt in some

advanced bionic technology himself . @entity0 recently
presented a robotic arm to young @entity7 , a @entity8 boy

who is missing his right arm from just above his elbow . the
arm was made by @entity12 , a … !

" [X] " star @entity0 presents a young child with a bionic

arm!

Query !

Context !

(CNN)Robert Downey Jr. may be Iron Man in the popular
Marvel superhero films, but he recently dealt in some

advanced bionic technology himself. Downey recently
presented a robotic arm to young Alex Pring, a Central

Florida boy who is missing his right arm from just above his
elbow. The arm was made by Limbitless Solutions, a …!

"Iron Man" star Robert Downey Jr. presents a young child

with a bionic arm!

Raw Highlight !

Raw Article !

Answer @entity2 !

Figure 1: A document-query-answer triple con-
structed from a news article and its bullet point sum-
mary. An entity in the summary (Robert Downey Jr.)
is replaced by the placeholder [X] to form a query.
All entities are anonymized to exclude world knowl-
edge and focus on reading comprehension.

In this paper, we hypothesize that a reader without
world knowledge can only understand a named en-
tity by dynamically constructing its meaning from
the contexts. For example, in Figure 1, a reader
reading the sentence “Robert Downey Jr. may be
Iron Man . . . ” can only understand “Robert Downey
Jr.” as something that “may be Iron Man” at this
stage, given that it does not know Robert Downey
Jr. a priori. Information about this entity can only

850

be accumulated by its subsequent occurrence, such
as “Downey recently presented a robotic arm . . . ”.
Thus, named entities basically serve as anchors to
link multiple pieces of information encoded in dif-
ferent sentences. This insight has been reflected
by the anonymization process in construction of the
dataset, in which coreferent entities (e.g. “Robert
Downey Jr.” and “Downey”) are replaced by ran-
domly permuted abstract entity markers (e.g. “@en-
tity0”), in order to prevent additional world knowl-
edge from being attached to the surface form of the
entities (Hermann et al., 2015). We, however, take it
as a strong motivation to implement a reader that dy-
namically builds meaning representations for each
entity, by gathering and accumulating information
on that entity as it reads a document (Section 2).

Evaluation of our model, DER Network, exhibits
better results than previous research (Section 3). In
particular, we find that max-pooling of entity rep-
resentations, which is intended to model the accu-
mulation of information on entities, can drastically
improve performance. Further analysis suggests
that max-pooling can help our model draw multiple
pieces of information from different sentences.

2 Model

Following Hermann et al. (2015), our model esti-
mates the conditional probability p(e|D, q), where q
is a query and D is a document. A candidate answer
for the query is denoted by e, which in this paper is
any named entity. Our model can be factorized as:

p(e|D, q) ∝ exp(v(e;D, q)Tu(q)) (1)

in which u(q) is the learned meaning for the query
and v(e;D, q) the dynamically constructed mean-
ing for an entity, depending on the document D and
the query q. We note that (1) is in contrast to the
factorization used by Hermann et al. (2015):

p(a|D, q) ∝ exp(v(a)Tu(D, q)) (2)

in which a vector u(D, q) is learned to represent
the status of a reader after reading a document and
a query, and this vector is used to retrieve an answer
by coupling with the answer vector v(a).1

1Hermann et al. (2015) models p(a|D, q) for every word to-
ken a in a document. While the approach could be more general

Factorization (2) relies on the hypothesis that
there exists a fixed vector for each candidate an-
swer representing its meaning. However, as we ar-
gued in Section 1, an entity surface does not possess
meaning; rather, it serves as an anchor to link pieces
of information about it. Therefore, we hypothesize
that the meaning representation v(e;D, q) of an en-
tity e should be dynamically constructed from its
surrounding contexts, and the meanings are “accu-
mulated” through the reader reading the document
D. We explain the construction of v(e;D, q) in
Section 2.1, and propose a max-pooling process for
modeling information accumulation in Section 2.2.

2.1 Dynamic Entity Representation

For any entity e, we take its context c as any sentence
that includes a token of e. Then, we use bidirectional
single-layer LSTMs (Hochreiter and Schmidhuber,
1997; Graves et al., 2005) to encode c into vectors.
LSTM is a neural cell that outputs a vector hc,t for
each token t in the sentence c; taking the word vector
xc,t of the token as input, each hc,t is calculated re-
currently from its precedent vector hc,t−1 or hc,t+1,
depending on the direction of the encoding. For-
mally, we write forward and backward LSTMs as:

~hc,t =
−−−−→
LSTM(xc,t, ~hc,t−1) (forward) (3)

~hc,t =
←−−−−
LSTM(xc,t, ~hc,t+1) (backward) (4)

Then, denoting the length of the sentence c as T and
the index of the entity e token as τ , we define the
dynamic entity representation de,c as the concatena-
tion of the vectors [~hc,T , ~hc,1, ~hc,τ , ~hc,τ] encoded by
a feed-forward layer (Figure 2):

de,c = tanh(Whd[~hc,T , ~hc,1, ~hc,τ , ~hc,τ]+bd)

in which Whd and bd respectively stand for the
learned weight matrix and bias vector of that feed-
forward layer. Index hd denotes thatWhd is a matrix
mapping h-vectors to d-vectors. Index d shows that
bd has the same dimension as d-vectors. We use this
convention throughout this paper.

Having de,c as the dynamic representation of an
entity e occurring in context c, we define vector

because it has the potential to answer other types of questions
given appropriate training data, our approach is arguably suit-
able for the specific task and natural for testing our hypothesis.

851

[bos] @ent0 may be ... [eos] !

!hc,τ

!hc,τ

!hc,1

!hc,T

xc,1 xc,2 xc,3 xc,4 xc,T

de0,c

=
−−−−→
LSTM←−−−−

=
−−−−→
LSTM(

=
←−−−−
LSTM(

Figure 2: Dynamic entity representa-
tion de,c encodes LSTM outputs, mod-
eling surrounding context.

... know something about , accused in a string of shootings ... !

 used to have tatoos indicating … !

On Thursday morning , made his first court appearance ...!

de,1
de,2
de,3

dx max-pooling
c′≺c

(
Figure 3: Max-pooling takes the max value of each dimension of
dynamic entity representations, modeling accumulation of con-
text information. It is then fed to xc,τ as input to LSTMs.

v(e;D, q) for each entity as a weighted sum 2:

v(e;D, q) = Wdv

[∑
c∈D

se,c(q)de,c
]
+ bv (5)

in which se,c(q) is calculated by the attention mech-
anism (Bahdanau et al., 2015), modeling the degree
to which our reader should attend to a particular oc-
currence of an entity, given the query q. More pre-
cisely, se,c(q) is defined as the following:

se,c(q) =
exp(s′e,c(q))∑
c′ exp(s′e,c′(q))

(6)

s′e,c′(q) = mT tanh(Wdmde,c′ + q) + bs (7)

where se,c(q) is calculated by taking the softmax of
s′e,c′(q), which is calculated from the dynamic entity
representation de,c′ and the query vector q. The vec-
torm, matrixWdm, and the bias bs in (7) are learned
parameters in the attention mechanism. Vectorm is
used here to map a vector value to a scalar.

The query vector3 u(q) is constructed similarly as
dynamic entity representations, using bidirectional
LSTMs4 to encode the query and then encoding the
output vectors. More precisely, if we denote the
length of the query as T and the index of the place-
holder as τ , the query vector is calculated as:

u(q) = Whq[~hq,T , ~hq,1, ~hq,τ , ~hq,τ]+bq (8)

Then, v(e;D, q) and u(q) are used in (1) to calcu-
late probability p(e|D, q).

2Following a heuristic used in Hill et al. (2015), we add a
secondary bias b′v to v(e; D, q) if the entity e already appears
in the query q.

3u(q) and another query vector q, are calculated respec-
tively, in the same way (8) with unshared model parameters,
while sharing the parameters is also promising.

4The parameters of the bi-LSTM for queries are not shared
with the ones for entity contexts.

2.2 Max-pooling

We expect the dynamic entity representation to cap-
ture information about an entity mentioned in a sen-
tence. However, as an entity occurs multiple times
in a document, information is accumulated as sub-
sequent occurrences of the entity draw information
from previous mentions. For example, in Figure 1,
the first sentence mentioning “Robert Downey Jr.”
relates Downey to Iron Man, whereas a subsequent
mention of “Downey” also relates him to a robotic
arm. Both of the two pieces of information are
necessary to answer the query “Iron Man star [X]
presents . . . with a bionic arm”. Therefore, the dy-
namic entity representations as constructed individ-
ually from single sentences may not provide enough
information for our reader model. We thus propose
the use of max-pooling to model information accu-
mulation of dynamic entity representations.

More precisely, for each entity e, max-pooling
takes the max value of each dimension of the vec-
tors de,c′ from all preceding contexts c′ (Figure 3).
Then, in a subsequent sentence c where the entity
occurs again at index τ , we use the vector

xc,τ = Wdx max-pooling
c′≺c

(de,c′) + bx

as input for the LSTMs in (3) and (4) for encod-
ing the context. This vector xc,τ draws informa-
tion from preceding contexts, and is regarded as the
meaning of the entity e that the reader understands
so far, before reading the sentence c. It is used in
place of a vector previously randomly initialized as
a notion of e, in the construction of the new dynamic
entity representation de,c.

852

3 Evaluation

We use the CNN-QA dataset (Hermann et al., 2015)
for evaluating our model’s ability to answer ques-
tions about named entities. The dataset consists
of (D, q, e)-triples, where the document D is taken
from online news articles, and the query q is formed
by hiding a named entity e in a summarizing bullet
point of the document (Figure 1). The training set
has 90k articles and 380k queries, and both valida-
tion and test sets have 1k articles and 3k queries. An
average article has about 25 entities and 700 word
tokens. One trains a machine reading system on the
data by maximizing likelihood of correct answers.
We use Chainer5 (Tokui et al., 2015) to implement
our model6.

Experimental Settings Named entities in CNN-
QA are already recognized. For preprocessing, we
segment sentences at punctuation marks “.”, “!”, and
“?”.7 We train our model8 with hyper-parameters
lightly tuned on the validation set9, and we conduct
ablation test on several techniques that improve our
basic model.

Results As shown in Table 1, Max-pooling de-
scribed in Section 2.2 drastically improves perfor-
mance, showing the effect of accumulating informa-
tion on entities. Another technique, called “Byway”,
is based on the observation that the attention mech-
anism (5) must always promote some entity occur-
rences (since all weights sum to 1), which could be
difficult if the entity does not answer the query. To
counter this, we make an artificial occurrence for
each entity with no contexts, which serves as a by-
way to attend when no other occurrences can be rea-
sonably related to the query. This simple trick shows

5http://chainer.org/
6The implementation is available at https://github.

com/soskek/der-network.
7Text in CNN-QA are tokenized without any sentence seg-

mentations.
8Training process takes roughly a week (3-5 passes of the

training data) on a 6-core 2.4GHz Xeon CPU.
9Vector dimension: 300, Dropout: 0.3, Batch: 50, Optimiza-

tion: RMSProp with momentum (Tieleman and Hinton, 2012;
Graves, 2013) (momentum: 0.9, decay: 0.95), Learning rate:
1e-4 divided by 2.0 per epoch, Gradient clipping factor: 10. We
initialize word vectors by uniform distribution [-0.05, 0.05], and
other matrix parameters by Gaussians of mean 0 and variance
2/(# rows + # columns).

Models Valid Test
Basic Proposed Model (Basic) 0.614 0.623
Basic + Max-pooling 0.712 0.707
Basic + Byway 0.691 0.706
Basic + Byway, Max-pooling (Full) 0.708 0.720
Full + w2v-initialization 0.713 0.729
Deep LSTMs∗ 0.550 0.570
Attentive Reader∗ 0.616 0.630
Impatient Reader∗ 0.618 0.638
Memory Networks∗∗ 0.635 0.684
+ Ensemble (11 models)∗∗ 0.662 0.694

Table 1: Accuracy on CNN-QA dataset. Results
marked by ∗ are cited from Hermann et al. (2015)
and ∗∗ from Hill et al. (2015).

(@entity1) @entity0 may be @entity2 in the popular @entity4
superhero films , but he recently dealt in some advanced bionic
technology himself . !

…!

@entity7 received his robotic arm in the summer , then later had it
upgraded to resemble a " @entity26 " arm .!

this past saturday , @entity7 received an even more impressive gift ,
from " @entity2 " himself . !

…!

the actor showed the child two arms , one from @entity0 's movies
and one for @entity7 : a real , working robotic @entity2 arm . !

…!

" [X] " star @entity0 presents a young child with a bionic arm !e2 e2 / e7!
Max Basic!

.58 !
!

!

!

!

!

.31 !
!

!

.11 !

!

!

!

!

1.00!
!

.75 !
!

!

!

!

!

.25 !
!

!

.00 !

Figure 4: A correct answer found by max-pooling.
Attention to each entity occurrence shown on left.

clear effects, suggesting that the attention mecha-
nism plays a key role in our model. Combining these
two techniques helps more. Further, we note that
initializing our model with pre-trained word vec-
tors10 is helpful, though world knowledge of enti-
ties has been prevented by the anonymization pro-
cess. This suggests that pre-trained word vectors
may still bring extra linguistic knowledge encoded
in ordinary words. Finally, we note that our model,
full DER Network, shows the best results compared
to several previous reader models (Hermann et al.,
2015; Hill et al., 2015), endorsing our approach as
promising. The 99% confidence intervals of the re-
sults of full DER Network and the one initialized
by word2vec on the test set were [0.700, 0.740] and
[0.708, 0.749], respectively (measured by bootstrap
tests).

10We use GoogleNews vectors from http://code.
google.com/p/word2vec/ (Mikolov et al., 2013).

853

Analysis In the example shown in Figure 4, our
basic model missed by paying little attention to the
second and third sentences, probably because it does
not mention @entity0 (Downey). In contrast, max-
pooling of @entity2 (Iron Man) draws attention to
the second and third sentences because Iron Man is
said related to Downey in the first sentence. This
helps Iron Man surpass @entity26 (Transformers),
which is the name of a different movie series in
which robots appear but Downey doesn’t. Quanti-
tatively, in the 479 samples in test set correctly an-
swered by max-pooling but missed by basic model,
the average occurrences of answer entities (8.0) is
higher than the one (7.2) in the 1782 samples cor-
rectly answered by both models. This suggests that
max-pooling especially helps samples with more en-
tity mentions.

4 Discussion

It is actually a surprise for us that deep learning mod-
els, despite their vast amount of parameters, seem
able to learn as intended by the designers. This also
indicates a potential that additional linguistic intu-
itions modeled by deep learning methods can im-
prove performances, as in the other work using max-
pooling (LeCun et al., 1998; Socher et al., 2011; Le
et al., 2012; Collobert et al., 2011; Kalchbrenner et
al., 2014), attention (Bahdanau et al., 2015; Luong
et al., 2015; Xu et al., 2015; Rush et al., 2015), etc.
In this work, we have focused on modeling a reader
that dynamically builds meanings for entities. We
believe the methodology can be inspiring to other
problems as well.

Acknowledgments

This work was supported by CREST, JST and
JSPS KAKENHI Grant Number 15H01702 and
15H05318. We would like to thank members of Pre-
ferred Infrastructure, Inc. and Preferred Networks,
Inc. for useful discussions. We also thank the anony-
mous reviewers for comments on earlier version of
this paper.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly

learning to align and translate. In Proceedings of the
3rd International Conference on Learning Represen-
tations.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Alex Graves, Santiago Fernández, and Jürgen Schmidhu-
ber. 2005. Bidirectional lstm networks for improved
phoneme classification and recognition. In Proceed-
ings of the 15th International Conference on Artificial
Neural Networks: Formal Models and Their Applica-
tions - Volume Part II, pages 799–804.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. CoRR, abs/1308.0850.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28, pages 1684–1692.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason We-
ston. 2015. The goldilocks principle: Reading chil-
dren’s books with explicit memory representations.
CoRR, abs/1511.02301.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 655–665.

Quoc Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu
Devin, Kai Chen, Greg Corrado, Jeff Dean, and An-
drew Ng. 2012. Building high-level features using
large scale unsupervised learning. In Proceedings of
the 29th International Conference on Machine Learn-
ing, pages 81–88.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1412–1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

854

Hoifung Poon, Janara Christensen, Pedro Domingos,
Oren Etzioni, Raphael Hoffmann, Chloe Kiddon,
Thomas Lin, Xiao Ling, Mausam, Alan Ritter, Ste-
fan Schoenmackers, Stephen Soderland, Dan Weld,
Fei Wu, and Congle Zhang. 2010. Machine read-
ing at the university of washington. In Proceedings of
the NAACL HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Read-
ing, pages 87–95.

Matthew Richardson, Christopher J.C. Burges, and Erin
Renshaw. 2013. MCTest: A challenge dataset for the
open-domain machine comprehension of text. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 193–203.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 379–389.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems 24, pages 801–809.

Wilson L. Taylor. 1953. ”cloze procedure”: a new
tool for measuring readability. Journalism Quarterly,
30:415–433.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5 - msprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clay-
ton. 2015. Chainer: a next-generation open source
framework for deep learning. In Proceedings of Work-
shop on Machine Learning Systems (LearningSys) in
The 29th Annual Conference on Neural Information
Processing Systems.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In
Proceedings of the 32nd International Conference on
Machine Learning, pages 2048–2057.

855

Proceedings of NAACL-HLT 2016, pages 856–865,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Speed-Constrained Tuning for Statistical Machine Translation Using
Bayesian Optimization

Daniel Beck†∗ Adrià de Gispert‡ Gonzalo Iglesias‡ Aurelien Waite‡ Bill Byrne‡
†Department of Computer Science, University of Sheffield, United Kingdom

debeck1@sheffield.ac.uk
‡SDL Research, Cambridge, United Kingdom

{agispert,giglesias,rwaite,bbyrne}@sdl.com

Abstract

We address the problem of automatically
finding the parameters of a statistical ma-
chine translation system that maximize BLEU
scores while ensuring that decoding speed ex-
ceeds a minimum value. We propose the use
of Bayesian Optimization to efficiently tune
the speed-related decoding parameters by eas-
ily incorporating speed as a noisy constraint
function. The obtained parameter values are
guaranteed to satisfy the speed constraint with
an associated confidence margin. Across three
language pairs and two speed constraint val-
ues, we report overall optimization time re-
duction compared to grid and random search.
We also show that Bayesian Optimization can
decouple speed and BLEU measurements, re-
sulting in a further reduction of overall op-
timization time as speed is measured over a
small subset of sentences.

1 Introduction

Research in Statistical Machine Translation (SMT)
aims to improve translation quality, typically mea-
sured by BLEU scores (Papineni et al., 2001), over
a baseline system. Given a task defined by a lan-
guage pair and its corpora, the quality of a system is
assessed by contrasting choices made in rule/phrase
extraction criteria, feature functions, decoding algo-
rithms and parameter optimization techniques.

Some of these choices result in systems with sig-
nificant differences in performance. For example,
in phrase-based translation (PBMT) (Koehn et al.,

∗ This work was done during an internship of the first au-
thor at SDL Research, Cambridge.

2003), decoder parameters such as pruning thresh-
olds and reordering constraints can have a dramatic
impact on both BLEU and decoding speed. How-
ever, unlike feature weights, which can be optimized
by MERT (Och and Ney, 2004), it is difficult to op-
timize decoder parameters either for speed or for
BLEU.

We are interested in the problem of automatically
finding the decoder parameters and feature weights
that yield the best BLEU at a specified minimum de-
coding speed. This is potentially very expensive be-
cause each change in a decoder parameter requires
re-decoding to assess both BLEU and translation
speed. This is under-studied in the literature, despite
its importance for real-life commercial SMT engines
whose speed and latency can be as significant for
user satisfaction as overall translation quality.

We propose to use Bayesian Optimiza-
tion (Brochu et al., 2010b; Shahriari et al., 2015)
for this constrained optimization task. By using
prior knowledge of the function to be optimized
and by exploring the most uncertain and the most
promising regions of the parameter space, Bayesian
Optimization (BO) is able to quickly find optimal
parameter values. It is particularly well-suited to
optimize expensive and non-differentiable functions
such as the BLEU score of a decoder on a tuning
set. The BO framework can also incorporate noisy
constraints, such as decoder speed measurements,
yielding parameters that satisfy these constraints
with quantifiable confidence values.

For a set of fixed feature weights, we use BO to
optimize phrase-based decoder parameters for speed
and BLEU. We show across 3 different language

856

pairs that BO can find fast configurations with high
BLEU scores much more efficiently than other tun-
ing techniques such as grid or random search. We
also show that BLEU and decoding speed can be
treated as decoupled measurements by BO. This re-
sults in a further reduction of overall optimization
time, since speed can be measured over a smaller set
of sentences than is needed for BLEU.

Finally, we discuss the effects of feature weights
reoptimization after speed tuning, where we show
that further improvements in BLEU can be obtained.
Although our analysis is done on a phrase-based
system with standard decoder parameters (decoding
stack size, distortion limit, and maximum number of
translations per source phrase), BO could be applied
to other decoding paradigms and parameters.

The paper is organized as follows. Section 2 gives
a brief overview of Bayesian Optimization and de-
scribes how it can be applied to our problem, Section
3 reports our speed-constrained tuning experiments,
Section 4 reviews related work, and Section 5 con-
cludes.

2 Bayesian Optimization

We are interested in finding a global maximizer of
an objective function f :

θ? = arg max
θ∈Θ

f(θ) (1)

where θ is a parameter vector from a search space
Θ. It is assumed that f has no simple closed form
but can be evaluated at an arbitrary θ point. In this
paper, we take f as the BLEU score produced by an
SMT system on a tuning set, and θ will be the PBMT
decoder parameters.

Bayesian Optimization is a powerful framework
to efficiently address this problem. It works by
defining a prior model over f and evaluating it se-
quentially. Evaluation points are chosen to maxi-
mize the utility of the measurement, as estimated
by an acquisition function that trades off exploration
of uncertain regions in Θ versus exploitation of re-
gions that are promising, based on function eval-
uations over all x points gathered so far. BO is
particularly well-suited when f is non-convex, non-
differentiable and costly to evaluate (Shahriari et al.,
2015).

2.1 Prior Model
The first step in performing BO is to define the prior
model over the function of interest. While a num-
ber of different approaches exist in the literature, in
this work we follow the concepts presented in Snoek
et al. (2012) and implemented in the Spearmint1

toolkit, which we detail in this Section.
The prior over f is defined as a Gaussian Process

(GP) (Rasmussen and Williams, 2006):

f ∼ GP(m(θ), k(θ, θ′)) (2)

where m and k are the mean and kernel (or co-
variance) functions. The mean function is fixed to
the zero constant function, as usual in GP models.
This is not a large restriction because the posterior
over f will have non-zero mean in general. We use
the Matèrn52 kernel, which makes little assumptions
about the function smoothness.

The observations, BLEU scores in our work, are
assumed to have additive Gaussian noise over f
evaluations. In theory we do not expect variations
in BLEU for a fixed set of decoding parameters but
in practice assuming some degree of noise helps to
make the posterior calculation more stable.

2.2 Adding Constraints
The optimization problem of Equation 1 can be ex-
tended to incorporate an added constraint on some
measurement c(θ):

θ? = arg max
θ∈Θ

f(θ) s.t. c(θ) > t (3)

In our setup, c(θ) is the decoding speed of a con-
figuration θ, and t is the minimum speed we wish
the decoder to run at. This formulation assumes c is
deterministic given a set of parameters θ. However,
as we show in Section 3.2, speed measurements are
inherently noisy, returning different values when us-
ing the same decoder parameters.

So, we follow Gelbart et al. (2014) and redefine
Equation 3 by assuming a probabilistic model p over
c(θ):

θ? = arg max
θ∈Θ

f(θ) s.t. p(c(θ) > t) ≥ 1− δ (4)

where δ is a user-defined tolerance value. For our
problem, the formulation above states that we wish

1https://github.com/HIPS/Spearmint

857

to optimize the BLEU score for decoders that run at
speeds faster than t with probability 1− δ. Like f , c
is also assumed to have a GP prior with zero mean,
Matèrn52 kernel and additive Gaussian noise.

2.3 Acquisition Function

The prior model combined with observations gives
rise to a posterior distribution over f . The poste-
rior mean gives information about potential optima
in Θ, in other words, regions we would like to ex-
ploit. The posterior variance encodes the uncertainty
in unknown regions of Θ, i.e., regions we would like
to explore. This exploration/exploitation trade-off is
a fundamental aspect not only in BO but many other
global optimization methods.

Acquisition functions are heuristics that use in-
formation from the posterior to suggest new eval-
uation points. They naturally encode the explo-
ration/exploitation trade-off by taking into account
the full posterior information. A suggestion is ob-
tained by maximizing this function, which can be
done using standard optimization techniques since
they are much cheaper to evaluate compared to the
original objective function.

Most acquisition functions used in the literature
are based on improving the best evaluation obtained
so far. However, it has been shown that this approach
has some pathologies in the presence of constrained
functions (Gelbart et al., 2014). Here we employ
Predictive Entropy Search with Constraints (PESC)
(Hernández-Lobato et al., 2015), which aims to
maximize the information about the global optimum
θ?. This acquisition function has been empirically
shown to obtain better results when dealing with
constraints and it can easily take advantage of a sce-
nario known as decoupled constraints (Gelbart et
al., 2014), where the objective (BLEU) and the con-
straint (speed) values can come from different sets of
measurements. This is explained in the next Section.

Algorithm 1 summarizes the BO procedure under
constraints. It starts with a set D0 of data points
(selected at random, for instance), where each data
point is a (θ, f, c) triple made of parameter values,
one function evaluation (BLEU) and one constraint
evaluation (decoding speed). Initial posteriors over
the objective and the constraint are calculated2. At

2Note that the objective posterior p(f |D) does not depend

every iteration, the algorithm selects a new evalu-
ation point by maximizing the acquisition function
α, measures the objective and constraint values on
this point and updates the respective posterior dis-
tributions. It repeats this process until it reaches a
maximum number of iterations N , and returns the
best set of parameters obtained so far that is valid
according to the constraint.

Algorithm 1 Constrained Bayesian Optimization
Input max. number of iterations N , acquisition

function α, initial evaluations D0, min. con-
straint value t, tolerance δ

1: Θ = ∅
2: for i = 1, . . . , N do
3: select new θi by maximizing α:

θi = arg max
θ

α(θ, p(f |Di−1), p(c|Di−1))

4: Θ = Θ∪ θi
5: query objective f(θi)
6: query constraint c(θi)
7: augment data Di = Di ∪ (θ, f, c)i
8: update objective posterior p(f |Di)
9: update constraint posterior p(c|Di)

10: end for
11: return θ? as per Equation 4

2.4 Decoupling Constraints

Translation speed can be measured on a much
smaller tuning set than is required for reliable BLEU
scores. In speed-constrained BLEU tuning, we can
decouple the constraint by measuring speed on a
small set of sentences, while still measuring BLEU
on the full tuning set. In this scenario, BO could
spend more time querying values for the speed con-
straint (as they are cheaper to obtain) and less time
querying the BLEU objective.

We use PESC as the acquisition function because
it can easily handle decoupled constraints (Gelbart,
2015, Sec. 4.3). Effectively, we modify Algorithm 1
to update either the objective or the constraint pos-
terior at each iteration, according to what is obtained
by maximizing PESC at line 3. This kind of decou-
pling is not allowed by standard acquisition func-
tions used in BO.

on the constraint measurements, and the constraint posterior
p(c|D) does not depend on the objective measurements.

858

The decoupled scenario makes good use of het-
erogeneous computing resources. For example, we
are interested in measuring decoding speed on a spe-
cific machine that will be deployed. But translating
the tuning set to measure BLEU can be parallelized
over whatever computing is available.

3 Speed Tuning Experiments

We report translation results in three language
pairs, chosen for the different challenges they pose
for SMT systems: Spanish-to-English, English-to-
German and Chinese-to-English. For each language
pair, we use generic parallel data extracted from the
web. The data sizes are 1.7, 1.1 and 0.3 billion
words, respectively.

For Spanish-to-English and English-to-German
we use mixed-domain tuning/test sets, which have
about 1K sentences each and were created to evenly
represent different domains, including world news,
health, sport, science and others. For Chinese-to-
English we use in-domain sets (2K sentences) cre-
ated by randomly extracting unique parallel sen-
tences from in-house parallel text collections; this
in-domain data leads to higher BLEU scores than in
the other tasks, as will be reported later. In all cases
we have one reference translation.

We use an in-house implementation of a
phrase-based decoder with lexicalized reordering
model (Galley and Manning, 2008). The system
uses 21 features, whose weights are optimized for
BLEU via MERT (Och and Ney, 2004) at very
slow decoder parameter settings in order to mini-
mize search errors in tuning. The feature weights
remain fixed during the speed tuning process.

3.1 Decoder Parameters

We tune three standard decoder parameters θ =
(d, s, n) that directly affect the translation speed. We
describe them next.

d: distortion limit. The maximum number of source
words that may be skipped by the decoder as
it generates phrases left-to-right on the target
side.

s: stack size. The maximum number of hypotheses
allowed to survive histogram pruning in each
decoding stack.

n: number of translations. The maximum num-
ber of alternative translations per source phrase
considered in decoding.

3.2 Measuring Decoding Speed

To get a better understanding of the speed measure-
ments we decode the English-German tuning set 100
times with a slow decoder parameter setting, i.e.
θ = (5, 100, 100), and repeat for a fast setting with
θ = (0, 1, 1). We collect speed measurements in
number of translated words per minute (wpm)3.

The plots in Figure 1 show histograms contain-
ing the measurements obtained for both slow and
fast settings. While both fit in a Gaussian distri-
bution, the speed ranges approximately from 750
to 950 wpm in the slow setting and from 90K to
120K wpm in the fast setting. This means that speed
measurements exhibit heteroscedasticity: they fol-
low Gaussian distributions with different variances
that depend on the decoder parameter values. This
is a problem for our BO setting because the GP we
use to model the constraint assumes homoscedastic-
ity, or constant noise over the support set Θ.

Figure 1: Histograms of speed measurements. The solid line

shows a Gaussian fit with the empirical mean and variance.

Note the difference in scale between the two settings, showing

the heteroscedasticity.

A simple way to reduce the effect of heteroscedas-
ticity is to take the logarithm of the speed measure-
ments, which is also a standard practice when mod-
eling non-negative measures in a GP (Gelbart et al.,
2014). Table 1 shows the values for mean and stan-
dard deviation before and after the log transforma-
tion. Using the logarithm keeps the GP inference

3Measured on an Intel Xeon E5-2450 at 2.10GHz.

859

Slow setting Fast setting
Mean Std Mean Std

speed 854.23 33.88 105.7k 5.6k
log speed 6.75 0.0398 11.57 0.0541

Table 1: Speed means and standard deviations in words per

minute before and after the logarithmic transformation.

formulas tractable so we use this solution in our ex-
periments.

3.3 BO Details and Baselines

All BO experiments use Spearmint (Snoek et al.,
2012) with default values unless explicitly stated
otherwise. We set the minimum and maximum val-
ues for d, s and n as [0, 10], [1, 500] and [1, 100],
respectively. We model d in linear scale but s and
n in logarithmic scale for both BO and the base-
lines. This scaling is based on the intuition that op-
timal values for s and n will be in the lower interval
values, which was confirmed in preliminary experi-
ments on all three datasets.

We run two sets of experiments, using 2000wpm
and 5000wpm as minimum speed constraints. In ad-
dition, we use the following BO settings:

Standard (BO-S): in this setting each BO iteration
performs a full decoding of the tuning set in order to
obtain both the BLEU score and the decoding speed
jointly. We use δ = 0.01 as the constraint tolerance
described in Section 2.2.

Decoupled (BO-D): here we decouple the objec-
tive and the constraint as explained in Section 2.4.
We still decode the full tuning set to get BLEU
scores, but speed measurements are taken from a
smaller subset of 50 sentences. Since speed mea-
surements are faster in this case, we enforce BO to
query for speed more often by modeling the task du-
ration as described by Snoek et al. (2012). We use a
higher constraint tolerance (δ = 0.05), as we found
that BO otherwise focused on the speed constraints
at the expense of optimizing BLEU.

We compare these settings against two baselines:
grid search and random search (Bergstra and Ben-
gio, 2012). Grid search and random search seek pa-
rameter values in a similar way: a set of parameter
values is provided; the decoder runs over the tun-
ing set for all these values; the parameter value that

yields the highest BLEU at a speed above the con-
straint is returned. For grid search, parameter val-
ues are chosen to cover the allowed value range in
even splits given a budget of a permitted maximum
number of decodings. For random search, param-
eters are chosen from a uniform distribution over
the ranges specified above. BO-S, grid search and
random search use a maximum budget of 125 de-
codings. BO-D is allowed a larger budget of 250
iterations, as the speed measurements can be done
quickly. This is not a bias in favour of BO-D, as the
overall objective is to find the best, fast decoder in
as little CPU time as possible.

3.4 Results

Our results using the 2000wpm speed constraint are
shown in Figure 2. The solid lines in the figure show
the tuning set BLEU score obtained from the current
best parameters θ, as suggested by BO-S, as a func-
tion of CPU time (in logarithmic scale). Given that
δ = 0.01, we have a 99% confidence under the GP
model that the speed constraint is met.

Figure 2 also shows the best BLEU scores of
fast systems found by grid and random search at
increasing budgets of 8, 27, and 125 decodings of
the tuning set4. These results are represented by
squares/circles of different sizes in the plot: the
larger the square/circle, the larger the budget. For
grid and random search we report only the single
highest BLEU score found amongst the sufficiently
fast systems; the CPU times reported are the total
time spent decoding the batch. For BO, the CPU
times include both decoding time and the time spent
evaluating the acquisition function for the next de-
coder parameters to evaluate (see Section 3.5).

In terms of CPU time, BO-S finds optimal pa-
rameters in less time than either grid search or ran-
dom search. For example, in Spanish-to-English,
BO-S takes ∼70 min (9 iterations) to achieve 36.6
BLEU score. Comparing to the baselines using a
budget of 27 decodings, random search and grid
search need ∼160 min and ∼6 hours, respectively,
to achieve 36.5 BLEU. Note that, for a given bud-
get, grid search proves always slower than random
search because it always considers parameters val-

4For grid search, these correspond to 2, 3 and 5 possible
values per parameter.

860

Figure 2: BLEU scores at 2000wpm. Squares and circles with

increasing sizes correspond to searches with increasing evalu-

ation budgets (8, 27, 125). For example: in Spanish-English,

a random search with a budget of 125 evaluations required 10

CPU hours to run, and the highest BLEU score found among

the sufficiently fast (>=2000wpm) systems was 36.2. For BO-

D and BO-S, BLEU scores are plotted only if the speed is above

2000wpm and for BO-S only if the full dev set is decoded.

ues at the high end of the ranges (which are the slow-
est decoding settings).

In terms of translation quality, we find that BO-S
reaches the best BLEU scores across all language
pairs, although all approaches eventually achieve
similar scores, except in Chinese-to-English where
random search is unable to match the BO-S BLEU
score even after 125 decodings.

The dotted lines show the results obtained by the
decoupled BO-D approach. BO-D does manage to
find good BLEU scores, but it proceeds somewhat
erratically. As the figure shows, BO-D spends a
good deal of time testing systems at parameter val-
ues that are too slow. There are also negative excur-
sions in the BLEU score, which we observed were
due to updates of the posterior constraint model. For

Figure 3: BLEU scores at 5000wpm. Squares and circles with

increasing sizes correspond to baselines with increasing evalu-

ation budgets (8, 27, 125).

each new iteration, the confidence on the best pa-
rameter values may decrease, and if the confidence
drops below 1− δ, then BO suggests parameter val-
ues which are more likely to satisfy the speed con-
straint; this potentially hurts BLEU by decoding too
fast. Interestingly, this instability is not seen on the
Chinese-to-English pair. We speculate this is due to
the larger tuning set for this language pair. Because
the task time difference between BLEU and speed
measurements is higher compared to the other lan-
guage pairs, BO-D tends to query speed more in this
case, resulting in a better posterior for the constraint.

Our results using the stricter 5000 wpm speed
constraint are shown in Figure 3. As in the
2000wpm case, BO-S tends to find better parameter
values faster than any of the baselines. One excep-
tion is found in Spanish-to-English after ∼40 min,
when random search finds a better BLEU after 8 iter-
ations when compared to BO-S. However, later BO-
S catches up and finds parameters that yield the same
score. In Chinese-to-English BO is able to find pa-

861

rameters that yield significantly better BLEU scores
than any of the baselines. It appears that the harsher
the speed constraint, the more difficult the optimiza-
tion task, and the more chances BO will beat the
baselines.

Interestingly, the decoupled BO-D approach is
more stable than in the less strict 2000wpm case. Af-
ter some initial oscillations in BLEU for English-to-
German, BO-D curves climb to optimal parameters
in much less CPU time than BO-S. This is clearly
seen in Spanish-to-English and Chinese-to-English.
We conclude that the harsher the speed constraint,
the more benefit in allowing BO to query for speed
separately from BLEU.

Tables 2 and 3 report the final parameters θ found
by each method after spending the maximum al-
lowed budget, and the BLEU and speed measured
(average of 3 runs) when translating the tuning
and test using θ. These show how different each
language pair behaves when optimizing for speed
and BLEU. For Spanish-to-English and English-to-
German it is possible to find fast decoding configu-
rations (well above 5K wpm) that nearly match the
BLEU score of the slow system used for MERT
tuning, i.e. θMERT = (10, 1000, 500). In con-
trast, significant degradation in BLEU is observed
at 5000wpm for Chinese-to-English, a language pair
with complicated reordering requirements – notice
that all methods consistently keep a very high dis-
tortion limit for this language pair. However, both
BO-S and BO-D strategies yield better performance
on test (at least +0.5BLEU improvement) than the
grid and random search baselines.

Only BO is able to find optimal parameters across
all tasks faster. The optimum parameters yield simi-
lar performance on the tuning and test sets, allowing
for the speed variations discussed in Section 3.2. All
the optimization procedures guarantee that the con-
straint is always satisfied over the tuning set. How-
ever, this strict guarantee does not necessarily extend
to other data in the same way that there might be
variations in BLEU score. This can be seen in the
Chinese-English experiments. Future work could
focus on improving the generalization of the con-
fidence over constraints.

Tuning Test θ
BLEU speed BLEU speed d s n

Spanish-English
MERT 36.9 93 37.9 95 10 1K 500
Grid 36.5 8.1K 37.9 8.1K 5 22 31
Random 36.6 4.1K 37.8 4.1K 4 64 27
BO-S 36.6 2.7K 37.8 2.7K 4 95 68
BO-D 36.6 2.6K 37.8 2.6K 4 110 24
English-German
MERT 21.1 72 18.0 70 10 1K 500
Grid 21.3 12.4K 18.2 12.4K 2 22 31
Random 21.4 18.4K 18.1 18.4K 2 13 43
BO-S 21.5 14.7K 18.1 14.3K 3 13 34
BO-D 21.5 14.4K 18.1 14.7K 3 13 35
Chinese-English
MERT 44.3 50 42.5 51 10 1K 500
Grid 43.7 2.3K 41.8 2.1K 10 22 100
Random 43.3 3.0K 41.4 2.9K 9 19 46
BO-S 43.8 2.0K 41.9 1.9K 10 25 100
BO-D 43.7 2.2K 41.8 2.1K 10 24 44

Table 2: Results obtained after reaching the full evaluation bud-

get (2000 words/min constraint). Speed is reported in translated

words per minute.
Tuning Test θ

BLEU speed BLEU speed d s n

Spanish-English
MERT 36.9 93 37.9 95 10 1K 500
Grid 36.5 8.1K 37.9 8.1K 5 22 31
Random 36.6 8.0K 37.8 7.9K 4 28 43
BO-S 36.6 11.9K 37.8 12.0K 4 19 24
BO-D 36.6 11.0K 37.8 10.9K 4 19 73
English-German
MERT 21.1 72 18.0 70 10 1K 500
Grid 21.3 12.4K 18.2 12.4K 2 22 31
Random 21.4 18.4K 18.1 18.4K 2 13 43
BO-S 21.5 14.7K 18.1 14.3K 3 13 34
BO-D 21.5 14.6K 18.1 14.4K 3 13 33
Chinese-English
MERT 44.3 50 42.5 51 10 1K 500
Grid 42.5 10.7K 40.9 10.1K 10 4 100
Random 42.5 10.6K 40.5 10.4K 9 7 14
BO-S 43.2 5.4K 41.4 5.3K 10 13 15
BO-D 43.2 5.8K 41.4 5.7K 10 12 15

Table 3: Results obtained after reaching the full evaluation bud-

get (5000 words/min constraint).

3.5 BO Time Analysis

The complexity of GP-based BO is O(n3), n being
the number of GP observations, or function evalua-
tions (Rasmussen and Williams, 2006). As the ob-
jective function f is expected to be expensive, this

862

Figure 4: Time spent at each iteration in decoding and in BO

(Chinese-to-English, 2000 wpm). BO-S (top), BO-D (bottom)

should not be an issue for low budgets. However, as
the number of iterations grows there might reach a
point at the time spent on the GP calculations sur-
passes the time spent evaluating the function.

This is investigated in Figure 4, where the time
spent in decoding versus BO (in logarithmic scale)
for Chinese-to-English using the 2K wpm constraint
is reported, as a function of the optimization iter-
ation. For BO-S (top), decoding time is generally
constant but can peak upwards or downwards de-
pending on the chosen parameters. For BO-D (bot-
tom), most of the decoding runs are faster (when
BO is querying for speed), and shoot up significantly
only when the full tuning set is decoded (when BO
is querying for BLEU). For both cases, BO time
increases with the number of iterations, becoming
nearly as expensive as decoding when a high maxi-
mum budget is considered. As shown in the previous
section, this was no problem for our speed-tuning
experiments because optimal parameters could be
found with few iterations, but more complex settings
(for example, with more decoder parameters) might
require more iterations to find good solutions. For
these cases the time spent in BO could be signifi-
cant.

3.6 Reoptimizing Feature Weights

We have used BO to optimize decoder parameters
for feature weights that had been tuned for BLEU
using MERT. However, there is no reason to believe

Tuning Test θ
BLEU speed BLEU speed d s n

MERT 44.3 – 42.5 51 10 1K 500
BO-S 43.8 2.0K 41.9 1.9K 10 25 100
MERT-flat 43.8 2.0K 41.4 1.9K 10 25 100
MERT-opt 44.3 2.0K 42.4 1.9K 10 25 100

Table 4: Chinese-to-English results of re-running MERT using

parameters that satisfy the 2K wpm speed constraint.

that the best feature weights for a slow setting are
also the best weights at the fast settings we desire.

To assess this we now fix the decoder parame-
ters θ and re-run MERT on Chinese-to-English with
2000 wpm using the fast settings found by BO-S:
θBO = (10, 25, 100) in Table 2. We run MERT
starting from flat weights (MERT-flat) and from the
optimal weights (MERT-opt), previously tuned for
the MERT baseline with θMERT . Table 4 reports
the results.

We find that MERT-opt is able to recover from
the BLEU drops observed during speed-constrained
tuning and close the gap with the slow baseline
(from 41.9 to 42.4 BLEU at 1.8 Kwpm, versus 42.5
for MERT at only 51wpm). Note that this perfor-
mance is not achieved using MERT-flat, so rather
than tune from flat parameters in a fixed fast setting,
we conclude that it is better to: (1) use MERT to
find feature weights in slow settings; (2) optimize
decoder parameters for speed; (3) run MERT again
with the fast decoder parameters from the feature
weights found at the slow settings. As noted earlier,
this may reduce the impact of search errors encoun-
tered in MERT when decoding at fast settings. How-
ever, this final application MERT is unconstrained
and there is no guarantee that it will yield a decoder
configuration that satisfies the constraints. This must
be verified through subsequent testing.

Ideally, one should jointly optimize decoder pa-
rameters, feature weights and all decisions involved
in building an SMT system, but this can be very
challenging to do using only BO. We note anecdo-
tally that we have attempted to replicate the feature
weight tuning procedure of Miao et al. (2014) but
obtained mixed results on our test sets. Effective
ways to combine BO with well-established feature
tuning algorithms such as MERT could be a promis-
ing research direction.

863

4 Related Work

Bayesian Optimization has been previously used
for hyperparameter optimization in machine learn-
ing systems (Snoek et al., 2012; Bergstra et al.,
2011), automatic algorithm configuration (Hutter et
al., 2011) and for applications in which system tun-
ing involves human feedback (Brochu et al., 2010a).
Recently, it has also been used successfully in sev-
eral NLP applications. Wang et al. (2015) use BO to
tune sentiment analysis and question answering sys-
tems. They introduce a multi-stage approach where
hyperparameters are optimized using small datasets
and then used as starting points for subsequent BO
stages using increasing amounts of data. Yogatama
et al. (2015) employ BO to optimize text represen-
tations in a set of classification tasks. They find that
there is no representation that is optimal for all tasks,
which further justifies an automatic tuning approach.
Wang et al. (2014) use a model based on optimistic
optimization to tune parameters of a term extraction
system. In SMT, Miao et al. (2014) use BO for fea-
ture weight tuning and report better results in some
language pairs when compared to traditional tuning
algorithms.

Our approach is heavily based on the work of
Gelbart et al. (2014) and Hernández-Lobato et al.
(2015) which uses BO in the presence of unknown
constraints. They set speed and memory constraints
on neural network trainings and report better results
compared to those of naive models which explicitly
put high costs on regions that violate constraints. A
different approach based on augmented Lagrangians
is proposed by Gramacy et al. (2014). The authors
apply BO in a water decontamination setting where
the goal is to find the optimal pump positioning sub-
ject to restrictions on water and contaminant flows.
All these previous work in constrained BO use GPs
as the prior model.

Optimizing decoding parameters for speed is an
understudied problem in the MT literature. Chung
and Galley (2012) propose direct search methods
to optimize feature weights and decoder parameters
jointly but aiming at the traditional goal of maxi-
mizing translation quality. To enable search param-
eter optimization they enforce a deterministic time
penalty on BLEU scores, which is not ideal due to
the stochastic nature of time measurements shown

on Section 3.2 (this issue is also cited by the authors
in their manuscript). It would be interesting to incor-
porate their approach into BO for optimizing trans-
lation quality under speed constraints.

5 Conclusion

We have shown that Bayesian Optimisation per-
forms well for translation speed tuning experiments
and is particularly suited for low budgets and for
tight constraints. There is much room for improve-
ment. For better modeling of the speed constraint
and possibly better generalization in speed mea-
surements across tuning and test sets, one possibil-
ity would be to use randomized sets of sentences.
Warped GPs (Snelson et al., 2003) could be a more
accurate model as they can learn transformations for
heteroscedastic data without relying on a fixed trans-
formation, as we do with log speed measurements.

Modelling of the objective function could also
be improved. In our experiments we used a
GP with a Matèrn52 kernel, but this assumes
f is doubly-differentiable and exhibits Lipschitz-
continuity (Brochu et al., 2010b). Since that
does not hold for the BLEU score, using al-
ternative smoother metrics such as linear cor-
pus BLEU (Tromble et al., 2008) or expected
BLEU (Rosti et al., 2010) could yield better results.
Other recent developments in Bayesian Optimisa-
tion could be applied to our settings, like multi-task
optimization (Swersky et al., 2013) or freeze-thaw
optimization (Swersky et al., 2014).

In our application we treat Bayesian Optimisation
as a sequential model. Parallel approaches do exist
(Snoek et al., 2012; González et al., 2015), but we
find it easy enough to harness parallel computation
in decoding tuning sets and by decoupling BLEU
measurements from speed measurements. How-
ever for more complex optimisation scenarios or for
problems that require lengthy searches, paralleliza-
tion might be needed to keep the computations re-
quired for optimisation in line with what is needed
to measure translation speed and quality.

References
James Bergstra and Yoshua Bengio. 2012. Random

Search for Hyper-Parameter Optimization. Journal of
Machine Learning Research, 13:281–305.

864

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for Hyper-Parameter
Optimization. In Proceedings of NIPS.

Eric Brochu, Tyson Brochu, and Nando de Freitas.
2010a. A Bayesian Interactive Optimization Approach
to Procedural Animation Design. In Proceedings of
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation.

Eric Brochu, Vlad M. Cora, and Nando de Freitas.
2010b. A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Ac-
tive User Modeling and Hierarchical Reinforcement
Learning. arXiv:1012.2599v1 [cs.LG].

Tagyoung Chung and Michel Galley. 2012. Direct Error
Rate Minimization for Statistical Machine Translation.
In Proceedings of WMT, pages 468–479.

Michel Galley and Christopher D. Manning. 2008. A
Simple and Effective Hierarchical Phrase Reordering
Model. In Proceedings of EMNLP, pages 847–855.

Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams.
2014. Bayesian Optimization with Unknown Con-
straints. In Proceedings of UAI.

Michael A. Gelbart. 2015. Constrained Bayesian Opti-
mization and Applications. Ph.D. thesis, Harvard Uni-
versity.

Javier González, Zhenwen Dai, Philipp Hennig, and
Neil D. Lawrence. 2015. Batch Bayesian Optimiza-
tion via Local Penalization.

Robert B. Gramacy, Genetha A. Gray, Sebastien Le Di-
gabel, Herbert K. H. Lee, Pritam Ranjan, Garth Wells,
and Stefan M. Wild. 2014. Modeling an Augmented
Lagrangian for Blackbox Constrained Optimization.
arXiv preprint arXiv:1403.4890.

José Miguel Hernández-Lobato, Michael A. Gelbart,
Matthew W. Hoffman, Ryan P. Adams, and Zoubin
Ghahramani. 2015. Predictive Entropy Search for
Bayesian Optimization with Unknown Constraints. In
Proceedings of ICML.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
2011. Sequential Model-based Optimization for Gen-
eral Algorithm Configuration. In Proceedings of LION
5.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of NAACL, pages 48–54.

Yishu Miao, Ziyu Wang, and Phil Blunsom. 2014.
Bayesian Optimisation for Machine Translation. In
NIPS Workshop on Bayesian Optimization, pages 1–
5.

Franz Josef Och and Hermann Ney. 2004. The Align-
ment Template Approach to Statistical Machine Trans-
lation. Computational Linguistics, 30(4):417–449.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311–318.

Carl Edward Rasmussen and Christopher K. I. Williams.
2006. Gaussian processes for machine learning, vol-
ume 1. MIT Press Cambridge.

Antti-Veikko Rosti, Bing Zhang, Spyros Matsoukas, and
Richard Schwartz. 2010. Bbn system description for
wmt10 system combination task. In Proceedings of
WMT and MetricsMATR, pages 321–326.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P.
Adams, and Nando de Freitas. 2015. Taking the Hu-
man Out of the Loop : A Review of Bayesian Opti-
mization. Technical Report 1, Universities of Harvard,
Oxford, Toronto, and Google DeepMind.

Edward Snelson, Carl Edward Rasmussen, and Zoubin
Ghahramani. 2003. Warped Gaussian Processes. In
Proceedings of NIPS, pages 337–344.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
2012. Practical Bayesian optimization of Machine
Learning Algorithms. In Proceedings of NIPS.

Kevin Swersky, Jasper Snoek, and Ryan P. Adams. 2013.
Multi-task Bayesian Optimization. In Proceedings of
NIPS.

Kevin Swersky, Jasper Snoek, and Ryan P. Adams.
2014. Freeze-Thaw Bayesian Optimization.
arXiv:1406.3896v1 [stat.ML].

Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang
Macherey. 2008. Lattice Minimum Bayes-Risk de-
coding for statistical machine translation. In Proceed-
ings of EMNLP, pages 620–629.

Ziyu Wang, Babak Shakibi, Lin Jin, and Nando de Fre-
itas. 2014. Bayesian Multi-Scale Optimistic Opti-
mization. In Proceedings of AISTATS.

Lidan Wang, Minwei Feng, Bowen Zhou, Bing Xiang,
and Sridhar Mahadevan. 2015. Efficient Hyper-
parameter Optimization for NLP Applications. In Pro-
ceedings of EMNLP, pages 2112–2117.

Dani Yogatama, Lingpeng Kong, and Noah A. Smith.
2015. Bayesian Optimization of Text Representations.
In Proceedings of EMNLP, pages 2100–2105.

865

Proceedings of NAACL-HLT 2016, pages 866–875,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multi-Way, Multilingual Neural Machine Translation
with a Shared Attention Mechanism

Orhan Firat
Middle East Technical University

orhan.firat@ceng.metu.edu.tr

Kyunghyun Cho
New York University

Yoshua Bengio
University of Montreal
CIFAR Senior Fellow

Abstract

We propose multi-way, multilingual neural
machine translation. The proposed approach
enables a single neural translation model to
translate between multiple languages, with a
number of parameters that grows only lin-
early with the number of languages. This
is made possible by having a single atten-
tion mechanism that is shared across all lan-
guage pairs. We train the proposed multi-
way, multilingual model on ten language pairs
from WMT’15 simultaneously and observe
clear performance improvements over models
trained on only one language pair. In partic-
ular, we observe that the proposed model sig-
nificantly improves the translation quality of
low-resource language pairs.

1 Introduction

Neural Machine Translation It has been shown
that a deep (recurrent) neural network can success-
fully learn a complex mapping between variable-
length input and output sequences on its own. Some
of the earlier successes in this task have, for in-
stance, been handwriting recognition (Bottou et al.,
1997; Graves et al., 2009) and speech recogni-
tion (Graves et al., 2006; Chorowski et al., 2015).
More recently, a general framework of encoder-
decoder networks has been found to be effective at
learning this kind of sequence-to-sequence mapping
by using two recurrent neural networks (Cho et al.,
2014b; Sutskever et al., 2014).

A basic encoder-decoder network consists of two
recurrent networks. The first network, called an en-
coder, maps an input sequence of variable length

into a point in a continuous vector space, resulting
in a fixed-dimensional context vector. The other re-
current neural network, called a decoder, then gener-
ates a target sequence again of variable length start-
ing from the context vector. This approach however
has been found to be inefficient in (Cho et al., 2014a)
when handling long sentences, due to the difficulty
in learning a complex mapping between an arbitrary
long sentence and a single fixed-dimensional vector.

In (Bahdanau et al., 2014), a remedy to this issue
was proposed by incorporating an attention mecha-
nism to the basic encoder-decoder network. The at-
tention mechanism in the encoder-decoder network
frees the network from having to map a sequence of
arbitrary length to a single, fixed-dimensional vec-
tor. Since this attention mechanism was introduced
to the encoder-decoder network for machine trans-
lation, neural machine translation, which is purely
based on neural networks to perform full end-to-end
translation, has become competitive with the exist-
ing phrase-based statistical machine translation in
many language pairs (Jean et al., 2015; Gulcehre et
al., 2015; Luong et al., 2015b).

Multilingual Neural Machine Translation Ex-
isting machine translation systems, mostly based on
a phrase-based system or its variants, work by di-
rectly mapping a symbol or a subsequence of sym-
bols in a source language to its corresponding sym-
bol or subsequence in a target language. This kind
of mapping is strictly specific to a given language
pair, and it is not trivial to extend this mapping to
work on multiple pairs of languages.

A system based on neural machine translation, on
the other hand, can be decomposed into two mod-

866

ules. The encoder maps a source sentence into a con-
tinuous representation, either a fixed-dimensional
vector in the case of the basic encoder-decoder net-
work or a set of vectors in the case of attention-
based encoder-decoder network. The decoder then
generates a target translation based on this source
representation. This makes it possible conceptually
to build a system that maps a source sentence in
any language to a common continuous representa-
tion space and decodes the representation into any
of the target languages, allowing us to make a multi-
lingual machine translation system.

This possibility is straightforward to implement
and has been validated in the case of basic encoder-
decoder networks (Luong et al., 2015a). It is
however not so, in the case of the attention-based
encoder-decoder network, as the attention mecha-
nism, or originally called the alignment function in
(Bahdanau et al., 2014), is conceptually language
pair-specific. In (Dong et al., 2015), the authors
cleverly avoided this issue of language pair-specific
attention mechanism by considering only a one-to-
many translation, where each target language de-
coder embedded its own attention mechanism. Also,
we notice that both of these works have only eval-
uated their models on relatively small-scale tasks,
making it difficult to assess whether multilingual
neural machine translation can scale beyond low-
resource language translation.

Multi-Way, Multilingual Neural Machine Trans-
lation In this paper, we first step back from the
currently available multilingual neural translation
systems proposed in (Luong et al., 2015a; Dong
et al., 2015) and ask the question of whether the
attention mechanism can be shared across multi-
ple language pairs. As an answer to this question,
we propose an attention-based encoder-decoder net-
work that admits a shared attention mechanism with
multiple encoders and decoders. We use this model
for all the experiments, which suggests that it is
indeed possible to share an attention mechanism
across multiple language pairs.

The next question we ask is the following: in
which scenario would the proposed multi-way, mul-
tilingual neural translation have an advantage over
the existing, single-pair model? Specifically, we
consider a case of the translation between a low-

resource language pair. The experiments show that
the proposed multi-way, multilingual model gener-
alizes better than the single-pair translation model,
when the amount of available parallel corpus is
small. Furthermore, we validate that this is not only
due to the increased amount of target-side, monolin-
gual corpus.

Finally, we train a single model with the pro-
posed architecture on all the language pairs from the
WMT’15; English, French, Czech, German, Rus-
sian and Finnish. The experiments show that it is
indeed possible to train a single attention-based net-
work to perform multi-way translation.

2 Background: Attention-based Neural
Machine Translation

The attention-based neural machine translation was
proposed in (Bahdanau et al., 2014). It was mo-
tivated from the observation in (Cho et al., 2014a)
that a basic encoder-decoder translation model from
(Cho et al., 2014b; Sutskever et al., 2014) suffers
from translating a long source sentence efficiently.
This is largely due to the fact that the encoder of this
basic approach needs to compress a whole source
sentence into a single vector. Here we describe the
attention-based neural machine translation.

Neural machine translation aims at building a sin-
gle neural network that takes as input a source se-
quence X = (x1, . . . , xTx) and generates a corre-
sponding translation Y =

(
y1, . . . , yTy

)
. Each sym-

bol in both source and target sentences, xt or yt, is
an integer index of the symbol in a vocabulary.

The encoder of the attention-based model en-
codes a source sentence into a set of context vec-
tors C = {h1,h2, . . . ,hTx}, whose size varies
w.r.t. the length of the source sentence. This con-
text set is constructed by a bidirectional recurrent
neural network (RNN) which consists of a forward
RNN and reverse RNN. The forward RNN reads
the source sentence from the first token until the
last one, resulting in the forward context vectors{−→

h 1, . . . ,
−→
h Tx

}
, where

−→
h t =

−→
Ψ enc

(−→
h t−1,Ex [xt]

)
,

and Ex ∈ R|Vx|×d is an embedding matrix con-
taining row vectors of the source symbols. The

867

reverse RNN in an opposite direction, resulting in{←−
h 1, . . . ,

←−
h Tx

}
, where

←−
h t =

←−
Ψ enc

(←−
h t+1,Ex [xt]

)
.

−→
Ψ enc and

←−
Ψ enc are recurrent activation func-

tions such as long short-term memory units (LSTM,
(Hochreiter and Schmidhuber, 1997)) or gated re-
current units (GRU, (Cho et al., 2014b)). At each
position in the source sentence, the forward and re-
verse context vectors are concatenated to form a full
context vector, i.e.,

ht =
[−→
h t;
←−
h t

]
. (1)

The decoder, which is implemented as an RNN
as well, generates one symbol at a time, the trans-
lation of the source sentence, based on the context
set returned by the encoder. At each time step t in
the decoder, a time-dependent context vector ct is
computed based on the previous hidden state of the
decoder zt−1, the previously decoded symbol ỹt−1

and the whole context set C.
This starts by computing the relevance score of

each context vector as

et,i = fscore(hi, zt−1,Ey [ỹt−1]), (2)

for all i = 1, . . . , Tx. fscore can be implemented in
various ways (Luong et al., 2015b), but in this work,
we use a simple single-layer feedforward network.
This relevance score measures how relevant the i-th
context vector of the source sentence is in deciding
the next symbol in the translation. These relevance
scores are further normalized:

αt,i =
exp(et,i)∑Tx
j=1 exp(et,j)

, (3)

and we call αt,i the attention weight.
The time-dependent context vector ct is then

the weighted sum of the context vectors with their
weights being the attention weights from above:

ct =
Tx∑
i=1

αt,ihi. (4)

With this time-dependent context vector ct, the
previous hidden state zt−1 and the previously de-
coded symbol ỹt−1, the decoder’s hidden state is up-
dated by

zt = Ψdec (zt−1,Ey [ỹt−1] , ct) , (5)

where Ψdec is a recurrent activation function.
The initial hidden state z0 of the decoder is ini-

tialized based on the last hidden state of the reverse
RNN:

z0 = finit

(←−
h Tx

)
, (6)

where finit is a feedforward network with one or two
hidden layers.

The probability distribution for the next target
symbol is computed by

p(yt = k|ỹ<t, X) ∝ egk(zt,ct,E[ỹt−1]), (7)

where gk is a parametric function that returns the
unnormalized probability for the next target symbol
being k.

Training this attention-based model is done by
maximizing the conditional log-likelihood

L(θ) =
1
N

N∑
n=1

Ty∑
t=1

log p(yt = y
(n)
t |y(n)

<t , X
(n)),

(8)

where the log probability inside the inner summa-
tion is from Eq. (7). It is important to note that
the ground-truth target symbols y(n)

t are used during
training. The entire model is differentiable, and the
gradient of the log-likelihood function with respect
to all the parameters θ can be computed efficiently
by backpropagation. This makes it straightforward
to use stochastic gradient descent or its variants to
train the whole model jointly to maximize the trans-
lation performance.

3 Multi-Way, Multilingual Translation

In this section, we discuss issues and our solutions
in extending the conventional single-pair attention-
based neural machine translation into multi-way,
multilingual model.

868

Problem Definition We assume N > 1 source
languages

{
X1, X2, . . . , XN

}
and M > 1 tar-

get languages
{
Y 1, Y 2, . . . , YM

}
, and the avail-

ability of L ≤ M × N bilingual parallel corpora
{D1, . . . , DL}, each of which is a set of sentence
pairs of one source and one target language. We
use s(Dl) and t(Dl) to indicate the source and target
languages of the l-th parallel corpus.

For each parallel corpus l, we can directly
use the log-likelihood function from Eq. (8) to
define a pair-specific log-likelihood Ls(Dl),t(Dl).
Then, the goal of multi-way, multilingual neu-
ral machine translation is to build a model
that maximizes the joint log-likelihood function
L(θ) = 1

L

∑L
l=1 Ls(Dl),t(Dl)(θ). Once the training

is over, the model can do translation from any of
the source languages to any of the target languages
included in the parallel training corpora.

3.1 Existing Approaches
Neural Machine Translation without Attention
In (Luong et al., 2015a), the authors extended the
basic encoder-decoder network for multitask neu-
ral machine translation. As they extended the ba-
sic encoder-decoder network, their model effectively
becomes a set of encoders and decoders, where each
of the encoder projects a source sentence into a com-
mon vector space. The point in the common space
is then decoded into different languages.

The major difference between (Luong et al.,
2015a) and our work is that we extend the attention-
based encoder-decoder instead of the basic model.
This is an important contribution, as the attention-
based neural machine translation has become de
facto standard in neural translation literatures re-
cently (Jean et al., 2014; Jean et al., 2015; Luong
et al., 2015b; Sennrich et al., 2015b; Sennrich et al.,
2015a), by opposition to the basic encoder-decoder.

There are two minor differences as well. First,
they do not consider multilinguality in depth. The
authors of (Luong et al., 2015a) tried only a sin-
gle language pair, English and German, in their
model. Second, they only report translation perplex-
ity, which is not a widely used metric for measur-
ing translation quality. To more easily compare with
other machine translation approaches it would be
important to evaluate metrics such as BLEU, which
counts the number of matched n-grams between the

generated and reference translations.

One-to-Many Neural Machine Translation The
authors of (Dong et al., 2015) earlier proposed
a multilingual translation model based on the
attention-based neural machine translation. Unlike
this paper, they only tried it on one-to-many trans-
lation, similarly to earlier work by (Collobert et al.,
2011) where one-to-many natural language process-
ing was done. In this setting, it is trivial to extend the
single-pair attention-based model into multilingual
translation by simply having a single encoder for a
source language and pairs of a decoder and attention
mechanism (Eq. (2)) for each target language. We
will shortly discuss more on why, with the attention
mechanism, one-to-many translation is trivial, while
multi-way translation is not.

3.2 Challenges

A quick look at neural machine translation seems to
suggest a straightforward path toward incorporating
multiple languages in both source and target sides.
As described earlier already in the introduction, the
basic idea is simple. We assign a separate encoder
to each source language and a separate decoder to
each target language. The encoder will project a
source sentence in its own language into a common,
language-agnostic space, from which the decoder
will generate a translation in its own language.

Unlike training multiple single-pair neural trans-
lation models, in this case, the encoders and de-
coders are shared across multiple pairs. This is com-
putationally beneficial, as the number of parameters
grows only linearly with respect to the number of
languages (O(L)), in contrary to training separate
single-pair models, in which case the number of pa-
rameters grows quadratically (O(L2).)

The attention mechanism, which was initially
called a soft-alignment model in (Bahdanau et al.,
2014), aligns a (potentially non-contiguous) source
phrase to a target word. This alignment process is
largely specific to a language pair, and it is not clear
whether an alignment mechanism for one language
pair can also work for another pair.

The most naive solution to this issue is to have
O(L2) attention mechanisms that are not shared
across multiple language pairs. Each attention
mechanism takes care of a single pair of source and

869

Figure 1: One step of the proposed multi-way. multilingual

Neural Machine Translation model, for the n-th encoder and

the m-th decoder at time step t. Shaded boxes are parametric

functions and square boxes represent intermediate variables of

the model. Initializer network is also illustrated as the left-most

network with dashed boxes. Notice, all the shared components

are drawn with diamond boxes. See Sec. 4 for details.

target languages. This is the approach employed in
(Dong et al., 2015), where each decoder had its own
attention mechanism.

There are two issues with this naive approach.
First, unlike what has been hoped initially with mul-
tilingual neural machine translation, the number of
parameters again grows quadratically w.r.t. the num-
ber of languages. Second and more importantly,
having separate attention mechanisms makes it less
likely for the model to fully benefit from having mul-
tiple tasks (Caruana, 1997), especially for transfer
learning towards resource-poor languages.

In short, the major challenge in building a multi-
way, multilingual neural machine translation is in
avoiding independent (i.e., quadratically many) at-
tention mechanisms. There are two questions be-
hind this challenge. The first one is whether it is
even possible to share a single attention mechanism
across multiple language pairs. The second ques-
tion immediately follows: how can we build a neural
translation model to share a single attention mecha-

nism for all the language pairs in consideration?

4 Multi-Way, Multilingual Model

We describe in this section, the proposed multi-
way, multilingual attention-based neural machine
translation. The proposed model consists of N
encoders {Ψn

enc}Nn=1 (see Eq. (1)), M decoders
{(Ψm

dec, g
m, fminit)}Mm=1 (see Eqs. (5)–(7)) and a

shared attention mechanism fscore (see Eq. (2) in the
single language pair case).

Encoders Similarly to (Luong et al., 2015b), we
have one encoder per source language, meaning that
a single encoder is shared for translating the lan-
guage to multiple target languages. In order to han-
dle different source languages better, we may use for
each source language a different type of encoder, for
instance, of different size (in terms of the number
of recurrent units) or of different architecture (con-
volutional instead of recurrent.)1 This allows us to
efficiently incorporate varying types of languages in
the proposed multilingual translation model.

This however implies that the dimensionality of
the context vectors in Eq. (1) may differ across
source languages. Therefore, we add to the origi-
nal bidirectional encoder from Sec. 2, a linear trans-
formation layer consisting of a weight matrix Wn

adp
and a bias vector bnadp, which is used to project each
context vector into a common dimensional space:

hnt = Wn
adp

[−→
h t;
←−
h t

]
+ bnadp, (9)

where Wn
adp ∈ Rd×(dim

−→
h t+dim

←−
h t) and bnadp ∈ Rd.

In addition, each encoder exposes two transfor-
mation functions φnatt and φninit. The first transformer
φnatt transforms a context vector to be compatible
with a shared attention mechanism:

h̃nt = φnatt(h
n
t). (10)

This transformer can be implemented as any type of
parametric function, and in this paper, we simply ap-
ply an element-wise tanh to hnt .

1For the pairs without enough parallel data, one may also
consider using smaller encoders to prevent over-fitting.

870

The second transformer φninit transforms the first
context vector hn1 to be compatible with the initial-
izer of the decoder’s hidden state (see Eq. (6)):

ĥn1 = φninit(h
n
1). (11)

Similarly to φnatt, it can be implemented as any type
of parametric function. In this paper, we use a
feedforward network with a single hidden layer and
share one network φinit for all encoder-decoder pairs.

Decoders We first start with an initialization of the
decoder’s hidden state. Each decoder has its own
parametric function ϕminit that maps the last context
vector ĥnTx

of the source encoder from Eq. (11) into
the initial hidden state:

zm0 = ϕminit(ĥ
n
Tx

) = ϕminit(φ
n
init(h

n
1))

ϕminit can be any parametric function, and in this pa-
per, we used a feedforward network with a single
tanh hidden layer.

Each decoder exposes a parametric function ϕmatt
that transforms its hidden state and the previously
decoded symbol to be compatible with a shared at-
tention mechanism. This transformer is a paramet-
ric function that takes as input the previous hidden
state zmt−1 and the previous symbol ỹmt−1 and returns
a vector for the attention mechanism:

z̃mt−1 = ϕmatt
(
zmt−1,E

m
y

[
ỹmt−1

])
(12)

which replaces zt−1 in Eq. 2. In this paper, we use
a feedforward network with a single tanh hidden
layer for each ϕmatt.

Given the previous hidden state zmt−1, previously
decoded symbol ỹmt−1 and the time-dependent con-
text vector cmt , which we will discuss shortly, the
decoder updates its hidden state:

zt = Ψdec
(
zmt−1,E

m
y

[
ỹmt−1

]
, fmadp(cmt)

)
,

where fmadp affine-transforms the time-dependent
context vector to be of the same dimensionality as
the decoder. We share a single affine-transformation
layer fmadp, for all the decoders in this paper.

Once the hidden state is updated, the probability
distribution over the next symbol is computed ex-
actly as for the pair-specific model (see Eq. (7).)

Symbols # Sentence
En Other Pairs

En-Fr 1.022b 2.213b 38.85m
En-Cs 186.57m 185.58m 12.12m
En-Ru 50.62m 55.76m 2.32m
En-De 111.77m 117.41m 4.15m
En-Fi 52.76m 43.67m 2.03m

Table 1: Statistics of the parallel corpora from WMT’15. Sym-

bols are BPE-based sub-words.

Attention Mechanism Unlike the encoders and
decoders of which there is an instance for each lan-
guage, there is only a single attention mechanism,
shared across all the language pairs. This shared
mechanism uses the attention-specific vectors h̃nt
and z̃mt−1 from the encoder and decoder, respectively.

The relevance score of each context vector hnt is
computed based on the decoder’s previous hidden
state zmt−1 and previous symbol ỹmt−1:

em,nt,i =fscore

(
h̃nt , z̃

m
t−1, ỹ

m
t−1

)
These scores are normalized according to Eq. (3) to
become the attention weights αm,nt,i .

With these attention weights, the time-dependent
context vector is computed as the weighted sum of
the original context vectors: cm,nt =

∑Tx
i=1 α

m,n
t,i hni .

See Fig. 1 for the illustration.

5 Experiment Settings

5.1 Datasets
We evaluate the proposed multi-way, multilingual
translation model on all the pairs available from
WMT’15–English (En)↔ French (Fr), Czech (Cs),
German (De), Russian (Ru) and Finnish (Fi)–, to-
talling ten directed pairs. For each pair, we concate-
nate all the available parallel corpora from WMT’15
and use it as a training set. We use newstest-2013 as
a development set and newstest-2015 as a test set, in
all the pairs other than Fi-En. In the case of Fi-En,
we use newsdev-2015 and newstest-2015 as a devel-
opment set and test set, respectively.

Data Preprocessing Each training corpus is tok-
enized using the tokenizer script from the Moses de-
coder.2 The tokenized training corpus is cleaned fol-

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

871

lowing the procedure in (Jean et al., 2015). Instead
of using space-separated tokens, or words, we use
sub-word units extracted by byte pair encoding, as
recently proposed in (Sennrich et al., 2015b). For
each and every language, we include 30k sub-word
symbols in a vocabulary. See Table 1 for the statis-
tics of the final, preprocessed training corpora.

Evaluation Metric We mainly use BLEU as an
evaluation metric using the multi-bleu script from
Moses.3 BLEU is computed on the tokenized text
after merging the BPE-based sub-word symbols. We
further look at the average log-probability assigned
to reference translations by the trained model as an
additional evaluation metric, as a way to measure the
model’s density estimation performance free from
any error caused by approximate decoding.

5.2 Two Scenarios
Low-Resource Translation First, we investigate
the effect of the proposed multi-way, multilingual
model on low-resource language-pair translation.
Among the six languages from WMT’15, we choose
En, De and Fi as source languages, and En and De
as target languages. We control the amount of the
parallel corpus of each pair out of three to be 5%,
10%, 20% and 40% of the original corpus. In other
words, we train four models with different sizes of
parallel corpus for each language pair (En-De, De-
En, Fi-En.)

As a baseline, we train a single-pair model for
each multi-way, multilingual model. We further
finetune the single-pair model to incorporate the
target-side monolingual corpus consisting of all the
target side text from the other language pairs (e.g.,
when a single-pair model was trained on Fi-En, the
target-side monolingual corpus consists of the tar-
get sides from De-En.) This is done by the recently
proposed deep fusion (Gulcehre et al., 2015). The
latter is included to tell whether any improvement
from the multilingual model is simply due to the in-
creased amount of target-side monolingual corpus.

Large-scale Translation We train one multi-way,
multilingual model that has six encoders and six
decoders, corresponding to the six languages from

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

Size Single Single+DF Multi

Fi
→

E
n 100k 5.06/3.96 4.98/3.99 6.2/5.17

200k 7.1/6.16 7.21/6.17 8.84/7.53
400k 9.11/7.85 9.31/8.18 11.09/9.98
800k 11.08/9.96 11.59/10.15 12.73/11.28

D
e→

E
n 210k 14.27/13.2 14.65/13.88 16.96/16.26

420k 18.32/17.32 18.51/17.62 19.81/19.63
840k 21/19.93 21.69/20.75 22.17/21.93

1.68m 23.38/23.01 23.33/22.86 23.86/23.52

E
n→

D
e 210k 11.44/11.57 11.71/11.16 12.63/12.68

420k 14.28/14.25 14.88/15.05 15.01/15.67
840k 17.09/17.44 17.21/17.88 17.33/18.14

1.68m 19.09/19.6 19.36/20.13 19.23/20.59
Table 2: BLEU scores where the target pair’s parallel corpus is

constrained to be 5%, 10%, 20% and 40% of the original size.

We report the BLEU scores on the development and test sets

(separated by /) by the single-pair model (Single), the single-

pair model with monolingual corpus (Single+DF) and the pro-

posed multi-way, multilingual model (Multi).

WMT’15; En, Fr, De, Cs, Ru, Fi→ En, Fr, De, Cs,
Ru, Fi. We use the full corpora for all of them.

5.3 Model Architecture
Each symbol, either source or target, is projected on
a 620-dimensional space. The encoder is a bidirec-
tional recurrent neural network with 1,000 gated re-
current units (GRU) in each direction, and the de-
coder is a recurrent neural network with also 1,000
GRU’s. The decoder’s output function gk from
Eq. (7) is a feedforward network with 1,000 tanh
hidden units. The dimensionalities of the context
vector hnt in Eq. (9), the attention-specific context
vector h̃nt in Eq. (10) and the attention-specific de-
coder hidden state h̃mt−1 in Eq. (12) are all set to
1,200.

We use the same type of encoder for every source
language, and the same type of decoder for every
target language. The only difference between the
single-pair models and the proposed multilingual
ones is the numbers of encoders N and decoders
M . We leave those multilingual translation specific
components, such as the ones in Eqs. (9)–(12), in
the single-pair models in order to keep the number
of shared parameters constant.

5.4 Training
Basic Settings We train each model using stochas-
tic gradient descent (SGD) with Adam (Kingma and

872

Fr (39m) Cs (12m) De (4.2m) Ru (2.3m) Fi (2m)
Dir → En En→ → En En→ → En En→ → En En→ → En En→

(a
)B

L
E

U

D
ev Single 27.22 26.91 21.24 15.9 24.13 20.49 21.04 18.06 13.15 9.59

Multi 26.09 25.04 21.23 14.42 23.66 19.17 21.48 17.89 12.97 8.92
Te

st Single 27.94 29.7 20.32 13.84 24 21.75 22.44 19.54 12.24 9.23
Multi 28.06 27.88 20.57 13.29 24.20 20.59 23.44 19.39 12.61 8.98

(b
)L

L D
ev Single -50.53 -53.38 -60.69 -69.56 -54.76 -61.21 -60.19 -65.81 -88.44 -91.75

Multi -50.6 -56.55 -54.46 -70.76 -54.14 -62.34 -54.09 -63.75 -74.84 -88.02

Te
st Single -43.34 -45.07 -60.03 -64.34 -57.81 -59.55 -60.65 -60.29 -88.66 -94.23

Multi -42.22 -46.29 -54.66 -64.80 -53.85 -60.23 -54.49 -58.63 -71.26 -88.09
Table 3: (a) BLEU scores and (b) average log-probabilities for all the five languages from WMT’15.

Ba, 2015) as an adaptive learning rate algorithm. We
use the initial learning rate of 2 · 10−4 and leave all
the other hyperparameters as suggested in (Kingma
and Ba, 2015). Each SGD update is computed us-
ing a minibatch of 80 examples, unless the model is
parallelized over two GPUs, in which case we use a
minibatch of 60 examples. We only use sentences of
length up to 50 symbols during training. We clip the
norm of the gradient to be no more than 1 (Pascanu
et al., 2012). All training runs are early-stopped
based on BLEU on the development set. As we ob-
served in preliminary experiments better scores on
the development set when finetuning the shared pa-
rameters and output layers of the decoders in the
case of multilingual models, we do this for all the
multilingual models. During finetuning, we clip the
norm of the gradient to be no more than 5. 4

Schedule As we have access only to bilingual cor-
pora, each sentence pair updates only a subset of
the parameters. Excessive updates based on a sin-
gle language pair may bias the model away from
the other pairs. To avoid it, we cycle through all
the language pairs, one pair at a time, in Fi�En,
De�En, Fr�En, Cs�En, Ru�En order. 5 Initial
experiments on random scheduling across pairs and
increasing the number of consecutive updates for a
pair did not give better results and left as a future
work.

Model Parallelism The size of the multilingual
model grows linearly w.r.t. the number of languages.
We observed that a single model that handles six
source and six target languages does not fit in a

4All the training details as well as the code is available at
http://github.com/nyu-dl/dl4mt-multi.

5� indicates simultaneous updates on two GPUs.

single GPU6 during training. We address this by
distributing computational paths according to differ-
ent translation pairs over multiple GPUs, following
(Ding et al., 2014). The shared parameters, mainly
related to the attention mechanism, is duplicated on
both GPUs.

In more detail, we distribute language pairs across
multiple GPUs such that those pairs in each GPU
shares either an encoder or decoder. This allows us
to avoid synchronizing a large subset of the parame-
ters across multiple GPUs. Only the shared attention
mechanism, which has substantially less parameters,
is duplicated on all the GPUs. Before each update,
we build a minibatch to contain an approximately
equal number of examples per GPU in order to min-
imize any discrepancy in computation among mul-
tiple GPUs. Each GPU then computes the gradient
w.r.t. the parameters on its own board and updates
the local parameters. The gradients w.r.t. the atten-
tion mechanism are synchronized using direct mem-
ory access (DMA). In this way, we achieve near-
linear speed-up.

6 Results and Analysis

Low-Resource Translation It is clear from Ta-
ble 2 that the proposed model (Multi) outperforms
the single-pair one (Single) in all the cases. This
is true even when the single-pair model is strength-
ened with a target-side monolingual corpus (Sin-
gle+DF). This suggests that the benefit of general-
ization from having multiple languages goes beyond
that of simply having more target-side monolingual
corpus. The performance gap grows as the size of
target parallel corpus decreases.

6NVidia Titan X with 12GB on-board memory

873

Further, directly adding monolingual data from all
languages during training, e.g. like an auto-encoder,
En→ En, De→ De etc. is straightforward. In fact,
experiments based on the autoencoder reconstruc-
tion criterion resulted in rapid memorization, copy-
ing source tokens without capturing semantics, re-
sulting in worse performance. Exploring ways to
leverage unlabeled data and regularizing the mono-
lingual paths in the multi-way, multilingual architec-
ture, is therefore left as a future work.

Large-Scale Translation In Table 3, we observe
that the proposed multilingual model outperforms or
is comparable to the single-pair models for the ma-
jority of the all ten pairs/directions considered. This
happens in terms of both BLEU and average log-
probability. This is encouraging, considering that
there are twice more parameters in the whole set of
single-pair models than in the multilingual model.

Note that, the numbers are below state-of-the-
art neural MT systems, which use large vocabu-
laries, unknown replacements techniques and en-
sembling. We mainly focused on comparing the
proposed model against single-pair models without
these techniques in order to carefully control and an-
alyze the effect of having multiple languages. It is
indeed required in the future to analyze the conse-
quence of having both multiple languages and other
such techniques in a single model.

It is worthwhile to notice that the benefit is more
apparent when the model translates from a foreign
language to English. This may be due to the fact
that all of the parallel corpora include English as ei-
ther a source or target language, leading to a better
parameter estimation of the English decoder. In the
future, a strategy of using a pseudo-parallel corpus
to increase the amount of training examples for the
decoders of other languages (Sennrich et al., 2015a)
should be investigated to confirm this conjecture.

7 Conclusion

In this paper, we proposed multi-way, multilingual
attention-based neural machine translation. The pro-
posed approach allows us to build a single neural
network that can handle multiple source and target
languages simultaneously. The proposed model is a
step forward from the recent works on multilingual
neural translation, in the sense that we support atten-

tion mechanism, compared to (Luong et al., 2015a)
and multi-way translation, compared to (Dong et
al., 2015). Furthermore, we evaluate the proposed
model on large-scale experiments, using the full set
of parallel corpora from WMT’15.

We empirically evaluate the proposed model in
large-scale experiments using all five languages
from WMT’15 with the full set of parallel corpora
and also in the settings with artificially controlled
amount of the target parallel corpus. In both of
the settings, we observed the benefits of the pro-
posed multilingual neural translation model over
having a set of single-pair models. The improve-
ment was especially clear in the cases of translating
low-resource language pairs.

We observed the larger improvements when trans-
lating to English. We conjecture that this is due
to a higher availability of English in most parallel
corpora, leading to a better parameter estimation of
the English decoder. More research on this phe-
nomenon in the future will result in further improve-
ments from using the proposed model. Also, all the
other techniques proposed recently, such as ensem-
bling and large vocabulary tricks, need to be tried to-
gether with the proposed multilingual model to im-
prove the translation quality even further. Finally, an
interesting future work is to use the proposed model
to translate between a language pair not included in
a set of training corpus.

Acknowledgments

We acknowledge the support of the following agen-
cies for research funding and computing support:
NSERC, Calcul Québec, Compute Canada, the
Canada Research Chairs, CIFAR and Samsung. OF
thanks the support by TUBITAK (2214/A). KC
thanks the support by Facebook and Google (Google
Faculty Award 2016).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Léon Bottou, Yoshua Bengio, and Yann Le Cun. 1997.
Global training of document processing systems us-
ing graph transformer networks. In Computer Vision
and Pattern Recognition, 1997. Proceedings., 1997

874

IEEE Computer Society Conference on, pages 489–
494. IEEE.

Rich Caruana. 1997. Multitask learning. Machine learn-
ing, 28(1):41–75.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the properties
of neural machine translation: Encoder–Decoder ap-
proaches. In Eighth Workshop on Syntax, Semantics
and Structure in Statistical Translation, October.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Advances in Neural Information Processing Systems,
pages 577–585.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Weiguang Ding, Ruoyan Wang, Fei Mao, and Graham W.
Taylor. 2014. Theano-based large-scale visual recog-
nition with multiple gpus. arXiv:1412.2302.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for multi-
ple language translation. ACL.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,
pages 369–376. ACM.

Alex Graves, Marcus Liwicki, Santiago Fernández, Ro-
man Bertolami, Horst Bunke, and Jürgen Schmidhu-
ber. 2009. A novel connectionist system for un-
constrained handwriting recognition. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
31(5):855–868.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine translation.
arXiv preprint arXiv:1503.03535.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2014. On using very large target vo-
cabulary for neural machine translation. In ACL 2015.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for wmt’15. In
Proceedings of the Tenth Workshop on Statistical Ma-
chine Translation, pages 134–140, Lisbon, Portugal,
September. Association for Computational Linguis-
tics.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The International
Conference on Learning Representations (ICLR).

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015a. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015b. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015a. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015b. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

875

Proceedings of NAACL-HLT 2016, pages 876–885,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Incorporating Structural Alignment Biases into an Attentional Neural
Translation Model

Trevor Cohn and Cong Duy Vu Hoang and Ekaterina Vymolova
University of Melbourne

Melbourne, VIC, Australia
tcohn@unimelb.edu.au and {vhoang2,evylomova}@student.unimelb.edu.au

Kaisheng Yao
Microsoft Research

Redmond, WA, USA
kaisheng.YAO@microsoft.com

Chris Dyer
Carnegie Mellon University

Pittsburgh, PA, USA
cdyer@cmu.edu

Gholamreza Haffari
Monash University

Clayton, VIC, Australia
gholamreza.haffari@monash.edu

Abstract

Neural encoder-decoder models of machine
translation have achieved impressive results,
rivalling traditional translation models. How-
ever their modelling formulation is overly
simplistic, and omits several key inductive bi-
ases built into traditional models. In this paper
we extend the attentional neural translation
model to include structural biases from word
based alignment models, including positional
bias, Markov conditioning, fertility and agree-
ment over translation directions. We show im-
provements over a baseline attentional model
and standard phrase-based model over sev-
eral language pairs, evaluating on difficult lan-
guages in a low resource setting.

1 Introduction

Recently, models of end-to-end machine translation
based on neural network classification have been
shown to produce excellent translations, rivalling or
in some cases surpassing traditional statistical ma-
chine translation systems (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015). This is despite the neural approaches using
an overall simpler model, with fewer assumptions
about the learning and prediction problem.

Broadly, neural approaches are based around the
notion of an encoder-decoder (Sutskever et al.,
2014), in which the source language is encoded into
a distributed representation, followed by a decoding
step which generates the target translation. We focus

on the attentional model of translation (Bahdanau et
al., 2015) which uses a dynamic representation of
the source sentence while allowing the decoder to
attend to different parts of the source as it gener-
ates the target sentence. The attentional model raises
intriguing opportunities, given the correspondence
between the notions of attention and alignment in
traditional word-based machine translation models
(Brown et al., 1993).

In this paper we map modelling biases from word
based translation models into the attentional model,
such that known linguistic elements of translation
can be better captured. We incorporate absolute po-
sitional bias whereby word order tends to be simi-
lar between the source sentence and its translation
(e.g., IBM Model 2 and (Dyer et al., 2013)), fer-
tility whereby each instance of a source word type
tends to be translated into a consistent number of
target tokens (e.g., IBM Models 3, 4, 5), relative
position bias whereby prior preferences for mono-
tonic alignments/attention can be encouraged (e.g.,
IBM Model 4, 5 and HMM-based Alignment (Vogel
et al., 1996)), and alignment consistency whereby
the attention in both translation directions are en-
couraged to agree (e.g. symmetrisation heuristics
(Och and Ney, 2003) or joint modelling (Liang et
al., 2006; Ganchev et al., 2008)).

We provide an empirical analysis of incorporat-
ing the above structural biases into the attentional
model, considering low resource translation sce-
nario over four language-pairs. Our results demon-
strate consistent improvements over vanilla encoder-

876

Aller Anfang

RNN Attentional Decoder

ist schwer

are

 STOP

 START

difficultBeginnings

Figure 1: Attentional model of translation (Bahdanau et al.,

2015). The encoder is shown below the decoder, and the edges

connecting the two corresponding to the attention mechanism.

Heavy edges denote a higher attention weight, and these values

are also displayed in matrix form, with one row for each target

word.

decoder and attentional model in terms of the per-
plexity and BLEU score, e.g. up to 3.5 BLEU points
when re-ranking the candidate translations gener-
ated by a state-of-the-art phrase based model.

2 The attentional model of translation

We start by reviewing the attentional model of trans-
lation (Bahdanau et al., 2015), as illustrated in
Fig. 1, before presenting our extensions in §3.

Encoder The encoding of the source sentence is
formulated using a pair of RNNs (denoted bi-RNN)
one operating left-to-right over the input sequence
and another operating right-to-left,

h→i = RNN(h→i−1, r
(s)
si

)

h←i = RNN(h→i+1, r
(s)
si

)

where h→i and h←i are the RNN hidden states. The
left-to-right RNN function is defined as

h→i = tanh
(
W→

si r
(s)
si

+W→
shh

→
i−1 + b→s

)
(1)

where h→0 ∈ RH is a learned parameter vector, as
are R(s) ∈ RVS×E , W→

si ∈ RH×E , W→
sh ∈ RH×H

and b→s ∈ RH , with H the number of hidden units,
VS the size of the source vocabulary and E the word
embedding dimensionality.1 Each source word is

1Similarly, h←0 ∈ RH ,W←
si ∈ RH×E ,W←

sh ∈
RH×H , b←s ∈ RH are the parameters of the right-to-left RNN.
Note that we use a long short term memory unit (Hochreiter
and Schmidhuber, 1997) in place of the RNN, shown here for
simplicity of exposition.

then represented as a pair of hidden states, one from

each RNN, ei =
[
h→i
h←i

]
. This encodes not only

the word but also its left and right context, which
can provide important evidence for its translation.

A crucial question is how this dynamic sized ma-
trix E = [e1, e2, . . . , eI] ∈ RI×H can be used in
the decoder to generate the target sentence. As with
Sutskever’s encoder-decoder, the target sentence is
created left-to-right using an RNN, while the en-
coded source is used to bias the process as an auxil-
iary input. The mechanism for this bias is by atten-
tional vectors, i.e. vectors of scores over each source
sentence location, which are used to aggregate the
dynamic source encoding into a fixed length vector.

Decoder The decoder operates as a standard RNN
over the translation t, formulated as follows

gj = tanh
(
W(th)gj−1 + W(ti)r

(t)
tj−1

+ W(ta)cj

)
(2)

uj = tanh
(
gj + W(uc)cj + W(ui)r

(t)
tj−1

)
(3)

tj ∼ softmax
(
W(ou)uj + b(to)

)
(4)

where the decoder RNN is defined analogously to
Eq 1 but with an additional input, the source atten-
tion component cj ∈ R2H and weighting matrix
W(ta) ∈ RH×2H . The hidden state of the recurrence
is then passed through a single hidden layer2 (Eq 3)
in combination with the source attention and target
word using weighting matrices W(uc) ∈ RH×2H

and W(ui) ∈ RH×E . In Eq 4 this vector is trans-
formed to be target vocabulary sized, using weight
matrix W(ou) ∈ RVT×H and bias b(to) ∈ RVT , af-
ter which a softmax is taken, and the resulting nor-
malised vector used as the parameters of a Categor-
ical distribution in generating the next target word.

The presentation above assumes a simple RNN
is used to define the recurrence over hidden states,
however we can easily use alternative formula-
tions of recurrent networks including multiple-
layer RNNs, gated recurrent units (GRU; Cho et
al. (2014)), or long short-term memory (LSTM;
Hochreiter and Schmidhuber (1997)) units. These
more advanced methods allow for more efficient
learning of more complex concepts, particularly

2In Bahdanau et al. (2015) they use a max-out layer for this
final step, however we found this to be a needless complication,
and instead use a standard hidden layer with tanh activation.

877

long distance effects. Empirically we found LSTMs
to be the best performing, and therefore use these
units herein.

The last key detail is the attentional component cj
in Eqs 2 and 3, which is defined as follows

fji = v> tanh
(
W(ae)ei + W(ah)gj−1

)
(5)

αj = softmax (fj)

cj =
∑
i

αjiei

with the scalars fji denoting the compatibility be-
tween the target hidden state gj−1 and the source en-
coding ei. This is defined as a neural network with
one hidden layer of size A and a single output, pa-
rameterised by W(ae) ∈ RA×2H , W(ah) ∈ RA×H

and v ∈ RA. The softmax then normalises the
scalar compatibility values such that for a given tar-
get word j, the values of αj can be interpreted as
alignment probabilities to each source location. Fi-
nally, these alignments are used to to reweight the
source components E to produce a fixed length con-
text representation.

Training of this model is done by minimising
the cross-entropy of the target sentence, measured
word-by-word as for a language model. We use
standard stochastic gradient optimisation using the
back-propagation technique for computation of par-
tial derivatives according to the chain rule.

3 Incorporating Structural Biases

The attentional model, as described above, provides
a powerful and elegant model of translation in which
alignments between source and target words are
learned through the implicit conditioning context af-
forded by the attention mechanism. Despite its ele-
gance, the attentional model omits several key com-
ponents of a traditional alignment models such as
the IBM models (Brown et al., 1993) and Vogel’s
hidden Markov Model (Vogel et al., 1996) as imple-
mented in the GIZA++ toolkit (Och and Ney, 2003).
Combining the strengths of this highly successful
body of research into a neural model of machine
translation holds potential to further improve mod-
elling accuracy of neural techniques. Below we out-
line methods for incorporating these factors as struc-
tural biases into the attentional model.

3.1 Position bias
First we consider position bias, based on the obser-
vation that a word at a given relative position in the
source tends to align to a word at a similar relative
position in the target, i

I ≈ j
J (Dyer et al., 2013).

Related, the IBM model 2 learns discrete mappings
between positions i and j conditioned on sentence
lengths I and J .

We include a position bias through redefining the
pre-normalised attention scalars fji in Eq 5 as:

fji = v> tanh
(
W(ae)ei + W(ah)gj−1+

W(ap)ψ(j, i, I)
)

(6)

where the new component in the input is a simple
feature function of the positions in the source and
target sentences and the source length,

ψ(j, i, I) =
[

log(1 + j), log(1 + i), log(1 + I)
]>

and W(ap) ∈ RA×3. We exclude the target length
J as this is unknown during decoding, as a par-
tial translation can have several (infinite) different
lengths. The use of the log(1+·) function is to avoid
numerical instabilities from widely varying sentence
lengths. The non-linearity in Eq 6 allows for com-
plex functions of these inputs to be learned, such as
relative positions and approximate distance from the
diagonal, as well as their interactions with the other
inputs (e.g., to learn that some words are exceptional
cases where a diagonal bias should not apply).

3.2 Markov condition
The HMM model of translation (Vogel et al., 1996)
is based on a Markov condition over alignment ran-
dom variables, to allow the model to learn local ef-
fects such as when i ← j is aligned then it is likely
that i + 1 ← j + 1 or i ← j + 1. These corre-
spond to local diagonal alignments or one-to-many
alignments, respectively. In general, there are many
correlations between the alignments of a word and
the alignments of the preceding word.

Markov conditioning can also be incorporated in
a similar manner to positional bias, by augmenting
the attentional input from Eqs 5 and 6 to include:

fji = v> tanh
(
. . .+ W(am)ξ1(αj−1; i)

)
(7)

878

where . . . abbreviates the ei, gj−1 and ψ compo-
nents from Eq 6, and ξ1(αj−1) provides a fixed di-
mensional representation of the attention state for
the preceding word. It is not immediately obvious
how to incorporate the previous attention vector as
α is dynamically sized to match the source sentence
length, thus using it directly would not generalise
over sentences of different lengths. For this reason,
we make a simplification by just considering local
moves offset by ±k positions, that is,

ξ1(αj−1; i) =
[
αj−1,i−k, .., αj−1,i, .., αj−1,i+k

]>
with W(am) ∈ RA×(2k+1). Our approach is
likely to capture the most important alignments pat-
terns forming the backbone of the alignment HMM,
namely monotone, 1-to-many, and local inversions.

3.3 Fertility

Fertility is the propensity for a word to be translated
as a consistent number of words in the other lan-
guage, e.g., Iseseisvusdeklaratsioon (Et) translates
as 3-4 words in English, namely (the) Declaration
of Independence. Fertility is a central component in
the IBM models 3–5 (Brown et al., 1993). Incor-
porating fertility into the attentional model is a little
more involved, and we present two techniques for
doing so.

Local fertility First we consider a feature-based
technique, which includes the following features

ξ2(α<j ; i) =

∑
j′<j

αj′,i−k, ..,
∑
j′<j

αj′,i, ..,
∑
j′<j

αj′,i+1

>

and the corresponding feature weights, i.e., W(af) ∈
RA×(2k+1). These sums represent the total align-
ment score for the surrounding source words, simi-
lar to fertility in a traditional latent variable model,
which is the sum over binary alignment random vari-
ables. A word which already has several alignments
can be excluded from participating in more align-
ments, thus combating the garbage collection prob-
lem. Conversely words that tend to need high fertil-
ity can be learned through the interactions between
these features and the word and context embeddings
in Eq 7.

Global fertility A second, more explicit, tech-
nique for incorporating fertility is to include this
as a modelling constraint. Initially we considered
a soft constraint based on the approach in (Xu et
al., 2015), where an image captioning model was
biased to attend to every pixel in the image ex-
actly once. In our setting, the same idea can be
applied through adding a regularisation term to the

training objective of the form
∑

i

(
1−∑j αj,i

)2
.

However this method is overly restrictive: enforc-
ing that every word is used exactly once is not ap-
propriate in translation where some words are likely
to be dropped (e.g., determiners and other function
words), while others might need to be translated
several times to produce a phrase in the target lan-
guage.3 For this reason we develop an alternative
method, based around a contextual fertility model,
p(fi|s, i) = N (µ(ei), σ2(ei)

)
which scores the fer-

tility of source word i, defined as fi =
∑

j αj,i, us-
ing a normal distribution4 parameterised by µ and
σ2, both positive scalar valued non-linear functions
of the source word encoding ei. This is incorporated
into the training objective as an additional additive
term,

∑
i log p(fi|s, i), for each training sentence.

This formulation allows for greater consistency in
translation, through e.g., learning which words tend
to be omitted from translation, or translate as sev-
eral words. Compared to the fertility model in IBM
3–5 (Brown et al., 1993), ours uses many fewer pa-
rameters through working over vector embeddings,
and moreover, the BiRNN encoding of the source
means that we learn context-dependent fertilities,
which can be useful for dealing with fixed syntac-
tic patterns or multi-word expressions.

3.4 Bilingual Symmetry

So far we have considered a conditional model of
the target given the source, modelling p(t|s). How-
ever it is well established for latent variable transla-
tion models that the alignments improve if p(s|t) is

3Modern decoders (Koehn et al., 2003) often impose the re-
striction of each word being translated exactly once, however
this is tempered by their use of phrases as translation units rather
than words, which allow for higher fertility within phrases.

4The normal distribution is deficient, as it has support for
all scalar values, despite fi being bounded above and below
(0 ≤ fi ≤ J). This could be corrected by using a truncated
normal, or various other choices of distribution.

879

Figure 2: Symmetric training with trace bonus, computed as

matrix multiplication, − tr(αs←tαs→t >). Dark shading indi-

cates higher values.

also modelled and the inferences of both directional
models are combined – evidenced by the symmetri-
sation heuristics used in most decoders (Koehn et al.,
2005), and also by explicit joint agreement training
objectives (Liang et al., 2006; Ganchev et al., 2008).
The rationale is that both models make somewhat
independent errors, so an ensemble stands to gain
from variance reduction.

We propose a method for joint training of
two directional models as pictured in Figure 2.
Training twinned models involves optimising
L = − log p(t|s)− log p(s|t) + γB where, as
before, we consider only a single sentence pair,
for simplicity of notation. This corresponds to a
pseudo-likelihood objective, with the B linking
the two models.5 The B component considers the
alignment (attention) matrices, αs→t ∈ RJ×I and
αt←s ∈ RI×J , and attempts to make these close
to one another for both translation directions (see
Fig. 2). To achieve this, we use a ‘trace bonus’,
inspired by (Levinboim et al., 2015), formulated as

B = − tr(αs←t >αs→t) =
∑
j

∑
i

αs←ti,j αs→tj,i .

As the alignment cells are normalised using the
softmax and thus take values in [0,1], the trace term
is bounded above by min(I, J) which occurs when
the two alignment matrices are transposes of each
other, representing perfect one-to-one alignments in
both directions

lang-pair # tokens (K) # types (K)
Zh-En 422 454 3.44 3.12
Ru-En 1639 1809 145 65
Et-En 1411 1857 90 25
Ro-En 1782 1806 39 24

Table 1: Statistics of the training sets, showing in each cell the

count for the source language (left) and target language (right).

4 Experiments

Datasets. We conducted our experiments with
four language pairs, translating between English↔
Romanian, Estonian, Russian and Chinese. These
languages were chosen to represent a range of trans-
lation difficulties, including languages with signifi-
cant morphological complexity (Estonian, Russian).
We focus on a (simulated) low resource setting,
where only a limited amount of training data is avail-
able. This serves to demonstrate the robustness and
generalisation of our model on sparse data – some-
thing that has not yet been established for neural
models with millions of parameters with vast poten-
tial for over-fitting.

Table 1 shows the statistics of the training sets.6

For Chinese-English, the data comes from the BTEC
corpus, where the number of training sentence pairs
is 44,016. We used ‘devset1 2’ and ‘devset 3’ as
the development and test sets, respectively, and in
both cases used only the first reference for evalu-
ation. For Romanian and Estonian, the data come
from the Europarl corpus (Koehn, 2005), where we
used 100K sentence pairs for training, and 3K for
development and 2K for testing.7 The Russian-
English data was taken from a web derived corpus
(Antonova and Misyurev, 2011). The dataset is split
into three parts using the same technique as for the
Europarl sets. During the preprocessing stage we
lower-cased and tokenized the data, and excluded
sentences longer than 30 words. For the Europarl

5We could share some parameters, e.g., the word embedding
matrices, however we found this didn’t make much difference
versus using disjoint parameter sets. We set γ = 1 herein.

6For all datasets words were thresholded for training fre-
quency≥ 5, with uncommon training and unseen testing words
replaced by an 〈unk〉 symbol.

7The first 100K sentence pairs were used for training, while
the development and test were drawn from the last 100K sen-
tence pairs, taking the first 2K for testing and the last 3K for
development.

880

data, we also removed sentences containing head-
ings and other meeting formalities.8

Models and Baselines. We have implemented our
neural translation model with linguistic features
in C++ using the CNN library.9 We compared
our proposed model against our implementations
of the attentional model (Bahdanau et al., 2015)
and encoder-decoder architecture (Sutskever et al.,
2014). As the baseline, we used a state-of-the-art
phrase-based statistical machine translation model
built using Moses (Koehn et al., 2007) with the stan-
dard features: relative-frequency and lexical trans-
lation model probabilities in both directions; distor-
tion model; language model and word count. We
used KenLM (Heafield, 2011) to create 3-gram lan-
guage models with Kneser-Ney smoothing on the
target side of the bilingual training corpora.

Evaluation Measures. Following previous work
(Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2015; Neubig et al., 2015),
we evaluated all neural models using test set per-
plexities and translation results, as well as in an ad-
ditional re-ranking setting, using BLEU (Papineni
et al., 2002) measure. We applied bootstrap re-
sampling (Koehn, 2004) to measure statistical sig-
nificance, p < 0.05, of our models compared to
a baseline. For re-ranking, we generated 100-best
translations using the baseline phrase-based model,
to which we added log probability features from our
neural models alongside all the features of the under-
lying phrase-based model. We trained the re-ranking
models using MERT (Och, 2003) on development
sets with 100-best translations.

4.1 Analysis of Alignment Biases

We start by investigating the effect of various lin-
guistic constraints, described in Section 3, on the
attentional model. Table 2 presents the perplexity
of trained models for Chinese→English translation.
For comparison, we report the results of an encoder-
decoder-based neural translation model (Sutskever
et al., 2014) as the baseline. All other results are for
the attentional model with a single-layer LSTM as
encoder and two-layer LSTM as decoder, using 512

8E.g., (The sitting was closed at 10.20pm).
9https://github.com/clab/cnn/

configuration test #param (M)
Sutskever encdec 5.35 8.7
Attentional 4.77 15.0
+align 4.56 15.0
+align+glofer 5.20 15.5
+align+glofer-pre 4.31 15.5
+align+sym 4.44 30.1
+align+sym+glofer-pre 4.43 31.2

Table 2: Perplexity results for attentional model variants eval-

uated on BTEC zh→en, and number of model parameters (in

millions).

●

●

●

●

●

●
●

●●
●

●●●●
●

●●●●
●●

●●
●●●●

●●●●
●●●●

●

0 2 4 6 8

5
10

15
20

25

epochs

pe
rp

le
xi

ty

● vanilla
+glofer
+align
+align +glofer pretrain
+align +glofer

Figure 3: Perplexity with training epochs on ro-en translation,

comparing several model variants.

embedding, 512 hidden, and 256 alignment dimen-
sions. For each model, we also report the number of
its parameters. Models are trained end-to-end using
stochastic gradient descent (SGD), allowing up to 20
epochs. We use a held-out development set for reg-
ularisation by early stopping, which terminated the
training after 5-10 epochs for most cases.

As expected, the vanilla attentional model greatly
improves over encoder-decoder (perplexity of 4.77
vs. 5.35), clearly making good use of the additional
context. Adding the combined positional bias, local
fertility, and Markov structure (denoted by +align)
further decreases the perplexity to 4.56. Adding the
global fertility (+glofer) is detrimental, however, in-
creases perplexity to 5.20. Interestingly, global fer-
tility helps to reduce the perplexity (to 4.31) when
used with the pre-training setting (+align+glofer-

881

〈 〉

〈 〉

〈 〉

〈 〉

〈
〉

〈
〉

〈
〉

〈
〉

〈
〉

〈
〉

〈
〉

〈
〉

→
→

Figure 4: Example development sentence, showing the inferred attention matrix for various models for Et↔ En. Rows correspond

to the translation direction and columns correspond to different models: attentional, with alignment features (+align), global fertility

(+glofer), and symmetric joint training (+sym). Darker shades denote higher values and white denotes zero.

pre). In this case, it is refining an already excel-
lent model from which reliable global fertility es-
timates can be obtained. This finding is consistent
with the other languages, see Figure 3 which shows
typical learning curves of different variants of the
attentional model. Note that when global fertility
is added to the vanilla attentional model with align-
ment features, it significantly slows down training
as it limits exploration in early training iterations,
however it does bring a sizeable win when used to
fine-tune a pre-trained model. Finally, the bilin-
gual symmetry also helps to reduce the perplexity
scores when used with the alignment features, how-
ever, does not combine well with global fertility
(+align+sym+glofer-pre). This is perhaps an unsur-
prising result as both methods impose a often-times
similar regularising effect over the attention matrix.

Figure 4 illustrates the different attention matri-

ces inferred by the various model variants. Note the
difference between the base attentional model and
its variant with alignment features (‘+align’), where
more weight is assigned to diagonal and 1-to-many
alignments. Global fertility pushes more attention to
the sentinel symbols 〈s〉 and 〈/s〉. Determiners and
prepositions in English show much lower fertility
than nouns, while Estonian nouns have even higher
fertility. This accords with Estonian morphology,
wherein nouns are inflected with rich case mark-
ing, e.g., nõukoguga has the cogitative -ga suffix,
meaning ‘with’, and thus translates as several En-
glish words (with the council). The right-most col-
umn corresponds to joint symmetric training, with
many more confident attention values especially for
consistent 1-to-many alignments (difficult in English
and raskeid in Estonian, an adjective in partitive case
meaning some difficult).

882

Lang. Pair Zh-En Ru-En Et-En Ro-En
Enc-Dec 5.35 61.9 18.2 10.3
Attentional 4.77 41.7 12.8 6.62
Our Work 4.31 39.9 11.8 5.89
Lang. Pair En-Zh En-Ru En-Et En-Ro
Enc-Dec 8.60 67.3 31.4 11.5
Attentional 7.49 43.0 19.4 7.30
Our Work 6.24 40.6 17.0 6.35

Table 3: Perplexity on the test sets for the two translation di-

rections. Our work includes: bidirectional LSTM attentional

model combined with positional bias, Markov, local fertility,

and global fertility (pre-trained setting).

4.2 Experimental Results

The perplexity results of the neural models for the
two translation directions across the four language
pairs are presented in Table 3. In all cases, our work
achieves lower perplexities compared to the vanilla
attentional model and the encoder-decoder architec-
ture, owing to the linguistic constraints. We also
obtained similar patterns of improvements when de-
coding, using a greedy decoding strategy, as shown
in Table 4. The exception was for en→ru, where
the addition of the global fertility (in addition to the
other aligment features) was detrimental, resulting
in a decrease in BLEU score (5.94→5.26). This may
be due to highly noisy nature of the web text corpus
of Russian-English language pair, compared to the
much cleaner sources for the other language pairs.

Greedy decoding does not appear to be competi-
tive for neural models trained on small parallel cor-
pora, not reaching the level of a phrase-based base-
line (see Table 5). Despite this, however, these mod-
els still provide substantial gains when used for re-
ranking (as shown in Table 5) for translating into En-
glish from the other four languages. We compare re-
ranking settings using the log probabilities produced
by our model as additional features10 vs. using log
probabilities from the vanilla attentional model and
the encoder-decoder. The re-rankers based on our
model are significantly better than the rest for Chi-
nese and Estonian, and on par with the other for Rus-
sian and Romanian→English. In all cases our model
has performance at least 1 BLEU point better than
the baseline phrase-based system. It is worth not-

10We include two features: the normalised log-probability of
the translation, evaluated in both translation directions.

Lang. Pair Zh-En Ru-En Et-En Ro-En
Enc-Dec 17.4 3.63 12.5 21.2
Attentional 29.9 8.11 19.7 33.0
Our Work 31.56♠ 9.14♠ 20.44♠ 34.16♠

Lang. Pair En-Zh En-Ru En-Et En-Ro
Enc-Dec 14.6 2.08 7.97 16.6
Attentional 20.9 5.26 12.5 28.1
Our Work 23.45♠ 5.26 13.40♠ 30.07♠

Table 4: BLEU scores on the test sets for the two translation

directions, using greedy decoding. bold: Best performance, ♠:

Statistically significantly better than Attentional.

Lang. Pair Zh-En Ru-En Et-En Ro-En
Phrase-based 40.63 18.70 31.99 45.21
Enc-Dec 40.41 18.83 32.20 45.36
Attentional 41.16 19.79 32.78 46.83
Our Work 43.50♠ 19.73 33.26♠ 46.88

Table 5: BLEU scores on the test sets for re-ranking. bold:
Best performance, ♠: Statistically significantly better than At-

tentional.

ing that for Chinese-English, our re-ranker leads to
a substantial increase of almost 3 BLEU points.

5 Related Work

Kalchbrenner and Blunsom (2013) were the first to
propose a full neural model of translation, using a
convolutional network as the source encoder, fol-
lowed by an RNN decoder to generate the target
translation. This was extended in Sutskever et al.
(2014), who replaced the source encoder with an
RNN using a Long Short-Term Memory (LSTM)
and leveraged the last hidden RNN states as source
context for generating the output. Inspired by this,
Bahdanau et al. (2015) introduced the notion of “at-
tention” to the model, whereby the source context
can dynamically change during the decoding pro-
cess to attend to the most relevant parts of the source
sentence. Further, Luong et al. (2015) refined the at-
tention mechanism to be more local, by constraining
attention to a text span, whose words’ representa-
tions are averaged.

Similar in spirit to our work, recent research has
proposed different ways of leveraging the attention
history to incorporate alignment structural biases.
(Luong et al., 2015) made use of the attention vector
of the previous position when generating the atten-
tion vector for the next position. Feng et al. (2016)

883

added another recurrent structure for the attention
mechanism to enhance its memorization capabilities
and capture long-range dependencies between the
attention vectors. Tu et al. (2016) proposed a cov-
erage vector to keep track of the attention history,
hence refining future attentions. Finally, Cheng et
al. (2015) proposed a similar agreement-based joint
training for bidirectional attention-based neural ma-
chine translation, and showed significant improve-
ments in BLEU for the large data French↔English
translation.

6 Conclusion

We have shown that the attentional model of transla-
tion does not capture many well known properties of
traditional word-based translation models, and pro-
posed several ways of imposing these as structural
biases on the model. We show improvements across
several challenging language pairs in a low-resource
setting, as well as in perplexity, translation and re-
ranking evaluations. In future work we intend to
investigate the model performance on larger-scale
datasets, and incorporate further linguistic informa-
tion, such as morphological representations.

Acknowledgements

The work reported here was started at JSALT 2015
in UW, Seattle, and was supported by JHU via grants
from NSF (IIS), DARPA (LORELEI), Google, Mi-
crosoft, Amazon, Mitsubishi Electric, and MERL.
Dr Cohn was supported by the ARC (Future Fellow-
ship).

References

Alexandra Antonova and Alexey Misyurev. 2011. Build-
ing a web-based parallel corpus and filtering out
machine-translated text. In Proceedings of the 4th
Workshop on Building and Using Comparable Cor-
pora: Comparable Corpora and the Web, pages 136–
144.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR), San Diego, CA.

Peter E. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics

of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2).

Yong Cheng, Shiqi Shen, Zhongjun Zhongjun He,
Wei He, Hua Wu, Maosong Sun, and Yang Liu.
2015. Agreement-based joint training for bidirectional
attention-based neural machine translation. In arXiv:
1512.04650 [cs.CL].

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Ben-
gio. 2014. On the properties of neural machine trans-
lation. In arXiv:1409.1259 [cs.CL].

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameterization
of ibm model 2. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, pages 644–648, Atlanta, Georgia, June.
Association for Computational Linguistics.

S. Feng, S. Liu, M. Li, and M. Zhou. 2016. Implicit
Distortion and Fertility Models for Attention-based
Encoder-Decoder NMT Model. ArXiv e-prints, Jan-
uary.

Kuzman Ganchev, João V. Graça, and Ben Taskar. 2008.
Better alignments = better translations? In Proceed-
ings of ACL-08: HLT, pages 986–993, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Kenneth Heafield. 2011. KenLM: faster and smaller lan-
guage model queries. In Proceedings of the EMNLP
2011 Sixth Workshop on Statistical Machine Trans-
lation, pages 187–197, Edinburgh, Scotland, United
Kingdom, July.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9:1735–1780.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, Seattle, October.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of North American Chapter of the Association for
Computational Linguistics on Human Language Tech-
nology, pages 48–54.

Philipp Koehn, Amittai Axelrod, Alexandra Birch, Chris
Callison-Burch, Miles Osborne, David Talbot, and
Michael White. 2005. Edinburgh system description
for the 2005 IWSLT speech translation evaluation. In
IWSLT, pages 68–75.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, et al. 2007. Moses: Open source toolkit for sta-
tistical machine translation. In Proc. ACL Interactive
Poster and Demonstration Sessions, pages 177–180.

884

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Dekang Lin and
Dekai Wu, editors, Proceedings of EMNLP 2004,
pages 388–395, Barcelona, Spain, July. Association
for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Summit,
pages 79–86. AAMT.

Tomer Levinboim, Ashish Vaswani, and David Chiang.
2015. Model invertibility regularization: Sequence
alignment with or without parallel data. In Proceed-
ings of the North American Chapter of the Association
for Computational Linguistics (NAACL), pages 609–
618, Denver, CO.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the North
American Chapter of the Association for Compu-
tational Linguistics (NAACL), pages 104–111, New
York, NY.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412–1421, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015.
In Proceedings of the 2nd Workshop on Asian Trans-
lation (WAT2015), Kyoto, Japan, October.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Neural Information Processing Systems (NIPS),
pages 3104–3112, Montréal.

Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li. 2016. Modeling
Coverage for Neural Machine Translation. ArXiv e-
prints, January.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of the International Conference

on Computational Linguistics (COLING), pages 836–
841.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neu-
ral image caption generation with visual attention. In
Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), pages 2048–2057.

885

Proceedings of NAACL-HLT 2016, pages 886–896,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multilingual Relation Extraction using Compositional Universal Schema

Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth & Andrew McCallum
College of Information and Computer Sciences

University of Massachusetts Amherst
{pat, belanger, strubell, beroth, mccallum}@cs.umass.edu

Abstract

Universal schema builds a knowledge base (KB) of
entities and relations by jointly embedding all re-
lation types from input KBs as well as textual pat-
terns observed in raw text. In most previous appli-
cations of universal schema, each textual pattern is
represented as a single embedding, preventing gen-
eralization to unseen patterns. Recent work employs
a neural network to capture patterns’ compositional
semantics, providing generalization to all possible
input text. In response, this paper introduces sig-
nificant further improvements to the coverage and
flexibility of universal schema relation extraction:
predictions for entities unseen in training and mul-
tilingual transfer learning to domains with no an-
notation. We evaluate our model through extensive
experiments on the English and Spanish TAC KBP
benchmark, outperforming the top system from TAC
2013 slot-filling using no handwritten patterns or ad-
ditional annotation. We also consider a multilingual
setting in which English training data entities over-
lap with the seed KB, but Spanish text does not.
Despite having no annotation for Spanish data, we
train an accurate predictor, with additional improve-
ments obtained by tying word embeddings across
languages. Furthermore, we find that multilingual
training improves English relation extraction accu-
racy. Our approach is thus suited to broad-coverage
automated knowledge base construction in a variety
of languages and domains.

1 Introduction

The goal of automatic knowledge base construction
(AKBC) is to build a structured knowledge base (KB)
of facts using a noisy corpus of raw text evidence, and
perhaps an initial seed KB to be augmented (Carlson et
al., 2010; Suchanek et al., 2007; Bollacker et al., 2008).
AKBC supports downstream reasoning at a high level
about extracted entities and their relations, and thus has
broad-reaching applications to a variety of domains.

One challenge in AKBC is aligning knowledge from
a structured KB with a text corpus in order to perform
supervised learning through distant supervision. Univer-
sal schema (Riedel et al., 2013) along with its exten-
sions (Yao et al., 2013; Gardner et al., 2014; Neelakantan
et al., 2015; Rocktaschel et al., 2015), avoids alignment
by jointly embedding KB relations, entities, and surface
text patterns. This propagates information between KB
annotation and corresponding textual evidence.

The above applications of universal schema express
each text relation as a distinct item to be embedded. This
harms its ability to generalize to inputs not precisely seen
at training time. Recently, Toutanova et al. (2015) ad-
dressed this issue by embedding text patterns using a deep
sentence encoder, which captures the compositional se-
mantics of textual relations and allows for prediction on
inputs never seen before.

This paper further expands the coverage abilities of
universal schema relation extraction by introducing tech-
niques for forming predictions for new entities unseen in
training and even for new domains with no associated an-
notation. In the extreme example of domain adaptation
to a completely new language, we may have limited lin-
guistic resources or labeled data such as treebanks, and
only rarely a KB with adequate coverage. Our method
performs multilingual transfer learning, providing a pre-
dictive model for a language with no coverage in an exist-
ing KB, by leveraging common representations for shared
entities across text corpora. As depicted in Figure 1, we
simply require that one language have an available KB
of seed facts. We can further improve our models by ty-
ing a small set of word embeddings across languages us-
ing only simple knowledge about word-level translations,
learning to embed semantically similar textual patterns
from different languages into the same latent space.

In extensive experiments on the TAC Knowledge Base
Population (KBP) slot-filling benchmark we outperform
the top 2013 system with an F1 score of 40.7 and per-
form relation extraction in Spanish with no labeled data
or direct overlap between the Spanish training corpus and

886

the training KB, demonstrating that our approach is well-
suited for broad-coverage AKBC in low-resource lan-
guages and domains. Interestingly, joint training with
Spanish improves English accuracy.

English Low-resource

in KB

not in KB

Figure 1: Splitting the entities in a multilingual AKBC
training set into parts. We only require that entities in the
two corpora overlap. Remarkably, we can train a model
for the low-resource language even if entities in the low-
resource language do not occur in the KB.

2 Background

AKBC extracts unary attributes of the form (subject, at-
tribute), typed binary relations of the form (subject, rela-
tion, object), or higher-order relations. We refer to sub-
jects and objects as entities. This work focuses solely
on extracting binary relations, though many of our tech-
niques generalize naturally to unary prediction. Gener-
ally, for example in Freebase (Bollacker et al., 2008),
higher-order relations are expressed in terms of collec-
tions of binary relations.

We now describe prior work on approaches to AKBC.
They all aim to predict (s, r, o) triples, but differ in terms
of: (1) input data leveraged, (2) types of annotation re-
quired, (3) definition of relation label schema, and (4)
whether they are capable of predicting relations for en-
tities unseen in the training data. Note that all of these
methods require pre-processing to detect entities, which
may result in additional KB construction errors.

2.1 Relation Extraction as Link Prediction

A knowledge base is naturally described as a graph,
in which entities are nodes and relations are labeled
edges (Suchanek et al., 2007; Bollacker et al., 2008).
In the case of knowledge graph completion, the task is
akin to link prediction, assuming an initial set of (s, r,
o) triples. See Nickel et al. (2015) for a review. No
accompanying text data is necessary, since links can be
predicted using properties of the graph, such as transitiv-
ity. In order to generalize well, prediction is often posed
as low-rank matrix or tensor factorization. A variety of
model variants have been suggested, where the proba-
bility of a given edge existing depends on a multi-linear
form (Nickel et al., 2011; Garcı́a-Durán et al., 2015; Yang

et al., 2015; Bordes et al., 2013; Wang et al., 2014; Lin
et al., 2015), or non-linear interactions between s, r, and
o (Socher et al., 2013). Other approaches model the com-
positionality of multi-hop paths, typically for question
answering (Bordes et al., 2014; Gu et al., 2015; Nee-
lakantan et al., 2015).

2.2 Relation Extraction as Sentence Classification

Here, the training data consist of (1) a text corpus, and
(2) a KB of seed facts with provenance, i.e. supporting
evidence, in the corpus. Given individual an individual
sentence, and pre-specified entities, a classifier predicts
whether the sentence expresses a relation from a target
schema. To train such a classifier, KB facts need to be
aligned with supporting evidence in the text, but this is
often challenging. For example, not all sentences con-
taining Barack and Michelle Obama state that they are
married. A variety of one-shot and iterative methods have
addressed the alignment problem (Bunescu and Mooney,
2007; Mintz et al., 2009; Riedel et al., 2010; Yao et al.,
2010; Hoffmann et al., 2011; Surdeanu et al., 2012; Min
et al., 2013; Zeng et al., 2015). An additional degree
of freedom in these approaches is whether they classify
individual sentences or predicting at the corpus level by
aggregating information from all sentences containing a
given pair of entities before prediction. The former ap-
proach is often preferable in practice, due to the simplic-
ity of independently classifying individual sentences and
the ease of associating each prediction with a provenance.
Prior work has applied deep learning to small-scale rela-
tion extraction problems, where functional relationships
are detected between common nouns (Li et al., 2015; dos
Santos et al., 2015). Xu et al. (2015) apply an LSTM
to a parse path, while Zeng et al. (2015) use a CNN on
the raw text, with a special temporal pooling operation to
separately embed the text around each entity.

2.3 Open-Domain Relation Extraction

In the previous two approaches, prediction is carried
out with respect to a fixed schema R of possible rela-
tions r. This may overlook salient relations that are ex-
pressed in the text but do not occur in the schema. In
response, open-domain information extraction (OpenIE)
lets the text speak for itself: R contains all possible pat-
terns of text occurring between entities s and o (Banko et
al., 2007; Etzioni et al., 2008; Yates and Etzioni, 2007).
These are obtained by filtering and normalizing the raw
text. The approach offers impressive coverage, avoids
issues of distant supervision, and provides a useful ex-
ploratory tool. On the other hand, OpenIE predictions
are difficult to use in downstream tasks that expect infor-
mation from a fixed schema.

Table 1 provides examples of OpenIE patterns. The ex-
amples in row two and three illustrate relational contexts

887

for which similarity is difficult to be captured by an Ope-
nIE approach because of their syntactically complex con-
structions. This motivates the technique in Section 3.2,
which uses a deep architecture applied to raw tokens, in-
stead of rigid rules for normalizing text to obtain patterns.

Sentence (context tokens italicized) OpenIE pattern
Khan ’s younger sister, Annapurna
Devi, who later married Shankar, de-
veloped into an equally accomplished
master of the surbahar, but custom pre-
vented her from performing in public.

arg1’s * sister
arg2

A professor emeritus at Yale, Mandel-
brot was born in Poland but as a child
moved with his family to Paris where
he was educated.

arg1 * moved with
* family to arg2

Kissel was born in Provo, Utah, but
her family also lived in Reno.

arg1 * lived in
arg2

Table 1: Examples of sentences expressing relations.
Context tokens (italicized) consist of the text occurring
between entities (bold) in a sentence. OpenIE patterns are
obtained by normalizing the context tokens using hand-
coded rules. The top example expresses the per:siblings
relation and the bottom two examples both express the
per:cities of residence relation.

2.4 Universal Schema
When applying Universal Schema (Riedel et al., 2013)
(USchema) to relation extraction, we combine the Ope-
nIE and link-prediction perspectives. By jointly mod-
eling both OpenIE patterns and the elements of a target
schema, the method captures broader relational structure
than multi-class classification approaches that just model
the target schema. Furthermore, the method avoids the
distant supervision alignment difficulties of Section 2.2.

Riedel et al. (2013) augment a knowledge graph from
a seed KB with additional edges corresponding to Ope-
nIE patterns observed in the corpus. Even if the user does
not seek to predict these new edges, a joint model over all
edges can exploit regularities of the OpenIE edges to im-
prove modeling of the labels from the target schema.

The data still consist of (s, r, o) triples, which can be
predicted using link-prediction techniques such as low-
rank factorization. Riedel et al. (2013) explore a variety
of approximations to the 3-mode (s, r, o) tensor. One
such probabilistic model is:

P ((s, r, o)) = �
�
u>s,ovr

�
, (1)

where �() is a sigmoid function, us,o is an embedding
of the entity pair (s, o), and vr is an embedding of the
relation r, which may be an OpenIE pattern or a rela-
tion from the target schema. All of the exposition and re-
sults in this paper use this factorization, though many of
the techniques we present later could be applied easily to

the other factorizations described in Riedel et al. (2013).
Note that learning unique embeddings for OpenIE rela-
tions does not guarantee that similar patterns, such as the
final two in Table 1, will be embedded similarly.

As with most of the techniques in Section 2.1, the data
only consist of positive examples of edges. The absence
of an annotated edge does not imply that the edge is false.
In fact, we seek to predict some of these missing edges as
true. Riedel et al. (2013) employ the Bayesian Person-
alized Ranking (BPR) approach of Rendle et al. (2009),
which does not explicitly model unobserved edges as
negative, but instead seeks to rank the probability of ob-
served triples above unobserved triples.

Recently, Toutanova et al. (2015) extended USchema
to not learn individual pattern embeddings vr, but instead
to embed text patterns using a deep architecture applied
to word tokens. This shares statistical strength between
OpenIE patterns with similar words. We leverage this ap-
proach in Section 3.2. Additional work has modeled the
regularities of multi-hop paths through knowledge graph
augmented with text patterns (Lao et al., 2011; Lao et al.,
2012; Gardner et al., 2014; Neelakantan et al., 2015).

2.5 Multilingual Embeddings

Much work has been done on multilingual word embed-
dings. Most of this work uses aligned sentences from
the Europarl dataset (Koehn, 2005) to align word embed-
dings across languages (Gouws et al., 2015; Luong et al.,
2015; Hermann and Blunsom, 2014). Others (Mikolov
et al., 2013; Faruqui et al., 2014) align separate single-
language embedding models using a word-level dictio-
nary. Mikolov et al. (2013) use translation pairs to learn
a linear transform from one embedding space to another.

However, very little work exists on multilingual re-
lation extraction. Faruqui and Kumar (2015) perform
multilingual OpenIE relation extraction by projecting all
languages to English using Google translate. However,
as explained in Section 2.3 the OpenIE paradigm is not
amenable to prediction within a fixed schema. Further,
their approach does not generalize to low-resource lan-
guages where translation is unavailable – while we use
translation dictionaries to improve our results, our experi-
ments demonstrate that our method is effective even with-
out this resource.

3 Methods

3.1 Universal Schema as Sentence Classifier

Similar to many link prediction approaches, (Riedel et al.,
2013) perform transductive learning, where a model is
learned jointly over train and test data. Predictions are
made by using the model to identify edges that were un-
observed in the test data but likely to be true. The ap-
proach is vulnerable to the cold start problem in collab-

888

Figure 2: Universal Schema jointly embeds KB and textual relations from Spanish and English, learning dense repre-
sentations for entity pairs and relations using matrix factorization. Cells with a 1 indicate triples observed during train-
ing (left). The bold score represents a test-time prediction by the model (right). Using transitivity through KB/English
overlap and English/Spanish overlap, our model can predict that a text pattern in Spanish evidences a KB relation
despite no overlap between Spanish/KB entity pairs. At train time we use BPR loss to maximize the inner product of
entity pairs with KB relations and text patterns encoded using a bidirectional LSTM. At test time we score compati-
bility between embedded KB relations and encoded textual patterns using cosine similarity. In our Spanish model we
treat embeddings for a small set of English/Spanish translation pairs as a single word, e.g. casado and married.

pe
r:s

po
us

e
... pe

r:b
or

n_
in

ar
g1

 ‘s
 w

ife
 ar

g2
... ar

g1
 w

as
 b

or
n

in
 ar

g
2

... ar
g1

 es
 la

es

po
sa

 d
e a

rg
2

... ar
g1

 n
ac

ió

en
 ar

g2
...

English Spanish

Barack Obama/
Michelle Obama

María Múnera/
Juan M Santos

Barack Obama/
Hawaii

María Múnera/
Colombia

Bernie Sanders/
Jane O'Meara

...

...

1

1

1

1

.93

1 1

...

1
bidirectional LSTM

arg1 está casado/married con arg2

max pool

Input :
[per:spouse]
[María Múnera está casado con Juan M Santos]

per:spouse

cosine
similarity

.93

orative filtering (Schein et al., 2002): it is unclear how
to form predictions for unseen entity pairs, without re-
factorizing the entire matrix or applying heuristics.

In response, this paper re-purposes USchema as a
means to train a sentence-level relation classifier, like
those in Section 2.2. This allows us to avoid errors from
aligning distant supervision to the corpus, but is more de-
ployable for real world applications. It also provides op-
portunities in Section 3.4 to improve multilingual AKBC.

We produce predictions using a very simple approach:
(1) scan the corpus and extract a large quantity of
triplets (s, rtext, o), where rtext is an OpenIE pattern.
For each triplet, if the similarity between the embed-
ding of rtext and the embedding of a target relation
rschema is above some threshold, we predict the triplet
(s, rschema, o), and its provenance is the input sentence
containing (s, rtext, o). We refer to this technique as pat-
tern scoring. In our experiments, we use the cosine dis-
tance between the vectors (Figure 2). In Section 7.3,
we discuss details for how to make this distance well-
defined.

3.2 Using a Compositional Sentence Encoder to
Predict Unseen Text Patterns

The pattern scoring approach is subject to an additional
cold start problem: input data may contain patterns un-
seen in training. This section describes a method for us-

ing USchema to train a relation classifier that can take
arbitrary context tokens (Section 2.3) as input.

Fortunately, the cold start problem for context tokens is
more benign than that of entities since we can exploit sta-
tistical regularities of text: similar sequences of context
tokens should be embedded similarly. Therefore, follow-
ing Toutanova et al. (2015), we embed raw context tokens
compositionally using a deep architecture. Unlike Riedel
et al. (2013), this requires no manual rules to map text to
OpenIE patterns and can embed any possible input string.
The modified USchema likelihood is:

P ((s, r, o)) = �
�
u>s,oEncoder(r)

�
. (2)

Here, if r is raw text, then Encoder(r) is parameterized
by a deep architecture. If r is from the target schema,
Encoder(r) is a produced by a lookup table (as in tradi-
tional USchema). Though such an encoder increases the
computational cost of test-time prediction over straight-
forward pattern matching, evaluating a deep architecture
can be done in large batches in parallel on a GPU.

Both convolutional networks (CNNs) and recurrent
networks (RNNs) are reasonable encoder architectures,
and we consider both in our experiments. CNNs have
been useful in a variety of NLP applications (Col-
lobert et al., 2011; Kalchbrenner et al., 2014; Kim,
2014). Unlike Toutanova et al. (2015), we also consider
RNNs, specifically Long-Short Term Memory Networks

889

(LSTMs) (Hochreiter and Schmidhuber, 1997). LSTMs
have proven successful in a variety of tasks requiring
encoding sentences as vectors (Sutskever et al., 2014;
Vinyals et al., 2014). In our experiments, LSTMs out-
perform CNNs.

There are two key differences between our sentence
encoder and that of Toutanova et al. (2015). First, we
use the encoder at test time, since we process the context
tokens for held-out data. On the other hand, Toutanova
et al. (2015) adopt the transductive approach where the
encoder is only used to help train better representations
for the relations in the target schema; it is ignored when
forming predictions. Second, we apply the encoder to the
raw text between entities, while Toutanova et al. (2015)
first perform syntactic dependency parsing on the data
and then apply an encoder to the path between the two
entities in the parse tree. We avoid parsing, since we seek
to perform multilingual AKBC, and many languages lack
linguistic resources such as treebanks. Even parsing non-
newswire English text, such as tweets, is extremely chal-
lenging.

3.3 Modeling Frequent Text Patterns

Despite the coverage advantages of using a deep sen-
tence encoder, separately embedding each OpenIE pat-
tern, as in Riedel et al. (2013), has key advantages. In
practice, we have found that many high-precision pat-
terns occur quite frequently. For these, there is suffi-
cient data to model them with independent embeddings
per pattern, which imposes minimal inductive bias on the
relationship between patterns. Furthermore, some dis-
criminative phrases are idiomatic, i.e.. their meaning is
not constructed compositionally from their constituents.
For these, a sentence encoder may be inappropriate.

Therefore, pattern embeddings and deep token-based
encoders have very different strengths and weaknesses.
One values specificity, and models the head of the text
distribution well, while the other has high coverage and
captures the tail. In experimental results, we demonstrate
that an ensemble of both models performs substantially
better than either in isolation.

3.4 Multilingual Relation Extraction with Zero
Annotation

The models described in previous two sections provide
broad-coverage relation extraction that can generalize to
all possible input entities and text patterns, while avoid-
ing error-prone alignment of distant supervision to a cor-
pus. Next, we describe techniques for an even more chal-
lenging generalization task: relation classification for in-
put sentences in completely different languages.

Training a sentence-level relation classifier, either us-
ing the alignment-based techniques of Section 2.2, or the
alignment-free method of Section 3.1, requires an avail-

able KB of seed facts that have supporting evidence in the
corpus. Unfortunately, available KBs have low overlap
with corpora in many languages, since KBs have cultural
and geographical biases. In response, we perform mul-
tilingual relation extraction by jointly modeling a high-
resource language, such as English, and an alternative
language with no KB annotation. This approach pro-
vides transfer learning of a predictive model to the al-
ternative language, and generalizes naturally to modeling
more languages.

Extending the training technique of Section 3.1 to cor-
pora in multiple languages can be achieved by factorizing
a matrix that mixes data from a KB and from the two cor-
pora. In Figure 1 we split the entities of a multilingual
training corpus into sets depending on whether they have
annotation in a KB and what corpora they appear in. We
can perform transfer learning of a relation extractor to
the low-resource language if there are entity pairs occur-
ring in the two corpora, even if there is no KB annotation
for these pairs. Note that we do not use the entity pair
embeddings at test time: They are used only to bridge
the languages during training. To form predictions in the
low-resource language, we can simply apply the pattern
scoring approach of Section 3.1.

In Section 5, we demonstrate that jointly learning mod-
els for English and Spanish, with no annotation for the
Spanish data, provides fairly accurate Spanish AKBC,
and even improves the performance of the English model.
Note that we are not performing zero-shot learning of a
Spanish model (Larochelle et al., 2008). The relations
in the target schema are language-independent concepts,
and we have supervision for these in English.

3.5 Tied Sentence Encoders
The sentence encoder approach of Section 3.2 is com-
plementary to our multilingual modeling technique: we
simply use a separate encoder for each language. This
approach is sub-optimal, however, because each sentence
encoder will have a separate matrix of word embeddings
for its vocabulary, despite the fact that there may be con-
siderable shared structure between the languages. In re-
sponse, we propose a straightforward method for tying
the parameters of the sentence encoders across languages.

Drawing on the dictionary-based techniques described
in Section 2.5, we first obtain a list of word-word transla-
tion pairs between the languages using a translation dic-
tionary. The first layer of our deep text encoder consists
of a word embedding lookup table. For the aligned word
types, we use a single cross-lingual embedding. Details
of our approach are described in Appendix 7.5.

4 Task and System Description
We focus on the TAC KBP slot-filling task. Much re-
lated work on embedding knowledge bases evaluates on

890

the FB15k dataset (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015; Yang et al., 2015; Toutanova et al., 2015).
Here, relation extraction is posed as link prediction on a
subset of Freebase. This task does not capture the par-
ticular difficulties we address: (1) evaluation on entities
and text unseen during training, and (2) zero-annotation
learning of a predictor for a low-resource language.

Also, note both Toutanova et al. (2015) and Riedel et
al. (2013) explore the pros and cons of learning embed-
dings for entity pairs vs. separate embeddings for each
entity. As this is orthogonal to our contributions, we only
consider entity pair embeddings, which performed best in
both works when given sufficient data.

4.1 TAC Slot-Filling Benchmark
The aim of the TAC benchmark is to improve both cov-
erage and quality of relation extraction evaluation com-
pared to just checking the extracted facts against a knowl-
edge base, which can be incomplete and where the prove-
nances are not verified. In the slot-filling task, each sys-
tem is given a set of paired query entities and relations
or ‘slots’ to fill, and the goal is to correctly fill as many
slots as possible along with provenance from the corpus.
For example, given the query entity/relation pair (Barack
Obama, per:spouse), the system should return the entity
Michelle Obama along with sentence(s) whose text ex-
presses that relation. The answers returned by all par-
ticipating teams, along with a human search (with time-
out), are judged manually for correctness, i.e. whether
the provenance specified by the system indeed expresses
the relation in question.

In addition to verifying our models on the 2013 and
2014 English slot-filling task, we evaluate our Spanish
models on the 2012 TAC Spanish slot-filling evaluation.
Because this TAC track was never officially run, the cov-
erage of facts in the available annotation is very small,
resulting in many correct predictions being marked in-
correctly as precision errors. In response, we manually
annotated all results returned by the models considered in
Table 4. Precision and recall are calculated with respect
to the union of the TAC annotation and our new labeling1.

4.2 Retrieval Pipeline
Our retrieval pipeline first generates all valid slot filler
candidates for each query entity and slot, based on en-
tities extracted from the corpus using FACTORIE (Mc-
Callum et al., 2009) to perform tokenization, segmenta-
tion, and entity extraction. We perform entity linking by
heuristically linking all entity mentions from our text cor-
pora to a Freebase entity using anchor text in Wikipedia.
Making use of the fact that most Freebase entries contain
a link to the corresponding Wikipedia page, we link all

1Following Surdeanu et al. (2012) we remove facts about undiscov-
ered entities to correct for recall.

entity mentions from our text corpora to a Freebase entity
by the following process: First, a set of candidate entities
is obtained by following frequent link anchor text statis-
tics. We then select that candidate entity for which the
cosine similarity between the respective Wikipedia and
the sentence context of the mention is highest, and link to
that entity if a threshold is exceeded.

An entity pair qualifies as a candidate prediction if it
meets the type criteria for the slot.2 The TAC 2013 En-
glish and Spanish newswire corpora each contain about
1 million newswire documents from 2009–2012. The
document retrieval and entity matching components of
our relation extraction pipeline are based on RelationFac-
tory (Roth et al., 2014), the top-ranked system of the 2013
English slot-filling task. We also use the English distantly
supervised training data from this system, which aligns
the TAC 2012 corpus to Freebase. More details on align-
ment are described in Appendix 7.4.

As discussed in Section 3.3, models using a deep sen-
tence encoder and using a pattern lookup table have com-
plementary strengths and weaknesses. In response, we
present results where we ensemble the outputs of the two
models by simply taking the union of their individual out-
puts. Slightly higher results might be obtained through
more sophisticated ensembling schemes.

4.3 Model Details

All models are implemented in Torch (code publicly
available3). Models are tuned to maximize F1 on the
2012 TAC KBP slot-filling evaluation. We additionally
tune the thresholds of our pattern scorer on a per-relation
basis to maximize F1 using 2012 TAC slot-filling for En-
glish and the 2012 Spanish slot-filling development set
for Spanish. As in Riedel et al. (2013), we train using
the BPR loss of Rendle et al. (2009). Our CNN is im-
plemented as described in Toutanova et al. (2015), using
width-3 convolutions, followed by tanh and max pool lay-
ers. The LSTM uses a bi-directional architecture where
the forward and backward representations of each hidden
state are averaged, followed by max pooling over time.
See Section 7.2

We also report results including an alternate names
(AN) heuristic, which uses automatically-extracted rules
to detect the TAC ‘alternate name’ relation. To achieve
this, we collect frequent Wikipedia link anchor texts for

2Due to the difficulty of retrieval and entity detection, the maximum
recall for predictions is limited. For this reason, Surdeanu et al. (2012)
restrict the evaluation to answer candidates returned by their system
and effectively rescaling recall. We do not perform such a re-scaling in
our English results in order to compare to other reported results. Our
Spanish numbers are rescaled. All scores reflect the ‘anydoc’ (relaxed)
scoring to mitigate penalizing effects for systems not included in the
evaluation pool.

3https://github.com/patverga/
torch-relation-extraction

891

Model Recall Precision F1
CNN 31.6 36.8 34.1
LSTM 32.2 39.6 35.5
USchema 29.4 42.6 34.8
USchema+LSTM 34.4 41.9 37.7
USchema+LSTM+Es 38.1 40.2 39.2
USchema+LSTM+AN 36.7 43.1 39.7
USchema+LSTM+Es+AN 40.2 41.2 40.7
Roth et al. (2014) 35.8 45.7 40.2

Table 2: Precision, recall and F1 on the English TAC
2013 slot-filling task. AN refers to alternative names
heuristic and Es refers to the addition of Spanish text at
train time. LSTM+USchema ensemble outperforms any
single model, including the highly-tuned top 2013 sys-
tem of Roth et al. (2014), despite using no handwritten
patterns.

Model Recall Precision F1
CNN 28.1 29.0 28.5
LSTM 27.3 32.9 29.8
USchema 24.3 35.5 28.8
USchema+LSTM 34.1 29.3 31.5
USchema+LSTM+Es 34.4 31.0 32.6

Table 3: Precision, recall and F1 on the English TAC
2014 slot-filling task. Es refers to the addition of Span-
ish text at train time. The AN heuristic is ineffective on
2014 adding only 0.2 to F1. Our system would rank 4/18
in the official TAC 2014 competition behind systems that
use hand-written patterns and active learning despite our
system using neither of these additional annotations (Sur-
deanu and Ji., 2014).

each query entity. If a high probability anchor text co-
occurs with the canonical name of the query in the same
document, we return the anchor text as a slot filler.

5 Experimental Results

In experiments on the English and Spanish TAC KBC
slot-filling tasks, we find that both USchema and LSTM
models outperform the CNN across languages, and that
the LSTM tends to perform slightly better than USchema
as the only model. Ensembling the LSTM and USchema
models further increases final F1 scores in all experi-
ments, suggesting that the two different types of model
compliment each other well. Indeed, in Section 5.3 we
present quantitative and qualitative analysis of our results
which further confirms this hypothesis: the LSTM and
USchema models each perform better on different pattern
lengths and are characterized by different precision-recall
tradeoffs.

Model Recall Precision F1
LSTM 9.3 12.5 10.7
LSTM+Dict 14.7 15.7 15.2
USchema 15.2 17.5 16.3
USchema+LSTM 21.7 14.5 17.3
USchema+LSTM+Dict 26.9 15.9 20.0

Table 4: Zero-annotation transfer learning F1 scores on
2012 Spanish TAC KBP slot-filling task. Adding a trans-
lation dictionary improves all encoder-based models. En-
sembling LSTM and USchema models performs the best.

5.1 English TAC Slot-filling Results

Tables 2 and 3 present the performance of our models
on the 2013 and 2014 English TAC slot-filling tasks.
Ensembling the LSTM and USchema models improves
F1 by 2.2 points for 2013 and 1.7 points for 2014 over
the strongest single model on both evaluations, LSTM.
Adding the alternative names (AN) heuristic described
in Section 4.3 increases F1 by an additional 2 points on
2013, resulting in an F1 score that is competitive with
the state-of-the-art. We also demonstrate the effect of
jointly learning English and Spanish models on English
slot-filling performance. Adding Spanish data improves
our F1 scores by 1.5 points on 2013 and 1.1 on 2014 over
using English alone. This places are system higher than
the top performer at the 2013 TAC slot-filling task even
though our system uses no hand-written rules.

The state of the art systems on this task all rely on
matching handwritten patterns to find additional answers
while our models use only automatically generated, indi-
rect supervision; even our AN heuristics (Section 4.2) are
automatically generated. The top two 2014 systems were
Angeli et al. (2014) and RPI Blender (Surdeanu and Ji.,
2014) who achieved F1 scores of 39.5 and 36.4 respec-
tively. Both of these systems used additional active learn-
ing annotation. The third place team (Lin et al., 2014)
relied on highly tuned patterns and rules and achieved an
F1 score of 34.4.

Our model performs substantially better on 2013 than
2014 for two reasons. First, our RelationFactory (Roth
et al., 2014) retrieval pipeline was a top retrieval pipeline
on the 2013 task, but was outperformed on the 2014 task
which introduced new challenges such as confusable en-
tities. Second, improved training using active learning
gave the top 2014 systems a boost in performance. No
2013 systems, including ours, use active learning. Bentor
et al. (2014), the 4th place team in the 2014 evaluation,
used the same retrieval pipeline (Roth et al., 2014) as our
model and achieved an F1 score of 32.1.

892

0.1 0.2 0.3 0.4 0.5
Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

re
ci

si
on

LSTM + USchema: Recall vs. Precision

LSTM

USchema

Figure 3: Precision-Recall curves for USchema and
LSTM on 2013 TAC slot-filling. USchema achieves
higher precision values whereas LSTM has higher recall.

5.2 Spanish TAC Slot-filling Results
Table 4 presents 2012 Spanish TAC slot-filling results for
our multilingual relation extractors trained using zero-
annotation transfer learning. Tying word embeddings be-
tween the two languages results in substantial improve-
ments for the LSTM. We see that ensembling the non-
dictionary LSTM with USchema gives a slight boost
over USchema alone, but ensembling the dictionary-tied
LSTM with USchema provides a significant increase of
nearly 4 F1 points over the highest-scoring single model,
USchema. Clearly, grounding the Spanish data using a
translation dictionary provides much better Spanish word
representations. These improvements are complementary
to the baseline USchema model, and yield impressive re-
sults when ensembled.

In addition to embedding semantically similar phrases
from English and Spanish to have high similarity, our
models also learn high-quality multilingual word embed-
dings. In Table 5 we compare Spanish nearest neighbors
of English query words learned by the LSTM with dictio-
nary ties versus the LSTM with no ties, using no unsuper-
vised pre-training for the embeddings. Both approaches
jointly embed Spanish and English word types, using
shared entity embeddings, but the dictionary-tied model
learns qualitatively better multilingual embeddings.

5.3 USchema vs LSTM
We further analyze differences between USchema and
LSTM in order to better understand why ensembling
the models results in the best performing system. Fig-
ure 3 depicts precision-recall curves for the two mod-
els on the 2013 slot-filling task. As observed in earlier
results, the LSTM achieves higher recall at the loss of

CEO
Dictionary No Ties

jefe (chief) CEO
CEO director (principle)
ejecutivo (executive) directora (director)
cofundador (co-founder) firma (firm)
president (chairman) magnate (tycoon)

headquartered
Dictionary No Ties

sede (headquarters) Geológico (Geological)
situado (located) Treki (Treki)
selectivo (selective) Geofı́sico(geophysical)
profesional (vocational) Normandı́a (Normandy)
basándose (based) emplea (uses)

hubby
Dictionary No Ties

matrimonio (marriage) esposa (wife)
casada (married) esposo (husband)
esposa (wife) casada(married)
casó (married) embarazada (pregnant)
embarazada (pregnant) embarazo (pregnancy)

alias
Dictionary No Ties

simplificado (simplified) Weaver (Weaver)
sabido (known) interrogación (question)
seudónimo (pseudonym) alias
privatización (privatization) reelecto (reelected)
nombre (name) conocido (known)

Table 5: Example English query words (not in translation
dictionary) in bold with their top nearest neighbors by co-
sine similarity listed for the dictionary and no ties LSTM
variants. Dictionary-tied nearest neighbors are consis-
tently more relevant to the query word than untied.

< 3 < 5 � 5 � 10
Pattern Length

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
1

LSTM + USchema F1: Varying Pattern Length

LSTM

USchema

Figure 4: F1 achieved by USchema vs. LSTM mod-
els for varying pattern token lengths on 2013 TAC slot-
filling. LSTM performs better on longer patterns whereas
USchema performs better on shorter patterns.

893

some precision, whereas USchema can make more pre-
cise predictions at a lower threshold for recall. In Fig-
ure 4 we observe evidence for these different precision-
recall trade-offs: USchema scores higher in terms of F1
on shorter patterns whereas the LSTM scores higher on
longer patterns. As one would expect, USchema success-
fully matches more short patterns than the LSTM, mak-
ing more precise predictions at the cost of being unable
to predict on patterns unseen during training. The LSTM
can predict using any text between entities observed at
test time, gaining recall at the loss of precision. Combin-
ing the two models makes the most of their strengths and
weaknesses, leading to the highest overall F1.

Qualitative analysis of our English models also sug-
gests that our encoder-based models (LSTM) extract re-
lations based on a wide range of semantically similar
patterns that the pattern-matching model (USchema) is
unable to score due to a lack of exact string match in
the test data. For example, Table 6 lists three exam-
ples of the per:children relation that the LSTM finds
which USchema does not, as well as three patterns that
USchema does find. Though the LSTM patterns are all
semantically and syntactically similar, they each contain
different specific noun phrases, e.g. Lori, four children,
toddler daughter, Lee and Albert, etc. Because these spe-
cific nouns weren’t seen during training, USchema fails
to find these patterns whereas the LSTM learns to ignore
the specific nouns in favor of the overall pattern, that
of a parent-child relationship in an obituary. USchema
is limited to finding the relations represented by pat-
terns observed during training, which limits the patterns
matched at test-time to short and common patterns; all
the USchema patterns matched at test time were similar
to those listed in Table 6: variants of ’s son, ’.

LSTM
McGregor is survived by his wife, Lori, and four children,
daughters Jordan, Taylor and Landri, and a son, Logan.
In addition to his wife, Mays is survived by a toddler daugh-
ter and a son, Billy Mays Jr., who is in his 20s.
Anderson is survived by his wife Carol, sons Lee and Albert,
daughter Shirley Englebrecht and nine grandchildren.

USchema
Dio ’s son, Dan Padavona, cautioned the memorial crowd
to be screened regularly by a doctor and take care of them-
selves, something he said his father did not do.
But Marshall ’s son, Philip, told a different story.
“I’d rather have Sully doing this than some stranger, or some
hotshot trying to be the next Billy Mays,” said the guy who
actually is the next Billy Mays, his son Billy Mays III.

Table 6: Examples of the per:children relation discovered
by the LSTM and Universal Schema. Entities are bold
and patterns italicized. The LSTM models a richer set of
patterns

6 Conclusion
By jointly embedding English and Spanish corpora along
with a KB, we can train an accurate Spanish relation ex-
traction model using no direct annotation for relations in
the Spanish data. This approach has the added benefit of
providing significant accuracy improvements for the En-
glish model, outperforming the top system on the 2013
TAC KBC slot filling task, without using the hand-coded
rules or additional annotations of alternative systems. By
using deep sentence encoders, we can perform prediction
for arbitrary input text and for entities unseen in train-
ing. Sentence encoders also provides opportunities to im-
prove cross-lingual transfer learning by sharing word em-
beddings across languages. In future work we will apply
this model to many more languages and domains besides
newswire text. We would also like to avoid the entity de-
tection problem by using a deep architecture to both iden-
tify entity mentions and identify relations between them.

Acknowledgments
Many thanks to Arvind Neelakantan for good ideas

and discussions. We also appreciate a generous hard-
ware grant from nVidia. This work was supported
in part by the Center for Intelligent Information Re-
trieval, in part by Defense Advanced Research Projects
Agency (DARPA) under agreement #FA8750-13-2-0020
and contract #HR0011-15-2-0036, and in part by the Na-
tional Science Foundation (NSF) grant numbers DMR-
1534431, IIS-1514053 and CNS-0958392. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon, in part by DARPA via
agreement #DFA8750-13-2-0020 and NSF grant #CNS-
0958392. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of the spon-
sor.

References
[Angeli et al.2014] Gabor Angeli, Sonal Gupta, Melvin Jose,

Christopher D Manning, Christopher Ré, Julie Tibshirani,
Jean Y Wu, Sen Wu, and Ce Zhang. 2014. Stanfords 2014
slot filling systems. TAC KBP.

[Banko et al.2007] Michele Banko, Michael J Cafarella,
Stephen Soderland, Matt Broadhead, and Oren Etzioni.
2007. Open information extraction from the web. In
International Joint Conference on Artificial Intelligence.

[Bentor et al.2014] Yinon Bentor, Vidhoon Viswanathan, and
Raymond Mooney. 2014. University of texas at austin kbp
2014 slot filling system: Bayesian logic programs for tex-
tual inference. In Proceedings of the Seventh Text Analysis
Conference: Knowledge Base Population (TAC 2014).

[Bollacker et al.2008] Kurt Bollacker, Colin Evans, Praveen
Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: a

894

collaboratively created graph database for structuring human
knowledge. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data.

[Bordes et al.2013] Antoine Bordes, Nicolas Usunier, Alberto
Garcı́a-Durán, Jason Weston, and Oksana Yakhnenko. 2013.
Translating embeddings for modeling multi-relational data.
In Advances in Neural Information Processing Systems.

[Bordes et al.2014] Antoine Bordes, Sumit Chopra, and Jason
Weston. 2014. Question answering with subgraph embed-
dings. arXiv preprint arXiv:1406.3676.

[Bunescu and Mooney2007] Razvan Bunescu and Raymond
Mooney. 2007. Learning to extract relations from the web
using minimal supervision. In Annual meeting-association
for Computational Linguistics, volume 45, page 576.

[Carlson et al.2010] Andrew Carlson, Justin Betteridge, Bryan
Kisiel, Burr Settles, Estevam R. Hruschka, and A. 2010.
Toward an architecture for never-ending language learning.
In In AAAI.

[Collobert et al.2011] Ronan Collobert, Jason Weston, Léon
Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. 2011. Natural language processing (almost)
from scratch. The Journal of Machine Learning Research,
12:2493–2537.

[dos Santos et al.2015] Cıcero Nogueira dos Santos, Bing Xi-
ang, and Bowen Zhou. 2015. Classifying relations by rank-
ing with convolutional neural networks. In Proceedings of
the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference
on Natural Language Processing, volume 1, pages 626–634.

[Etzioni et al.2008] Oren Etzioni, Michele Banko, Stephen
Soderland, and Daniel S Weld. 2008. Open information
extraction from the web. Communications of the ACM,
51(12):68–74.

[Faruqui and Kumar2015] Manaal Faruqui and Shankar Kumar.
2015. Multilingual open relation extraction using cross-
lingual projection. arXiv preprint arXiv:1503.06450.

[Faruqui et al.2014] Manaal Faruqui, Jesse Dodge, Sujay K
Jauhar, Chris Dyer, Eduard Hovy, and Noah A Smith.
2014. Retrofitting word vectors to semantic lexicons. arXiv
preprint arXiv:1411.4166.

[Garcı́a-Durán et al.2015] Alberto Garcı́a-Durán, Antoine Bor-
des, Nicolas Usunier, and Yves Grandvalet. 2015. Combin-
ing two and three-way embeddings models for link predic-
tion in knowledge bases. CoRR, abs/1506.00999.

[Gardner et al.2014] Matt Gardner, Partha Talukdar, Jayant Kr-
ishnamurthy, and Tom Mitchell. 2014. Incorporating vector
space similarity in random walk inference over knowledge
bases. In Empirical Methods in Natural Language Process-
ing.

[Gouws et al.2015] Stephan Gouws, Yoshua Bengio, and Greg
Corrado. 2015. B IL BOWA : Fast Bilingual Distributed
Representations without Word Alignments. Icml, pages 1–
10.

[Gu et al.2015] Kelvin Gu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. arXiv preprint
arXiv:1506.01094.

[Hermann and Blunsom2014] Karl Moritz Hermann and Phil
Blunsom. 2014. Multilingual models for compositional dis-
tributed semantics. arXiv preprint arXiv:1404.4641.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and Jürgen
Schmidhuber. 1997. Long short-term memory. In Neural
Computation.

[Hoffmann et al.2011] Raphael Hoffmann, Congle Zhang, Xiao
Ling, Luke Zettlemoyer, and Daniel S Weld. 2011.
Knowledge-based weak supervision for information extrac-
tion of overlapping relations. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies-Volume 1, pages 541–
550. Association for Computational Linguistics.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward Grefen-
stette, and Phil Blunsom. 2014. A convolutional neural
network for modelling sentences. Proceedings of the 52nd
Annual Meeting of the Association for Computational Lin-
guistics, June.

[Kim2014] Yoon Kim. 2014. Convolutional neural networks
for sentence classification. EMNLP.

[Kingma and Ba2015] Diederik Kingma and Jimmy Ba. 2015.
Adam: A method for stochastic optimization. In 3rd Inter-
national Conference for Learning Representations (ICLR).

[Koehn2005] Philipp Koehn. 2005. Europarl: A parallel corpus
for statistical machine translation. In MT summit, volume 5,
pages 79–86. Citeseer.

[Lao et al.2011] Ni Lao, Tom Mitchell, and William W. Cohen.
2011. Random walk inference and learning in a large scale
knowledge base. In Conference on Empirical Methods in
Natural Language Processing.

[Lao et al.2012] Ni Lao, Amarnag Subramanya, Fernando
Pereira, and William W. Cohen. 2012. Reading the web with
learned syntactic-semantic inference rules. In Joint Confer-
ence on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning.

[Larochelle et al.2008] Hugo Larochelle, Dumitru Erhan, and
Yoshua Bengio. 2008. Zero-data learning of new tasks. In
National Conference on Artificial Intelligence.

[Li et al.2015] Jiwei Li, Dan Jurafsky, and Eudard Hovy. 2015.
When are tree structures necessary for deep learning of rep-
resentations? arXiv preprint arXiv:1503.00185.

[Lin et al.2014] Hailun Lin, Zeya Zhao, Yantao Jia, Yuanzhuo
Wang, Jinhua Xiong, and Xiaojing Li. 2014. OpenKN at
TAC KBP 2014.

[Lin et al.2015] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang
Liu, and Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In Proceedings
of AAAI.

[Luong et al.2015] Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the 1st Work-
shop on Vector Space Modeling for Natural Language Pro-
cessing, pages 151–159.

[McCallum et al.2009] Andrew McCallum, Karl Schultz, and
Sameer Singh. 2009. FACTORIE: Probabilistic program-
ming via imperatively defined factor graphs. In Neural In-
formation Processing Systems (NIPS).

[Mikolov et al.2013] Tomas Mikolov, Quoc V Le, and Ilya
Sutskever. 2013. Exploiting Similarities among Lan-
guages for Machine Translation. In arXiv preprint
arXiv:1309.4168v1, pages 1–10.

[Min et al.2013] Bonan Min, Ralph Grishman, Li Wan, Chang
Wang, and David Gondek. 2013. Distant supervision for

895

relation extraction with an incomplete knowledge base. In
HLT-NAACL, pages 777–782.

[Mintz et al.2009] Mike Mintz, Steven Bills, Rion Snow, and
Dan Jurafsky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Association for Computational
Linguistics and International Joint Conference on Natural
Language Processing.

[Neelakantan et al.2015] Arvind Neelakantan, Benjamin Roth,
and Andrew McCallum. 2015. Compositional vector space
models for knowledge base completion. Proceedings of the
53rd Annual Meeting of the Association for Computational
Linguistics.

[Nickel et al.2011] Maximilian Nickel, Volker Tresp, and Hans-
Peter Kriegel. 2011. A three-way model for collective learn-
ing on multi-relational data. In International Conference on
Machine Learning.

[Nickel et al.2015] Maximilian Nickel, Kevin Murphy, Volker
Tresp, and Evgeniy Gabrilovich. 2015. A review of rela-
tional machine learning for knowledge graphs: From multi-
relational link prediction to automated knowledge graph con-
struction. arXiv preprint arXiv:1503.00759.

[Rendle et al.2009] Steffen Rendle, Christoph Freudenthaler,
Zeno Gantner, and Lars Schmidt-Thieme. 2009. Bpr:
Bayesian personalized ranking from implicit feedback. In
Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, pages 452–461. AUAI Press.

[Riedel et al.2010] Sebastian Riedel, Limin Yao, and Andrew
McCallum. 2010. Modeling relations and their mentions
without labeled text. In Machine Learning and Knowledge
Discovery in Databases, pages 148–163. Springer.

[Riedel et al.2013] Sebastian Riedel, Limin Yao, Andrew Mc-
Callum, and Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas. In HLT-
NAACL.

[Rocktaschel et al.2015] Tim Rocktaschel, Sameer Singh, and
Sebastian Riedel. 2015. Injecting logical background
knowledge into embeddings for relation extraction. In An-
nual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).

[Roth et al.2014] Benjamin Roth, Tassilo Barth, Grzegorz
Chrupała, Martin Gropp, and Dietrich Klakow. 2014. Rela-
tionfactory: A fast, modular and effective system for knowl-
edge base population. EACL 2014, page 89.

[Schein et al.2002] Andrew I Schein, Alexandrin Popescul,
Lyle H Ungar, and David M Pennock. 2002. Methods and
metrics for cold-start recommendations. In Proceedings of
the 25th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 253–
260. ACM.

[Socher et al.2013] Richard Socher, Danqi Chen, Christopher D
Manning, and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Advances in
Neural Information Processing Systems.

[Suchanek et al.2007] Fabian M. Suchanek, Gjergji Kasneci,
and Gerhard Weikum. 2007. Yago: A core of semantic
knowledge. In Proceedings of the 16th International Con-
ference on World Wide Web.

[Surdeanu and Ji.2014] Mihai Surdeanu and Heng Ji. 2014.
Overview of the english slot filling track at the tac2014

knowledge base population evaluation. Proc. Text Analysis
Conference (TAC2014).

[Surdeanu et al.2012] Mihai Surdeanu, Julie Tibshirani, Ramesh
Nallapati, and Christopher D Manning. 2012. Multi-
instance multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural
Language Learning, pages 455–465. Association for Com-
putational Linguistics.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and Quoc
V. V Le. 2014. Sequence to sequence learning with neu-
ral networks. In Advances in Neural Information Processing
Systems.

[Toutanova et al.2015] Kristina Toutanova, Danqi Chen, Patrick
Pantel, Hoifung Poon, Pallavi Choudhury, and Michael Ga-
mon. 2015. Representing text for joint embedding of text
and knowledge bases. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

[Vinyals et al.2014] Oriol Vinyals, Lukasz Kaiser, Terry Koo,
Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. 2014.
Grammar as a foreign language. In CoRR.

[Wang et al.2014] Zhen Wang, Jianwen Zhang, Jianlin Feng,
and Zheng Chen. 2014. Knowledge graph embedding by
translating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, pages
1112–1119. Citeseer.

[Xu et al.2015] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao
Peng, and Zhi Jin. 2015. Classifying relations via long short
term memory networks along shortest dependency paths. In
Proceedings of Conference on Empirical Methods in Natural
Language Processing (to appear).

[Yang et al.2015] Bishan Yang, Wen-tau Yih, Xiaodong He,
Jianfeng Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge bases. In-
ternational Conference on Learning Representations 2014.

[Yao et al.2010] Limin Yao, Sebastian Riedel, and Andrew Mc-
Callum. 2010. Collective cross-document relation extrac-
tion without labelled data. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Process-
ing, pages 1013–1023. Association for Computational Lin-
guistics.

[Yao et al.2013] Limin Yao, Sebastian Riedel, and Andrew Mc-
Callum. 2013. Universal schema for entity type prediction.
In Proceedings of the 2013 workshop on Automated knowl-
edge base construction, pages 79–84. ACM.

[Yates and Etzioni2007] Alexander Yates and Oren Etzioni.
2007. Unsupervised resolution of objects and relations on
the web. In North American Chapter of the Association for
Computational Linguistics.

[Zeng et al.2015] Daojian Zeng, Kang Liu, Yubo Chen, and Jun
Zhao. 2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. EMNLP.

896

Proceedings of NAACL-HLT 2016, pages 897–906,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Effective Crowd Annotation for Relation Extraction

Angli Liu, Stephen Soderland, Jonathan Bragg,
Christopher H. Lin, Xiao Ling, and Daniel S. Weld

Turing Center, Department of Computer Science and Engineering
Box 352350

University of Washington
Seattle, WA 98195, USA

{anglil, soderlan, jbragg, chrislin, xiaoling, weld} at cs.washington.edu

Abstract

Can crowdsourced annotation of training data
boost performance for relation extraction over
methods based solely on distant supervision?
While crowdsourcing has been shown effec-
tive for many NLP tasks, previous researchers
found only minimal improvement when ap-
plying the method to relation extraction. This
paper demonstrates that a much larger boost
is possible, e.g., raising F1 from 0.40 to 0.60.
Furthermore, the gains are due to a sim-
ple, generalizable technique, Gated Instruc-
tion, which combines an interactive tutorial,
feedback to correct errors during training, and
improved screening.

1 Introduction

Relation extraction (RE) is the task of identifying
instances of relations, such as nationality (person,
country) or place of birth (person, location), in pas-
sages of natural text. Since RE enables a broad range
of applications — including question answering and
knowledge base population — it has attracted atten-
tion from many researchers. Many approaches to RE
use supervised machine learning, e.g., (Soderland et
al., 1995; Califf and Mooney, 1997; Lafferty et al.,
2001), but these methods require a large, human-
annotated training corpus that may be unavailable.

In response, researchers developed methods for
distant supervision (DS) in which a knowledge base
such as Wikipedia or Freebase is used to automati-
cally tag training examples from a text corpus (Wu
and Weld, 2007; Mintz et al., 2009). Indeed, virtu-
ally all entries to recent TAC KBP relation extraction

0.0 0.2 0.4 0.6 0.8 1.0

Distantly Supervised (DS) Data

0.0

0.2

0.4

0.6

0.8

1.0

D
S
 D

a
ta

 P
lu

s
2

0
k

G
I
C

ro
w

d
so

u
rc

e
d
 E

x
a
m

p
le

s
precision nationality

precision born

precision lived

precision died

precision traveled

recall nationality

recall born

recall lived

recall died

recall traveled

F1 nationality

F1 born

F1 lived

F1 died

F1 traveled

Figure 1: Adding 20K crowdsourced instances, acquired using
Gated Instruction, to 700K examples from distant supervision
raises precision, recall, and F1 for nearly all relations and raises
overall F1 from 0.40 to 0.60 with MIML-RE learning.

competitions use distant supervision (Ji and Grish-
man, 2011). However, distant supervision provides
noisy training data with many false positives, and
this limits the precision of the resulting extractors
(see Section 2). A natural assumption is that human-
annotated training data, either alone or in conjunc-
tion with distant supervision, would give better pre-
cision. In particular, Snow et al. (2008) showed that,
for many NLP tasks, crowdsourced data is as good
as or better than that annotated by experts.

It is quite surprising, therefore, that researchers
who have applied crowdsourced annotation to rela-
tion extraction argue the opposite, that crowdsourc-
ing provides only minor improvement:

897

• Zhang et al. (2012) conclude that “Human feed-
back has relatively small impact on precision and
recall.” Instead, they advise applying distant su-
pervision to vastly more data.
• Pershina et al. (2014) assert “Simply taking the

union of the hand-labeled data and the corpus la-
beled by distant supervision is not effective since
hand-labeled data will be swamped by a larger
amount of distantly labeled data.” Instead, they
introduce a complex feature-creation approach
which improves the F1-score of MIML-RE, a
state-of-the-art extractor (Surdeanu et al., 2012),
just 4%, from 0.28 to 0.32 on a set of 41 TAC
KBP relations.
• Angeli et al. (2014) explored a novel active

learning method to control crowdsourcing, but
found no improvement from adding the crowd-
sourced training to distant supervision using the
default settings of MIML-RE, and only a 0.04
improvement in F1 when they initialized MIML-
RE using the crowdsourced training.

This paper reports quite a different result, show-
ing up to a 0.20 boost to F1. By carefully de-
signing a quality-controlled crowdsourcing work-
flow that uses Gated Instruction (GI), we are able
to create much more accurate annotations than those
produced by previous crowdsourcing methods. GI
(summarized in Figure 2) includes an interactive tu-
torial to train workers, providing immediate feed-
back to correct mistakes during training. Workers
are then screened by their accuracy on gold-standard
questions while doing the annotation. We show that
GI generates much better training data than crowd-
sourcing used by other researchers, and that this
leads to dramatically improved extractors.

Adding GI-crowdsourced annotations of the ex-
ample sentences selected by Angeli et al.’s active
learning method provides a much larger boost to the
performance of the learned extractors than when
their traditional crowdsourcing methods are used.
In fact, the improvement due to our crowdsourcing
method substantially outweighs the benefits of An-
geli et al.’s active learning strategy as well. In total,
this paper makes the following contributions:
• We present the design of the Gated Instruction

crowdsourcing workflow with worker training
and screening that ensures high-precision anno-

tations for relation extraction training data in the
presence of unreliable workers.

• We demonstrate that Gated Instruction increases
the annotation quality of crowdsourced training
data, raising precision from 0.50 to 0.77 and
recall from 0.70 to 0.78, compared to Angeli
et al.’s crowdsourced tagging of the same sen-
tences. We make the data available for future
research (Section 4.1).

• Augmenting distant supervision with 10K of
Angeli et al.’s training examples annotated using
Gated Instruction boosts F1 from 0.40 to 0.47,
compared to 0.43, the result from using Angeli
et al.’s crowdsourced annotations.

• We demonstrate that improved crowdsourcing
has a greater effect than Angeli et al.’s active
learning approach. Adding 10K randomly se-
lected sentences, labeled using Gated Instruc-
tion, to distantly supervised data raises F1 by
6 points, compared to the 3 point gain from
adding Angeli et al.’s crowdsourced labels on
their active-learning sample.

• In contradiction to Zhang et al.’s prior claims, we
show that increasing amounts of crowdsourced
data can dramatically improve extractor perfor-
mance. When we augmented distant supervision
with 20K instances using Gated Instruction, we
show that F1 is raised from 0.40 to 0.60.

• Gated Instruction may also reduce the cost of
crowdsourcing. We show that with the high
quality Gated Instruction annotations, a single
annotation is more effective than majority vote
over multiple annotators.

Our results provide a clear lesson for future re-
searchers hoping to use crowdsourced data for NLP
tasks. Extreme care must be exercised in the details
of the workflow design to ensure quality data and
useful results.

2 Background and Related Work

Distant supervision (DS) is a method for training
extractors that obviates the need for human-labeled
training data by heuristically matching facts from a
background knowledge base (KB) to a large textual
corpus. Originally developed to extract biological
relations (Craven and Kumlien, 1999), DS was later
extended to extract relations from Wikipedia in-

898

foboxes (Wu and Weld, 2007) and Freebase (Mintz
et al., 2009). Specifically, distant supervision uses
the KB to find pairs of entities E1 and E2 for which
a relation R holds. Distant supervision then makes
that assumption that any sentence that contains a
mention of both E1 and E2 is a positive training in-
stance for R(E1, E2).

Unfortunately, this assumption leads to a large
proportion of false positive training instances. For
example, Freebase asserts that Nicolas Sarkozy was
born in Paris, but nearly all sentences in a news
corpus that mention Sarkozy and Paris do not give
evidence for a place of birth relation. To address
this shortcoming, there have been attempts to model
the relation dependencies as multi-instance multi-
class (Bunescu and Mooney, 2007; Riedel et al.,
2010) leading to state-of-the art extraction learners
MultiR (Hoffmann et al., 2011) and MIML-RE (Sur-
deanu et al., 2012).

Additionally, other techniques developed to study
the relation extraction problem have achieved cer-
tain success, including universal schemas (Riedel
et al., 2013), and deep learning (Nguyen and Gr-
ishman, 2014). Despite these technical innova-
tions, the best systems at the TAC-KBP evaluation1

still require substantial human effort, typically hand-
written extraction rules (Surdeanu and Ji, 2014).

Recently researchers have explored the idea of
augmenting distant supervision with a small amount
of crowdsourced annotated data in an effort to im-
prove relation extraction performance (Angeli et al.,
2014; Zhang et al., 2012; Pershina et al., 2014).

Zhang et al. (2012) studied how the size of the
crowdsourcing training corpus and distant supervi-
sion corpus affect the performance of the relation
extractor. They considered the 20 TAC KBP re-
lations that had a corresponding Freebase relation.
They added up to 20K instances of crowd data to
1.8M DS instances using sparse logistic regression,
tuning the relative weight of crowdsourced and DS
training. However, they saw only a marginal im-
provement from F1 0.20 to 0.22 when adding crowd-
sourced training to DS training, and conclude that
human feedback has little impact.

Angeli et al. (2014) also investigated meth-
ods for infusing distant supervision with crowd-
sourced annotations in the Stanford TAC-KBP sys-

1http://www.nist.gov/tac/

tem. They experimented with several methods, in-
cluding adding a random sample of annotated sen-
tences to the training mix, and using active learning
to select which sentences should be annotated by
humans. Their best results were what they termed
“Sample JS,” training a committee of MIML-RE
classifiers and then sampling the sentences to be
crowdsourced weighted by the divergence of clas-
sifications.

Surprisingly, they found that the simple approach
of just adding crowdsourced data to the training mix
hurt extractor performance slightly. They conclude
that the most important use for crowdsourced an-
notations is as a way to initialize MIML-RE, miti-
gating the problem of local minima during learning.
When they initialized MIML-RE with 10K Sam-
ple JS crowdsourced instances and then trained on
a combination of Sample JS crowdsourced and DS
instances, this raised F1 from 0.34 to 0.38.

Pershina et al. (2014) also exploited a small set
of highly informative hand-labeled training data to
improve distant supervision. Rather than crowd-
sourcing, they used the set of 2,500 labeled instances
from the KBP 2012 assessment data. They state that
“Simply taking the union of the hand-labeled data
and the corpus labeled by distant supervision is not
effective since hand-labeled data will be swamped
by a larger amount of distantly labeled data.” Instead
they use the hand-annotated data to learn guidelines
that are included in a graphical prediction model
that extends MIML-RE, trained using distant super-
vision. This raised F1 from 0.28 to 0.32 over a com-
parison system without the learned guidelines.

Gormley et al. (2010) filtered crowdsourced
workers by agreement with gold questions and by
noting which workers took fewer than three seconds
per question. They reported good inter-annotator
agreement, but did not build a relation extractor from
their data.

Both Zhang et al. and Angeli et al. used tradi-
tional methods to ensure the quality of their crowd-
sourced data. Zhang et al. replicated each ques-
tion three times and included a gold question (i.e.,
one with a known answer) in each set of five ques-
tions. They only used answers from workers who
answered at least 80% of the gold-standard ques-
tions correctly.

899

Angeli et al. included two gold-standard ques-
tions in every set of 15. They discarded sets in
which both controls were answered incorrectly, and
additionally discarded all submissions from workers
who failed the controls on more than one third of
their submissions. They collected five annotations
for each example, and used the majority vote as the
ground truth in their training. They did not report the
resulting quality of their crowdsourced annotations,
but did release their data, allowing us to measure its
precision and recall (see Section 4.1).

We argue that all these systems would have got-
ten better performance by focusing attention on
the quality of their crowdsourced annotation. We
demonstrate that by improving the crowdsourcing
workflow, we achieve a higher F1 score, both with
the crowdsourced training alone and in combination
with distant supervision.

Our work adds to the existing large body of work
that shows that crowdsourcing can be and is an ef-
fective and efficient method for training machine
learning algorithms. Snow et al. (2008) showed
that multiple workers can simulate an expert worker
in a variety of natural language tasks. Many re-
searchers (e.g., (Dawid and Skene, 1979; Whitehill
et al., 2009)) have designed methods to aggregate
crowd labels in order to reduce noise, and Sheng et
al. (2008) showed that paying multiple crowd work-
ers to relabel examples, as opposed to labeling new
ones, can increase the accuracy of a classifier.

The effectiveness of crowdsourcing is dependent
on a number of human factors. Several researchers
have studied how worker retention is affected by
payment schemes (Mao et al., 2013), recruitment
techniques (Ipeirotis and Gabrilovich, 2014), or at-
tention diversions (Dai et al., 2015). Ipeirotis and
Gabrilovich show that volunteer workers may pro-
vide higher quality work. By contrast, we show that
paid workers, too, can produce high quality work
through careful attention to worker training and test-
ing.

3 Gated Instruction Crowdsourcing

We used Amazon Mechanical Turk for our crowd-
sourcing, but designed our own website to imple-
ment the Gated Instruction (GI) protocol, rather than
use the platform Amazon provides directly. This al-
lowed us greater control over the UI and the worker

Gated Instruction Crowdsourcing Protocol

Phase I: Interactive tutorial

1.  Give a clear definition of each relation and tagging criteria.
2.  Worker annotates practice sentences that illustrate each

relation.
3.  Give immediate feedback after each practice sentence.

Phase II: Screening questions
1.  Worker annotates representative set of 5 gold questions.
2.  Give feedback to worker on each question.
3.  Eliminate workers who fail a majority of these questions.

Phase III: Batches of questions (with continued screening)
1.  Include gold questions without feedback.
2.  Sets of 5 gold questions in batches (20 questions) with

exponentially decreasing frequency.
3.  Eliminate workers with accuracy lower than 80% on last 10

gold questions.

General Principles

1.  Accept only workers with AMT reputation above threshold.
2.  Provide a link to definitions of relations during the task.
3.  Worker may not proceed before correcting mistakes shown

in feedback.
4.  Give feedback on how much earned so far and performance

on gold questions after each batch.
5.  Remind of a bonus from completing all 10 batches.

Figure 2: Architecture of the Gated Instruction protocol.

experience. The primary benefit of GI is worker
training, which is necessary across platforms, so we
expect to see comparable results on other platforms,
such as CrowdFlower.

The ideas behind Gated Instruction are summa-
rized in Figure 2. The workflow proceeds in three
phases: tutorial, weed-out, and work (described be-
low) with a focus on well-known user interface prin-
ciples (rapid feedback and availability of extra help).
While conceptually simple, we show this approach
has a much bigger effect on the resulting learned
NLP system than a more complex graphical model.

3.1 Interactive Tutorial Design

The most important step in crowdsourcing is ensur-
ing that workers understand the task. To this end we
required workers to complete an interactive tutorial
to learn the criteria for the relations to be annotated.

Since we wanted to test our extractor against of-
ficial answers for the TAC-KBP Slot Filling evalu-
ation, our tutorial taught workers to follow the offi-
cial KBP guidelines. These guidelines require tag-
ging only relations directly stated in the sentence,
and discourage plausible inferences. For example, if
a sentence states only that a person works in a city,
then annotating a place of residence relation with

900

Figure 3: Tutorial page that teaches guidelines for nationality and lived in. The worker answers practice sentences with immediate
feedback that teach each relation.

that city is counted as an error, even if it is proba-
ble that the person lives there.

Figure 3 shows a page from the tutorial that
explains annotation guidelines for nationality and
lived in (i.e., place of residence). This figure shows
the first page of the tutorial — as more relations are
taught, those relations are added to the question. The
real questions are asked in the same format later on
for consistency. The worker can click on a link to
see the relation definitions at any time during the tu-
torial or while doing the actual task. If workers make
a mistake during the tutorial, they are given immedi-
ate feedback along with an explanation for the cor-
rect answer. The workers cannot proceed without
correcting all errors on all problems in the tutorial.

3.2 Adaptive Worker Screening

After examining worker mistakes in a preliminary
experiment, we manually selected a set of gold ques-
tions (i.e., questions with unambiguous, known an-
swers) that workers are likely to get wrong if they
don’t clearly understand the annotation criteria. The
gold questions are grouped into sets of 5 questions
that represent all relations being annotated. The first
5 questions (the screening phase) are used to elimi-
nate spammers and careless workers early on. These
questions look no different from normal questions,
but we give feedback to workers with the right an-
swers if workers give wrong answers to any of these
questions. If a worker fails a majority of such ques-
tions, the worker is disqualified from the task.

We then place additional sets of gold questions
among real test questions without feedback in order
to spot-check workers’ responses. In our experience,
workers who start out with high accuracy maintain
that accuracy throughout the entire session. There-
fore, we place the gold questions in exponentially
decreasing frequency among the batches of 20 ques-
tions (5 gold questions in batches 2, 4, 8, etc.), and
allow only workers who maintain at least 80% ac-
curacy on the most recent 10 gold questions to con-
tinue with the task. Our task was not large enough
to attract problems of collusion, but more lucrative
or long-running tasks may require continual gen-
eration of new gold questions in order to combat
sharing of answers among workers (Oleson et al.,
2011). Techniques such as expectation maximiza-
tion (Dawid and Skene, 1979) can be used to pro-
duce new gold questions based on worker answers.

3.3 Motivational Feedback

We want workers to stay motivated, so our crowd-
sourcing system also provides feedback to work-
ers. In particular, workers receive adaptive per-batch
message feedback at the end of each batch of ques-
tions (every 20 questions) about how well they did
on the gold questions in the past batches, how much
they have earned so far, and a reminder of the bonus
for finishing all 10 batches. We paid workers $0.50
for each batch of 20 questions with a bonus of $1.00
for finishing 10 batches.

901

4 Experimental Results

In this section, we address the following questions:

• Does Gated Instruction produce training data
with higher precision and recall than other re-
search in crowdsourcing for relation extrac-
tion?

• Does higher quality crowdsourced training data
result in higher extractor performance when
adding crowdsourcing to distant supervision?

• How does the boost in extractor performance
on random training instances labeled with
Gated Instruction compare to that with in-
stances labeled using traditional crowdsourcing
techniques selected with active learning?

• How does extractor performance increase with
larger amounts of Gated Instruction training
data?

• What’s the most cost-effective way to aggre-
gate worker votes? Are multiple annotations
needed, given high quality crowdsourcing?

4.1 Quality of Gated Instruction Training
We took the best training set of 10,000 instances
from Angeli et al.’s 2014 system that selected train-
ing instances using active learning (their Sample JS
data). In order to focus on the effect of crowdsourc-
ing, we restricted our attention to four distinct re-
lations between person and location that were used
by previous researchers: nationality, place of birth,
place of residence, and place of death2. We then
sent these sentences to crowdsourced workers using
the Gated Instruction protocol.

To evaluate the crowdsourced training data qual-
ity, we hand-tagged the crowdsourced annotations
from both our Gated Instruction system and Angeli
et al.’s work on 200 random instances. Annotations
were considered correct if they followed the TAC-
KBP annotation guidelines. Two authors tagged the
sample with 87% agreement and then reconciled
opinions to agree on consensus labels.

The training precision, recall, and F1 are shown
in Figure 4. In this and all other experiments, aggre-
gate statistics are macro-averaged across relations.
We also include the training quality from Zhang et

2We collapsed the KBP relations per:city of *,
per:stateorprovince of *, and per:country of * into a sin-
gle relation place of *.

 Precision Recall F1
0.0

0.2

0.4

0.6

0.8

1.0

0.15

0.64

0.24

0.50

0.70

0.58

0.77 0.78 0.77

Zhang Angeli Gated Instruction

Figure 4: The training data produced by Gated Instruction has
much higher precision and somewhat higher recall than that of
Angeli et al. or Zhang et al.

al., although this is on a different set of sentences
and only for place of birth, place of residence, and
place of death.

Our Gated Instruction protocol gives higher F1 for
the training set of each of the four relations we com-
pared with Angeli’s crowdsourcing on the same sen-
tences. Our overall F1 was 0.77, compared to 0.58
for Angeli et al. and 0.24 for Zhang et al. The differ-
ence in precision is most dramatic, with our system
achieving 0.77 compared to 0.50 and 0.15.

Worker agreement with GI was surprisingly high.
Two workers agreed on between 78% to 97% of the
instances, depending on the relation. The average
agreement was 88%. The data is available for re-
search purposes.3

4.2 Integrating Crowdsourced Data with the
Relation Extraction Pipeline

The pipeline of our relation extraction system is as
follows. First we collected sentences of training data
from the TAC-KBP newswire corpus that contain a
person and a location according to the Stanford NER
tagger (Finkel et al., 2005). We represent them us-
ing the features described by Mintz et al. (2009).
These features include NER tags of the two argu-
ments, the dependency path between two designated
arguments, the sequence of tokens between the ar-

3https://www.cs.washington.edu/ai/gated_
instructions/naacl_data.zip

902

 Precision Recall F1
0.0

0.2

0.4

0.6

0.8

1.0

0.40 0.41 0.400.39

0.47
0.430.43

0.50
0.46

0.43

0.51
0.47

DS only

DS plus Angeli's tagging of SampleJS

DS plus GI tagging of 10k random instances

DS plus GI tagging of SampleJS

Figure 5: Adding 10K instances with Gated Instruction to
700K DS instances boosts F1 more than that of the origi-
nal Sample JS annotations. Furthermore, GI applied to 10K
randomly-selected instances outperforms active learning with
traditional annotation.

guments, and the order of the arguments in the sen-
tence.

We then split the data into 700K used for distant
supervision and much smaller sets for crowdsourc-
ing and for a held-out test set. For the experiments
presented, unless otherwise noted, we used a variant
of majority vote to create a training set. We obtained
annotations from two workers for each example sen-
tence and kept the instances where both agreed as
our training data.

Finally, we ran a learning algorithm on the distant
supervision training data, the crowdsourced training
data, and a combination of the two. The results were
evaluated on the hand-labeled test set.

4.3 Effect of Data Quality on Extractor
Performance

We now study how the higher quality training data
from our crowdsourcing protocol affects extractor
performance, when it is added to a large amount of
distantly-supervised data.

We compared adding the 10K crowdsourced in-
stances from the previous experiment to 700K in-
stances from distant supervision, where the crowd-
sourced data had tags from either Gated Instruction
or the original crowdsourcing from Angeli et al. We
compare only with Angeli et al. as we did not have

annotations from Zhang et al. for the same training
sentences.

We experimented using three learning algorithms:
logistic regression, MultiR, and MIML-RE. We
found that logistic regression gives the best results
when applied to the crowdsourced training alone.
With logistic regression, training on the 10K Sam-
ple JS instances gave F1 of 0.31 with Angeli et al.’s
crowdsourced labels and 0.40 with Gated Instruc-
tion. Logistic regression is not a good fit for dis-
tant supervision — we had F1 of 0.34 from logistic
regression trained on DS only.

MultiR and MIML-RE gave the best results for
combining crowdsourcing with distant supervision.
Each of these multi-instance multi-class learners had
similar results, so we present results only for MIML-
RE in the remainder of our experiments, as it is the
learning algorithm used by other researchers.

We included no special mechanisms to prevent
distant supervision data from swamping the smaller
amount of crowdsourced data. MIML-RE has a
built-in mechanism to combine supervised and dis-
tant supervision. It automatically builds a classifier
from the supervised instances, uses this to initialize
the distant supervision instance labels, and locks the
supervised labels. With MultiR, we put the crowd-
sourced instances in separate singleton “bags” of
training instances, since MultiR always takes at least
one instance in each bag as truth.

As Angeli et al. found, it is important to use the
crowdsourced training to initialize MIML-RE. With
the default initialization, Angeli et al. report no gain
in F1. We found a small gain in F1 even with the
default initialization, but larger gains with crowd-
sourced initialization, which we use for the follow-
ing experiments.

To see how much of the boost over distant su-
pervision comes from the active learning that went
into Angeli et al.’s sample JS training, we also used
Gated Instruction on a randomly selected set of 10K
newswire instances from the TAC KBP 2010 corpus
(LDC2010E12) that contained at least one NER tag
for person and one for location.

As Figure 5 shows, adding the Sample JS training
with Gated Instruction crowdsourcing had a positive
impact on performance, increasing precision from
0.40 to 0.43, recall from 0.41 to 0.51, and F1 from
0.40 to 0.47. With the original crowdsourced tag-

903

 Precision Recall F1
0.0

0.2

0.4

0.6

0.8

1.0

0.40 0.41 0.40
0.43

0.50
0.46

0.56

0.64
0.60

DS only

DS plus GI tagging of 10k random instances

DS plus GI tagging of 20k random instances

Figure 6: Adding 20K instances with Gated Instruction to DS
gives a large boost to both precision and recall, raising F1 from
0.40 to 0.60.

ging from Angeli et al., adding the crowdsourced
instances actually caused a small drop in precision,
a smaller gain in recall than Gated Instruction, and
F1 of 0.43 — substantially less than achieved with
labels from Gated Instruction.

Furthermore, in an apples-to-oranges comparison,
we found that our improved crowdsourcing proto-
col had a much bigger impact than Angeli et al.’s
active learning mechanism. Adding 10K randomly
selected newswire instances tagged with Gated In-
struction gave higher precision (0.43), recall (0.51),
and F1 (0.46) than adding instances selected by ac-
tive learning (Sample JS) when labeled using Angeli
et al.’s protocol. In fact Gated Instruction gave dou-
ble the improvement (6 points gain in F1 vs. 3). Of
course, both of these numbers are small — bigger
gains come from using the techniques together, and
especially from using more crowdsourced data.

4.4 Effect of Data Quantity on Extractor
Performance

Zhang et al. reported negligible improvement in F1
from adding 20K instances with their crowdsourc-
ing to distant supervision, and Angeli et al. reported
a gain of 0.04 F1 from adding 10K instances with
active learning and their crowdsourcing.

As Figure 6 shows, Gated Instruction can raise
F1 from 0.40 to 0.60 over distant supervision alone
from adding 20K random newswire instances. This
experiment uses all five relations that we crowd-

Figure 7: With high quality crowdsourcing, the simple policy
of requesting a single annotation performs better than majority-
vote of 3, 5, 7, 9, or 11 annotations (holding the annotation
budget constant), since the increase in the number of data points
outweighs the reduction in noise.

sourced, adding travel to to the relations from Fig-
ure 5 that we had in common with Angeli et al. The
results for DS only and 10K random instances are
not significantly different from those in Figure 5 in
which travel to was omitted.

4.5 Comparison between Ways to Aggregate
Annotations

In this section we explore the cost-effectiveness of
alternate methods of creating training from Gated
Instruction annotations. We compare a policy of us-
ing the majority vote of two out of three, or three out
of five workers, and so forth, as opposed to solic-
iting a single annotation for each training sentence
(unilabeling). Lin et al. (2014) show that in many
settings, unilabeling is better because some classi-
fiers are able to learn more accurately with a larger,
noisier training set than a smaller, cleaner one.

With a given budget, single annotation gives three
times as many training instances as the policy that
uses three votes and five times as many as the policy
that requires five votes, and so forth. Is the quality
of data produced by Gated Instruction high enough
to rely on just one annotation per instance?

We randomly select 2K examples from the 20K
newswire instances and use Gated Instruction to ac-
quire labels from 10 workers for each sentence. Fig-
ure 7 shows that when training a logistic regression
classifier with high quality crowdsourcing data, a
single annotation is, indeed, more cost effective than

904

using a simple majority of three, five, or more anno-
tations (given a fixed budget). The learning curves
in Figure 7 use uncertainty sampling (US) to select
examples from the 2000 available with the curves la-
beled US 1/1 for single votes, US 2/3 for two out of
three, and so forth.

This is not to say that a single vote is always the
best policy. It is another example of the impact of
GI’s high quality annotation. In the same domain
of relation extraction, Lin et al. (2016) also show
that with a more intelligent and dynamic relabeling
policy, relabeling certain examples can still help.

5 Conclusion

This paper describes the design of Gated Instruc-
tion, a crowdsourcing protocol that produces high
quality training data. GI uses an interactive tuto-
rial to teach the annotation task, provides feedback
during training so workers understand their errors,
refuses to let workers annotate new sentences until
they have demonstrated competence, and adaptively
screens low-accuracy workers with a schedule of test
questions. While we demonstrate GI for the task of
relation extraction, the method is general and may
improve annotation for many other NLP tasks.

Higher quality training data produces higher ex-
tractor performance for a variety of learning algo-
rithms: logistic regression, MultiR, and MIML-RE.
Contrary to past claims, augmenting distant supervi-
sion with a relatively small amount of high-quality
crowdsourced training data gives a sizeable boost in
performance. Adding 10K instances that Angeli et
al. selected by active learning, annotated with Gated
Instruction, raised F1 from 0.40 to 0.47 — substan-
tially higher than the 0.43 F1 provided by Angeli et
al.’s annotations. We also find that Gated Instruction
is more effective than a complicated active learning
strategy. Adding 10K randomly selected instances
raises F1 to 0.46, and adding 20K random instances
gave F1 of 0.60.

Our experimental results yield two main takeaway
messages. First, we show that in contrast to prior
work, adding crowdsourced training data substan-
tially improves the performance of the resulting ex-
tractor as long as care is taken to ensure high quality
crowdsourced annotations. We haven’t yet experi-
mented beyond person-location relations, but we be-
lieve that Gated Instruction is generalizable, partic-

ularly where there are clear criteria to be taught. We
believe that Gated Instruction can greatly improve
training data for other NLP tasks beside relation ex-
traction as well.

Second, we provide practical and easily insti-
tuted guidelines for a novel crowdsourcing proto-
col, Gated Instruction, as an effective method for ac-
quiring high-quality training data. It’s important to
break complex annotation guidelines into small, di-
gestible chunks and to use tests (gates) to ensure that
the worker reads and understands each chunk of the
instructions before work begins. Without these ex-
tra checks, many poor workers pass subsequent gold
tests by accident, polluting results.

Acknowledgment

This work was supported by NSF grant IIS-1420667, ONR
grant N00014-15-1-2774, DARPA contract FA8750-13-2-0019,
the WRF/Cable Professorship, and a gift from Google. We are
very grateful to Chris Re and Ce Zhang who generously sup-
plied their annotated data. Likewise, Masha Pershina and Ralph
Grishman allowed us an early look at their paper and gave us
their data. Similarly, Gabor Angeli and Chris Manning not only
provided their data, but provided many insights about the best
ways to combine crowd and distantly supervised annotations.
Without this cooperation it would have been impossible to have
done our work. We appreciate Natalie Hawkins, who helped
prepare the data used in our study. We further thank Shih-Wen
Huang and Congle Zhang for their suggestions on the design of
the crowdsourcing system and the experiments.

References

Gabor Angeli, Julie Tibshirani, Jean Y. Wu, and Christo-
pher D. Manning. 2014. Combining distant and par-
tial supervision for relation extraction. In EMNLP.

Razvan Bunescu and Raymond Mooney. 2007. Learning
to extract relations from the web using minimal super-
vision. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics.

M. Califf and R. Mooney. 1997. Relational learning
of pattern-match rules for information extraction. In
Workshop in Natural Language Learning, Conf. Assoc.
Computational Linguistics.

Mark Craven and Johan Kumlien. 1999. Constructing
biological knowledge bases by extracting information
from text sources. In ISMB.

Peng Dai, Jeffrey M Rzeszotarski, Praveen Paritosh, and
Ed H Chi. 2015. And Now for Something Completely
Different : Improving Crowdsourcing Workflows with
Micro-Diversions. In CSCW.

905

A.P. Dawid and A. M. Skene. 1979. Maximum likeli-
hood estimation of observer error-rates using the EM
algorithm. Applied Statistics, 28(1):20–28.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, pages
363–370. Association for Computational Linguistics.

Matthew R. Gormley, Adam Gerber, Mary Harper, and
Mark Dredze. 2010. Non-expert correction of auto-
matically generated relation annotations. In Proceed-
ings of NAACL and HLT 2010.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction of
overlapping relations. In Proceedings of ACL. Associ-
ation for Computational Linguistics.

Panagiotis G. Ipeirotis and Evgeniy Gabrilovich. 2014.
Quizz: targeted crowdsourcing with a billion (poten-
tial) users. In WWW ’14: Proceedings of the 23rd In-
ternational Conference on the World Wide Web.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies - Volume 1, HLT ’11, pages 1148–
1158, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the Eighteenth International Con-
ference on Machine Learning, ICML ’01.

Christopher H. Lin, Mausam, and Daniel S. Weld. 2014.
To re(label), or not to re(label). In HCOMP.

Christopher H. Lin, Mausam, and Daniel S. Weld. 2016.
Reactive learning: Active learning with relabeling. In
AAAI.

Andrew Mao, Yiling Chen, Eric Horvitz, Megan E
Schwamb, Chris J Lintott, and Arfon M Smith. 2013.
Volunteering Versus Work for Pay: Incentives and
Tradeoffs in Crowdsourcing. In HCOMP.

Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky.
2009. Distant supervision for relation extraction with-
out labeled data. In Proceedings of ACL. Association
for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2014. Employ-
ing word representations and regularization for domain
adaptation of relation extraction. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics, volume 2, pages 68–74.

David Oleson, Alexander Sorokin, Greg P Laughlin,
Vaughn Hester, John Le, and Lukas Biewald. 2011.

Programmatic gold: Targeted and scalable quality as-
surance in crowdsourcing. In Human Computation
Workshop, page 11.

Maria Pershina, Bonan Min, Wei Xu, and Ralph Grish-
man. 2014. Infusion of labeled data into distant super-
vision for relation extraction. In Proceedings of ACL.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions without
labeled text. In Proceedings of the Sixteenth Euro-
pean Conference on Machine Learning (ECML-2010),
pages 148–163.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. NAACL
HLT 2013, pages 74–84.

Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeiro-
tis. 2008. Get another label? improving data qual-
ity and data mining using multiple, noisy labelers. In
Proceedings of the Fourteenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and An-
drew Y Ng. 2008. Cheap and fast—but is it good?:
evaluating non-expert annotations for natural language
tasks. In Proceedings of the conference on empirical
methods in natural language processing, pages 254–
263. Association for Computational Linguistics.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert.
1995. CRYSTAL: Inducing a conceptual dictionary.
In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 1314–21.

Mihai Surdeanu and Heng Ji. 2014. Overview of the
English slot filling track at the TAC2014 knowledge
base population evaluation.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and
Christopher D Manning. 2012. Multi-instance multi-
label learning for relation extraction. In Proceedings
of EMNLP, pages 455–465. Association for Computa-
tional Linguistics.

Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R
Movellan, and Paul L Ruvolo. 2009. Whose vote
should count more: Optimal integration of labels from
labelers of unknown expertise. In NIPS’09.

F. Wu and D. Weld. 2007. Autonomously semantifying
Wikipedia. In Proceedings of the ACM Sixteenth Con-
ference on Information and Knowledge Management
(CIKM-07), Lisbon, Portugal.

Ce Zhang, Feng Niu, Christopher Ré, and Jude Shavlik.
2012. Big data versus the crowd: Looking for relation-
ships in all the right places. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 825–834.
Association for Computational Linguistics.

906

Proceedings of NAACL-HLT 2016, pages 907–916,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Translation-Based Knowledge Graph Embedding
Preserving Logical Property of Relations

Hee-Geun Yoon, Hyun-Je Song, Seong-Bae Park, Se-Young Park
School of Computer Science and Engineering

Kyungpook National University
Daegu, 41566, Korea

{hkyoon, hjsong, sbpark, sypark}@sejong.knu.ac.kr

Abstract

This paper proposes a novel translation-based
knowledge graph embedding that preserves
the logical properties of relations such as tran-
sitivity and symmetricity. The embedding
space generated by existing translation-based
embeddings do not represent transitive and
symmetric relations precisely, because they
ignore the role of entities in triples. Thus,
we introduce a role-specific projection which
maps an entity to distinct vectors according to
its role in a triple. That is, a head entity is pro-
jected onto an embedding space by a head pro-
jection operator, and a tail entity is projected
by a tail projection operator. This idea is ap-
plied to TransE, TransR, and TransD to pro-
duce lppTransE, lppTransR, and lppTransD,
respectively. According to the experimental
results on link prediction and triple classifica-
tion, the proposed logical property preserving
embeddings show the state-of-the-art perfor-
mance at both tasks. These results prove that
it is critical to preserve logical properties of
relations while embedding knowledge graphs,
and the proposed method does it effectively.

1 Introduction

Representing knowledge as a graph is one of the
most effective ways to utilize human knowledge
with a machine, and various large-scale knowledge
graphs such as Freebase (Bollacker et al., 2008) and
Yago (Suchanek et al., 2007) are available these
days. However, the sparsity of the graphs makes it
difficult to utilize them in real world applications.
In spite of their huge volume, the relations among
entities in the graphs are insufficient, which results

in very limited inference of the knowledge of the
graphs. Therefore, it is of importance to resolve such
sparsity of knowledge graphs.

One of the most promising methods to complete
knowledge graphs is to embed the graphs in a low-
dimensional continuous vector space. This method
learns a vector representation of a knowledge graph,
and the plausibility of a certain knowledge within
the graph is measured with algebraic operations in
the vector space. Thus, new knowledge can be
harvested from the space by finding knowledge in-
stances with high plausibility.

The translation-based model among various
knowledge-embedding models shows the state-of-
the-art performance of knowledge graph completion
(Bordes et al., 2013; Wang et al., 2014; Lin et al.,
2015; Ji et al., 2015). TransE (Bordes et al., 2013) is
one of the well-known translation-based approaches
to this problem. When a set of knowledge triples
(h, r, t) composed of a relation (r) and two enti-
ties (h and t) is given, it finds vector representations
of h, t, and r by compelling the vector of t to be
same with the sum of the vectors of h and r. While
TransE embeds all relations in a single vector space,
TransH (Wang et al., 2014) and TransR (Lin et al.,
2015) assume that each relation has its own embed-
ding space. On the other hand, Ji et al. (2015) found
out that even a single relation or a single entity usu-
ally has multiple types. Thus, they have proposed
TransD which allows multiple mapping matrices of
entities and relations.

Even though these translation-based models
achieve high performance in knowledge graph com-
pletion, they all ignore logical properties of rela-

907

tions. That is, transitive relations and symmetric
relations lose their transitivity or symmetricity in
the vector space generated by the translation-based
models. As a result, the models can not complete
only new knowledge with such relations, but also
new knowledge with a relation affected by the rela-
tions. In most knowledge graphs, transitive or sym-
metric relations are common. For instance, FB15K,
one of the benchmark datasets for knowledge graph
completion, has a number of transitive and symmet-
ric relations. About 20% of triples in FB15K have
a transitive or a symmetric relation. Therefore, the
ignorance of logical properties of relations becomes
a serious problem in knowledge graph completion.

The main reason why existing translation-based
embeddings can not reflect logical properties of rela-
tions is that they do not consider the role of entities.
An entity should be a different vector in the embed-
ding space according to its role. Therefore, the so-
lution to preserve the logical properties of relations
in the embedding space is to distinguish the role of
entities while embedding entities and relations.

In this paper, we propose a role-specific projec-
tion to preserve logical properties of relations in an
embedding space. This can be implemented by pro-
jecting a head entity onto an embedding space by a
head projection operator and a tail entity by a tail
projection operator. As a result, an identical en-
tity is represented as two distinct vectors. This idea
can be applied to various translation-based models
including TransE, TransR, and TransD. Therefore,
we also propose how to modify existing translation-
based models to preserve logical properties. The
effectiveness of the proposed idea is verified with
two tasks of link prediction and triple classification
using standard benchmark datasets of WordNet and
Freebase. According to the experimental results, the
logical property preserving embeddings achieve the
state-of-the-art performance in both tasks.

2 Related Work

The sparsity of knowledge graphs is one of the most
critical issues in utilizing them in real-world appli-
cations. Thus, there have been a number of stud-
ies on completing knowledge graphs as a solution
to overcome the sparsity. Link prediction is one of
the promising ways for knowledge graph comple-

tion. This task predicts new relations between enti-
ties on a knowledge graph by investigating existing
relations of the graph (Nickel et al., 2015; Neelakan-
tan and Chang, 2015). The methods used for link
prediction can be categorized into three groups. One
group consists of the methods based on graph fea-
tures. The observable features used in these methods
are the paths between entity pairs (Lao and Cohen,
2010; Lao et al., 2011) and subgraphs (Gardner and
Mitchell, 2015). The other group is composed of the
methods based on Markov random fields. The stud-
ies belonging to this group inference new relations
by probabilistic soft logic (Pujara et al., 2013) and
first-order logic (Jiang et al., 2012).

Knowledge graph embedding is another promi-
nent method for link prediction (Bordes et al., 2011;
Nickel et al., 2011; Guo et al., 2015; Neelakantan et
al., 2015). It embeds entities of a knowledge graph
into a continuous low dimensional space as vectors,
and embeds relations as vectors or matrices. These
vectors are optimized by a score function of each
knowledge graph embedding model. The Semantic
Matching Energy (SME) model proposed by Bor-
des et al. (2014) finds vector representations of en-
tities and relations using a neural network. When
a triple (h, r, t) is given, SME makes two relation-
dependent embeddings of (h, r) and (r, t). Its score
function for a triple is the similarity between the
embeddings. Since relations are expressed as vec-
tors instead of matrices, the complexity of SME is
relatively low compared to other embedding meth-
ods. Jenatton et al. (2012) suggested Latent Factor
Model (LFM). In order to capture both the first-order
and the second-order interactions between two en-
tities, LFM adopts a bilinear function as its score
function. In addition, it represents a relation as a
weighted sum of sparse latent factors to work with
a large number of relations. Socher et al. (2013)
proposed the Neural Tensor Network (NTN) model.
NTN is a highly expressive embedding model which
has a bilinear tensor layer instead of a standard lin-
ear neural network layer. As a result, it can process
various interactions between entity vectors. How-
ever, it is difficult to process large-scale knowledge
graphs with NTN due to its high complexity.

The current main stream of knowledge graph em-
bedding is a translation-based embedding approach.
The basic idea of this embedding is that entities and

908

(a) (b) (c)

Figure 1: An example of entity vectors trained wrong by a transitive relation.

relations are represented as vectors, and relations are
treated as operators to translate entities into other
positions on an embedding space. Thus, they try
to find vector representations of h, t, and r so that
the vector of t becomes the sum of the vectors of h
and r. TransE (Bordes et al., 2013) is the simplest
translation-based graph embedding. It assumes that
all vectors of entities and relations lie on a single
vector space. As a result, it fails in dealing with the
reflexivity and the multiplicities of relations except
1-to-1. The solution to this problem is to allow the
entities to play different roles according to relations,
but TransE is unable to do it.

An entity plays multiple roles in TransH (Wang et
al., 2014), since TransH allows entities to have mul-
tiple vector representations. In order to obtain mul-
tiple representations of an entity, TransH projects
an entity vector into relation-specific hyperplanes.
TransR (Lin et al., 2015) also solves the problems of
TransE by introducing relation spaces. It allows an
entity to have various vector representations by map-
ping an entity vector into relation-specific spaces
rather than relation-specific hyperplanes. Although
both TransH and TransR overcome the limitations
of TransE, they are still not able to handle multi-
ple types of relations which is determined by head
and tail entities of each relation. For example, let
us consider two triples of (California, part of, USA)
and (arm, part of, body). Both triples have a re-
lation part of in common, but the relation should
be interpreted differently in each triple. Ji et al.
(2015) have proposed TransD in which a relation
can have multiple relation spaces according to its en-
tities. TransD constructs relation mapping matrices

dynamically by considering entities and a relation si-
multaneously. For this, it introduces projection vec-
tors for entities and relations, and then constructs the
mapping matrices by multiplying these entity and re-
lation projection vectors. As a result, every relation
in TransD has multiple entity-specific spaces.

3 Loss of Logical Properties in
Translation-Based Embeddings

Translation-based embeddings aim to find vector
representations of knowledge graph entities in an
embedding space by regarding relations as transla-
tion of entities in the space. Since they map the enti-
ties onto a vector space regardless of the role of the
entities, they do not express logical properties of re-
lations such as transitivity and symmetricity. That
is, the vectors of transitive or symmetric relations
do not deliver transitivity or symmetricity in the em-
bedding spaces from translation-based embeddings.

For instance, let us consider a transitive rela-
tion. Assume that we have three triples (e1, r1, e2),
(e2, r1, e3), and (e1, r1, e3) and r1 is a transitive re-
lation. When the vector of r1 is not a zero vec-
tor, there could be three types of entity vectors as
shown in Figure 1. In Figure 1-(a), e1, e2, and e3 are
placed linearly. In this case, (e1, r1, e3) can not be
expressed in this figure. When e1 and e2 are placed
at the same point like Figure 1-(b), (e1, r1, e2) can
not be expressed. In Figure 1-(c), (e2, r1, e3) can not
be expressed when e2 and e3 are same. In a similar
way, translation-based embeddings can not express
symmetric relations perfectly.

The problems caused by wrong expression of
transitive and symmetric relations are two-folds.

909

Figure 2: Simple illustration on a transitive relation with role-specific projections.

Figure 3: Simple illustration on a symmetric relation with role-specific projections.

One fold is that the relations with logical properties
are common in knowledge bases. Two benchmark
datasets of FB15K and WN18 in Table 2 prove it.
There are 483,142 triples in FB15K, and 84,172 (=
47,841 + 36,331) triples among them have a transi-
tive or symmetric relation. That is, the translation-
based embeddings do not express triples precisely
for about 17% of triples in FB15K. 22.4% of triples
in another dataset WN18 also have a transitive or
symmetric relation. The other is that transitive or
symmetric relations do not affect the entities that
are directly connected by the relations, but affect
also other entities shared by non-transitive and non-
symmetric relations through the entities. Therefore,
it is of importance in translation-based embeddings
to represent transitive and symmetric relations pre-
cisely.

4 Logical Property Preserving Embedding

4.1 Role-Specific Projection of Entity Vectors

The main reason why transitive or symmetric re-
lations are not represented precisely by existing
translation-based embeddings is that they ignore the
role of entities in embedding them onto a vector
space. That is, when a triple (h, r, t) is given, h and

t plays different roles. However, the existing em-
beddings treat them equally and embed them into a
space in the same way. Therefore, in order to ex-
press entities and relations more precisely, entities
should be represented differently according to their
role in a triple.

Figure 2 shows how entities can be represented
according to their role. In this figure, solid lines
represent entity mappings as head roles and dotted
lines mean that entities are mapped as tails. As-
sume that three triples of (e1, r1, e2), (e2, r1, e3),
and (e1, r1, e3) are given with a transitive relation
r1. e1 plays only a head role and e3 plays only a
tail role, while e2 plays both roles. Then, the entity
vectors in the entity space are mapped into the space
of r1 using two mapping matrices Mr1h and Mr1t.
That is, head entities are mapped by Mr1h, while
tail entities are projected by Mr1t. Let eh1⊥ and eh2⊥
be the projected vectors of e1 and e2 respectively
by Mr1h, and let et2⊥ and et3⊥ be the projected vec-
tors of e2 and e3 respectively by Mr1t. e

h
1⊥ and eh2⊥

are placed at the same point in the space of r1 from
(e2, r1, e3) and (e1, r1, e3). Similarly, et2⊥ and et3⊥
are same from (e1, r1, e2) and (e1, r1, e3). Since e2
is used as both a head and a tail, it is mapped dif-
ferently as eh2⊥ and et2⊥, respectively. Note that all

910

three triples are well expressed in this space.
Symmetric relations also can be expressed pre-

cisely by logical property preserving knowledge
graph embedding. Assume that two triples of
(e4, r2, e5) and (e5, r2, e4) are given with a symmet-
ric relation r2. Figure 3 shows how the triples are
well represented. The solid lines imply that entities
are mapped by Mr2h while the dotted lines mean
that entities are mapped by Mr2t. By placing eh4⊥
and eh5⊥ at the same point and imposing et4⊥ and
et5⊥ at the same point, r2 is precisely expressed as
a symmetric relation in the embedding space.

4.2 Realization of Logical Property Preserving
Embedding

Due to the simplicity of role-specific projection
of entity vectors, it can be applied to various
translation-based embeddings. In this paper, we ap-
ply it to TransE, TransR, and TransD.

4.2.1 TransE
The score function of TransE is

fEr (h, t) = ‖h + r− t‖l1/2
,

where h, t ∈ Rn, and r ∈ Rn are the vectors of a
head entity, a tail entity, and a relation on a single
embedding space. In the logical property preserv-
ing TransE (lppTransE), h and t should be mapped
differently. For this purpose, we adopt a head and
a tail space mapping matrices of Mh ∈ Rn×n and
Mt ∈ Rn×n. As a result, the score function of lpp-
TransE becomes

f lppEr (h, t) = ‖Mhh + r−Mtt‖l1/2
.

This is similar to the score function of TransR. The
difference between lppTransE and TransR is that
both h and t are mapped by a single mapping ma-
trix for r in TransR, while h is mapped by Mh and
t is by Mt in lppTransE.

4.2.2 TransR
The entities in TransR are mapped into vectors

in different relation space according to a relation.
Thus, its score function is defined as

fRr (h, t) = ‖Mrh + r−Mrt‖l1/2
,

where Mr ∈ Rm×n is a mapping matrix for a rela-
tion r which is represented as r ∈ Rm. Thus, in the
logical property preserving TransR (lppTransR), the
mapping matrix of each relation is split into a head
mapping matrix Mrh ∈ Rm×n and a tail mapping
matrix Mrt ∈ Rm×n. Then, the score function of
lppTransR is

f lppRr (h, t) = ‖Mrhh + r−Mrtt‖l1/2
.

With these two distinct mapping matrices, entities
can have two different vector representations in the
same relation space.

4.2.3 TransD

TransD maps entity vectors into different vectors
in relation spaces according to entity and relation
types. That is, the entity vectors are mapped by
entity-relation specific mapping matrices. Thus, its
score function is defined as

fDr (h, t) = ‖Mrhh + r−Mrtt‖l1/2
,

where Mrh ∈ Rm×n and Mrt ∈ Rm×n are entity-
relation specific mapping matrices. These mapping
matrices are computed by multiplying projection
vectors of an entity and a relation as follows.

Mrh = rphT
p + Im×n,

Mrt = rptT
p + Im×n,

where hp, tp and rp, are the projection vectors for a
head, a tail and a relation.

The logical property preserving TransD (lpp-
TransD) divides rp into two projection vectors rph

and rpt to reflect the role of entities. The mapping
matrices then becomes

M′
rh = rph

hT
p + Im×n,

M′
rt = rptt

T
p + Im×n.

Then, its score function is

f lppDr (h, t) =
∥∥M′

rhh + r−M′
rtt
∥∥
l1/2

.

911

Table 2: A simple statistics on datasets.

Dataset #Rel #Ent #Train #Valid #Test #Transitive #Symmetric Ratio
WN11 11 38,696 112,581 2,609 10,544 822 1,597 2.2%
FB13 13 75,043 316,232 5,908 23,733 262 4,152 1.4%
WN18 18 40,943 141,442 5,000 5,000 2,001 29,667 22.4%
FB15K 1,345 14,951 483,142 50,000 59,071 47,841 36,331 17.4%

Table 1: Complexity of knowledge graph embed-
ding models.

Model No. of parameters
TransE O (Nen+Nrn)
TransR O (Nen+Nr (m+ 1)n)
TransD O (2Nen+ 2Nrm)

lppTransE O (Nen+Nrn+ n2
)

lppTransR O (Nen+Nr (2m+ 1)n)
lppTransD O (2Nen+ 3Nrm)

4.3 Training Logical Property Preserving
Embeddings

Since all logical property preserving embeddings
are based on the score function used by previ-
ous translation-based knowledge graph embeddings,
they can be trained using a margin-based ranking
loss defined as

L =
∑

(h,r,t)∈P

∑
(h′,r,t′)∈N

max(0, f∗r (h, t)+γ−f∗r (h′, t′)),

where f∗r is the score function of a corresponding
logical property preserving embedding. Here, P and
N are sets of correct and incorrect triples, and γ is
a margin. N is constructed by replacing a head or a
tail entity in an existing triple because a knowledge
graph has only correct triples. All logical property
preserving embeddings are optimized by stochastic
gradient descent.

The complexities of the logical property preserv-
ing embeddings are shown in Table 1. Ne and Nr

in this table are the number of entities and relations,
and n and m are the dimensions of entity and re-
lation embedding spaces. Their complexity mainly
depends on the number of relations. Thus, the in-
creased complexities of the logical property preserv-
ing embeddings is not significant, when compared
with TransE, TransR, and TransD.

5 Experiments

The superiority of the proposed logical property pre-
serving embeddings is shown through two kinds of
tasks. The first task is link prediction (Bordes et al.,
2013). This task predicts the missing entity when
there is a missing entity in a given triple. The other is
triple classification (Socher et al., 2013). This task
aims to decide whether a given triple is correct or
not.

5.1 Data Sets

Two popular knowledge graphs of WordNet (Miller,
1995) and Freebase (Bollacker et al., 2008) are used
for evaluating embeddings. WordNet provides the
semantic relations among words, and there exist its
two widely-used subsets which are WN11 (Socher et
al., 2013) and WN18 (Bordes et al., 2014). WN18
is used for link prediction, and WN11 is adopted
for triple classification. Freebase represents gen-
eral facts about the world. It has two subsets of
FB13 (Socher et al., 2013) and FB15K (Bordes et
al., 2014). FB15K is used for both triple classifi-
cation and link prediction, while FB13 is employed
only for triple classification.

Table 2 summarizes a simple statistics of each
dataset. #Triples is the number of training triples in
each benchmark dataset. #Transitive and #Symmet-
ric are the number of triples which have transitive
and symmetric relations, respectively. Ratio denotes
the proportion of triples of which relation is transi-
tive or symmetric. As shown in this table, the triples
with a transitive or symmetric relation take a large
proportion in WN18 and FB15K.

5.2 Link Prediction

For the evaluation of link prediction, we followed
the evaluation protocols and metrics used in previ-
ous studies (Socher et al., 2013; Bordes et al., 2013;
Lin et al., 2015; Ji et al., 2015). To compare the

912

Table 4: Experimental results on link prediction.
Dataset WN18 FB15K

Metric Mean Rank Hits@10 (%) Mean Rank Hits@10 (%)
Raw Filter Raw Filter Raw Filter Raw Filter

TransE 263 251 75.4 89.2 243 125 34.9 47.1
TransH (unif) 318 301 75.4 86.7 211 84 42.5 58.5
TransH (bern) 401 388 73.0 82.3 212 87 45.7 64.4
TransR (unif) 232 219 78.3 91.7 226 78 43.8 65.5
TransR (bern) 238 225 79.8 92.0 198 77 48.2 68.7
TransD (unif) 242 229 79.2 92.5 211 67 49.4 74.2
TransD (bern) 224 212 79.6 92.2 194 91 53.4 77.3

lppTransE (unif) 336 323 77.7 (+2.3) 89.5 (+0.3) 228 78 47.4 (+12.5) 72.9 (+25.8)
lppTransE (bern) 342 329 79.5 (+4.1) 92.7 (+3.5) 215 95 48.9 (+14.0) 73.1 (+26.0)
lppTransR (unif) 331 317 79.2 (+0.9) 92.7 (+1.0) 238 79 47.2 (+3.4) 74.4 (+8.9)
lppTransR (bern) 334 321 79.6 (-0.2) 92.8 (+0.8) 219 92 50.4 (+2.2) 77.2 (+8.5)
lppTransD (unif) 342 328 79.3 (+0.1) 93.6 (+1.1) 218 69 49.6 (+0.2) 77.4 (+3.2)
lppTransD (bern) 283 270 80.5 (+0.9) 94.3 (+2.1) 195 78 53.0 (-0.4) 78.7 (+1.4)

Table 3: Parameter values in link prediction.
Dataset Model α B γ n,m D.S

WN18
lppTransE 0.001 1,440 1 50 L1

lppTransR 0.001 1,440 1 50 L1

lppTransD 0.001 1,440 2 50 L1

FB15K
lppTransE 0.001 480 1 100 L1

lppTransR 0.001 4,800 1 100 L1

lppTransD 0.0001 4,800 2 100 L1

methods for this task, two metrics of mean rank and
Hits@10 are used. The mean rank measures the av-
erage rank of all correct entities, and Hits@10 is the
proportion of correct triples ranked in top 10. Since
there are two evaluation settings of “raw” and “fil-
ter” in this task (Bordes et al., 2013), we report both
results. In addition, we report the results for two
sampling methods of “bern” and “unif” (Wang et al.,
2014) as the previous studies did.

There are five parameters in the proposed property
preserving embeddings. They are a learning rate α,
the number of training triples in each mini-batchB1,
a margin γ, the embedding dimension for entities
and relations (n and m), and a dissimilarity measure
in embedding score functions (D.S). The parameter
values used in our experiments are given at Table 3.
The iteration number of stochastic gradient descent
is 1,000.

Table 4 shows the results on link prediction. The
results of previous studies are referred from their
report, since the same datasets are used. The val-

1α and B are related with stochastic gradient descent.

ues between parentheses are the improvement over
their base models. The logical property preserv-
ing embeddings outperform all other methods for
both “bern” and “unif” on WN18 except lppTransR
with “bern” in the raw setting. In the raw set-
ting, lppTransE, lppTransR, and lppTransD achieve
79.5%, 79.6%, and 80.5% of Hits@10 respectively
in “bern”, which are 4.1%, -0.2%, and 0.9% higher
than those of TransE, TransR, and TransD. The
logical property preserving embeddings show even
higher performance in the filter setting. Hits@10 of
lppTransD in “bern” is 94.3%, while that of TransD
in “unif” is 92.5% and that in “bern” is 92.2%. Thus,
lppTransD improves 2.1% over TransD in “bern”.
Especially, this performance of lppTransD is 1.8%
higher than that of TransD in “unif”, the previous
state-of-the-art performance.

The logical property preserving embeddings out-
perform their base models also on FB15K. TransE
is improved most significantly with this dataset. The
improvements by lppTransE in the raw setting are
12.5% in “unif” and 14.0% in “bern”, while those
in the filter setting are 25.8% in “unif” and 26.0%
in “bern”. In addition, its Hits@10 exceeds those
of TransH and TransR. That is, even if TransH
and TransR were proposed to tackle the problem of
TransE, the proposed lppTransE solves the problem
better than TransH and TransR. lppTransD achieves
just a little bit lower Hits@10 than TransD in “bern”,
but the improvements in the filter setting are notice-

913

Table 6: Parameter values in triple classification.
Dataset Model α B γ n,m D.S

WN11
lppTransE 0.01 120 2 20 L1

lppTransR 0.001 120 4 20 L1

lppTransD 0.0001 1,000 1 100 L2

FB13
lppTransE 0.001 30 1 100 L1

lppTransR 0.0001 300 1 100 L1

lppTransD 0.0001 300 1 100 L2

FB15K
lppTransE 0.001 480 1 100 L1

lppTransR 0.001 4,800 1 100 L1

lppTransD 0.0001 4,800 2 100 L1

able. Since Hits@10 of TransD in “bern” is the
best performance ever reported, that of lppTransD in
“bern” becomes a new state-of-the-art performance.

Table 5 exhibits Hits@10s according to mapping
property of the relations of FB15K. The notable
trend of this table is that the logical property preserv-
ing embeddings show much higher Hits@10 than
their base models in N-to-1 and N-to-N, while their
Hits@10s are similar to those of their base models in
1-to-1 and 1-to-N. This is notable with TransD and
lppTransD. lppTransD improves TransD, the previ-
ous state-of-the-art method by 7.3% (N-to-1) and
3.7% (N-to-N) in predicting head, and by 0.9% (N-
to-1) and 0.3% (N-to-N). Note that it is important
to verify if logical property preserving embeddings
achieve good performances in N-to-N, since all tran-
sitive relations and some symmetric relations are, in
general, N-to-N. According to this table, Hits@10s
of most logical property preserving embeddings are
improved significantly in N-to-N, which proves that
the proposed method solves transitivity and sym-
metricity problem of previous embeddings.

5.3 Triple Classification

Three datasets of WN11, FB13, and FB15K are
used in this task. WN11 and FB13 have negative
triples, but FB15K has only positives. Thus, we
generated negative triples for FB15K by following
the strategy of (Socher et al., 2013). As a result,
the classification accuracies on FB15K can not be
compared directly with previous studies, and the ac-
curacies on FB15K in this table are those obtained
with our dataset. The parameter values for training
TransE, TransH, TransR, and TransD are borrowed
from their reports, and those for logical property pre-
serving embeddings are shown in Table 6.

Table 7 shows the accuracies of triple classifi-

Table 7: Accuracies on triple classification. (%)
Dataset WN11 FB13 FB15K

TransE (unif) 75.9 70.9 80.3
TransE (bern) 75.9 81.5 80.8
TransH (unif) 77.7 76.5 81.9
TransH (bern) 78.8 83.3 82
TransR (unif) 85.5 74.7 82.6
TransR (bern) 85.9 82.5 82.7
TransD (unif) 85.6 85.9 84.2
TransD (bern) 86.4 89.1 84.8

lppTransE (unif) 81.3 (+5.4) 72.3 (+1.4) 83.2 (+2.9)
lppTransE (bern) 81.3 (+5.4) 83.4 (+1.9) 83.6 (+2.8)
lppTransR (unif) 85.5 (+0.0) 79.5 (+4.8) 83.4 (+0.8)
lppTransR (bern) 85.5 (-0.4) 83.1 (+0.6) 84.6 (+1.9)
lppTransD (unif) 86.1 (+0.5) 86.6 (+0.7) 84.7 (+0.5)
lppTransD (bern) 86.2 (-0.2) 88.6 (-0.5) 85.3 (+0.5)

cation on the three datasets. The logical property
preserving embeddings in general outperform their
base models. lppTransE always shows higher ac-
curacy than TransE, lppTransR than TransR except
for WN11, and lppTransD than TransD in FB15K.
One thing to note is that the improvements by the
logical property preserving embeddings are always
observed in FB15K, while those in WN11 and FB13
are small or slightly negative. This can be explained
with the number of triples with a transitive or sym-
metric relation in the datasets. As shown in Table
2, the triples with such a relation take just a small
portion of WN11 and FB13. The ratio of those
triples is less than 2.3% in these datasets. How-
ever, as noted before, more than 17% triples are such
ones in FB15K. Thus, the improvement in FB15K
is remarkable. The other thing to note is that lpp-
TransD shows the best accuracy in FB15K. These
results imply that the proposed logical property pre-
serving embeddings solve the problems of existing
translation-based embeddings effectively.

6 Conclusion

This paper has proposed a new translation-based
knowledge graph embedding that preserves logical
properties of relations. Transitivity and symmetric-
ity are very important characteristics of relations
for representing and inferring knowledge, and the
triples with such a relation take a large proportion
of real-world knowledge graphs. In order to pre-
serve the logical properties in an embedding space,
an entity is forced to have multiple vector represen-

914

Table 5: Experimental results on FB15K according to mapping properties of relations. (%)

Tasks Predicting Head (Hits@10) Predicting Tail (Hits@10)
Relation Category 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N

TransE 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH (bern) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR (unif) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1
TransR (bern) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1
TransD (unif) 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9
TransD (bern) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

lppTransE (unif) 77.5 86.5 43.1 75.9 76.7 46.4 79.4 75.5
lppTransE (bern) 78.3 93.5 35.4 74.7 78.1 45.9 80.3 76.6
lppTransR (unif) 75.2 88.1 41.5 75.2 76.6 44.9 82.7 72.6
lppTransR (bern) 84.3 94.2 49.7 79.2 84.3 46.9 91.9 79.6
lppTransD (unif) 82.7 89.5 53.2 81.6 82.3 52.6 84.8 81.5
lppTransD (bern) 86.0 94.2 54.4 82.2 79.7 43.2 95.3 79.7

tations according to its role in a triple. This idea has
been applied to TransE, TransR, and TransD, and
they are called as lppTransE, lppTransR, and lpp-
TransD. Their superiority was shown through two
tasks of link prediction and triple classification. The
logical property preserving embeddings showed the
improved performance over their base models2. Es-
pecially, lppTransD showed the state-of-the-art per-
formance in both tasks. These results imply that the
proposed role-specific projection is plausible to pre-
serve logical properties of relations.

Acknowledgments

This work was supported by Institute for Infor-
mation & communications Technology Promotion
(IITP) grant funded by the Korea government
(MSIP) (No. R0101-15-0054, WiseKB: Big data
based self-evolving knowledge base and reasoning
platform).

References

[Bollacker et al.2008] Kurt Bollacker, Colin Evans,
Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph
database for structuring human knowledge. In
Proceedings of the 2008 ACM SIGMOD Interna-

2 The source codes and resources can be downloaded from
http://ml.knu.ac.kr/lppKE.

tional Conference on Management of Data, pages
1247–1250.

[Bordes et al.2011] Antoine Bordes, Jason Weston, Ro-
nan Collobert, and Yoshua Bengio. 2011. Learning
structured embeddings of knowledge bases. In Pro-
ceedings of the 28th AAAI Conference on Artificial In-
telligence, pages 301–306.

[Bordes et al.2013] Antoine Bordes, Nicolas Usunier,
Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. 2013. Translating embeddings for mod-
eling multi-relational data. In Advances in Neural In-
formation Processing Systems, pages 2787–2795.

[Bordes et al.2014] Antoine Bordes, Xavier Glorot, Ja-
son Weston, and Yoshua Bengio. 2014. A seman-
tic matching energy function for learning with multi-
relational data. Machine Learning, 94(2):233–259.

[Gardner and Mitchell2015] Matt Gardner and Tom
Mitchell. 2015. Efficient and expressive knowledge
base completion using subgraph feature extraction.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1488–1498.

[Guo et al.2015] Shu Guo, Quan Wang, Bin Wang, Li-
hong Wang, and Li Guo. 2015. Semantically smooth
knowledge graph embedding. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing, pages 84–
94.

[Jenatton et al.2012] Rodolphe Jenatton, Nicolas L.
Roux, Antoine Bordes, and Guillaume R. Obozinski.
2012. A latent factor model for highly multi-relational
data. In Advances in Neural Information Processing
Systems, pages 3167–3175.

915

[Ji et al.2015] Guoliang Ji, Shizhu He, Liheng Xu, Kang
Liu, and Jun Zhao. 2015. Knowledge graph embed-
ding via dynamic mapping matrix. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages
687–696.

[Jiang et al.2012] Shangpu Jiang, Daniel Lowd, and De-
jing Dou. 2012. Learning to refine an automati-
cally extracted knowledge base using markov logic. In
Proceedings of the IEEE International Conference on
Data Mining, pages 912–917.

[Lao and Cohen2010] Ni Lao and William W. Cohen.
2010. Relational retrieval using a combination of
path-constrained random walks. Machine Learning,
81(1):53–67.

[Lao et al.2011] Ni Lao, Tom Mitchell, and William W.
Cohen. 2011. Random walk inference and learning
in a large scale knowledge base. In Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, pages 529–539.

[Lin et al.2015] Yankai Lin, Zhiyuan Liu, Maosong Sun,
Yang Liu, and Xuan Zhu. 2015. Learning entity and
relation embeddings for knowledge graph completion.
In Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence, pages 2181–2187.

[Miller1995] George A. Miller. 1995. WordNet: A lexi-
cal database for english. Communications of the ACM,
38(11):39–41.

[Neelakantan and Chang2015] Arvind Neelakantan and
Ming-Wei Chang. 2015. Inferring missing entity type
instances for knowledge base completion: New dataset
and methods. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 515–525.

[Neelakantan et al.2015] Arvind Neelakantan, Benjamin
Roth, and Andrew McCallum. 2015. Compositional
vector space models for knowledge base completion.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing, pages 156–166.

[Nickel et al.2011] Maximilian Nickel, Volker Tresp, and
Hans peter Kriegel. 2011. A three-way model for col-
lective learning on multi-relational data. In Proceed-
ings of the 28st International Conference on Machine
Learning, pages 809–816.

[Nickel et al.2015] Maximilian Nickel, Kevin Murphy,
Volker Tresp, and Evgeniy Gabrilovich. 2015. A
review of relational machine learning for knowl-
edge graphs: From multi-relational link prediction
to automated knowledge graph construction. CoRR,
abs/1503.00759.

[Pujara et al.2013] Jay Pujara, Hui Miao, Lise Getoor, and
William Cohen. 2013. Knowledge graph identifica-
tion. In Proceedings of the 12th International Seman-
tic Web Conference, pages 542–557.

[Socher et al.2013] Richard Socher, Danqi Chen, Christo-
pher D. Manning, and Andrew Ng. 2013. Reasoning
with neural tensor networks for knowledge base com-
pletion. In Advances in Neural Information Process-
ing Systems, pages 926–934.

[Suchanek et al.2007] Fabian M. Suchanek, Gjergji Kas-
neci, and Gerhard Weikum. 2007. YAGO: A core of
semantic knowledge unifying wordnet and wikipedia.
In Proceedings of the 16th International Conference
on World Wide Web, pages 697–706.

[Wang et al.2014] Zhen Wang, Jianwen Zhang, Jianlin
Feng, and Zheng Chen. 2014. Knowledge graph em-
bedding by translating on hyperplanes. In Proceedings
of the 28th AAAI Conference on Artificial Intelligence,
pages 1112–1119.

916

Proceedings of NAACL-HLT 2016, pages 917–926,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

DAG-Structured Long Short-Term Memory for Semantic Compositionality

Xiaodan Zhu
National Research Council Canada

1200 Montreal Road, M50
Ottawa, ON K1A 0R6, Canada

zhu2048@gmail.com

Parinaz Sobhani
EECS, University of Ottawa
800 King Edward Avenue

Ottawa, ON K1N 6N5, Canada
psobh090@uottawa.ca

Hongyu Guo
National Research Council Canada

1200 Montreal Road, M50
Ottawa, ON K1A 0R6, Canada

hongyu.guo@nrc-cnrc.gc.ca

Abstract

Recurrent neural networks, particularly long
short-term memory (LSTM), have recently
shown to be very effective in a wide range of
sequence modeling problems, core to which is
effective learning of distributed representation
for subsequences as well as the sequences they
form. An assumption in almost all the previ-
ous models, however, posits that the learned
representation (e.g., a distributed representa-
tion for a sentence), is fully compositional
from the atomic components (e.g., representa-
tions for words), while non-compositionality
is a basic phenomenon in human languages.
In this paper, we relieve the assumption by
extending the chain-structured LSTM to di-
rected acyclic graphs (DAGs), with the aim
to endow linear-chain LSTMs with the capa-
bility of considering compositionality together
with non-compositionality in the same seman-
tic composition framework. From a more
general viewpoint, the proposed models in-
corporate additional prior knowledge into re-
current neural networks, which is interesting
to us, considering most NLP tasks have rela-
tively small training data and appropriate prior
knowledge could be beneficial to help cover
missing semantics. Our experiments on sen-
timent composition demonstrate that the pro-
posed models achieve the state-of-the-art per-
formance, outperforming models that lack this
ability.

1 Introduction

Recurrent neural networks, particularly long short-
term memory (LSTM), have recently shown to be

very effective in a wide range of sequence modeling
problems, including speech recognition (Graves et
al., 2013), automatic machine translation (Sutskever
et al., 2014; Cho et al., 2014), and image-to-text con-
version (Vinyals et al., 2014), among many others.
The specific memory copying and gating configura-
tions in LSTM’s memory blocks render an effective
mechanism in capturing both short and distant inter-
plays in an input sequence.

In modeling sequences, core to many problems is
to learn effective distributed representations for sub-
sequences and the sequences they form. A strong as-
sumption in most previous models, however, posits
that the learned representation (e.g., a distributed
representation for a sentence) is fully compositional
from the atomic components (e.g., representations
for words), while non-compositionality is a basic
phenomenon in human languages and other modal-
ities, which does not only include rather rigid cases
such as idiomatic expressions (e.g., kick the bucket)
but also soft cases that are harder to make a binary
judgment.

A framework with the capability to consider both
compositionality and non-compositionality in se-
mantic composition are of theoretic interest. From a
more pragmatical viewpoint, if one is able to holisti-
cally obtain the representations for a sequence (e.g.,
for the bigram must try in a customer-review corpus
for sentiment analysis), it would be desirable that
a composition model has the ability to choose the
sources of knowledge it can trust more: the compo-
sition of subsequences of this sequence, the holistic
representation, or a soft combination of them, in the
process of semantic composition. In such situations,

917

whether this sequence (must try) is indeed composi-
tional or non-compositional may often be blurry or
may not be an explicit concern of applications.

In this paper, we extend the popular chain-
structured LSTM to directed acyclic graph (DAG)
structures, with the aim to endow conventional
LSTM with the capability of considering composi-
tionality and non-compositionality together. From
a more general viewpoint, the proposed models are
along the line of incorporating external knowledge
into recurrent neural models, which is interesting to
us, considering that most NLP tasks have relatively
limited amount of training data, and external prior
knowledge could be beneficial to help cover missing
semantics. The proposed models unify the compo-
sitional power of recurrent neural networks (RNN)
and additional prior knowledge. In general, neu-
ral nets are powerful approaches for composition,
which can fit very complicated compositional func-
tions underlying the annotated data (Cybenko, 1989;
Hornik, 1991). Over that, externally obtained se-
mantics could help cope with missing information
in limited training data.

We demonstrated the models’ effectiveness in
sentiment composition, a popular semantic compo-
sition problem that optimizes a sentiment objective.
We show that the proposed models achieve the state-
of-the-art performance on two benchmark datasets,
without any feature engineering, by unifying the
compositional strength of LSTM with external se-
mantic knowledge.

2 Related Work

Linear and Structured RNN Linear-chain RNN,
particularly LSTM, has been applied to a wide range
of problems as in (Graves et al., 2013; Sutskever et
al., 2014; Cho et al., 2014; Vinyals et al., 2014),
among many others. While the models take a linear
encoding process to absorb input symbols, they are
capable of implicitly capturing rather complicated
structures embedded in the input sequences.

Recent research has also moved beyond linear-
chain LSTM. For example, in (Tai et al., 2015; Zhu
et al., 2015b; Le and Zuidema, 2015), LSTM was
extended to tree structures. The results show that
tree-structured LSTM achieves the-state-of-the-art
performance on semantic tasks such as paraphrasing

detection and sentiment analysis, due to its abilities
in capturing both local and long-distance interplay
over the structures.

In this work, we proposed DAG-structured LSTM
for modeling sequences of text. Unlike the tree-
structured LSTM, where the structures are used for
considering syntax, the proposed models leverage
DAG structures to incorporate external semantics
including non-compositional or holistically learned
semantics.

Compositionality Semantic composition exists in
multiple modalities, including images and vi-
sion (Lake, 2014; Hummel, 2001; Socher et al.,
2011; van der Velde and de Kamps, 2006). In hu-
man languages, the recent years have seen extensive
interests on distributional approaches. The research
includes the influential pioneering work that exam-
ined a number of explicit forms of compositional
functions (Mitchell and Lapata, 2008).

More recent works explored neural networks, e.g.,
(Socher et al., 2013; Irsoy and Cardie, 2014; Kalch-
brenner et al., 2014; Tai et al., 2015; Le and
Zuidema, 2015; Zhu et al., 2015c) among many oth-
ers, which extended the success of word-level em-
beddings (Collobert et al., 2011; Mikolov et al.,
2013; Chen et al., 2015) and modeled sentences
through semantic composition. In general, neural
models can fit very complicated functions and can be
a universal approximator (Cybenko, 1989; Hornik,
1991).

In obtaining the distributed representation for
longer spans of text from its subsequences, pre-
vious neural models assume full compositionality
from the atomic components and disregard non-
compositionality and in general prior semantics.
Some very recent work (Zhu et al., 2015a) has
started to address this problem in recursive neu-
ral networks with the assumption of the availability
of parse information. In this work, we extend the
general sequence models, chain-structured LSTM,
to directed acyclic graphs (DAGs) in order to con-
sider prior semantics, including non-compositional
or holistically learned semantics. We utilize DAG
structures to unify different sources of semantics.

From the decomposition direction, modeling non-
constitutionality could potentially help learn the rep-
resentations for the atomic components (e.g., words)

918

as well, by avoiding backpropagating unnecessary
errors to the atom level. For example, the errors re-
ceived by the block kick the bucket, may not need
to be passed down to the word level and potentially
confuse the embedding of the component words kick
or bucket.

3 DAG-Structured LSTM

The DAG-structured LSTM aims to integrate com-
positional, non-compositional, and in general exter-
nal semantics in semantic composition. Figure 1 de-
picts an example of DAG-structured LSTM (referred
to as DAG-LSTM in the remainder of the paper) in
modeling a sentence.

The proposed DAG-LSTM networks consist of
four types of nodes, denoted in Figure 1 with dif-
ferent colors. The blue nodes (0, 1, 2, 6, and 7)
correspond to normal chain-structured LSTM mem-
ory blocks. The yellow nodes (5 and 8) model non-
compositional knowledge. The purple nodes (3 and
4), which we call fork blocks or fork nodes in this
paper, are the modified versions of regular LSTM
nodes, summarizing history for different types of
outgoing blocks. The merging memory block is
depicted in red (node 9), aiming at infusing infor-
mation from multiple histories and deciding which
sources will be considered more. Each category of
these four types of memory blocks share its own pa-
rameters or weight matrices; e.g., the two yellow
blocks share the same parameters.

3.1 Compositional and Non-compositional
Memory Blocks

The conventional components of DAG-LSTM in
Figure 1 are nodes 0, 1, 2, 6, and 7, which implement
linear-chain LSTM memory blocks that we will not
discuss in detail here (refer to (Graves, 2012) for a
good introduction and discussion.)

The yellow nodes (blocks 5 and 8) model non-
compositional knowledge. In general, the goal is
incorporating external, holistic knowledge. Specifi-
cally for the sentiment composition task that we ex-
periment with in this paper, we leverage two differ-
ent types of such external knowledge: (1) sentiment
of words and ngrams holistically learned from exter-
nal, larger corpora, and (2) sentiment of words and
phrases from human prior, i.e., annotation assigned

by human subjects. We concatenate these two re-
sources (in form of vectors) to be a longer vector for
nodes 5 and 8. Note that the models allow both the
number of hidden units and the embedding spaces of
a non-compositional node to be different from those
of a compositional node.

Accordingly, the DAG-LSTM employs two types
of paths, compositional path (shortened as c-path)
and non-compositional path (nc-path), to incorpo-
rate different knowledge sources. For example,
the c-path in the figure connects nodes 3, 4, 6, 7,
and 9, which model the regular sequential compo-
sitional procedure. The two nc-paths explore non-
compositional knowledge. The path 4-5-9 considers
the composition vector accumulated at node 4 so far
with the non-compositional knowledge of the phrase
must try. Similarly, the path 3-8-9 considers holistic
representation for the negated phrase not must try.
Note that negation by itself has shown to be a rather
complicated non-linear function (Zhu et al., 2014a),
if being modeled only compositionally. The model
here provides the flexibility to consider both compo-
sitional and non-compositional representations. All
knowledge from these three paths are then merged,
to obtain the comprehensive representation so far, at
node 9. Later in the experiment section, we will dis-
cuss how to obtain prior non-compositional knowl-
edge, from both human heuristics/annotation and
from automatically learned resources.

3.2 Fork Memory Blocks

The fork blocks (node 3 and 4) summarize history
obtained so far for different types of outgoing blocks
(node 5 and 6 from node 4) that are either composi-
tional or non-compositional. More specifically, the
cell and output vectors of a fork node will be passed
to multiple paths as intuitively shown in Figure 2.
While the forward propagation of a fork block is
the same as that of a regular LSTM block, during
backpropagation, the errors are summed over multi-
ple outgoing blocks and passed back to the memory
cell and output layer of the current node.

More specifically, for each memory block, as-
sume that the error passed to the hidden vector is
εht . The derivatives of the output gate δot , forget gate
δft and input gate δit are computed as follows:

919

Figure 1: An example of DAG-LSTM in modeling a sentence. Nodes with different colors contain different types of LSTM

memory blocks.

εht =
∂
∑

pOp

∂ht
(1)

δot = εht ⊗ tanh(ct)⊗ σ′(ot) (2)

δft = εct ⊗ ct−1 ⊗ σ′(ft) (3)

δit = εct ⊗ tanh(xt)⊗ σ′(it) (4)

where σ′(x) is the element-wise derivative of the lo-
gistic function over vector x. Since it can be com-
puted with the activation of x, we relax the notation
a bit to write it over the activated vectors in these
equations. The underscript p is representative of
parent over different paths (both non-compositional
paths and compositional path). εct is the derivative
over the cell vector and it is calculated as follows:

εct =εht ⊗ ot ⊗ g′(ct) + (Wco)T δot

+
∑
p

[(WL
ci)

T δip + εcp ⊗ fLp + (WL
cf)

T δfp] (5)

where g′(x) is the element-wise derivative of the
tanh function. It can also be directly calculated from

the tanh activation of x. The superscript T over the
weight matrices means matrix transpose.

3.3 Merging Blocks

Merging blocks (node 9 in Figure 1) accumulate and
summarize multiple histories. For the specific exam-
ple in Figure 1, the merging block combines infor-
mation from two non-compositional paths and one
compositional path.

Binarization In this paper, we propose to binarize
the nodes in the merging process. Taking Figure 1 as
an example, binarization is performed as depicted in
the bottom subfigure. We merge the compositional
path (c-path) with one of the non-compositional path
(nc-path) and then another. With this binarization
trick, we can handle nodes with any number of in-
coming edges (degrees) with the same architecture
of memory block. We made all the binarized merg-
ing nodes (the three dotted-lined nodes in the lower
subfigure of Figure 1) to share the same parameters
(weight matrices), as during merging we should treat
compositional and non-compositional history (5, 7,
8) in the same way, by their content but not by how
many words they contain. Note that since the dimen-

920

sion of the output vectors and memory cell vectors
of different paths are the same, one has the choice of
using other variants of memory blocks such as those
described in (Tai et al., 2015; Le and Zuidema, 2015;
Zhu et al., 2015c).

Again, note that we use merging node to consider
noncompositional and prior knowledge in DAG, but
the above tree-LSTM was proposed to wire with
syntactic structures to consider syntactic informa-
tion. In addition, in DAG, the merging nodes
work together with fork nodes to correctly forward-
propagate and back-propagate compositional and
non-compositional knowledge jointly.

Figure 2: An example of a fork memory block. Both the hidden

vectors ht and cell vectors ct are passed along multiple outgo-

ing paths to the future blocks. ⊗ denotes a Hadamard product,

and the ”s” shape sign is a squashing function (in this paper the

tanh function).

4 Experiment Set-Up

In this paper, we study the proposed models on a
semantic composition task that determine the senti-
ment of a piece of text. We use social-media mes-
sages from the official SemEval Sentiment Analysis
in Twitter competition. Analyzing social-media text
has attracted extensive attention (Nakov et al., 2016;
Kiritchenko et al., 2014; Mohammad et al., 2014;
Mohammad et al., 2015; Zhu et al., 2014b; Moham-
mad et al., 2013a) and have many applications. Sen-

timental analysis of such data presents a unique set
of challenges as well; for example, the tweet posts
are often short, use informal languages, and are of-
ten not linguistically well-formed. Syntactic analy-
sis such as parsing is much less reliable in such data
than in news articles, and sequential models without
depending on deep linguistic analysis (e.g., parsing)
are adopted by most previous work.

In obtaining the sentiment of a text span, e.g., a
sentence, early work often factorized the problem
to consider smaller pieces of component words or
phrases with bag-of-words or bag-of-phrases mod-
els (Liu and Zhang, 2012; Pang and Lee, 2008).
More recent work has started to model composition
process (Choi and Cardie, 2008; Moilanen and Pul-
man, 2007; Socher et al., 2012; Socher et al., 2013;
Irsoy and Cardie, 2014; Kalchbrenner et al., 2014;
Tai et al., 2015; Zhu et al., 2015b; Le and Zuidema,
2015), more closely. In general, the composition
process is critical in the formation of the sentiment
of a text span, which has not been well modeled yet
and more work would be desirable.

4.1 Data and Evaluation Metric
In our experiments, we use the official data from the
SemEval-2013 (Wilson et al., 2013) and SemEval-
2014 (Rosenthal et al., 2014) Sentiment Analysis in
Twitter challenges. The task attempts to determine
the sentiment category of a tweet; that is, detecting
whether an entire tweet message conveys a positive,
negative, or neutral sentiment.

To give a rough idea about the data, the SemEval-
2013 tweets were collected through the public
streaming Twitter API during a period of one year:
between January 2012 and January 2013. The
dataset is comprised of 5,192 positive and 2,150
negative and 6,383 neutral tweets split into the train-
ing (8,258 tweets), development (1,654 tweets), and
test (3,813 tweets) sets. For more details, please re-
fer to (Wilson et al., 2013; Rosenthal et al., 2014).
In our experiments, we report our results on the of-
ficial in-domain (tweets) test data but not out-of-
domain (e.g., SMS) test data to better observe the
supervised performances of our models but not the
domain adaptation performance.

Following the official specification, we use
macro-averaged F-score to evaluate the perfor-
mances.

921

4.2 Prior Knowledge
As briefly discussed in Section 3, we use two differ-
ent sources of prior, non-compositional knowledge.
These two types of resources encode: (1) sentiment
of ngrams automatically learned from an external,
much larger corpus, and (2) sentiment of ngrams as-
signed by human annotators. Below, we introduce
them in further details.

Automatically Learned Knowledge Following the
method proposed in (Mohammad et al., 2013b), we
learn sentimental ngrams from Tweets, e.g., the sen-
timent knowledge for the bigram must try. The un-
supervised approach utilizes hashtags, which can be
regarded as conveying freely available (but noisy)
human annotation of sentiment. More specifically,
certain words in tweets are specially marked with
the hash character (#) to indicate the topic, sentiment
polarity, or emotions such as joy, sadness, angry, and
surprised. With enough data, such artificial annota-
tion can be used to learn the sentiment of ngrams
by their likelihood of co-occurring with such hash-
tagged words.

More specifically, a collection of 78 seed hash-
tags closely related to positive and negative such as
#good, #excellent, #bad, and #terrible were used (32
positive and 36 negative). These terms were chosen
from entries for positive and negative in the Roget’s
Thesaurus. A set of 775,000 tweets that contain at
least a positive hashtag or a negative hashtag were
used as the learning corpus. A tweet was considered
positive if it had one of the 32 positive seed hash-
tags, and negative if it had one of the 36 negative
seed hashtags. The association score for an ngram
w was calculated from these pseudo-labeled tweets
as follows:

score(w) = PMI(w, positive)− PMI(w, negative)
(6)

where PMI stands for pointwise mutual information,
and the two terms in the formula calculate the PMI
between the target ngram and the pseudo-labeled
positive tweets as well as that between the ngram
and the negative tweets, respectively. Accordingly,
a positive score(.) indicates association with pos-
itive sentiment, whereas a negative score indicates
association with negative sentiment.

We use in our experiments the unigrams, bigrams
and trigrams learned from the dataset with the oc-
currences higher than 5. We assign these ngrams
into one of the 5 bins according to their senti-
ment scores obtained with Formula 6: (−∞,−2],
(−2,−1], (−1, 1), [1, 2), and [2,+∞). Each ngram
is now given a one-hot vector, indicating the polar-
ity and strength of its sentiment. For example, a
bigram with a score of -1.5 will be assigned a 5-
dimensional vector [0, 1, 0, 0, 0], indicating a weak
negative. Note that we can also take into other forms
of sentiment embeddings, such as those learned in
(Tang et al., 2014).

Manually Encoded Semantics In addition, we also
leveraged prior knowledge from human, i.e., manu-
ally encoded semantics, for the task here. This in-
cludes a widely used sentiment lexicon, the MPQA
Subjectivity Lexicon (Wilson et al., 2005), which
encodes the prior knowledge that the human annota-
tors have about the sentiment of words. The MPQA,
which draws from the General Inquirer and other
sources, has sentiment labels for about 8,000 words.
The contained words marked with their prior polar-
ity (positive or negative) and a discrete strength of
evaluative intensity (strong or weak). We convert
them to value -1.0, -0.5, 0, 0.5, 1, corresponding to
strong negative, weak negative, neutral, weak posi-
tive, strong positive, respectively.

4.3 Training Details
Our networks aim to minimize the cross-entropy er-
ror (Socher et al., 2013). The models learn the
weight matrices used in those different memory
blocks described above in addition to learning word
embedding. For all Twitter messages, the error is
calculated as a regularized sum:

E(θ) =
∑
i

∑
j

tij logyseni
j + λ ‖θ‖22 (7)

where yseni ∈ Rc×1 is predicted distribution and
ti ∈ Rc×1 the target distribution. c is the number
of classes or categories, and j ∈ c denotes the j-
th element of the multinomial target distribution; i
iterates over root nodes, θ are model parameters, and
λ is a regularization parameter. We tuned our model
against the development data set.

922

The DAG-LSTM and LSTM results reported here
are all obtained by setting the size of the hidden units
to 10, batch size to 10 and learning rate to 0.1, which
achieved the best performance during development.

5 Results

5.1 Overall Performance

Table 1 presents the macro-averaged F-scores of
different models on the official test sets of the
SemEval-2013 and SemEval-2014 Sentiment Anal-
ysis in Twitter. The first row of results show the
majority baseline where a majority classifier simply
predicts all test cases into the most frequent class
observed in training data. SVM is a support vector
machine classifier applied to unigram features, as re-
ported in (Nakov et al., 2016). In addition, we list
the results of top three models described in the of-
ficial reports of SemEval-2013 (Wilson et al., 2013)
and SemEval-2014 (Rosenthal et al., 2014), respec-
tively.

Method SemEval-13 SemEval-14
Majority baseline 29.19 34.46

Unigram (SVM) 56.95 58.58

3rd best model 64.86 69.95

2nd best model 65.27 70.14

The best model 69.02 70.96

LSTM-DAG 70.88 71.97

Table 1: Performances of different models in official evaluation

metric (macro F-scores) on the test sets of SemEval-2013 and

SemEval-2014 Sentiment Analysis in Twitter in predicting the

sentiment of the tweet messages.

The results show DAG-LSTM achieves a macro-
averaged F-score of 70.88% on the SemEval-2013
test set and 71.97% on the SemEval-2014 test set,
which outperform the models officially reported in
the competition. Note that DAG-LSTM performs
no feature engineering, but unifies LSTM with the
external semantic knowledge to perform seman-
tic composition within the DAG structures, where
LSTM, as discussed earlier in the paper, possesses
strong modeling and composition power through
capturing distant interplay and complicated struc-
tures embedded in sequences, while prior knowl-

edge used covers missing semantics in the limited
training data.

Note that further improvement, including that re-
ported in (Zhu et al., 2014b), is additionally possi-
ble, which was achieved by building better resources
through discriminating affirmative and negative con-
text. Such improvement could be orthogonally com-
bined with our model, while in this paper, we are
interested in the basic modeling problems and leave
such engineering as future work. Note also that the
external resources we use in this paper is the same
or less than the top official system we compare to in
Table 1.

5.2 Effect of DAG Paths

To provide a more detailed analysis on the effect of
different paths in DAG-LSTM, Table 2 include the
ablation results obtained by removing different types
of paths gradually. The table show that by remov-
ing all the paths that incorporate the prior seman-
tics, a regular LSTM (last row of the table) achieves
the f-scores of a 64.0% and 66.4% on the two test
sets, which is far less than the best result we have
achieved; But the performance of the regular LSTM
is still much better than that of unigram-based SVM
reported in Table 1, suggesting the usefulness of the
LSTM composition compared to bag-of-word mod-
els.

Method SemEval-13 SemEval-14
DAG-LSTM

Full paths 70.88 71.97
Full – {autoPaths} 69.36 69.27

Full – {triPaths} 70.16 70.77
Full – {triPaths, biPaths} 69.55 69.93

Full – {manuPaths} 69.88 70.58
LSTM without DAG

Full – {autoPaths,manuPaths} 64.00 66.40

Table 2: Ablation performances (macro-averaged F-scores) of

DAG-LSTM with different types of paths being removed.

When removing the paths corresponding to auto-
matic lexicons, the performance dropped to 69.36%
and 69.27% on the SemEval-2013 and SemEval-
2014 dataset, respectively. If removing all paths
corresponding to manual lexicons, the performance

923

dropped to 69.88% and 70.58%. In both test sets, the
paths corresponds to automatic lexicon have more
impact on the ablation performance than manual-
lexicon paths, which agree with the observation re-
ported in previous top systems that use conventional
feature-based classifiers (Mohammad et al., 2013a),
suggesting the usefulness of the automatically ac-
quired semantics. The table also lists more details
of removing trigram and bigram paths.

In addition to the ablation models reported in Ta-
ble 2, we also created an additional model that in-
corporated into the basic chain LSTM the exter-
nal knowledge only for longest n-grams but not
for their substrings. This experiment is supposed
to investigate the effect of DAG structures that
integrate knowledge for different granularities of
ngrams in comparison to the LSTM that incorpo-
rates the external knowledge only for the longest
n-grams. On SemEval-2014 official set, the perfor-
mance (Macro-F) of this model is 69.37, compared
with DAG-LSTM (71.97) and chain LSTM (66.40).
On Semeval-2013, Macro-F is 68.81, compared with
DAG-LSTM (70.88) and chain LSTM (64.00). Af-
ter some manual analysis, we observe that in tweets
where DAG-LSTM works better than this baseline
model, the prior sentiment of the longest n-grams
is often noisy and not very reliable; in this case, the
weight matrix of DAG-LSTM helps choose more re-
liable resources, e.g., composition from lower-order
ngrams.

6 Conclusions and Discussions

In obtaining the distributed representation for longer
text spans from its subsequences, previous neu-
ral models assume fully compositionality from the
atomic components and often disregard the non-
compositionality and in general prior semantics. In
this paper, we extend chain-structured LSTM to a di-
rected acyclic graph (DAG) structure, with the aim
to provide the popular chain LSTM with the capa-
bility of considering both compositionality and non-
compositionality in a single semantic composition
framework. We demonstrated the models’ effec-
tiveness in a sentiment composition task, a popu-
lar semantic composition problem that optimizes a
sentiment objective. We use two official SemEval
datasets to detect the sentiment expressed by social-

media messages. The proposed models achieve
the state-of-the-art performance without any fea-
ture engineering, through unifying the composition
strength of LSTM with external holistic semantics.

We consider our work as an attempt towards uni-
fying the strong modeling power of neural models
with proper prior or external knowledge. This is
an intriguing direction for us, as most NLP tasks
lack training data, compared with speech recogni-
tion or image classification where neural models
have achieved more significant successes.

While we specifically treat LSTM in this paper,
it should be rather straightforward to adapt the pro-
posed idea to other architectures of recurrent neural
networks.

Acknowledgments

The second author of this paper was supported
by the Natural Sciences and Engineering Research
Council of Canada under the CREATE program.

References

Zhigang Chen, Wei Lin, Qian Chen, Si Wei, Hui Jiang,
and Xiaodan Zhu. 2015. Revisiting word embedding
for contrasting meaning. In Proceedings of ACL.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine transla-
tion. CoRR, abs/1406.1078.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP ’08, pages 793–801, Honolulu,
Hawaii.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural
language processing (almost) from scratch. JMLR,
12:2493–2537.

George Cybenko. 1989. Approximations by superposi-
tions of sigmoidal functions. Mathematics of Control,
Signals, and Systems, 2(4):303–314.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton. 2013. Speech recognition with deep recurrent
neural networks. CoRR, abs/1303.5778.

Alex Graves. 2012. Supervised sequence labelling with
recurrent neural networks, volume 385. Springer.

924

Kurt Hornik. 1991. Approximation capabilities of
multilayer feedforward networks. Neural Networks,
4(2):251–257.

John E Hummel. 2001. Complementary solutions to the
binding problem in vision: Implications for shape per-
ception and object recognition. Visual cognition, 8(3-
5):489–517.

Ozan Irsoy and Claire Cardie. 2014. Deep recur-
sive neural networks for compositionality in language.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2096–2104. Curran Associates, Inc.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, June.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif Moham-
mad. 2014. Sentiment analysis of short informal texts.
Journal of Artificial Intelligence Research, 50:724–
762, August.

Brenden M Lake. 2014. Towards more human-like con-
cept learning in machines : compositionality, causal-
ity, and learning-to-learn. Ph.D. thesis, Massachusetts
Institute of Technology. Department of Brain and Cog-
nitive Sciences.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term memory.
CoRR, abs/1503.02510.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In Charu C. Aggar-
wal and ChengXiang Zhai, editors, Mining Text Data,
pages 415–463. Springer US.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics, June.

S. Mohammad, S. Kiritchenko, and X. Zhu. 2013a.
NRC-Canada: Building the state-of-the-art in senti-
ment analysis of tweets. In Proceedings of the Inter-
national Workshop on Semantic Evaluation, SemEval
’13, Atlanta, Georgia, USA, June.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013b. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

Saif Mohammad, Xiaodan Zhu, and Joel Martin. 2014.
Semantic role labeling of emotions in tweets. In

Proceedings of ACL Workshop on Computational Ap-
proaches to Subjectivity, June.

Saif Mohammad, Xiaodan Zhu, Svetlana Kiritchenko,
and Joel Martin. 2015. Sentiment, emotion, purpose,
and style in electoral tweets. Information Processing
and Management, 51:480–499.

Karo Moilanen and Stephen Pulman. 2007. Senti-
ment composition. In Proceedings of RANLP 2007,
Borovets, Bulgaria.

Preslav Nakov, Sara Rosenthal, Svetlana Kiritchenko,
Saif M. Mohammad, Zornitsa Kozareva, Alan Ritter,
Veselin Stoyanov, and Xiaodan Zhu. 2016. Devel-
oping a successful semeval task in sentiment analysis
of twitter and other social media texts. Language Re-
sources and Evaluation, 50(1):35–65.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1–2):1–135.

Sara Rosenthal, Preslav Nakov, Alan Ritter, and Veselin
Stoyanov. 2014. Semeval-2014 task 9: Sentiment
analysis in twitter. Proc. SemEval, pages 73–80.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natural
scenes and natural language with recursive neural net-
works. In Proceedings of the 28th International Con-
ference on Machine Learning, ICML, pages 129–136,
Washington, USA.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’12, Jeju, Korea.
Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’13,
Seattle, USA. Association for Computational Linguis-
tics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
CoRR, abs/1409.3215.

Kai Sheng Tai, Richard Socher, and C hristopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. CoRR, abs/1503.00075.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of ACL, Baltimore, Maryland, USA,
June.

925

F. van der Velde and M. de Kamps. 2006. Neural black-
board architectures of combinatorial structures in cog-
nition. Behavioral and Brain Sciences, 29:37–70.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2014. Show and tell: A neural image
caption generator. CoRR, abs/1411.4555.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Theresa Wilson, Zornitsa Kozareva, Preslav Nakov, Sara
Rosenthal, Veselin Stoyanov, and Alan Ritter. 2013.
SemEval-2013 Task 2: Sentiment analysis in Twit-
ter. In Proceedings of the International Workshop on
Semantic Evaluation, SemEval ’13, Atlanta, Georgia,
USA, June.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-
lana Kiritchenko. 2014a. An empirical study on the
effect of negation words on sentiment. In Proceedings
of ACL, Baltimore, Maryland, USA, June.

Xiaodan Zhu, Svetlana Kiritchenko, and Saif Moham-
mad. 2014b. Nrc-canada-2014: Recent improvements
in the sentiment analysis of tweets. In Proceedings of
the International Workshop on Semantic Evaluation,
August.

Xiaodan Zhu, Hongyu Guo, and Parinaz Sobhani. 2015a.
Neural networks for integrating compositional and
non-compositional sentiment in sentiment composi-
tion. In Proceedings of Joint Conference on Lexical
and Computational Semantics, June.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015b.
Long short-term memory over recursive structures. In
Proceedings of International Conference on Machine
Learning, July.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015c.
Long short-term memory over tree structures. CoRR,
abs/1503.04881.

926

Proceedings of NAACL-HLT 2016, pages 927–936,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bayesian Supervised Domain Adaptation for Short Text Similarity

Md Arafat Sultan1,2 Jordan Boyd-Graber2 Tamara Sumner1,2

1Institute of Cognitive Science
2Department of Computer Science

University of Colorado, Boulder, CO
{arafat.sultan,Jordan.Boyd.Graber,sumner}@colorado.edu

Abstract

Identification of short text similarity (STS) is a
high-utility NLP task with applications in a va-
riety of domains. We explore adaptation of STS
algorithms to different target domains and ap-
plications. A two-level hierarchical Bayesian
model is employed for domain adaptation (DA)
of a linear STS model to text from different
sources (e.g., news, tweets). This model is then
further extended for multitask learning (MTL)
of three related tasks: STS, short answer scor-
ing (SAS) and answer sentence ranking (ASR).
In our experiments, the adaptive model demon-
strates better overall cross-domain and cross-
task performance over two non-adaptive base-
lines.

1 Short Text Similarity: The Need for
Domain Adaptation

Given two snippets of text—neither longer than a few
sentences—short text similarity (STS) determines
how semantically close they are. STS has a broad
range of applications: question answering (Yao et
al., 2013; Severyn and Moschitti, 2015), text summa-
rization (Dasgupta et al., 2013; Wang et al., 2013),
machine translation evaluation (Chan and Ng, 2008;
Liu et al., 2011), and grading of student answers in
academic tests (Mohler et al., 2011; Ramachandran
et al., 2015).

STS is typically viewed as a supervised machine
learning problem (Bär et al., 2012; Lynum et al.,
2014; Hänig et al., 2015). SemEval contests (Agirre
et al., 2012; Agirre et al., 2015) have spurred recent
progress in STS and have provided valuable training
data for these supervised approaches. However, simi-
larity varies across domains, as does the underlying

text; e.g., syntactically well-formed academic text
versus informal English in forum QA.

Our goal is to effectively use domain adaptation
(DA) to transfer information from these disparate STS

domains. While “domain” can take a range of mean-
ings, we consider adaptation to different (1) sources
of text (e.g., news headlines, tweets), and (2) applica-
tions of STS (e.g., QA vs. answer grading). Our goal
is to improve performance in a new domain with few
in-domain annotations by using many out-of-domain
ones (Section 2).

In Section 3, we describe our Bayesian approach
that posits that per-domain parameter vectors share
a common Gaussian prior that represents the global
parameter vector. Importantly, this idea can be ex-
tended with little effort to a nested domain hierarchy
(domains within domains), which allows us to create
a single, unified STS model that generalizes across
domains as well as tasks, capturing the nuances that
an STS system must have for tasks such as short an-
swer scoring or question answering.

We compare our DA methods against two baselines:
(1) a domain-agnostic model that uses all training
data and does not distinguish between in-domain and
out-of-domain examples, and (2) a model that learns
only from in-domain examples. Section 5 shows that
across ten different STS domains, the adaptive model
consistently outperforms the first baseline while per-
forming at least as well as the second across training
datasets of different sizes. Our multitask model also
yields better overall results over the same baselines
across three related tasks: (1) STS, (2) short answer
scoring (SAS), and (3) answer sentence ranking (ASR)
for question answering.

927

2 Tasks and Datasets

Short Text Similarity (STS) Given two short texts,
STS provides a real-valued score that represents their
degree of semantic similarity. Our STS datasets come
from the SemEval 2012–2015 corpora, containing
over 14,000 human-annotated sentence pairs (via
Amazon Mechanical Turk) from domains like news,
tweets, forum posts, and image descriptions.

For our experiments, we select ten datasets from
ten different domains, containing 6,450 sentence
pairs.1 This selection is intended to maximize (a)
the number of domains, (b) domain uniqueness: of
three different news headlines datasets, for example,
we select the most recent (2015), discarding older
ones (2013, 2014), and (c) amount of per-domain
data available: we exclude the FNWN (2013) dataset
with 189 annotations, for example, because it limits
per-domain training data in our experiments. Sizes
of the selected datasets range from 375 to 750 pairs.
Average correlation (Pearson’s r) among annotators
ranges from 58.6% to 88.8% on individual datasets
(above 70% for most) (Agirre et al., 2012; Agirre et
al., 2013; Agirre et al., 2014; Agirre et al., 2015).

Short Answer Scoring (SAS) SAS comes in dif-
ferent forms; we explore a form where for a short-
answer question, a gold answer is provided, and the
goal is to grade student answers based on how sim-
ilar they are to the gold answer (Ramachandran et
al., 2015). We use a dataset of undergraduate data
structures questions and student responses graded
by two judges (Mohler et al., 2011). These ques-
tions are spread across ten different assignments
and two examinations, each on a related set of top-
ics (e.g., programming basics, sorting algorithms).
Inter-annotator agreement is 58.6% (Pearson’s ρ) and
0.659 (RMSE on a 5-point scale). We discard as-
signments with fewer than 200 pairs, retaining 1,182
student responses to forty questions spread across
five assignments and tests.2

Answer Sentence Ranking (ASR) Given a factoid
question and a set of candidate answer sentences,
ASR orders candidates so that sentences containing

12012: MSRpar-test; 2013: SMT; 2014: Deft-forum, OnWN,
Tweet-news; 2015: Answers-forums, Answers-students, Belief,
Headlines and Images.

2Assignments: #1, #2, and #3; Exams: #11 and #12.

the answer are ranked higher. Text similarity is the
foundation of most prior work: a candidate sentence’s
relevance is based on its similarity with the ques-
tion (Wang et al., 2007; Yao et al., 2013; Severyn and
Moschitti, 2015).

For our ASR experiments, we use factoid questions
developed by Wang et al. (2007) from Text REtrieval
Conferences (TREC) 8–13. Candidate QA pairs of a
question and a candidate were labeled with whether
the candidate answers the question. The questions are
of different types (e.g., what, where); we retain 2,247
QA pairs under four question types, each with at least
200 answer candidates in the combined development
and test sets.3 Each question type represents a unique
topical domain—who questions are about persons
and how many questions are about quantities.

3 Bayesian Domain Adaptation for STS

We first discuss our base linear models for the three
tasks: Bayesian L2-regularized linear (for STS and
SAS) and logistic (for ASR) regression. We extend
these models for (1) adaptation across different short
text similarity domains, and (2) multitask learning
of short text similarity (STS), short answer scoring
(SAS), and answer sentence ranking (ASR).

3.1 Base Models

In our base models (Figure 1), the feature vector f
combines with the feature weight vectorw (including
a bias term w0) to form predictions. Each parameter
wi ∈ w has its own zero-mean Gaussian prior with
its standard deviation σwi distributed uniformly in
[0,mσw], the covariance matrix Σw is diagonal, and
the zero-mean prior L2 regularizes the model.

In the linear model (Figure 1a), S is the output
(similarity score for STS; answer score for SAS) and
is normally distributed around the dot product wTf .
The model error σS has a uniform prior over a pre-
specified range [0,mσS]. In the logistic model (Fig-
ure 1b) for ASR, the probability p that the candidate
sentence answers the question, is (1) the sigmoid of
wTf , and (2) the Bernoulli prior of A, whether or
not the candidate answers the question.

The common vectors w and f in these models en-
able joint parameter learning and consequently mul-
titask learning (Section 3.3).

3what, when, who and how many.

928

𝑚𝜎w 𝝈w

Σw

wS𝜎𝑆

𝑚𝜎𝑆 f

𝜎𝑆 ~ 𝑈 0,𝑚𝜎𝑆

𝝈w ~ 𝑈 𝟎,𝑚𝜎w

Σw = 𝑑𝑖𝑎𝑔 𝝈w

w ~ 𝑁 𝟎, Σw

S ~ 𝑁 w𝑇f, 𝜎𝑆
2

(a) Bayesian ridge regression for STS and SAS.

𝑚𝜎w 𝝈w
𝝈w ~ 𝑈 𝟎,𝑚𝜎w

Σw = 𝑑𝑖𝑎𝑔 𝝈w

w ~ 𝑁 𝟎, Σw
p = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 w𝑇f

A ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝

p

A

f Σw

w

(b) Bayesian logistic regression for ASR.

Figure 1: Base models for STS, SAS and ASR. Plates
represent replication across sentence pairs. Each
model learns weight vector w. For STS and SAS, the
real-valued output S (similarity or student score) is
normally distributed around the weight-feature dot
product wTf . For ASR, the sigmoid of this dot prod-
uct is the Bernoulli prior for the binary output A,
relevance of the question’s answer candidate.

3.2 Adaptation to STS Domains

Domain adaptation for the linear model (Figure 1a)
learns a separate weight vectorwd for each domain d
(i.e., applied to similarity computations for test pairs
in domain d) alongside a common, global domain-
agnostic weight vector w∗, which has a zero-mean
Gaussian prior and serves as the Gaussian prior mean
for eachwd. Figure 2 shows the model. Bothw∗ and
wd have hyperpriors identical to w in Figure 1a.4

Each wd depends not just on its domain-specific
observations but also on information derived from the
global, shared parameter w∗. The balance between
capturing in-domain information and inductive trans-

4Results do not improve with individual domain-specific
instances of σS and σw, consistent with Finkel and Manning
(2009) for dependency parsing and named entity recognition.

𝝈w∗
~ 𝑈 𝟎,𝑚𝜎w∗

Σw∗
= 𝑑𝑖𝑎𝑔 𝝈w∗

w∗ ~ 𝑁 𝟎, Σw∗

𝑚𝜎w∗

Σw∗

𝑚𝜎w

𝝈w
𝝈w ~ 𝑈 𝟎,𝑚𝜎w

Σw Σw = 𝑑𝑖𝑎𝑔 𝝈w

w∗ w𝑑

w𝑑 ~ 𝑁 w∗, Σw

𝝈w∗

f

S𝑚𝜎𝑆 𝜎𝑆

𝜎𝑆 ~ 𝑈 0,𝑚𝜎𝑆 S ~ 𝑁 w𝑑
𝑇f, 𝜎𝑆

2

Figure 2: Adaptation to different STS domains. The
outer plate represents replication across domains.
Joint learning of a global weight vector w∗ along
with individual domain-specific vectorswd enables
inductive transfer among domains.

fer is regulated by Σw; larger variance allows wd

more freedom to reflect the domain.

3.3 Multitask Learning

An advantage of hierarchical DA is that it extends
easily to arbitrarily nested domains. Our multitask
learning model (Figure 3) models topical domains
nested within one of three related tasks: STS, SAS,
and ASR (Section 2). This model adds a level to the
hierarchy of weight vectors: each domain-levelwd is
now normally distributed around a task-level weight
vector (e.g.,wSTS), which in turn has global Gaussian
mean w∗.5 Like the DA model, all weights in the
same level share common variance hyperparameters
while those across different levels are separate.

Again, this hierarchical structure (1) jointly learns
global, task-level and domain-level feature weights
enabling inductive transfer among tasks and do-
mains while (2) retaining the distinction between
in-domain and out-of-domain annotations. A task-
specific model (Figure 1) that only learns from in-
domain annotations supports only (2). On the other
hand, a non-hierarchical joint model (Figure 4) sup-
ports only (1): it learns a single shared w applied
to any test pair regardless of task or domain. We
compare these models in Section 5.

5We use the same variable for the domain-specific parameter
wd across tasks to simplify notation.

929

𝐷ASR

𝐷SAS𝐷STS

𝑚𝜎w
(0)

𝑚𝜎w
(1)

𝑚𝜎w
(2)

𝝈w
(𝑖)

~ 𝑈 𝟎,𝑚𝜎w
(𝑖)

, 𝑖 = 0, 1, 2

𝚺w
(𝑖)

= 𝑑𝑖𝑎𝑔 𝝈w
𝑖

, 𝑖 = 0, 1, 2

𝝈w
(0)

𝝈w
(1)

𝝈w
(2)

𝚺w
(0)

𝚺w
(1)

𝚺w
(2)

𝑚𝜎𝑆 𝜎𝑆

𝜎𝑆 ~ 𝑈 0,𝑚𝜎𝑆

w∗ ~ 𝑁 𝟎, 𝚺w
(0)

wSTS ~ 𝑁 w∗, 𝚺w
(1)

wSAS ~ 𝑁 w∗, 𝚺w
(1) wASR ~ 𝑁 w∗, 𝚺w

(1)

w∗

wSTS wSAS wASR

w𝑑
f

S

f

S

w𝑑 ~ 𝑁 wSTS, 𝚺w
(2)

S ~ 𝑁 w𝑑
𝑇f, 𝜎𝑆

2

w𝑑 ~ 𝑁 wSAS, 𝚺w
(2)

S ~ 𝑁 w𝑑
𝑇f, 𝜎𝑆

2
w𝑑 ~ 𝑁 wASR, 𝚺w

(2)

𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 w𝑑
𝑇f

𝐴 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

w𝑑

w𝑑 f

p

A

Figure 3: Multitask learning: STS, SAS and ASR. Global (w∗), task-specific (wSTS, wSAS, wASR) and
domain-specific (wd) weight vectors are jointly learned, enabling transfer across domains and tasks.

𝐷ASR𝐷STS ∪ 𝐷SAS𝜎𝑆 ~ 𝑈 0,𝑚𝜎𝑆

S ~ 𝑁 w𝑇f, 𝜎𝑆
2

𝑚𝜎w

𝝈w Σw w

w ~ 𝑁 𝟎, Σw

𝝈w ~ 𝑈 𝟎,𝑚𝜎w
Σw = 𝑑𝑖𝑎𝑔 𝝈w

𝑚𝜎𝑆

𝜎𝑆

f

S

f

p

A

p = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 w𝑇f

A ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝

Figure 4: A non-hierarchical joint model for STS,
SAS and ASR. A common weight vectorw is learned
for all tasks and domains.

4 Features

Any feature-based STS model can serve as the base
model for a hierarchical Bayesian adaptation frame-
work. For our experiments, we adopt the feature set
of the ridge regression model in Sultan et al. (2015),
the best-performing system at SemEval-2015 (Agirre
et al., 2015).

Input sentences S(1) = (w(1)
1 , ..., w

(1)
n) and

S(2) = (w(2)
1 , ..., w

(2)
m) (where each w is a token)

produce two similarity features. The first is the pro-
portion of content words in S(1) and S(2) (combined)
that have a semantically similar word—identified us-
ing a monolingual word aligner (Sultan et al., 2014)—
in the other sentence. The overall semantic simi-
larity of a word pair (w(1)

i , w
(2)
j) ∈ S(1) × S(2) is

a weighted sum of lexical and contextual similari-
ties: a paraphrase database (Ganitkevitch et al., 2013,
PPDB) identifies lexically similar words; contextual
similarity is the average lexical similarity in (1) de-
pendencies of w(1)

i in S(1) and w(2)
j in S(2), and (2)

content words in [-3, 3] windows around w
(1)
i in

S(1) and w(2)
j in S(2). Lexical similarity scores of

pairs in PPDB as well as weights of word and con-
textual similarities are optimized on an alignment
dataset (Brockett, 2007). To avoid penalizing long
answer snippets (that still have the desired semantic
content) in SAS and ASR, word alignment propor-
tions outside the reference (gold) answer (SAS) and
the question (ASR) are ignored.

The second feature captures finer-grained sim-
ilarities between related words (e.g., cell and
organism). Given the 400-dimensional embed-
ding (Baroni et al., 2014) of each content word (lem-
matized) in an input sentence, we compute a sentence
vector by adding its content lemma vectors. The co-

930

Task Current SOA Our Model
STS Pearson’s r = 73.6% Pearson’s r = 73.7%

SAS
Pearson’s r = 51.8% Pearson’s r = 56.4%

RMSE = 19.6% RMSE = 18.1%

ASR
MAP = 74.6% MAP = 76.0%
MRR = 80.8% MRR = 82.8%

Table 1: Our base linear models beat the state of the
art in STS, SAS and ASR.

sine similarity between the S(1) and S(2) vectors is
then used as an STS feature. Baroni et al. develop
the word embeddings using word2vec6 from a cor-
pus of about 2.8 billion tokens, using the Continuous
Bag-of-Words (CBOW) model proposed by Mikolov
et al. (2013).

5 Experiments

For each of the three tasks, we first assess the perfor-
mance of our base model to (1) verify our sampling-
based Bayesian implementations, and (2) compare
to the state of the art. We train each model with a
Metropolis-within-Gibbs sampler with 50,000 sam-
ples using PyMC (Patil et al., 2010; Salvatier et al.,
2015), discarding the first half of the samples as burn-
in. The variances mσw and mσS are both set to 100.
Base models are evaluated on the entire test set for
each task, and the same training examples as in the
state-of-the-art systems are used. Table 1 shows the
results.

Following SemEval, we report a weighted sum of
correlations (Pearson’s r) across all test sets for STS,
where the weight of a test set is proportional to its
number of pairs. Our model and Sultan et al. (2015)
are almost identical on all twenty test sets from Se-
mEval 2012–2015, supporting the correctness of our
Bayesian implementation.

Following Mohler et al. (2011), for SAS we use
RMSE and Pearson’s r with gold scores over all an-
swers. These metrics are complementary: correlation
is a measure of consistency across students while
error measures deviation from individual scores. Our
model beats the state-of-the-art text matching model
of Mohler et al. (2011) on both metrics.7

6https://code.google.com/p/word2vec/
7Ramachandran et al. (2015) report better results; however,

they evaluate on a much smaller random subset of the test data
and use in-domain annotations for model training.

Finally, for ASR, we adopt two metrics widely
used in information retrieval: mean average preci-
sion (MAP) and mean reciprocal rank (MRR). MAP

assesses the quality of the ranking as a whole whereas
MRR evaluates only the top-ranked answer sentence.
Severyn and Moschitti (2015) report a convolutional
neural network model of text similarity which shows
top ASR results on the Wang et al. (2007) dataset.
Our model outperforms this model on both metrics.

5.1 Adaptation to STS Domains
Ideally, our domain adaptation (DA) should allow
the application of large amounts of out-of-domain
training data along with few in-domain examples to
improve in-domain performance. Given data from
n domains, two other alternatives in such scenarios
are: (1) to train a single global model using all avail-
able training examples, and (2) to train n individual
models, one for each domain, using only in-domain
examples. We present results from our DA model
and these two baselines on the ten STS datasets dis-
cussed in Section 2. We fix the training set size per
domain and split each domain into train and test folds
randomly.

Models have access to training data from all ten
domains (thus nine times more out-of-domain ex-
amples than in-domain ones). Each model (global,
individual, and adaptive) is trained on relevant anno-
tations and applied to test pairs, and Pearson’s r with
gold scores is computed for each model on each in-
dividual test set. Since performance can vary across
different splits, we average over 20 splits of the same
train/test ratio per dataset. Finally, we evaluate each
model with a weighted sum of average correlations
across all test sets, where the weight of a test set is
proportional to its number of pairs.

Figure 5 shows how models adapt as the train-
ing set grows. The global model clearly falters with
larger training sets in comparison to the other two
models. On the other hand, the domain-specific
model (i.e., the ten individual models) performs
poorly when in-domain annotations are scarce. Im-
portantly, the adaptive model performs well across
different amounts of available training data.

To gain a deeper understanding of model perfor-
mance, we examine results in individual domains.
A single performance score is computed for every
model-domain pair by taking the model’s average

931

global 72.08
±0.14

72.21
±0.21

72.21
±0.28

72.27
±0.31

72.32
±0.35

72.39
±0.53

72.39
±0.63

individual 71.18
±0.89

72.16
±0.62

72.21
±0.54

72.63
±0.4

72.8
±0.41

72.98
±0.53

73.01
±0.6

adaptive 72.14
±0.18

72.5
±0.25

72.43
±0.34

72.69
±0.35

72.86
±0.37

72.98
±0.55

73.03
±0.6

20 50 75 100 150 200 300
of Training Pairs per Dataset

71.0

71.5

72.0

72.5

73.0

Pe
ar

so
n'

s r
 (%

)

global
individual
adaptive

Figure 5: Results of adaptation to STS domains across
different amounts of training data. Table shows
mean±SD from 20 random train/test splits. While
the baselines falter at extremes, the adaptive model
shows consistent performance.

correlation in that domain over all seven training set
sizes of Figure 5. We then normalize each score by
dividing by the best score in that domain. Each cell
in Table 2 shows this score for a model-domain pair.
For example, Row 1 shows that—on average—the
individual model performs the best (hence a correla-
tion ratio of 1.0) on QA forum answer pairs while the
global model performs the worst.

While the adaptive model is not the best in every
domain, it has the best worst-case performance across
domains. The global model suffers in domains that
have unique parameter distributions (e.g., MSRpar-
test: a paraphrase dataset). The individual model
performs poorly with few training examples and in
domains with noisy annotations (e.g., SMT: a ma-
chine translation evaluation dataset). The adaptive
model is much less affected in such extreme cases.
The summary statistics (weighted by dataset size)
confirm that it not only stays the closest to the best
model on average, but also deviates the least from its
mean performance level.

5.1.1 Qualitative Analysis

We further examine the models to understand why
the adaptive model performs well in different extreme
scenarios, i.e., when one of the two baseline models
performs worse than the other. Table 3 shows fea-
ture weights learned by each model from a split with

Dataset Glob. Indiv. Adapt.
Answers-forums (2015) .9847 1 .9999
Answers-students (2015) .9850 1 .9983
Belief (2015) 1 .9915 .9970
Headlines (2015) .9971 .9998 1
Images (2015) .9992 .9986 1
Deft-forum (2014) 1 .9775 .9943
OnWN (2014) .9946 .9990 1
Tweet-news (2014) .9998 .9950 1
SMT (2013) 1 .9483 .9816
MSRpar-test (2012) .9615 1 .9923

Mean .9918 .9911 .9962
SD .0122 .0165 .0059

Table 2: Correlation ratios of the three models vs.
the best model across STS domains. Best scores are
boldfaced, worst scores are underlined. The adap-
tive model has the best (1) overall score, and (2)
consistency across domains.

Dataset Var. Glob. Indiv. Adapt.

SMT
w1 .577 .214 .195
w2 .406 -.034 .134
r .4071 .3866 .4071

MSRpar-test
w1 .577 1.0 .797
w2 .406 -.378 .050
r .6178 .6542 .6469

Answers-students
w1 .577 .947 .865
w2 .406 .073 .047
r .7677 .7865 .7844

Table 3: Feature weights and correlations of different
models in three extreme scenarios. In each case, the
adaptive model learns relative weights that are more
similar to those in the best baseline model.

seventy-five training pairs per domain and how well
each model does.

All three domains have very different outcomes
for the baseline models. We show weights for the
alignment (w1) and embedding features (w2). In
each domain, (1) the relative weights learned by the
two baseline models are very different, and (2) the
adaptive model learns relative weights that are closer
to those of the best model. In SMT, for example,
the predictor weights learned by the adaptive model
have a ratio very similar to the global model’s and
does just as well. On Answers-students, however,
it learns weights similar to those of the in-domain
model, again approaching best results for the domain.

932

Now, the labor of cleaning up at the
karaoke parlor is realized.

Gold=.52
∆G=.1943
∆I=.2738
∆A=.2024

Up till now on the location the cleaning
work is already completed.
The Chelsea defender Marcel Desailly
has been the latest to speak out. Gold=.45

∆G=.2513
∆I=.2222
∆A=.2245

Marcel Desailly, the France captain and
Chelsea defender, believes the latter is
true.

Table 4: Sentence pairs from SMT and MSRpar-test
with gold similarity scores and model errors (Global,
Individual and Adaptive). The adaptive model error
is very close to the best model error in each case.

Table 4 shows the effect of this on two specific
sentence pairs as examples. The first pair is from
SMT; the adaptive model has a much lower error
than the individual model on this pair, as it learns
a higher relative weight for the embedding feature
in this domain (Table 3) via inductive transfer from
out-of-domain annotations. The second pair, from
MSRpar-test, shows the opposite: in-domain annota-
tions help the adaptive model fix the faulty output
of the global model by upweighting the alignment
feature and downweighting the embedding feature.

The adaptive model gains from the strengths of
both in-domain (higher relevance) and out-of-domain
(more training data) annotations, leading to good re-
sults even in extreme scenarios (e.g., in domains with
unique parameter distributions or noisy annotations).

5.2 Multitask Learning
We now analyze performance of our multitask learn-
ing (MTL) model in each of the three tasks: STS,
SAS and ASR. Multitask baselines resemble DA’s:
(1) a global model trained on all available training
data (Figure 4), and (2) nineteen task-specific models,
each trained on an individual dataset from one of the
three tasks (Figure 1). The smallest of these datasets
has only 204 pairs (SAS assignment #1); therefore,
we use training sets with up to 175 pairs per dataset.
Because the MTL model is more complex, we use
a stronger regularization for this model (mσw=10)
while keeping the number of MCMC samples un-
changed. As in the DA experiments, we compute
average performance over twenty random train/test
splits for each training set size.

Figure 6 shows STS results for all models across

global 71.79
±0.39

71.94
±0.34

72.05
±0.39

72.07
±0.29

72.11
±0.38

72.23
±0.31

72.05
±0.41

individual 70.57
±1.45

72.06
±0.56

72.32
±0.55

72.67
±0.44

72.73
±0.51

72.9
±0.33

72.75
±0.41

adaptive 71.99
±0.43

72.18
±0.27

72.55
±0.33

72.67
±0.35

72.75
±0.43

72.93
±0.34

72.8
±0.37

20 50 75 100 125 150 175
of Training Pairs per Dataset

70.5

71.0

71.5

72.0

72.5

73.0

Pe
ar

so
n'

s r
 (%

)

global
individual
adaptive

Figure 6: Multitask learning for STS: mean±SD from
twenty random train/test splits. The adaptive model
consistently performs well while the baselines have
different failure modes.

different training set sizes. Like DA, the adaptive
model consistently performs well while the global
and individual models have different failure modes.
However, the individual model does better than in
DA: it overtakes the global model with fewer training
examples and the differences with the adaptive model
are smaller. This suggests that inductive transfer and
therefore adaptation is less effective for STS in the
MTL setup than in DA. Later in this section, coarse-
grained ASR annotations (binary as opposed to real-
valued) in MTL may provide an explanation for this.

The performance drop after 150 training pairs is a
likely consequence of the random train/test selection
process.

For SAS, the adaptive model again has the best
overall performance for both correlation and error
(Figure 7). The correlation plot is qualitatively simi-
lar to the STS plot, but the global model has a much
higher RMSE across all training set sizes, indicating
a parameter shift across tasks. Importantly, the adap-
tive model remains unaffected by this shift.

The ASR results in Figure 8 show a different pat-
tern. Contrary to all results thus far, the global
model performs the best in this task. The individ-
ual model consistently has lower scores, regardless
of the amount of training data. Importantly, the adap-
tive model stays close to the global model even with
very few training examples. The ASR datasets are
heavily biased towards negative examples; thus, we

933

global 58.49
±1.12

58.84
±0.88

58.81
±1.18

58.94
±1.58

58.59
±2.39

59.25
±2.79

60.14
±2.77

individual 55.8
±4.65

60.15
±1.86

60.98
±1.15

61.38
±2.0

61.45
±2.21

61.79
±2.52

63.02
±2.51

adaptive 59.64
±1.74

60.97
±1.51

61.4
±1.07

61.59
±1.89

61.67
±2.3

61.85
±2.52

63.16
±2.49

20 50 75 100 125 150 175
of Training Pairs per Dataset

56

58

60

62

64

Pe
ar

so
n'

s r
 (%

)

global
individual
adaptive

(a) Correlation.

global 29.01
±0.92

28.95
±0.66

29.01
±0.78

28.9
±0.52

28.9
±0.68

28.59
±0.72

28.06
±0.8

individual 19.94
±0.88

19.03
±0.41

18.76
±0.33

18.81
±0.45

18.57
±0.52

18.65
±0.58

18.37
±0.84

adaptive 19.22
±0.32

18.9
±0.36

18.68
±0.3

18.77
±0.44

18.53
±0.53

18.64
±0.59

18.35
±0.83

20 50 75 100 125 150 175
of Training Pairs per Dataset

18

20

22

24

26

28

30

R
M

SE
 (%

)

global
individual
adaptive

(b) Error.

Figure 7: Multitask learning for SAS: mean±SD from 20 random train/test splits. The adaptive model
performs the best, and successfully handles domain shift evident from the global model error.

global 75.86
±0.39

76.16
±0.8

76.32
±0.96

76.3
±1.31

75.95
±1.22

76.78
±1.24

76.41
±1.31

individual 70.0
±1.45

74.53
±1.3

75.15
±1.25

75.66
±1.27

75.13
±1.11

76.21
±1.2

75.76
±1.17

adaptive 75.39
±1.14

75.95
±0.8

76.0
±1.07

76.04
±1.21

75.47
±1.0

76.35
±1.26

76.21
±1.23

20 50 75 100 125 150 175
of Training Pairs per Dataset

70

71

72

73

74

75

76

77

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (%
)

global
individual
adaptive

(a) Mean Average Precision.

global 82.82
±0.63

82.95
±0.91

83.23
±1.15

82.78
±1.59

82.18
±1.43

83.1
±1.3

82.27
±1.48

individual 76.61
±4.56

81.23
±1.64

81.91
±1.57

82.03
±1.44

81.36
±1.37

82.34
±1.24

81.66
±1.72

adaptive 82.31
±1.36

82.71
±0.86

82.72
±1.23

82.44
±1.39

81.66
±1.26

82.56
±1.42

82.07
±1.67

20 50 75 100 125 150 175
of Training Pairs per Dataset

76
77
78
79
80
81
82
83
84

M
ea

n
R

ec
ip

ro
ca

l R
an

k
(%

)

global
individual
adaptive

(b) Mean Reciprocal Rank.

Figure 8: Multitask learning for ASR: mean±SD from 20 random train/test splits. Least affected by coarse-
grained in-domain annotations, the global model performs the best; the adaptive model stays close across all
training set sizes.

934

use stratified sampling to ensure each ASR training
set has balanced examples.

A reason for the global model’s strength at ASR

may lie in the finer granularity of the real-valued
STS and SAS scores compared to binary ASR anno-
tations. If a fine granularity is indeed desirable in
training data, as a model that ignores in-domain and
out-of-domain distinction, the global model would be
affected the least by coarse-grained ASR annotations.
To test this hypothesis, we train a linear model on all
STS examples from SemEval 2012–2015 and apply it
to the ASR test set via a logistic transformation. This
model indeed demonstrates better results (MAP=.766,
MRR=.839) than our base model trained on ASR anno-
tations (Table 1). This is an unusual scenario where
in-domain training examples matter less than out-of-
domain ones, hurting domain-specific and adaptive
models.

Going back to STS, this finding also offers an expla-
nation of why adaptation might have been less useful
in multitask learning than in domain adaptation, as
only the former has ASR annotations.

6 Discussion and Related Work

For a variety of short text similarity tasks, domain
adaptation improves average performance across dif-
ferent domains, tasks, and training set sizes. Our
adaptive model is also by far the least affected by ad-
verse factors such as noisy training data and scarcity
or coarse granularity of in-domain examples. This
combination of excellent average-case and very reli-
able worst-case performance makes it the model of
choice for new STS domains and applications.

Although STS is a useful task with sparse data,
few domain adaptation studies have been reported.
Among those is the supervised model of Heilman
and Madnani (2013a; 2013b) based on the multilevel
model of Daumé III (2007). Gella et al. (2013) report
using a two-level stacked regressor, where the second
level combines predictions from n level 1 models,
each trained on data from a separate domain. Unsu-
pervised models use techniques such as tagging ex-
amples with their source datasets (Gella et al., 2013;
Severyn et al., 2013) and computing vocabulary sim-
ilarity between source and target domains (Arora et
al., 2015). To the best of our knowledge, ours is
the first systematic study of supervised DA and MTL

techniques for STS with detailed comparisons with
comparable non-adaptive baselines.

7 Conclusions and Future Work

We present hierarchical Bayesian models for super-
vised domain adaptation and multitask learning of
short text similarity models. In our experiments,
these models show improved overall performance
across different domains and tasks. We intend to ex-
plore adaptation to other STS applications and with
additional STS features (e.g., word and character n-
gram overlap) in future. Unsupervised and semi-
supervised domain adaptation techniques that do not
assume the availability of in-domain annotations or
that learn effective domains splits (Hu et al., 2014)
provide another avenue for future research.

Acknowledgments

This material is based in part upon work sup-
ported by the NSF under grants EHR/0835393 and
EHR/0835381. Boyd-Graber is supported by NSF

grants IIS/1320538, IIS/1409287, and NCSE/1422492.
Any opinions, findings, conclusions, or recommenda-
tions expressed here are those of the authors and do
not necessarily reflect the view of the sponsor.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 task 6: A pilot
on semantic textual similarity. In SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In *SEM.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Rada
Mihalcea, German Rigau, and Janyce Wiebe. 2014.
SemEval-2014 Task 10: Multilingual semantic textual
similarity. In SemEval.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo, Iñigo
Lopez-Gazpio, Montse Maritxalar, Rada Mihalcea, Ger-
man Rigau, Larraitz Uria, and Janyce Wiebe. 2015.
SemEval-2015 Task 2: Semantic textual similarity, en-
glish, spanish and pilot on interpretability. In SemEval.

Piyush Arora, Chris Hokamp, Jennifer Foster, and Gareth
J.F.Jones. 2015. DCU: Using distributional semantics
and domain adaptation for the semantic textual similar-
ity SemEval-2015 Task 2. In SemEval.

935

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: Computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In SemEval.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count and predict! A systematic compari-
son of context-counting vs. context-predicting semantic
vectors. In Proceedings of the Association for Compu-
tational Linguistics.

Chris Brockett. 2007. Aligning the RTE 2006 corpus.
Technical Report MSR-TR-2007-77, Microsoft Re-
search.

Yee Seng Chan and Hwee Tou Ng. 2008. MAXSIM:
A maximum similarity metric for machine translation
evaluation. In Proceedings of the Association for Com-
putational Linguistics.

Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. 2013.
Summarization through submodularity and dispersion.
In Proceedings of the Association for Computational
Linguistics.

Hal Daumé III. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the Association for Computa-
tional Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Hierarchical bayesian domain adaptation. In Confer-
ence of the North American Chapter of the Association
for Computational Linguistics, Morristown, NJ, USA.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Conference of the North American Chap-
ter of the Association for Computational Linguistics.

Spandana Gella, Bahar Salehi, Marco Lui, Karl
Grieser, Paul Cook, and Timothy Baldwin. 2013.
UniMelb NLP-CORE: Integrating predictions from
multiple domains and feature sets for estimating se-
mantic textual similarity. In *SEM.

Christian Hänig, Robert Remus, and Xose de la Puente.
2015. ExB Themis: Extensive feature extraction from
word alignments for semantic textual similarity. In
SemEval.

Michael Heilman and Nitin Madnani. 2013a. ETS: Do-
main adaptation and stacking for short answer scoring.
In SemEval.

Michael Heilman and Nitin Madnani. 2013b. HENRY-
CORE: Domain adaptation and stacking for text simi-
larity. In SemEval.

Yuening Hu, Ke Zhai, Vlad Eidelman, and Jordan Boyd-
Graber. 2014. Polylingual tree-based topic models
for translation domain adaptation. In Association for
Computational Linguistics.

Chang Liu, Daniel Dahlmeier, and Hwee Tou Ng. 2011.
Better evaluation metrics lead to better machine transla-
tion. In Proceedings of Empirical Methods in Natural
Language Processing.

André Lynum, Partha Pakray, Björn Gambäck, and Sergio
Jimenez. 2014. NTNU: Measuring semantic similarity
with sublexical feature representations and soft cardi-
nality. In SemEval.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proceedings of the Interna-
tional Conference on Learning Representations Work-
shop.

Michael Mohler, Razvan Bunescu, and Rada Mihalcea.
2011. Learning to grade short answer questions using
semantic similarity measures and dependency graph
alignments. In Proceedings of the Association for Com-
putational Linguistics.

Anand Patil, David Huard, and Christopher J. Fonnesbeck.
2010. PyMC: Bayesian stochastic modelling in python.
Journal of Statistical Software, 35(4).

Lakshmi Ramachandran, Jian Cheng, and Peter Foltz.
2015. Identifying patterns for short answer scoring
using graph-based lexico-semantic text matching. In
NAACL-BEA.

John Salvatier, Thomas V. Wiecki, and Christopher Fon-
nesbeck. 2015. Probabilistic programming in python
using PyMC. arXiv:1507.08050v1.

Aliaksei Severyn and Alessandro Moschitti. 2015. Learn-
ing to rank short text pairs with convolutional deep
neural networks. In Proceedings of the ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval.

Aliaksei Severyn, Massimo Nicosia, and Alessandro Mos-
chitti. 2013. Learning semantic textual similarity with
structural representations. In Proceedings of the Asso-
ciation for Computational Linguistics.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2014. Back to basics for monolingual alignment:
Exploiting word similarity and contextual evidence.
TACL, 2.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2015. DLS@CU: Sentence similarity from word align-
ment and semantic vector composition. In SemEval.

Mengqiu Wang, Noah A. Smith, and Teruko Mita-
mura. 2007. What is the Jeopardy model? a quasi-
synchronous grammar for QA. In Proceedings of Em-
pirical Methods in Natural Language Processing.

Lu Wang, Hema Raghavan, Vittorio Castelli, Radu Flo-
rian, and Claire Cardie. 2013. A sentence compression
based framework to query-focused multi-document
summarization. In Proceedings of the Association for
Computational Linguistics.

Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch,
and Peter Clark. 2013. Answer extraction as sequence
tagging with tree edit distance. In Conference of the
North American Chapter of the Association for Compu-
tational Linguistics.

936

Proceedings of NAACL-HLT 2016, pages 937–948,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Pairwise Word Interaction Modeling with Deep Neural Networks
for Semantic Similarity Measurement

Hua He1 and Jimmy Lin2

1 Department of Computer Science, University of Maryland, College Park
2 David R. Cheriton School of Computer Science, University of Waterloo

huah@umd.edu, jimmylin@uwaterloo.ca

Abstract

Textual similarity measurement is a challeng-
ing problem, as it requires understanding the
semantics of input sentences. Most previ-
ous neural network models use coarse-grained
sentence modeling, which has difficulty cap-
turing fine-grained word-level information for
semantic comparisons. As an alternative, we
propose to explicitly model pairwise word in-
teractions and present a novel similarity focus
mechanism to identify important correspon-
dences for better similarity measurement. Our
ideas are implemented in a novel neural net-
work architecture that demonstrates state-of-
the-art accuracy on three SemEval tasks and
two answer selection tasks.

1 Introduction

Given two pieces of text, measuring their seman-
tic textual similarity (STS) remains a fundamental
problem in language research and lies at the core of
many language processing tasks, including question
answering (Lin, 2007), query ranking (Burges et al.,
2005), and paraphrase generation (Xu, 2014).

Traditional NLP approaches, e.g., developing
hand-crafted features, suffer from sparsity because
of language ambiguity and the limited amount of
annotated data available. Neural networks and dis-
tributed representations can alleviate such sparsity,
thus neural network-based models are widely used
by recent systems for the STS problem (He et al.,
2015; Tai et al., 2015; Yin and Schütze, 2015).

However, most previous neural network ap-
proaches are based on sentence modeling, which
first maps each input sentence into a fixed-length

vector and then performs comparisons on these
representations. Despite its conceptual simplic-
ity, researchers have raised concerns about this ap-
proach (Mooney, 2014): Will fine-grained word-
level information, which is crucial for similarity
measurement, get lost in the coarse-grained sen-
tence representations? Is it really effective to “cram”
whole sentence meanings into fixed-length vectors?

In contrast, we focus on capturing fine-grained
word-level information directly. Our contribution is
twofold: First, instead of using sentence modeling,
we propose pairwise word interaction modeling that
encourages explicit word context interactions across
sentences. This is inspired by our own intuitions of
how people recognize textual similarity: given two
sentences sent1 and sent2, a careful reader might
look for corresponding semantic units, which we op-
erationalize in our pairwise word interaction model-
ing technique (Sec. 5). Second, based on the pair-
wise word interactions, we describe a novel simi-
larity focus layer which helps the model selectively
identify important word interactions depending on
their importance for similarity measurement. Since
not all words are created equal, important words that
can make more contributions deserve extra “focus”
from the model (Sec. 6).

We conducted thorough evaluations on ten test
sets from three SemEval STS competitions (Agirre
et al., 2012; Marelli et al., 2014; Agirre et al., 2014)
and two answer selection tasks (Yang et al., 2015;
Wang et al., 2007). We outperform the recent multi-
perspective convolutional neural networks of He et
al. (2015) and demonstrate state-of-the-art accuracy
on all five tasks. In addition, we conducted ablation

937

studies and visualized our models to show the clear
benefits of modeling pairwise word interactions for
similarity measurement.

2 Related Work

Feature engineering was the dominant approach in
most previous work; different types of sparse fea-
tures were explored and found useful. For ex-
ample, n-gram overlap features at the word and
character levels (Madnani et al., 2012; Wan et al.,
2006), syntax features (Das and Smith, 2009; Xu et
al., 2014), knowledge-based features using Word-
Net (Fellbaum, 1998; Fern and Stevenson, 2008)
and word-alignment features (Sultan et al., 2014).

The recent shift from sparse feature engineer-
ing to neural network model engineering has sig-
nificantly improved accuracy on STS datasets.
Most previous work use sentence modeling with a
“Siamese” structure (Bromley et al., 1993). For ex-
ample, Hu et al. (2014) used convolutional neural
networks that combine hierarchical structures with
layer-by-layer composition and pooling. Tai et al.
(2015) and Zhu et al. (2015) concurrently proposed
tree-structured long short-term memory networks,
which recursively construct sentence representations
following their syntactic trees. There are many
other examples of neural network-based sentence
modeling approaches for the STS problem (Yin and
Schütze, 2015; Huang et al., 2013; Andrew et al.,
2013; Weston et al., 2011; Socher et al., 2011;
Zarrella et al., 2015).

Sentence modeling is coarse-grained by nature.
Most recently, despite still using a sentence model-
ing approach, He et al. (2015) moved toward fine-
grained representations by exploiting multiple per-
spectives of input sentences with different types of
convolution filters and pooling, generating a “ma-
trix” representation where rows and columns cap-
ture different aspects of the sentence; comparisons
over local regions of the representation are then per-
formed. He et al. (2015) achieves highly competitive
accuracy, suggesting the usefulness of fine-grained
information. However, these multiple perspectives
are obtained at the cost of increased model complex-
ity, resulting in slow model training. In this work,
we take a different approach by focusing directly on
pairwise word interaction modeling.

Deep ConvNet

focusCube

simCube

Interaction Modeling

1. Context Modeling

3. Similarity Focus Layer

4. 19-Layer

2. Pairwise Word

On the mat there sit cats Ca
ts
sit

on
th
e m

at

bbb

b
b

bbb

b
b

On the mat there sit cats
Ca

ts
sit

on
th
e m

at

Cats Sit On the Mat On the Mat There Sit Cats

Figure 1: Our end-to-end neural network model,
consisting of four major components.

3 Model Overview

Figure 1 shows our end-to-end model with four ma-
jor components:

1. Bidirectional Long Short-Term Memory Net-
works (Bi-LSTMs) (Graves et al., 2005; Graves et
al., 2006) are used for context modeling of input
sentences, which serves as the basis for all follow-
ing components (Sec. 4).

2. A novel pairwise word interaction modeling tech-
nique encourages direct comparisons between
word contexts across sentences (Sec. 5).

3. A novel similarity focus layer helps the model
identify important pairwise word interactions
across sentences (Sec. 6).

938

4. A 19-layer deep convolutional neural network
(ConvNet) converts the similarity measurement
problem into a pattern recognition problem for fi-
nal classification (Sec. 7).

To our best knowledge this is the first neural net-
work model, a novel hybrid architecture combining
Bi-LSTMs and a deep ConvNet, that uses a simi-
larity focus mechanism with selective attention to
important pairwise word interactions for the STS
problem. Our approach only uses pretrained word
embeddings, and unlike several previous neural net-
work models (Yin and Schütze, 2015; Tai et al.,
2015), we do not use sparse features, unsupervised
model pretraining, syntactic parsers, or external re-
sources like WordNet. We describe details of each
component in the following sections.

4 Context Modeling

Different words occurring in similar semantic con-
texts of respective sentences have a higher chance to
contribute to the similarity measurement. We there-
fore need word context modeling, which serves as a
basis for all following components of this work.

LSTM (Hochreiter and Schmidhuber, 1997)
is a special variant of Recurrent Neural Net-
works (Williams and Zipser, 1989). It can cap-
ture long-range dependencies and nonlinear dynam-
ics between words, and has been successfully ap-
plied to many NLP tasks (Sutskever et al., 2014; Fil-
ippova et al., 2015). LSTM has a memory cell that
can store information over a long history, as well as
three gates that control the flow of information into
and out of the memory cell. At time step t, given an
input xt, previous output ht−1, input gate it, output
gate ot and forget gate ft, LSTM(xt, ht−1) outputs
the hidden state ht based on the equations below:

it = σ(W ixt + U iht−1 + bi) (1)

ft = σ(W fxt + Ufht−1 + bf) (2)
ot = σ(W oxt + Uoht−1 + bo) (3)

ut = tanh(Wuxt + Uuht−1 + bu) (4)
ct = it · ut + ft · ct−1 (5)
ht = ot · tanh(ct) (6)

LSTM(xt, ht−1) = ht (7)

BiLSTMs(xt, ht−1) = {LSTMf , LSTM b} (8)

where σ is the logistic sigmoid activation, W ∗,
U∗ and b∗ are learned weight matrices and biases.
LSTMs are better than RNNs for context modeling,
in that their memory cells and gating mechanisms
handle the vanishing gradients problem in training.

We use bidirectional LSTMs (Bi-LSTMs) for
context modeling in this work. Bi-LSTMs consist
of two LSTMs that run in parallel in opposite direc-
tions: one (forward LSTMf) on the input sequence
and the other (backward LSTM b) on the reverse of
the sequence. At time step t, the Bi-LSTMs hidden
state hbit is a concatenation of the hidden state hfort

of LSTMf and the hidden state hbackt of LSTM b,
representing the neighbor contexts of input xt in the
sequence. We define the unpack operation below:

hfort , hbackt = unpack(hbit) (9)

Context modeling with Bi-LSTMs allows all the
following components to be built over word con-
texts, rather than over individual words.

5 Pairwise Word Interaction Modeling

From our own intuitions, given two sentences in a
STS task, a careful human reader might compare
words and phrases across the sentences to establish
semantic correspondences and from these infer sim-
ilarity. Our pairwise word interaction model is in-
spired by such behavior: whenever the next word of
a sentence is read, the model would compare it and
its context against all words and their contexts in the
other sentence. Figure 2 illustrates this model.

We first define a comparison unit for comparing
two hidden states

−→
h1,
−→
h2 of Bi-LSTMs.

coU (
−→
h1,
−→
h2) = {cos(

−→
h1,
−→
h2), L2Euclid(

−→
h1,
−→
h2),

DotProduct(
−→
h1,
−→
h2)} (10)

Cosine distance (cos) measures the distance of
two vectors by the angle between them, while
L2 Euclidean distance (L2Euclid) and dot-product
distance (DotProduct) measure magnitude differ-
ences. We use three similarity functions for richer
measurement.

Algorithm 1 provides details of the modeling pro-
cess. Given the input xat ∈ senta at time step t
where a ∈ {1, 2}, its Bi-LSTMs hidden state hbiat is
the concatenation of the forward state hforat and the

939

Cats Sit On the Mat On the Mat There Sit Cats

Pairwise Word Interactions

Figure 2: Pairwise word interaction modeling. Sen-
tences are encoded by weight-shared Bi-LSTMs.
We construct pairwise word interactions for context
comparisons across sentences.

Algorithm 1 Pairwise Word Interaction Modeling
1: Initialize: simCube ∈ R13·|sent1|·|sent2| to all 1
2: for each time step t = 1...|sent1| do
3: for each time step s = 1...|sent2| do
4: hfor1t , h

back
1t = unpack(hbi1t)

5: hfor2s , h
back
2s = unpack(hbi2s)

6: hadd1t = hfor1t + hback1t

7: hadd2s = hfor2s + hback2s

8: simCube[1 : 3][t][s] = coU (hbi1t, h
bi
2s)

9: simCube[4 : 6][t][s] = coU (hfor1t , h
for
2s)

10: simCube[7 : 9][t][s] = coU (hback1t , hback2s)
11: simCube[10 : 12][t][s] = coU (hadd1t , h

add
2s)

12: end for
13: end for
14: return simCube

backward state hbackat . Algorithm 1 proceeds as fol-
lows: it enumerates all word pairs (s, t) across both
sentences, then perform comparisons using the coU
unit four times over: 1) Bi-LSTMs hidden states hbi1t
and hbi2s; 2) forward hidden states hfor1t and hfor2s ;
3) backward hidden states hback1t and hback2s ; and 4)
the addition of forward and backward hidden states
hadd1t and hadd2s . The output of Algorithm 1 is a
similarity cube simCubewith sizeR13·|sent1|·|sent2|,
where |sent∗| is the number of words in the sentence
sent∗. The 13 values collected from each word pair
(s, t) are: the 12 similarity distances, plus one extra
dimension for the padding indicator. Note that all
word interactions are modeled over word contexts
in Algorithm 1, rather than individual words.

Our pairwise word interaction model shares sim-
ilarities with recent popular neural attention mod-
els (Bahdanau et al., 2014; Rush et al., 2015). How-
ever, there are important differences: For example,
we do not use attention weight vectors or weighted

On the Mat There Sit Cats

C
a
ts

S
it
O
n
th
e
M
a
t

b
b

b

b
b

Figure 3: The similarity focus layer helps identify
important pairwise word interactions (in black dots)
depending on their importance for similarity mea-
surement.

representations, which are the core of attention mod-
els. The other difference is that attention weights
are typically interpreted as soft degrees with which
the model attends to particular words; in contrast,
our word interaction model directly utilizes multiple
similarity metrics, and thus is more explicit.

6 Similarity Focus Layer

Since not all words are created equal, important
pairwise word interactions between the sentences
(Sec. 5) that can better contribute to the similarity
measurement deserve more model focus. We there-
fore develop a similarity focus layer which can iden-
tify important word interactions and increase their
model weights correspondingly. This similarity fo-
cus layer is directly incorporated into our end-to-end
model and is placed on top of the pairwise word in-
teraction model, as in Figure 1.

Figure 3 shows one example where each cell of
the matrix represents a pairwise word interaction.
The similarity focus layer introduces re-weightings
to word interactions depending on their importance
for similarity measurement. The ones tagged with
black dots are considered important, and are given
higher weights than those without.

Algorithm 2 shows the forward pass of the sim-
ilarity focus layer. Its input is the similarity cube
simCube (Section 5). Algorithm 2 is designed
to incorporate two different aspects of similarity
based on cosine (angular) and L2 (magnitude) sim-
ilarity, thus it has two symmetric components: the
first one is based on cosine similarity (Line 5 to
Line 13); and the second one is based on L2 sim-
ilarity (Line 15 to Line 23). We also aim for the goal
that similarity values of all found important word in-

940

Algorithm 2 Forward Pass: Similarity Focus Layer
1: Input: simCube ∈ R13·|sent1|·|sent2|

2: Initialize: mask ∈ R13·|sent1|·|sent2| to all 0.1
3: Initialize: s1tag ∈ R|sent1| to all zeros
4: Initialize: s2tag ∈ R|sent2| to all zeros
5: sortIndex1 = sort(simCube[10])
6: for each id = 1...|sent1|+ |sent2| do
7: poss1, poss2 = calcPos(id, sortIndex1)
8: if s1tag[poss1] + s2tag[poss2] == 0 then
9: s1tag[poss1] = 1

10: s2tag[poss2] = 1
11: mask[:][poss1][poss2] = 1
12: end if
13: end for
14: Re-Initialize: s1tag, s2tag to all zeros
15: sortIndex2 = sort(simCube[11])
16: for each id = 1...|sent1|+ |sent2| do
17: poss1, poss2 = calcPos(id, sortIndex2)
18: if s1tag[poss1] + s2tag[poss2] == 0 then
19: s1tag[poss1] = 1
20: s2tag[poss2] = 1
21: mask[:][poss1][poss2] = 1
22: end if
23: end for
24: mask[13][:][:] = 1
25: focusCube = mask · simCube
26: return focusCube ∈ R13·|sent1|·|sent2|

teractions should be maximized. To achieve this, we
sort the similarity values in descending order (Line 5
for cosine, Line 15 for L2). Note channels 10 and
11 of the simCube contain cosine and L2 values,
respectively; the padding indicator is in Line 24.

We start with the cosine part first, then L2. For
each, we check word interaction candidates mov-
ing down the sorted list. Function calcPos is used
to calculate relative sentence positions poss∗ in the
simCube given one interaction pair. We follow the
constraint that no word in both sentences should be
tagged to be important more than once. We in-
crease weights of important word interactions to 1
(in Line 11 based on cosine and Line 21 based on
L2), while unimportant word interactions receive
weights of 0.1 (in Line 2).

We use a mask matrix, mask, to hold the weights
of each. The final output of the similarity focus layer
is a focus-weighted similarity cube focusCube,
which is the element-wise multiplication (Line 25)
of the matrix mask and the input simCube.

The similarity focus layer is based on the follow-

ing intuition: given each word in one sentence, we
look for its semantically similar twin in the other
sentence; if found then this word is considered im-
portant, otherwise it contributes to a semantic dif-
ference. Though technically different, this process
shares conceptual similarity with finding translation
equivalences in statistical machine translation (Al-
onaizan et al., 1999).

The backward pass of the similarity focus layer is
straightforward: we reuse themask matrix as gener-
ated in the forward pass and apply the element-wise
multiplication of mask and inflow gradients, then
propagate the resulting gradients backward.

7 Similarity Classification with Deep
Convolutional Neural Networks

The focusCube contains focus-weighted fine-
grained similarity information. In the final model
component we use the focusCube to compute the
final similarity score. If we treat the focusCube as
an “image” with 13 channels, then semantic simi-
larity measurement can be converted into a pattern
recognition (image processing) problem, where we
are looking for patterns of strong pairwise word in-
teractions in the “image”. The stronger the overall
pairwise word interactions are, the higher similarity
the sentence pair will have.

Recent advances from successful systems at
ImageNet competitions (Simonyan and Zisserman,
2014; Szegedy et al., 2015) show that the depth of a
neural network is a critical component for achieving
competitive performance. We therefore use a deep
homogeneous architecture which has repetitive con-
volution and pooling layers.

Our network architecture (Table 1) is composed
of spatial max pooling layers, spatial convolutional
layers (Conv) with a small filter size of 3 × 3 plus
stride 1 and padding 1. We adopt this filter size
because it is the smallest one to capture the space
of left/right, up/down, and center; the padding and
stride is used to preserve the spatial input resolution.
We then use fully-connected layers followed by the
final softmax layer for the output. After each spatial
convolutional layer, a rectified linear units (ReLU)
non-linearity layer (Krizhevsky et al., 2012) is used.

The input to this deep ConvNet is the focusCube,
which does not always have the same size because

941

Deep ConvNet Configurations
Input Size: 32 by 32 Input Size: 48 by 48

Spatial Conv 128: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: size 2× 2, stride 2
Spatial Conv 164: size 3× 3, stride 1, pad 1

ReLU
Max Pooling: size 2× 2, stride 2

Spatial Conv 192: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: size 2× 2, stride 2
Spatial Conv 192: size 3× 3, stride 1, pad 1

ReLU
Max Pooling: size 2× 2, stride 2

Spatial Conv 128: size 3× 3, stride 1, pad 1
ReLU

Max Pooling: 2× 2, s2 Max Pooling: 3× 3, s1
Fully-Connected Layer

ReLU
Fully-Connected Layer

LogSoftMax

Table 1: Deep ConvNet architecture given two
padding size configurations for final classification.

the lengths of input sentences vary. To address this,
we use zero padding. For computational reasons we
provide two configurations in Table 1, for length
padding up to either 32 × 32 or 48 × 48. The
only difference between the two configurations is
the last pooling layer. If sentences are longer than
the padding length limit we only use the number of
words up to the limit. In our experiments we found
the 48×48 padding limit to be acceptable since most
sentences in our datasets are only 1−30 words long.

8 Experimental Setup

Datasets. We conducted five separate experiments
on ten different datasets: three recent SemEval com-
petitions and two answer selection tasks. Note that
the answer selection task, which is to rank candi-
date answer sentences based on their similarity to
the questions, is essentially the similarity measure-
ment problem. The five experiments are as follows:

1. Sentences Involving Compositional Knowledge
(SICK) is from Task 1 of the 2014 SemEval com-
petition (Marelli et al., 2014) and consists of
9,927 annotated sentence pairs, with 4,500 for
training, 500 as a development set, and 4,927 for

STS2014 Domain Pairs
deft-forum discussion forums 450
deft-news news articles 300
headlines news headlines 750
images image descriptions 750
OnWN word sense definitions 750
tweet-news social media 750
Total 3,750

Table 2: Description of STS2014 test sets.

testing. Each pair has a relatedness score ∈ [1, 5]
which increases with similarity.

2. Microsoft Video Paraphrase Corpus (MSRVID)
is from Task 6 of the 2012 SemEval competi-
tion (Agirre et al., 2012) and consists of 1,500 an-
notated pairs of video descriptions, with half for
training and the other half for testing. Each sen-
tence pair has a relatedness score ∈ [0, 5] which
increases with similarity.

3. Task 10 of the 2014 SemEval competition on Se-
mantic Textual Similarity (STS2014) (Agirre et
al., 2014) provided six different test sets from dif-
ferent domains. Each pair has a similarity score
∈ [0, 5] which increases with similarity. Follow-
ing the competition rules, our training data is only
drawn from previous STS competitions in 2012
and 2013. We excluded training sentences with
lengths longer than the 48 word padding limit,
resulting in 7,382 training pairs out of a total of
7,592. Table 2 provides a brief description of the
test sets.

4. The open domain question-answering WikiQA
data is from Bing query logs by Yang et al.
(2015). We followed the same pre-processing
steps as Yang et al. (2015), where questions with
no correct candidate answer sentences are ex-
cluded and answer sentences are truncated to 40
tokens. The resulting dataset consists of 873
questions with 8,672 question-answer pairs in the
training set, 126 questions with 1,130 pairs in the
development set, and 243 questions with 2,351
pairs in the test set.

5. The TrecQA dataset (Wang et al., 2007) from
the Text Retrieval Conferences has been widely
used for the answer selection task during the past
decade. To enable direct comparison with pre-
vious work, we used the same training, develop-
ment, and test sets as released by Yao et al. (2013).

942

The TrecQA data consists of 1,229 questions with
53,417 question-answer pairs in the TRAIN-ALL
training set, 82 questions with 1,148 pairs in the
development set, and 100 questions with 1,517
pairs in the test set.

Training. For experiments on SICK, MSRVID, and
STS2014, the training objective is to minimize the
KL-divergence loss:

loss(θ) =
1
n

n∑
k=1

KL
(
fk || f̂kθ

)
(11)

where f is the ground truth, f̂θ is the predicted dis-
tribution with model weights θ, and n is the number
of training examples.

We used a hinge loss for the answer selection task
on WikiQA and TrecQA data. The training objec-
tive is to minimize the following loss, summed over
examples 〈x, ygold 〉:

loss(θ, x, ygold) =∑
y′ 6=ygold

max(0, 1 + fθ(x, y′)− fθ(x, ygold)) (12)

where ygold is the ground truth label, input x is the
pair of sentences x = {S1, S2}, θ is the model
weight vector, and the function fθ(x, y′) is the out-
put of our model.

In all cases, we performed optimization using
RMSProp (Tieleman and Hinton, 2012) with back-
propagation (Bottou, 1998), with a learning rate
fixed to 10−4.
Settings. For the SICK and MSRVID experi-
ments, we used 300-dimension GloVe word embed-
dings (Pennington et al., 2014). For the STS2014,
WikiQA, and TrecQA experiments, we used 300-
dimension PARAGRAM-SL999 embeddings from
Wieting et al. (2015) and the PARAGRAM-PHRASE

embeddings from Wieting et al. (2016), trained
on word pairs from the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013). We did not up-
date word embeddings in all experiments.

We used the SICK development set for tuning and
then applied exactly the same hyperparameters to all
ten test sets. For the answer selection task (Wiki-
QA and TrecQA), we used the official trec eval
scorer to compute the metrics Mean Average Preci-
sion (MAP) and Mean Reciprocal Rank (MRR) and

Model r ρ MSE
Socher et al. (2014) DTRNN 0.7863 0.7305 0.3983
Socher et al. (2014) SDTRNN 0.7886 0.7280 0.3859
Lai and Hockenmaier (2014) 0.7993 0.7538 0.3692
Jimenez et al. (2014) 0.8070 0.7489 0.3550
Bjerva et al. (2014) 0.8268 0.7721 0.3224
Zhao et al. (2014) 0.8414 - -
LSTM 0.8477 0.7921 0.2949
Bi-LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bi-LSTM 0.8488 0.7926 0.2893
Tai et al. (2015) Const. LSTM 0.8491 0.7873 0.2852
Tai et al. (2015) Dep. LSTM 0.8676 0.8083 0.2532
He et al. (2015) 0.8686 0.8047 0.2606
This work 0.8784 0.8199 0.2329

Table 3: Test results on SICK grouped as: (1) RNN
variants; (2) SemEval 2014 systems; (3) Sequential
LSTM variants; (4) Dependency and constituency
tree LSTMs. Evaluation metrics are Pearson’s r,
Spearman’s ρ, and mean squared error (MSE). Rows
in grey are neural network models.

selected the best development model based on MRR
for final testing. Our timing experiments were con-
ducted on an Intel Xeon E5-2680 CPU.

Due to sentence length variations, for the SICK
and MSRVID data we padded the sentences to 32
words; for the STS2014, WikiQA, and TrecQA data,
we padded the sentences to 48 words.

9 Results

SICK Results (Table 3). Our model outperforms
previous neural network models, most of which
are based on sentence modeling. The ConvNet
work (He et al., 2015) and TreeLSTM work (Tai et
al., 2015) achieve comparable accuracy; for exam-
ple, their difference in Pearson’s r is only 0.1%. In
comparison, our model outperforms both by 1% in
Pearson’s r, over 1.1% in Spearman’s ρ, and 2-3%
in MSE. Note that we used the same word embed-
dings, sparse distribution targets, and loss function
as in He et al. (2015) and Tai et al. (2015), thereby
representing comparable experimental conditions.

MSRVID Results (Table 4). Our model outper-
forms the work of He et al. (2015), which already
reports a Pearson’s r score of over 0.9,

STS2014 Results (Table 5). Systems in the com-
petition are ranked by the weighted mean (the of-

943

Model Pearson’s r
Beltagy et al. (2014) 0.8300
Bär et al. (2012) 0.8730
Šarić et al. (2012) 0.8803
He et al. (2015) 0.9090
This work 0.9112

Table 4: Test results on MSRVID data.

STS2014 3rd 2nd 1st This work
deft-forum 0.5305 0.4711 0.4828 0.5684
deft-news 0.7813 0.7628 0.7657 0.7079
headlines 0.7837 0.7597 0.7646 0.7551
image 0.8343 0.8013 0.8214 0.8221
OnWN 0.8502 0.8745 0.8589 0.8847
tweetnews 0.6755 0.7793 0.7639 0.7469
Wt. Mean 0.7549 0.7605 0.7610 0.7666

Table 5: Test results on all six test sets in STS2014.
We show results of the top three participating sys-
tems at the competition in Pearson’s r scores.

ficial measure) of Pearson’s r scores calculated
based on the number of sentence pairs in each test
set. We show the 1st ranked (Sultan et al., 2014),
2nd (Kashyap et al., 2014), 3rd (Lynum et al., 2014)
systems in the STS2014 competition, all of which
are based on heavy feature engineering. Our model
does not use any sparse features, WordNet, or parse
trees, but still performs favorably compared to the
STS2014 winning system (Sultan et al., 2014).

WikiQA Results (Table 6). We compared our
model to competitive baselines prepared by Yang
et al. (2015) and also evaluated He et al. (2015)’s
multi-perspective ConvNet on the same data. The
neural network models in the table, paragraph vec-
tor (PV) (Le and Mikolov, 2014), CNN (Yu et al.,
2014), and PV-Cnt/CNN-Cnt with word matching
features (Yang et al., 2015), are mostly based on sen-
tence modeling. Our model outperforms them all.

TrecQA Results (Table 7). This is the largest
dataset in our experiments, with over 55,000
question-answer pairs. Only recently have neural
network approaches (Yu et al., 2014) started to show
promising results on this decade-old dataset. Pre-
vious approaches with probabilistic tree-edit tech-
niques or tree kernels (Wang and Manning, 2010;
Heilman and Smith, 2010; Yao et al., 2013) have
been successful since tree structure information per-

Model MAP MRR
Word Cnt (Yang et al., 2015) 0.4891 0.4924
Wgt Word Cnt (Yang et al., 2015) 0.5099 0.5132
PV (Le and Mikolov, 2014) 0.5110 0.5160
PV-Cnt (Yang et al., 2015) 0.5976 0.6058
LCLR (Yih et al., 2013) 0.5993 0.6086
CNN (Yu et al., 2014) 0.6190 0.6281
CNN-Cnt (Yang et al., 2015) 0.6520 0.6652
He et al. (2015) 0.6930 0.7090
This work 0.7090 0.7234

Table 6: Test results on WikiQA data.

Model MAP MRR
Cui et al. (2005) 0.4271 0.5259
Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917
Wang and Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6307 0.7477
Severyn and Moschitti (2013) 0.6781 0.7358
Yih et al. (2013) 0.7092 0.7700
Wang and Nyberg (2015) 0.7134 0.7913
Severyn and Moschitti (2015) 0.7459 0.8078
This work 0.7588 0.8219

Table 7: Test results on TrecQA data.

mits a fine-grained focus on important words for
similarity comparison purposes. Our approach es-
sentially follows this intuition, but in a neural net-
work setting with the use of our similarity focus
layer. Our model outperforms previous work.

10 Analysis

Ablation Studies. Table 8 shows the results of abla-
tion studies on SICK and WikiQA data. We removed
or replaced one component at a time from the full
system and performed re-training and re-testing. We
found large drops when removing the context mod-
eling component, indicating that the context infor-
mation provided by the Bi-LSTMs is crucial for the
following components (e.g., interaction modeling).
The use of our similarity focus layer is also ben-
eficial, especially on the WikiQA data. When we
replaced the entire similarity focus layer with a ran-
dom dropout layer (p = 0.3), the dropout layer hurts
accuracy; this shows the importance of directing the
model to focus on important pairwise word interac-
tions, to better capture similarity.

Model Efficiency and Storage. He et al. (2015)’s

944

Ablation on SICK Data Pearson
Full Model 0.8784
- Remove context modeling (Sec. 4) -0.1225
- Remove entire focus layer (Sec. 6) -0.0083
- Replace entire focus layer with dropout -0.0314
Ablation on WikiQA Data MRR
Full Model 0.7234
- Remove context modeling (Sec. 4) -0.0990
- Remove entire focus layer (Sec. 6) -0.0327
- Replace entire focus layer with dropout -0.0403

Table 8: Ablation studies on SICK and WikiQA
data, removing each component separately.

Model # of Parameters Timing (s)
He et al. (2015) 10.0 million 2265
This work 1.7 million 664

Table 9: Comparison of training efficiency and num-
ber of tunable model parameters on SICK data. Tim-
ing is the average epoch time in seconds for training
on a single CPU thread.

ConvNet model uses multiple types of convolution
and pooling for sentence modeling. This results in a
wide architecture with around 10 million tunable pa-
rameters. Our approach only models pairwise word
interactions and does not require such a complicated
architecture. Compared to that previous work, Ta-
ble 9 shows that our model is 3.4× faster in training
and has 83% fewer tunable parameters.

Visualization. Table 10 visualizes the cosine value
channel of the focusCube for pairwise word inter-
actions given two sentence pairs in the SICK test set.
Note for easier visualization, the values are multi-
plied by 10. Darker red areas indicate stronger pair-
wise word interactions. From these visualizations,
we see that our model is able to identify important
word pairs (in dark red) and tag them with proper
similarity values, which are significantly higher than
the ones of their neighboring unimportant pairs.
This shows that our model is able to recognize im-
portant fine-grained word-level information for bet-
ter similarity measurement, suggesting the reason
why our model performs well.

11 Conclusion

In summary, we developed a novel neural net-
work model based on a hybrid of ConvNet and Bi-

A man is playing the drum
A 8.99 0.69 0.43 0.32 0.38 0.22
man 0.70 9.93 0.62 0.45 0.46 0.38
is 0.64 0.80 8.50 0.62 0.58 0.36
practicing 0.46 0.67 0.66 6.51 0.62 0.48
the 0.35 0.56 0.66 0.64 7.85 0.52
drum 0.27 0.47 0.46 0.55 0.64 8.82

A man is carrying a tree
A 0.53 0.33 0.32 0.33 5.53 0.49
tree 0.32 0.30 0.19 0.20 0.38 8.73
is 0.35 0.31 0.21 0.06 0.03 0.40
being 0.28 0.37 2.60 0.18 0.13 0.38
picked 0.15 0.18 0.10 1.60 0.07 0.27
up 0.26 0.27 0.06 0.13 0.05 0.21
by 0.43 0.36 0.08 1.33 0.15 0.29
a 6.50 0.45 0.03 0.08 0.16 0.23
man 0.50 8.60 0.45 0.34 0.34 0.34

Table 10: Visualization of cosine values (multiplied
by 10) in the focusCube given two sentence pairs
in the SICK test set.

LSTMs for the semantic textual similarity measure-
ment problem. Our pairwise word interaction model
and the similarity focus layer can better capture fine-
grained semantic information, compared to previ-
ous sentence modeling approaches that attempt to
“cram” all sentence information into a fixed-length
vector. We demonstrated the state-of-the-art accu-
racy of our approach on data from three SemEval
competitions and two answer selection tasks.

Acknowledgments

This work was supported by the U.S. National Sci-
ence Foundation under awards IIS-1218043 and
CNS-1405688. Any opinions, findings, conclusions,
or recommendations expressed are those of the au-
thors and do not necessarily reflect the views of the
sponsor. We would like to thank Kevin Gimpel, John
Wieting and TS for all the support.

References

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Computa-
tional Semantics, pages 385–393.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.

945

2014. SemEval-2014 task 10: Multilingual semantic
textual similarity. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation, pages 81–
91.

Yaser Al-onaizan, Jan Curin, Michael Jahr, Kevin Knight,
John Lafferty, Dan Melamed, Franz-Josef Och, David
Purdy, Noah A. Smith, and David Yarowsky. 1999.
Statistical machine translation. Final report, JHU
Summer Workshop on Language Engineering.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen
Livescu. 2013. Deep canonical correlation analysis.
In Proceedings of the 30th International Conference
on Machine Learning, pages 1247–1255.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: Computing semantic textual sim-
ilarity by combining multiple content similarity mea-
sures. In Proceedings of the First Joint Conference
on Lexical and Computational Semantics, pages 435–
440.

Islam Beltagy, Katrin Erk, and Raymond Mooney. 2014.
Probabilistic soft logic for semantic textual similar-
ity. In Proceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics, pages 1210–
1219.

Johannes Bjerva, Johan Bos, Rob van der Goot, and
Malvina Nissim. 2014. The meaning factory: For-
mal semantics for recognizing textual entailment and
determining semantic similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation,
pages 642–646.

Léon Bottou. 1998. Online learning and stochastic ap-
proximations. In David Saad, editor, Online Learning
and Neural Networks. Cambridge University Press.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle
Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger,
and Roopak Shah. 1993. Signature verification using
a “Siamese” time delay neural network. International
Journal of Pattern Recognition and Artificial Intelli-
gence, 7(4):669–688.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd International Conference on
Machine Learning, pages 89–96.

Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-
Seng Chua. 2005. Question answering passage re-
trieval using dependency relations. In Proceedings
of the 28th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Re-
trieval, pages 400–407.

Dipanjan Das and Noah A. Smith. 2009. Paraphrase
identification as probabilistic quasi-synchronous
recognition. In Proceedings of the 47th Annual Meet-
ing of the Association for Computational Linguistics,
pages 468–476.

Christiane Fellbaum. 1998. WordNet: An Electronic Lex-
ical Database. MIT Press.

Samuel Fern and Mark Stevenson. 2008. A semantic
similarity approach to paraphrase detection. In Pro-
ceedings of the 11th Annual Research Colloquium of
the UK Special-Interest Group for Computational Lin-
gusitics, pages 45–52.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 360–
368.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 758–764.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional LSTM networks for im-
proved phoneme classification and recognition. In
Proceedings of the 15th International Conference on
Artificial Neural Networks: Formal Models and Their
Applications - Part II, pages 799–804.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd International Conference on Machine Learning,
pages 369–376.

Hua He, Kevin Gimpel, and Jimmy Lin. 2015. Multi-
perspective sentence similarity modeling with convo-
lutional neural networks. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1576–1586.

Michael Heilman and Noah A. Smith. 2010. Tree
edit models for recognizing textual entailments, para-
phrases, and answers to questions. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 1011–1019.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In Advances

946

in Neural Information Processing Systems 27, pages
2042–2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM In-
ternational Conference on Information & Knowledge
Management, pages 2333–2338.

Sergio Jimenez, George Duenas, Julia Baquero, Alexan-
der Gelbukh, Av Juan Dios Bátiz, and Av Mendizábal.
2014. UNAL-NLP: Combining soft cardinality fea-
tures for semantic textual similarity, relatedness and
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 732–742.

Abhay Kashyap, Lushan Han, Roberto Yus, Jennifer
Sleeman, Taneeya Satyapanich, Sunil Gandhi, and
Tim Finin. 2014. Meerkat mafia: Multilingual and
cross-level semantic textual similarity systems. In
Proceedings of the 8th International Workshop on Se-
mantic Evaluation, pages 416–423.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
2012. ImageNet classification with deep convolutional
neural networks. In Advances in Neural Information
Processing Systems 25, pages 1097–1105.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
denotational and distributional approach to semantics.
In Proceedings of the 8th International Workshop on
Semantic Evaluation, pages 329–334.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of the 31th International Conference on Machine
Learning, pages 1188–1196.

Jimmy Lin. 2007. An exploration of the princi-
ples underlying redundancy-based factoid question an-
swering. ACM Transactions on Information Systems,
25(2):1–55.

André Lynum, Partha Pakray, Björn Gambäck, and Ser-
gio Jimenez. 2014. NTNU: Measuring semantic simi-
larity with sublexical feature representations and soft
cardinality. In Proceedings of the 8th International
Workshop on Semantic Evaluation, pages 448–453.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In Proceedings of the 2012
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 182–190.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zampar-
elli. 2014. SemEval-2014 task 1: Evaluation of com-
positional distributional semantic models on full sen-
tences through semantic relatedness and textual entail-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation, pages 1–8.

Raymond J. Mooney. 2014. Semantic parsing: Past,
present, and future. In ACL Workshop on Semantic
Parsing. Presentation slides.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1532–1543.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. CoRR, abs/1509.00685.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. TakeLab: systems
for measuring semantic text similarity. In Proceedings
of the First Joint Conference on Lexical and Computa-
tional Semantics, pages 441–448.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 458–467.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 373–
382.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems 24, pages 801–809.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions of
the Association for Computational Linguistics, 2:207–
218.

Md Arafat Sultan, Steven Bethard, and Tamara Sumner.
2014. Dls@cu: Sentence similarity from word align-
ment. In Proceedings of the 8th International Work-
shop on Semantic Evaluation, pages 241–246.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems
27, pages 3104–3112.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.

947

2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 1556–
1566.

Tijmen Tieleman and Geoffrey E. Hinton. 2012. Lecture
6.5—RMSProp: Divide the gradient by a running av-
erage of its recent magnitude. Coursera: Neural Net-
works for Machine Learning.

Stephen Wan, Mark Dras, Robert Dale, and Cecile Paris.
2006. Using Dependency-based Features to Take the
“Para-farce” out of Paraphrase. In Australasian Lan-
guage Technology Workshop, pages 131–138.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics, pages 1164–1172.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics, pages 707–712.

Mengqiu Wang, Noah A. Smith, and Teruko Mita-
mura. 2007. What is the Jeopardy model? A quasi-
synchronous grammar for QA. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 22–32.

Jason Weston, Samy Bengio, and Nicolas Usunier. 2011.
Wsabie: Scaling up to large vocabulary image annota-
tion. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, pages 2764–
2770.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and back.
Transactions of the Association for Computational
Linguistics, 3:345–358.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Towards universal paraphrastic sen-
tence embeddings. In Proceedings of the 4th Interna-
tional Conference on Learning Representations.

Ronald J. Williams and David Zipser. 1989. A learning
algorithm for continually running fully recurrent neu-
ral networks. Neural Computation, 1(2):270–280.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from Twitter. Transactions of

the Association for Computational Linguistics, 2:435–
448.

Wei Xu. 2014. Data-Drive Approaches for Paraphras-
ing Across Language Variations. Ph.D. thesis, Depart-
ment of Computer Science, New York University.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2013–2018.

Xuchen Yao, Benjamin Van Durme, Chris Callison-
burch, and Peter Clark. 2013. Answer extraction as
sequence tagging with tree edit distance. In Proceed-
ings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 858–867.

Wentau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013. Question answering using
enhanced lexical semantic models. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, pages 1744–1753.

Wenpeng Yin and Hinrich Schütze. 2015. Convolutional
neural network for paraphrase identification. In Pro-
ceedings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 901–
911.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep Learning for Answer
Sentence Selection. In NIPS Deep Learning Work-
shop.

Guido Zarrella, John Henderson, Elizabeth M.
Merkhofer, and Laura Strickhart. 2015. MITRE:
Seven systems for semantic similarity in tweets. In
Proceedings of the 9th International Workshop on
Semantic Evaluation, pages 12–17.

Jiang Zhao, Tian Tian Zhu, and Man Lan. 2014. ECNU:
One stone two birds: Ensemble of heterogenous mea-
sures for semantic relatedness and textual entailment.
In Proceedings of the 8th International Workshop on
Semantic Evaluation, pages 271–277.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo. 2015.
Long short-term memory over recursive structures. In
Proceedings of the 32nd International Conference on
Machine Learning, pages 1604–1612.

948

Proceedings of NAACL-HLT 2016, pages 949–959,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

An Attentional Model for Speech Translation Without Transcription

Long Duong,12 Antonios Anastasopoulos,3 David Chiang,3 Steven Bird14 and Trevor Cohn1

1Department of Computing and Information Systems, University of Melbourne
2National ICT Australia, Victoria Research Laboratory

3Department of Computer Science and Engineering, University of Notre Dame
4International Computer Science Institute, University of California Berkeley

Abstract

For many low-resource languages, spoken lan-
guage resources are more likely to be an-
notated with translations than transcriptions.
This bilingual speech data can be used for
word-spotting, spoken document retrieval, and
even for documentation of endangered lan-
guages. We experiment with the neural, atten-
tional model applied to this data. On phone-
to-word alignment and translation reranking
tasks, we achieve large improvements relative
to several baselines. On the more challeng-
ing speech-to-word alignment task, our model
nearly matches GIZA++’s performance on
gold transcriptions, but without recourse to
transcriptions or to a lexicon.

1 Introduction

For many low-resource languages, spoken language
resources are more likely to come with translations
than with transcriptions. Most of the world’s lan-
guages are not written, so there is no orthography
for transcription. Phonetic transcription is possible
but too costly to produce at scale. Even when a mi-
nority language has an official orthography, people
are often only literate in the language of formal ed-
ucation, such as the national language. Neverthe-
less, it is relatively easy to provide written or spoken
translations for audio sources. Subtitled or dubbed
movies are a widespread example.

One application of models of bilingual speech
data is documentation of endangered languages.
Since most speakers are bilingual in a higher-
resource language, they can listen to a source lan-
guage recording sentence by sentence and provide

a spoken translation (Bird, 2010; Bird et al., 2014).
By aligning this data at the word level, we hope to
automatically identify regions of data where further
evidence is needed, leading to a substantial, inter-
pretable record of the language that can be studied
even if the language falls out of use (Abney and
Bird, 2010; Bird and Chiang, 2012).

We experiment with extensions of the neural, at-
tentional model of Bahdanau et al. (2015), work-
ing at the phone level or directly on the speech sig-
nal. We assume that the target language is a high-
resource language such as English that can be auto-
matically transcribed; therefore, in our experiments,
the target side is text rather than the output of an au-
tomatic speech recognition (ASR) system.

In the first set of experiments, as a stepping
stone to direct modeling of speech, we represent
the source as a sequence of phones. For phone-to-
word alignment, we obtain improvements of 9–24%
absolute F1 over several baselines (Och and Ney,
2000; Neubig et al., 2011; Stahlberg et al., 2012).
For phone-to-word translation, we use our model to
rerank n-best lists from Moses (Koehn et al., 2007)
and observe improvements in BLEU of 0.9–1.7.

In the second set of experiments, we operate di-
rectly on the speech signal, represented as a se-
quence of Perceptual Linear Prediction (PLP) vec-
tors (Hermansky, 1990). Without using transcrip-
tions or a lexicon, the model is able to align the
source-language speech to its English translations
nearly as well as GIZA++ using gold transcriptions.

Our main contributions are: (i) proposing a
new task, alignment of speech with text transla-
tions, including a dataset extending the Spanish

949

Fisher and CALLHOME datasets; (ii) extending
the neural, attentional model to outperform exist-
ing models at both alignment and translation rerank-
ing when working on source-language phones; and
(iii) demonstrating the feasibility of alignment di-
rectly on source-language speech.

2 Background

To our knowledge, there has been relatively little re-
search on models that operate directly on parallel
speech. Typically, speech is transcribed into a word
sequence or lattice using ASR, or at least a phone
sequence or lattice using a phone recognizer. This
normally requires manually transcribed data and a
pronunciation lexicon, which can be costly to cre-
ate. Recent work has introduced models that do
not require pronunciation lexicons, but train only
on speech with text transcriptions (Lee et al., 2013;
Maas et al., 2015; Graves et al., 2006). Here, we
bypass phonetic transcriptions completely, and rely
only on translations.

Such data can be found, for example, in subti-
tled or dubbed movies. Some specific examples of
corpora of parallel speech are the European Parlia-
ment Plenary Sessions Corpus (Van den Heuvel et
al., 2006), which includes parliamentary speeches in
the 21 official EU languages, as well as their inter-
pretation into all the other languages; and the TED
Talks Corpus (Cettolo et al., 2012), which provides
speech in one language (usually English) together
with translations into other languages.

As mentioned in the introduction, a stepping-
stone to model parallel speech is to assume a rec-
ognizer that can produce a phonetic transcription
of the source language, then to model the transfor-
mation from transcription to translation. We com-
pare against three previous models that can oper-
ate on sequences of phones. The first is simply to
run GIZA++ (IBM Model 4) on a phonetic tran-
scription (without word boundaries) of the source
side. Stahlberg et al. (2012) present a modifica-
tion of IBM Model 3, named Model 3P, designed
specifically for phone-to-word alignment. Finally,
pialign (Neubig et al., 2011), an unsupervised model
for joint phrase alignment and extraction, has been
shown to work well at the character level (Neubig et
al., 2012) and extends naturally to work on phones.

Speech Signal

Representation S1 SmS2 S3

Ci

<s>

Encoder

Attention

Decoder

w1 wi-1 wn

HT

HS

wi

Figure 1: The attentional model as applied to our tasks. We

consider two types of input: discrete phone input, or continuous

audio, represented as PLP vectors at 10ms intervals

3 Model

We base our approach on the attentional translation
model of Cohn et al. (2016), an extension of Bah-
danau et al. (2015) which incorporates more fine
grained components of the attention mechanism to
mimic the structural biases in standard word based
translation models. The attentional model encodes
a source as a sequence of vectors, then decodes it
to generate the output. At each step, it “attends”
to different parts of the encoded sequence. This
model has been used for translation, image cap-
tion generation, and speech recognition (Luong et
al., 2015; Xu et al., 2015; Chorowski et al., 2014;
Chorowski et al., 2015). Here, we briefly describe
the basic attentional model, following Bahdanau et
al. (2015), review the extensions for encoding struc-
tural biases (Cohn et al., 2016), and then present our
novel means for adapting the approach handle paral-
lel speech.

3.1 Base attentional model

The model is shown in Figure 1. The speech signal is
represented as a sequence of vectors S 1, S 2, . . . , S m.
For the first set of experiments, each S i is a 128-
dimensional vector-space embedding of a phone.
For the second set of experiments, each S i is the

950

39-dimensional PLP vector of a single frame of the
speech signal. Our model has two main parts: an en-
coder and a decoder. For the encoder, we used a bidi-
rectional recurrent neural network (RNN) with Long
Short-Term Memory (LSTM) units (Hochreiter and
Schmidhuber, 1997); we also tried Gated Recurrent
Units (Pezeshki, 2015), with similar results. The
source speech signal is encoded as sequence of vec-
tors HS = (H1

S ,H
2
S , . . . ,H

m
S) where each vector H j

S
(1 ≤ j ≤ m) is the concatenation of the hidden states
of the forward and backward LSTMs at time j.

The attention mechanism is added to the model
through an alignment matrix α ∈ Rn×m, where n is
the number of target words. We add <s> and </s>
to mark the start and end of the target sentence. The
row αi ∈ Rm shows where the model should at-
tend to when generating target word wi. Note that∑m

j=1 αi j = 1. The “glimpse” vector ci of the source

when generating wi is ci =
∑

j αi jH
j
S .

The decoder is another RNN with LSTM units.
At each time step, the decoder LSTM receives ci in
addition to the previously-output word. Thus, the
hidden state1 at time i of the decoder is defined as
Hi

T = LSTM(Hi−1
T , ci,wi−1), which is used to predict

word wi:

p(wi | w1 · · ·wi−1,HS) = softmax(g(Hi
T)), (1)

where g is an affine transformation. We use 128 di-
mensions for the hidden states and memory cells in
both the source and target LSTMs.

We train this model using stochastic gradient de-
scent (SGD) on the negative log-likelihood for 100
epochs. The gradients are rescaled if their L2
norm is greater than 5. We tried Adagrad (Duchi
et al., 2011), AdaDelta (Zeiler, 2012), and SGD
with momentum (Attoh-Okine, 1999), but found
that simple SGD performs best. We implemented
dropout (Srivastava et al., 2014) and the local atten-
tional model (Luong et al., 2015), but did not ob-
serve any significant improvements.

3.2 Structural bias components

As we are primarily interested in learning accurate
alignments (roughly, attention), we include the mod-

1The LSTM also carries a memory cell, along with the hid-
den state; we exclude this from the presentation for clarity of
notation.

elling extensions of Cohn et al. (2016) for incorpo-
rating structural biases from word-based translation
models into the neural attentional model. As shown
later, we observe that including these components
result in a substantial improvement in measured
alignment quality. We now give a brief overview of
these components.

Previous attention. In the basic attentional
model, the alignment is calculated based on the
source encoding HS and the previous hidden
state Hi−1

T of the target, αi = Attend(Hi−1
T ,HS),

where Attend is a function that outputs m attention
coefficients. This attention mechanism is overly
simplistic, in that it is incapable of capturing
patterns in the attention over different positions i.
Recognising and exploiting these kinds of patterns
has proven critical in traditional word based models
of translation (Brown et al., 1993; Vogel et al.,
1996; Dyer et al., 2013). For this reason Cohn et al.
(2016) include explicit features encoding structural
biases from word based models, namely absolute
and relative position, Markov conditioning and
fertility:

1. previous alignment, αi−1
2. sum of previous alignments,

∑i−1
j=1 α j

3. source index vector, (1, 2, 3, . . . ,m); and
4. target index vector (i, i, i, . . . , i).

These features are concatenated to form a feature
matrix β ∈ R4×m, which are added to the alignment
calculation, i.e., αi = Attend(Hi−1

T ,HS , β) .

Coverage penalty. The sum over previous align-
ments feature, described above provides a basic fer-
tility mechanism, however as it operates locally it is
only partially effective. To address this, Cohn et al.
(2016) propose a global regularisation method for
implementing fertility.

Recall that the alignment matrix α ∈ Rn×m, each
αi is normalized, such that

∑
j αi j = 1. However,

nothing in the model requires that every source el-
ement gets used. This is remedied by encouraging
the columns of the alignment matrix to also sum to
one, that is,

∑
i αi j = 1. To do so, we add a regu-

larization penalty, λ
∑m

j=1

∥∥∥∑n
i=1 αi j − 1

∥∥∥2
2 to the ob-

jective function where λ controls the regularization
strength. We tune λ on the development set and
found that λ = 0.05 gives the best performance.

951

S1
SmS2

Ci

Source
Encoder

S3 S4 S5

Attention

Figure 2: Stacking three layers of LSTM to the source side as

in the second set of experiments

4 Extensions for Speech

We can easily apply the attentional model to paral-
lel data, where the source side is represented as a
sequence of phones. In cases where no annotated
data or lexicon are available, we expect it is difficult
to obtain phonetic transcriptions. Instead, we would
like to work directly with the speech signal. How-
ever, dealing with the speech signal is significantly
different than the phone representation, and so we
need to modify the base attentional model.

4.1 Stacked and pyramidal RNNs

Both the encoder and decoder can be made
more powerful by stacking several layers of
LSTMs (Sutskever et al., 2014). For the first set of
experiments below, we stack 4 layers of LSTMs on
the target side; further layers did not improve perfor-
mance on the development set.

For the second set of experiments, we work di-
rectly with the speech signal as a sequence of PLP
vectors, one per frame. Since the frames begin at
10 millisecond intervals, the sequence can be very
long. This makes the model slow to train; in our
experiments, it seems not to converge at all. Fol-
lowing Chan et al. (2016), we use RNNs stacked
into a pyramidal structure to reduce the size of the
source speech representation. As illustrated in Fig-

ure 2, we stack 3 layers of bidirectional LSTMs. The
first layer is the same as the encoder HS described in
Figure 1. The second layer uses every fourth output
of the first layer as its input. The third layer selects
every other output of the second layer as its input.
The attention mechanism is applied only to the top
layer. This reduces the size of the alignment ma-
trix by a factor of eight, giving rise to vectors at the
top layer representing 80ms intervals, which roughly
correspond in duration to input phones.

4.2 Alignment smoothing
In most bitexts, source and target sentences have
roughly the same length. However, for our task of
aligning text and speech where the speech is rep-
resented as a sequence of phones or PLP vectors,
the source can easily be several times larger than the
target. Therefore we expect that a target word will
commonly align to a run of several source elements.
We want to encourage this behavior by smoothing
the alignment matrix.

The easiest way to do this is by post-processing
the alignment matrix. We train the model as usual,
and then modify the learned alignment matrix α by
averaging each cell over a window, α′i j := 1

3 (αi, j−1 +

αi j + αi, j+1). The modified alignment matrix, α′,
is only used for generating hard alignments in our
alignment evaluation experiments. We can smooth
further by changing the computation of αi j during
training. We flatten the softmax by adding a temper-
ature factor, T ≥ 1:

αi j =
exp(ei j/T)∑
k exp(eik/T)

Note that when T = 1 we recover the standard soft-
max function; we set T = 10 in both experiments.

5 Experimental Setup

We work on the Spanish CALLHOME Corpus
(LDC96S35), which consists of telephone conversa-
tions between Spanish native speakers based in the
US and their relatives abroad. While Spanish is not
a low-resource language, we pretend that it is by not
using any Spanish ASR or resources like transcribed
speech or pronunciation lexicons (except in the con-
struction of the “silver” standard for evaluation, de-
scribed below). We also use the English translations
produced by Post et al. (2013).

952

We treat the Spanish speech as a sequence of 39-
dimensional PLP vectors (order 12 with energy and
first and second order delta) encoding the power
spectrum of the speech signal. We do not have gold
standard alignments between the Spanish speech
and English words for evaluation, so we produced
“silver” standard alignments. We used a forced
aligner (Gorman et al., 2011) to align the speech to
its transcription, and GIZA++ with the gdfa sym-
metrization heuristic (Och and Ney, 2000) to align
the Spanish transcription to the English translation.
We then combined the two alignments to produce
“silver” standard alignments between the Spanish
speech and the English words.

Cleaning and splitting the data based on dialogue
turns, resulted in a set of 17,532 Spanish utterances
from which we selected 250 for development and
500 testing. For each utterance we have the corre-
sponding English translation, and for each word in
the translation we have the corresponding span of
Spanish speech.

The forced aligner produces the phonetic se-
quences that correspond to each utterance, which we
use later in our first set of experiments as an interme-
diate representation for the Spanish speech.

In order to evaluate an automatic alignment be-
tween the Spanish speech and English translation
against the “silver” standard alignment, we compute
alignment precision, recall, and F1-score as usual,
but on links between Spanish PLP vectors and En-
glish words.

6 Phone-to-Word Experiments

In our first set of experiments, we represent the
source Spanish speech as a sequence of phones. This
sets an upper bound for our later experiments work-
ing directly on speech.

6.1 Alignment

We compare our model against three baselines:
GIZA++, Model 3P, and pialign. For pialign,
in order to better accommodate the different
phrase lengths of the two alignment sides, we
modified the model to allow different parame-
ters for the Poisson distributions for the average
phrase length, as well as different null align-

Model F-score ∆

GIZA++ 29.7 −13.0
Model 3P 31.2 −11.5
Pialign (default) 42.4 −0.3
Pialign (modified) 44.0 +1.3

Base model 42.7 +0
+ alignment features 46.2 +3.5
+ coverage penalty 48.6 +5.9
+ stacking 46.3 +3.6
+ alignment smoothing 47.3 +4.6
+ alignment/softmax smoothing 48.2 +5.5

All modifications 53.6 +10.9

Table 1: On the alignment task, the base model performs much

better than GIZA++ and Model 3P, and at roughly the same

level as pialign; modifications to the model produce further

large improvements. The ∆ column shows the score difference

compared with the base model.

ment probabilities for each side.2 We used the
settings -maxsentlen 200 -maxphraselen

20 -avgphraselenF 10 -nullprobF 0.001,
improving performance by 1.6% compared with
the default setting. For Model 3P, we used the
settings -maxFertility 15 -maxWordLength

20, unrestricted max[Src/Trg]SenLen and 10
Model3Iterations. We chose the iteration with
the highest score to report as the baseline.

The attentional model produces a soft alignment
matrix, whose entries αi j indicate p(s j | wi) of align-
ing source phone s j to target word wi. For evalua-
tion, we need to convert this to a hard alignment that
we can compare against the “silver” standard. Since
each word is likely to align with several phones,
we choose a simple decoding algorithm: for each
phone s j, pick the word wi that maximizes p(wi | s j),
where this probability is calculated from alignment
matrix α using Bayes’ Rule.

Table 1 shows the results of the alignment exper-
iment. The base attentional model achieved an F-
score of 42.7%, which is much better than GIZA++

and Model 3P (by 13% and 11.5% absolute, re-
spectively) and at roughly the same level as pialign.
Adding our various modifications one at a time

2Our modifications have been submitted to the pialign
project.

953

reranker
aligner decoder none AM

AM (all mods) 14.6

GIZA++ Moses 18.2 19.9
pialign Moses 18.9 19.8
pialign (mod) Moses 20.2 21.1

Word-based Reference 34.1

Table 2: BLEU score on the translation task. Using the

attentional model (AM) alone (first row) significantly under-

performed Moses. However, using the AM as a reranker yielded

improvements across several settings. The word-based refer-

ence translation provides the upper bound for our phoneme-

based systems.

yields improvements ranging from 3.5% to 5.9%.
Combining all of them yields a net improvement of
10.9% over the base model, which is 9.4% better
than the modified pialign, 22.4% better than Model
3P, and 23.9% better than GIZA++.

6.2 Translation

In this section, we evaluate our model on the trans-
lation task. We compare the model against the
Moses phrase-based translation system (Koehn et
al., 2007), applied to phoneme sequences. We also
provide baseline results for Moses applied to word
sequences, to serve as an upper bound. Since Moses
requires word alignments as input, we used various
alignment models: GIZA++, pialign, and pialign
with our modifications. Table 2 shows that transla-
tion performance roughly correlates with alignment
quality.

For the attentional model, we used all of the modi-
fications described above except alignment smooth-
ing. We also used more dimensions (256) for hid-
den states and memory cells in both encoder and de-
coder. The decoding algorithm starts with the sym-
bol <s> and uses beam search to generate the next
word. The generation process stops when we reach
the symbol </s>. We use a beam size of 5, as larger
beam sizes make the decoder slower without sub-
stantial performance benefits.

As shown in Table 2, the attentional model
achieved a BLEU score of 14.6 on the test data,
whereas the Moses baselines achieve much better

BLEU scores, from 18.2 to 20.2. We think this is
because the attentional model is powerful, but we
don’t have enough data to train it fully given that the
output space is the size of the vocabulary. More-
over, this attentional model has been configured to
optimize the alignment quality rather than transla-
tion quality.

We then tried using the attentional model to
rerank 100-best lists output by Moses. The
model gives a score for generating the next word
p(wi|w1 · · ·wi−1,HS) as in equation (1). We simply
compute the score of a hypothesis by averaging the
negative log probabilities of the output words,

score(w1 · · ·wn) = −1
n

n∑
i=1

log(p(wi|w1 · · ·wi−1,HS)) ,

and then choosing the best scoring hypothesis. Ta-
ble 2 shows the result using the attentional model
as the reranker on top of Moses, giving improve-
ments of 0.9 to 1.7 BLEU over their corresponding
baselines. These consistent improvements suggest
that the probability estimation part of the attentional
model is good, but perhaps the search is not ade-
quate. Further research is needed to improve the at-
tentional model’s translation quality. Another possi-
bility, which we leave for future work, is to include
the attentional model score as a feature in Moses.

Table 3 shows some example translations com-
paring different models. In all examples, it appears
that using pialign produced better translations than
GIZA++. Using the attentional model as a reranker
for pialign further corrects some errors. Using the
attentional model alone seems to perform the worst,
which is evident in the third example where the at-
tentional model simply repeats a text fragment (al-
though all models do poorly here). Despite the of-
ten incoherent output, the attentional model still cap-
tures the main keywords used in the translation.

We test this hypothesis by applying the atten-
tional model for a cross-lingual keyword spotting
task where the input is the English keyword and
the outputs are all Spanish sentences (represented as
phones) containing a likely translation of the key-
word. From the training data we select the top 200
terms as the keyword based on tf.idf. The relevance
judgment is based on exact word matching. The
attentional model achieved 35.8% precision, 43.3%

954

recall and 36.0% F-score on average on 200 queries.
Table 4 shows the English translations of retrieved
Spanish sentences. In the first example, the atten-
tional model identifies mañana as the translation of
tomorrow. In the second example, it does reason-
ably well by retrieving 2 correct sentences out of 3,
correctly identifying dejamos and salgo as the trans-
lation of leave.

7 Speech-to-Word Experiments

In this section, we represent the source Spanish
speech as a sequence of 39 dimensional PLP vec-
tors. The frame length is 25ms, and overlapping
frames are computed every 10ms. As mentioned
in Section 4.1, we used a pyramidal RNN to reduce
the speech representation size. Other than that, the
model used here is identical to the first set of exper-
iments.

Using this model directly for translation from
speech does not yield useful output, as is to be ex-
pected from the small training data, noisy speech
data, and an out-of-domain language model. How-
ever, we are able to produce useful results for the
ASR and alignment tasks, as presented below.

PER (%)

Our model 24.3
Our model + monotonic 22.3
Chorowski et al. (2014) 18.6
Graves et al. (2013) 17.7

Table 5: Phone-error-rate (PER) for various models evaluated

on TIMIT

7.1 ASR Evaluation

To illustrate the utility of our approach to modelling
speech input, first, we evaluate on the more common
ASR task of phone recognition. This can be consid-
ered as a sub-problem of translation, and moreover,
this allows us to benchmark our approach against
the state-of-the-art in phone recognition. We exper-
imented on the TIMIT dataset. Following conven-
tion, we removed all the SA sentences, evaluated on
the 24 speaker core test set and used the 50 aux-
iliary speaker development set for early stopping.
The model was trained to recognize 48 phonemes

and was mapped to 39 phonemes for testing. We ex-
tracted 39 dimensional PLP features from the TIMIT
dataset and trained the same model without any
modification. Table 5 shows the performance of
our model. It performs reasonably well compared
with the state-of-the-art (Graves et al., 2013), con-
sidering that we didn’t tune any hyper-parameters
or feature representations for the task. Moreover,
our model is not designed for the monotonic con-
straints inherent to the ASR problem, which pro-
cess the input without reordering. By simply adding
a masking function (equation 2 from Chorowski et
al. (2014)) to encourage the monotonic constraint
in the alignment function, we observe a 2% PER
improvement. This is close to the performance re-
ported by Chorowski et al. (2014) (Table 5), despite
the fact that they employed user-adapted speech fea-
tures.

7.2 Alignment Evaluation

We use alignment as a second evaluation, training
and testing on parallel data comprising paired Span-
ish speech input with its English translations (as de-
scribed in §5), and using the speech-based mod-
elling techniques (see §4.) We compare to a naive
baseline where we assume that each English letter
(not including spaces) corresponds to an equal num-
ber of Spanish frames. The results of our atten-
tional model and the baseline are summarized in Ta-
ble 6. The attentional model is substantially lower
than the scores in Table 1, because the PLP vector
representation is much less informative than the gold
phonetic transcription. Here, we have to identify
phones and their boundaries in addition to phone-
word alignment. However, the naive baseline does
surprisingly well, presumably because our (unreal-
istic) choice of Spanish-English does not have very
much reordering.

Figure 3 presents some examples of Spanish
speech and English text, showing a heat map of
the alignment matrix α (before smoothing). Due
to the pyramidal structure of the encoder, each col-
umn roughly corresponds to 80ms. In the example
on the left, the model is confident at aligning a lit-
tle with columns 1–5, which corresponds roughly to
their correct Spanish translation algo. We misalign
the word of with columns 8–10, when the correct
alignment should be columns 5–6, corresponding

955

Phones sil e m e d i h o k e t e i B a a y a m a r sp a y e r o a n t e a y e r sp sil
Transcription eh , me dijo que te iba a llamar , ayer , o anteayer
AM eh , he told me that she was going to call , yesterday before yesterday
Giza oh , he told me that you called yesterday or before yesterday .
Mod. Pialign eh , she told me that I was going to call yesterday or before yesterday .
Mod. Pialign + AM eh , he told me that I was going to call , yesterday or before yesterday .
Reference eh , he told me that he was going to call you , yesterday , or the day before yesterday .

Phones sil i t u k o m o a s e s t a D o h w a n i t o e s t a s t r a B a h a n d o k e sp e s t a s a s y e n d o sil
Transcription y tú , cómo has estado , juanito , estás trabajando , qué estás haciendo.
AM and how have you been working , are working ?
GIZA and how are you Juanito , are you job , what are you doing ?
Mod. pialign and how have you been Juanito are you working , what are you doing ?
Mod. pialign + AM and how have you been Juan , are you working , what are you doing ?
Reference and how have you been , Juanita , are you working , what are you doing .

Phones sil t e n g o k e a s e r l e e l a s e o a s i k o m o a u n h a r D i n i n f a n t i l sp sil
Transcription tengo que hacerle el aseo ası́ como a un jardı́n infantil –
AM I have to have to him like to like that to 〈unkA〉
GIZA I have to do the , the how a vegetable information in the .
Mod. pialign I have to do the that like to a and it was , didn’t you don’t have the .
Mod. pialign + AM I have to make the or like to a and it was , didn’t you don’t have the –
Reference I have to clean it like a kindergarten

Table 3: Translation examples for various models: the attentional model (AM), the standard Moses with GIZA++ aligner (giza),

with modified Pialign aligner (Mod. pialign) and using the attentional model as reranker on top of pialign.

Keyword : tomorrow

El va mañana para Caracas. A qué va a Caracas él.
Y mañana , y mañana o pasado te voy a poner un paquete.
Oh , no , Julio no sé a dónde está y va mañana a Caracas , está con Richard.
Oye , qué bueno , entonces nos vamos tempranito en la mañana
No , aquı́ la gente se acuesta a las dos de la mañana.

Keyword : leave

Todo , organizar completo todo , desde los alquileres , la comida , mozo , cantina , todo lo pongo yo aquı́
Y entonces dónde lo dejamos pagando estacionamiento y pagando seguro
Sı́ , el veintiuno. yo salgo de para aquı́ el dieciséis para florida , y el veintiuno llego a Caracas.

Table 4: Examples of cross-lingual keyword spotting using the attentional model. The bolded terms in the retrieved text are based

on manual inspection.

0 1 2 3 4 5 6 7 8 9 10 11

〈s〉
a
little
bit
of
knowledge
〈/s〉

sil ALGO DE CONOCIMIENTO sil

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

〈s〉
I
say
get
a
used
one
,

Irma
.

〈/s〉

sil YO DIGO HASTA UNO USADO IRMA sil

Figure 3: PLP-word alignment examples. The heat maps shows the alignment matrix which is time-aligned with the speech signals

and their transcriptions.

956

ASR aligner F1

none Naive baseline 31.7
none AM (all mods) 26.4
cz AM (all mods) 28.0
hu AM (all mods) 27.9
ru AM (all mods) 27.4

es GIZA++ 29.7

Table 6: Alignment of Spanish speech to English translations.

In the first two rows, no gold or automatic transcriptions of any

sort are used. In the next three rows, non-Spanish phone rec-

ognizers (cz, hu, ru) are used on the Spanish speech and the

attentional model is run on the noisy transcription; this does

better than no transcriptions. The last row is an unfair compar-

ison because it uses gold Spanish (es) phonetic transcriptions;

nevertheless, our model performs nearly as well.

to Spanish translation de. The word knowledge is
aligned quite well with columns 7–10, correspond-
ing to Spanish conocimiento. The example on the
right is for a longer sentence. The model is less
confident about this example, mostly because there
are words that appear infrequently, such as the per-
sonal name Irma. However, we are still observing
diagonal-like alignments that are roughly correct. In
both examples, the model correctly leaves silence
(sil) unaligned.

As a middle ground between assuming gold pho-
netic transcriptions (cf. Section 6) and no transcrip-
tions at all, we use noisy transcriptions by running
speech recognizers for other languages on the Span-
ish speech: Russian (ru), Hungarian (hu) and Czech
(cz) (Vasquez et al., 2012). These distantly related
languages were chosen to be a better approximation
to the low-resource scenario. All three models per-
form better than operating directly on the speech
signal (Table 6), and notably, the Russian result is
nearly as good as GIZA++’s performance on gold
phonetic transcriptions.

8 Conclusion

This paper reports our work to train models directly
on parallel speech, i.e. source-language speech with
English text translations that, in the low-resource
setting, would have originated from spoken trans-
lations. To our knowledge, it is the first exploration

of this type. We augmented the Spanish Fisher and
CALLHOME datasets and extended the alignment
F1 evaluation metric for this setting. We extended
the attentional model of Bahdanau et al. to work
on parallel speech and observed improvements rela-
tive to all baselines on phone-to-word alignment. On
speech-to-word alignment, our model, without using
any knowledge of Spanish, performs almost as well
as GIZA++ using gold Spanish transcriptions.

Language pairs with word-order divergences and
other divergences will of course be more challenging
than Spanish-English. This work provides a proof-
of-concept that we hope will spur future work to-
wards solving this important problem in a true low-
resource language.

Acknowledgments

This work was partly conducted during Duong’s in-
ternship at ICSI, UC Berkeley and partially sup-
ported by the University of Melbourne and National
ICT Australia (NICTA). We are grateful for sup-
port from NSF Award 1464553 and the DARPA
LORELEI Program. Cohn is the recipient of
an Australian Research Council Future Fellowship
FT130101105.

References

Steven Abney and Steven Bird. 2010. The Human
Language Project: Building a universal corpus of the
world’s languages. In Proceedings of ACL, pages 88–
97.

Nii O. Attoh-Okine. 1999. Analysis of learning rate and
momentum term in backpropagation neural network
algorithm trained to predict pavement performance.
Advances in Engineering Software, 30(4):291–302.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Steven Bird and David Chiang. 2012. Machine trans-
lation for language preservation. In Proceedings of
COLING, pages 125–134, Mumbai, India.

Steven Bird, Lauren Gawne, Katie Gelbart, and Isaac
McAlister. 2014. Collecting bilingual audio in remote
indigenous communities. In Proceedings of COLING,
pages 1015–1024.

Steven Bird. 2010. A scalable method for preserving oral
literature from small languages. In The Role of Digi-
tal Libraries in a Time of Global Change: 12th Inter-

957

national Conference on Asia-Pacific Digital Libraries,
pages 5–14, Berlin, Heidelberg. Springer-Verlag.

Peter E. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational Linguistics, 19(2).

Mauro Cettolo, Christian Girardi, and Marcello Federico.
2012. WIT3: Web inventory of transcribed and trans-
lated talks. In Proceedings of EAMT, pages 261–268.

William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neu-
ral network for large vocabulary conversational speech
recognition. In Proceedings of ICASSP.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and
Yoshua Bengio. 2014. End-to-end continuous speech
recognition using attention-based recurrent NN: first
results. In Proceedings of NIPS Workshop on Deep
Learning and Representation Learning.

Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Proceedings of NIPS, pages 577–585.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vymolova,
Kaisheng Yao, Chris Dyer, and Gholamreza Haffari.
2016. Incorporating structural alignment biases into
an attentional neural translation model. In Proceed-
ings of NAACL HLT.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM Model 2. In Proceedings of NAACL HLT,
pages 644–648.

Kyle Gorman, Jonathan Howell, and Michael Wagner.
2011. Prosodylab-Aligner: A tool for forced align-
ment of laboratory speech. Canadian Acoustics,
39(3):192–193.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of
ICML, pages 369–376. ACM.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In Proceedings of ICASSP, pages
6645–6649.

Hynek Hermansky. 1990. Perceptual linear predictive
(PLP) analysis for speech. Acoustical Society of Amer-
ica, pages 1738–1752.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Christ Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of ACL (Interactive Poster and Demonstration
Sessions), pages 177–180.

Chia-ying Lee, Yu Zhang, and James Glass. 2013. Joint
learning of phonetic units and word pronunciations for
ASR. In Proceedings of EMNLP, pages 182–192.

Thang Luong, Hieu Pham, and Christopher D. Manning.
2015. Effective approaches to attention-based neural
machine translation. In Proceedings of EMNLP, pages
1412–1421.

Andrew L. Maas, Ziang Xie, Dan Jurafsky, and An-
drew Y. Ng. 2015. Lexicon-free conversational
speech recognition with neural networks. In Proceed-
ings of NAACL HLT, pages 345–354.

Graham Neubig, Taro Watanabe, Eiichiro Sumita, Shin-
suke Mori, and Tatsuya Kawahara. 2011. An unsuper-
vised model for joint phrase alignment and extraction.
In Proceedings of NAACL HLT, pages 632–641.

Graham Neubig, Taro Watanabe, Shinsuke Mori, and Tat-
suya Kawahara. 2012. Machine translation without
words through substring alignment. In Proceedings of
ACL, pages 165–174.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of ACL,
pages 440–447.

Mohammad Pezeshki. 2015. Sequence modeling us-
ing gated recurrent neural networks. arXiv preprint
arXiv:1501.00299.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khu-
danpur. 2013. Improved speech-to-text translation
with the Fisher and Callhome Spanish–English speech
translation corpus. In Proceedings of IWSLT.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Felix Stahlberg, Tim Schlippe, Sue Vogel, and Tanja
Schultz. 2012. Word segmentation through cross-
lingual word-to-phoneme alignment. In Proceedings
of the IEEE Spoken Language Technology Workshop
(SLT), pages 85–90.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of NIPS, pages 3104–3112.

Henk Van den Heuvel, Khalid Choukri, Chr Gollan,
Asuncion Moreno, and Djamel Mostefa. 2006. Tc-

958

star: New language resources for ASR and SLT pur-
poses. In Proceedings of LREC, pages 2570–2573.

Daniel Vasquez, Rainer Gruhn, and Wolfgang Minker.
2012. Hierarchical Neural Network Structures for
Phoneme Recognition. Springer.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In Proceedings of COLING, pages 836–841.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In Proceedings of ICML, pages 2048–2057.

Matthew D. Zeiler. 2012. ADADELTA: an
adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

959

Proceedings of NAACL-HLT 2016, pages 960–970,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Information Density and Quality Estimation Features as Translationese
Indicators for Human Translation Classification

Raphael Rubino
Universität des Saarlandes

Saarbrücken, Germany

Ekaterina Lapshinova-Koltunski
Universität des Saarlandes

Saarbrücken, Germany

e.lapshinova@mx.uni-saarland.de
{raphael.rubino,josef.vangenabith}@uni-saarland.de

Josef van Genabith
Universität des Saarlandes

DFKI
Saarbrücken, Germany

Abstract

This paper introduces information density
and machine translation quality estimation in-
spired features to automatically detect and
classify human translated texts. We inves-
tigate two settings: discriminating between
translations and comparable originally au-
thored texts, and distinguishing two levels of
translation professionalism. Our framework
is based on delexicalised sentence-level dense
feature vector representations combined with
a supervised machine learning approach. The
results show state-of-the-art performance for
mixed-domain translationese detection with
information density and quality estimation
based features, while results on translation ex-
pertise classification are mixed.

1 Introduction

Translations, regardless of the method they were
produced with, are different from their source texts
and from originally authored comparable texts in
the target language. This has been confirmed by
many linguistic studies on translation properties
commonly called translationese (Gellerstam, 1986).
These studies show that translations tend to share a
set of lexical, syntactic and/or textual features distin-
guishing them from non-translated texts. As most of
these features can be measured quantitatively, we are
able to automatically distinguish translations from
originals (Baroni and Bernardini, 2006; Ozdowska
and Way, 2009; Kurokawa et al., 2009). This is
useful for Statistical Machine Translation (SMT), as
language and translation models can be improved if

the translation direction and status of the data (trans-
lation or original) is known (Lembersky, 2013).

Research on translationese has recently focused
on exploring features capturing aspects of transla-
tionese such as simplification, explicitation, conver-
gence, normalisation and shining-through (Volan-
sky, 2012; Ilisei, 2012). Here we extend this work as
follows: (i) we investigate the impact of information
density and surprisal features, (ii) we explore the
use of features used in machine translation quality
estimation (Blatz et al., 2003; Specia et al., 2010),
(iii) we explore classification between originally au-
thored text and trainee and professional translation,
as well as between professional and trainee transla-
tion. In order to avoid biasing classification by topic
content, throughout our experiments we use fully
delexicalised features, resulting in dense vector rep-
resentations (rather than sparse vectors, where the
size of the vectors can be up to and in fact exceed
the size of the vocabulary). We show that informa-
tion theory as well as translation quality estimation
inspired features achieve state-of-the-art results in
mixed-domain original vs. human translation clas-
sification.

Languages provide speakers with a large number
of possibilities of how they may encode messages.
These include the choice of phonemes, words, syn-
tactic structures, as well as arranging sentences
in discourse. Speakers’ decisions regarding these
choices are influenced by diverse factors: cognitive
processing limitations can impact variation in lin-
guistic encoding across all linguistic levels. Text
production conditions, including monolingual vs.
multilingual settings, can influence this variation: in

960

translation, choices can be shaped by aspects of both
the source and the target language.

Contrastive studies have shown that information
density is distributed differently in English and
German (Doherty, 2006; Fabricius-Hansen, 1996).
These contrasts may impact translation, and in case
of source language shining through1, we would ex-
pect to observe differences between translations and
comparable originals in terms of information den-
sity. Additionally, translations are often more spe-
cialised and more conventionalised than originals
(excluding translation of fictional texts). In this pa-
per we investigate whether and to what extent infor-
mation density based features are useful in human
translation classification.

Quality estimation (QE) (Blatz et al., 2004; Ueff-
ing and Ney, 2005) is the attempt to learn models
that predict machine translation quality without ac-
cess to a reference translation at prediction time.
Translation, manual or automatic, is always a pro-
cess of transforming a source into a target text. This
process is prone to error. In this paper we explore
whether and to what extent the extensive research on
QE can be brought to bear on the problem of human
translation vs. originals classification, and in partic-
ular the discrimination between novice and profes-
sional translation output.

Below we explore the ability of our features
to distinguish between 1) non-translated texts and
translations by professionals, 2) non-translated texts
and translations by translator trainees, and 3) the
two translation varieties that diverge in the degree
of translation experience. We report results in terms
of accuracy and f-score, and provide a feature analy-
sis in order to understand the role of the information
density and QE inspired features in the task.

The paper is organised as follows: related work
is presented in Section 2. The experimental setup
is detailed in Section 3, followed by the results and
analysis in Section 4. A discussion about our results
compared to previous work is given in Section 5.
Finally, conclusion and future work are provided in
Section 6.

1If translations demonstrate features more typical for the
source language, see e.g. Teich (2003).

2 Related Work

We briefly review previous work on translationese,
information density, machine translation quality es-
timation and studies on human translation expertise.

2.1 Translationese

A number of corpus-based studies on translation
have shown that it is possible to automatically pre-
dict whether a text is an original or a translation (Ba-
roni and Bernardini, 2006; Koppel and Ordan,
2011). These approaches are based on the concept
of translationese – a term coined to capture the spe-
cific language of translations by Gellerstam (1986).
The idea is that translations exhibit properties which
distinguish them from original texts, both the source
texts of the translation and comparable texts origi-
nally authored in the target language. Baker (1993;
1995) claimed these properties to be universal, i.e.
(source) language-independent, emphasising gen-
eral effects of the process of translation.

However, translationese includes features involv-
ing both source and target language. Most linguis-
tic studies distinguish explicitation – a tendency to
spell things out rather than leave them implicit and
implicitation (the opposite effect), simplification – a
tendency to simplify the language used in transla-
tion, normalisation – a tendency to exaggerate fea-
tures of the target language and to conform to its typ-
ical patterns, levelling out or convergence – a rela-
tively higher level of homogeneity of translated texts
compared to non-translated ones, and interference
or shining through (e.g. Teich (2003)). While sim-
ple lexicalised features including word tokens and
character n-grams can produce near perfect clas-
sification results for in-domain data (Avner et al.,
2014), a significant amount of work has gone into
devising features that can capture presumed linguis-
tic aspects of translationese (Volansky, 2012). Rabi-
novich et al. (2015) explore unsupervised discrimi-
nation of translations based on principal components
analysis for dimensionality reduction followed by a
clustering step. The method is robust to unbalanced
and heterogeneous datasets, which may be useful to
handle mixed domain, genre and source of data, a
common situation when training language and trans-
lation models.

Automatic classification of original vs. translated

961

texts has applications in machine translation, espe-
cially in studies showing the impact of the nature
(original vs. translation) of the text in translation
and language models used in SMT. Kurokawa et
al. (2009) show that taking directionality into ac-
count when training an English-to-French phrase-
based SMT system leads to improved translation
performance. Ozdowska & Way (2009) analyse the
same language pair and demonstrate that the nature
of the original source language has an impact on the
quality of SMT output. Lembersky et al. (2012)
show that BLEU scores can be improved by lan-
guage models compiled from translated texts and not
from comparable originally authored ones.

2.2 Information Density

In a natural communication situation, speakers tend
to exploit variations in their linguistic encoding
– modulating the order, density and specificity of
their expressions to avoid informational peaks and
troughs that may result in inefficient communica-
tion. This is often referred to as the uniform infor-
mation density hypothesis (Frank and Jaeger, 2008).
The information conveyed by an expression can be
quantified by its surprisal, a measure of how pre-
dictable an expression is given its context. Sim-
plification and explicitation may impact the aver-
age information density measured on translated texts
compared to comparable originally authored ones in
the same language. Source language interference
should result in peaks of measured surprisal val-
ues in translated texts, while the information density
may remain uniform in originals.

According to Hale (2001), a surprisal model al-
lows the estimation of the probability of a parse
tree given a sentence prefix. Levy (2008) showed
that a lexical-based surprisal measure can be ob-
tained by computing the negative log probabil-
ity of a word given its preceding context: S =
− logP (wk+1|w1 . . . wk). Following Demberg et
al. (2013), we estimate surprisal in three ways, at the
word, part-of-speech and syntax levels, based on n-
gram language models and language models trained
on unlexicalised part-of-speech sequences and flat-
tened syntactic trees. Note that all resulting feature
vectors do not represent lexical information but in-
formation theoretic surprisal measures.

2.3 Quality Estimation

Machine translation QE is the process of estimat-
ing how accurate an automatic translation is through
characteristic features of the source and target texts,
and (possibly) also the translation engine, with a su-
pervised machine learning setting to estimate quality
scores. QE can be applied at the word, sentence and
document level (Gandrabur and Foster, 2003; Ueff-
ing et al., 2003; Blatz et al., 2003; Scarton and Spe-
cia, 2014).

Many different delexicalised dense features have
been explored in previous work on QE, including
language and topic models, n-best lists, etc. (Quirk,
2004; Ueffing and Ney, 2004; Specia and Gimenez,
2010; Rubino et al., 2013a). It has been shown that
the performance of a supervised classifier to distin-
guish between originals and automatic translations
is correlated with the quality of the machine trans-
lated texts (Aharoni et al., 2014): low quality trans-
lation, containing grammatical and syntactic errors,
as well as incorrect lexical choices, are robust indi-
cators of automatic translations. In the case of hu-
man translation, to the best of our knowledge, there
are no empirical studies on the level of professional
expertise in the translation process and its correla-
tion with the performance of a translationese classi-
fier.

2.4 Translator Experience

Jääskeläinen (1997) describes translational be-
haviour of professionals and non-professionals who
perform translation from English into Finnish. Carl
and Buch-Kromann (2010) apply psycholinguistic
methods in their analysis. They present a study of
translation phases and processes for student and pro-
fessional translators, relating translators’ eye move-
ments and keystrokes to the quality of the transla-
tions produced. They show that the translation be-
haviour of novice and professional translators dif-
fers with respect to how they use the translation
phases. Englund Dimitrova (2005) develops a com-
bined process and product analysis and compares
translators with different levels of translation experi-
ence, but concentrates only on cohesive explicitness.

Most of these works are rather process-oriented
than product-oriented, which means that features of
translated texts are rarely taken into account. How-

962

ever, some of the findings are valuable for the anal-
ysis of translated texts. For instance, Göpferich &
Jääskeläinen (2009) find that with increasing trans-
lation competence, translators focus on larger trans-
lation units, which can impact the choice of linguis-
tic encoding translators use.

3 Experimental Setup

Our experiments are designed to investigate under-
explored topics focusing on (i) information theoretic
and (ii) machine translation QE features in transla-
tion classification. We use dense vector represen-
tations with fully delexicalised features and investi-
gate three hypotheses:

1. originals & professional translations should be
close in terms of quality and thus more difficult
to separate automatically,

2. originals & student translations should be dis-
tant in terms of quality and thus easier to clas-
sify,

3. professional & student translations should both
contain translationese features and thus may be
very difficult to differentiate.

3.1 Supervised Classification
In order to train a classifier and predict binary la-
bels on unseen data, we use a dense vector sentence-
level representation associated with a class (xi, yi),
i = 1, . . . , l (l is the number of training instances)
with xi ∈ Rn (n is the size of a dense vector) and
y ∈ {−1, 1}l. We train classification models with
a support vector machine SVM (the C-SVC imple-
mentation in LIBSVM (Chang and Lin, 2011)) as a
quadratic optimization problem:

min
ω,b,ξ

1
2ω

Tω + C
l∑

i=1
ξi ,

subject to yi(ωTφ(xi) + b) ≥ 1− ξi , ξi ≥ 0 .

φ is a kernel function and allows the projection of
training data to a higher dimensional space. We
use the radial basis function (RBF) kernel, as it pro-
duced the best empirical results compared to linear
and polynomial kernels. We predict the class for un-
seen instances x as follows:

f(x) = sgn(ωTφ(x) + b).

Corpus Token (M) Sentence (k)

Europarl Originals 4.1 155.5
Literature Originals 1.3 48.1
Literature Translations 1.4 45.8
Politics Originals 0.2 9.7
Politics Translations 0.2 8.7

Table 1: Details of the corpora used to train lan-
guage and n-gram frequency models for originally
authored texts and translations.

Two hyper-parameters have to be set for C-SVC
with the RBF kernel: the regularisation parameter
(or penalty) C and the kernel parameter γ. We use
grid-search to find optimal values, performing a 5-
fold cross-validation on the training data. To avoid
over-fitting, we use a held-out development set to
evaluate the models obtained.

3.2 Datasets

The datasets used in our experiments are separated
into two subsets: corpora used to extract features
and corpora used to train, tune and test our classi-
fiers. The former are taken from the publicly avail-
able bilingual English-German parallel corpora con-
sisting of parliamentary proceedings, literary works
and political commentary, compiled by (Rabinovich
et al., 2015). These corpora are used individu-
ally to train language models and compute n-gram
frequency distributions. Basic corpus statistics are
presented in Table 1. The latter ones are com-
posed of German texts, taken from the VARTRA

corpora (Lapshinova-Koltunski, 2013), which were
either originally written in German (originals) or
translated from English (translations).

Originals and translations belong to the same gen-
res and registers and can be considered compara-
ble. They include a mixture of literary, tourism and
popular-scientific texts, instruction manuals, com-
mercial letters and political essays and speeches.
The VARTRA translations are split in two sets: one
produced by professional translators, and one pro-
duced by translator trainees. Details are presented
in Table 2. We extract balanced subsets of training,
tuning and testing data containing three, one and two
thousands sentences, respectively, of each type.

963

Corpus Token (k) Sentence (k)

Originals 121.7 6.0
Professional Translations 125.2 6.0
Student Translations 126.2 6.0

Table 2: Details of the comparable corpora used as
training, development and test sets for the originals
versus translation classification experiments.

3.3 Feature Sets

For classification, input text is represented as a set
of feature vectors. The features capture aspects of
information density and translation QE. Throughout
we use unlexicalised lower-dimensional dense
vectors rather than high-dimensional lexicalised
sparse vectors to minimize the input of specific
content on classification results. We extract a total
of 778 features2 and separate them into four subsets
corresponding to broad but distinct characteristics
of original and translated sentences: surface and
distortion features are related to QE, surprisal and
complexity features are inspired by information
theory.

Surface Features - 13 surface features based
on meta representations of sentences’ lexical form.
Features include sentence and average word length,
the number of word tokens and number of punc-
tuation marks. Three case-based features capture
the number of upper-cased letters and words, and
a binary feature indicates whether a sentence starts
with an upper-case character. Another binary value
encodes whether the sentence ends with a period.
Two features are obtained from the ratio between
the number of upper-cased and lower-cased letters,
the number of punctuation marks and the length
of the sentence. Finally two features capture the
number of periods merged with words and words
with mixed-case characters.

Surprisal Features - 225 features based on
the surprisal measure presented in Section 2.2
are extracted using language models trained on
words, delexicalised part-of-speech and flattened
syntactic trees. The language models are trained

2Too many to list in the paper, a complete list is provided
with the additional material submitted.

on individual3 corpora presented in Table 1. We
extract n-gram (n ∈ [1; 5]) log-probabilities and
perplexities, with and without the tags indicating
the beginning and ending of sentences, using the
SRILM toolkit (Stolcke et al., 2011).

Complexity Features - 315 features based on
n-gram frequencies, indicating how frequent the
lexical choices, part-of-speech and flattened syn-
tactic sequences present in the text to be classified
are. As for the surprisal features, we use the same
originally authored and translated texts individually
to extract n-grams frequency quartiles. We extract
the percentage of n-grams (n ∈ [1; 5]) occurring in
each quartile. Frequency percentages are averaged
at the sentence level, leading to 4 features per
sentence (one per quartile) given a value of n, for
each corpus used to define the frequency quartiles.
This approach allows us to avoid encoding raw
n-gram features and keep a dense vector represen-
tation (Blatz et al., 2003).

Distortion Features - 225 features based on
the possible distortion in lexical, part-of-speech and
syntactic structures observed between originals and
translations, as well as between different levels of
translation experience. These features are extracted
the same way as the suprisal features, but based on
language models trained on sentence-level reversed
text. The backward language model features are
popular in translation quality estimation studies and
show interesting results (Duchateau et al., 2002;
Rubino et al., 2013b).

3.4 Preprocessing and Tools

All data used in our experiments are sentence-split,
lower-cased and tokenised using the CORENLP
toolkit (Manning et al., 2014). The part-of-speech
tags and syntactic trees required to extract some fea-
tures are obtained with the same set of tools. For
parsing, we use the probabilistic context-free gram-
mar model trained on the Negra corpus (Brants et
al., 2003) and described in (Rafferty and Manning,
2008), before flattening the trees as illustrated in
Figure 1. Both part-of-speech and flattened syntac-

3Originally authored texts and translations are used sepa-
rately in order to model their characteristics.

964

(S (ADV Zugleich) (VAFIN werden) (PPER wir)
 (VP (ADV unerbittlich)
 (NP
 (PP (APPR mit) (ART den) (VVFIN Folgen))
 (ART des) (NN Geburtenrückgangs))
 (VVPP konfrontiert))
 ($. .))

(TOP (S (ADV Zugleich) (VAFIN werden) (PPER wir) (VP (ADV
unerbittlich) (NP (PP (APPR mit) (ART den) (VVFIN Folgen))
(ART des) (NN Geburtenrückgangs)) (VVPP konfrontiert)) ($. .)))

(TOP (S (ADV) (VAFIN) (PPER) (VP (ADV) (NP (PP (APPR)
(ART) (VVFIN)) (ART) (NN)) (VVPP)) (.)))

 Flatten

 Delexicalise

Figure 1: Flattening and delexicalising a syntactic
tree.

tic trees are then delexicalised in order to remove all
surface forms from the representations.

4 Results and Analysis

Below we provide details on discriminating between
originally authored texts and translations, followed
by the prediction of translation experience compar-
ing professional translators and students. Finally, we
evaluate feature importance with individual and en-
semble feature selection techniques.

4.1 Original vs Translated Texts

Two sets of experiments are conducted to discrimi-
nate between originals and professional translations
(Table 3) and originals and student translations (Ta-
ble 4). For each classification task, we evaluate fea-
ture groups on the test set containing 4, 000 unseen
sentences balanced over two classes, reporting over-
all accuracy, and also precision, recall and f-score.
Finally, a classification model is trained and evalu-
ated combining all features.

Originals vs. professional translations reaches a
maximum accuracy of 70.0% using the distortion
feature set with surprisal a close second at 69.2%.
The difference is not statistically significant (boot-
strap resampling at p < 0.05). They outperform the
other types of features, as well as the combination of
all feature types. Per class evaluation shows a simi-
lar trend with the best performing feature sets. The
results show that originals and professional transla-
tions exhibit differences in terms of sequences of
words, part-of-speech and syntactic tags which are
captured by language model based features.

Originals Professional
Feature set Acc (%) P R F P R F

Surface 54.7 0.54 0.64 0.58 0.56 0.46 0.50
Surprisal 69.2? 0.66 0.77 0.71 0.73 0.61 0.66
Complexity 65.3 0.63 0.73 0.68 0.68 0.57 0.62
Distortion 70.0? 0.66 0.81 0.73 0.75 0.59 0.66
All 66.5 0.64 0.74 0.69 0.70 0.59 0.64

Table 3: Accuracy, precision, recall and F-measure
obtained on the originals versus professional trans-
lations classification task. Best results in bold and
statistically significant winner marked with ? (p <
0.05).

Originals Student
Feature set Acc (%) P R F P R F

Surface 57.8 0.58 0.58 0.58 0.58 0.58 0.58
Surprisal 69.7? 0.69 0.72 0.70 0.71 0.67 0.69
Complexity 65.4 0.62 0.81 0.70 0.73 0.49 0.59
Distortion 70.8? 0.69 0.75 0.72 0.73 0.66 0.69
All 71.1? 0.69 0.76 0.72 0.73 0.66 0.69

Table 4: Accuracy, precision, recall and F-measure
obtained on the originals versus student translations
classification task. Best results in bold and statisti-
cally significant winner marked with ? (p < 0.05).

The classification of originals and student trans-
lations shows that the combination of the four fea-
ture types leads to the most accurate classifier, fol-
lowed by the distortion and the surprisal sets (with
equivalent accuracy results at p < 0.05). The two
latter feature sets are the best performing ones over-
all based on the two classification tasks. Comparing
the two tasks, originally authored texts are closer to
professional translations and more distant to student
translations, which validates two of our hypotheses
listed in Section 3.

4.2 Translation Expertise

In order to investigate whether our third assumption
is correct, we perform binary classification between
professional and student translations (Table 5). The
results, barely above the 50% baseline, show the
proximity of the two types of translations according
to our feature sets, which supports our third assump-
tion. The combination of four feature types reaches
the highest accuracy, followed by the distortion and
complexity sets. However, the surprisal features do
not seem to be helpful in differentiating between the

965

professional and the student translations, compared
to the two previous binary classification tasks.

This result indicates that the surprisal measure is a
reliable source of information to determine whether
a sentence is originally authored or a translation, but
it is not reliable to separate two translations pro-
duced by translators with different levels of exper-
tise. The features inspired by translation quality es-
timation do not reach high accuracy results: it seems
that the difference between professional and student
translations cannot be tied to properties of the sur-
face level or lexical choices of the human translators
as indirectly captured by our features.

Professional Students
Feature set Acc (%) P R F P R F

Surface 54.5 0.56 0.43 0.48 0.54 0.66 0.59
Surprisal 55.7 0.57 0.48 0.52 0.55 0.64 0.59
Complexity 56.0 0.56 0.55 0.56 0.56 0.57 0.56
Distortion 57.7 0.58 0.55 0.56 0.57 0.60 0.59
All 58.7? 0.59 0.57 0.58 0.58 0.61 0.59

Table 5: Accuracy, precision, recall and F-measure
obtained on the professional versus student trans-
lations classification task. Best results in bold and
statistically significant winner marked with ? (p <
0.05).

4.3 3-way Classification

Table 6 shows the confusion matrix obtained with
the classifier trained on the combination of the four
feature sets. This classifier reaches third position
overall in terms of accuracy, behind the distortion
and surprisal sets with first and second positions, re-
spectively. This ranking of classifiers trained on dif-
ferent feature sets follows the trend observed in the
originals versus professional translation binary clas-
sification task.

Reference
Originals Professional Student

Prediction
Originals 1318 656 544
Professional 276 699 491
Student 406 645 965

Table 6: Confusion matrix obtained using a classifier
trained on the four feature sets for the multi-class
task, separating originals, professional and student
translations.

The training method chosen for the multi-class
problem is the one against one, where individual
classifiers are first trained on each binary classifi-
cation task before being combined to form the final
multi-class classifier (Hsu and Lin, 2002). The re-
sults indicate that our feature sets distinguish orig-
inally authored texts from professional and student
translations (first line of the matrix), while the pro-
fessional translations are more difficult to separate
from the two other types of text. Also, student trans-
lations have characteristics differing from originals
and professional translations, which can be captured
with our feature sets (last line of the matrix). How-
ever, the columns of the confusion matrix show that
originals are not necessarily closer to professional
translations, as indicated by the first column where a
larger amount of gold originals are incorrectly clas-
sified as student translations. The same trend is ob-
servable in the last column. These results go against
the hypothesis that originals and student translations
are easier to separate, a phenomenon which does not
appear for the binary classification task (originals vs.
student translations).

4.4 Feature Performance

Evaluating the performance of our feature sets is
done by calculating the discriminative power of each
feature individually which allows us to rank features
according to their correlation with a class given a
classification task. We follow the ”f-score” measure
(1) as proposed by Chen (2006):

F (i) ≡
(
x̄
(+)
i −x̄i

)2
+
(
x̄
(−)
i −x̄i

)2

1
n+−1

n+∑
k=1

(
x̄
(+)
k,i −x̄

(+)
i

)2
+ 1

n−−1

n−∑
k=1

(
x̄
(−)
k,i −x̄

(−)
i

)2

(1)
with training vectors xk and k = 1, . . . ,m, bi-
nary classes n+ and n− for positive and negative in-
stances, x̄i, x̄

(+)
i , x̄(−)

i the average of the ith feature
of the whole, positive and negative instances, and
x̄

(+)
k,i and x̄(−)

k,i the ith feature of the kth positive or
negative instance. The measure indicates how dis-
criminative a feature is given a binary classification
task. A drawback of the f-score is that it does not
take into account possible feature complementarity.

We report the distribution of the top 25 features
amongst the three levels of analysis: lexical, POS
and syntax (Figure 2a), as well as amongst the four

966

Original VS Pro. Original VS Student Pro. VS Student
0

10

20

30

40

50

60

70

80

90
%

 F
e
a
tu

re
s

Lex

POS

Syntax

(a) Lexical, POS and syntax.

Original VS Pro. Original VS Student Pro. VS Student
0

10

20

30

40

50

60

70

80

90

%
 F

e
a
tu

re
s Surface

Surprisal

Complexity

Distortion

(b) Surface, surprisal, complexity and distortion.

Figure 2: Distributions of the top 25 most important features according to individual discriminative power
(left bars) and ensemble of randomised trees (right hatched bars).

feature types: surface, surprisal, complexity and dis-
tortion (Figure 2b). The results show that POS fea-
tures are not ranked as the most discriminant ones
when evaluated individually, while syntactic fea-
tures are the most important ones for the originals
vs. professional translation task and lexical features
have the highest discriminative power for the two
other tasks. When looking at the feature types, we
see that complexity features, based on n-gram fre-
quencies, are the most discriminant for the three
tasks, followed by the surprisal features, while the
distortion and surface features do not have a strong
discriminative power. Most of the top n-gram based
features rely on sequences between 1 and 3 words,
indicating that higher order n-grams are not im-
portant features when considered individually. Sur-
prisal, distortion and complexity features are based
on external resources (detailed in Table 1) and the
corpus of political texts translated into German is the
most useful one when used to extract the complex-
ity and surprisal features, which can be explained by
the presence of political speeches and essays in the
VARTRA corpus.

The results obtained on individual feature dis-
criminative power do not reflect the ones obtained
using features grouped by types. Individually, fea-
tures indicating complexity based on n-gram fre-
quencies are ranked highest. However, only a few
of the distortion features appear in the discrimina-
tive ranking while this feature type reaches the high-

est accuracy scores on the three binary classification
tasks. These results indicate that features are highly
complementary within a group of a particular type,
but also between different types. To capture pos-
sible relationships between features, we conduct a
non-linear feature selection using the forest of ran-
domised trees approach (Geurts et al., 2006) and
present the results for the top 25 features in Figure 2
(right hatched bars).

The tree-based feature ranking method shows the
complementarity of words and POS features, while
the syntactic ones appear in the top 25 for the orig-
inal vs. translation tasks for both levels of exper-
tise. When looking at the feature types, the originals
vs. professional task relies mainly on a mixture of
distortion and complexity features, and surprisal in-
dicators are totally absent from the top 25 for the
professional vs. student task. For both tasks involv-
ing student translation, the complexity features are
the most important ones, and simple surface features
are useful, such as the average words occurrence per
sentence or the ratio between the number of punctu-
ation marks and the sentence length. The most use-
ful external resource used to extract n-gram based
features is again the political corpus, indicating once
more the domain proximity of our datasets.

Individually, syntactic features appear to be
highly discriminant when classifying between orig-
inals and translations (regardless expertise), which
may indicate two translationese phenomena: simpli-

967

fication, translators use less complex constructions,
and interference (shining through), source syntax
shines through in translated texts. The ensemble
ranking shows that surprisal and distortion, although
not as important as complexity and distortion, are
important indicators of translationese as they appear
in both tasks where originals are classified against
translations. These feature types are not present in
the top 25 if only translated texts are classified.

5 Discussion

Previous research (Baroni and Bernardini, 2006;
Volansky, 2012) has shown that high classification
accuracy (> 80%) can be achieved using lexi-
calised token n-gram sparse feature vectors. As a
sanity check, we conduct a set of experiments for
each of our classification tasks using token unigram
frequency as features, normalised by the segment
length. The vocabulary defining the feature vector
dimensionality is taken from the training sets, us-
ing the data presented in Table 2 only, leading to
25, 561 features. The same classification setup as
presented in Section 3 is used and we observe ac-
curacy results reaching 78.0%, 83.3% and 65.2%
for original vs. professional, originals vs. student
and professional vs. student classifications respec-
tively. For the three-way task, an accuracy score of
62.7% is reached. These results are substantially
lower than the ones reported by Volansky (2012),
mostly because of the text chunks size, which has
a strong impact on performance as shown by Rabi-
novich and Wintner (2015). In our work, we clas-
sify each sentence individually as they appear natu-
rally in the corpus, while most previous studies are
based on artificial chunks of approximately 2, 000
tokens. An other explanation of the low perform-
ing unigram-based features is related to our mixed-
domain setting, as it was shown that classifiers’ per-
formance drop drastically when trained on this type
of features and tested on out-of-domain data (Rabi-
novich and Wintner, 2015).

6 Conclusion

This paper presented a first step in using informa-
tion density, and especially surprisal and complexity
inspired features, as well as features used in trans-
lation quality estimation, as indicators of transla-

tionese for originally authored and manually trans-
lated text classification. We focused on separating
originals and translations produced by humans with
different levels of expertise and showed that trans-
lationese features based on information density and
quality estimation are useful indicators of whether a
text was manually translated or originally produced.
We conducted experiments in a mixed-domain set-
ting, including literary, tourism and scientific texts,
as well as instruction manuals, commercial letters
and political essays and speeches.

Our experiments on feature type evaluation show
that the best performing one is a set of quality esti-
mation inspired distortion indicators, extracted from
backward language models trained on originally au-
thored and translated texts. When features are eval-
uated individually according to the ”f-score” mea-
sure (Chen and Lin, 2006), the most discriminative
ones are from the complexity subset, extracted from
n-gram frequency quartiles, followed by surprisal
features, both extracted at the lexical and syntac-
tic levels. The features ensemble evaluation based
on randomised trees reveals feature complementar-
ity and shows that extracting complexity and distor-
tion indicators at the lexical and POS levels leads to
the highest performing sets.

The features used in our experiments are extracted
at the word-level. As future work, we plan to ex-
tend our feature sets to information theoretic as-
pects of character-level indicators, such as charac-
ter n-grams frequencies and language models, en-
coding complexity and surprisal respectively. This
approach would allow to capture sub-word informa-
tion density indicators, such as morphological infor-
mation (Avner et al., 2014).

Acknowledgments

This research is funded by the German Research
Foundation (Deutsche Forschungsgemeinschaft) un-
der grant SFB 1102: Information Density and Lin-
guistic Encoding4.

We would like to thank the anonymous reviewers
for their insightful comments.

4IDEAL – http://www.sfb1102.uni-saarland.
de/

968

References
Roee Aharoni, Moshe Koppel, and Yoav Goldberg. 2014.

Automatic detection of machine translated text and
translation quality estimation. In Proceedings of ACL,
pages 289–295.

Ehud Alexander Avner, Noam Ordan, and Shuly Wintner.
2014. Identifying translationese at the word and sub-
word level. Digital Scholarship in the Humanities.

Mona Baker. 1993. Corpus linguistics and translation
studies: Implications and applications. In G. Fran-
cis Baker M. and E. Tognini-Bonelli, editors, Text and
Technology: in Honour of John Sinclair, pages 233–
250. Benjamins, Amsterdam.

Mona Baker. 1995. Corpora in translation studies: An
overview and some suggestions for future research.
Target, 7(2):223–243.

Marco Baroni and Silvia Bernardini. 2006. A new
approach to the study of translationese: Machine-
learning the difference between original and translated
text. Literary and Linguistic Computing, 21(3):259–
274.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2003. Confidence estimation for
machine translation. In JHU/CLSP Summer Workshop
Final Report.

John Blatz, Erin Fitzgerald, George Foster, Simona Gan-
drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004. Confidence estimation
for machine translation. In Proceedings of COLING,
pages 315–321.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
2003. Syntactic annotation of a German newspaper
corpus. In Treebanks, volume 20 of Text, Speech and
Language Technology, pages 73–87. Springer.

Michael Carl and Matthias Buch-Kromann. 2010. Cor-
relating translation product and translation process
data of professional and student translators. In Pro-
ceedings of EAMT.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST),
2(3):27.

Yi-Wei Chen and Chih-Jen Lin. 2006. Combining SVMs
with various feature selection strategies. In Feature
extraction, pages 315–324. Springer.

Vera Demberg, Frank Keller, and Alexander Koller.
2013. Incremental, predictive parsing with psycholin-
guistically motivated tree-adjoining grammar. Com-
putational Linguistics, 39(4):1025–1066.

Monika Doherty. 2006. Structural propensities: trans-
lating nominal word groups from English into Ger-
man, volume 65. John Benjamins Publishing.

Jacques Duchateau, Kris Demuynck, and Patrick
Wambacq. 2002. Confidence scoring based on back-
ward language models. In Proceedings of ICASSP,
volume 1.

Birgitta Englund Dimitrova. 2005. Expertise and ex-
plicitation in the translation process, volume 64. John
Benjamins Publishing.

Cathrine Fabricius-Hansen. 1996. Informational den-
sity: a problem for translation and translation theory.
Linguistics, 34(3):521–566.

Austin Frank and T Florian Jaeger. 2008. Speaking ra-
tionally: Uniform information density as an optimal
strategy for language production. In Proceedings of
the cognitive science society, pages 933–938.

Simona Gandrabur and George Foster. 2003. Confidence
estimation for translation prediction. In Proceedings
of CoNLL, pages 95–102.

Martin Gellerstam. 1986. Translationese in Swedish
novels translated from English. In L. Wollin and
H. Lindquist, editors, Translation Studies in Scandi-
navia, pages 88–95. CWK Gleerup, Lund.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine learn-
ing, 63(1):3–42.

Susanne Göpferich and Riitta Jääskeläinen. 2009. Pro-
cess research into the development of translation com-
petence: Where are we, and where do we need to go?
Across Languages and Cultures, 10(2):169–191.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of NAACL, pages
1–8.

Chih-Wei Hsu and Chih-Jen Lin. 2002. A comparison of
methods for multiclass support vector machines. Neu-
ral Networks, IEEE Transactions on, 13(2):415–425.

Iustina-Narcisa Ilisei. 2012. A Machine Learning
Approach to the Identification of Translational Lan-
guage: An Inquiry into Translationese Learning Mod-
els. Ph.D. thesis, University of Wolverhampton.

Riitta Jääskeläinen. 1997. Tapping the Process: An Ex-
plorative Study of the Cognitive and Affective Factors
Involved in Translating. Doctoral dissertation. Ph.D.
thesis, University of Joensuu, Joensuu.

Moshe Koppel and Noam Ordan. 2011. Translationese
and its dialects. In Proceedings of ACL, pages 1318–
1326.

David Kurokawa, Cyril Goutte, and Pierre Isabelle.
2009. Automatic detection of translated text and its
impact on machine translation. In Proceedings of MT
Summit.

Ekaterina Lapshinova-Koltunski. 2013. VARTRA: A
comparable corpus for analysis of translation varia-
tion. In Proceedings of the Workshop on Building and
Using Comparable Corpora, pages 77–86.

969

Gennadi Lembersky, Noam Ordan, and Shuly Wint-
ner. 2012. Language models for machine translation:
Original vs. translated texts. Computational Linguis-
tics, 38(4):799–825.

Gennadi Lembersky. 2013. The Effect of Translationese
on Statistical Machine Translation. Ph.D. thesis, Uni-
versity of Haifa, Israel.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126–1177.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of ACL: System
Demonstrations, pages 55–60.

Sylwia Ozdowska and Andy Way. 2009. Optimal bilin-
gual data for french-english PB-SMT. In Proceedings
of EAMT, page 96–103.

Christopher Quirk. 2004. Training a sentence-level ma-
chine translation confidence measure. In Proceedings
of LREC, pages 825–828.

Ella Rabinovich and Shuly Wintner. 2015. Unsupervised
identification of translationese. Transactions of the As-
sociation for Computational Linguistics, 3:419–432.

Ella Rabinovich, Shuly Wintner, and Ofek Luis Lewin-
sohn. 2015. The Haifa corpus of translationese.
arXiv:1509.03611.

Anna N Rafferty and Christopher D Manning. 2008.
Parsing three German treebanks: Lexicalized and un-
lexicalized baselines. In Proceedings of the Workshop
on Parsing German, pages 40–46.

Raphael Rubino, Jose G. C. de Souza, Jennifer Foster,
and Lucia Specia. 2013a. Topic models for transla-
tion quality estimation for gisting purposes. In Pro-
ceedings of MT Summit, pages 295–302.

Raphael Rubino, Jennifer Foster, Rasoul Samed Zadeh
Kaljahi, Johann Roturier, and Fred Hollowood. 2013b.
Estimating the quality of translated user-generated
content. In Proceedings of IJCNLP, pages 14–18.

Carolina Scarton and Lucia Specia. 2014. Document-
level translation quality estimation: exploring dis-
course and pseudo-references. In Proceedings of
EAMT.

Lucia Specia and Jesús Gimenez. 2010. Combin-
ing confidence estimation and reference-based metrics
for segment level MT evaluation. In Proceedings of
AMTA.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010. Ma-
chine translation evaluation versus quality estimation.
Machine translation, 24(1):39–50.

Andreas Stolcke, Jing Zheng, Wen Wang, and Victor
Abrash. 2011. SRILM at sixteen: Update and out-
look. In Proceedings of ASRU.

Elke Teich. 2003. Cross-linguistic variation in system
and text: A methodology for the investigation of trans-
lations and comparable texts, volume 5. Walter de
Gruyter.

Nicola Ueffing and Hermann Ney. 2004. Bayes decision
rules and confidence measures for statistical machine
translation. Proceedings of Advances in Natural Lan-
guage Processing, pages 70–81.

Nicola Ueffing and Hermann Ney. 2005. Word-level
confidence estimation for machine translation using
phrase-based translation models. In Proceedings of
EMNLP, pages 763–770.

Nicola Ueffing, Klaus Macherey, and Hermann Ney.
2003. Confidence measures for statistical machine
translation. In Proceedings of MT Summit.

Vered Volansky. 2012. The features of translationese.
Master’s thesis, University of Haifa.

970

Proceedings of NAACL-HLT 2016, pages 971–976,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Interpretese vs. Translationese:
The Uniqueness of Human Strategies in Simultaneous Interpretation

He He
Computer Science

University of Maryland
hhe@cs.umd.edu

Jordan Boyd-Graber
Computer Science

University of Colorado
Jordan.Boyd.Graber

@colorado.edu

Hal Daumé III
Computer Science and UMIACS

University of Maryland
hal@cs.umd.edu

Abstract

Computational approaches to simultaneous in-
terpretation are stymied by how little we know
about the tactics human interpreters use. We
produce a parallel corpus of translated and si-
multaneously interpreted text and study differ-
ences between them through a computational
approach. Our analysis reveals that human in-
terpreters regularly apply several effective tac-
tics to reduce translation latency, including sen-
tence segmentation and passivization. In addi-
tion to these unique, clever strategies, we show
that limited human memory also causes other
idiosyncratic properties of human interpreta-
tion such as generalization and omission of
source content.

1 Human Simultaneous Interpretation

Although simultaneous interpretation has a key role
in today’s international community,1 it remains under-
explored within machine translation (MT). One key
challenge is to achieve a good quality/speed trade-
off: deciding when, what, and how to translate. In
this study, we take a data-driven, comparative ap-
proach and examine: (i) What distinguishes simul-
taneously interpreted text (Interpretese2) from batch-
translated text (Translationese)? (ii) What strategies
do human interpreters use?

1Unlike consecutive interpretation (speakers stop after a com-
plete thought and wait for the interpreter), simultaneous interpre-
tation has the interpreter to translate while listening to speakers.

2Language produced in the process of translation is often con-
sidered a dialect of the target language: “Translationese” (Baker,
1993). Thus, “Interpretese” refers to interpreted language.

Most previous work focuses on qualitative analy-
sis (Bendazzoli and Sandrelli, 2005; Camayd-Freixas,
2011; Shimizu et al., 2014) or pattern counting (To-
hyama and Matsubara, 2006; Sridhar et al., 2013). In
contrast, we use a more systematic approach based
on feature selection and statistical tests. In addition,
most work ignores translated text, making it hard to
isolate strategies applied by interpreters as opposed to
general strategies needed for any translation. Shimizu
et al. (2014) are the first to take a comparative ap-
proach; however, they directly train MT systems on
the interpretation corpus without explicitly examin-
ing interpretation tactics. While some techniques can
be learned implicitly, the model may also learn unde-
sirable behavior such as omission and simplification:
byproducts of limited human working memory (Sec-
tion 4).

Prior work studies simultaneous interpretation of
Japanese↔English (Tohyama and Matsubara, 2006;
Shimizu et al., 2014) and Spanish↔English (Sridhar
et al., 2013). We focus on Japanese↔English inter-
pretation. Since information required by the target En-
glish sentence often comes late in the source Japanese
sentence (e.g., the verb, the noun being modified),
we expect it to reveal a richer set of tactics.3 Our con-
tributions are three-fold. First, we collect new human
translations for an existing simultaneous interpreta-
tion corpus, which can benefit future comparative
research.4 Second, we use classification and feature
selection methods to examine linguistic characteris-

3The tactics are consistent with those discovered on other
language pairs in prior work, with additional ones specific to
head-final to head-initial languages.

4https://github.com/hhexiy/interpretese

971

tics comparatively. Third, we categorize human inter-
pretation strategies, including word reordering tactics
and summarization tactics. Our results help linguists
understand simultaneous interpretation and help com-
puter scientists build better automatic interpretation
systems.

2 Distinguishing Translationese and
Interpretese

In this section, we discuss strategies used in Inter-
pretese, which we detect automatically in the next
section. Our hypothesis is that tactics used by inter-
preters roughly fall in two non-exclusive categories:
(i) delay minimization, to enable prompt translation
by arranging target words in an order similar to the
source; (ii) memory footprint minimization, to avoid
overloading working memory by reducing communi-
cated information.

Segmentation Interpreters often break source sen-
tences into multiple smaller sentences (Camayd-
Freixas, 2011; Shimizu et al., 2013), a process we
call segmentation. This is different from what is com-
monly used in speech translation systems (Fujita et
al., 2013; Oda et al., 2014), where translations of
segments are directly concatenated. Instead, humans
try to incorporate new information into the precedent
partial translation, e.g., using “which is” to put it in a
clause (Table 1, Example 3), or creating a new sen-
tence joined by conjunctions (Table 1, Example 5).

Passivization Passivization is useful for inter-
preting from head-final languages (e.g., Japanese,
German) to head-initial languages (e.g., English,
French) (He et al., 2015). Because the verb is needed
early in the target sentence but only appears at the
end of the source sentence, an obvious strategy is to
wait for the final verb. However, if the interpreter uses
passive voice, they can start translating immediately
and append the verb at the end (Table 1, Examples 4–
5). During passivization, the subject is often omitted
when obvious from context.

Generalization Camayd-Freixas (2011) and Al-
Khanji et al. (2000) observe that interpreters focus
on delivering the gist of a sentence rather than du-
plicating the nuanced meaning of each word. More
frequent words are chosen as their retrieval time is
faster (Dell and O’Seaghdha, 1992; Cuetos et al.,

inter https://tagul.com/cloud/2

1 of 1 3/23/16, 9:02 AM

Figure 1: A word cloud visualization of Interpretese (black) and

Translationese (gold).

2006) (e.g., “honorific” versus “polite” in Table 1,
Example 1). Although Volansky et al. (2013) show
that generalization happens in translation too, it is
likely more frequent in Interpretese given the severe
time constraints.

Summarization Faced with overwhelming infor-
mation, interpreters need efficient ways to encode
meaning. Less important words, or even a whole sen-
tence can drop, especially when the interpreter falls
behind the speaker. In Table 1, Example 2, the lit-
eral translation “as much as possible” is reduced to
“very”, and the adjective “Japanese” is omitted.

Before we study these characteristics quantita-
tively in the next section, we visualize Interpretese
and Translationese by a word cloud in Figure 1.
The size of each word is proportional to the dif-
ference between its frequencies in Interpretese and
Translationese (Section 3). The word color indicates
whether it is more frequent in Interpretese (black)
or Translationese (gold). “the” is over-represented in
Interpretese, a phenomenon also occurs in Transla-
tionese vs. the original text (Eetemadi and Toutanova,
2014). More conjunction words (e.g., “and”, “so”,
“or”, “then”) are used in Interpretese, likely for
segmentation, whereas “that” is more frequent in
Translationese—a sign of clauses. In addition, the
pronoun “I” occurs more often in Translationese
while “be” and “is” occur more often in Interpretese,
which is consistent with our passivization hypothe-
sis.

972

Source (S), translation (T) and interpretation (I) text Tactic

1

(S) この日本語の待遇表現の特徴ですが英語から日本語へ直訳しただけでは表現できないと
いった特徴があります. generalize

segment 〈∥∥〉
(omit)

(T) (One of) the characteristics of honorific Japanese is that it can not be adequately expressed when
using a direct translation (from English to Japanese).
(I) Now let me talk about the characteristic of the Japanese polite expressions. 〈∥∥〉 And such such
expressions can not be expressed enough just by translating directly.

2

(S) で三番目の特徴としてはですねえ出来る限り自然な日本語の話言葉とてその出力をすると
いったような特徴があります. generalize

::::::::
summarize
(omit)

(T) Its third characteristic is that its output is,
:
as

:::::
much

::
as

::::::
possible, in the natural language of spoken

(Japanese).
(I) And the third feature is that the translation could be produced in a

::::
very natural spoken language.

3

(S) まとめますと我々は派生文法という従来の学校文法とは違う文法を使った日本語解析を
行っています.その結果従来よりも単純な解析が可能となっております. segment 〈∥∥〉

(omit)(T) In sum , we’ve conducted an analysis on the Japanese language , using a grammar different from
school grammar, called derivational grammar. (As a result,) we were able to produce a simpler analysis
(than the conventional method).
(I) So, we are doing Japanese analysis based on derivational grammar, 〈∥∥〉 which is different from school
grammar, 〈∥∥〉 which enables us to analyze in simple way.

4
(S) つまり例えばこの表現一は認識できますが二から四は認識できない. generalize

passivize
segment 〈∥∥〉(T) They might recognize expression one but not expressions two to four.

(I) The phrase number one only is accepted 〈∥∥〉 and phrases two, three, four were not accepted.

5

(S) 以上のお話をまとめますと自然な発話というものを扱うことができる音声対話の方法とい
うことを考案しました.

generalize
passivize
segment 〈∥∥〉(T) In summary , we have devised a way for voice interaction systems to handle natural speech.

(I) And this is the summary of what I have so far stated. The spontaneous speech can be dealt with by the
speech dialog method 〈∥∥〉 and that method was proposed.

Table 1: Examples of tactics used by interpreters to cope with divergent word orders, limited working memory, and the pressure to

produce low-latency translations. We show the source input (S), translated sentences (T), and interpreted sentences (I). The tactics

are listed in the rightmost column and marked in the text: more general translations are highlighted in italics; 〈∥∥〉 marks where new

clauses or sentences are created; and passivized verbs in translation are underlined. Information appearing in translation but omitted

in interpretation are in (parentheses). Summarized expressions and their corresponding expression in translation are
::::::::
underlined

::
by

::::
wavy

::::
lines.

3 Classification of Translationese and
Interpretese

We investigate the difference between Translationese
and Interpretese by creating a text classifier to dis-
tinguish between them and then examining the most
useful features. We train our classifier on a bilin-
gual Japanese-English corpus of spoken monologues
and their simultaneous interpretations (Matsubara et
al., 2002). To obtain a three-way parallel corpus of
aligned translation, interpretation, and their shared
source text, we first align the interpreted sentences
to source sentences by dynamic programming fol-
lowing Ma (2006).5 This step results in 1684 pairs

5Sentences are defined by sentence boundaries marked in the
corpus, thus coherence is preserved during alignment.

of text chunks, with 33 tokens per chunk on average.
We then collect human translations from Gengo6 for
each source text chunk (one translator per mono-
logue). The original corpus has four interpretors per
monologue. We use all available interpretation by
copying the translation of a text chunk for its addi-
tional interpretation.

3.1 Discriminative Features

We use logistic regression as our classifier. Its job is to
tell, given a chunk of English text, which translation
produced it. We add `1 regularization to select the
non-zero features that best distinguish Interpretese
from Translationese. We experiment with three dif-

6http://gengo.com (“standard” quality).

973

ferent sets of features: (1) POS: n-gram features of
POS tags (up to trigram); 7 (2) LEX: word unigrams;
(3) LING: features reflecting linguistic hypothese
(Section 2), most of which are counts of indicator
functions normalized by length of the chunk (Ap-
pendix A).

The top linguistic features listed in Table 3 are
consistent with our hypotheses. The most promi-
nent ones—also revealed by POS and LEX—are the
segmentation features, including counts of conjunc-
tion words (CC), content words (nouns, verbs, ad-
jectives, and adverbs) that appear more than once
(repeated), demonstratives (demo) such as this,
that, these, those, segmented sentences (sent), and
proper nouns (NNP). More conjunction words and
more sentences in a text chunk are signs of segmenta-
tion. Repeated words and the frequent use of demon-
stratives come from transforming clauses to indepen-
dent sentences. Next are the passivization features, in-
dicating more passivized verbs (passive) and fewer
pronouns (pronoun) in Interpretese. The lack of pro-
nouns may be results of either subject omission dur-
ing passivization or general omission. The last group
are the vocabulary features, showing fewer numbers
of stem types, token types, and content words in Inter-
pretese, evidence of word generalization. In addition,
a smaller number of content words suggests that inter-
preters may use more function words to manipulate
the sentence structure.

3.2 Classification Results

Recall that our goal is to understand Interpretese,
not to classify Interpretese and Translationese; how-
ever, the ten-fold cross validation accuracy of LING,
POS, LEX are 0.66, 0.85, and 0.94. LEX and POS
yield high accuracy as some features are overfitting,
e.g., in this dataset, most interpreters used “parsing”
for “構文解析” while the translator used “syntactic
analysis”. Therefore, they do not reveal much about
the characteristics of Interpretese except for frequent
use of “and” and CC, which indicates segmentation.
Similarly, Volansky et al. (2013) and Eetemadi and
Toutanova (2014) also find lexical features very effec-
tive but not generalizable for detecting Translationese
and exclude them from analysis. One reason for the
relatively low accuracy of LING may be inconsistent

7We prepend 〈S〉 and append 〈E〉 to all sentences.

LING POS LEX

CC + 〈S〉 CC + And +
repeated + . CC + parsing +
demo + 〈S〉 CC IN + gradual –
sent + NN CC PR + syntax –
passive + 〈S〉 CC DT + keyboard +
pronoun – CC RB DT + attitudinal –
NNP + , RB DT + text –
stem type – . CC DT + adhoc +
tok type – NN FW NN + construction –
content – NN CC RB – Furthermore –

Table 3: Top 10 highest-weighted features in each model. The

sign shows whether it is indicative of Interpretese (+) or Transla-

tionese (–).

use of strategies among humans (Section 4).

4 Strategy Analysis

To better understand under what situations these tac-
tics are used, we apply two-sample t-tests to com-
pare the following quantities between Interpretese
and Translationese: (1) number of inversions (non-
monotonic translations) on all source tokens (inv-all),
verbs (inv-verb) and nouns (inv-noun); (2) number of
segmented sentences; (3) number of natural passiviza-
tion (pass-st), meaning copying a passive construc-
tion in the source sentence into the target sentence,
and intentional passivization (pass-t), meaning intro-
ducing passivization into the target sentence when
the source sentence is in active voice; (4) number of
omitted words on the source side and inserted words
on the target side;8 (5) average word frequency given
by Microsoft Web n-gram—higher means more com-
mon.9 For all pairs of samples, the null hypothesisH0

is that the means on Interpretese and Translationese
are equal; the alternative hypotheses and results are
in Table 2.

As expected, segmentation and intentional pas-
sivization happen more often during interpretation.
Interpretese has fewer inversions, especially for
verbs; reducing word order difference is important
for delay minimization. Since there are two to four
different interpretations for each lecture, we further
analyze how consistent humans are on these deci-
sions. All interpreters agree on segmentation 73.7%
of the time, while the agreement on passivization is

8The number of unaligned words in the source or target.
9http://weblm.research.microsoft.com/

974

Sample inv-all inv-verb inv-noun segment pass-t pass-st omit insert word freq

Ha µI < µT µI > µT µI > µT µI > µT µI > µT

t-stat -1.55 -3.81 -2.13 4.21 5.67 1.41 16.16 10.66 7.88
p-value .12 <.001 .03 <.001 <.001 .16 <.001 <.001 <.001

Table 2: Two-sample t-tests for Interpretese and Translationese. The test statistics are bolded when we reject H0 at the 0.05

significance level (two-tailed).

only 57.1%—passivization is an acquired skill; not
all interpreters use it when it can speed interpretation.

The tests also confirm our hypotheses on gener-
alization and omission. However, these tactics are
not inherent to the task of simultaneous interpreta-
tion. Instead, they are a byproduct of humans’ limited
working memory. Computers can load much larger
resources into memory and weigh quality of different
translations in an instant, thus potentially rendering
the speaker’s message more accurately. Therefore,
directly learning from corpus of human interpreta-
tion may lead to suboptimal results (Shimizu et al.,
2014).

5 Conclusion

While we describe how Translationese and Inter-
pretese are different and characterize how they differ,
the contribution of our work is not just examining an
interesting, important dialect. Our work provides op-
portunities to improve conventional simultaneous MT
systems by exploiting and modeling human tactics.
He et al. (2015) use hand-crafted rules to decrease
latency; our data-driven approach could yield addi-
tional strategies for improving MT systems. Another
strategy—given the scarcity and artifacts of interpre-
tation corpus—is to select references that present
delay-minimizing features of Interpretese from trans-
lation corpus (Axelrod et al., 2011). Another future
direction is to investigate cognitive inference (Cher-
nov, 2004), which is useful for semantic/syntactic
prediction during interpretation (Grissom II et al.,
2014; Oda et al., 2015).

A Feature Extraction

We use the Berkeley aligner (Liang et al., 2006) for
word alignment, the Stanford POS tagger (Toutanova
et al., 2003) to tag English sentences, and Kuro-
moji 10 to tokenize, lemmatize and tag Japanese sen-

10http://www.atilika.org/

tences. Below we describe the features in detail.
Inversion: Let {Ai} be the set of indexes of tar-
get words to which each source word wi is aligned.
We count Ai and Aj (i < j) as an inverted pair if
max(Ai) > min(Aj). This means that we have to
wait until the jth word to translate the ith word.
Segmentation: We use the punkt sentence seg-
menter (Kiss and Strunk, 2006) from NLTK to detect
sentences in a text chunk.
Passivization: We compute the number of passive
verbs normalized by the total number of verbs. We
detect passive voice in English by matching the fol-
lowing regular expression: a be verb (be, are, is, was,
were etc.) followed by zero to four non-verb words
and one verb in its past participle form. We detect pas-
sive voice in Japanese by checking that the dictionary
form of a verb has the suffix “れる”.
Vocabulary To measure variety, we use Vt/N and
Vs/N , where Vt and Vs are counts of distinct tokens
and stems, and N is the total number of tokens. To
measure complexity, we use word length, number
of syllables per word, approximated by vowel se-
quences; and unigram and bigram frequency from
Microsoft Web N -gram.
Summarization We use the sentence compression ra-
tio, sentence length, number of omitted source words,
approximated by counts of unaligned words, and
number of content words.

Acknowledgments

We thank CIAIR (Nagoya University, Japan) for pro-
viding the interpretation data which formed the foun-
dation of this research. We also thank Alvin Gris-
som II, Naho Orita and the reviewers for their insight-
ful comments. This work was supported by NSF grant
IIS-1320538. Boyd-Graber is also partially supported
by NSF grants CCF-1409287 and NCSE-1422492. Any
opinions, findings, conclusions, or recommendations
expressed here are those of the authors and do not
necessarily reflect the view of the sponsor.

975

References
Raja Al-Khanji, Said El-Shiyab, and Riyadh Hussein.

2000. On the use of compensatory strategies in si-
multaneous interpretation. Journal des Traducteurs,
45(3):548–577.

Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011.
Domain adaptation via pseudo in-domain data selec-
tion. In Proceedings of Empirical Methods in Natural
Language Processing (EMNLP).

Mona Baker. 1993. Corpus linguistics and translation
studies: Implications and applications. In Mona Baker,
Gill Francis, and Elena Tognini-Bonelli, editors, Text
and Technology: In Honour of John Sinclair, pages
233–250.

Claudio Bendazzoli and Annalisa Sandrelli. 2005. An
approach to corpus-based interpreting studies: Develop-
ing EPIC (european parliament interpreting corpus). In
Proceedings of Challenges of Multidimensional Trans-
lation.

Erik Camayd-Freixas. 2011. Cognitive theory of simulta-
neous interpreting and training. In Proceedings of the
52nd Conference of the American Translators Associa-
tion.

Ghelly V. Chernov. 2004. Inference and Anticipation
in Simultaneous Interpreting. A Probability-prediction
Model. Amsterdam: John Benjamins Publishing Com-
pany.

F. Cuetos, B. Alvarez B, M. González-Nosti, A. Méot,
and P. Bonin. 2006. Determinants of lexical access in
speech production: role of word frequency and age of
acquisition. Mem Cognit, 34.

G.S. Dell and P.G. O’Seaghdha. 1992. Stages of lexical
access in language production. Cognition.

Sauleh Eetemadi and Kristina Toutanova. 2014. Asym-
metric features of human generated translation. In Pro-
ceedings of Empirical Methods in Natural Language
Processing (EMNLP).

Tomoki Fujita, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2013. Simple, lexi-
calized choice of translation timing for simultaneous
speech translation. In Proceedings of Interspeech.

Alvin C. Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simultane-
ous machine translation. In Proceedings of Empirical
Methods in Natural Language Processing (EMNLP).

He He, Alvin Grissom II, Jordan Boyd-Graber, John Mor-
gan, and Hal Daumé III. 2015. Syntax-based rewriting
for simultaneous machine translation. In Proceedings
of Empirical Methods in Natural Language Processing
(EMNLP).

Tibor Kiss and Jan Strunk. 2006. Unsupervised multi-
lingual sentence boundary detection. Computational
Linguistics, 32:485–525.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL).

Xiaoyi Ma. 2006. Champollion: A robust parallel text
sentence aligner. In Proceedings of the Language Re-
sources and Evaluation Conference (LREC).

Shigeki Matsubara, Akira Takagi, Nobuo Kawaguchi, and
Yasuyoshi Inagaki. 2002. Bilingual spoken mono-
logue corpus for simultaneous machine interpretation
research. In Proceedings of the Language Resources
and Evaluation Conference (LREC).

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Optimizing seg-
mentation strategies for simultaneous speech transla-
tion. In Proceedings of the annual meeting of the Asso-
ciation for Computational Linguistics (ACL).

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Syntax-based
simultaneous translation through prediction of unseen
syntactic constituents. In The 53rd Annual Meeting of
the Association for Computational Linguistics (ACL),
Beijing, China, July.

Hiroaki Shimizu, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2013. Constructing a
speech translation system using simultaneous interpre-
tation data. In Proceedings of International Workshop
on Spoken Language Translation (IWSLT).

Hiroaki Shimizu, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2014. Collection of a
simultaneous translation corpus for comparative anal-
ysis. In Proceedings of the Language Resources and
Evaluation Conference (LREC).

Vivek Kumar Rangarajan Sridhar, John Chen, and Srini-
vas Bangalore. 2013. Corpus analysis of simultaneous
interpretation data for improving real time speech trans-
lation. In Proceedings of Interspeech.

Hitomi Tohyama and Shigeki Matsubara. 2006. Col-
lection of simultaneous interpreting patterns by using
bilingual spoken monologue corpus. In Proceedings
of the Language Resources and Evaluation Conference
(LREC).

Kristina Toutanova, Dan Klein, Christopher Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In Proceedings
of the Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL).

Vered Volansky, Noam Ordan, and Shuly Wintner. 2013.
On the features of translationese. Literary and Linguis-
tic Computing, pages 98–118.

976

Proceedings of NAACL-HLT 2016, pages 977–982,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

LSTM Neural Reordering Feature for Statistical Machine Translation

Yiming Cui, Shijin Wang and Jianfeng Li
iFLYTEK Research, Beijing, China

{ymcui,sjwang3,jfli3}@iflytek.com

Abstract

Artificial neural networks are powerful mod-
els, which have been widely applied into
many aspects of machine translation, such
as language modeling and translation mod-
eling. Though notable improvements have
been made in these areas, the reordering prob-
lem still remains a challenge in statistical ma-
chine translations. In this paper, we present
a novel neural reordering model that directly
models word pairs and their alignment. Fur-
ther by utilizing LSTM recurrent neural net-
works, much longer context could be learned
for reordering prediction. Experimental re-
sults on NIST OpenMT12 Arabic-English
and Chinese-English 1000-best rescoring task
show that our LSTM neural reordering feature
is robust, and achieves significant improve-
ments over various baseline systems.

1 Introduction

In statistical machine translation, the language
model, translation model, and reordering model are
the three most important components. Among these
models, the reordering model plays an important
role in phrase-based machine translation (Koehn et
al., 2004), and it still remains a major challenge in
current study.

In recent years, various phrase reordering meth-
ods have been proposed for phrase-based SMT sys-
tems, which can be classified into two broad cate-
gories:

(1) Distance-based RM: Penalize phrase displace-
ments with respect to the degree of non-
monotonicity (Koehn et al., 2004).

(2) Lexicalized RM: Conditions reordering proba-
bilities on current phrase pairs. According to the
orientation determinants, lexicalized reordering
model can further be classified into word-based
RM (Tillman, 2004), phrase-based RM (Koehn
et al., 2007), and hierarchical phrase-based RM
(Galley and Manning, 2008).

Furthermore, some researchers proposed a re-
ordering model that conditions both current and
previous phrase pairs by utilizing recursive auto-
encoders (Li et al., 2014).

In this paper, we propose a novel neural reorder-
ing feature by including longer context for pre-
dicting orientations. We utilize a long short-term
memory recurrent neural network (LSTM-RNN)
(Graves, 1997), and directly models word pairs to
predict its most probable orientation. Experimen-
tal results on NIST OpenMT12 Arabic-English and
Chinese-English translation show that our neural re-
ordering model achieves significant improvements
over various baselines in 1000-best rescoring task.

2 Related Work

Recently, various neural network models have been
applied into machine translation.

Feed-forward neural language model was first
proposed by Bengio et al. (2003), which was a
breakthrough in language modeling. Mikolov et
al. (2011) proposed to use recurrent neural net-
work in language modeling, which can include
much longer context history for predicting next
word. Experimental results show that RNN-based
language model significantly outperform standard
feed-forward language model.

977

Devlin et al. (2014) proposed a neural network
joint model (NNJM) by conditioning both source
and target language context for target word predict-
ing. Though the network architecture is a simple
feed-forward neural network, the results have shown
significant improvements over state-of-the-art base-
lines.

Sundermeyer et al. (2014) also put forward
a neural translation model, by utilizing LSTM-
based RNN and Bidirectional RNN. In bidirectional
RNNs, the target word is conditioned on not only the
history but also future source context, which forms
a full source sentence for predicting target words.

Li et al. (2013) proposed to use a recursive auto-
encoder (RAE) to map each phrase pairs into contin-
uous vectors, and handle reordering problems with
a classifier. Also, they suggested that by both in-
cluding current and previous phrase pairs to deter-
mine the phrase orientations could achieve further
improvements in accuracy (Li et al., 2014).

By far, we have noticed that this is the first time to
use LSTM-RNN in reordering model. We could in-
clude much longer context information to determine
phrase orientations using RNN architecture. Fur-
thermore, by utilizing the LSTM layer, the network
is able to capture much longer range dependencies
than standard RNNs.

Because we need to record fixed length of history
information in SMT decoding step, we only utilize
our LSTM-RNN reordering model as a feature in
1000-best rescoring step. As word alignments are
known after generating n-best list, it is possible to
use LSTM-RNN reordering model to score each hy-
pothesis.

3 Lexicalized Reordering Model

In traditional statistical machine translation, lexical-
ized reordering models (Koehn et al., 2007) have
been widely used. It considers alignments of current
and previous phrase pairs to determine the orienta-
tion.

Formally, when given source language sentence
f = {f1, ..., fn}, target language sentence e =
{e1, ..., en}, and phrase alignment a = {a1, ..., an},
the lexicalized reordering model can be illustrated
in Equation 1, which only conditions on ai−1 and

ai, i.e. previous and current alignment.

p(o|e, f) =
n∏
i=1

p(oi|ei, fai , ai−1, ai) (1)

In Equation 1, the oi represents the set of phrase
orientations. For example, in the most commonly
used MSD-based orientation type, oi takes three val-
ues: M stands for monotone, S for swap, and D for
discontinuous. The definition of MSD-based orien-
tation is shown in Equation 2.

oi =


M, ai − ai−1 = 1
S, ai − ai−1 = −1
D, |ai − ai−1| 6= 1

(2)

For other orientation types, such as LR and MSLR
are also widely used, whose definition can be found
on Moses official website 1.

Recent studies on reordering model suggest that
by also conditioning previous phrase pairs can im-
prove context sensitivity and reduce reordering am-
biguity.

4 LSTM Neural Reordering Model

In order to include more context information for de-
termining reordering, we propose to use a recurrent
neural network, which has been shown to perform
considerably better than standard feed-forward ar-
chitectures in sequence prediction (Mikolov et al.,
2011). However, RNN with conventional back-
propagation training suffers from gradient vanishing
issues (Bengio et al., 1994) .

Later, the long short-term memory was proposed
for solving gradient vanishing problem, and it could
catch longer context than standard RNNs with sig-
moid activation functions. In this paper, we adopt
LSTM architecture for training neural reordering
model.

4.1 Training Data Processing
For reducing model complexity and easy implemen-
tation, our neural reordering model is purely lexical-
ized and trained on word-level.

We will take LR orientation for explanations,
while other orientation types (MSD, MSLR) can
be induced similarly. Given a sentence pair and

1http://www.statmt.org/moses/

978

its alignment information, we can induce the word-
based reordering information by following steps.
Note that, we always evaluate the model in the or-
der of target sentence.

(1) If current target word is one-to-one alignment,
then we can directly induce its orientations, i.e.
〈left〉 or 〈right〉.

(2) If current source/target word is one-to-many
alignment, then we judge its orientation by con-
sidering its first aligned target/source word, and
the other aligned target/source words are anno-
tated as 〈follow〉 reordering type, which means
these word pairs inherent the orientation of pre-
vious word pair.

(3) If current source/target word is not aligned to
any target/source words, we introduce a 〈null〉
token in its opposite side, and annotate this word
pair as 〈follow〉 reordering type.

Figure 1 shows an example of data processing.

wait for approval of the government

等到 政府的 批准

dengdao zhengfu de pizhun

(a)
R R L

for approval of

等到 政府 批准

dengdao zhengfu de pizhun

(b)
R F R L L F

的

wait the government

......

......

......

......

Figure 1: Illustration of data processing. (a) Original reorder-

ing (omit alignment inside each phrase); (b) processed reorder-

ing, all alignments are regularized to word level, R-right, L-left,

F-follow.

4.2 LSTM Network Architecture

After processing the training data, we can directly
utilize the word pairs and its orientation to train a
neural reordering model.

Given a word pair and its orientation, a neural re-
ordering model can be illustrated by Equation 3.

p(o|e, f) =
n∏
i=1

p(oi|ei1, fai
1 , ai−1, ai) (3)

Where ei1 = {e1, ..., ei}, fai
1 = {f1, ..., fai}. In-

clusion of history word pairs is done with recurrent
neural network, which is known for its capability of
learning history information.

The architecture of LSTM-RNN reordering
model is depicted in Figure 2, and corresponding
equations are shown in Equation 4 to 6.

yi = W1 ∗ fai +W2 ∗ ei (4)

zi = LSTM(yi,W3, y
i−1
1) (5)

p(oi|ei1, fai
1 , ai−1, ai) = softmax(W4 ∗ zi) (6)

The input layer consists both source and target
language word, which is in one-hot representation.
Then we perform a linear transformation of input
layer to a projection layer, which is also called em-
bedding layer. We adopt extended-LSTM as our hid-
den layer implementation, which consists of three
gating units, i.e. input, forget and output gates. We
omit rather extensive LSTM equations here, which
can be found in (Graves and Schmidhuber, 2005).
The output layer is composed by orientation types.
For example, in LR condition, the output layer con-
tains two units: 〈left〉 and 〈right〉 orientation. Fi-
nally, we apply softmax function to obtain normal-
ized probabilities of each orientation.

Output Layer

LSTM Layer

Projection Layer

Input Layer

𝑃(𝑜$|𝑒'(, 𝑓'
+,, 𝑎(.', 𝑎()

𝑓+, 𝑒(

Figure 2: Architecture of LSTM neural reordering model.

5 Experiments

5.1 Setups
We mainly tested our approach on Arabic-English
and Chinese-English translation. The training
corpus contains 7M words for Arabic, and 4M
words for Chinese, which is selected from NIST

979

System Dev Test1 Test2

Ar-En
MT04-05-06 MT08 MT09

(3795) (1360) (1313)

Zh-En
MT05-08 MT08.prog MT12.rd

(2439) (1370) (820)
Table 1: Statistics of development and test set. The number of

segments are indicated in brackets.

OpenMT12 parallel dataset. We use the SAMA to-
kenizer2 for Arabic word tokenization, and in-house
segmenter for Chinese words. The English part of
parallel data is tokenized and lowercased. All de-
velopment and test sets have 4 references for each
segment. The statistics of development and test sets
are shown in Table 1.

The baseline systems are built with the open-
source phrase-based SMT toolkit Moses (Koehn et
al., 2007). Word alignment and phrase extrac-
tion are done by GIZA++ (Och and Ney, 2000)
with L0-normalization (Vaswani et al., 2012), and
grow-diag-final refinement rule (Koehn et al., 2004).
Monolingual part of training data is used to train
a 5-gram language model using SRILM (Stolcke,
2002). Parameter tuning is done by K-best MIRA
(Cherry and Foster, 2012). For guarantee of re-
sult stability, we tune every system 5 times inde-
pendently, and take the average BLEU score (Clark
et al., 2011). The translation quality is evaluated
by case-insensitive BLEU-4 metric (Papineni et al.,
2002). The statistical significance test is also car-
ried out with paired bootstrap resampling method
with p < 0.001 intervals (Koehn, 2004). Our mod-
els are evaluated in a 1000-best rescoring step, and
all features in 1000-best list as well as LSTM-RNN
reordering feature are retuned via K-best MIRA al-
gorithm.

For neural network training, we use all parallel
text in the baseline training. As a trade-off be-
tween computational cost and performance, the pro-
jection layer and hidden layer are set to 100, which
is enough for our task (We have not seen signifi-
cant gains when increasing dimensions greater than
100). We use an initial learning rate of 0.01 with
standard SGD optimization without momentum. We
trained model for a total of 10 epochs with cross-
entropy criterion. Input and output vocabulary are

2https://catalog.ldc.upenn.edu/LDC2010L01

set to 100K and 50K respectively, and all out-of-
vocabulary words are mapped to a 〈unk〉 token.

5.2 Results on Different Orientation Types
At first, we test our neural reordering model (NRM)
on the baseline that contains word-based reordering
model with LR orientation. The results are shown in
Table 2 and 3.

As we can see that, among various orienta-
tion types (LR, MSD, MSLR), our model could
give consistent improvements over baseline system.
The overall BLEU improvements range from 0.42
to 0.79 for Arabic-English, and 0.31 to 0.72 for
Chinese-English systems. All neural results are sig-
nificantly better than baselines (p < 0.001 level).

In the meantime, we also find that “Left-Right”
based orientation methods, such as LR and MSLR,
consistently outperform MSD-based orientations.
The may caused by non-separability problem, which
means that MSD-based methods are vulnerable to
the change of context, and weak in resolving re-
ordering ambiguities. Similar conclusion can be
found in Li et al. (2014) .

Ar-En System Dev Test1 Test2
Baseline 43.87 39.84 42.05
+NRM LR 44.43 40.53 42.84
+NRM MSD 44.29 40.41 42.62
+NRM MSLR 44.52 40.59 42.78

Table 2: LSTM reordering model with different orientation

types for Arabic-English system.

Zh-En System Dev Test1 Test2
Baseline 27.18 26.17 24.04
+NRM LR 27.90 26.58 24.70
+NRM MSD 27.49 26.51 24.39
+NRM MSLR 27.82 26.78 24.53

Table 3: LSTM reordering model with different orientation

types for Chinese-English system.

5.3 Results on Different Reordering Baselines
We also test our approach on various baselines,
which either contains word-based, phrase-based, or
hierarchical phrase-based reordering model. We
only show the results of MSLR orientation, which
is relatively superior than others according to the re-
sults in Section 5.2.

980

Ar-En System Dev Test1 Test2
Baseline wbe 43.87 39.84 42.05
+NRM MSLR 44.52 40.59 42.78
Baseline phr 44.11 40.09 42.21
+NRM MSLR 44.52 40.73 42.89
Baseline hier 44.30 40.23 42.38
+NRM MSLR 44.61 40.82 42.86
Zh-En System Dev Test1 Test2
Baseline wbe 27.18 26.17 24.04
+NRM MSLR 27.90 26.58 24.70
Baseline phr 27.33 26.05 24.13
+NRM MSLR 27.86 26.46 24.73
Baseline hier 27.56 26.29 24.38
+NRM MSLR 28.02 26.49 24.67

Table 4: Results on various baselines for Arabic-English and

Chinese-English system. “wbe”: word-based; “phr”: phrase-

based; “hier”: hierarchical phrase-based reordering model. All

NRM results are significantly better than baselines (p < 0.001

level).

In Table 4 and 5, we can see that though we add
a strong hierarchical phrase-based reordering model
in the baseline, our model can still bring a maximum
gain of 0.59 BLEU score, which suggest that our
model is applicable and robust in various circum-
stances. However, we have noticed that the gains
in Arabic-English system is relatively greater than
that in Chinese-English system. This is probably be-
cause hierarchical reordering features tend to work
better for Chinese words, and thus our model will
bring little remedy to its baseline.

6 Conclusions

We present a novel work that build a reordering
model using LSTM-RNN, which is much sensitive
to the change of context and introduce rich con-
text information for reordering prediction. Further-
more, the proposed model is purely lexicalized and
straightforward, which is easy to realize. Experi-
mental results on 1000-best rescoring show that our
neural reordering feature is robust, and could give
consistent improvements over various baseline sys-
tems.

In future, we are planning to extend our word-
based LSTM reordering model to phrase-based re-
ordering model, in order to dissolve much more am-
biguities and improve reordering accuracy. Further-

more, we are also going to integrate our neural re-
ordering model into neural machine translation sys-
tems.

Acknowledgments

We sincerely thank the anonymous reviewers for
their thoughtful comments on our work.

References
Y. Bengio, P. Simard, and P. Frasconi. 1994. Learn-

ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166.

Yoshua Bengio, Holger Schwenk, Jean Sbastien Sencal,
Frderic Morin, and Jean Luc Gauvain. 2003. A neu-
ral probabilistic language model. Journal of Machine
Learning Research, 3(6):1137–1155.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 427–
436, Montréal, Canada, June. Association for Compu-
tational Linguistics.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statisti-
cal machine translation: Controlling for optimizer in-
stability. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 176–181, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for sta-
tistical machine translation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1370–1380, Baltimore, Maryland, June. Association
for Computational Linguistics.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 848–856, Honolulu, Hawaii, October. Associa-
tion for Computational Linguistics.

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional lstm net-
works. In Proceedings in 2005 IEEE International
Joint Conference on Neural Networks, pages 2047–
2052 vol. 4.

981

Alex Graves. 1997. Long short-term memory. Neural
Computation, 9(8):1735–1780.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2004. Statistical phrase-based translation. In Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics on Human Lan-
guage Technology-volume, pages 127–133.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic, June. Association for
Computational Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Dekang Lin and
Dekai Wu, editors, Proceedings of EMNLP 2004,
pages 388–395, Barcelona, Spain, July. Association
for Computational Linguistics.

Peng Li, Yang Liu, and Maosong Sun. 2013. Recursive
autoencoders for ITG-based translation. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 567–577, Seat-
tle, Washington, USA, October. Association for Com-
putational Linguistics.

Peng Li, Yang Liu, Maosong Sun, Tatsuya Izuha, and
Dakun Zhang. 2014. A neural reordering model for
phrase-based translation. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1897–
1907, Dublin, Ireland, August. Dublin City University
and Association for Computational Linguistics.

T. Mikolov, S. Kombrink, L. Burget, and J. H. Cernocky.
2011. Extensions of recurrent neural network lan-
guage model. In IEEE International Conference on
Acoustics, Speech Signal Processing, pages 5528–
5531.

Franz Josef Och and Hermann Ney. 2000. A compari-
son of alignment models for statistical machine trans-
lation. In Proceedings of the 18th conference on Com-
putational linguistics - Volume 2, pages 1086–1090.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Andreas Stolcke. 2002. Srilm — an extensible language
modeling toolkit. In Proceedings of the 7th Inter-

national Conference on Spoken Language Processing
(ICSLP 2002), pages 901–904.

Martin Sundermeyer, Tamer Alkhouli, Joern Wuebker,
and Hermann Ney. 2014. Translation modeling with
bidirectional recurrent neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 14–25,
Doha, Qatar, October. Association for Computational
Linguistics.

Christoph Tillman. 2004. A unigram orientation model
for statistical machine translation. In Daniel Marcu
Susan Dumais and Salim Roukos, editors, HLT-
NAACL 2004: Short Papers, pages 101–104, Boston,
Massachusetts, USA, May 2 - May 7. Association for
Computational Linguistics.

Ashish Vaswani, Liang Huang, and David Chiang. 2012.
Smaller alignment models for better translations: Un-
supervised word alignment with the l0-norm. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 311–319, Jeju Island, Korea, July. As-
sociation for Computational Linguistics.

982

Proceedings of NAACL-HLT 2016, pages 983–993,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Novel Approach to Dropped Pronoun Translation

Longyue Wang† Zhaopeng Tu‡ Xiaojun Zhang† Hang Li‡ Andy Way† Qun Liu†
†ADAPT Centre, School of Computing, Dublin City University, Ireland
{lwang, xzhang, away, qliu}@computing.dcu.ie

‡Noah’s Ark Lab, Huawei Technologies, China
{tu.zhaopeng, hangli.hl}@huawei.com

Abstract

Dropped Pronouns (DP) in which pronouns
are frequently dropped in the source language
but should be retained in the target language
are challenge in machine translation. In re-
sponse to this problem, we propose a semi-
supervised approach to recall possibly missing
pronouns in the translation. Firstly, we build
training data for DP generation in which the
DPs are automatically labelled according to
the alignment information from a parallel cor-
pus. Secondly, we build a deep learning-based
DP generator for input sentences in decoding
when no corresponding references exist. More
specifically, the generation is two-phase: (1)
DP position detection, which is modeled as a
sequential labelling task with recurrent neural
networks; and (2) DP prediction, which em-
ploys a multilayer perceptron with rich fea-
tures. Finally, we integrate the above outputs
into our translation system to recall missing
pronouns by both extracting rules from the
DP-labelled training data and translating the
DP-generated input sentences. Experimental
results show that our approach achieves a sig-
nificant improvement of 1.58 BLEU points in
translation performance with 66% F-score for
DP generation accuracy.

1 Introduction

In pro-drop languages, certain classes of pronouns
can be omitted to make the sentence compact yet
comprehensible when the identity of the pronouns
can be inferred from the context (Yang et al., 2015).
Figure 1 shows an example, in which Chinese is a
pro-drop language (Huang, 1984), while English is

Figure 1: Examples of dropped pronouns in a parallel dialogue

corpus. The Chinese pronouns in brackets are dropped.

not (Haspelmath, 2001). On the Chinese side, the
subject pronouns {你 (you), 我 (I)} and the object
pronouns {它 (it), 你 (you)} are omitted in the di-
alogue between Speakers A and B. These omis-
sions may not be problems for humans since peo-
ple can easily recall the missing pronouns from the
context. However, this poses difficulties for Sta-
tistical Machine Translation (SMT) from pro-drop
languages (e.g. Chinese) to non-pro-drop languages
(e.g. English), since translation of such missing pro-
nouns cannot be normally reproduced. Generally,
this phenomenon is more common in informal gen-
res such as dialogues and conversations than oth-
ers (Yang et al., 2015). We also validated this finding
by analysing a large Chinese–English dialogue cor-
pus which consists of 1M sentence pairs extracted
from movie and TV episode subtitles. We found that
there are 6.5M Chinese pronouns and 9.4M English
pronouns, which shows that more than 2.9 million
Chinese pronouns are missing.

In response to this problem, we propose to find
a general and replicable way to improve translation
quality. The main challenge of this research is that
training data for DP generation are scarce. Most

983

works either apply manual annotation (Yang et al.,
2015) or use existing but small-scale resources such
as the Penn Treebank (Chung and Gildea, 2010; Xi-
ang et al., 2013). In contrast, we employ an un-
supervised approach to automatically build a large-
scale training corpus for DP generation using align-
ment information from parallel corpora. The idea is
that parallel corpora available in SMT can be used
to project the missing pronouns from the target side
(i.e. non-pro-drop language) to the source side (i.e.
pro-drop language). To this end, we propose a sim-
ple but effective method: a bi-directional search al-
gorithm with Language Model (LM) scoring.

After building the training data for DP genera-
tion, we apply a supervised approach to build our
DP generator. We divide the DP generation task
into two phases: DP detection (from which position
a pronoun is dropped), and DP prediction (which
pronoun is dropped). Due to the powerful capac-
ity of feature learning and representation learning,
we model the DP detection problem as sequential
labelling with Recurrent Neural Networks (RNNs)
and model the prediction problem as classification
with Multi-Layer Perceptron (MLP) using features
at various levels: from lexical, through contextual,
to syntax.

Finally, we try to improve the translation of
missing pronouns by explicitly recalling DPs for
both parallel data and monolingual input sentences.
More specifically, we extract an additional rule ta-
ble from the DP-inserted parallel corpus to produce
a “pronoun-complete” translation model. In addi-
tion, we pre-process the input sentences by insert-
ing possible DPs via the DP generation model. This
makes the input sentences more consistent with the
additional pronoun-complete rule table. To allevi-
ate the propagation of DP prediction errors, we feed
the translation system N -best prediction results via
confusion network decoding (Rosti et al., 2007).

To validate the effect of the proposed approach,
we carried out experiments on a Chinese–English
translation task. Experimental results on a large-
scale subtitle corpus show that our approach im-
proves translation performance by 0.61 BLEU
points (Papineni et al., 2002) using the additional
translation model trained on the DP-inserted cor-
pus. Working together with DP-generated input sen-
tences achieves a further improvement of nearly 1.0

BLEU point. Furthermore, translation performance
withN -best integration is much better than its 1-best
counterpart (i.e. +0.84 BLEU points).

Generally, the contributions of this paper include
the following:
• We propose an automatic method to build a

large-scale DP training corpus. Given that the
DPs are annotated in the parallel corpus, mod-
els trained on this data are more appropriate to
the translation task;

• Benefiting from representation learning, our
deep learning-based generation models are
able to avoid ignore the complex feature-
engineering work while still yielding encour-
aging results;

• To decrease the negative effects on translation
caused by inserting incorrect DPs, we force the
SMT system to arbitrate between multiple am-
biguous hypotheses from the DP predictions.

The rest of the paper is organized as follows. In
Section 2, we describe our approaches to building
the DP corpus, DP generator and SMT integration.
Related work is described in Section 3. The exper-
imental results for both the DP generator and trans-
lation are reported in Section 4. Section 5 analyses
some real examples which is followed by our con-
clusion in Section 6.

2 Methodology

The architecture of our proposed method is shown
in Figure 2, which can be divided into three phases:
DP corpus annotation, DP generation, and SMT in-
tegration.

2.1 DP Training Corpus Annotation
We propose an approach to automatically annotate
DPs by utilizing alignment information. Given a
parallel corpus, we first use an unsupervised word
alignment method (Och and Ney, 2003; Tu et al.,
2012) to produce a word alignment. From observ-
ing of the alignment matrix, we found it is possi-
ble to detect DPs by projecting misaligned pronouns
from the non-pro-drop target side (English) to the
pro-drop source side (Chinese). In this work, we fo-
cus on nominative and accusative pronouns includ-
ing personal, possessive and reflexive instances, as
listed in Table 1.

984

Figure 2: Architecture of proposed method.

Category Pronouns

Subjective
Personal

我 (I),我们 (we), 你/你们 (you), 他
(he), 她 (she), 它 (it), 他们/她们/它
们 (they).

Objective
Personal

我 (me),我们 (us),你/你们 (you),他
(him),她 (her),它 (it),她们/他们/它
们 (them).

Possessive

我的 (my), 我们的 (our), 你的/你
们的 (your), 他的 (his), 她的 (her),
它的 (its), 他们的/她们的/它们的
(their).

Objective
Possessive

我的 (mine), 我们的 (ours), 你
的/你们的 (yours), 他的 (his), 她的
(hers),它的 (its),她们的/他们的/它
们的 (theirs).

Reflexive

我自己 (myself), 我们自己 (our-
selves), 你自己 (yourself), 你们自
己 (yourselves), 他自己 (himself),
她自己 (herself),它自己 (itself),他
们自己/她们自己/它们自己 (them-
selves).

Table 1: Pronouns and their categories.

We use an example to illustrate our idea. Figure 3
features a dropped pronoun “我” (not shown) on the
source side, which is aligned to the second “I” (in
red) on the target side. For each pronoun on the tar-
get side (e.g. “I”, “you”), we first check whether
it has an aligned pronoun on the source side. We
find that the second “I” is not aligned to any source
word and possibly corresponds to aDPI (e.g. “我”).
To determine the possible positions of DPI on the
source side, we employ a diagonal heuristic based
on the observation that there exists a diagonal rule
in the local area of the alignment matrix. For ex-
ample, the alignment blocks in Figure 3 generally

Figure 3: Example of DP projection using alignment results

(i.e. blue blocks).

follow a diagonal line. Therefore, the pronoun ”I”
on the target side can be projected to the purple area
(i.e. “你说过想”) on the source side, according to
the preceding and following alignment blocks (i.e.
“you-你” and “want-想”).

However, there are still three possible positions to
insert DPI (i.e. the three gaps in the purple area).
To further determine the exact position of DPI , we
generate possible sentences by inserting the corre-
sponding Chinese DPs1 into every possible position.
Then we employ an n-gram language model (LM)
to score these candidates and select the one with the
lowest perplexity as final result. This LM-based pro-
jection is based on the observation that the amount
and type of DPs are very different in different gen-

1The Chinese DP can be determined by using its English
pronouns according to Table 1. Note that some English pro-
nouns may correspond to different Chinese pronouns, such as
“they -他们 /她们 /它们”. In such cases, we use all the corre-
sponding Chinese pronouns as the candidates.

985

res. We hypothesize that the DP position can be
determined by utilizing the inconsistency of DPs in
different domains. Therefore, the LM is trained on
a large amount of webpage data (detailed in Section
3.1). Considering the problem of incorrect DP in-
sertion caused by incorrect alignment, we add the
original sentence into the LM scoring to reduce im-
possible insertions (noise).

2.2 DP Generation
In light of the recent success of applying deep neu-
ral network technologies in natural language pro-
cessing (Raymond and Riccardi, 2007; Mesnil et al.,
2013), we propose a neural network-based DP gen-
erator via the DP-inserted corpus (Section 2.1). We
first employ an RNN to predict the DP position, and
then train a classifier using multilayer perceptrons to
generate our N -best DP results.

2.2.1 DP detection
The task of DP position detection is to la-

bel words if there are pronouns missing be-
fore the words, which can intuitively be re-
garded as a sequence labelling problem. We
expect the output to be a sequence of la-
bels y(1:n) = (y(1), y(2), · · · , y(t), · · · , y(n))
given a sentence consisting of words
w(1:n) = (w(1), w(2), · · · , w(t), · · · , w(n)), where
y(t) is the label of word w(t). In our task, there
are two labels L = {NA,DP} (corresponding to
non-pro-drop or pro-drop pronouns), thus y(t) ∈ L.

Word embeddings (Mikolov et al., 2013) are used
for our generation models: given a word w(t), we try
to produce an embedding representation v(t) ∈ Rd

where d is the dimension of the representation vec-
tors. In order to capture short-term temporal depen-
dencies, we feed the RNN unit a window of context,
as in Equation (1):

xd
(t) = v(t−k) ⊕ · · · ⊕ v(t) ⊕ · · · ⊕ v(t+k) (1)

where k is the window size.
We employ an RNN (Mesnil et al., 2013) to learn

the dependency of sentences, which can be formu-
lated as Equation (2):

h(t) = f(Uxd
(t) + Vh(t−1)) (2)

where f(x) is a sigmoid function at the hidden layer.
U is the weight matrix between the raw input and

ID. Description
Lexical Feature Set

1 S surrounding words around p
2 S surrounding POS tags around p
3 preceding pronoun in the same sentence
4 following pronoun in the same sentence

Context Feature Set
5 pronouns in preceding X sentences
6 pronouns in following X sentences
7 nouns in preceding Y sentences
8 nouns in following Y sentences

Syntax Feature Set
9 path from current word (p) to the root

10 path from preceding word (p− 1) to the root
Table 2: List of features.

the hidden nodes, and V is the weight matrix be-
tween the context nodes and the hidden nodes. At
the output layer, a softmax function is adopted for
labelling, as in Equation (3):

y(t) = g(Wdh(t)) (3)

where g(zm) = ezm∑
k e

zk
, and Wd is the output

weight matrix.

2.2.2 DP prediction
Once the DP position is detected, the next step

is to determine which pronoun should be inserted
based on this result. Accordingly, we train a 22-
class classifier, where each class refers to a distinct
Chinese pronoun in Table 1. We select a number of
features based on previous work (Xiang et al., 2013;
Yang et al., 2015), including lexical, contextual, and
syntax features (as shown in Table 2). We set p as
the DP position, S as the window size surrounding
p, and X,Y as the window size surrounding cur-
rent sentence (the one contains p). For Features 1–
4, we extract words, POS tags and pronouns around
p. For Features 5–8, we also consider the pronouns
and nouns betweenX/Y surrounding sentences. For
Features 9 and 10, in order to model the syntactic
relation, we use a path feature, which is the com-
bined tags of the sub-tree nodes from p/(p − 1) to
the root. Note that Features 3–6 consider all pro-
nouns that were not dropped. Each unique feature is
treated as a word, and assigned a “word embedding”.
The embeddings of the features are then fed to the

986

neural network. We fix the number of features for
the variable-length features, where missing ones are
tagged as None. Accordingly, all training instances
share the same feature length. For the training data,
we sample all DP instances from the corpus (anno-
tated by the method in Section 2.1). During decod-
ing, p can be given by our DP detection model.

We employ a feed-forward neural network with
four layers. The input xp comprises the embeddings
of the set of all possible feature indicator names.
The middle two layers a(1), a(2) use Rectified Linear
function R as the activation function, as in Equation
(4)–(5):

a(1) = R(b(1) + Wp
(1)xp) (4)

a(2) = R(b(2) + Wp
(2)a(1)) (5)

where Wp
(1) and b(1) are the weights and bias con-

necting the first hidden layer to second hidden layer;
and so on. The last layer yp adopts the softmax
function g, as in Equation (6):

yp = g(Wp
(3)a(2)) (6)

2.3 Integration into Translation
The baseline SMT system uses the parallel cor-
pus and input sentences without inserting/generating
DPs. As shown in Figure 2, the integration into SMT
system is two fold: DP-inserted translation model
(DP-ins. TM) and DP-generated input (DP-gen. In-
put).

2.3.1 DP-inserted TM
We train an additional translation model on the

new parallel corpus, whose source side is inserted
with DPs derived from the target side via the align-
ment matrix (Section 2.1). We hypothesize that
DP insertion can help to obtain a better alignment,
which can benefit translation. Then the whole trans-
lation process is based on the boosted translation
model, i.e. with DPs inserted. As far as TM combi-
nation is concerned, we directly feed Moses the mul-
tiple phrase tables. The gain from the additional TM
is mainly from complementary information about
the recalled DPs from the annotated data.

2.3.2 DP-generated input
Another option is to pre-process the input sen-

tence by inserting possible DPs with the DP gen-
eration model (Section 2.2) so that the DP-inserted

input (Input ZH+DPs) is translated. The predicted
DPs would be explicitly translated into the target
language, so that the possibly missing pronouns in
the translation might be recalled. This makes the in-
put sentences and DP-inserted TM more consistent
in terms of recalling DPs.

2.3.3 N-best inputs
However, the above method suffers from a major

drawback: it only uses the 1-best prediction result
for decoding, which potentially introduces transla-
tion mistakes due to the propagation of prediction er-
rors. To alleviate this problem, an obvious solution
is to offer more alternatives. Recent studies have
shown that SMT systems can benefit from widening
the annotation pipeline (Liu et al., 2009; Tu et al.,
2010; Tu et al., 2011; Liu et al., 2013). In the same
direction, we propose to feed the decoder N -best
prediction results, which allows the system to arbi-
trate between multiple ambiguous hypotheses from
upstream processing so that the best translation can
be produced. The general method is to make the in-
put with N -best DPs into a confusion network. In
our experiment, each prediction result in the N-best
list is assigned a weight of 1/N .

3 Related Work

There is some work related to DP generation. One
is zero pronoun resolution (ZP), which is a sub-
direction of co-reference resolution (CR). The dif-
ference to our task is that ZP contains three steps
(namely ZP detection, anaphoricity determination
and co-reference link) whereas DP generation only
contains the first two steps. Some researchers (Zhao
and Ng, 2007; Kong and Zhou, 2010; Chen and
Ng, 2013) propose rich features based on different
machine-learning methods. For example, Chen and
Ng (2013) propose an SVM classifier using 32 fea-
tures including lexical, syntax and grammatical roles
etc., which are very useful in the ZP task. How-
ever, most of their experiments are conducted on
a small-scale corpus (i.e. OntoNotes)2 and perfor-
mance drops correspondingly when using a system-
parse tree compared to the gold standard one. No-
vak and Zabokrtsky (2014) explore cross-language

2It contains 144K coreference instances, but only 15% of
them are dropped subjects.

987

differences in pronoun behavior to affect the CR re-
sults. The experiment shows that bilingual feature
sets are helpful to CR. Another line related to DP
generation is using a wider range of empty cate-
gories (EC) (Yang and Xue, 2010; Cai et al., 2011;
Xue and Yang, 2013), which aims to recover long-
distance dependencies, discontinuous constituents
and certain dropped elements3 in phrase structure
treebanks (Xue et al., 2005). This work mainly focus
on sentence-internal characteristics as opposed to
contextual information at the discourse level. More
recently, Yang et al. (2015) explore DP recovery for
Chinese text messages based on both lines of work.

These methods can also be used for DP transla-
tion using SMT (Chung and Gildea, 2010; Le Na-
gard and Koehn, 2010; Taira et al., 2012; Xiang
et al., 2013). Taira et al. (2012) propose both sim-
ple rule-based and manual methods to add zero pro-
nouns in the source side for Japanese–English trans-
lation. However, the BLEU scores of both systems
are nearly identical, which indicates that only con-
sidering the source side and forcing the insertion of
pronouns may be less principled than tackling the
problem head on by integrating them into the SMT
system itself. Le Nagard and Koehn (2010) present
a method to aid English pronoun translation into
French for SMT by integrating CR. Unfortunately,
their results are not convincing due to the poor per-
formance of the CR method (Pradhan et al., 2012).
Chung and Gildea (2010) systematically examine
the effects of EC on MT with three methods: pat-
tern, CRF (which achieves best results) and parsing.
The results show that this work can really improve
the end translation even though the automatic pre-
diction of EC is not highly accurate.

4 Experiments

4.1 Setup

For dialogue domain training data, we extract
around 1M sentence pairs (movie or TV episode
subtitles) from two subtitle websites.4 We manually
create both development and test data with DP an-
notation. Note that all sentences maintain their con-

3EC includes trace markers, dropped pronoun, big PRO etc,
while we focus only on dropped pronoun.

4Avaliable at http://www.opensubtitles.org and
http://weisheshou.com.

textual information at the discourse level, which can
be used for feature extraction in Section 2.1. The de-
tailed statistics are listed in Table 3. As far as the DP
training corpus is concerned, we annotate the Chi-
nese side of the parallel data using the approach de-
scribed in Section 2.1. There are two different lan-
guage models for the DP annotation (Section 2.1)
and translation tasks, respectively: one is trained on
the 2.13TB Chinese Web Page Collection Corpus5

while the other one is trained on all extracted 7M
English subtitle data (Wang et al., 2016).

Corpus Lang. Sentents Pronouns
Ave.
Len.

Train
ZH 1,037,292 604,896 5.91
EN 1,037,292 816,610 7.87

Dev
ZH 1,086 756 6.13
EN 1,086 1,025 8.46

Test
ZH 1,154 762 5.81
EN 1,154 958 8.17

Table 3: Statistics of corpora.

We carry out our experiments using the phrase-
based SMT model in Moses (Koehn et al., 2007) on
a Chinese–English dialogue translation task. Fur-
thermore, we train 5-gram language models using
the SRI Language Toolkit (Stolcke, 2002). To ob-
tain a good word alignment, we run GIZA++ (Och
and Ney, 2003) on the training data together with an-
other larger parallel subtitle corpus that contains 6M
sentence pairs.6 We use minimum error rate train-
ing (Och, 2003) to optimize the feature weights.

The RNN models are implemented using the com-
mon Theano neural network toolkit (Bergstra et al.,
2010). We use a pre-trained word embedding via a
lookup table. We use the following settings: win-
dows = 5, the size of the single hidden layer = 200,
iterations = 10, embeddings = 200. The MLP classi-
fier use random initialized embeddings, with the fol-
lowing settings: the size of the single hidden layer =
200, embeddings = 100, iterations = 200.

For end-to-end evaluation, case-insensitive
BLEU (Papineni et al., 2002) is used to measure

5Available at http://www.sogou.com/labs/dl/
t-e.html.

6Dual Subtitles – Mandarin-English Subtitles Parallel Cor-
pus, extracted by Zhang et al. (2014) without contextual infor-
mation at the discourse level.

988

DP Set P R F1

DP Detection
Dev 0.88 0.84 0.86
Test 0.88 0.87 0.88

DP Prediction
Dev 0.67 0.63 0.65
Test 0.67 0.65 0.66

Table 4: Evaluation of DP generation quality.

translation performance and micro-averaged F-score
is used to measure DP generation quality.

4.2 Evaluation of DP Generation

We first check whether our DP annotation strategy
is reasonable. To this end, we follow the strategy to
automatically and manually label the source sides of
the development and test data with their target sides.
The agreement between automatic labels and man-
ual labels on DP prediction are 94% and 95% on
development and test data and on DP generation are
92% and 92%, respectively. This indicates that the
automatic annotation strategy is relatively trustwor-
thy.

We then measure the accuracy (in terms of words)
of our generation models in two phases. “DP De-
tection” shows the performance of our sequence-
labelling model based on RNN. We only consider
the tag for each word (pro-drop or not pro-drop be-
fore the current word), without considering the exact
pronoun for DPs. “DP Prediction” shows the perfor-
mance of the MLP classifier in determining the ex-
act DP based on detection. Thus we consider both
the detected and predicted pronouns. Table 4 lists
the results of the above DP generation approaches.
The F1 score of “DP Detection” achieves 88% and
86% on the Dev and Test set, respectively. How-
ever, it has lower F1 scores of 66% and 65% for the
final pronoun generation (“DP Prediction”) on the
development and test data, respectively. This indi-
cates that predicting the exact DP in Chinese is a re-
ally difficult task. Even though the DP prediction is
not highly accurate, we still hypothesize that the DP
generation models are reliable enough to be used for
end-to-end machine translation. Note that we only
show the results of 1-best DP generation here, but in
the translation task, we use N -best generation can-
didates to recall more DPs.

Systems Dev Set Test set
Baseline 20.06 18.76
+DP-ins. TM 20.32 (+0.26) 19.37 (+0.61)
+DP-gen. Input

1-best 20.49 (+0.43) 19.50 (+0.74)
2-best 20.15 (+0.09) 18.89 (+0.13)
4-best 20.64 (+0.58) 19.68 (+0.92)
6-best 21.61 (+1.55) 20.34 (+1.58)
8-best 20.94 (+0.88) 19.83 (+1.07)

Manual Oracle 24.27 (+4.21) 22.98 (+4.22)
Auto Oracle 23.10 (+3.04) 21.93 (+3.17)

Table 5: Evaluation of DP translation quality.

4.3 Evaluation of DP Translation

In this section, we evaluate the end-to-end transla-
tion quality by integrating the DP generation results
(Section 3.3). Table 5 summaries the results of trans-
lation performance with different sources of DP in-
formation. “Baseline” uses the original input to feed
the SMT system. “+DP-ins. TM” denotes using
an additional translation model trained on the DP-
inserted training corpus, while “+DP-gen. Input N”
denotes further completing the input sentences with
the N -best pronouns generated from the DP gener-
ation model. “Oracle” uses the input with manual
(“Manual”) or automatic (“Auto”) insertion of DPs
by considering the target set. Taking “Auto Oracle”
for example, we annotate the DPs via alignment in-
formation (supposing the reference is available) us-
ing the technique described in Section 2.1.

The baseline system uses the parallel corpus and
input sentences without inserting/generating DPs. It
achieves 20.06 and 18.76 in BLEU score on the de-
velopment and test data, respectively. The BLEU
scores are relatively low because 1) we have only
one reference, and 2) dialogue machine translation
is still a challenge for the current SMT approaches.

By using an additional translation model trained
on the DP-inserted parallel corpus as described in
Section 2.1, we improve the performance consis-
tently on both development (+0.26) and test data
(+0.61). This indicates that the inserted DPs are
helpful for SMT. Thus, the gain in the “+DP-ins
TM” is mainly from the improved alignment qual-
ity.

We can further improve translation performance
by completing the input sentences with our DP gen-

989

eration model as described in Section 2.2. We test
N -best DP insertion to examine the performance,
where N ={1, 2, 4, 6, 8}. Working together
with “DP-ins. TM”, 1-best generated input already
achieves +0.43 and + 0.74 BLEU score improve-
ments on development and test set, respectively. The
consistency between the input sentences and the DP-
inserted parallel corpus contributes most to these
further improvements. As N increases, the BLEU
score grows, peaking at 21.61 and 20.34 BLEU
points when N=6. Thus we achieve a final improve-
ment of 1.55 and 1.58 BLEU points on the devel-
opment and test data, respectively. However, when
adding more DP candidates, the BLEU score de-
creases by 0.97 and 0.51. The reason for this may
be that more DP candidates add more noise, which
harms the translation quality.

The oracle system uses the input sentences with
manually annotated DPs rather than “DP-gen. In-
put”. The performance gap between “Oracle” and
“+DP-gen. Input” shows that there is still a large
space (+4.22 or +3.17) for further improvement for
the DP generation model.

5 Case Study

We select sample sentences from the test set to fur-
ther analyse the effects of DP generation on transla-
tion.

In Figure 4, we show an improved case (Case
A), an unchanged case (Case B), and a worse case
(Case C) of translation no-/using DP insertion (i.e.
“+DP-gen. Input 1-best”). In each case, we give
(a) the original Chinese sentence and its translation,
(b) the DP-inserted Chinese sentence and its transla-
tion, and (c) the reference English sentence. In Case
A, “Do you” in the translation output is compen-
sated by adding DP

〈
你
〉

(you) in (b), which gives
a better translation than in (a). In contrast, in case
C, our DP generator regards the simple sentence as
a compound sentence and insert a wrong pronoun〈
我
〉

(I) in (b), which causes an incorrect translation
output (worse than (a)). This indicates that we need
a highly accurate parse tree of the source sentences
for more correct completion of the antecedent of the
DPs. In Case B, the translation results are the same
in (a) and (b). This kind of unchanged case always
occurs in “fixed” linguistic chunks such as prepo-

Figure 4: Effects of DP generation for translation.

sition phrases (“on my way”), greetings (“see you
later” , “thank you”) and interjections (“My God”).
However, the alignment of (b) is better than that of
(a) in this case.

Figure 5 shows an example of “+DP-gen. Input
N-best” translation. Here, (a) is the original Chi-
nese sentence and its translation; (b) is the 1-best
DP-generated Chinese sentence and its MT output;
(c) stands for 2-best, 4-best and 6-best DP-generated
Chinese sentences and their MT outputs (which are
all the same); (d) is the 8-best DP-generated Chinese
sentence and its MT output; (e) is the reference. The
N -best DP candidate list is

〈
我
〉

(I),
〈
你
〉

(You),〈
他
〉

(He),
〈
我们

〉
(We),

〈
他们

〉
(They),

〈
你们

〉
(You),

〈
它
〉

(It) and
〈
她
〉

(She). In (b), when in-
tegrating an incorrect 1-best DP into MT, we obtain
the wrong translation. However, in (c), when con-
sidering more DPs (2-/4-/6-best), the SMT system

990

generates a perfect translation by weighting the DP
candidates during decoding. When further increas-
ing N (8-best), (d) shows a wrong translation again
due to increased noise.

Figure 5: Effects of N-best DP generation for translation.

6 Conclusion and Future Work

We have presented a novel approach to recall miss-
ing pronouns for machine translation from a pro-
drop language to a non-pro-drop language. Experi-
ments show that it is crucial to identify the DP to im-
prove the overall translation performance. Our anal-
ysis shows that insertion of DPs affects the transla-
tion in a large extent.

Our main findings in this paper are threefold:

• Bilingual information can help to build mono-
lingual models without any manually annotated
training data;

• Benefiting from representation learning, neural
network-based models work well without com-
plex feature engineering work;

• N -best DP integration works better than 1-best
insertion.

In future work, we plan to extend our work to dif-
ferent genres, languages and other kinds of dropped
words to validate the robustness of our approach.

Acknowledgments

This work is supported by the Science Foun-
dation of Ireland (SFI) ADAPT project (Grant
No.:13/RC/2106), and partly supported by the
DCU-Huawei Joint Project (Grant No.:201504032-
A (DCU), YB2015090061 (Huawei)). It is partly
supported by the Open Projects Program of Na-
tional Laboratory of Pattern Recognition (Grant
201407353) and the Open Projects Program of Cen-
tre of Translation of GDUFS (Grant CTS201501).

References

James Bergstra, Olivier Breuleux, Frederic Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. 2010. Theano: A cpu and gpu math expres-
sion compiler in python. In Proceedings of Python for
Scientific Computing Conference (SciPy), pages 3–10,
Austin,Texas, USA.

Shu Cai, David Chiang, and Yoav Goldberg. 2011.
Language-independent parsing with empty elements.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2, pages
212–216, Portland, Oregon.

Chen Chen and Vincent Ng. 2013. Chinese zero pronoun
resolution: Some recent advances. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1360–1365, Seattle,
Washington, USA.

Tagyoung Chung and Daniel Gildea. 2010. Effects of
empty categories on machine translation. In Proceed-
ings of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 636–645, Cam-
bridge, Massachusetts, USA.

Martin Haspelmath. 2001. The European linguistic area:
standard average European. In Language typology
and language universals. (Handbücher zur Sprach-
und Kommunikationswissenschaft), volume 2, pages
1492–1510. Berlin: de Gruyter.

C.-T. James Huang. 1984. On the distribution and
reference of empty pronouns. Linguistic Inquiry,
15(4):531–574.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for

991

Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic.

Fang Kong and Guodong Zhou. 2010. A tree kernel-
based unified framework for chinese zero anaphora
resolution. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 882–891, Cambridge, Massachusetts, USA.

Ronan Le Nagard and Philipp Koehn. 2010. Aiding pro-
noun translation with co-reference resolution. In Pro-
ceedings of the Joint 5th Workshop on Statistical Ma-
chine Translation and MetricsMATR, pages 252–261,
Uppsala, Sweden.

Yang Liu, Tian Xia, Xinyan Xiao, and Qun Liu. 2009.
Weighted alignment matrices for statistical machine
translation. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 2 - Volume 2, pages 1017–1026, Singapore.

Qun Liu, Zhaopeng Tu, and Shouxun Lin. 2013. A novel
graph-based compact representation of word align-
ment. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 358–363, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Proceedings of the
14th Annual Conference of the International Speech
Communication Association, pages 3771–3775, Lyon,
France.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the 27th Annual Conference on
Neural Information Processing Systems, pages 3111–
3119, Lake Tahoe, Nevada, USA.

Michal Novak and Zdenek Zabokrtsky. 2014. Cross-
lingual coreference resolution of pronouns. In Pro-
ceedings of the 25th International Conference on
Computational Linguistics, pages 14–24, Dublin, Ire-
land.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training
in statistical machine translation. In Proceedings of
the 41st Annual Meeting on Association for Compu-
tational Linguistics - Volume 1, pages 160–167, Sap-
poro, Japan.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of

the 40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311–318, Philadelphia, Penn-
sylvania, USA.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unrestricted
coreference in ontonotes. In Proceedings of the
15th Conference on Computational Natural Language
Learning: Shared Task, pages 1–27, Jeju Island, Ko-
rea.

Christian Raymond and Giuseppe Riccardi. 2007. Gen-
erative and discriminative algorithms for spoken lan-
guage understanding. In Proceedings of 8th Annual
Conference of the International Speech Communica-
tion Association, pages 1605–1608, Antwerp, Bel-
gium.

Antti-Veikko I Rosti, Necip Fazil Ayan, Bing Xiang,
Spyridon Matsoukas, Richard M Schwartz, and Bon-
nie J Dorr. 2007. Combining outputs from multi-
ple machine translation systems. In Proceedings of
the Human Language Technology and the 6th Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 228–235, Rochester,
NY, USA.

Andreas Stolcke. 2002. Srilm - an extensible language
modeling toolkit. In Proceedings of the 7th Interna-
tional Conference on Spoken Language Processing,
pages 901–904, Colorado, USA.

Hirotoshi Taira, Katsuhito Sudoh, and Masaaki Nagata.
2012. Zero pronoun resolution can improve the qual-
ity of j-e translation. In Proceedings of the 6th Work-
shop on Syntax, Semantics and Structure in Statistical
Translation, pages 111–118, Jeju, Republic of Korea.

Zhaopeng Tu, Yang Liu, Young-Sook Hwang, Qun Liu,
and Shouxun Lin. 2010. Dependency forest for statis-
tical machine translation. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics, pages 1092–1100, Beijing, China.

Zhaopeng Tu, Yang Liu, Qun Liu, and Shouxun Lin.
2011. Extracting Hierarchical Rules from a Weighted
Alignment Matrix. In Proceedings of the 5th Interna-
tional Joint Conference on Natural Language Process-
ing, pages 1294–1303, Chiang Mai, Thailand.

Zhaopeng Tu, Yang Liu, Yifan He, Josef van Genabith,
Qun Liu, and Shouxun Lin. 2012. Combining mul-
tiple alignments to improve machine translation. In
Proceedings of the 24rd International Conference on
Computational Linguistics, pages 1249–1260, Mum-
bai, India.

Longyue Wang, Xiaojun Zhang, Zhaopeng Tu, Andy
Way, and Qun Liu. 2016. The automatic construction
of discourse corpus for dialogue translation. In Pro-
ceedings of the 10th Language Resources and Evalua-
tion Conference, Portorož, Slovenia. (To appear).

992

Bing Xiang, Xiaoqiang Luo, and Bowen Zhou. 2013.
Enlisting the ghost: Modeling empty categories for
machine translation. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 822–831,
Sofia, Bulgaria.

Nianwen Xue and Yaqin Yang. 2013. Dependency-
based empty category detection via phrase structure
trees. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 1051–1060, Atlanta, Georgia, USA.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta Palmer.
2005. The Penn Chinese Treebank: Phrase structure
annotation of a large corpus. Natural language engi-
neering, 11(02):207–238.

Yaqin Yang and Nianwen Xue. 2010. Chasing the ghost:
recovering empty categories in the Chinese treebank.
In Proceedings of the 23rd International Conference
on Computational Linguistics: Posters, pages 1382–
1390, Beijing, China.

Yaqin Yang, Yalin Liu, and Nianwen Xu. 2015. Recov-
ering dropped pronouns from Chinese text messages.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 309–313,
Beijing, China.

Shikun Zhang, Wang Ling, and Chris Dyer. 2014. Dual
subtitles as parallel corpora. In Proceedings of the
10th International Conference on Language Resources
and Evaluation, pages 1869–1874, Reykjavik, Ice-
land.

Shanheng Zhao and Hwee Tou Ng. 2007. Identification
and resolution of Chinese zero pronouns: A machine
learning approach. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 541–550, Prague, Czech Re-
public.

993

Proceedings of NAACL-HLT 2016, pages 994–1004,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning Global Features for Coreference Resolution

Sam Wiseman and Alexander M. Rush and Stuart M. Shieber
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA, USA

{swiseman,srush,shieber}@seas.harvard.edu

Abstract

There is compelling evidence that corefer-
ence prediction would benefit from modeling
global information about entity-clusters. Yet,
state-of-the-art performance can be achieved
with systems treating each mention prediction
independently, which we attribute to the inher-
ent difficulty of crafting informative cluster-
level features. We instead propose to use re-
current neural networks (RNNs) to learn la-
tent, global representations of entity clusters
directly from their mentions. We show that
such representations are especially useful for
the prediction of pronominal mentions, and
can be incorporated into an end-to-end coref-
erence system that outperforms the state of the
art without requiring any additional search.

1 Introduction

While structured, non-local coreference models
would seem to hold promise for avoiding many com-
mon coreference errors (as discussed further in Sec-
tion 3), the results of employing such models in
practice are decidedly mixed, and state-of-the-art
results can be obtained using a completely local,
mention-ranking system.

In this work, we posit that global context is indeed
necessary for further improvements in coreference
resolution, but argue that informative cluster, rather
than mention, level features are very difficult to de-
vise, limiting their effectiveness. Accordingly, we
instead propose to learn representations of mention
clusters by embedding them sequentially using a re-
current neural network (shown in Section 4). Our
model has no manually defined cluster features, but

instead learns a global representation from the indi-
vidual mentions present in each cluster. We incor-
porate these representations into a mention-ranking
style coreference system.

The entire model, including the recurrent neu-
ral network and the mention-ranking sub-system, is
trained end-to-end on the coreference task. We train
the model as a local classifier with fixed context (that
is, as a history-based model). As such, unlike several
recent approaches, which may require complicated
inference during training, we are able to train our
model in much the same way as a vanilla mention-
ranking model.

Experiments compare the use of learned global
features to several strong baseline systems for coref-
erence resolution. We demonstrate that the learned
global representations capture important underlying
information that can help resolve difficult pronom-
inal mentions, which remain a persistent source of
errors for modern coreference systems (Durrett and
Klein, 2013; Kummerfeld and Klein, 2013; Wise-
man et al., 2015; Martschat and Strube, 2015). Our
final system improves over 0.8 points in CoNLL
score over the current state of the art, and the im-
provement is statistically significant on all three
CoNLL metrics.

2 Background and Notation

Coreference resolution is fundamentally a clustering
task. Given a sequence (xn)Nn=1 of (intra-document)
mentions – that is, syntactic units that can refer or be
referred to – coreference resolution involves parti-
tioning (xn) into a sequence of clusters (X(m))Mm=1

such that all the mentions in any particular cluster

994

X(m) refer to the same underlying entity. Since the
mentions within a particular cluster may be ordered
linearly by their appearance in the document,1 we
will use the notation X(m)

j to refer to the j’th men-
tion in the m’th cluster.

A valid clustering places each mention in exactly
one cluster, and so we may represent a clustering
with a vector z ∈{1, . . . ,M}N , where zn =m iff
xn is a member of X(m). Coreference systems at-
tempt to find the best clustering z∗ ∈ Z under some
scoring function, with Z the set of valid clusterings.

One strategy to avoid the computational in-
tractability associated with predicting an entire clus-
tering z is to instead predict a single antecedent for
each mention xn; because xn may not be anaphoric
(and therefore have no antecedents), a “dummy” an-
tecedent ε may also be predicted. The aforemen-
tioned strategy is adopted by “mention-ranking” sys-
tems (Denis and Baldridge, 2008; Rahman and Ng,
2009; Durrett and Klein, 2013), which, formally,
predict an antecedent ŷ ∈Y(xn) for each mention
xn, where Y(xn) = {1, . . . , n−1, ε}. Through tran-
sitivity, these decisions induce a clustering over the
document.

Mention-ranking systems make their antecedent
predictions with a local scoring function f(xn, y)
defined for any mention xn and any antecedent
y ∈Y(xn). While such a scoring function clearly
ignores much structural information, the mention-
ranking approach has been attractive for at least two
reasons. First, inference is relatively simple and ef-
ficient, requiring only a left-to-right pass through a
document’s mentions during which a mention’s an-
tecedents (as well as ε) are scored and the highest
scoring antecedent is predicted. Second, from a lin-
guistic modeling perspective, mention-ranking mod-
els learn a scoring function that requires a mention
xn to be compatible with only one of its coreferent
antecedents. This contrasts with mention-pair mod-
els (e.g., Bengtson and Roth (2008)), which score
all pairs of mentions in a cluster, as well as with cer-
tain cluster-based models (see discussion in Culotta
et al. (2007)). Modeling each mention as having
a single antecedent is particularly advantageous for
pronominal mentions, which we might like to model

1We assume nested mentions are ordered by their syntactic
heads.

as linking to a single nominal or proper antecedent,
for example, but not necessarily to all other corefer-
ent mentions.

Accordingly, in this paper we attempt to maintain
the inferential simplicity and modeling benefits of
mention ranking, while allowing the model to utilize
global, structural information relating to z in mak-
ing its predictions. We therefore investigate objec-
tive functions of the form

arg max
y1,...,yN

N∑
n=1

f(xn, yn) + g(xn, yn, z1:n−1) ,

where g is a global function that, in making pre-
dictions for xn, may examine (features of) the clus-
tering z1:n−1 induced by the antecedent predictions
made through yn−1.

3 The Role of Global Features

Here we motivate the use of global features for
coreference resolution by focusing on the issues that
may arise when resolving pronominal mentions in
a purely local way. See Clark and Manning (2015)
and Stoyanov and Eisner (2012) for more general
motivation for using global models.

3.1 Pronoun Problems
Recent empirical work has shown that the resolu-
tion of pronominal mentions accounts for a substan-
tial percentage of the total errors made by modern
mention-ranking systems. Wiseman et al. (2015)
show that on the CoNLL 2012 English development
set, almost 59% of mention-ranking precision errors
and almost 24% of recall errors involve pronominal
mentions. Martschat and Strube (2015) found a sim-
ilar pattern in their comparison of mention-ranking,
mention-pair, and latent-tree models.

To see why pronouns can be so problematic, con-
sider the following passage from the “Broadcast
Conversation” portion of the CoNLL development
set (bc/msnbc/0000/018); below, we enclose men-
tions in brackets and give the same subscript to co-
clustered mentions. (This example is also shown in
Figure 2.)

DA: um and [I]1 think that is what’s - Go
ahead [Linda]2.
LW: Well and uh thanks goes to [you]1 and to
[the media]3 to help [us]4...So [our]4 hat is off
to all of [you]5 as well.

995

This example is typical of Broadcast Conversation,
and it is difficult because local systems learn to my-
opically link pronouns such as [you]5 to other in-
stances of the same pronoun that are close by, such
as [you]1. While this is often a reasonable strategy,
in this case predicting [you]1 to be an antecedent of
[you]5 would result in the prediction of an incoher-
ent cluster, since [you]1 is coreferent with the singu-
lar [I]1, and [you]5, as part of the phrase “all of you,”
is evidently plural. Thus, while there is enough in-
formation in the text to correctly predict [you]5, do-
ing so crucially depends on having access to the his-
tory of predictions made so far, and it is precisely
this access to history that local models lack.

More empirically, there are non-local statistical
regularities involving pronouns we might hope mod-
els could exploit. For instance, in the CoNLL train-
ing data over 70% of pleonastic “it” instances and
over 74% of pleonastic “you” instances follow (re-
spectively) previous pleonastic “it” and “you” in-
stances. Similarly, over 78% of referential “I” in-
stances and over 68% of referential “he” instances
corefer with previous “I” and “he” instances, respec-
tively.

Accordingly, we might expect non-local models
with access to global features to perform signifi-
cantly better. However, models incorporating non-
local features have a rather mixed track record. For
instance, Björkelund and Kuhn (2014) found that
cluster-level features improved their results, whereas
Martschat and Strube (2015) found that they did not.
Clark and Manning (2015) found that incorporating
cluster-level features beyond those involving the pre-
computed mention-pair and mention-ranking prob-
abilities that form the basis of their agglomerative
clustering coreference system did not improve per-
formance. Furthermore, among recent, state-of-the-
art systems, mention-ranking systems (which are
completely local) perform at least as well as their
more structured counterparts (Durrett and Klein,
2014; Clark and Manning, 2015; Wiseman et al.,
2015; Peng et al., 2015).

3.2 Issues with Global Features

We believe a major reason for the relative inef-
fectiveness of global features in coreference prob-
lems is that, as noted by Clark and Manning (2015),
cluster-level features can be hard to define. Specif-

ically, it is difficult to define discrete, fixed-length
features on clusters, which can be of variable size
(or shape). As a result, global coreference features
tend to be either too coarse or too sparse. Thus, early
attempts at defining cluster-level features simply ap-
plied the coarse quantifier predicates all, none, most
to the mention-level features defined on the men-
tions (or pairs of mentions) in a cluster (Culotta et
al., 2007; Rahman and Ng, 2011). For example, a
cluster would have the feature ‘most-female=true’ if
more than half the mentions (or pairs of mentions)
in the cluster have a ‘female=true’ feature.

On the other extreme, Björkelund and Kuhn
(2014) define certain cluster-level features by con-
catenating the mention-level features of a cluster’s
constituent mentions in order of the mentions’ ap-
pearance in the document. For example, if a clus-
ter consists, in order, of the mentions (the president,
he, he), they would define a cluster-level “type” fea-
ture ‘C-P-P=true’, which indicates that the cluster is
composed, in order, of a common noun, a pronoun,
and a pronoun. While very expressive, these con-
catenated features are often quite sparse, since clus-
ters encountered during training can be of any size.

4 Learning Global Features

To circumvent the aforementioned issues with defin-
ing global features, we propose to learn cluster-level
feature representations implicitly, by identifying the
state of a (partial) cluster with the hidden state of
an RNN that has consumed the sequence of men-
tions composing the (partial) cluster. Before pro-
viding technical details, we provide some prelimi-
nary evidence that such learned representations cap-
ture important contextual information by display-
ing in Figure 1 the learned final states of all clus-
ters in the CoNLL development set, projected using
T-SNE (van der Maaten and Hinton, 2012). Each
point in the visualization represents the learned fea-
tures for an entity cluster and the head words of
mentions are shown for representative points. Note
that the model learns to roughly separate clusters by
simple distinctions such as predominant type (nom-
inal, proper, pronominal) and number (it, they, etc),
but also captures more subtle relationships such as
grouping geographic terms and long strings of pro-
nouns.

996

Figure 1: T-SNE visualization of learned entity repre-
sentations on the CoNLL development set. Each point
shows a gold cluster of size > 1. Yellow, red, and pur-
ple points represent predominantly common noun, proper
noun, and pronoun clusters, respectively. Captions show
head words of representative clusters’ mentions.

4.1 Recurrent Neural Networks

A recurrent neural network is a parameterized non-
linear function RNN that recursively maps an in-
put sequence of vectors to a sequence of hidden
states. Let (mj)Jj=1 be a sequence of J input vec-
tors mj ∈RD, and let h0 = 0. Applying an RNN to
any such sequence yields

hj ← RNN(mj ,hj−1;θ) ,

where θ is the set of parameters for the model, which
are shared over time.

There are several varieties of RNN, but by far
the most commonly used in natural-language pro-
cessing is the Long Short-Term Memory network
(LSTM) (Hochreiter and Schmidhuber, 1997), par-
ticularly for language modeling (e.g., Zaremba et al.
(2014)) and machine translation (e.g., Sutskever et
al. (2014)), and we use LSTMs in all experiments.

4.2 RNNs for Cluster Features

Our main contribution will be to utilize RNNs to
produce feature representations of entity clusters
which will provide the basis of the global term g.
Recall that we view a cluster X(m) as a sequence of
mentions (X(m)

j)Jj=1 (ordered in linear document or-

der). We therefore propose to embed the state(s) of
X(m) by running an RNN over the cluster in order.

In order to run an RNN over the mentions we need
an embedding function hc to map a mention to a real
vector. First, following Wiseman et al. (2015) define
φa(xn) : X → {0, 1}F as a standard set of local in-
dicator features on a mention, such as its head word,
its gender, and so on. (We elaborate on features be-
low.) We then use a non-linear feature embedding
hc to map a mention xn to a vector-space represen-
tation. In particular, we define

hc(xn) , tanh(W c φa(xn) + bc) ,

whereW c and bc are parameters of the embedding.
We will refer to the j’th hidden state of the RNN

corresponding to X(m) as h(m)
j , and we obtain it ac-

cording to the following formula

h
(m)
j ← RNN(hc(X

(m)
j),h(m)

j−1;θ) ,

again assuming that h(m)
0 = 0. Thus, we will ef-

fectively run an RNN over each (sequence of men-
tions corresponding to a) cluster X(m) in the docu-
ment, and thereby generate a hidden state h(m)

j cor-
responding to each step of each cluster in the docu-
ment. Concretely, this can be implemented by main-
taining M RNNs – one for each cluster – that all
share the parameters θ. The process is illustrated in
the top portion of Figure 2.

5 Coreference with Global Features

We now describe how the RNN defined above is
used within an end-to-end coreference system.

5.1 Full Model and Training
Recall that our inference objective is to maximize
the score of both a local mention ranking term as
well as a global term based on the current clusters:

arg max
y1,...,yN

N∑
n=1

f(xn, yn) + g(xn, yn, z1:n−1)

We begin by defining the local model f(xn, y)
with the two layer neural network of Wiseman et
al. (2015), which has a specialization for the non-
anaphoric case, as follows:

f(xn, y) ,
{
uT
[
ha(xn)
hp(xn,y)

]
+ u0 if y 6= ε

vTha(xn) + v0 if y = ε .

997

DA: um and [I]1 think that is what’s - Go ahead [Linda]2.
LW: Well and thanks goes to [you]1 and to [the media]3 to help [us]4...So [our]4 hat is off to all of [you]5...

X(1)

h
(1)
1 h

(1)
2

[I] [you]

X(2)

h
(2)
1

[Linda]

X(3)

h
(3)
1

[the media]

X(4)

h
(4)
1 h

(4)
2

[us] [our]

[I], h(1)
2 [Linda], h(2)

1 [you], h(1)
2 [the media], h(3)

1 [us], h(4)
2 [our], h(4)

2 xn = [you] ε, NA(xn)

Figure 2: Full RNN example for handling the mention xn = [you]. There are currently four entity clusters in scope
X(1), X(2), X(3), X(4) based on unseen previous decisions (y). Each cluster has a corresponding RNN state, two
of which (h(1) and h(4)) have processed multiple mentions (with X(1) notably including a singular mention [I]). At
the bottom, we show the complete mention-ranking process. Each previous mention is considered as an antecedent,
and the global term considers the antecedent clusters’ current hidden state. Selecting ε is treated with a special case
NA(xn).

Above, u and v are the parameters of the model,
and ha and hp are learned feature embeddings of
the local mention context and the pairwise affinity
between a mention and an antecedent, respectively.
These feature embeddings are defined similarly to
hc, as

ha(xn) , tanh(W a φa(xn) + ba)

hp(xn, y) , tanh(W p φp(xn, y) + bp) ,

where φa (mentioned above) and φp are “raw” (that
is, unconjoined) features on the context of xn and
on the pairwise affinity between mentions xn and
antecedent y, respectively (Wiseman et al., 2015).
Note that ha and hc use the same raw features; only
their weights differ.

We now specify our global scoring function g
based on the history of previous decisions. Define
h

(m)
<n as the hidden state of cluster m before a de-

cision is made for xn – that is, h(m)
<n is the state of

cluster m’s RNN after it has consumed all mentions
in the cluster preceding xn. We define g as

g(xn, y,z1:n−1) ,
{
hc(xn)Th

(zy)
<n if y 6= ε

NA(xn) if y = ε ,

where NA gives a score for assigning ε based on
a non-linear function of all of the current hidden
states:

NA(xn) = qT tanh
(
W s

[
φa(xn)∑M
m=1 h

(m)
<n

]
+ bs

)
.

See Figure 2 for a diagram. The intuition behind
the first case in g is that in considering whether y
is a good antecedent for xn, we add a term to the
score that examines how well xn matches with the
mentions already inX(zy); this matching score is ex-
pressed via a dot-product.2 In the second case, when
predicting that xn is non-anaphoric, we add the NA
term to the score, which examines the (sum of) the
current states h(m)

<n of all clusters. This information
is useful both because it allows the non-anaphoric
score to incorporate information about potential an-
tecedents, and because the occurrence of certain
singleton-clusters often predicts the occurrence of
future singleton-clusters, as noted in Section 3.

The whole system is trained end-to-end on coref-
erence using backpropagation. For a given training
document, let z(o) be the oracle mapping from men-
tion to cluster, which induces an oracle clustering.
While at training time we do have oracle clusters, we
do not have oracle antecedents (y)Nn=1, so following
past work we treat the oracle antecedent as latent (Yu
and Joachims, 2009; Fernandes et al., 2012; Chang
et al., 2013; Durrett and Klein, 2013). We train with
the following slack-rescaled, margin objective:

2We also experimented with other non-linear functions, but
dot-products performed best.

998

N∑
n=1

max
ŷ∈Y(xn)

∆(xn, ŷ)(1 + f(xn, ŷ) + g(xn, ŷ,z
(o))

− f(xn, y
`
n)− g(xn, y

`
n, z

(o))),

where the latent antecedent y`n is defined as

y`
n , arg max

y∈Y(xn):z
(o)
y =z

(o)
n

f(xn, y) + g(xn, y, z
(o))

if xn is anaphoric, and is ε otherwise. The term
∆(xn, ŷ) gives different weight to different er-
ror types. We use a ∆ with 3 different weights
(α1, α2, α3) for “false link” (FL), “false new” (FN),
and “wrong link” (WL) mistakes (Durrett and Klein,
2013), which correspond to predicting an antecedent
when non-anaphoric, ε when anaphoric, and the
wrong antecedent, respectively.

Note that in training we use the oracle clusters
z(o). Since these are known a priori, we can pre-
compute all the hidden states h(m)

j in a document,
which makes training quite simple and efficient.
This approach contrasts in particular with the work
of Björkelund and Kuhn (2014) — who also incor-
porate global information in mention-ranking — in
that they train against latent trees, which are not an-
notated and must be searched for during training. On
the other hand, training on oracle clusters leads to a
mismatch between training and test, which can hurt
performance.

5.2 Search

When moving from a strictly local objective to one
with global features, the test-time search problem
becomes intractable. The local objective requires
O(n2) time, whereas the full clustering problem is
NP-Hard. Past work with global features has used
integer linear programming solvers for exact search
(Chang et al., 2013; Peng et al., 2015), or beam
search with (delayed) early update training for an
approximate solution (Björkelund and Kuhn, 2014).
In contrast, we simply use greedy search at test time,
which also requiresO(n2) time.3 The full algorithm

3While beam search is a natural way to decrease search er-
ror at test time, it may fail to help if training involves a local
margin objective (as in our case), since scores need not be cali-
brated across local decisions. We accordingly attempted to train
various locally normalized versions of our model, but found that

Algorithm 1 Greedy search with global RNNs
1: procedure GREEDYCLUSTER(x1, . . . , xN)
2: Initialize clusters X(1) . . . as empty lists, hidden states

h(0), . . . as 0 vectors in RD , z as map from mention to
cluster, and cluster counter M ← 0

3: for n = 2 . . . N do
4: y∗ ← arg max

y∈Y(xn)

f(xn, y) + g(xn, y, z1:n−1)

5: m← zy∗

6: if y∗ = ε then
7: M ←M + 1
8: m←M
9: append xn to X(m)

10: zn ← m
11: h(m) ← RNN(hc(xn),h(m))

12: return X(1), . . . , X(M)

is shown in Algorithm 1. The greedy search algo-
rithm is identical to a simple mention-ranking sys-
tem, with the exception of line 11, which updates
the current RNN representation based on the previ-
ous decision that was made, and line 4, which then
uses this cluster representation as part of scoring.

6 Experiments

6.1 Methods
We run experiments on the CoNLL 2012 English
shared task (Pradhan et al., 2012). The task uses
the OntoNotes corpus (Hovy et al., 2006), consist-
ing of 3,493 documents in various domains and for-
mats. We use the experimental split provided in the
shared task. For all experiments, we use the Berke-
ley Coreference System (Durrett and Klein, 2013)
for mention extraction and to compute features φa

and φp.

Features We use the raw BASIC+ feature sets de-
scribed by Wiseman et al. (2015), with the following
modifications:

• We remove all features from φp that concate-
nate a feature of the antecedent with a feature of
the current mention, such as bi-head features.

• We add true-cased head features, a current
speaker indicator feature, and a 2-character

they underperformed. We also experimented with training ap-
proaches and model variants that expose the model to its own
predictions (Daumé III et al., 2009; Ross et al., 2011; Bengio et
al., 2015), but found that these yielded a negligible performance
improvement.

999

System MUC B3 CEAFe

P R F1 P R F1 P R F1 CoNLL

B&K (2014) 74.30 67.46 70.72 62.71 54.96 58.58 59.40 52.27 55.61 61.63
M&S (2015) 76.72 68.13 72.17 66.12 54.22 59.58 59.47 52.33 55.67 62.47
C&M (2015) 76.12 69.38 72.59 65.64 56.01 60.44 59.44 52.98 56.02 63.02
Peng et al. (2015) - - 72.22 - - 60.50 - - 56.37 63.03
Wiseman et al. (2015) 76.23 69.31 72.60 66.07 55.83 60.52 59.41 54.88 57.05 63.39
This work 77.49 69.75 73.42 66.83 56.95 61.50 62.14 53.85 57.70 64.21

Table 1: Results on CoNLL 2012 English test set. We compare against recent state of the art systems, including (in
order) Bjorkelund and Kuhn (2014), Martschat and Strube (2015), Clark and Manning (2015), Peng et al. (2015), and
Wiseman et al. (2015). F1 gains are significant (p < 0.05 under the bootstrap resample test (Koehn, 2004)) compared
with Wiseman et al. (2015) for all metrics.

genre (out of {bc,bn,mz,nw,pt,tc,wb}) indica-
tor to φp and φa.

• We add features indicating if a mention has a
substring overlap with the current speaker (φp

and φa), and if an antecedent has a substring
overlap with a speaker distinct from the current
mention’s speaker (φp).

• We add a single centered, rescaled document
position feature to each mention when learning
hc. We calculate a mention xn’s rescaled doc-
ument position as 2n−N−1

N−1 .

These modifications result in there being approx-
imately 14K distinct features in φa and approxi-
mately 28K distinct features in φp, which is far
fewer features than has been typical in past work.

For training, we use document-size minibatches,
which allows for efficient pre-computation of RNN
states, and we minimize the loss described in Sec-
tion 5 with AdaGrad (Duchi et al., 2011) (after
clipping LSTM gradients to lie (elementwise) in
(−10, 10)). We find that the initial learning rate cho-
sen for AdaGrad has a significant impact on results,
and we choose learning rates for each layer out of
{0.1, 0.02, 0.01, 0.002, 0.001}.

In experiments, we set ha(xn), hc(xn), and h(m)

to be ∈R200, and hp(xn, y)∈R700. We use a
single-layer LSTM (without “peep-hole” connec-
tions), as implemented in the element-rnn li-
brary (Léonard et al., 2015). For regularization,
we apply Dropout (Srivastava et al., 2014) with a
rate of 0.4 before applying the linear weights u,
and we also apply Dropout with a rate of 0.3 to the
LSTM states before forming the dot-product scores.

MUC B3 CEAFe CoNLL

MR 73.06 62.66 58.98 64.90
Avg, OH 73.30 63.06 58.85 65.07
RNN, GH 73.63 63.23 59.56 65.47
RNN, OH 74.26 63.89 59.54 65.90

Table 2: F1 scores of models described in text on CoNLL
2012 development set. Rows in grey highlight models
using oracle history.

Following Wiseman et al. (2015) we use the cost-
weights α = 〈0.5, 1.2, 1〉 in defining ∆, and we
use their pre-training scheme as well. For final re-
sults, we train on both training and development por-
tions of the CoNLL data. Scoring uses the official
CoNLL 2012 script (Pradhan et al., 2014; Luo et al.,
2014). Code for our system is available at https:
//github.com/swiseman/nn_coref. The
system makes use of a GPU for training, and trains
in about two hours.

6.2 Results

In Table 1 we present our main results on the CoNLL
English test set, and compare with other recent state-
of-the-art systems. We see a statistically significant
improvement of over 0.8 CoNLL points over the pre-
vious state of the art, and the highest F1 scores to
date on all three CoNLL metrics.

We now consider in more detail the impact of
global features and RNNs on performance. For these
experiments, we report MUC, B3, and CEAFe F1-
scores in Table 2 as well as errors broken down
by mention type and by whether the mention is
anaphoric or not in Table 3. Table 3 further parti-
tions errors into FL, FN, and WL categories, which

1000

Non-Anaphoric (FL)
Nom. HM Nom. No HM Pron.

MR 1061 1130 1075
Avg, OH 1983 1140 1011
RNN, GH 1914 1125 1893
RNN, OH 1913 1130 1842

Mentions 9.0K 22.2K 3.1K

Anaphoric (FN + WL)
Model Nom. HM Nom. No HM Pron.

MR 665+326 666+56 533+796
Avg, OH 781+300 641+60 578+744
RNN, GH 767+303 648+57 664+727
RNN, OH 750+289 648+52 611+686

Mentions 4.7K 1.0K 7.3K

Table 3: Number of “false link” (FL) errors on non-
anaphoric mentions (top) and number of “false new” (FN)
and “wrong link” (WL) errors on anaphoric mentions
(bottom) on CoNLL 2012 development set. Mentions
are categorized as nominal or proper with (previous) head
match (Nom. HM), nominal or proper with no head match
(Nom. No HM), and pronominal. Models are described
in the text, and rows in grey highlight models using oracle
history.

are defined in Section 5.1. We typically think of FL

and WL as representing precision errors, and FN as
representing recall errors.

Our experiments consider several different set-
tings. First, we consider an oracle setting
(“RNN, OH” in tables), in which the model receives
z

(o)
1:n−1, the oracle partial clustering of all mentions

preceding xn in the document, and is therefore not
forced to rely on its own past predictions when pre-
dicting xn. This provides us with an upper bound on
the performance achievable with our model. Next,
we consider the performance of the model under
a greedy inference strategy (RNN, GH), as in Al-
gorithm 1. Finally, for baselines we consider the
mention-ranking system (MR) of Wiseman et al.
(2015) using our updated feature-set, as well as a
non-local baseline with oracle history (Avg, OH),
which averages the representations hc(xj) for all
xj ∈X(m), rather than feed them through an RNN;
errors are still backpropagated through the hc repre-
sentations during learning.

In Table 3 we see that the RNN improves per-
formance overall, with the most dramatic improve-

Figure 3: Cluster predictions of greedy RNN model; co-
clustered mentions are of the same color, and intensity of
mention xj corresponds tohc(xn)Th

(i)
<k, where k= j+1,

i ∈ {1, 2}, and xn = “his.” See text for full description.

ments on non-anaphoric pronouns, though errors are
also decreased significantly for non-anaphoric nom-
inal and proper mentions that follow at least one
mention with the same head. While WL errors also
decrease for both these mention-categories under the
RNN model, FN errors increase. Importantly, the
RNN performance is significantly better than that
of the Avg baseline, which barely improves over
mention-ranking, even with oracle history. This sug-
gests that modeling the sequence of mentions in a
cluster is advantageous. We also note that while
RNN performance degrades in both precision and
recall when moving from the oracle history upper-
bound to a greedy setting, we are still able to recover
a significant portion of the possible performance im-
provement.

6.3 Qualitative Analysis

In this section we consider in detail the impact of the
g term in the RNN scoring function on the two error
categories that improve most under the RNN model
(as shown in Table 3), namely, pronominal WL errors
and pronominal FL errors. We consider an example
from the CoNLL development set in each category
on which the baseline MR model makes an error but
the greedy RNN model does not.

The example in Figure 3 involves the resolution
of the ambiguous pronoun “his,” which is brack-
eted and in bold in the figure. Whereas the baseline
MR model incorrectly predicts “his” to corefer with
the closest gender-consistent antecedent “Justin” —
thus making a WL error — the greedy RNN model

1001

Figure 4: Magnitudes of gradients of NA score applied
to bold “It’s” with respect to final mention in three pre-
ceding clusters. See text for full description.

correctly predicts “his” to corefer with “Mr. Kaye”
in the previous sentence. (Note that “the official”
also refers to Mr. Kaye). To get a sense of the greedy
RNN model’s decision-making on this example, we
color the mentions the greedy RNN model has pre-
dicted to corefer with “Mr. Kaye” in green, and the
mentions it has predicted to corefer with “Justin” in
blue. (Note that the model incorrectly predicts the
initial “I” mentions to corefer with “Justin.”) Let-
ting X(1) refer to the blue cluster, X(2) refer to the
green cluster, and xn refer to the ambiguous mention
“his,” we further shade each mention xj in X(1) so
that its intensity corresponds to hc(xn)Th(1)

<k, where
k= j+ 1; mentions in X(2) are shaded analogously.
Thus, the shading shows how highly g scores the
compatibility between “his” and a cluster X(i) as
each of X(i)’s mentions is added. We see that when
the initial “Justin” mentions are added to X(1) the
g-score is relatively high. However, after “The com-
pany” is correctly predicted to corefer with “Justin,”
the score of X(1) drops, since companies are gener-
ally not coreferent with pronouns like “his.”

Figure 4 shows an example (consisting of a tele-
phone conversation between “A” and “B”) in which
the bracketed pronoun “It’s” is being used pleonas-
tically. Whereas the baseline MR model predicts
“It’s” to corefer with a previous “it” — thus mak-
ing a FL error — the greedy RNN model does not. In
Figure 4 the final mention in three preceding clusters
is shaded so its intensity corresponds to the magni-
tude of the gradient of the NA term in g with re-
spect to that mention. This visualization resembles
the “saliency” technique of Li et al. (2016), and it at-
tempts to gives a sense of the contribution of a (pre-
ceding) cluster in the calculation of the NA score.

We see that the potential antecedent “S-Bahn”
has a large gradient, but also that the initial, obvi-
ously pleonastic use of “it’s” has a large gradient,

which may suggest that earlier, easier predictions of
pleonasm can inform subsequent predictions.

7 Related Work

In addition to the related work noted throughout,
we add supplementary references here. Unstruc-
tured approaches to coreference typically divide into
mention-pair models, which classify (nearly) every
pair of mentions in a document as coreferent or
not (Soon et al., 2001; Ng and Cardie, 2002; Bengt-
son and Roth, 2008), and mention-ranking models,
which select a single antecedent for each anaphoric
mention (Denis and Baldridge, 2008; Rahman and
Ng, 2009; Durrett and Klein, 2013; Chang et al.,
2013; Wiseman et al., 2015). Structured approaches
typically divide between those that induce a clus-
tering of mentions (McCallum and Wellner, 2003;
Culotta et al., 2007; Poon and Domingos, 2008;
Haghighi and Klein, 2010; Stoyanov and Eisner,
2012; Cai and Strube, 2010), and, more recently,
those that learn a latent tree of mentions (Fernandes
et al., 2012; Björkelund and Kuhn, 2014; Martschat
and Strube, 2015).

There have also been structured approaches that
merge the mention-ranking and mention-pair ideas
in some way. For instance, Rahman and Ng (2011)
rank clusters rather than mentions; Clark and Man-
ning (2015) use the output of both mention-ranking
and mention pair systems to learn a clustering.

The application of RNNs to modeling (the trajec-
tory of) the state of a cluster is apparently novel,
though it bears some similarity to the recent work
of Dyer et al. (2015), who use LSTMs to embed the
state of a transition based parser’s stack.

8 Conclusion

We have presented a simple, state of the art approach
to incorporating global information in an end-to-end
coreference system, which obviates the need to de-
fine global features, and moreover allows for simple
(greedy) inference. Future work will examine im-
proving recall, and more sophisticated approaches
to global training.

Acknowledgments

We gratefully acknowledge the support of a Google
Research Award.

1002

References

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam
Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. In Advances in
Neural Information Processing Systems, pages 1171–
1179.

Eric Bengtson and Dan Roth. 2008. Understanding the
Value of Features for Coreference Resolution. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 294–303.
Association for Computational Linguistics.

Anders Björkelund and Jonas Kuhn. 2014. Learning
structured perceptrons for coreference Resolution with
Latent Antecedents and Non-local Features. ACL,
Baltimore, MD, USA, June.

Jie Cai and Michael Strube. 2010. End-to-end corefer-
ence resolution via hypergraph partitioning. In 23rd
International Conference on Computational Linguis-
tics (COLING), pages 143–151.

Kai-Wei Chang, Rajhans Samdani, and Dan Roth. 2013.
A Constrained Latent Variable Model for Coreference
Resolution. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 601–612.

Kevin Clark and Christopher D. Manning. 2015. Entity-
centric coreference resolution with model stacking. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1405–1415.

Aron Culotta, Michael Wick, Robert Hall, and Andrew
McCallum. 2007. First-order Probabilistic Models for
Coreference Resolution. In Human Language Tech-
nology Conference of the North American Chapter of
the Association of Computational Linguistics (NAACL
HLT).

Hal Daumé III, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine Learn-
ing, 75(3):297–325.

Pascal Denis and Jason Baldridge. 2008. Special-
ized Models and Ranking for Coreference Resolution.
In Proceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing, pages 660–
669. Association for Computational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. The Journal of Machine
Learning Research, 12:2121–2159.

Greg Durrett and Dan Klein. 2013. Easy Victories and
Uphill Battles in Coreference Resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1971–1982.

Greg Durrett and Dan Klein. 2014. A Joint Model
for Entity Analysis: Coreference, Typing, and Link-
ing. Transactions of the Association for Computa-
tional Linguistics, 2:477–490.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 334–343.

Eraldo Rezende Fernandes, Cı́cero Nogueira Dos Santos,
and Ruy Luiz Milidiú. 2012. Latent Structure Per-
ceptron with Feature Induction for Unrestricted Coref-
erence Resolution. In Joint Conference on EMNLP
and CoNLL-Shared Task, pages 41–48. Association
for Computational Linguistics.

Aria Haghighi and Dan Klein. 2010. Coreference Res-
olution in a Modular, Entity-centered Model. In The
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 385–393. Association for Computational Lin-
guistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9:1735–1780.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% Solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Compan-
ion Volume: Short Papers, pages 57–60. Association
for Computational Linguistics.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Natu-
ral Language Processing, pages 388–395. Citeseer.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
driven Analysis of Challenges in Coreference Reso-
lution. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
Seattle, WA, USA, October.

Nicholas Léonard, Yand Waghmare, Sagar ad Wang, and
Jin-Hwa Kim. 2015. rnn: Recurrent Library for
Torch. arXiv preprint arXiv:1511.07889.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models in
nlp. In NAACL HLT.

Xiaoqiang Luo, Sameer Pradhan, Marta Recasens, and
Eduard Hovy. 2014. An Extension of BLANC to Sys-
tem Mentions. Proceedings of ACL, Baltimore, Mary-
land, June.

Sebastian Martschat and Michael Strube. 2015. Latent
structures for coreference resolution. TACL, 3:405–
418.

1003

Sebastian Martschat, Thierry Göckel, and Michael
Strube. 2015. Analyzing and visualizing coreference
resolution errors. In NAACL HLT, pages 6–10.

Andrew McCallum and Ben Wellner. 2003. Toward
Conditional Models of Identity Uncertainty with Ap-
plication to Proper Noun Coreference. Advances in
Neural Information Processing Systems 17.

Vincent Ng and Claire Cardie. 2002. Identifying
Anaphoric and Non-anaphoric Noun Phrases to Im-
prove Coreference Resolution. In Proceedings of
the 19th international conference on Computational
linguistics-Volume 1, pages 1–7. Association for Com-
putational Linguistics.

Haoruo Peng, Kai-Wei Chang, and Dan Roth. 2015. A
joint framework for coreference resolution and men-
tion head detection. In Proceedings of the 19th Con-
ference on Computational Natural Language Learning
(CoNLL), pages 12–21.

Hoifung Poon and Pedro M. Domingos. 2008. Joint un-
supervised coreference resolution with markov logic.
In 2008 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 650–659.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL-Shared Task, pages 1–40.
Association for Computational Linguistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring Coreference Partitions of Predicted Mentions:
A Reference Implementation. In Proceedings of the
Association for Computational Linguistics.

Altaf Rahman and Vincent Ng. 2009. Supervised Mod-
els for Coreference Resolution. In Proceedings of
the 2009 Conference on Empirical Methods in Natu-
ral Language Processing: Volume 2-Volume 2, pages
968–977. Association for Computational Linguistics.

Altaf Rahman and Vincent Ng. 2011. Narrowing the
modeling gap: A cluster-ranking approach to corefer-
ence resolution. J. Artif. Intell. Res. (JAIR), 40:469–
521.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 627–635.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A Machine Learning Approach to Coref-
erence Resolution of Noun Phrases. Computational
Linguistics, 27(4):521–544.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.

Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Veselin Stoyanov and Jason Eisner. 2012. Easy-first
Coreference Resolution. In COLING, pages 2519–
2534. Citeseer.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems (NIPS), pages 3104–3112.

Laurens van der Maaten and Geoffrey E. Hinton. 2012.
Visualizing non-metric similarities in multiple maps.
Machine Learning, 87(1):33–55.

Sam Wiseman, Alexander M. Rush, Stuart M. Shieber,
and Jason Weston. 2015. Learning anaphoricity and
antecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL), pages
1416–1426.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning Structural SVMs with Latent Variables. In
Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pages 1169–1176. ACM.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

1004

Proceedings of NAACL-HLT 2016, pages 1005–1011,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Search Space Pruning: A Simple Solution for Better Coreference Resolvers

Nafise Sadat Moosavi and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH

Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

{nafise.moosavi|michael.strube}@h-its.org

Abstract

There is a significant gap between the per-
formance of a coreference resolution system
on gold mentions and on system mentions.
This gap is due to the large and unbalanced
search space in coreference resolution when
using system mentions. In this paper we show
that search space pruning is a simple but effi-
cient way of improving coreference resolvers.
By incorporating our pruning method in one
of the state-of-the-art coreference resolution
systems, we achieve the best reported over-
all score on the CoNLL 2012 English test set.
A version of our pruning method is available
with the Cort coreference resolution source
code.

1 Introduction

Coreference resolution is the task of clustering refer-
ring expressions in a text so that each resulting clus-
ter represents an entity. It is a very challenging task
in natural language processing and it is still far from
being solved, i.e. the best reported overall CoNLL
score on the CoNLL 2012 English test set is 63.39
(Wiseman et al., 2015).

Text spans referring to an entity are called men-
tions. Mentions are the primary objects in a corefer-
ence resolution system. As with most previous work
on coreference resolution, we only consider men-
tions that are noun phrases. However, not all of the
noun phrases are mentions. A noun phrase may not
refer to any entity at all. The pronoun it in the sen-
tence it is raining is an example of a non-referential
noun phrase. Noun phrases which do refer to an en-
tity (mentions) can be further divided into two cat-

egories: mentions referring to entities which only
appear once in the discourse (i.e. singletons), and
mentions realizing entities that have been referred
to more than once in the text (i.e. coreferent men-
tions). Henceforth, we refer to both singletons and
non-referential phrases as non-coreferent mentions.
A large number of mentions that appear in a text
are non-coreferent. For instance, more than 80%
of mentions are singletons in the OntoNotes English
development set (Marneffe et al., 2015).

The latent ranking model is the best perform-
ing model for coreference resolution to date (Wise-
man et al., 2015; Martschat and Strube, 2015). If
we use gold mentions, the latent ranking model of
Martschat and Strube (2015) achieves an overall
score of 80% on the CoNLL 2012 English test set.
This result shows that once we have the ideal pruned
search space, the ranking model with the current set
of features is reasonably capable of finding corre-
sponding entities of mentions. The substantial gap
(17%) between the results of the gold mentions and
system mentions implies that search space pruning
is a promising direction for further improvements in
coreference resolution.

Marneffe et al. (2015) examine different search
space pruning methods that exist for coreference res-
olution. Among those, anaphoricity detection is the
most popular method (e.g. Ng and Cardie (2002),
Denis and Baldridge (2007), Ng (2009), Zhou and
Kong (2009), Durrett and Klein (2013), Martschat
and Strube (2015), Wiseman et al. (2015), Peng et al.
(2015), and Lassalle and Denis (2015)), while sin-
gleton detection is a more recent method (Recasens
et al., 2013; Ma et al., 2014; Marneffe et al., 2015).

1005

Anaphoricity detection examines whether a
phrase is anaphoric. Singleton detection examines
whether a phrase belongs to a coreference chain re-
gardless of being anaphor or antecedent. There-
fore, anaphoricity detection only prunes the search
space of anaphors while singleton detection prunes
the search space of both anaphors and antecedents.

Except for Clark and Manning (2015), all of
the state-of-the-art coreference resolvers explicitly
model anaphoricity detection (Martschat and Strube,
2015; Wiseman et al., 2015; Peng et al., 2015).
Therefore, modeling search space pruning as single-
ton detection can provide additional information for
the state-of-the-art coreference resolution systems.

In this paper we propose a simple but efficient sin-
gleton detection model. We first perform intrinsic
evaluations and show that our simple model signifi-
cantly improves the state-of-the-art results in single-
ton detection by a large margin. We then evaluate
our singleton model extrinsically on coreference res-
olution showing that search space pruning improves
different coreference resolution models.

2 Simple but Efficient Singleton Detection

In this section we show that pruning the coreference
resolution search space is not a very difficult task.
By using a simple set of features and a standard
classifier, we achieve new state-of-the-art results for
classifying coreferent and non-coreferent mentions.

Unlike Marneffe et al. (2015) who use both sur-
face (i.e. part-of-speech and n-gram based) features
and a large number (123) of carefully designed lin-
guistic features, we select a simple and small set of
shallow features:

1. lemmas of all words included in the mention;

2. lemmas of the two previous/next words be-
fore/after the mention;

3. part-of-speech tags of all words of the mention;

4. part-of-speech tags of the two previous/next
words before/after the mention;

5. complete mention string;

6. length of the mention in words;

7. mention type (proper, nominal, pronominal);

8. whether the whole string of the mention ap-
pears again in the document;

9. whether the head of the mention appears again
in the document.

We use an anchored SVM (Goldberg and Elhadad,
2007) with a polynomial kernel of degree two for
classification. When only few features are available,
anchored SVMs generalize much better than soft-
margin-SVMs (Goldberg and Elhadad, 2009). In our
experiments, we use a count threshold for discard-
ing vary rare lexical features that occur fewer than
10 times.

Similar to Marneffe et al. (2015), we use three
different configurations for evaluation. The Surface
configuration only uses the shallow features. The
Combined configuration uses the surface features
plus the linguistic features introduced by Marneffe
et al. (2015). The linguistic features of Marneffe et
al. (2015) also include some pairwise combinations
of the single features. Since our SVM with a poly-
nomial kernel of degree two implicitly models fea-
ture pairs, we only include the single features in our
Combined configuration. When removing mentions
that are classified as non-coreferent during prepro-
cessing, precision matters more than recall in order
not to over prune coreferent mentions. To achieve
higher precision, the Confident configuration uses
high confidence predictions of SVM (i.e. classify-
ing a mention as non-coreferent if the SVM output
is less or equal to -1, and as coreferent if the output
is greater or equal to +1). We use the same set of
shallow features as Surface for Confident. However,
Marneffe et al. (2015) use their combined feature set
for Confident.

2.1 Results

Table 2 shows the results of our singleton detec-
tion model in comparison to that of Marneffe et al.
(2015). We train our model on the CoNLL 2012
English training set and evaluate it on the develop-
ment set using recall, precision, F1 measure and ac-
curacy for both coreferent and non-coreferent men-
tions. Unlike Marneffe et al. (2015) that also use
some gold annotations for their features, we extract
all of our surface features from ’auto_conll’
files. Therefore, only predicted annotations are used.

The incorporation of linguistic features in Marn-
effe et al. (2015) improves the classification of both
coreferent and non-coreferent mentions by about 1

1006

Non-Coreferent Coreferent
#Features R P F1 R P F1 Accuracy

Surface 73,393 80.2 79.9 80.0 75.3 75.6 75.4 78.0
Marneffe et al. Confident 73,516 56.0 89.8 69.0 48.2 90.7 62.9 52.2

Combined 73,516 81.1 80.8 80.9 76.4 76.6 76.5 79.0
Surface 8,331 89.37 87.08 88.21 80.32 83.59 81.92 85.73

This work Confident 8,331 65.08 94.44 77.06 55.14 93.55 69.38 61.08
Combined 8,446 89.48 87.16 88.30 80.45 83.76 82.07 85.85

Table 1: Results on the the CoNLL 2012 English development set.

percent in comparison to the Surface results. How-
ever, in our case, the linguistic features only improve
the results by about 0.1 percent.

As the results show, by only using shallow fea-
tures, we achieve a new state-of-the-art performance
for singleton detection that improves the results of
Marneffe et al. (2015) by a large margin for classi-
fying both coreferent and non-coreferent mentions.

2.2 Error Analysis

For a singleton detector, precision errors (classify-
ing a coreferent mention as non-coreferent) are more
harmful than recall errors. If a coreferent mention is
classified as non-coreferent, the recall of the coref-
erence resolver that uses the singleton detector will
decrease. On the other hand, recall errors only af-
fect the singleton detector itself and not coreference
resolvers.

The precision error ratios of our Surface and Con-
fident systems for proper name (NAM), nominal
(NOM) and pronominal (PRO) mentions are listed
in Table 2. For each mention type, Table 2 also
shows the precision error ratio by mention type re-
lated to the mentions that are first mentions of their
corresponding entities. For example, in the Confi-
dent system 73.45% of the nominal mentions that
are incorrectly classified as non-coreferent are first
mentions of their corresponding entities. As can be
seen, many of the precision errors in both Surface
and Confident systems are errors in which the first
mention of an entity is detected as non-coreferent.
Detecting whether a mention will be referred to later,
is indeed very hard and requires more context infor-
mation. Features (8) and (9) from our feature set are
designed to address the correct detection of the first
mentions of entities to a limited degree. These fea-
tures only address first mentions of entities that are

NAM NOM PRO

Surface
Error rate 23.17 70.61 6.22
First mentions 57.68 65.54 20.19

Confident
Error rate 23.52 74.70 1.78
First mentions 62.63 73.45 33.33

Table 2: Precision error ratio.

NAM NOM PRO
Surface 30.48 34.07 35.45
Confident 23.65 58.25 13.50

Table 3: Recall error ratio.

referred to by later mentions with head or complete
string match. More features considering properties
of other mentions, rather than the examined mention
itself, are required in order to improve the correct
detection of the first mentions of entities.

Table 3 shows the ratio of recall errors for each
mention type. For our Surface system, this ratio is
more or less the same for different mention types.
However, Confident’s main source of recall errors is
the detection of non-coreferent nominal mentions.

2.3 Discussion

Our results significantly outperform the results of
Marneffe et al. (2015) who use both surface features
and a set of hand-engineered features targeting dif-
ferent linguistic phenomena related to the task. Our
findings are mirrored by Durrett and Klein (2013)’s
work on the coreference resolution task. Durrett and
Klein (2013) show that a coreference resolution sys-
tem that uses surface features can outperform those
using hand-engineered linguistic features.

Linguistic features like syntactic nearness (on
which Hobbs’ algorithm (Hobbs, 1978) is based),
morpho-syntactic and semantic agreement (e.g.
number, gender and semantic class agreements), re-

1007

MUC B3 CEAFe Avg.
R P F1 R P F1 R P F1 F1

Stanford
Baseline 64.58 63.65 64.11 49.53 55.21 52.22 53.06 44.82 48.59 54.97
+Stanford Singleton 64.26 65.19 64.72 49.09 56.84 52.68 52.54 46.55 49.37 55.59
+Preprocess Pruning 64.27 69.01 66.56 48.65 60.32 53.86 48.71 51.48 50.06 56.83

Cort Pairwise 68.46 71.01 69.71 54.02 59.47 56.61 51.88 52.17 52.02 59.45
+Preprocess Pruning 68.19 73.38 70.69 53.62 62.02 57.52 51.42 55.07 53.18 60.46
Latent Ranking 68.55 77.22 72.63 54.64 66.78 60.11 52.85 60.3 56.33 63.02
+Pruning Feature 68.81 78.37 73.28 55.46 66.9 60.65 52.07 62.23 56.7 63.54

Wiseman et al. (2015) 69.31 76.23 72.60 55.83 66.07 60.52 54.88 59.41 57.05 63.39

Table 4: Results on the English test set. All the improvements made by our singleton detection models are statistically significant.

cency, focus (Grosz and Sidner, 1986), and center-
ing (Brennan et al., 1987) are examples of useful
linguistic features for coreference resolution which
have the additional benefit of being applicable to dif-
ferent languages. For example, Hobbs’ algorithm
and agreement features are being used successfully
in the Stanford system (Lee et al., 2013). How-
ever, apart from features like these, a large number
of linguistically motivated features have been pro-
posed which either do not have a significant impact
or are only applicable to a specific language or do-
main. Therefore, designing general linguistic fea-
tures which provide information that is not captured
by surface features deserve more attention in order
to gain higher recall and better generalization.

We combine a simple set of surface features with
a standard machine learning model that can handle a
large number of surface features. This leads to a new
state-of-the-art singleton detection with high preci-
sion that can easily be incorporated in a coreference
resolution system for pruning non-coreferent men-
tions.

3 Pruning = Better Coreference Resolvers

In this section, we investigate the effect of search
space pruning on coreference resolution. We choose
the Stanford rule-based system (Lee et al., 2013) and
the Cort1 system (Martschat and Strube, 2015) as
our baselines for coreference resolution. Wiseman
et al. (2015) is the best performing coreference res-
olution system to date. However, we choose Cort as
our learning-based baseline because Cort is a frame-
work that allows evaluations on various coreference

1http://github.com/smartschat/cort

resolution models, i.e. ranking, antecedent trees, and
pairwise. The pairwise model is the most commonly
used model in coreference resolution, and latent
ranking is the best performing model for coreference
resolution to date (Wiseman et al., 2015; Martschat
and Strube, 2015).

3.1 Results

Table 4 shows the results of integrating singleton
detection into different coreference resolution ap-
proaches. We evaluate the systems on the CoNLL
2012 English test set using the MUC (Vilain et
al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005) measures as provided by the
CoNLL coreference scorer version 8.01 (Pradhan et
al., 2014). According to the approximate random-
ization test (Noreen, 1989), all of the improvements
made by our singleton detection module are statisti-
cally significant (p < 0.05).

Baseline shows the result of the Stanford system
without using singleton detection. +Stanford Single-
ton is the result of the Stanford system including its
singleton detection module (Recasens et al., 2013).
+Preprocess Pruning is the result when our Confi-
dent model from Section 2 is used.

The singleton detection modules of Recasens et
al. (2013) and Marneffe et al. (2015) are incorpo-
rated in the Stanford system in a heuristic way: if
both anaphor and antecedent are classified as single-
ton, and none of them is a named entity, then those
mentions will be disregarded. However, since our
Confident model does have a high precision, we use
it for removing all non-coreferent mentions in a pre-
processing step. As shown in Table 4, our singleton
detection improves the overall score of the Baseline

1008

system by about 2 percent on the test set.
Cort uses a perceptron for learning. Therefore,

we use a perceptron in Cort while an anchored SVM
would have performed slightly better. We also in-
clude all the additional features that are used in Cort
for our Cort singleton detection model. SVM accu-
racy with surface features on the development set is
about 0.1 percent better than that of the perceptron
with Cort’s additional features.

For the pairwise model, singleton detection is per-
formed in a preprocessing step. The singleton detec-
tion module improves the overall performance of the
pairwise model by about 1 percent on the test set.

The Cort latent model already performs search
space pruning in the form of anaphoricity detection.
Additional pruning of potential anaphors in the pre-
processing step by the singleton model hurts the re-
call of the latent model. Therefore, we add the out-
put of the singleton model as a new feature for both
anaphor and antecedent. For obtaining these fea-
tures for training, we split the training data into two
halves and train a singleton perceptron separately on
each half. The values of the singleton feature for the
first half are computed based on the model that is
trained on the second half, and vice versa. This way,
the accuracy of singleton features on both training
and testing is similar. If we would train the singleton
model on the whole training data, we would over-
fit the model seriously. The values of the singleton
feature would be very accurate on the training data,
and the learner would overestimate the importance
of this feature.

The new feature improves the overall perfor-
mance of the latent ranking model by about 0.5
percent on the test set. This result is the best re-
ported overall score for coreference resolution on
the CoNLL 2012 English test set to date.

The singleton feature support is added to
the Cort source code. It is available at
http://github.com/smartschat/cort.

3.2 Discussion
Recent improvements in coreference resolution have
been made by exploring more complex learning and
inference strategies, a larger number of features,
and joint processing. There are also technically vi-
able solutions for improving the performance of a
coreference resolver which do not work in prac-

tice. For instance, since coreference resolution is a
set partitioning problem, entity-based models seem
to be more suitable for coreference resolution than
mention-pair models. However, entity-based mod-
els do not necessarily perform better than mention-
pair models (e.g. Ng (2010) and Moosavi and Strube
(2014)). The same is true for incorporating more
semantic-level information in a coreference resolu-
tion system (e.g. Durrett and Klein (2013)).

In this paper, we show that coreference resolution
can also simply be improved by performing search
space pruning. The significant gap between the per-
formance of the latent ranking model on gold men-
tions and on system mentions indicates that there is
still room for further improvements in search space
pruning.

4 Conclusions

We achieve new state-of-the-art results for singleton
detection by only using shallow features and simple
classifiers. We also show that search space pruning
significantly improves different coreference resolu-
tion models. The substantial gap between the per-
formance on gold mentions and on system mentions
indicates that there is still plenty of room for further
improvements in singleton detection. Therefore,
search space pruning is a promising direction for fur-
ther improvements in coreference resolution. The
proposed singleton detector as a feature for coref-
erence resolvers is implemented for the Cort coref-
erence resolver. It is available with the Cort source
code.

Acknowledgments

The authors would like to thank Sebastian Martschat
for his help to use the proposed singleton detec-
tor in the Cort coreference resolver. We would
also like to thank Mark-Christoph Müller, Benjamin
Heinzerling, Mohsen Mesgar, Daraksha Parveen and
Alex Judea for their helpful comments. This work
has been funded by the Klaus Tschira Foundation,
Heidelberg, Germany. The first author has been
supported by a Heidelberg Institute for Theoretical
Studies PhD. scholarship.

1009

References
Amit Bagga and Breck Baldwin. 1998. Algorithms for

scoring coreference chains. In Proceedings of the 1st
International Conference on Language Resources and
Evaluation, Granada, Spain, 28–30 May 1998, pages
563–566.

Susan E. Brennan, Marilyn W. Friedman, and Carl J. Pol-
lard. 1987. A centering approach to pronouns. In
Proceedings of the 25th Annual Meeting of the Asso-
ciation for Computational Linguistics, Stanford, Cal.,
6–9 July 1987, pages 155–162.

Kevin Clark and Christopher D. Manning. 2015. Entity-
centric coreference resolution with model stacking. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Beijing, China, 26–31 July 2015, pages
1405–1415.

Pascal Denis and Jason Baldridge. 2007. Joint determi-
nation of anaphoricity and coreference resolution us-
ing integer programming. In Proceedings of Human
Language Technologies 2007: The Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Rochester, N.Y., 22–27 April
2007, pages 236–243.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods in
Natural Language Processing, Seattle, Wash., 18–21
October 2013, pages 1971–1982.

Yoav Goldberg and Michael Elhadad. 2007. SVM model
tampering and anchored learning: A case study in He-
brew NP chunking. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguis-
tics, Prague, Czech Republic, 23–30 June 2007, pages
224–231.

Yoav Goldberg and Michael Elhadad. 2009. On the role
of lexical features in sequence labeling. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing, Singapore, 6–7 August
2009, pages 1142–1151.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational Linguistics, 12(3):175–204.

Jerry R. Hobbs. 1978. Resolving pronominal references.
Lingua, 44:311–338.

Emmanuel Lassalle and Pascal Denis. 2015. Joint
anaphoricity detection and coreference resolution with
constrained latent structures. In Proceedings of the
29th Conference on the Advancement of Artificial In-
telligence, Austin, Texas, 25–30 January 2015, pages
2274–2280.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.

Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the Human Lan-
guage Technology Conference and the 2005 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Vancouver, B.C., Canada, 6–8 October 2005,
pages 25–32.

Chao Ma, Janardhan Rao Doppa, J. Walker Orr,
Prashanth Mannem, Xiaoli Fern, Tom Dietterich, and
Prasad Tadepalli. 2014. Prune-and-score: Learning
for greedy coreference resolution. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing, Doha, Qatar, 25–29 October
2014, pages 2115–2126.

Marie-Catherine de Marneffe, Marta Recasens, and
Christopher Potts. 2015. Modeling the lifespan of
discourse entities with application to coreference res-
olution. Journal of Artificial Intelligent Research,
52:445–475.

Sebastian Martschat and Michael Strube. 2015. Latent
structures for coreference resolution. Transactions of
the Association for Computational Linguistics, 3:405–
418.

Nafise Sadat Moosavi and Michael Strube. 2014. Unsu-
pervised coreference resolution by utilizing the most
informative relations. In Proceedings of the 25th In-
ternational Conference on Computational Linguistics,
Dublin, Ireland, 23–29 August 2014, pages 644–655.

Vincent Ng and Claire Cardie. 2002. Identifying
anaphoric and non-anaphoric noun phrases to improve
coreference resolution. In Proceedings of the 19th In-
ternational Conference on Computational Linguistics,
Taipei, Taiwan, 24 August – 1 September 2002.

Vincent Ng. 2009. Graph-cut-based anaphoricity deter-
mination for coreference resolution. In Proceedings of
Human Language Technologies 2009: The Conference
of the North American Chapter of the Association for
Computational Linguistics, Boulder, Col., 31 May – 5
June 2009, pages 575–583.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics, Uppsala, Sweden, 11–16 July 2010,
pages 1396–1411.

Eric W. Noreen. 1989. Computer Intensive Methods
for Hypothesis Testing: An Introduction. Wiley, New
York, N.Y.

Haoruo Peng, Kai-Wei Chang, and Dan Roth. 2015. A
joint framework for coreference resolution and men-
tion head detection. In Proceedings of the 19th Con-
ference on Computational Natural Language Learn-
ing, Beijing, China, 30–31 July 2015, pages 12–21.

1010

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted mentions:
A reference implementation. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Balti-
more, Md., 22–27 June 2014, pages 30–35.

Marta Recasens, Marie-Catherine de Marneffe, and
Christopher Potts. 2013. The life and death of dis-
course entities: Identifying singleton mentions. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Atlanta, Georgia, 9–14 June 2013, pages 627–633.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceedings
of the 6th Message Understanding Conference (MUC-
6), pages 45–52, San Mateo, Cal. Morgan Kaufmann.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Beijing, China, 26–31 July 2015, pages
1416–1426.

Guodong Zhou and Fang Kong. 2009. Global learning of
noun phrase anaphoricity in coreference resolution via
label propagation. In Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Singapore, 6–7 August 2009, pages 978–986.

1011

Proceedings of NAACL-HLT 2016, pages 1012–1018,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Unsupervised Ranking Model for Entity Coreference Resolution

Xuezhe Ma and Zhengzhong Liu and Eduard Hovy
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{xuezhem, liu}@cs.cmu.edu, ehovy@cmu.edu

Abstract

Coreference resolution is one of the first stages
in deep language understanding and its impor-
tance has been well recognized in the natu-
ral language processing community. In this
paper, we propose a generative, unsupervised
ranking model for entity coreference resolu-
tion by introducing resolution mode variables.
Our unsupervised system achieves 58.44% F1
score of the CoNLL metric on the English data
from the CoNLL-2012 shared task (Pradhan et
al., 2012), outperforming the Stanford deter-
ministic system (Lee et al., 2013) by 3.01%.

1 Introduction

Entity coreference resolution has become a critical
component for many Natural Language Processing
(NLP) tasks. Systems requiring deep language un-
derstanding, such as information extraction (Wellner
et al., 2004), semantic event learning (Chambers and
Jurafsky, 2008; Chambers and Jurafsky, 2009), and
named entity linking (Durrett and Klein, 2014; Ji et
al., 2014) all benefit from entity coreference infor-
mation.

Entity coreference resolution is the task of iden-
tifying mentions (i.e., noun phrases) in a text or
dialogue that refer to the same real-world entities.
In recent years, several supervised entity corefer-
ence resolution systems have been proposed, which,
according to Ng (2010), can be categorized into
three classes — mention-pair models (McCarthy
and Lehnert, 1995), entity-mention models (Yang
et al., 2008a; Haghighi and Klein, 2010; Lee et
al., 2011) and ranking models (Yang et al., 2008b;

Durrett and Klein, 2013; Fernandes et al., 2014)
— among which ranking models recently obtained
state-of-the-art performance. However, the manu-
ally annotated corpora that these systems rely on are
highly expensive to create, in particular when we
want to build data for resource-poor languages (Ma
and Xia, 2014). That makes unsupervised ap-
proaches, which only require unannotated text for
training, a desirable solution to this problem.

Several unsupervised learning algorithms have
been applied to coreference resolution. Haghighi
and Klein (2007) presented a mention-pair non-
parametric fully-generative Bayesian model for un-
supervised coreference resolution. Based on this
model, Ng (2008) probabilistically induced corefer-
ence partitions via EM clustering. Poon and Domin-
gos (2008) proposed an entity-mention model that
is able to perform joint inference across mentions
by using Markov Logic. Unfortunately, these un-
supervised systems’ performance on accuracy sig-
nificantly falls behind those of supervised systems,
and are even worse than the deterministic rule-based
systems. Furthermore, there is no previous work
exploring the possibility of developing an unsuper-
vised ranking model which achieved state-of-the-
art performance under supervised settings for entity
coreference resolution.

In this paper, we propose an unsupervised genera-
tive ranking model for entity coreference resolution.
Our experimental results on the English data from
the CoNLL-2012 shared task (Pradhan et al., 2012)
show that our unsupervised system outperforms the
Stanford deterministic system (Lee et al., 2013) by
3.01% absolute on the CoNLL official metric. The

1012

contributions of this work are (i) proposing the first
unsupervised ranking model for entity coreference
resolution. (ii) giving empirical evaluations of this
model on benchmark data sets. (iii) considerably
narrowing the gap to supervised coreference reso-
lution accuracy.

2 Unsupervised Ranking Model

2.1 Notations and Definitions

In the following, D = {m0,m1, . . . ,mn} repre-
sents a generic input document which is a sequence
of coreference mentions, including the artificial root
mention (denoted by m0). The method to detect
and extract these mentions is discussed later in Sec-
tion 2.6. Let C = {c1, c2, . . . , cn} denote the
coreference assignment of a given document, where
each mention mi has an associated random vari-
able ci taking values in the set {0, i, . . . , i − 1};
this variable specifiesmi’s selected antecedent (ci ∈
{1, 2, . . . , i − 1}), or indicates that it begins a new
coreference chain (ci = 0).

2.2 Generative Ranking Model

The following is a straightforward way to build a
generative model for coreference:

P (D,C) = P (D|C)P (C)

=
n∏
j=1

P (mj |mcj)
n∏
j=1

P (cj |j) (1)

where we factorize the probabilities P (D|C) and
P (C) into each position j by adopting appropri-
ate independence assumptions that given the coref-
erence assignment cj and corresponding corefer-
ent mention mcj , the mention mj is independent
with other mentions in front of it. This indepen-
dent assumption is similar to that in the IBM 1
model on machine translation (Brown et al., 1993),
where it assumes that given the corresponding En-
glish word, the aligned foreign word is independent
with other English and foreign words. We do not
make any independent assumptions among different
features (see Section 2.4 for details).

Inference in this model is efficient, because we
can compute cj separately for each mention:

c∗j = argmax
cj

P (mj |mcj)P (cj |j)

The model is a so-called ranking model because it
is able to identify the most probable candidate an-
tecedent given a mention to be resolved.

2.3 Resolution Mode Variables

According to previous work (Haghighi and Klein,
2009; Ratinov and Roth, 2012; Lee et al., 2013),
antecedents are resolved by different categories of
information for different mentions. For example,
the Stanford system (Lee et al., 2013) uses string-
matching sieves to link two mentions with similar
text and precise-construct sieve to link two men-
tions which satisfy special syntactic or semantic
relations such as apposition or acronym. Moti-
vated by this, we introduce resolution mode vari-
ables Π = {π1, . . . , πn}, where for each mention
j the variable πj ∈ {str, prec, attr} indicates in
which mode the mention should be resolved. In
our model, we define three resolution modes —
string-matching (str), precise-construct (prec), and
attribute-matching (attr) — and Π is deterministic
when D is given (i.e. P (Π|D) is a point distribu-
tion). We determine πj for each mention mj in the
following way:

• πj = str, if there exists a mention mi, i < j
such that the two mentions satisfy the String
Match sieve, the Relaxed String Match sieve,
or the Strict Head Match A sieve in the Stanford
multi-sieve system (Lee et al., 2013).

• πj = prec, if there exists a mention mi, i < j
such that the two mentions satisfy the Speaker
Identification sieve, or the Precise Constructs
sieve.

• πj = attr, if there is no mention mi, i < j
satisfies the above two conditions.

Now, we can extend the generative model in Eq. 1
to:

P (D,C) = P (D,C,Π)

=
n∏
j=1

P (mj |mcj , πj)P (cj |πj , j)P (πj |j)

where we define P (πj |j) to be uniform distribution.
We model P (mj |mcj , πj) and P (cj |πj , j) in the fol-

1013

Mode π Feature Description
prec Mention Type the type of a mention. We use three mention types: Proper,Nominal, Pronoun

str

Mention Type the same as the mention type feature under prec mode.
Exact Match boolean feature corresponding to String Match sieve in Stanford system.

Relaxed Match boolean feature corresponding to Relaxed String Match sieve in Stanford system.
Head Match boolean feature corresponding to Strict Head Match A sieve in Stanford system.

attr

Mention Type the same as the mention type feature under prec mode.
Number the number of a mention similarly derived from Lee et al. (2013).
Gender the gender of a mention from Bergsma and Lin (2006) and Ji and Lin (2009).
Person the person attribute from Lee et al. (2013). We assign person attributes to all mentions, not only pronouns.

Animacy the animacy attribute same as Lee et al. (2013).
Semantic Class semantic classes derived from WordNet (Soon et al., 2001).

Distance sentence distance between the two mentions. This feature is for parameter q(k|j, π)

Table 1: Feature set for representing a mention under different resolution modes. The Distance feature is for parameter q, while all

other features are for parameter t.

Algorithm 1: Learning Model with EM
1 Initialization: Initialize θ0 = {t0, q0}
2 for t = 0 to T do
3 set all counts c(. . .) = 0
4 for each document D do
5 for j = 1 to n do
6 for k = 0 to j − 1 do
7 Ljk = t(mj |mk,πj)q(k|πj ,j)

j−1∑
i=0

t(mj |mi,πj)q(i|πj ,j)

8 c(mj ,mk, πj) += Ljk
9 c(mk, πj) += Ljk

10 c(k, j, πj) += Ljk
11 c(j, πj) += Ljk

// Recalculate the parameters

12 t(m|m′, π) = c(m,m′,π)
c(m′,π)

13 q(k, j, π) = c(k,j,π)
c(j,π)

lowing way:

P (mj |mcj , πj) = t(mj |mcj , πj)

P (cj |πj , j) =
{
q(cj |πj , j) πj = attr
1
j otherwise

where θ = {t, q} are parameters of our model. Note
that in the attribute-matching mode (πj = attr)
we model P (cj |πj , j) with parameter q, while in
the other two modes, we use the uniform distribu-
tion. It makes sense because the position informa-
tion is important for coreference resolved by match-
ing attributes of two mentions such as resolving pro-
noun coreference, but not that important for those
resolved by matching text or special relations like
two mentions referring the same person and match-
ing by the name.

Corpora # Doc # Sent # Word # Entity # Mention
Gigaword 3.6M 75.4M 1.6B - -
ON-Dev 343 9,142 160K 4,546 19,156
ON-Test 348 9,615 170K 4,532 19,764

Table 2: Corpora statistics. “ON-Dev” and “ON-Test” are the

development and testing sets of the OntoNotes corpus.

2.4 Features

In this section, we describe the features we use to
represent mentions. Specifically, as shown in Ta-
ble 1, we use different features under different reso-
lution modes. It should be noted that only the Dis-
tance feature is designed for parameter q, all other
features are designed for parameter t.

2.5 Model Learning

For model learning, we run EM algorithm (Demp-
ster et al., 1977) on our Model, treating D as ob-
served data and C as latent variables. We run EM
with 10 iterations and select the parameters achiev-
ing the best performance on the development data.
Each iteration takes around 12 hours with 10 CPUs
parallelly. The best parameters appear at around the
5th iteration, according to our experiments.The de-
tailed derivation of the learning algorithm is shown
in Appendix A. The pseudo-code is shown is Algo-
rithm 1. We use uniform initialization for all the pa-
rameters in our model.

Several previous work has attempted to use
EM for entity coreference resolution. Cherry and
Bergsma (2005) and Charniak and Elsner (2009)
applied EM for pronoun anaphora resolution. Ng
(2008) probabilistically induced coreference parti-
tions via EM clustering. Recently, Moosavi and
Strube (2014) proposed an unsupervised model uti-

1014

CoNLL’12 English development data CoNLL’12 English test data

MUC B3 CEAFm CEAFe Blanc CoNLL MUC B3 CEAFm CEAFe Blanc CoNLL

MIR 65.39 54.89 – 51.36 – 57.21 64.64 52.52 – 49.11 – 55.42

Stanford 64.96 54.49 59.39 51.24 56.03 56.90 64.71 52.26 56.01 49.32 53.92 55.43

Multigraph 66.22 56.41 60.87 52.61 58.15 58.41 65.41 54.38 58.60 50.21 56.03 56.67

Our Model 67.89 57.83 62.11 53.76 60.58 59.83 67.69 55.86 59.66 51.75 57.78 58.44

IMS 67.15 55.19 58.86 50.94 56.22 57.76 67.58 54.47 58.17 50.21 55.41 57.42

Latent-Tree 69.46 57.83 – 54.43 – 60.57 70.51 57.58 – 53.86 – 60.65

Berkeley 70.44 59.10 – 55.57 – 61.71 70.62 58.20 – 54.80 – 61.21

LaSO 70.74 60.03 65.01 56.80 – 62.52 70.72 58.58 63.45 59.40 – 61.63

Latent-Strc 72.11 60.74 – 57.72 – 63.52 72.17 59.58 – 55.67 – 62.47

Model-Stack 72.59 61.98 – 57.58 – 64.05 72.59 60.44 – 56.02 – 63.02

Non-Linear 72.74 61.77 – 58.63 – 64.38 72.60 60.52 – 57.05 – 63.39

Table 3: F1 scores of different evaluation metrics for our model, together with two deterministic systems and one unsupervised

system as baseline (above the dashed line) and seven supervised systems (below the dashed line) for comparison on CoNLL 2012

development and test datasets.

lizing the most informative relations and achieved
competitive performance with the Stanford system.

2.6 Mention Detection

The basic rules we used to detect mentions are simi-
lar to those of Lee et al. (2013), except that their sys-
tem uses a set of filtering rules designed to discard
instances of pleonastic it, partitives, certain quanti-
fied noun phrases and other spurious mentions. Our
system keeps partitives, quantified noun phrases and
bare NP mentions, but discards pleonastic it and
other spurious mentions.

3 Experiments

3.1 Experimental Setup

Datasets. Due to the availability of readily parsed
data, we select the APW and NYT sections of Giga-
word Corpus (years 1994-2010) (Parker et al., 2011)
to train the model. Following previous work (Cham-
bers and Jurafsky, 2008), we remove duplicated
documents and the documents which include fewer
than 3 sentences. The development and test data
are the English data from the CoNLL-2012 shared
task (Pradhan et al., 2012), which is derived from
the OntoNotes corpus (Hovy et al., 2006). The cor-
pora statistics are shown in Table 2. Our system is
evaluated with automatically extracted mentions on
the version of the data with automatic preprocessing
information (e.g., predicted parse trees).

Evaluation Metrics. We evaluate our model
on three measures widely used in the literature:
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and Entity-based CEAF (CEAFe) (Luo,
2005). In addition, we also report results on an-
other two popular metrics: Mention-based CEAF
(CEAFm) and BLANC (Recasens and Hovy, 2011).
All the results are given by the latest version of
CoNLL-2012 scorer 1

3.2 Results and Comparison

Table 3 illustrates the results of our model together
as baseline with two deterministic systems, namely
Stanford: the Stanford system (Lee et al., 2011)
and Multigraph: the unsupervised multigraph sys-
tem (Martschat, 2013), and one unsupervised sys-
tem, namely MIR: the unsupervised system using
most informative relations (Moosavi and Strube,
2014). Our model outperforms the three baseline
systems on all the evaluation metrics. Specifically,
our model achieves improvements of 2.93% and
3.01% on CoNLL F1 score over the Stanford sys-
tem, the winner of the CoNLL 2011 shared task, on
the CoNLL 2012 development and test sets, respec-
tively. The improvements on CoNLL F1 score over
the Multigraph model are 1.41% and 1.77% on the
development and test sets, respectively. Comparing

1http://conll.cemantix.org/2012/
software.html

1015

with the MIR model, we obtain significant improve-
ments of 2.62% and 3.02% on CoNLL F1 score.

To make a thorough empirical comparison with
previous studies, Table 3 (below the dashed line)
also shows the results of some state-of-the-art su-
pervised coreference resolution systems — IMS:
the second best system in the CoNLL 2012 shared
task (Björkelund and Farkas, 2012); Latent-Tree:
the latent tree model (Fernandes et al., 2012) ob-
taining the best results in the shared task; Berkeley:
the Berkeley system with the final feature set (Dur-
rett and Klein, 2013); LaSO: the structured percep-
tron system with non-local features (Björkelund and
Kuhn, 2014); Latent-Strc: the latent structure sys-
tem (Martschat and Strube, 2015); Model-Stack:
the entity-centric system with model stacking (Clark
and Manning, 2015); and Non-Linear: the non-
linear mention-ranking model with feature represen-
tations (Wiseman et al., 2015). Our unsupervised
ranking model outperforms the supervised IMS sys-
tem by 1.02% on the CoNLL F1 score, and achieves
competitive performance with the latent tree model.
Moreover, our approach considerably narrows the
gap to other supervised systems listed in Table 3.

4 Conclusion

We proposed a new generative, unsupervised rank-
ing model for entity coreference resolution into
which we introduced resolution mode variables to
distinguish mentions resolved by different cate-
gories of information. Experimental results on the
data from CoNLL-2012 shared task show that our
system significantly improves the accuracy on dif-
ferent evaluation metrics over the baseline systems.

One possible direction for future work is to dif-
ferentiate more resolution modes. Another one is to
add more precise or even event-based features to im-
prove the model’s performance.

Acknowledgements

This research was supported in part by DARPA
grant FA8750-12-2-0342 funded under the DEFT
program. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of DARPA.

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In The first interna-
tional conference on language resources and evalu-
ation workshop on linguistics coreference, volume 1,
pages 563–566. Citeseer.

Shane Bergsma and Dekang Lin. 2006. Bootstrap-
ping path-based pronoun resolution. In Proceedings
of ACL-2006, pages 33–40, Sydney, Australia, July.
Association for Computational Linguistics.

Anders Björkelund and Richárd Farkas. 2012. Data-
driven multilingual coreference resolution using re-
solver stacking. In Proceedings of EMNLP-CoNLL-
2012 - Shared Task, pages 49–55, Jeju Island, Korea,
July. Association for Computational Linguistics.

Anders Björkelund and Jonas Kuhn. 2014. Learning
structured perceptrons for coreference resolution with
latent antecedents and non-local features. In Proceed-
ings of ACL-2014, pages 47–57, Baltimore, Maryland,
June. Association for Computational Linguistics.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathematics
of statistical machine translation: Parameter estima-
tion. Computational linguistics, 19(2):263–311.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-2008: HLT, pages 789–797, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proceedings of ACL-2009, pages 602–610,
Suntec, Singapore, August. Association for Computa-
tional Linguistics.

Eugene Charniak and Micha Elsner. 2009. EM works for
pronoun anaphora resolution. In Proceedings of EACL
2009, pages 148–156, Athens, Greece, March.

Colin Cherry and Shane Bergsma. 2005. An Expecta-
tion Maximization approach to pronoun resolution. In
Proceedings of CoNLL-2005, pages 88–95, Ann Ar-
bor, Michigan, June.

Kevin Clark and Christopher D. Manning. 2015. Entity-
centric coreference resolution with model stacking. In
Proceedings of ACL-IJCNLP-2015, pages 1405–1415,
Beijing, China, July. Association for Computational
Linguistics.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data via
the em algorithm. Journal of the royal statistical soci-
ety. Series B (methodological), pages 1–38.

Greg Durrett and Dan Klein. 2013. Easy victories
and uphill battles in coreference resolution. In Pro-
ceedings of EMNLP-2013, pages 1971–1982, Seattle,

1016

Washington, USA, October. Association for Computa-
tional Linguistics.

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking. In
Proceedings of the Transactions of the Association for
Computational Linguistics.

Eraldo Fernandes, Cı́cero dos Santos, and Ruy Milidiú.
2012. Latent structure perceptron with feature in-
duction for unrestricted coreference resolution. In
Proceedings of EMNLP-CoNLL-2012 - Shared Task,
pages 41–48, Jeju Island, Korea, July. Association for
Computational Linguistics.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos Santos,
and Ruy Luiz Milidiú. 2014. Latent trees for corefer-
ence resolution. Computational Linguistics.

Aria Haghighi and Dan Klein. 2007. Unsupervised
coreference resolution in a nonparametric bayesian
model. In Proceedings of ACL-2007, pages 848–855,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Aria Haghighi and Dan Klein. 2009. Simple coreference
resolution with rich syntactic and semantic features. In
Proceedings of EMNLP-2009, pages 1152–1161, Sin-
gapore, August. Association for Computational Lin-
guistics.

Aria Haghighi and Dan Klein. 2010. Coreference resolu-
tion in a modular, entity-centered model. In Proceed-
ings of NAACL-2010, pages 385–393, Los Angeles,
California, June. Association for Computational Lin-
guistics.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
The 90% solution. In Proceedings of NAACL-2006,
pages 57–60, New York City, USA, June. Association
for Computational Linguistics.

Heng Ji and Dekang Lin. 2009. Gender and animacy
knowledge discovery from web-scale n-grams for un-
supervised person mention detection. In Proceedings
of PACLIC-2009, pages 220–229.

Heng Ji, HT Dang, J Nothman, and B Hachey. 2014.
Overview of tac-kbp2014 entity discovery and linking
tasks. In Proc. Text Analysis Conference (TAC2014).

Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2011.
Stanford’s multi-pass sieve coreference resolution sys-
tem at the conll-2011 shared task. In Proceedings of
CoNLL-2011: Shared Task, pages 28–34, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Comput. Linguist.,
39(4):885–916, December.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of EMNLP-2005,
pages 25–32, Vancouver, British Columbia, Canada,
October. Association for Computational Linguistics.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via par-
allel guidance and entropy regularization. In Pro-
ceedings of ACL-2014, pages 1337–1348, Baltimore,
Maryland, June.

Sebastian Martschat and Michael Strube. 2015. Latent
structures for coreference resolution. Transactions of
the Association for Computational Linguistics, 3:405–
418.

Sebastian Martschat. 2013. Multigraph clustering for
unsupervised coreference resolution. In ACL-2013:
Student Research Workshop, pages 81–88, Sofia, Bul-
garia, August. Association for Computational Linguis-
tics.

Joseph F McCarthy and Wendy G Lehnert. 1995. Using
decision trees for conference resolution. In Proceed-
ings of IJCAI-1995, pages 1050–1055. Morgan Kauf-
mann Publishers Inc.

Nafise Sadat Moosavi and Michael Strube. 2014. Unsu-
pervised coreference resolution by utilizing the most
informative relations. In Proceedings of COLING-
2014, pages 644–655.

Vincent Ng. 2008. Unsupervised models for coreference
resolution. In Proceedings of EMNLP-2008, pages
640–649, Honolulu, Hawaii, October. Association for
Computational Linguistics.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of
ACL-2010, pages 1396–1411, Uppsala, Sweden, July.
Association for Computational Linguistics.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edition.
Linguistic Data Consortium, LDC2011T07.

Hoifung Poon and Pedro Domingos. 2008. Joint un-
supervised coreference resolution with Markov Logic.
In Proceedings of EMNLP-2008, pages 650–659,
Honolulu, Hawaii, October. Association for Compu-
tational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unrestricted
coreference in ontonotes. In Proceedings of EMNLP-
CoNLL-2012 - Shared Task, pages 1–40, Jeju Island,
Korea, July. Association for Computational Linguis-
tics.

Lev Ratinov and Dan Roth. 2012. Learning-based multi-
sieve co-reference resolution with knowledge. In Pro-
ceedings of EMNLP-CoNLL-2012, pages 1234–1244,
Jeju Island, Korea, July. Association for Computa-
tional Linguistics.

1017

Marta Recasens and Eduard Hovy. 2011. Blanc: Im-
plementing the rand index for coreference evaluation.
Natural Language Engineering, 17(04):485–510.

Wee Meng Soon, Hwee Tou Ng, and Daniel Chung Yong
Lim. 2001. A machine learning approach to corefer-
ence resolution of noun phrases. Computational lin-
guistics, 27(4):521–544.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th conference on Message understanding,
pages 45–52. Association for Computational Linguis-
tics.

Ben Wellner, Andrew McCallum, Fuchun Peng, and
Michael Hay. 2004. An integrated, conditional model
of information extraction and coreference with appli-
cation to citation matching. In Proceedings of the 20th
conference on Uncertainty in artificial intelligence,
pages 593–601. AUAI Press.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of ACL-IJCNLP-2015, pages 1416–
1426, Beijing, China, July. Association for Computa-
tional Linguistics.

Xiaofeng Yang, Jian Su, Jun Lang, Chew Lim Tan, Ting
Liu, and Sheng Li. 2008a. An entity-mention model
for coreference resolution with inductive logic pro-
gramming. In Proceedings of ACL-2008, pages 843–
851.

Xiaofeng Yang, Jian Su, and Chew Lim Tan. 2008b. A
twin-candidate model for learning-based anaphora res-
olution. Computational Linguistics, 34(3):327–356.

Appendix A. Derivation of Model Learning
Formally, we iteratively estimate the model parame-
ters θ, employing the following EM algorithm:

E-step: Compute the posterior probabilities of C,
P (C|D; θ), based on the current θ.

M-step: Calculate the new θ′ that maximizes
the expected complete log likelihood,
EP (C|D;θ)[logP (D,C; θ′)]

For simplicity, we denote:

P (C|D; θ) = P̃ (C|D)
P (C|D; θ′) = P (C|D)

In addition, we use τ(πj |j) to denote the probability
P (πj |j) which is uniform distribution in our model.

Moreover, we use the following notation for conve-
nience:

θ(mj ,mk, j, k, πj) = t(mj |mk, πj)q(k|πj , j)τ(πj |j)

Then, we have

EP̃ (c|D)[logP (D,C)]

=
∑
C
P̃ (C|D) logP (D,C)

=
∑
C
P̃ (C|D)

(n∑
j=1

log t(mj |mcj , πj) + log q(cj |πj , j) + log τ(πj |j)
)

=
n∑

j=1

j−1∑
k=0

Ljk

(
log t(mj |mk, πj) + log q(k|πj , j) + log τ(πj |j)

)
Then the parameters t and q that maximize
EP̃ (c|D)[logP (D,C)] satisfy that

t(mj |mk, πj) = Ljk
n∑

i=1
Lik

q(k|πj , j) = Ljk

j−1∑
i=0

Lji

where Ljk can be calculated by

Ljk =
∑

C,cj=k

P̃ (C|D) =

∑
C,cj=k

P̃ (C,D)∑
C

P̃ (C,D)

=

∑
C,cj=k

n∏
i=1

θ̃(mi,mci
,ci,i,πi)

∑
C

n∏
i=1

θ̃(mi,mci
,ci,i,πi)

=
θ̃(mj ,mk,k,j,πj)

∑
C(−j)

P̃ (C(−j)|D)

j−1∑
i=0

θ̃(mj ,mi,i,j,πj)
∑

C(−j)
P̃ (C(−j)|D)

= θ̃(mj ,mk,k,j,πj)
j−1∑
i=0

θ̃(mj ,mi,i,j,πj)

= t̃(mj |mk,πj)q̃(k|πj ,j)τ̃(πj |j)
j−1∑
i=0

t̃(mj |mi,πj)q̃(i|πj ,j)τ̃(πj |j)

= t̃(mj |mk,πj)q̃(k|πj ,j)
j−1∑
i=0

t̃(mj |mi,πj)q̃(i|πj ,j)

where C(−j) = {c1, . . . , cj−1, cj+1, . . . , cn}. The
above derivations correspond to the learning algo-
rithm in Algorithm 1.

1018

Proceedings of NAACL-HLT 2016, pages 1019–1029,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Embedding Lexical Features via Low-Rank Tensors

Mo Yu∗
Harbin Institute of Technology

IBM Watson
yum@us.ibm.com

Mark Dredze
HLTCOE

Johns Hopkins University
mdredze@cs.jhu.edu

Raman Arora
Johns Hopkins University
arora@cs.jhu.edu

Matthew R. Gormley
Carnegie Mellon University
mgormley@cs.cmu.edu

Abstract

Modern NLP models rely heavily on engi-
neered features, which often combine word
and contextual information into complex lexi-
cal features. Such combination results in large
numbers of features, which can lead to over-
fitting. We present a new model that repre-
sents complex lexical features—comprised of
parts for words, contextual information and
labels—in a tensor that captures conjunction
information among these parts. We apply low-
rank tensor approximations to the correspond-
ing parameter tensors to reduce the parame-
ter space and improve prediction speed. Fur-
thermore, we investigate two methods for han-
dling features that include n-grams of mixed
lengths. Our model achieves state-of-the-art
results on tasks in relation extraction, PP-
attachment, and preposition disambiguation.

1 Introduction

Statistical NLP models usually rely on hand-
designed features, customized for each task. These
features typically combine lexical and contextual in-
formation with the label to be scored. In relation
extraction, for example, there is a parameter for the
presence of a specific relation occurring with a fea-
ture conjoining a word type (lexical) with depen-
dency path information (contextual). In measur-
ing phrase semantic similarity, a word type is con-
joined with its position in the phrase to signal its
role. Figure 1b shows an example in dependency
parsing, where multiple types (words) are conjoined
with POS tags or distance information.

∗Paper submitted during Mo Yu’s PhD study at HIT.

To avoid model over-fitting that often results from
features with lexical components, several smoothed
lexical representations have been proposed and
shown to improve performance on various NLP
tasks; for instance, word embeddings (Bengio et al.,
2006) help improve NER, dependency parsing and
semantic role labeling (Miller et al., 2004; Koo et
al., 2008; Turian et al., 2010; Sun et al., 2011; Roth
and Woodsend, 2014; Hermann et al., 2014).

However, using only word embeddings is not suf-
ficient to represent complex lexical features (e.g. φ
in Figure 1c). In these features, the same word em-
bedding conjoined with different non-lexical prop-
erties may result in features indicating different la-
bels; the corresponding lexical feature representa-
tions should take the above interactions into consid-
eration. Such important interactions also increase
the risk of over-fitting as feature space grows ex-
ponentially, yet how to capture these interactions in
representation learning remains an open question.

To address the above problems,1 we propose a
general and unified approach to reduce the feature
space by constructing low-dimensional feature rep-
resentations, which provides a new way of combin-
ing word embeddings, traditional non-lexical prop-
erties, and label information. Our model exploits
the inner structure of features by breaking the fea-
ture into multiple parts: lexical, non-lexical and (op-
tional) label. We demonstrate that the full feature is
an outer product among these parts. Thus, a param-
eter tensor scores each feature to produce a predic-
tion. Our model then reduces the number of param-

1Our paper only focuses on lexical features, as non-lexical
features usually suffer less from over-fitting.

1019

1

0
1

0

ϕ =wg ∧wc ∧ u ∧	
 y

“see” “PMOD” “telescope”

postag(g+1) =“DT”

telescope see with

PMOD?

a a girl

word(c)∧word(g)

word(c)∧postag(g)
word(p)∧word(g)

word(c)∧postag(g+1)
word(c)∧word(g)∧postag(g+1)

word(c)∧word(g)∧distance(g, p)
…

c p g

0

bc cts wl
Model P R F1 P R F1 P R F1
HeadEmb
CNN (wsize=1) + local features
CNN (wsize=3) + local features
FCT local only
FCT global 60.69 42.39 49.92 56.41 34.45 42.78 41.95 31.77 36.16
FCT global (Brown) 63.15 39.58 48.66 62.45 36.47 46.05 54.95 29.93 38.75
FCT global (WordNet) 59.00 44.79 50.92 60.20 39.60 47.77 50.95 34.18 40.92
PET (Plank and Moschitti, 2013) 51.2 40.6 45.3 51.0 37.8 43.4 35.4 32.8 34.0
BOW (Plank and Moschitti, 2013) 57.2 37.1 45.0 57.5 31.8 41.0 41.1 27.2 32.7
Best (Plank and Moschitti, 2013) 55.3 43.1 48.5 54.1 38.1 44.7 39.9 35.8 37.8

Table 7: Performance on ACE2005 test sets. The first part of the table shows the performance of different models on
different sources of entity types, where ”G” means that the gold types are used and ”P” means that we are using the
predicted types. The second part of the table shows the results under the low-resource setting, where the entity types
are unknown.

Dev MRR Test MRR
Model Fine-tuning 1,000 10,000 100,000 1,000 10,000 100,000
SUM - 46.95 35.29 30.69 52.63 41.19 37.32
SUM Y 50.81 36.81 32.92 57.23 45.01 41.23
Best Recursive NN (d=50) Y 45.67 30.86 27.05 54.84 39.25 35.49
Best Recursive NN (d=200) Y 48.97 33.50 31.13 53.59 40.50 38.57
FCT N 47.53 35.58 31.31 54.33 41.96 39.10
FCT Y 51.22 36.76 33.59 61.11 46.99 44.31
FCT + LM - 49.43 37.46 32.22 53.56 42.63 39.44
FCT + LM +supervised Y 53.82 37.48 34.43 65.47 49.44 45.65

joint 56.53 41.41 36.45 68.52 51.65 46.53

Table 8: Performance on the semantic similarity task with PPDB data.

Appendix 1: Features Used in FCT

7.1 Overall performances on ACE 2005

SUM(AB) 6= SUM(BA) (7)

2n2 |V |n (8)

A A0 of B0 B (9)

A B A0 of B0 (10)

T � f � e) Relations (11)

f ⌦ e [f : e]
FCT CNN

@`

@R

@`

@T
=

@`

@R

@R

@T

L1, L2

@L

@R
=
@L1

@R
+
@L2

@R

s(l, e1, e2, S; T) =
nX

i=1

s(l, ewi , fwi)

=
nX

i=1

Tl � fwi � ewi (12)

@`

@T
=

nX
i=1

@`

@R
⌦ fwi ⌦ ewi , (13)

v2(wc)=1

v3(u)=1

v4(y)=1

0

v1(wg)=1

1

0

0
1

0

0

(a) (b) (c) (d)

Figure 1: An example of lexical features used in dependency parsing. To predict the “PMOD” arc (the dashed one)
between “see” and “with” in (a), we may rely on lexical features in (b). Here p, c, g are indices of the word “with”,
its child (“telescope”) and a candidate head. Figure (c) shows what the fifth feature (φ) is like, when the candidate is
“see”. As is common in multi-class classification tasks, each template generates a different feature for each label y.
Thus a feature φ = wg ∧ wc ∧ u ∧ y is the conjunction of the four parts. Figure (d) is the one-hot representation of
φ, which is equivalent to the outer product (i.e. a 4-way tensor) among the four one-hot vectors. v(x) = 1 means the
vector v has a single non-zero element in the x position.

eters by approximating the parameter tensor with a
low-rank tensor: the Tucker approximation of Yu
et al. (2015) but applied to each embedding type
(view), or the Canonical/Parallel-Factors Decompo-
sition (CP). Our models use fewer parameters than
previous work that learns a separate representation
for each feature (Ando and Zhang, 2005; Yang and
Eisenstein, 2015). CP approximation also allows for
much faster prediction, going from a method that is
cubic in rank and exponential in the number of lex-
ical parts, to a method linear in both. Furthermore,
we consider two methods for handling features that
rely on n-grams of mixed lengths.

Our model makes the following contributions
when contrasted with prior work:

Lei et al. (2014) applied CP to combine different
views of features. Compared to their work, our us-
age of CP-decomposition is different in the applica-
tion to feature learning: (1) We focus on dimension-
ality reduction of existing, well-verified features,
while Lei et al. (2014) generates new features (usu-
ally different from ours) by combining some “atom”
features. Thus their work may ignore some useful
features; it relies on binary features as supplemen-
tary but our model needs not. (2) Lei et al. (2014)’s
factorization relies on views with explicit meanings,
e.g. head/modifier/arc in dependency parsing, mak-
ing it less general. Therefore its applications to tasks
like relation extraction are less obvious.

Compared to our previous work (Gormley et al.,
2015; Yu et al., 2015), this work allows for higher-
order interactions, mixed-length n-gram features,

lower-rank representations. We also demonstrate the
strength of our new model via applications to new
tasks.

The resulting method learns smoothed feature
representations combining lexical, non-lexical and
label information, achieving state-of-the-art perfor-
mance on several tasks: relation extraction, preposi-
tion semantics and PP-attachment.

2 Notation and Definitions

We begin with some background on notation and
definitions. Let T ∈ Rd1×···×dK be a K-way ten-
sor (i.e., a tensor with K views). In this paper,
we consider the tensor k-mode product, i.e. mul-
tiplying a tensor T ∈ Rd1×···×dK by a matrix x ∈
Rdk×J (or a vector if J = 1) in mode (view) k.
The product is denoted by T ×k x and is of size
d1 × · · · × dk−1 × J × dk+1 × · · · × dK . Element-
wise, we have

(T ×k x)i1...ik−1 j ik+1...iK =
dk∑
ik=1

Ti1...ik...iKxikj ,

for j = 1, . . . , J . A mode-k fiber Ti1...ik−1•ik+1...iK

of T is the dk dimensional vector obtained by fixing
all but the kth index. The mode-k unfolding T(k) of
T is the dk ×

∏
i 6=k di matrix obtained by concate-

nating all the
∏
i 6=k di mode-k fibers along columns.

Given two matrices W1 ∈ Rd1×r1 ,W2 ∈ Rd2×r2 ,
we write W1 ⊗W2 to denote the Kronecker product
between W1 and W2 (outer product for vectors). We
define the Frobenius product (matrix dot product)
A � B =

∑
i,j AijBij between two matrices with

1020

the same sizes; and define element-wise (Hadamard)
multiplication a ◦ b between vectors with the same
sizes.

Tucker Decomposition: Tucker Decomposition
represents a d1 × d2 × . . .× dK tensor T as:

T = g ×1 W1 ×2 W2 . . .×K WK (1)

where each ×i is the tensor i-mode product and
each Wi is a ri × di matrix. Tensor g with size
r1 × r2 × . . . × rK is called the core tensor. We
say that T has a Tucker rank (r(1), r(2), . . . , r(K)),
where r(i) = rank(T(i)) is the rank of mode-i un-
folding. To simplify learning, we define the Tucker
rank as r(i)=rank(g(i)), which can be bounded sim-
ply by the dimensions of g, i.e. r(i) ≤ ri; this allows
us to enforce a rank constraint on T simply by re-
stricting the dimensions ri of g, as described in §6.

CP Decomposition: CP decomposition represents
a d1×d2×. . .×dK tensor T as a sum of rank-one
tensors (i.e. a sum of outer products of K vectors):

T =
r∑
j=1

W1[j, :]⊗W2[j, :]⊗ . . .⊗WK [j, :] (2)

where each Wi is an r × di matrix and Wi[j, :] is the
vector of its j-th row. For CP decomposition, the
rank r of a tensor T is defined to be the number of
rank-one tensors in the decomposition. CP decom-
position can be viewed as a special case of Tucker
decomposition in which r1 = r2 = . . . = rK = r
and g is a superdiagonal tensor.

3 Factorization of Lexical Features

Suppose we have feature φ that includes information
from a label y, multiple lexical items w1, . . . ,wn

and non-lexical property u. This feature can be fac-
torized as a conjunction of each part: φ = y ∧ u ∧
w1∧. . .∧wn. The feature fires when all (n+2) parts
fire in the instance (reflected by the ∧ symbol in φ).
The one-hot representation of φ can then be viewed
as a tensor eφ = y⊗ u⊗w1⊗ · · · ⊗wn, where each
feature part is also represented as a one-hot vector.2

Figure 1d illustrates this case with two lexical parts.
Given an input instance x and its associated la-

bel y, we can extract a set of features S(x, y). In
2u, y, wi denote one-hot vectors instead of symbols.

a traditional log-linear model, we view the instance
x as a bag-of-features, i.e. a feature vector F (x, y).
Each dimension corresponds to a feature φ, and has
value 1 if φ ∈ S(x, y). Then the log-linear model
scores the instance as s(x, y;w) = wTF (x, y) =∑

φ∈S(x,y) s(φ;w), where w is the parameter vec-
tor. We can re-write s(x, y;w) based on the factor-
ization of the features using tensor multiplication; in
which w becomes a parameter tensor T :

s(x, y;w) = s(x, y; T) =
∑

φ∈S(x,y)

s(φ; T) (3)

Here each φ has the form (y, u,w1, . . . ,wn), and

s(φ; T) = T ×l y×f u×w1 w1...×wn wn. (4)

Note that one-hot vectors wi of words themselves
are large (|wi| > 500k), thus the above formulation
with parameter tensor T can be very large, making
parameter estimation difficult. Instead of estimating
only the values of the dimensions which appear in
training data as in traditional methods, we will re-
duce the size of tensor T via a low-rank approxima-
tion. With different approximation methods, (4) will
have different equivalent forms, e.g. (6), (7) in §4.1.

Optimization objective: The loss function ` for
training the log-linear model uses (3) for scores, e.g.,
the log-loss `(x, y; T) = − log exp{s(x,y;T)}∑

y′∈L exp{s(x,y′;T)} .
Learning can be formulated as the following opti-
mization problem:

minimize:
T

∑
(x,y)∈D

`(x, y; T)

subject to:


rank(T) ≤ (r1, r2, ..., rn+2)

(Tucker-form)
rank(T) ≤ r (CP-form)

(5)

where the constraints on rank(T) depend on the cho-
sen tensor approximation method (§2).

The above framework has some advantages: First,
as discussed in §1 and here, we hope the represen-
tations capture rich interactions between different
parts of the lexical features; the low-rank tensor ap-
proximation methods keep the most important inter-
action information of the original tensor, while sig-
nificantly reducing its size. Second, the low-rank
structure will encourage weight-sharing among lex-
ical features with similar decomposed parts, leading

1021

to better model generalization. Note that there are
examples where features have different numbers of
multiple lexical parts, such as both unigram and bi-
gram features in PP-attachment. We will use two
different methods to handle these features (§5).

Remarks (advantages of our factorization)
Compared to prior work, e.g. (Lei et al., 2014;
Lei et al., 2015), the proposed factorization has the
following advantages:

1. Parameter explosion when mapping a view
with lexical properties to its representation vec-
tor (as will be discussed in 4.3): Our factoriza-
tion allows the model to treat word embeddings
as inputs to the views of lexical parts, dramati-
cally reducing the parameters. Prior work can-
not do this since its views are mixtures of lexi-
cal and non-lexical properties. Note that Lei et
al. (2014) uses embeddings by concatenating
them to specific views, which increases dimen-
sionality, but the improvement is limited.

2. No weight-sharing among conjunctions with
same lexical property, like the child-word
“word(c)” and its conjunction with head-postag
“word(c) ∧ word(g)” in Figure 1(b). The fac-
torization in prior work treats them as indepen-
dent features, greatly increasing the dimension-
ality. Our factorization builds representations
of both features based on the embedding of
“word(c)”, thus utilizing their connections and
reducing the dimensionality.

The above advantages are also key to overcome the
problems of prior work mentioned at the end of §1.

4 Feature Representations via Low-rank
Tensor Approximations

Using one-hot encodings for each of the parts of fea-
ture φ results in a very large tensor. This section
shows how to compute the score in (4) without con-
structing the full feature tensor using two tensor ap-
proximation methods (§4.1 and §4.2).

We begin with some intuition. To score the orig-
inal (full rank) tensor representation of φ, we need
a parameter tensor T of size d1 × d2 × . . . × dn+2,
where d3 = · · · = dn+2 = |V | is the vocabulary
size, n is the number of lexical parts in the feature

and d1 = |L| and d2 = |F | are the number of
different labels and non-lexical properties, respec-
tively. (§5 will handle n varying across features.)
Our methods reduce the tensor size by embedding
each part of φ into a lower dimensional space, where
we represent each label, non-lexical property and
words with an r1, r2, r3, . . . , rn+2 dimensional vec-
tor respectively (ri � di, ∀i). These embedded
features can then be scored by much smaller ten-
sors. We denote the above transformations as ma-
trices Wl ∈ Rr1×d1 , Wf ∈ Rr2×d2 , Wi ∈ Rri+2×di+2

for i = 1, . . . , n, and write corresponding low-
dimensional hidden representations as h(l)

y = Wly,
h(f)

u = Wfu and h(i)
w = Wiw.

In our methods, the above transformations of em-
beddings are parts of low-rank tensors as in (5),
so the embeddings of non-lexical properties and la-
bels can be trained simultaneously with the low-rank
tensors. Note that for one-hot input encodings the
transformation matrices are essentially lookup ta-
bles, making the computation of these transforma-
tions sufficiently fast.

4.1 Tucker Form

For our first approximation, we assume that tensor
T has a low-rank Tucker decomposition: T = g ×l
Wl ×f Wf ×w1 W1 ×w2 · · · ×wn Wn. We can then
express the scoring function (4) for a feature φ =
(y, u,w1, . . .wn) with n-lexical parts, as:

s(y, u,w1, · · · ,wn; g,Wl,Wf , {Wi}ni=1)

= g ×l h(l)
y ×f h(f)

u ×w1 h(1)
w1 · · · ×wn h(n)

wn , (6)

which amounts to first projecting u, y, and wi (for
all i) to lower dimensional vectors h(f)

u ,h(l)
y ,h(i)

wi ,
and then weighting these hidden representations us-
ing the flattened core tensor g. The low-dimensional
representations and the corresponding weights are
learned jointly using a discriminative (supervised)
criterion. We call the model based on this repre-
sentation the Low-Rank Feature Representation with
Tucker form, or LRFRn-TUCKER.

4.2 CP Form

For the Tucker approximation the number of param-
eters in (6) scale exponentially with the number of
lexical parts. For instance, suppose each h(i)

wi has di-

1022

mensionality r, then |g| ∝ rn. To address scalabil-
ity and further control the complexity of our tensor
based model, we approximate the parameter tensor
using CP decomposition as in (2), resulting in the
following scoring function:

s(y, u,w1, · · · ,wn; Wl,Wf , {Wi}ni=1) =
r∑
j=1

(
h(l)

y ◦ h(f)
u ◦ h(1)

w1 ◦ · · · ◦ h(n)
wn

)
j
. (7)

We call this model Low-Rank Feature Representa-
tion with CP form (LRFRn-CP).

4.3 Pre-trained Word Embeddings
One of the computational and statistical bottlenecks
in learning these LRFRn models is the vocabulary
size; the number of parameters to learn in each ma-
trix Wi scales linearly with |V | and would require
very large sets of labeled training data. To alle-
viate this problem, we use pre-trained continuous
word embeddings (Mikolov et al., 2013) as input
embeddings rather than the one-hot word encodings.
We denote the m-dimensional word embeddings by
ew; so the transformation matrices Wi for the lexical
parts are of size ri ×m where m� |V |.

We note that when sufficiently large labeled data
is available, our model allows for fine-tuning the
pre-trained word embeddings to improve the expres-
sive strength of the model, as is common with deep
network models.

Remarks Our LRFRs introduce embeddings for
non-lexical properties and labels, making them bet-
ter suit the common setting in NLP: rich linguistic
properties; and large label sets such as open-domain
tasks (Hoffmann et al., 2010). The LRFR-CP better
suits n-gram features, since when n increases 1, the
only new parameters are the corresponding Wi. It is
also very efficient during prediction (O(nr)), since
the cost of transformations can be ignored with the
help of look-up tables and pre-computing.

5 Learning Representations for n-gram
Lexical Features of Mixed Lengths

For features with n lexical parts, we can train an
LRFRn model to obtain their representations. How-
ever, we often have features of varying n (e.g. both
unigrams (n=1) and bigrams (n=2) as in Figure 1).

We require representations for features with arbi-
trary different n simultaneously.

We propose two solutions. The first is a straight-
forward solution based on our framework, which
handles each nwith a (n+2)-way tensor. This strat-
egy is commonly used in NLP, e.g. Taub-Tabib et
al. (2015) have different kernel functions for differ-
ent order of dependency features. The second is an
approximation method which aims to use a single
tensor to handle all ns.

Multiple Low-Rank Tensors Suppose that we
can divide the feature set S(x, y) into subsets
S1(x, y), S2(x, y), . . . , Sn(x, y) which correspond
to features with one lexical part (unigram features),
two lexical parts (bigram features), . . . and n lexi-
cal parts (n-gram features), respectively. To handle
these types of features, we modify the training ob-
jective as follows:

minimize
T1,T2,··· ,Tn

∑
(x,y)∈D

`(x, y; T1, T2, . . . , ...Tn), (8)

where the score of a training instance (x, y) is de-
fined as s(x, y; T) =

∑n
i=1

∑
φ∈Si(x,y) s(φ; Ti). We

use the Tucker form low-rank tensor for T1, and the
CP form for Ti (∀i > 1). We refer to this method as
LRFR1-TUCKER & LRFR2-CP.

Word Clusters Alternatively, to handle different
numbers of lexical parts, we replace some lexical
parts with discrete word clusters. Let c(w) denote
the word cluster (e.g. from Brown clustering) for
word w. For bigram features we have:

s(y, u,w1,w2; T)
= s(y, u∧c(w1),w2; T) + s(y, u∧c(w2),w1; T)
= T ×l y×f (u ∧ c(w1))×w ew2

+ T ×l y×f (u ∧ c(w2))×w ew1 (9)

where for each word we have introduced an addi-
tional set of non-lexical properties that are conjunc-
tions of word clusters and the original non-lexical
properties. This allows us to reduce an n-gram
feature representation to a unigram representation.
The advantage of this method is that it uses a sin-
gle low-rank tensor to score features with different
numbers of lexical parts. This is particularly helpful
when we have very limited labeled data. We denote
this method as LRFR1-BROWN, since we use Brown
clusters in practice. In the experiments we use the

1023

Tucker form for LRFR1-BROWN.

6 Parameter Estimation

The goal of learning is to find a tensor T that solves
problem (5). Note that this is a non-convex objec-
tive, so compared to the convex objective in a tradi-
tional log-linear model, we are trading better fea-
ture representations with the cost of a harder op-
timization problem. While stochastic gradient de-
scent (SGD) is a natural choice for learning rep-
resentations in large data settings, problem (5) in-
volves rank constraints, which require an expensive
proximal operation to enforce the constraints at each
iteration of SGD. We seek a more efficient learning
algorithm. Note that we fixed the size of each trans-
formation matrix Wi ∈ Rri×di so that the smaller
dimension (ri < di) matches the upper bound on the
rank. Therefore, the rank constants are always sat-
isfied through a run of SGD and we in essence have
an unconstrained optimization problem. Note that in
this way we do not guarantee orthogonality and full-
rank of the learned transformation matrices. These
properties are assumed in general, but are not neces-
sary according to (Kolda and Bader, 2009).

The gradients are computed via the chain-rule.
We use AdaGrad (Duchi et al., 2011) and apply L2
regularization on all Wis and g, except for the case
of ri=di, where we will start with Wi = I and reg-
ularize with ‖Wi - I‖2. We use early-stopping on a
development set.

7 Experimental Settings

We evaluate LRFR on three tasks: relation extraction,
PP attachment and preposition disambiguation (see
Table 1 for a task summary). We include detailed
feature templates in Table 2.

PP-attachment and relation extraction are two
fundamental NLP tasks, and we test our models on
the largest English data sets. The preposition disam-
biguation task was designed for compositional se-
mantics, which is an important application of deep
learning and distributed representations. On all
these tasks, we compare to the state-of-the-art.

We use the same word embeddings in Belinkov et
al. (2014) on PP-attachment for a fair comparison.
For the other experiments, we use the same 200-d
word embeddings in Yu et al. (2015).

Relation Extraction We use the English portion
of the ACE 2005 relation extraction dataset (Walker
et al., 2006). Following Yu et al. (2015), we use both
gold entity spans and types, train the model on the
news domain and test on the broadcast conversation
domain. To highlight the impact of training data size
we evaluate with all 43,518 relations (entity mention
pairs) and a reduced training set of the first 10,000
relations. We report precision, recall, and F1.

We compare to two baseline methods: 1) a log-
linear model with a rich binary feature set from Sun
et al. (2011) and Zhou et al. (2005) as described
in Yu et al. (2015) (BASELINE); 2) the embedding
model (FCM) of Gormley et al. (2015), which uses
rich linguistic features for relation extraction. We
use the same feature templates and evaluate on fine-
grained relations (sub-types, 32 labels) (Yu et al.,
2015). This will evaluate how LRFR can utilize non-
lexical linguistic features.

PP-attachment We consider the prepositional
phrase (PP) attachment task of Belinkov et al.
(2014),3 where for each PP the correct head (verbs
or nouns) must be selected from content words be-
fore the PP (within a 10-word window). We formu-
late the task as a ranking problem, where we opti-
mize the score of the correct head from a list of can-
didates with varying sizes.

PP-attachment suffers from data sparsity because
of bi-lexical features, which we will model with
methods in §5. Belikov et al. show that rich fea-
tures – POS, WordNet and VerbNet – help this task.
The combination of these features give a large num-
ber of non-lexical properties, for which embeddings
of non-lexical properties in LRFR should be useful.

We extract a dev set from section 22 of the PTB
following the description in Belinkov et al. (2014).

Preposition Disambiguation We consider the
preposition disambiguation task proposed by Ritter
et al. (2014). The task is to determine the spatial re-
lationship a preposition indicates based on the two
objects connected by the preposition. For example,
“the apple on the refrigerator” indicates the “support
by Horizontal Surface” relation, while “the apple on
the branch” indicates the “Support from Above” re-
lation. Since the meaning of a preposition depends

3
http://groups.csail.mit.edu/rbg/code/pp

1024

Task Benchmark Dataset Numbers on Each View
#Labels (d1) #Non-lexical Features (d2)

Relation Extraction Yu et al. (2015) ACE 2005 32 264
PP-attachment Belinkov et al. (2014) WSJ - 1,213 / 607
Preposition Disambiguation Ritter et al. (2014) Ritter et al. (2014) 6 9/3

Table 1: Statistics of each task. PP-attachment and preposition disambiguation have both unigram and bigram fea-
tures. Therefore we list the numbers of non-lexical properties for both types.

Set Template
HeadEmb {I[i = h1], I[i = h2]} (head of M1/M2)

&{φ, th1 , th2 , th1&th2}
Context I[i = h1/h2 ± 1] (left/right token of wh1/h2)
In-between I[i > h1]&I[i < h2]&{φ, th1 , th2 , th1&th2}
On-path I[wi ∈ P] &{φ, th1 , th2 , th1&th2}
Set Template
Bag of Words w, p & w (w is wm or wh)
Word-Position wm, wh, wm & wh

Preposition p, p & wm, p & wh, p & wm & wh

Set Template
Bag of Words w (w is wm or wh), wm&wh

Distance Dis(wh, wm) & {wm, wh, wm&wh}
Prep wp & {wm, wh, wm&wh}
POS t(wh) & {wm, wh, wm&wh}

NextPOS t(wh+1) & {wm, wh, wm&wh}
VerbNet P = {p(wh)} & {wm, wh, wm&wh}

I[wp ∈ P] & {wm, wh, wm&wh}
WordNet Rh = {r(wh)} & {wm, wh, wm&wh}

Rm = {r(wm)} & {wm, wh, wm&wh}

Table 2: Up-left: Unigram lexical features (only showing non-lexical parts) for relation extraction (from Yu et
al. (2014)). We denote the two target entities as M1,M2 (with head indices h1, h2, NE types th1 , th2), and their
dependency path as P . Right: Uni/bi-gram feature for PP-attachment: Each feature is defined on tuple (wm, wp,
wh), where wp is the preposition word, wm is the child of the preposition, and wh is a candidate head of wp. t(w):
POS tag of word w; p(w): a preposition collocation of verb w from VerbNet; r(w): the root hypernym of word
w in WordNet. Dis(·, ·): the number of candidate heads between two words. Down-left: Uni/bi-gram feature for
preposition disambiguation (for each preposition word p, its modifier noun wm and head noun wh). Since the
sentences are different from each other on only p, wm and wh, we ignore the words on the other positions.

on the combination of both its head and child word,
we expect conjunctions between these word embed-
dings to help, i.e. features with two lexical parts.

We include three baselines: point-wise addition
(SUM) (Mitchell and Lapata, 2010), concatena-
tion (Ritter et al., 2014), and an SVM based on hand-
crafted features in Table 2. Ritter et al. show that the
first two methods beat other compositional models.

Hyperparameters are all tuned on the dev set.
The chosen values are learning rate η = 0.05 and the
weight of L2 regularizer λ = 0.005 for LRFR, except
for the third LRFR in Table 3 which has λ = 0.05.
We select the rank of LRFR-TUCKER with a grid
search from the following values: r1 = {10, 20, d1},
r2 = {20, 50, d2} and r3 = {50, 100, 200}. For
LRFR-CP, we select r = {50, 100, 200}. For the
PP-attachement task there is no r1 since it uses a
ranking model. For the Preposition Disambiguation
we do not choose r1 since the number of labels is
small.

8 Results

Relation Extraction All LRFR-TUCKER models
improve over BASELINE and FCM (Table 3), making

these the best reported numbers for this task. How-
ever, LRFR-CP does not work as well on the features
with only one lexical part. The Tucker-form does a
better job of capturing interactions between differ-
ent views. In the limited training setting, we find
that LRFR-CP does best.

Additionally, the primary advantage of the CP
approximation is its reduction in the number of
model parameters and running time. We report each
model’s running time for a single pass on the de-
velopment set. The LRFR-CP is by far the fastest.
The first three LRFR-TUCKER models are slightly
slower than FCM, because they work on dense non-
lexical property embeddings while FCM benefits
from sparse vectors.

PP-attachment Table 4 shows that LRFR (89.6
and 90.3) improves over the previous best stan-
dalone system HPCD (88.7) by a large margin, with
exactly the same resources. Belinkov et al. (2014)
also reported results of parsers and parser re-rankers,
which can access to additional resources (complete
parses for training and complete sentences as in-
puts) so it is unfair to compare them with the stan-
dalone systems like HPCD and our LRFR. Nonethe-

1025

Parameters Full Set (|D|=43,518) Reduced Set (|D|=10,000) Prediction
Method r1 r2 r3 P R F1 P R F1 Time (ms)
BASELINE - - - 60.2 51.2 55.3 - - - -
FCM 32/N 264/N 200/N 62.9 49.6 55.4 61.6 37.1 46.3 2,242
LRFR1-TUCKER 32/N 20/Y 200/Y 62.1 52.7 57.0 51.5 40.8 45.5 3,076
LRFR1-TUCKER 32/N 20/Y 200/N 63.5 51.1 56.6 52.8 40.1 45.6 2,972
LRFR1-TUCKER 20/Y 20/Y 200/Y 62.4 51.0 56.1 52.1 41.2 46.0 2,538
LRFR1-TUCKER 32/Y 20/Y 50/Y 57.4 52.4 54.8 49.7 46.1 47.8 1,198
LRFR1-CP 200/Y 61.3 50.7 55.5 58.3 41.6 48.6 502

Table 3: Results on test for relation extraction. Y(es)/N(o) indicates whether embeddings are updated during training.

System Resources Used Acc
SVM (Belinkov et al., 2014) distance, word, embedding, clusters, POS, WordNet, VerbNet 86.0
HPCD (Belinkov et al., 2014) distance, embedding, POS, WordNet, VerbNet 88.7
LRFR1-TUCKER & LRFR2-CP distance, embedding, POS, WordNet, VerbNet 90.3
LRFR1-BROWN distance, embedding, clusters, POS, WordNet, VerbNet 89.6
RBG (Lei et al., 2014) dependency parser 88.4
Charniak-RS (McClosky et al., 2006) dependency parser + re-ranker 88.6
RBG + HPCD (combined model) dependency parser + distance, embedding, POS, WordNet, VerbNet 90.1

Table 4: PP-attachment test accuracy. The baseline results are from Belinkov et al. (2014).

less LRFR1-TUCKER & LRFR2-CP (90.3) still out-
performs the state-of-the-art parser RBG (88.4), re-
ranker Charniak-RS (88.6), and the combination of
the state-of-the-art parser and compositional model
RBG + HPCD (90.1). Thus, even with fewer re-
sources, LRFR becomes the new best system.

Not shown in the table: we also tried LRFR1-
TUCKER & LRFR2-CP with postag features only
(89.7), and with grand-head-modifier conjunctions
removed (89.3) . Note that compared to LRFR,
RBG benefits from binary features, which also ex-
ploit grand-head-modifier structures. Yet the above
reduced models still work better than RBG (88.4)
without using additional resources.4 Moreover, the
results of LRFR can still be potentially improved by
combining with binary features. The above results
show the advantage of our factorization method,
which allows for utilizing pre-trained word embed-
dings, and thus can benefit from semi-supervised
learning.

Preposition Disambiguation LRFR improves (Ta-
ble 5) over the best methods (SUM and Concate-
nation) in Ritter et al. (2014) as well as the SVM

4Still this is not a fair comparison since we have differ-
ent training objectives. Using RBG’s factorization and training
with our objective will give a fair comparison and we leave it to
future work.

Method Accuracy
SVM - Lexical Features 85.09
SUM 80.55
Concatenation 86.73
LRFR1-TUCKER & LRFR2-CP 87.82
LRFR1-BROWN 88.18
LRFR1-BROWN - Control 84.18

Table 5: Accuracy for spatial classification of PPs.

based on the original lexical features (85.1). In this
task LRFR1-BROWN better represents the unigram
and bigram lexical features, compared to the usage
of two low-rank tensors (LRFR1-TUCKER & LRFR2-
CP). This may be because LRFR1-BROWN has fewer
parameters, which is better for smaller training sets.

We also include a control setting (LRFR1-BROWN

- Control), which has a full rank parameter ten-
sor with the same inputs on each view as LRFR1-
BROWN, but represented as one hot vectors without
transforming to the hidden representations hs. This
is equivalent to an SVM with the compound cluster
features as in Koo et al. (2008). It performs much
worse than LRFR1-BROWN, showing the advantage
of using word embeddings and low-rank tensors.

Summary For unigram lexical features, LRFRn-
TUCKER achieves better results than LRFRn-CP.
However, in settings with fewer training examples,

1026

features with more lexical parts (n-grams), or when
faster predictions are advantageous, LRFRn-CP does
best as it has fewer parameters to estimate. For n-
grams of variable length, LRFR1-TUCKER & LRFR2-
CP does best. In settings with fewer training exam-
ples, LRFR1-BROWN does best as it has only one
parameter tensor to estimate.

9 Related Work

Dimensionality Reduction for Complex Features
is a standard technique to address high-dimensional
features, including PCA, alternating structural op-
timization (Ando and Zhang, 2005), denoising au-
toencoders (Vincent et al., 2008), and feature em-
beddings (Yang and Eisenstein, 2015). These meth-
ods treat features as atomic elements and ignore the
inner structure of features, so they learn separate em-
bedding for each feature without shared parameters.
As a result, they still suffer from large parameter
spaces when the feature space is very huge.5

Another line of research studies the inner struc-
tures of lexical features: e.g. Koo et al. (2008),
Turian et al. (2010), Sun et al. (2011), Nguyen and
Grishman (2014), Roth and Woodsend (2014), and
Hermann et al. (2014) used pre-trained word embed-
dings to replace the lexical parts of features ; Sriku-
mar and Manning (2014), Gormley et al. (2015)
and Yu et al. (2015) propose splitting lexical fea-
tures into different parts and employing tensors to
perform classification. The above can therefore be
seen as special cases of our model that only embed
a certain part (view) of the complex features. This
restriction also makes their model parameters form
a full rank tensor, resulting in data sparsity and high
computational costs when the tensors are large.

Composition Models (Deep Learning) build rep-
resentations for structures based on their component
word embeddings (Collobert et al., 2011; Bordes et
al., 2012; Socher et al., 2012; Socher et al., 2013b).
When using only word embeddings, these models
achieved successes on several NLP tasks, but some-
times fail to learn useful syntactic or semantic pat-
terns beyond the strength of combinations of word

5For example, a state-of-the-art dependency parser (Zhang
and McDonald, 2014) extracts about 10 million features; in this
case, learning 100-dimensional feature embeddings involves es-
timating approximately a billion parameters.

embeddings, such as the dependency relation in Fig-
ure 1(a). To tackle this problem, some work de-
signed their model structures according to a specific
kind of linguistic patterns, e.g. dependency paths
(Ma et al., 2015; Liu et al., 2015), while a recent
trend enhances compositional models with linguis-
tic features. For example, Belinkov et al. (2014)
concatenate embeddings with linguistic features be-
fore feeding them to a neural network; Socher et
al. (2013a) and Hermann and Blunsom (2013) en-
hanced Recursive Neural Networks by refining the
transformation matrices with linguistic features (e.g.
phrase types). These models are similar to ours in
the sense of learning representations based on lin-
guistic features and embeddings.

Low-rank Tensor Models for NLP aim to handle
the conjunction among different views of features
(Cao and Khudanpur, 2014; Lei et al., 2014; Chen
and Manning, 2014). Yu and Dredze (2015) pro-
posed a model to compose phrase embeddings from
words, which has an equivalent form of our CP-
based method under certain restrictions. Our work
applies a similar idea to exploiting the inner struc-
ture of complex features, and can handle n-gram
features with different ns. Our factorization (§3) is
general and easy to adapt to new tasks. More impor-
tantly, it makes the model benefit from pre-trained
word embeddings as shown by the PP-attachment
results.

10 Conclusion

We have presented LRFR, a feature representation
model that exploits the inner structure of complex
lexical features and applies a low-rank tensor to effi-
ciently score features with this representation. LRFR

attains the state-of-the-art on several tasks, includ-
ing relation extraction, PP-attachment, and preposi-
tion disambiguation. We make our implementation
available for general use.6

Acknowledgements

A major portion of this work was done when MY
was visiting MD and RA at JHU. This research was
supported in part by NSF grant IIS-1546482.

6https://github.com/Gorov/LowRankFCM

1027

References

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learning
Research, 6.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for prepositional
phrase attachment. Transactions of the Association for
Computational Linguistics, 2.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning. Springer.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. A semantic matching energy
function for learning with multi-relational data. Ma-
chine Learning.

Yuan Cao and Sanjeev Khudanpur. 2014. Online learn-
ing in tensor space. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers).

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks. In
Proceedings of EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR, 12.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine
Learning Research, 12.

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing.

Karl Moritz Hermann and Phil Blunsom. 2013. The role
of syntax in vector space models of compositional se-
mantics. In Association for Computational Linguis-
tics.

Karl Moritz Hermann, Dipanjan Das, Jason Weston, and
Kuzman Ganchev. 2014. Semantic frame identifica-
tion with distributed word representations. In Pro-
ceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers).

Raphael Hoffmann, Congle Zhang, and Daniel S. Weld.
2010. Learning 5000 relational extractors. In Pro-
ceedings of the 48th Annual Meeting of the Association
for Computational Linguistics.

Tamara G Kolda and Brett W Bader. 2009. Tensor de-
compositions and applications. SIAM review, 51(3).

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Tao Lei, Yuan Zhang, Lluı́s Màrquez, Alessandro Mos-
chitti, and Regina Barzilay. 2015. High-order low-
rank tensors for semantic role labeling. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and
Houfeng WANG. 2015. A dependency-based neural
network for relation classification. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
2: Short Papers).

Mingbo Ma, Liang Huang, Bowen Zhou, and Bing Xi-
ang. 2015. Dependency-based convolutional neural
networks for sentence embedding. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
2: Short Papers).

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the main conference on human language tech-
nology conference of the North American Chapter of
the Association of Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name tagging with word clusters and discrimi-
native training. In Proceedings of HLT-NAACL.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive science,
34(8).

Thien Huu Nguyen and Ralph Grishman. 2014. Employ-
ing word representations and regularization for domain
adaptation of relation extraction. In Association for
Computational Linguistics (ACL).

Samuel Ritter, Cotie Long, Denis Paperno, Marco Ba-
roni, Matthew Botvinick, and Adele Goldberg. 2014.

1028

Leveraging preposition ambiguity to assess represen-
tation of semantic interaction in cdsm. In NIPS Work-
shop on Learning Semantics.

Michael Roth and Kristian Woodsend. 2014. Compo-
sition of word representations improves semantic role
labelling. In Proceedings of EMNLP.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP-CoNLL 2012.

Richard Socher, John Bauer, Christopher D Manning, and
Andrew Y Ng. 2013a. Parsing with compositional
vector grammars. In Proceedings of ACL.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013b. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of EMNLP.

Vivek Srikumar and Christopher D Manning. 2014.
Learning distributed representations for structured out-
put prediction. In Advances in Neural Information
Processing Systems.

Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011.
Semi-supervised relation extraction with large-scale
word clustering. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies.

Hillel Taub-Tabib, Yoav Goldberg, and Amir Glober-
son. 2015. Template kernels for dependency parsing.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Association for Compu-
tational Linguistics.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and com-
posing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on
Machine learning.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia.

Yi Yang and Jacob Eisenstein. 2015. Unsupervised
multi-domain adaptation with feature embeddings. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 672–682, Denver, Colorado, May–June. Asso-
ciation for Computational Linguistics.

Mo Yu and Mark Dredze. 2015. Learning composition
models for phrase embeddings. Transactions of the
Association for Computational Linguistics, 3.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2015.
Combining word embeddings and feature embeddings
for fine-grained relation extraction. In North American
Chapter of the Association for Computational Linguis-
tics (NAACL).

Hao Zhang and Ryan McDonald. 2014. Enforcing struc-
tural diversity in cube-pruned dependency parsing. In
Proceedings of ACL.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation extrac-
tion. In Proceedings of ACL.

1029

Proceedings of NAACL-HLT 2016, pages 1030–1040,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

The Role of Context Types and Dimensionality
in Learning Word Embeddings

Oren Melamud†∗ David McClosky‡∗ Siddharth Patwardhan♦ Mohit Bansal§
†Computer Science Department, Bar-Ilan University, Ramat-Gan, Israel

melamuo@cs.biu.ac.il
‡Google, New York, NY, USA

dmcc@google.com
♦IBM Watson, Yorktown Heights, NY, USA

siddharth@us.ibm.com
§Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

mbansal@ttic.edu

Abstract

We provide the first extensive evaluation of
how using different types of context to learn
skip-gram word embeddings affects perfor-
mance on a wide range of intrinsic and ex-
trinsic NLP tasks. Our results suggest that
while intrinsic tasks tend to exhibit a clear
preference to particular types of contexts and
higher dimensionality, more careful tuning is
required for finding the optimal settings for
most of the extrinsic tasks that we consid-
ered. Furthermore, for these extrinsic tasks,
we find that once the benefit from increas-
ing the embedding dimensionality is mostly
exhausted, simple concatenation of word em-
beddings, learned with different context types,
can yield further performance gains. As an ad-
ditional contribution, we propose a new vari-
ant of the skip-gram model that learns word
embeddings from weighted contexts of substi-
tute words.

1 Introduction

Word embeddings have become increasingly pop-
ular lately, proving to be valuable as a source of
features in a broad range of NLP tasks with lim-
ited supervision (Turian et al., 2010; Collobert et
al., 2011; Socher et al., 2013; Bansal et al., 2014).
word2vec1 skip-gram (Mikolov et al., 2013a)
∗Majority of work performed while at IBM Watson.
1http://code.google.com/p/word2vec/

and GloVe2 (Pennington et al., 2014) are among
the most widely used word embedding models to-
day. Their success is largely due to an efficient
and user-friendly implementation that learns high-
quality word embeddings from very large corpora.

Both word2vec and GloVe learn low-
dimensional continuous vector representations for
words by considering window-based contexts, i.e.,
context words within some fixed distance of each
side of the target word. However, the underlying
models are equally applicable to different choices
of context types. For example, Bansal et al. (2014)
and Levy and Goldberg (2014) showed that using
syntactic contexts rather than window contexts in
word2vec captures functional similarity (as in
lion:cat) rather than topical similarity or relatedness
(as in lion:zoo). Further, Bansal et al. (2014) and
Melamud et al. (2015b) showed the benefits of
such modified-context embeddings in dependency
parsing and lexical substitution tasks. However,
to the best of our knowledge, there has not been
an extensive evaluation of the effect of multiple,
diverse context types on a wide range of NLP tasks.

Word embeddings are typically evaluated on in-
trinsic and extrinsic tasks. Intrinsic tasks mostly in-
clude predicting human judgments of semantic re-
lations between words, e.g., as in WordSim-353
(Finkelstein et al., 2001), while extrinsic tasks in-
clude various ‘real’ downstream NLP tasks, such as
coreference resolution and sentiment analysis. Re-

2http://nlp.stanford.edu/projects/glove/

1030

cent works have shown that while intrinsic evalu-
ations are easier to perform, their correlation with
results on extrinsic evaluations is not very reliable
(Schnabel et al., 2015; Tsvetkov et al., 2015), stress-
ing the importance of the latter.

In this work, we provide the first extensive eval-
uation of word embeddings learned with different
types of context, on a wide range of intrinsic simi-
larity and relatedness tasks, and extrinsic NLP tasks,
namely dependency parsing, named entity recogni-
tion, coreference resolution, and sentiment analy-
sis. We employ contexts based of different word
window sizes, syntactic dependencies, and a lesser-
known substitute words approach (Yatbaz et al.,
2012). Finally, we experiment with combinations
of the above word embeddings, comparing two ap-
proaches: (1) simple vector concatenation that offers
a wider variety of features for a classifier to choose
and learn weighted combinations from, and (2) di-
mensionality reduction via either Singular Value
Decomposition or Canonical Correlation Analysis,
which tries to find a smaller subset of features.

Our results suggest that it is worthwhile to care-
fully choose the right type of word embeddings for
an extrinsic NLP task, rather than rely on intrinsic
benchmark results. Specifically, picking the optimal
context type and dimensionality is critical. Further-
more, once the benefit from increasing the embed-
ding dimensionality is mostly exhausted, concatena-
tion of word embeddings learned with different con-
text types can yield further performance gains.

2 Word Embedding Context Types

2.1 Learning Corpus

We use a fixed learning corpus for a fair compari-
son of all embedding types: a concatenation of three
large English corpora: (1) English Wikipedia 2015,
(2) UMBC web corpus (Han et al., 2013), and (3)
English Gigaword (LDC2011T07) newswire corpus
(Parker et al., 2011). Our concatenated corpus is
diverse and substantial in size with approximately
10B words. This allows us to learn high quality em-
beddings that cover a large vocabulary. After ex-
tracting clean text from these corpora, we used Stan-
ford CoreNLP (Manning et al., 2014) for sentence
splitting, tokenization, part-of-speech tagging and

dependency parsing.3 Then, all tokens were lower-
cased, and sentences were shuffled to prevent struc-
tured bias. When learning word embeddings, we ig-
nored words with corpus frequency lower than 100,
yielding a vocabulary of about 500K words.4

2.2 Window-based Word Embeddings
We used word2vec’s skip-gram model with neg-
ative sampling (Mikolov et al., 2013b) to learn
window-based word embeddings.5 This popular
method embeds both target words and contexts in
the same low-dimensional space, where the embed-
dings of a target and context are pushed closer to-
gether the more frequently they co-occur in a learn-
ing corpus. Indirectly, this also results in similar em-
beddings for target words that co-occur with similar
contexts. More formally, this method optimizes the
following objective function:

(1)L =
∑

(t,c)∈PAIRS

Lt,c

(2)Lt,c = log σ(v′c · vt) +
∑

neg∈NEGS (t,c)

log σ(−v′neg · vt)

where vt and v′c are the vector representations of tar-
get word t and context word c. PAIRS is the set
of window-based co-occurring target-context pairs
considered by the model that depends on the win-
dow size, and NEGS (t,c) is a set of randomly sam-
pled context words used with the pair (t, c).6

We experimented with window sizes of 1, 5,
and 10, and various dimensionalities. We denote a
window-based word embedding with window size
of n and dimensionality of m with Wnm. For ex-
ample, W5300 is a word embedding learned using a
window size of 5 and dimensionality of 300.

2.3 Dependency-based Word Embeddings
We used word2vecf7 (Levy and Goldberg, 2014),
to learn dependency-based word embeddings from

3Parses follow the Universal Dependencies formalism and
were produced by Stanford CoreNLP, version 3.5.2

4Our word embeddings are available at: www.cs.biu.ac.
il/nlp/resources/downloads/embeddings-contexts/

5We used negative sampling = 5 and iterations = 3 in all of
the experiments described in this paper.

6For more details refer to Mikolov et al. (2013b).
7http://bitbucket.org/yoavgo/word2vecf

1031

the parsed version of our corpus, similar to the ap-
proach of Bansal et al. (2014). word2vecf ac-
cepts as its input arbitrary target-context pairs. In
the case of dependency-based word embeddings,
the context elements are the syntactic contexts of
the target word, rather than the words in a win-
dow around it. Specifically, following Levy and
Goldberg (2014), we first ‘collapsed’ prepositions
(as implemented in word2vecf). Then, for a tar-
get word t with modifiers m1,...,mk and head h,
we paired the target word with the context elements
(m1, r1),...,(mk, rk),(h, r−1

h), where r is the type of
the dependency relation between the head and the
modifier (e.g., dobj, prep of) and r−1 denotes an in-
verse relation. We denote a dependency-based word
embedding with dimensionality of m by DEPm. We
note that under this setting word2vecf optimizes
the same objective function described in Equa-
tion (1), with PAIRS now comprising dependency-
based pairs instead of window-based ones.

2.4 Substitute-based Word Embeddings

Substitute vectors are a recent approach to represent-
ing contexts of target words, proposed in Yatbaz et
al. (2012). Instead of the neighboring words them-
selves, a substitute vector includes the potential filler
words for the target word slot, weighted according
to how ‘fit’ they are to fill the target slot given the
neighboring words. For example, the substitute vec-
tor representing the context of the word love in “I
love my job”, could look like: [quit 0.5, love 0.3,
hate 0.1, lost 0.1]. Substitute-based contexts are
generated using a language model and were suc-
cessfully used in distributional semantics models for
part-of-speech induction (Yatbaz et al., 2012), word
sense induction (Baskaya et al., 2013), functional se-
mantic similarity (Melamud et al., 2014) and lexical
substitution tasks (Melamud et al., 2015a).

Similar to Yatbaz et al. (2012), we consider the
words in a substitute vector, as a weighted set of con-
texts ‘co-occurring’ with the observed target word.
For example, the above substitute vector is consid-
ered as the following set of weighted target-context
pairs: {(love, quit, 0.5), (love, love, 0.3), (love,
hate, 0.1), (love, lost, 0.1)}. To learn word embed-
dings from such weighted target-context pairs, we
extended word2vecf by modifying the objective

W10300 DEP300 SUB300

played play singing
play played rehearsing
plays understudying performing
professionally caddying composing
player plays running

Table 1: The top five words closest to target word
playing in different embedding spaces.

function in Equation (1) as follows:

(3)L =
∑

(t,c)∈PAIRS

αt,c · Lt,c

where αt,c is the weight of the target-context
pair (t, c). With this simple modification, the effect
of target-context pairs on the learned word represen-
tations becomes proportional to their weights.

To generate the substitute vectors we followed
the methodology in (Yatbaz et al., 2012; Mela-
mud et al., 2015a). We learned a 4-gram Kneser-
Ney language model from our learning corpus us-
ing KenLM (Heafield et al., 2013). Then, we used
FASTSUBS (Yuret, 2012) with this language model
to efficiently generate substitute vectors, where the
weight of each substitute s is the conditional proba-
bility p(s|C) for this substitute to fill the target slot
given the sentential context C. For efficiency, we
pruned the substitute vectors to their top-10 sub-
stitutes, s1..s10, and normalized their probabilities
such that

∑
i=1..10 p(si|C) = 1. We also gener-

ated only up to 20,000 substitute vectors for each tar-
get word type. Finally, we converted each substitute
vector into weighted target-substitute pairs and used
our extended version of word2vecf to learn the
substitute-based word embeddings, denoted SUBm.

2.5 Qualitative Effect of Context Type
To motivate the rest of our work, we first qualita-
tively inspect the top most-similar words to some
target words, using cosine similarity of their respec-
tive embeddings. As illustrated in Table 1, in embed-
dings learned with large window contexts, we see
both functionally similar words and topically similar
words, sometimes with a different part-of-speech.
With small windows and dependency contexts, we
generally see much fewer topically similar words,
which is consistent with previous findings (Bansal et

1032

al., 2014; Levy and Goldberg, 2014). Finally, with
substitute-based contexts, there appears to be even a
stronger preference for functional similarity, with a
tendency to also strictly preserve verb tense.

3 Word Embedding Combinations

As different choices of context type yield word
embeddings with different properties, we hypothe-
size that combinations of such embeddings could be
more informative for some extrinsic tasks. We ex-
perimented with two alternative approaches to com-
bine different sets of word embeddings: (1) Sim-
ple vector concatenation, which is a lossless com-
bination that comes at the cost of increased dimen-
sionality, and (2) SVD and CCA, which are lossy
combinations that attempt to capture the most use-
ful information from the different embeddings sets
with lower dimensionality. The methods used are
described in more detail next.

3.1 Concatenation

Perhaps the simplest way to combine two different
sets of word embeddings (sharing the same vocabu-
lary) is to concatenate their word vectors for every
word type. We denote such a combination of word
embedding set A with word embedding set B using
the symbol (+). For example W10+DEP600 is the
concatenation of W10300 with DEP300. Naturally,
the dimensionality of the concatenated embeddings
is the sum of the dimensionalities of the component
embeddings. In our experiments, we only ever com-
bine word embeddings of equal dimensionality.

The motivation behind concatenation relates pri-
marily to supervised models in extrinsic tasks. In
such settings, we hypothesize that using concate-
nated word embeddings as input features to a classi-
fier could let it choose and combine (i.e., via learned
weights) the most suitable features for the task. Con-
sider a situation where the concatenated embedding
W10+DEP600 is used to represent the word inputs
to a named entity recognition classifier. In this case,
the classifier could choose, for instance, to represent
entity words mostly with dependency-based embed-
ding features (reflecting functional semantics), and
surrounding words with large window-based embed-
ding features (reflecting topical semantics).

3.2 Singular Value Decomposition

Singular Value Decomposition (SVD) has been
shown to be effective in compressing sparse word
representations (Levy et al., 2015). In this work, we
use this technique in the same way to reduce the di-
mensionality of concatenated word embeddings.

3.3 Canonical Correlation Analysis

Recent work used Canonical Correlation Analysis
(CCA) to derive an improved set of word embed-
dings. The main idea is that two distinct sets of
word embeddings, learned with different types of in-
put data, are considered as multi-views of the same
vocabulary. Then, CCA is used to project each onto
a lower dimensional space, where correlation be-
tween the two is maximized. The correlated infor-
mation is presumably more reliable. Dhillon et al.
(2011) considered their two CCA views as embed-
dings learned from the left and from the right con-
text of the target words, showing improvements on
chunking and named entity recognition. Faruqui and
Dyer (2014) and Lu et al. (2015) considered multi-
lingual views, showing improvements in several in-
trinsic tasks, such as word and phrase similarity.

Inspired by this prior work, we consider pairs of
word embedding sets, learned with different types
of context, as different views and correlate them
using linear CCA.8 We use either the SimLex-
999 or WordSim-353-R intrinsic benchmark (sec-
tion 4.1) to tune the CCA hyperparameters9 with
the Spearmint Bayesian optimization tool10 (Snoek
et al., 2012). This results in different projections
for each of these tuning objectives, where SimLex-
999/WordSim-353-R is expected to give some bias
towards functional/topical similarity, respectively.

4 Evaluation

4.1 Intrinsic Benchmarks

We employ several commonly used intrinsic bench-
marks for assessing how well word embeddings
mimic human judgements of semantic similarity of
words. The popular WordSim-353 dataset (Finkel-
stein et al., 2001) includes 353 word pairs manually

8See Faruqui and Dyer (2014), Lu et al. (2015) for details.
9These are projection dimensionality and regularization.

10github.com/JasperSnoek/spearmint

1033

annotated with a degree of similarity. For exam-
ple, computer:keyboard is annotated with 7.62, in-
dicating a relatively high degree of similarity. While
WordSim-353 does not make a distinction between
different ‘flavors’ of similarity, Agirre et al. (2009)
proposed two subsets of this dataset, WordSim-353-
S and WordSim-353-R, which focus on functional
and topical similarities, respectively. SimLex-999
(Hill et al., 2014) is a larger word pair similarity
dataset with 999 annotated pairs, purposely built to
focus on functional similarity. We evaluate our em-
beddings on these datasets by computing a score
for each pair as the cosine similarity of two word
vectors. The Spearman’s correlation11 between the
ranking of word pairs induced from the human an-
notations and that from the embeddings is reported.

The TOEFL task contains 80 synonym selection
items, where a synonym of a target word is to be se-
lected out of four possible choices. We report the
overall accuracy of a system that uses cosine dis-
tance between the embeddings of the target word
and each of the choices to select the one most similar
to the target word as the answer.

4.2 Extrinsic Benchmarks

The following four diverse downstream NLP tasks
serve as our extrinsic benchmarks.12

1) Dependency Parsing (PARSE) The Stanford
Neural Network Dependency (NNDEP) parser
(Chen and Manning, 2014) uses dense continuous
representations of words, parts-of-speech and de-
pendency labels. While it can learn these repre-
sentations entirely during the training on labeled
data, Chen and Manning (2014) show that initializa-
tion with word embeddings, which were pre-trained
on unlabeled data, yields improved performance.
Hence, we used our different types of embeddings to
initialize the NNDEP parser and compared their per-
formance on a standard Penn Treebank benchmark.
We used WSJ sections 2–21 for training and 22 for
development. We used predicted tags produced via
20-fold jackknifing on sections 2–21 with the Stan-
ford CoreNLP tagger.

11We used spearmanr, SciPy version 0.15.1.
12Since our goal is to explore performance trends, we mostly

experimented with the tasks’ development sets.

2) Named Entity Recognition (NER) We used the
NER system of Turian et al. (2010), which allows
adding word embedding features (on top of various
other features) to a regularized averaged perceptron
classifier, and achieves near state-of-the-art results
using several off-the-shelf word representations. We
varied the type of word embeddings used as features
when training the NER model, to evaluate their ef-
fect on NER benchmarks results. Following Turian
et al. (2010), we used the CoNLL-2003 shared task
dataset (Tjong Kim Sang and De Meulder, 2003)
with 204K/51K train/dev words, as our main bench-
mark. We also performed an out-of-domain eval-
uation, using CoNLL-2003 as the train set and the
MUC7 formal run (59K words) as the test set.13

3) Coreference Resolution (COREF) We used the
Berkeley Coreference System (Durrett and Klein,
2013), which achieves near state-of-the-art results
with a log-linear supervised model. Most of the fea-
tures in this model are associated with pairs of cur-
rent and antecedent reference mentions, for which a
coreference decision needs to be made. To evaluate
the contribution of different word embedding types
to this model, we extended it to support the follow-
ing additional features: {ai}i=1..m, {ci}i=1..m and
{ai · ci}i=1..m, where ai or ci is the value of the ith
dimension in a word embedding vector represent-
ing the antecedent or current mention, respectively.
We considered two different word embedding repre-
sentations for a mention: (1) the embedding of the
head word of the mention and (2) the average em-
bedding of all words in the mention. The features
of both types of representations were presented to
the learning model as inputs at the same time. They
were added on top of Berkeley’s full feature list (‘FI-
NAL’) as described in Durrett and Klein (2013). We
evaluated our features on the CoNLL-2012 corefer-
ence shared task (Pradhan et al., 2012).

4) Sentiment Analysis (SENTI) Following
Faruqui et al. (2014), we used a sentence-level
binary decision version of the sentiment analysis
task from Socher et al. (2013). In this setting,
neutral sentences were discarded and all remaining
sentences were labeled coarsely as positive or neg-
ative. Maintaining the original split into train/dev

13See Turian et al. (2010) for more details on this setting.

1034

Figure 1: Intrinsic tasks’ results for embeddings learned with different types of contexts.

results, we get a dataset containing 6920/872
sentences. To evaluate different types of word
embeddings, we represented each sentence as an
average of its word embeddings and then used an
L2-regularized logistic regression classifier trained
on these features to predict the sentiment labels.

5 Results

5.1 Intrinsic Results for Context Types

The results on the intrinsic tasks are illustrated in
Figure 1. First, we see that the performance on all
tasks generally increases with the number of dimen-
sions, reaching near-optimal performance at around
300 dimensions, for all types of contexts. This is
in line with similar observations on skip-gram word
embeddings (Mikolov et al., 2013a).

Looking further, we observe that there are sig-
nificant differences in the results when using dif-
ferent types of contexts. The effect of context

choice is perhaps most evident in the WordSim-353-
R task, which captures topical similarity. As might
be expected, in this benchmark, the largest-window
word embeddings perform best. The performance
decreases with the decrease in window size and
then reaches significantly lower levels for depen-
dency (DEP) and substitute-based (SUB) embed-
dings. Conversely, in WordSim-353-S and SimLex-
999, both of which capture a more functional simi-
larity, the DEP embeddings are the ones that perform
best, strengthening similar observations in Levy and
Goldberg (2014). Finally, in the TOEFL benchmark,
all contexts except for SUB, perform comparably.

5.2 Extrinsic Results for Context Types

The extrinsic tasks results are illustrated in Figure 2.
A first observation is that optimal extrinsic results
may be reached with as few as 50 dimensions. Fur-
thermore, performance may even degrade when us-

1035

Figure 2: Extrinsic tasks’ development set results for embeddings learned with different types of contexts.
‘base’ denotes the results with no word embedding features. Due to computational limitations we tested
NER and PARSE with only up to 300 dimensions embeddings, and COREF with up to 100.

ing too many dimensions, as is most evident in the
NER task. This behavior presumably depends on
various factors, such as the size of the labeled train-
ing data or the type of classifier used, and highlights
the importance of tuning the dimensionality of word
embeddings in extrinsic tasks. This is in contrast
to intrinsic tasks, where higher dimensionality typi-
cally yields better results.

Next, comparing the results of different types of
contexts, we see, as might be expected, that de-
pendency embeddings work best in the PARSE task.
More generally, embeddings that do well in func-
tional similarity intrinsic benchmarks and badly in
topical ones (DEP, SUB and W1) work best for
PARSE, while large window contexts perform worst,
similar to observations in Bansal et al. (2014).

In the rest of the tasks it’s difficult to say which
context works best for what. One possible expla-

Context type F1 x 100
DEP 79.8
W1 79.3
SUB 79.0
W10 78.1
W5 77.4
None 71.8

Table 2: NER MUC out-of-domain results for dif-
ferent embeddings with dimensionality = 25.

nation to this in the case of NER and COREF is that
the embedding features are used as add-ons to an al-
ready competitive learning system. Therefore, the
total improvement on top of a ‘no embedding’ base-
line is relatively small, leaving little room for signif-
icant differences between different contexts.

We did find a more notable contribution of word

1036

Figure 3: Mean development set results for the tasks
PARSE and SENTI. ‘mean’ and ’mean+’ stand for
mean results across all single context types and con-
text concatenations, respectively.

embedding features to the overall system perfor-
mance in the out-of-domain NER MUC evaluation,
described in Table 2. In this out-of-domain setting,
all types of contexts achieve at least five points im-
provement over the baseline. Presumably, this is be-
cause continuous word embedding features are more
robust to differences between train and test data,
such as the typical vocabulary used. However, a de-
tailed investigation of out-of-domain settings is out
of scope for this paper and left for future work.

5.3 Extrinsic Results for Combinations
A comparison of the results obtained on the ex-
trinsic tasks using the word embedding concate-
nations (concats), described in section 3.1, versus
the original single context word embeddings (sin-
gles), appears in Table 3. To control for dimen-
sionality, concats are always compared against sin-

gles with identical dimensionality. For example, the
200-dimensional concat W10+DEP200, which is a
concatenation of W10100 and DEP100, is compared
against 200-dimensional singles, such as W10200.

Looking at the results, it seems like the bene-
fit from concatenation depends on the dimension-
ality and task at hand, as also illustrated in Fig-
ure 3. Given task X and dimensionality d, if d

2 is in
the range where increasing the dimensionality yields
significant improvement on task X , then it’s better
to simply increase dimensionality of singles from d

2
to d rather than concatenate. The most evident ex-
ample for this are the results on the SENTI task with
d = 50. In this case, the benefit from concatenat-
ing two 25-dimensional singles is notably lower than
that of using a single 50-dimensional word embed-
ding. On the other hand, if d

2 is in the range where
near-optimal performance is reached on taskX , then
concatenation seems to pay off. This can be seen in
SENTI with d = 600, PARSE with d = 200, and NER

with d = 50. More concretely, looking at the best
performing concatenations, it seems like combina-
tions of the topical W10 embedding with one of the
more functional ones, SUB, DEP or W1, typically
perform best, suggesting that there is added value in
combining embeddings of different nature.

Finally, our experiments with the methods using
SVD (section 3.2) and CCA (section 3.3) yielded
degraded performance compared to single word em-
beddings for all extrinsic tasks and therefore are not
reported for brevity. These results seem to further
strengthen the hypothesis that the information cap-
tured with varied types of context is different and
complementary, and therefore it is beneficial to pre-
serve these differences as in our concatenation ap-
proach.

6 Related Work

There are a number of recent works whose goal is
a broad evaluation of the performance of different
word embeddings on a range of tasks. However,
to the best of our knowledge, none of them focus
on embeddings learned with diverse context types
as we do. Levy et al. (2015), Lapesa and Evert
(2014), and Lai et al. (2015) evaluate several design
choices when learning word representations. How-
ever, Levy et al. (2015) and Lapesa and Evert (2014)

1037

Dimensions Result SENTI PARSE NER COREF

50

best+ 74.3 (W10+W1) 88.7 (W10+SUB) 93.6 (W1+DEP) 62.4 (W10+W1)
best 77.3 (SUB) 88.9 (W1) 93.3 (W1) 62.3 (DEP)
mean+ 72.7 88.3 93.3 62.1
mean 74.7 88.4 93.1 62.2

200

best+ 81.0 (W10+SUB) 89.1 (W1+DEP) 93.1 (W10+DEP)
best 80.2 (W10) 88.8 (SUB) 92.8 (W10)
mean+ 79.1 88.9 92.8
mean 79.9 88.6 92.4

600

best+ 82.6 (W10+SUB)
best 82.3 (W1)
mean+ 82.0
mean 81.5

Table 3: Extrinsic tasks development set results obtained with word embeddings concatenations. ‘best’
and ‘best+’ are the best results achieved across all single context types and context concatenations, respec-
tively (best performing embedding indicated in parenthesis). ‘mean’ and ‘mean+’ are the mean results for
the same. Due to computational limitations of the employed systems, some of the evaluations were not
performed.

perform only intrinsic evaluations and restrict con-
text representation to word windows, while Lai et
al. (2015) do perform extrinsic evaluations, but re-
strict their context representation to a word window
with the default size of 5. Schnabel et al. (2015)
and Tsvetkov et al. (2015) report low correlation be-
tween intrinsic and extrinsic results with different
word embeddings (they did not evaluate different
context types), which is consistent with differences
we found between intrinsic and extrinsic perfor-
mance patterns in all tasks, except parsing. Bansal et
al. (2014) show that functional (dependency-based
and small-window) embeddings yield higher pars-
ing improvements than topical (large-window) em-
beddings, which is consistent with our findings.

Several works focus on particular types of con-
texts for learning word embeddings. Cirik and
Yuret (2014) investigates S-CODE word embed-
dings based on substitute word contexts. Ling et al.
(2015b) and Ling et al. (2015a) propose extensions
to the standard window-based context modeling.
Alternatively, another recent popular line of work
(Faruqui et al., 2014; Kiela et al., 2015) attempts
to improve word embeddings by using manually-
constructed resources, such as WordNet. These
techniques could be complementary to our work. Fi-
nally, Yin and Schütze (2015) and Goikoetxea et al.
(2016) propose word embeddings combinations, us-
ing methods such as concatenation and CCA, but

evaluate mostly on intrinsic tasks and do not con-
sider different types of contexts.

7 Conclusions

In this paper we evaluated skip-gram word embed-
dings on multiple intrinsic and extrinsic NLP tasks,
varying dimensionality and type of context. We
show that while the best practices for setting skip-
gram hyperparameters typically yield good results
on intrinsic tasks, success on extrinsic tasks requires
more careful thought. Specifically, we suggest that
picking the optimal dimensionality and context type
are critical for obtaining the best accuracy on ex-
trinsic tasks and are typically task-specific. Further
improvements can often be achieved by combining
complementary word embeddings of different con-
text types with the right dimensionality.

Acknowledgments

We thank Do Kook Choe for providing us the jack-
knifed version of WSJ. We also wish to thank the
IBM Watson team for helpful discussions and our
anonymous reviewers for their comments. This
work was partially supported by the Israel Science
Foundation grant 880/12 and the German Research
Foundation through the German-Israeli Project Co-
operation (DIP, grant DA 1600/1-1).

1038

References
[Agirre et al.2009] Eneko Agirre, Enrique Alfonseca,

Keith Hall, Jana Kravalova, Marius Paşca, and Aitor
Soroa. 2009. A study on similarity and relatedness
using distributional and WordNet-based approaches.
In Proceedings of NAACL. Association for Computa-
tional Linguistics.

[Bansal et al.2014] Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2014. Tailoring continuous word rep-
resentations for dependency parsing. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics.

[Baskaya et al.2013] Osman Baskaya, Enis Sert, Volkan
Cirik, and Deniz Yuret. 2013. Ai-ku: Using substitute
vectors and co-occurrence modeling for word sense in-
duction and disambiguation. In Proceedings of the Se-
mEval.

[Chen and Manning2014] Danqi Chen and Christopher D
Manning. 2014. A fast and accurate dependency
parser using neural networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), volume 1, pages
740–750.

[Cirik and Yuret2014] Volkan Cirik and Deniz Yuret.
2014. Substitute based scode word embeddings in su-
pervised nlp tasks. arXiv preprint arXiv:1407.6853.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537.

[Dhillon et al.2011] Paramveer Dhillon, Dean P Foster,
and Lyle H Ungar. 2011. Multi-view learning of word
embeddings via cca. In Advances in Neural Informa-
tion Processing Systems, pages 199–207.

[Durrett and Klein2013] Greg Durrett and Dan Klein.
2013. Easy victories and uphill battles in coreference
resolution. In Proc. of EMNLP.

[Faruqui and Dyer2014] Manaal Faruqui and Chris Dyer.
2014. Improving vector space word representations
using multilingual correlation. In Proceedings of
EACL.

[Faruqui et al.2014] Manaal Faruqui, Jesse Dodge, Su-
jay K Jauhar, Chris Dyer, Eduard Hovy, and Noah A
Smith. 2014. Retrofitting word vectors to semantic
lexicons. In Proceedings of Deep Learning and Rep-
resentation Learning Workshop, NIPS.

[Finkelstein et al.2001] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2001.
Placing search in context: The concept revisited. In
Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

[Goikoetxea et al.2016] Josu Goikoetxea, Eneko Agirre,
and Aitor Soroa. 2016. Single or multiple? combining
word representations independently learned from text
and wordnet. In Proceedings of AAAI.

[Han et al.2013] Lushan Han, Abhay L. Kashyap, Tim
Finin, James Mayfield, and Johnathan Weese. 2013.
UMBC EBIQUITY-CORE: Semantic Textual Simi-
larity Systems. In Proceedings of the Second Joint
Conference on Lexical and Computational Semantics.
Association for Computational Linguistics, June.

[Heafield et al.2013] Kenneth Heafield, Ivan
Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn.
2013. Scalable modified Kneser-Ney language model
estimation. In Proceedings of ACL.

[Hill et al.2014] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2014. Simlex-999: Evaluating semantic
models with (genuine) similarity estimation. arXiv
preprint arXiv:1408.3456.

[Kiela et al.2015] Douwe Kiela, Felix Hill, and Stephen
Clark. 2015. Specializing word embeddings for simi-
larity or relatedness.

[Lai et al.2015] Siwei Lai, Kang Liu, Liheng Xu, and Jun
Zhao. 2015. How to generate a good word embed-
ding? arXiv preprint arXiv:1507.05523.

[Lapesa and Evert2014] Gabriella Lapesa and Stefan Ev-
ert. 2014. A large scale evaluation of distributional
semantic models: Parameters, interactions and model
selection. Transactions of the Association for Compu-
tational Linguistics, 2:531–545.

[Levy and Goldberg2014] Omer Levy and Yoav Gold-
berg. 2014. Dependencybased word embeddings. In
Proceedings of ACL.

[Levy et al.2015] Omer Levy, Yoav Goldberg, and Ido
Dagan. 2015. Improving distributional similarity
with lessons learned from word embeddings. Transac-
tions of the Association for Computational Linguistics,
3:211–225.

[Ling et al.2015a] Wang Ling, Lin Chu-Cheng, Yulia
Tsvetkov, Silvio Amir, Ramón Fernandez Astudillo,
Chris Dyer, Alan W Black, and Isabel Trancoso.
2015a. Not all contexts are created equal: Better word
representations with variable attention. In Proceed-
ings of EMNLP.

[Ling et al.2015b] Wang Ling, Chris Dyer, Alan Black,
and Isabel Trancoso. 2015b. Two/too simple adap-
tations of word2vec for syntax problems. In Proceed-
ings of NAACL-HLT.

[Lu et al.2015] Ang Lu, Weiran Wang, Mohit Bansal,
Kevin Gimpel, , and Karen Livescu. 2015. Deep mul-
tilingual correlation for improved word embeddings.
In Proceedings of NAACL.

[Manning et al.2014] Christopher D. Manning, Mihai
Surdeanu, John Bauer, Jenny Finkel, Steven J.

1039

Bethard, and David McClosky. 2014. The Stan-
ford CoreNLP natural language processing toolkit. In
Proceedings of 52nd Annual Meeting of the Associa-
tion for Computational Linguistics: System Demon-
strations, pages 55–60.

[Melamud et al.2014] Oren Melamud, Ido Dagan, Jacob
Goldberger, Idan Szpektor, and Deniz Yuret. 2014.
Probabilistic modeling of joint-context in distribu-
tional similarity. In Proceedings of CoNLL.

[Melamud et al.2015a] Oren Melamud, Ido Dagan, and
Jacob Goldberger. 2015a. Modeling word meaning
in context with substitute vectors. In Proceedings of
NAACL.

[Melamud et al.2015b] Oren Melamud, Omer Levy, and
Ido Dagan. 2015b. A simple word embedding model
for lexical substitution. In Proceedings of the Vector
Space Modeling for NLP Workshop, NAACL.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space. In Pro-
ceedings of ICLR.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b.
Distributed representations of words and phrases and
their compositionality. In Proceedings of NIPS.

[Parker et al.2011] Robert Parker, David Graff, Junbo
Kong, Ke Chen, and Kazuaki Maeda. 2011. English
Gigaword Fifth edition. Linguistic Data Consortium,
LDC2011T07, June.

[Pennington et al.2014] Jeffrey Pennington, Richard
Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceed-
ings of the Empiricial Methods in Natural Language
Processing (EMNLP 2014), volume 12.

[Pradhan et al.2012] Sameer Pradhan, Alessandro Mos-
chitti, Nianwen Xue, Olga Uryupina, and Yuchen
Zhang. 2012. Conll-2012 shared task: Modeling
multilingual unrestricted coreference in ontonotes. In
Joint Conference on EMNLP and CoNLL-Shared Task,
pages 1–40. Association for Computational Linguis-
tics.

[Schnabel et al.2015] Tobias Schnabel, Igor Labutov,
David Mimno, and Thorsten Joachims. 2015. Evalu-
ation methods for unsupervised word embeddings. In
Proc. of EMNLP.

[Snoek et al.2012] Jasper Snoek, Hugo Larochelle, and
Ryan P Adams. 2012. Practical bayesian optimization
of machine learning algorithms. In Advances in neural
information processing systems, pages 2951–2959.

[Socher et al.2013] Richard Socher, Alex Perelygin,
Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recur-
sive deep models for semantic compositionality over a

sentiment treebank. In Proceedings of the conference
on empirical methods in natural language processing
(EMNLP), volume 1631, page 1642. Citeseer.

[Tjong Kim Sang and De Meulder2003] Erik F Tjong
Kim Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the
seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4, pages 142–147.
Association for Computational Linguistics.

[Tsvetkov et al.2015] Yulia Tsvetkov, Manaal Faruqui,
Wang Ling, Guillaume Lample, and Chris Dyer. 2015.
Evaluation of word vector representations by subspace
alignment. In Proc. of EMNLP.

[Turian et al.2010] J. Turian, L. Ratinov, and Y. Bengio.
2010. Word representations: A simple and general
method for semisupervised learning. In Proc. of ACL,
pages 384–394.

[Yatbaz et al.2012] Mehmet Ali Yatbaz, Enis Sert, and
Deniz Yuret. 2012. Learning syntactic categories us-
ing paradigmatic representations of word context. In
Proceedings of EMNLP.

[Yin and Schütze2015] Wenpeng Yin and Hinrich
Schütze. 2015. Learning word meta-embeddings by
using ensembles of embedding sets. arXiv preprint
arXiv:1508.04257.

[Yuret2012] Deniz Yuret. 2012. FASTSUBS: An ef-
ficient and exact procedure for finding the most
likely lexical substitutes based on an n-gram language
model. Signal Processing Letters, IEEE, 19(11):725–
728.

1040

Proceedings of NAACL-HLT 2016, pages 1041–1050,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Improve Chinese Word Embeddings by Exploiting Internal Structure

Jian Xu, Jiawei Liu, Liangang Zhang, Zhengyu Li, Huanhuan Chen∗
Department of Computer Science, University of Science and Technology of China, China
{jianxu1, ustcljw, liangang, lzy0503}@mail.ustc.edu.cn

hchen@ustc.edu.cn

Abstract

Recently, researchers have demonstrated that
both Chinese word and its component charac-
ters provide rich semantic information when
learning Chinese word embeddings. Howev-
er, they ignored the semantic similarity across
component characters in a word. In this paper,
we learn the semantic contribution of charac-
ters to a word by exploiting the similarity be-
tween a word and its component characters
with the semantic knowledge obtained from
other languages. We propose a similarity-
based method to learn Chinese word and char-
acter embeddings jointly. This method is also
capable of disambiguating Chinese character-
s and distinguishing non-compositional Chi-
nese words. Experiments on word similarity
and text classification demonstrate the effec-
tiveness of our method.

1 Introduction

Distributed representations of knowledge has re-
ceived wide attention in recent years. Researchers
have proposed various models to learn it at different
granularity levels. Distributed word representation-
s, also known as word embeddings, were learned in
(Rumelhart et al., 1988; Bengio et al., 2006; Mni-
h and Hinton, 2009; Mikolov et al., 2013a). Larger
granularity levels than words have also been inves-
tigated, including phrase level (Socher et al., 2010;
Zhang et al., 2014; Yu and Dredze, 2015), sentence
level (Le and Mikolov, 2014; Socher et al., 2013;
Kalchbrenner et al., 2014; Kiros et al., 2015), and

∗Corresponding author

document level (Le and Mikolov, 2014; Hermann
and Blunsom, 2014; Srivastava et al., 2013).

For language like Chinese, some smaller units
than word also provide rich semantic information.
For example, Chinese characters in word, Chinese
radicals in character. These internal structures have
been proved to be useful for Chinese word and char-
acter embeddings (Chen et al., 2015; Li et al., 2015).
Chen et al. (2015) took Chinese characters in a word
into account when modeling the semantic meaning
of the word. They proposed a character-enhanced
word embeddings model (CWE) by adding the em-
bedding of component characters in a word with
the same weight to the word embedding. However,
the internal characters in a Chinese word have dif-
ferent semantic contributions to its meaning. Take
Chinese word “��” (frog) as an example. The
character “�” (blue or green) is to decorate char-
acter “�” (frog). It is obvious that the latter char-
acter contributes more than the former one to the
word meaning. In Li et al. (2015), they proposed
a component-enhanced Chinese character embed-
dings model based on the feature that most Chinese
characters are phono-semantic compounds. They
considered characters and bi-characters as the ba-
sic embedding units. However, some bi-characters
are meaningless, and may not form a Chinese word.
These bi-characters may undermine embeddings of
others.

This paper, motivated by Chen et al. (2015), ex-
ploits the internal structures of Chinese word, name-
ly the Chinese characters. We propose a method
to calculate the semantic contribution of character-
s to a word in a cross-lingual manner. The basic

1041

idea is that the semantic contribution of Chinese
characters in most Chinese words can be learned
from their translations in other languages. Such
as the word “��” we mentioned above. The
word embeddings of other languages are used to
calculate semantic contribution of characters to the
word they compose. Moreover, Chinese character-
s are more ambiguous than words. To tackle this
problem, multiple-prototype character embeddings
is proposed. Different meanings of characters will
be represented by different embeddings. Our contri-
butions can be summarized as follows:

1. We provide a method to calculate the semantic
contribution of Chinese characters to the word they
compose with English translation. Compared with
English, there are fewer human-made resources to
supervise the learning process of Chinese word and
character embeddings. While translation resources
are always easy to be accessed on the Internet.

2. We propose a novel way to disambiguate Chi-
nese characters with translating resources. There
are some limitations in existing cluster-based algo-
rithms (Huang et al., 2012; Neelakantan et al., 2015;
Chen et al., 2015). They either fixed the number of
clusters or proposed a nonparametric way to learn it
for each word. However, the number of clusters for
words varies a lot. For nonparametric method, dif-
ferent hyperparameters have to be tune to control the
number of clusters for different datasets.

3. We provide a method to distinguish whether
a Chinese word is semantically compositional auto-
matically. Not all Chinese words exhibit semantic
compositions from their component characters. For
example, entity names, transliterated words like “â
u” (sofa), single-morpheme multi-character words
like “þ}” (wander). In Chen et al. (2015), they
performed part-of-speech tagging to identify entity
names. The transliterated words are tagged manual-
ly, which requires human work and need to be up-
dated when new words are created.

The evaluations on word similarity, text classifica-
tion, Chinese characters disambiguation, and quali-
tative analysis of word embeddings demonstrate the
effectiveness of our method.

2 Related Work

2.1 Word2vec

Word2vec (Mikolov et al., 2013a) is an algorithm to
learn distributed word representations using a neu-
ral language model. Word2vec has two models, the
continuous bag-of-words model (CBOW) and the
skip-gram model. In this paper, we propose a new
model based on the CBOW, hence we focus atten-
tion on it. CBOW aims at predicting the target word
given context words in a slide window. Given a word
sequence D = {x1, x2, . . . , xT }, the objective of
CBOW is to maximize the average log probability

L =
1
T

T∑
i=1

log p(xi|xi+ji−j), (1)

where xi+ji−j is the context words centered at xi,
p(xi|xi+ji−j) is defined as:

exp(v
′
xi

T ∑
−j≤k≤j,k 6=0 vxi+k

)∑W
x=1 exp(v′x

T ∑
−j≤k≤j,k 6=0 vxi+k

)
, (2)

where vxi and v
′
xi

are the input and output vector
representations of word xi. Since the size of En-
glish vocabulary W may be up to 106 scale, hier-
archical softmax and negative sampling (Mikolov et
al., 2013b) are applied during training to learn the
model efficiently. However, using CBOW to learn
Chinese word embeddings directly may have some
limitations. It fails to capture the internal struc-
ture of words. In (Botha and Blunsom, 2014; Lu-
ong et al., 2013; Trask et al., 2015; Chen et al.,
2015), they demonstrated the usefulness to exploit
the internal structure of words, and proposed some
morphological-based methods. For example, Chen
et al. (2015) exploit the internal structure in Chinese
words.

2.2 The CWE model

The basic idea of CWE is that both external context
words and internal component characters in words
provide rich information in modeling the semantic
meaning of the target word. In CWE, they learned
word embeddings with its component characters
embeddings. Let C denotes the Chinese characters
set, and the word xt in context xi+ji−j is composed by

1042

several characters in C, let xt = {c1, c2, . . . , cNt},
ck denotes the k-th character in xt,

v̂xt = vxt +
1
Nt

Nt∑
k=1

vck , (3)

where v̂xt is the modified word embedding, Nt de-
notes the number of Chinese characters in xt. To
address the issue of ambiguity in Chinese charac-
ters, they proposed several approaches for multiple-
prototype character embeddings: position-based,
cluster-based, nonparametric methods, and position-
cluster-based character embeddings. These meth-
ods are denoted as CWE+P, CWE+L, CWE+N,
CWE+LP respectively. However, this model has
some limitations. The internal characters are of the
same contribution to the semantic meaning of the
word in CWE, which is not the case for most Chi-
nese words.

3 Methodology

Our method can be described as three stages:

• Obtain translations of Chinese words and
characters
Chinese words segmentation tool is used to seg-
ment words in Chinese corpus. Then we use
an online English-Chinese translation tool to
translate all the Chinese characters and seg-
mented words.

• Perform Chinese character sense disam-
biguation
We train an English corpus with CBOW to
get English word embeddings. Then, we
merge some meanings of Chinese character-
s with small difference, and disambiguate the
meanings of characters in words by computing
the similarity between their English translation
words.

• Learn word and character embeddings with
our model
Based on the character sense disambiguation
process, we modify the objective of CWE to
learn Chinese word and character embeddings.
Then we analyse the complexity of our model
briefly.

3.1 Obtain translations of Chinese words and
characters

We use segmentation tools to segment words in Chi-
nese training corpus, and perform part-of-speech
tagging to recognize all the entity names. Since
entity name words do not exhibit semantic com-
positions, they are identified as non-compositional
words. We count the times of characters appearing
in different words. Words with Chinese character-
s rarely combined with other characters are classi-
fied as single-morpheme multi-character words and
identified as non-compositional.

Then programming interface of online translation
tool is used to translate Chinese words and char-
acters into English. For non-compositional Chi-
nese words, they are not included in the translation
list. Table 1 shows the English meanings of Chinese
word “ÑW”, “âu” and their component charac-
ters “Ñ” and “W”, “â” and “u”.

3.2 Perform Chinese character sense
disambiguation

We train an English corpus with CBOW to get En-
glish word embeddings. Then, the meanings of char-
acters with small difference are merged.

In Table 1, we observe that the difference between
some meanings of character “W” is very small,
some of them differ only in their part-of-speech. In
Chinese, the same characters and words are used
in different part-of-speech but express the same se-
mantic meaning. Hence these meanings are merged
as one semantic meaning. Let Sim(·) denotes the
function to calculate the similarity between mean-
ings of Chinese words and characters, we use cosine
distance as the distance metric. The i-th and j-th
meanings of Chinese character c are ci and cj . Their
similarity is defined as:

Sim(ci, cj) = max(cos(vxm , vxn)),

s.t. xm ∈ Trans(ci), xn ∈ Trans(cj),
xm, xn /∈ stop words(en),

(4)

where Trans(ci) denotes the English translation
words set of ci, stop words(en) denotes the stop
words in English, xm and xn are not in these
stop words. For example, the Chinese word “Ñ
W” in Table 1, c2 denotes the second character

1043

Word English Explanation

ÑW music;

Ñ ((Ñ) sound; (�E) news, tidings; (Ñ�) tone; (6¼) a surname;

W N. (ÑW) music; (6¼) a surname; (�¯; ÷v) pleasure, enjoyment; JJ. (¯W)
happy,glad,joyful,cheerful; V. (U�) enjoy, be glad to, love, find pleasure in; (�)
laugh, be amused; RB. (W¿) gladly, happily, willingly;

âu sofa, settee;

â N. (âf) sand; (,
¥âG� Ô) granulated, powdered; (6¼) a surname; JJ.
(ÓÑØ�y) (of voice) hoarse, husky;

u N. (Þu) hair; V. (xÑ;�G) send out, distribute, deliver; (u�) launch, discharge,
shoot, emit; (�), u)) produce, generate, come into existence; (L�) express,
utter; (*�, mÐ) expand, develop; (Ï�ãÔ
,!) flourish; (�Ñ, Ñm)
spread out, disperse, diffuse; etc.;

Table 1: English Translation of Chinese words and characters in ICIBA. V., N., JJ., RB. denote their verb, noun, adjective and

adverb meaning respectively. Different meanings of word and character are separated by semicolon.

“W” in the word. Trans(c32) is the third trans-
lation English words set of character “W”, which
is {pleasure, enjoyment}. Therefore xm can be
pleasure or enjoyment here.

If the Sim(ci, cj) is above a threshold δ, then they
are merged as one semantic meaning. For simplici-
ty, we use the union of English translation words set.
One character may be translated into several English
words. We may average all the translation word em-
beddings and then compute the similarity, or selec-
t the maximum value of the similarity between all
English word pairs. In our experiments, maximum
method works better.

Finally, we perform Chinese character sense dis-
ambiguation. In Chinese, characters may have mul-
tiple meanings, but for a certain word, their mean-
ings are determined. For exmaple, the word “ÑW”,
the English translation is music. For character “W”,
the first translation “music” matches the meaning of
the word. For character “Ñ”, the best match is the
first translation “sound”. For transliterated word like
“âu”, the English translations are sofa and settee,
neither sofa nor settee have high similarity with En-
glish translation words of character “â” and charac-
ter “u”. Formally, if max(Sim(xt, ck)) > λ, ck ∈
xt, then xt is identified as compositional word, and
belongs to the compositional set COMP. For com-
positional words, we build a set

F = {(xt, st, nt) | xt ∈ COMP}, (5)

where

st = {Sim(xt, ck) | ck ∈ xt},
nt = {max

i
Sim(xt, cik) | ck ∈ xt}

(6)

For example, the word “ÑW” is defined as
(“ÑW”, {Sim(“ÑW”, “Ñ”), Sim(“ÑW”, “
W”)},{1,1}) in F .

3.3 Learn word and character vectors with
SCWE

The internal characters in a word make differen-
t contributions to its semantic meaning. However,
in Chen et al. (2015), the contribution of compo-
nent characters to the semantic meaning of word are
treated equally. They add character embeddings to
the word embeddings with the same weight, which
may undermine the quality of word embeddings.
Based on this point, we propose a similarity-based
character-enhanced word embedding model, which
takes the contribution of characters into account. We
name it SCWE for ease of reference in the later part.
The architecture of CWE and SCWE are shown in
Fig. 1.

Similarity-Based Character-Enhanced word
Embedding In the character sense disambiguation
stage, we build a set F , which contains composi-
tional words, the similarity between words and its
component characters, and the meaning order num-
ber of characters in the word. Suppose xt in W is a

1044

Figure 1: Architecture of models. The left is CWE and right is SCWE. “�� (frog)a? (jump into)³* (pond)” is the word

sequence. The word “��” is composed of characters “� (blue or green)” and “� (frog)”, and the word “³* (pond) is composed

of characters “³ (pond, pool)” and “* (pond)”.

compositional word, in SCWE,

v̂xt =
1
2
{
vxt +

1
Nt

Nt∑
k=1

Sim(xt, ck)vck
}

(7)

To deal with ambiguity problem of Chinese char-
acters, we propose multiple-prototype character em-
beddings and denote it as SCWE+M model. Since
the meaning of a character is determined in a given
word, we utilize the information provided by the last
element in set F , and use different character embed-
dings for different meanings of characters. Then, in
SCWE+M,

v̂xt =
1
2
{
vxt +

1
Nt

Nt∑
k=1

Sim(xt, ck)vcik
}

(8)

Complexity analysis We analyze the complexi-
ties of CBOW, CWE, SCWE and SCWE+M. Let S
denotes the size of corpus, |W | denotes the size of
vocabulary, |C| denotes the number of Chinese char-
acters in corpus. And d is the dimensions of Chi-
nese word and character embeddings, k is the con-
text window size, f is the time spend in computing
hierarchical softmax or negative sampling, n is the
average number of characters in a Chinese word, m
is the average meaning number of Chinese charac-
ters. The results are shown in Table 2.

In Chinese, most of words are composed by t-
wo Chinese characters, and the meaning number of
commonly used characters are usually less than five.

Moreover, according to CJK Unified Ideographs1,
the total number of Chinese characters is 20913,
the commonly used characters are less than 10000.
Therefore, our model is competitive to other meth-
ods in model parameters and computational com-
plexity.

Method Model parameters
Computational

complexity

CBOW |W |d 2kSf

CWE (|W |+ |C|)d 2kS(f + n)

SCWE (|W |+ |C|)d 2kS(f + n)

SCWE + M (|W |+m|C|)d 2kS(f+n+mn)

Table 2: Complexity analysis

4 Experiments and Analysis

4.1 Experiments Settings

We select English Wikipedia Dump2 to train English
word embeddings with CBOW, and set dimensions
to 200. For Chinese word embeddings, we selec-
t Chinese Wikipedia Dump3 to train character and
word embeddings. Before training, pure digits and
non-Chinese characters are removed. We use an
open-source Chinese segment tool called ANSJ4 to

1https://en.wikipedia.org/wiki/CJK_
Unified_Ideographs

2http://download.wikipedia.com/enwiki/
3http://download.wikipedia.com/zhwiki/
4https://github.com/NLPchina/ansj_seg

1045

segment words in corpus. ANSJ is a java implemen-
tation of ICTCLAS (Institute of Computing Tech-
nology, Chinese Lexical Analysis System). It can
process about one million words in a second, and
get up to 96 percent accuracy in segmentation task.
The part-of-speech tagging and name entity recog-
nition tasks are also done in this process. We select
ICIBA5 as English-Chinese translation tool, which
provides us with an application programming inter-
face. CBOW and CWE are used as baseline meth-
ods. Context window size is set as 5 and both Chi-
nese word and character embeddings are set as 100
dimension. After some cross validation steps, our
threshold δ and λ are set as 0.5 and 0.4 in character
disambiguation process. The influence of λ and δ is
report in the later part.

Model wordsim-240 wordsim-296

CBOW 51.78 60.82

CWE 52.57 60.36

SCWE 54.92 60.85

SCWE + M 55.10 62.86
Table 3: Evaluation on wordsim-240 and wordsim-296

4.2 Word Similarity

Word similarity is a task to compute semantic relat-
edness between given word pairs. The relatedness
between word pairs have been scored by human in
advance. The correlation between model results and
human judgement can be used to evaluate the per-
formance of models. In this paper, wordsim-240
and wordsim-296 (Jin and Wu, 2012) are used as e-
valuation datasets. The Spearman’s rank correlation
(Myers et al., 2010) is applied to compute the corre-
lation. The experimental results are summarized in
Table 3.

We observe that on wordsim-240, SCWE and
SCWE+M outperform the baseline methods, which
indicates the effectiveness of exploiting the inter-
nal structure. On dataset wordsim-296, we can
see that CBOW, CWE, SCWE perform similarly.
This may be explained by some highly ambiguous
Chinese characters in this dataset. In SCWE and
CWE, representing these ambiguous characters with
the same embeddings may undermine word embed-

5http://www.iciba.com/

Fudan-large Size
Environment 1218
Agriculture 1022
Economy 1601
Politics 1025
Sports 1254

Fudan-small Size
Education 59
Philosophy 44
Transport 58
Medical 52
Military 75

Table 4: 2 groups datasets of text classification, the first col-

umn denotes the category of documents and the second denotes

number of documents in each category.

dings. Therefore, SCWE+M achieves a better per-
formance by applying multiple-prototype character
embeddings.

4.3 Text Classification

In this experiment, we use Fudan Corpus6 as
datasets, which contains 20 categories of docu-
ments, including economy, politics, sports and etc..
The number of documents in each category ranges
from 27 to 1061. To avoid imbalance, we select 10
categories and organize them into 2 groups. One
group is named Fudan-large and each category in
this group contains more than 1000 documents. The
other is named Fudan-small and each category con-
tains less than 100 documents. In each category, 80
percent of documents are used as training set, the
rest are used as testing set to evaluate the perfor-
mance. The detailed information for two datasets
are reported in Table 4.

Similar to the way we deal with Chinese training
corpus, pure digits and non-Chinese characters are
removed and ANSJ is used to do word segmentation
on these datasets. The publish information of each
document is removed. We represent each documen-
t by averaging word embeddings in the document.
The classifiers are trained using LIBLINEAR pack-
age(Fan et al., 2008) with the embeddings obtained
from different methods. The performance of each
method is evaluated by predicting accuracy on test-
ing set. Experiment results are given in Table 5.

It is observed that our methods outperform the
baseline methods on both datasets. This can be ex-
plained that the semantic relatedness of a word with
the component characters which have more contri-
bution to its semantic meaning is strengthen in our
methods. Such as, in sports documents, the word

6http://www.datatang.com/data/44139

1046

Figure 2: Illustration of words and characters in two dimension plane.

Method Fudan-small Fudan-large

CBOW 84.75 91.42

CWE 88.14 91.84

SCWE 91.53 92.68

SCWE + M 93.22 92.89
Table 5: Evaluation accuracies (%) on text classification.

“¥” (ball) is used frequently. For Chinese word-
s like “;¥” (basketball) and “�¥” (tennis), the
character “¥” contributes more to their semantic
meaning than other characters. Therefore, they lie
closer to character “¥” in embedding space ob-
tained by our model than CBOW and CWE, and tend
to form a cluster in embedding space.

4.4 Multiple Prototype of Chinese Charaters

To tackle the ambiguity of Chinese characters, we
propose multiple-prototype character embeddings.
To evaluate the effectiveness of our method, we use
PCA to conduct dimensionality reduction on word
and character embeddings. The results are illustrat-
ed in Fig 2. We take 3 different meanings of Chinese
characters “�” and “1”, and 2 of their top-related
words as examples. The character followed by a dig-
it i denotes the i-th meanings of it.

We can observe that characters and words, which
have similar meanings are gathered together. For ex-
ample, “13”, “1r” and “ß1Ç” are all related
to the light. Thus, they get closer in the embedding
space.

We also develop a dataset to compare our method
with the disambiguation methods in Chen et al.
(2015). We select some ambiguous Chinese char-

Characters Words

�1 (say, speak)
`� (say)
¡� (speak)

�2 (Taoism, Taoist)
�² (Taoist scriptures)
��ä (Taoist)

�3 (road, path)

� (branch road)
¶� (royal road)

11 (scenery)
�1ìÚ (a landscape
of lakes and mountains)
²� (bright and beautiful)

12 (time)
�1 (time, year)
1Ò (time)

13 (light,ray)
1r (light intensity)
ß1Ç (light transmittance)

Table 6: English explanatory of characters and their nearest

words in vector space.

acters, and then use online Xinhua Dictionary7 as
our standard to disambiguate the words that contain
these ambiguous characters. Each word is assigned
a number according to their explanation in the dic-
tionary. We use KNN as classifier to evaluate all the
methods. The results are shown in Table 7. It is
observed that our method outperforms the methods
proposed in Chen et al. (2015).

Model Accuracy

CWE + P 84.9

CWE + L 81.0

CWE + LP 85.4

CWE + N 73.5

SCWE + M 91.1
Table 7: Evaluation accuracies (%) on ambiguous characters.

7http://xh.5156edu.com/

1047

Words CWE SCWE

��
(frog)

�� (green snake)
�� (blue crab)
�þ (green pepper)
Ú�
(Rana catesbeiana)

Ú�
(Rana catesbeiana)
	k (fox)
�� (crab)
� (frog)

>{
(telephone)

>{�
(telephone network)
>e (Email)
>{k (phonecard)
�å>{
(toll call)

>Õ (dispatch)
ÃÅ (cellphone)
ÏÕ
(communication)
á& (message)

Table 8: Nearest words example of Chinese words.

4.5 Qualitative analysis of word embeddings

In this part, we take two Chinese words as examples,
and list their nearest words to examine the quality
of word embeddings obtained by CWE and SCWE.
The results are shown in Table 8. We can observe
the most similar words return by CWE and SCWE
both tend to share common characters with the giv-
en word. In CWE, characters with little semantic
contribution to the word may undermine the quali-
ty of word embeddings. For example, the charac-
ter “�” in word “��”. The semantic relatedness
of words with character “�” to the given word are
overestimated in CWE. In our model, by calculat-
ing the semantic contribution of internal characters
to the word, we alleviate this misjudgement greatly,
which demonstrates the effectiveness of our model.

4.6 Parameter Analysis

In this part, the influence of parameters on our model
is investigated. The parameters include the compo-
sitional word similarity threshold λ, character dis-
ambiguation threshold δ.

Compositional word similarity To investigate
how λ influence the process of non-compositional
word detection, we build a word list of transliterated
words manually, which consists of 161 words. Then
161 of most frequent semantic compositional words
with more than one Chinese characters are added to
the list in the corpus. In Table 9, the performance of
our method in classifying transliterated words when
λ ranges from 0.25 to 0.55 are reported. From Ta-
ble 9, we can observe as λ increases, more composi-
tional words will be classified as non-compositional
words, while transliterated words are more likely to

be classified correctly. Our method achieves best F-
Score when λ = 0.4.

Character disambiguation threshold In Table
10, we show the performance of our model in disam-
biguating Chinese characters. We adopted the same
datasets in Section 4.4 with different δ. From Ta-
ble 1, we can observe some meanings of a character
are very close, therefore, a high δ are adopted in our
model. When δ = 0.5, our model gets the best result
in our dataset.

Parameter λ Precision Recall F-Score

0.25 97.0 60.9 74.8

0.30 96.5 68.9 80.4

0.35 94.6 75.8 84.2

0.40 92.0 78.9 85.0
0.45 88.9 80.1 84.3

0.50 84.0 84.5 84.2

0.55 82.5 85.1 83.8

Table 9: Precision, recall, F-score of transliterated words when

λ ranges from 0.25 to 0.55

Parameter δ Precision

0.35 87.5

0.40 89.0

0.45 89.5

0.50 91.1
0.55 89.9

0.60 89.5

0.65 88.5

Table 10: Evaluation accuracies (%) on ambiguous characters

when λ ranges from 0.35 to 0.65.

5 Conclusion

In this paper, we exploit the internal structure in
Chinese words by learning the semantic contribu-
tion of internal characters to the word. We pro-
pose a method to improve Chinese word and char-
acter embeddings with a similarity-based character-
enhanced word embeddings model. Ambiguity
problem of Chinese characters can also be tack-
led in our method. Moreover, we build a way to
classify whether a Chinese word is compositional

1048

automatically, which requires to be labelled man-
ually in CWE. We argue that our method may be
used to improve word embeddings of other language
whose internal structure is similar to Chinese. The
code and datasets we use is available at: https:
//github.com/JianXu123/SCWE.

Acknowledgement

This work is supported by NSFC grants 91546116
and 61511130083.

References
[Bengio et al.2006] Yoshua Bengio, Holger Schwenk,

Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc
Gauvain. 2006. Neural probabilistic language models.
In Innovations in Machine Learning, pages 137–186.
Springer.

[Botha and Blunsom2014] Jan A Botha and Phil Blun-
som. 2014. Compositional morphology for word rep-
resentations and language modelling. arXiv preprint
arXiv:1405.4273.

[Chen et al.2015] Xinxiong Chen, Lei Xu, Zhiyuan Liu,
Maosong Sun, and Huanbo Luan. 2015. Joint learning
of character and word embeddings. In Proceedings of
the 25th International Joint Conference on Artificial
Intelligence (IJCAI).

[Fan et al.2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. Li-
blinear: A library for large linear classification. The
Journal of Machine Learning Research, 9:1871–1874.

[Hermann and Blunsom2014] Karl Moritz Hermann and
Phil Blunsom. 2014. Multilingual models for com-
positional distributed semantics. arXiv preprint arX-
iv:1404.4641.

[Huang et al.2012] Eric H Huang, Richard Socher,
Christopher D Manning, and Andrew Y Ng. 2012.
Improving word representations via global context
and multiple word prototypes. In In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume
1, pages 873–882. Association for Computational
Linguistics.

[Jin and Wu2012] Peng Jin and Yunfang Wu. 2012.
Semeval-2012 task 4: evaluating chinese word similar-
ity. In In Proceedings of the Sixth International Work-
shop on Semantic Evaluation, pages 374–377. Associ-
ation for Computational Linguistics.

[Kalchbrenner et al.2014] Nal Kalchbrenner, Edward
Grefenstette, and Phil Blunsom. 2014. A convolu-
tional neural network for modelling sentences. arXiv
preprint arXiv:1404.2188.

[Kiros et al.2015] Ryan Kiros, Yukun Zhu, Ruslan R
Salakhutdinov, Richard Zemel, Raquel Urtasun, An-
tonio Torralba, and Sanja Fidler. 2015. Skip-thought
vectors. In Advances in Neural Information Process-
ing Systems, pages 3276–3284.

[Le and Mikolov2014] Quoc V Le and Tomas Mikolov.
2014. Distributed representations of sentences and
documents. arXiv preprint arXiv:1405.4053.

[Li et al.2015] Yanran Li, Wenjie Li, Fei Sun, and Su-
jian Li. 2015. Component-enhanced chinese character
embeddings. arXiv preprint arXiv:1508.06669.

[Luong et al.2013] Minh-Thang Luong, Richard Socher,
and Christopher D Manning. 2013. Better word rep-
resentations with recursive neural networks for mor-
phology. CoNLL-2013, 104.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Efficient estima-
tion of word representations in vector space. arXiv
preprint arXiv:1301.3781.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and
their compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

[Mnih and Hinton2009] Andriy Mnih and Geoffrey E
Hinton. 2009. A scalable hierarchical distributed lan-
guage model. In Advances in neural information pro-
cessing systems, pages 1081–1088.

[Myers et al.2010] Jerome L Myers, Arnold Well, and
Robert Frederick Lorch. 2010. Research design and
statistical analysis. Routledge.

[Neelakantan et al.2015] Arvind Neelakantan, Jeevan
Shankar, Alexandre Passos, and Andrew McCallum.
2015. Efficient non-parametric estimation of multiple
embeddings per word in vector space. arXiv preprint
arXiv:1504.06654.

[Rumelhart et al.1988] David E Rumelhart, Geoffrey E
Hinton, and Ronald J Williams. 1988. Learning repre-
sentations by back-propagating errors. Cognitive mod-
eling, 5:3.

[Socher et al.2010] Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2010. Learning continu-
ous phrase representations and syntactic parsing with
recursive neural networks. In In Proceedings of the
NIPS-2010 Deep Learning and Unsupervised Feature
Learning Workshop, pages 1–9.

[Socher et al.2013] Richard Socher, Alex Perelygin,
Jean Y Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Re-
cursive deep models for semantic compositionality
over a sentiment treebank. In In Proceedings of the
conference on empirical methods in natural language
processing (EMNLP), volume 1631, page 1642.
Citeseer.

1049

[Srivastava et al.2013] Nitish Srivastava, Ruslan R
Salakhutdinov, and Geoffrey E Hinton. 2013. Model-
ing documents with deep boltzmann machines. arXiv
preprint arXiv:1309.6865.

[Trask et al.2015] Andrew Trask, David Gilmore, and
Matthew Russell. 2015. Modeling order in neu-
ral word embeddings at scale. arXiv preprint arX-
iv:1506.02338.

[Yu and Dredze2015] Mo Yu and Mark Dredze. 2015.
Learning composition models for phrase embeddings.
Transactions of the Association for Computational
Linguistics, 3:227–242.

[Zhang et al.2014] Jiajun Zhang, Shujie Liu, Mu Li, Ming
Zhou, and Chengqing Zong. 2014. Bilingually-
constrained phrase embeddings for machine transla-
tion. In In Proceedings of the 52th Annual Meeting
on Association for Computational Linguistics. Associ-
ation for Computational Linguistics.

1050

Proceedings of NAACL-HLT 2016, pages 1051–1057,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Assessing Relative Sentence Complexity using an Incremental CCG Parser

Bharat Ram Ambati and Siva Reddy and Mark Steedman
School of Informatics, University of Edinburgh

10 Crichton Street, Edinburgh EH8 9AB
bharat.ambati@ed.ac.uk, siva.reddy@ed.ac.uk, steedman@inf.ed.ac.uk

Abstract

Given a pair of sentences, we present com-
putational models to assess if one sentence
is simpler to read than the other. While ex-
isting models explored the usage of phrase
structure features using a non-incremental
parser, experimental evidence suggests that
the human language processor works incre-
mentally. We empirically evaluate if syn-
tactic features from an incremental CCG
parser are more useful than features from
a non-incremental phrase structure parser.
Our evaluation on Simple and Standard
Wikipedia sentence pairs suggests that incre-
mental CCG features are indeed more use-
ful than phrase structure features achieving
0.44 points gain in performance. Incremen-
tal CCG parser also gives significant improve-
ments in speed (12 times faster) in comparison
to the phrase structure parser. Furthermore,
with the addition of psycholinguistic features,
we achieve the strongest result to date re-
ported on this task. Our code and data can
be downloaded from https://github.
com/bharatambati/sent-compl.

1 Introduction

The task of assessing text readability aims to clas-
sify text into different levels of difficulty, e.g., text
comprehensible by a particular age group or second
language learners (Petersen and Ostendorf, 2009;
Feng, 2010; Vajjala and Meurers, 2014). There have
been efforts to automatically simplify Wikipedia to
cater its content for children and English language
learners (Zhu et al., 2010; Woodsend and Lapata,
2011; Coster and Kauchak, 2011; Wubben et al.,

2012; Siddharthan and Mandya, 2014). A related
attempt of Vajjala and Meurers (2016) studied the
usage of linguistic features for automatic classifi-
cation of a pair of sentences – one from Standard
Wikipedia and the other its corresponding simplifi-
cation from Simple Wikipedia – into COMPLEX and
SIMPLE. As syntactic features, they use informa-
tion from phrase structure trees produced by a non-
incremental parser, and found them useful.

However, psycholinguistic theories suggest that
humans process text incrementally, i.e., humans
build syntactic analysis interactively by enhancing
current analysis or choosing an alternative analy-
sis on the basis of the plausibility with respect to
context (Marslen-Wilson, 1973; Altmann and Steed-
man, 1988; Tanenhaus et al., 1995). Besides being
cognitively possible, incremental parsing has shown
to be useful for many real-time applications such as
language modeling for speech recognition (Chelba
and Jelinek, 2000; Roark, 2001), modeling text read-
ing time (Demberg and Keller, 2008), dialogue sys-
tems (Stoness et al., 2004) and machine translation
(Schwartz et al., 2011). Furthermore, incremental
parsers offer linear time speed. Here we explore the
usefulness of incremental parsing for predicting rel-
ative sentence readability.

Given a pair of sentences – one sentence a sim-
plified version of the other – we aim to classify the
sentences into SIMPLE or COMPLEX. We use the
sentences from Standard Wikipedia (WIKI) paired
with their corresponding simplifications in Simple
Wikipedia (SIMPLEWIKI) as training and evaluation
data. We pose this problem as a pairwise classifi-
cation problem (Section 2). For feature extraction,

1051

we use an incremental CCG parser which provides a
trace of each step of the parse derivation (Section 3).
Our evaluation results show that incremental parse
features are more useful than non-incremental parse
features (Section 5). With the addition of psycholin-
guistic features, we attain the best reported results
on this task. We make our system available for pub-
lic usage.

2 Problem Formulation

Initially Vajjala and Meurers (2014) trained a bi-
nary classifier to classify sentences in SIMPLEWIKI

to the class SIMPLE, and sentences in WIKI to the
class COMPLEX. This model performed poorly on
relative readability assessment. Noting that not all
SIMPLEWIKI sentences are simpler than every other
sentence in WIKI, Vajjala and Meurers (2016) re-
framed the problem as a ranking problem according
to which given a pair of parallel SIMPLEWIKI and
WIKI sentences, the former must be ranked better
than the latter in terms of readability. Inspired by
Vajjala and Meurers (2016), we also treat each pair
together, and model relative readability assessment
as a pairwise classification problem. Let a, b be a
pair of parallel sentences. Let a, b represent their
corresponding feature vectors. We define our classi-
fier Φ as

Φ(a− b) = 1 if a ∈ SIMPLE & b ∈ COMPLEX

= −1 if b ∈ SIMPLE & a ∈ COMPLEX

The motivation for our modelling is that relative
features (difference) are more useful than absolute
features, e.g., intuitively shorter sentences are sim-
ple to read, but length can only be defined in com-
parison with another sentence.

3 Incremental CCG Parse Features

Below we provide necessary background, and then
present the features.

3.1 Combinatory Categorial Grammar (CCG)
CCG (Steedman, 2000) is a lexicalized formalism
in which words are assigned syntactic types encod-
ing subcategorization information. Figure 1 dis-
plays an incremental CCG derivation. Here, the
syntactic type (category) (S\NP)/NP on ate indi-
cates that it is a transitive verb looking for a NP

John ate salad with mushrooms
NP (S\NP)/NP NP (NP\NP)/NP NP
> T

S/(S\NP)
> B

S/NP
>

S
>

NP\NP. R >

S/NP NP
<

NP
>

S

Figure 1: Incremental CCG derivation tree.

(object) on the righthand side and a NP (subject)
on the lefthand side. Due to its lexicalized and
strongly typed nature, the formalism offers attrac-
tive properties like elegant composition mechanisms
which impose context-sensitive constraints, effi-
cient parsing algorithms, and a synchronous syntax-
semantics interface. In Figure 1, the category of with
(NP\NP)/NP combines with the category of mush-
rooms NP on its righthand side using the combina-
tory rule of forward application (indicated by >), to
form the category NP\NP representing the phrase
with mushrooms. This phrase in turn combines with
other contextual categories using CCG combinators
to form new categories representing larger phrases.

In contrast to phrase structure trees, CCG deriva-
tion trees encode a richer notion of syntactic type
and constituency. For example, in a phrase struc-
ture tree, the category (constituency tag) of ate
would be VBD irrespective of whether it is transi-
tive or intransitive, whereas the CCG category dis-
tinguishes these types. As the linguistic complexity
increases, the complexity of the CCG category may
increase, e.g., the relative pronoun has the category
(NP\NP)/(S\NP) in relative clause constructions.
In addition, CCG derivation trees have combinators
annotated at each level which indicate the way in
which the category is derived, e.g., in Figure 1 the
category S/NP of John ate is formed by first type-
raising (indicated by >T) John and then applying
forward composition (indicated by >B) with ate.
CCG combinators can throw light into the linguistic
complexity of the construction, e.g., crossed com-
position is an indicator of long-range dependency.
Phrase structure trees do not have this additional in-
formation encoded on their nodes.

3.2 Incremental CCG
Ambati et al. (2015) introduced a shift-reduce in-

1052

Mourners and admirers came to lay flowers and light candles at the Apple Store
N conj N (S[dcl]\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP N conj (S[b]\NP)/NP N ((S\NP)\(S\NP))/NP NP[nb]/N N/N N

T
NP

T
NP

>
NP\NP

<
NP

T
S/(S\NP)

> B
S/(S[to]\NP)

> B
S/(S[b]\NP)

> B
S/NP

T
NP

> B
S

T
NP

>
S[b]\NP

>
(S[b]\NP)\(S[b]\NP)

R >
S

>
N

>
NP[nb]

>
(S\NP)\(S\NP)

R <
S

Figure 2: Incremental Derivation for a relatively complex sentence.

cremental CCG parser for English.1 The main dif-
ference between this incremental version and stan-
dard non-incremental CCG parsers such as Zhang
and Clark (2011) is that as soon as the grammar al-
lows two types to combine, they are greedily com-
bined. For example, in Figure 1, first John is pushed
on the stack but is immediately reduced when its
head ate appears on the stack (i.e., John’s category
combines with ate’s category to form a new cate-
gory), and similarly when salad is seen, it is reduced
with ate. When with appears it waits to be reduced
until its head mushrooms appears on the stack, and
later mushrooms is reduced with salad via ate us-
ing a special revealing operation (indicated by R>)
followed by a sequence of operations. The revealing
operation is performed when a category has greedily
consumed a head in advance of a subsequently en-
countered post-modifier to regenerate the head. In
the non-incremental version, salad is not reduced
with ate until with mushrooms is reduced with it.

Consider the following sentences (A) and (B)
where (B) is a simpler version of (A).

(A) Mourners and admirers came to lay flow-
ers and light candles at the Apple Store.

(B) People went to the Apple Store with
flowers and candles.

Figures 2 and 3 present the incremental deriva-
1This parser is not word by word (strictly) incremental but is

incremental with respect to CCG derivational constituents fol-
lowing Strict Competence Hypothesis (Steedman, 2000).

tions for both these sentences. Consider the CCG
category for to in both the sentences. In (A), the
category of to is (S[dcl]\NP)/(S[to]\NP)
which is more complex compared to the category of
to in (B) which is PP/NP. Both the derivations have
one right reveal action (indicated by R >). In (A),
the depth of this action is two since it is a VP coordi-
nation.2 Whereas in (B) the depth is only one. Such
information can be useful in predicting the complex-
ity of a sentence.

3.3 Features

As discussed above, as the complexity of a sentence
increases, the complexity of CCG categories, com-
binators and the number of revealing operations in-
crease in the incremental analysis. We exploit this
information to assess the readability of a sentence.
For each sentence, we build a feature vector using
the features defined below extracted from its incre-
mental CCG derivation.

Sentence Level Features. These features include
sentence length, height of the CCG derivation, and
the final number of constituents. A CCG derivation
may have multiple constituents if none of the combi-
nators allow the constituents to combine. This hap-
pens mainly in ungrammatical sentences.

CCG Rule Counts. These features include the
number of applications, forward applications, back-

2Please see Ambati et al. (2015) for additional information
on the depth of revealing operations.

1053

People went to the Apple Store with flowers and candles
N (S[dcl]\NP)/PP PP/NP NP[nb]/N N/N N (S\NP)\(S\NP)/NP N conj N

T
NP

T
S/(S\NP)

> B
S/PP

>
N

>
NP[nb]

>
PP

>
S

T
NP

T
(S\NP)\(S\NP)

R <
S

T
NP

>
NP\NP

R >
S

Figure 3: Incremental Derivation for a relatively simple sentence.

ward applications, compositions, forward compo-
sitions, backward compositions, left punctuations,
right punctuations, coordinations, type-raisings,
type-changing, left revealing, right revealing oper-
ations used in the CCG derivation. Each combinator
is treated as a different feature dimension with its
count as the feature value. For the revealing opera-
tions, we also add additional features which indicate
the depth of the revealing which is analogous to sur-
prisal (Hale, 2001).

CCG Categories. We define the complexity of
a CCG category as the number of basic syntac-
tic types used in the category, e.g., the complexity
of (S[pss]\NP)/(S[to]\NP) is 4 since it has one
S[pss], one S[to], and two NPs. Note that CCG
type S[pss] indicates a sentence but of the subtype
passive. We use average complexity of all the CCG
categories used in the derivation as a real valued fea-
ture. In addition, we define integer-valued features
representing the frequency of specific subtypes (we
have 21 subtypes each defined as a different dimen-
sion) and the frequency of the top 8 syntactic types
(each as a different dimension).

4 Experimental Setup

4.1 Evaluation Data

As evaluation data, we use WIKI and SIMPLEWIKI

parallel sentence pairs collected by Hwang et al.
(2015), a newer and larger version compared to Zhu
et al. (2010)’s collection. We only use the pairs
from the section GOOD consisting of 150K pairs. We
further removed pairs containing identical sentences
which resulted in 117K clean pairs. We randomly

divided the data into training (60%), development
(20%) and test (20%) splits.

4.2 Implementation details
As our classifier (see Section 2) we use SVM with
Sequential Minimal Optimization in Weka toolkit
(Hall et al., 2009) following its popularity in read-
ability literature (Feng, 2010; Hancke et al., 2012;
Vajjala and Meurers, 2014).3 We use Ambati et
al. (2015)’s CCG parser for extracting CCG deriva-
tions. This parser requires a CCG supertagger to
limit its search space for which we use EasyCCG
tagger (Lewis and Steedman, 2014).

4.3 Baseline
NON-INCREMENTAL PST. Following Vajjala
and Meurers (2016), we use features extracted from
Phrase Structure Trees (PST) produced by the Stan-
ford parser (Klein and Manning, 2003), a non-
incremental parser. We use the exact code used by
Vajjala and Meurers (2016) to extract these features
which include part-of-speech tags, constituency fea-
tures like the number of noun phrases, verb phrases
and preposition phrases, and the average size of the
constituent trees. Vajjala and Meurers (2016) used a
total of 57 features.4

5 Results

First we analyze the impact of incremental CCG
features (and so the name INCREMENTAL CCG).

3We also experimented with Naive Bayes and Logistic Re-
gression and observed similar pattern in the results. But, SVM
gave the best results among the classifiers we explored.

4Details of the features can be found in Vajjala and Meurers
(2016).

1054

Model Accuracy

NON-INCREMENTAL PST 71.68
INCREMENTAL CCG 72.12

Table 1: Impact of different syntactic features.

Table 1 presents the results of predicting rela-
tive readability on the test data.5 INCREMEN-
TAL CCG achieves 72.12% accuracy, a signif-
icant6 improvement of 0.44 points over NON-
INCREMENTAL PST (71.68%) indicating that in-
cremental CCG features are empirically more use-
ful than non-incremental phrase structure features.
We also evaluate if this result holds for incremen-
tal vs. non-incremental CCG parse features. Am-
bati et al. (2015) can also produce non-incremental
CCG parses by turning off a flag. Note that in the
non-incremental version, revealing features are ab-
sent. This version achieves an accuracy of 72.02%,
around 0.1% lower than the winner INCREMENTAL

CCG, yet higher than NON-INCREMENTAL PST
showing that CCG derivation trees offer richer syn-
tactic information than phrase structure trees. POS
taggers used for Stanford and CCG parsers gave
similar accuracy. This shows that the improvements
are indeed due to the incremental CCG parse fea-
tures rather than the POS features.

Apart from the syntactic features, Vajjala and
Meurers (2016) have also used psycholinguistic fea-
tures such as age of acquisition of words, word im-
agery ratings, word familiarity ratings, and ambigu-
ity of a word, collected from the psycholinguistic
repositories Celex (Baayen et al., 1995), MRC (Wil-
son, 1988), AoA (Kuperman et al., 2012) and Word-
Net (Fellbaum, 1998). These features are found to
be highly predictive for assessing readability. We
enhance our syntactic models NON-INCREMENTAL

PST and INCREMENTAL CCG by adding these psy-
cholinguistic features to build NON-INCREMENTAL

PST++ and INCREMENTAL CCG++ respectively.
Table 2 presents the final results along with the pre-
vious state-of-the-art results of Vajjala and Meurers
(2016).7 Psycholinguistic features gave a boost of

5All feature engineering is done on the development data.
6Numbers in bold indicate significant results, significance

measured using McNemar’s test.
7We ran Vajjala and Meurers (2016)’s code on our dataset

and get similar results reported on Zhu et al. (2010)’s dataset.

Model Accuracy

Vajjala and Meurers (2016) 74.58
NON-INCREMENTAL PST++ 78.68
INCREMENTAL CCG++ 78.87

Table 2: Performance of models with both syntactic
and psycholinguistic features.

around 6.75 points on the syntactic models.8 Ad-
ditionally the performance gap between our mod-
els decrease (from 0.44 to 0.19) showing some of
the psycholinguistic features also model a subset
of the syntactic features. INCREMENTAL CCG++
achieves an accuracy of 78.77% outperforming the
previous best system of Vajjala and Meurers (2016)
by a wide margin.

Speed. In addition to accuracy, parsing speed is
important in real-time applications. The Stanford
parser took 204 minutes to parse the test data with a
speed of 3.8 sentences per second. The incremental
CCG parser took 16 minutes with an average speed
of 47.5 sentences per second, a 12X improvement
over the Stanford parser. These numbers include
POS tagging time for the Stanford parser, and POS
tagging and supertagging time for the incremental
CCG parser. All the systems are run on the same
hardware (Intel i5-2400 CPU @ 3.10GHz).

6 Conclusion

Our empirical evaluation on assessing relative sen-
tence complexity suggests that syntactic features ex-
tracted from an incremental CCG parser are more
useful than from a non-incremental phrase struc-
ture parser. This result aligns with psycholinguis-
tic findings that human sentence processor is incre-
mental. Our incremental model enhanced with psy-
cholinguistic features achieves the best reported re-
sults on predicting relative sentence readability. We
experimented with Simple Wikipedia and Wikipedia
data from Hwang et al. (2015). We can explore the
usefulness of our system on other datasets like On-
eStopEnglish (OSE) corpus (Vajjala and Meurers,
2016) or the dataset from Xu et al. (2015). We are
also currently exploring the usefulness of incremen-
tal analysis for psycholinguistic data by switching
off the lookahead feature.

8Non-incremental CCG achieves an accuracy of 78.77%.

1055

Acknowledgments

We thank Sowmya Vajjala and Dave Howcroft for
providing data and settings for the baseline. We also
thank the three anonymous reviewers for their useful
suggestions. This work was supported by ERC Ad-
vanced Fellowship 249520 GRAMPLUS, EU IST
Cognitive Systems IP Xperience and a Google PhD
Fellowship for the second author.

References
[Altmann and Steedman1988] Gerry Altmann and Mark

Steedman. 1988. Interaction with context during hu-
man sentence processing. Cognition, 30(3):191–238.

[Ambati et al.2015] Bharat Ram Ambati, Tejaswini De-
oskar, Mark Johnson, and Mark Steedman. 2015.
An Incremental Algorithm for Transition-based CCG
Parsing. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 53–63, Denver, Colorado, May–June. As-
sociation for Computational Linguistics.

[Baayen et al.1995] R. H. Baayen, R. Piepenbrock, and
L. Gulikers. 1995. The CELEX Lexical Database
(CD-ROM). Linguistic Data Consortium, University
of Pennsylvania, Philadelphia, PA.

[Chelba and Jelinek2000] Ciprian Chelba and Frederick
Jelinek. 2000. Structured language modeling. Com-
puter Speech & Language, 14(4):283–332.

[Coster and Kauchak2011] William Coster and David
Kauchak. 2011. Simple English Wikipedia: A New
Text Simplification Task. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
665–669, Portland, Oregon, USA, June. Association
for Computational Linguistics.

[Demberg and Keller2008] Vera Demberg and Frank
Keller. 2008. Data from eye-tracking corpora as evi-
dence for theories of syntactic processing complexity.
Cognition, 109(2):193–210.

[Fellbaum1998] Christiane Fellbaum. 1998. WordNet.
Wiley Online Library.

[Feng2010] Lijun Feng. 2010. Automatic readability as-
sessment. Ph.D. thesis, City University of New York.

[Hale2001] John Hale. 2001. A probabilistic Earley
parser as a psycholinguistic model. In Proceedings
of the second meeting of the North American Chap-
ter of the Association for Computational Linguistics
on Language technologies, pages 159–166. Associa-
tion for Computational Linguistics.

[Hall et al.2009] Mark Hall, Eibe Frank, Geoffrey
Holmes, Bernhard Pfahringer, Peter Reutemann,

and Ian H Witten. 2009. The WEKA Data Mining
Software: An Update. ACM SIGKDD explorations
newsletter, 11(1):10–18.

[Hancke et al.2012] Julia Hancke, Sowmya Vajjala, and
Detmar Meurers. 2012. Readability Classification
for German using Lexical, Syntactic, and Morpholog-
ical Features. In Proceedings of COLING 2012, pages
1063–1080, Mumbai, India, December. The COLING
2012 Organizing Committee.

[Hwang et al.2015] William Hwang, Hannaneh Ha-
jishirzi, Mari Ostendorf, and Wei Wu. 2015.
Aligning Sentences from Standard Wikipedia to
Simple Wikipedia. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 211–217, Denver,
Colorado, May–June. Association for Computational
Linguistics.

[Klein and Manning2003] Dan Klein and Christopher D.
Manning. 2003. Accurate Unlexicalized Parsing. In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 423–430,
Sapporo, Japan, July. Association for Computational
Linguistics.

[Kuperman et al.2012] Victor Kuperman, Hans
Stadthagen-Gonzalez, and Marc Brysbaert. 2012.
Age-of-acquisition ratings for 30,000 English words.
Behavior Research Methods, 44(4):978–990.

[Lewis and Steedman2014] Mike Lewis and Mark Steed-
man. 2014. Improved CCG parsing with Semi-
supervised Supertagging. Transactions of the Asso-
ciation for Computational Linguistics (TACL), 2:327–
338.

[Marslen-Wilson1973] W. Marslen-Wilson. 1973. Lin-
guistic structure and speech shadowing at very short
latencies. Nature, 244:522–533.

[Petersen and Ostendorf2009] Sarah E Petersen and Mari
Ostendorf. 2009. A machine learning approach to
reading level assessment. Computer speech & lan-
guage, 23(1):89–106.

[Roark2001] Brian Roark. 2001. Probabilistic Top-Down
Parsing and Language Modeling. Computational Lin-
guistics, 27:249–276.

[Schwartz et al.2011] Lane Schwartz, Chris Callison-
Burch, William Schuler, and Stephen Wu. 2011.
Incremental Syntactic Language Models for Phrase-
based Translation. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 620–631,
Portland, Oregon, USA, June. Association for Compu-
tational Linguistics.

[Siddharthan and Mandya2014] Advaith Siddharthan and
Angrosh Mandya. 2014. Hybrid text simplification

1056

using synchronous dependency grammars with hand-
written and automatically harvested rules. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 722–731, Gothenburg, Sweden, April. Associa-
tion for Computational Linguistics.

[Steedman2000] Mark Steedman. 2000. The Syntactic
Process. MIT Press, Cambridge, MA, USA.

[Stoness et al.2004] Scott C Stoness, Joel Tetreault, and
James Allen. 2004. Incremental Parsing with Refer-
ence Interaction. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together, pages 18–25.

[Tanenhaus et al.1995] MK Tanenhaus, MJ Spivey-
Knowlton, KM Eberhard, and JC Sedivy. 1995.
Integration of visual and linguistic information
in spoken language comprehension. Science,
268(5217):1632–1634.

[Vajjala and Meurers2014] Sowmya Vajjala and Detmar
Meurers. 2014. Assessing the relative reading level
of sentence pairs for text simplification. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 288–297, Gothenburg, Sweden, April. Associa-
tion for Computational Linguistics.

[Vajjala and Meurers2016] Sowmya Vajjala and Detmar
Meurers. 2016. Readability-based Sentence Ranking
for Evaluating Text Simplification. In arXiv preprint.

[Wilson1988] Michael Wilson. 1988. MRC Psycholin-
guistic Database: Machine-usable dictionary, version
2.00. Behavior Research Methods, Instruments, &
Computers, 20(1):6–10.

[Woodsend and Lapata2011] Kristian Woodsend and
Mirella Lapata. 2011. WikiSimple: Automatic
Simplification of Wikipedia Articles. In Proceedings
of the Twenty-Fifth AAAI Conference on Artificial
Intelligence (AAAI), pages 927–932, San Francisco,
California, USA.

[Wubben et al.2012] Sander Wubben, Antal van den
Bosch, and Emiel Krahmer. 2012. Sentence Sim-
plification by Monolingual Machine Translation. In
Proceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pages 1015–1024, Jeju Island, Korea, July.
Association for Computational Linguistics.

[Xu et al.2015] Wei Xu, Chris Callison-Burch, and Court-
ney Napoles. 2015. Problems in Current Text Sim-
plification Research: New Data Can Help. Transac-
tions of the Association for Computational Linguistics,
3:283–297.

[Zhang and Clark2011] Yue Zhang and Stephen Clark.
2011. Shift-Reduce CCG Parsing. In Proceedings of

the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 683–692, Portland, Oregon, USA, June.
Association for Computational Linguistics.

[Zhu et al.2010] Zhemin Zhu, Delphine Bernhard, and
Iryna Gurevych. 2010. A Monolingual Tree-based
Translation Model for Sentence Simplification. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
1353–1361, Beijing, China, August. Coling 2010 Or-
ganizing Committee.

1057

Proceedings of NAACL-HLT 2016, pages 1058–1063,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Frustratingly Easy Cross-Lingual Transfer for Transition-Based
Dependency Parsing

Ophélie Lacroix1, Lauriane Aufrant1,2, Guillaume Wisniewski1 and François Yvon1

1LIMSI, CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay
2DGA, 60 boulevard du Général Martial Valin, F-75509 Paris

{ophelie.lacroix, lauriane.aufrant, guillaume.wisniewski, francois.yvon}@limsi.fr

Abstract

In this paper, we present a straightforward
strategy for transferring dependency parsers
across languages. The proposed method
learns a parser from partially annotated data
obtained through the projection of annotations
across unambiguous word alignments. It does
not rely on any modeling of the reliability
of dependency and/or alignment links and is
therefore easy to implement and parameter
free. Experiments on six languages show that
our method is at par with recent algorithmi-
cally demanding methods, at a much cheaper
computational cost. It can thus serve as a fair
baseline for transferring dependencies across
languages with the use of parallel corpora.

1 Introduction

Cross-lingual learning techniques enable to transfer
useful supervision information from well-resourced
to under-resourced languages, helping the develop-
ment of NLP tools for a large number of languages.
In this work, we present a simple method for trans-
ferring dependency parsers between languages.

Two main strategies have been considered to
transfer syntactic annotations: (a) direct model
transfer and (b) annotation transfer. The first ap-
proach assumes a common representation between
the source and target languages (e.g. at the level of
PoS tags), which enables to train a model on source
data and to use it to parse target sentences. The per-
formance of ‘pure’ delexicalized dependency trans-
fer can be significantly improved using additional
techniques such as self-training (Zeman and Resnik,

2008), smart data selection (Søgaard, 2011), relex-
icalization and/or multi-source model transfer (Co-
hen et al., 2011; Naseem et al., 2012; Täckström et
al., 2013). The second approach (transfer of anno-
tations) requires parallel sentences, in which word
alignments are used to infer target syntactic struc-
tures from source dependencies. The main difficulty
here is to cope with cases of non-isomorphism be-
tween the source and target structures as well as with
the noise in source annotations and in alignments.
Turning source trees into target trees indeed may
require to filter poor alignments and to apply vari-
ous heuristic transformation rules, such as the ones
introduced in Hwa et al. (2005), later improved in
Tiedemann (2014).

In this study, we consider a simple, yet effective
approach to transfer annotations, which entirely
dispenses from the transfer rules of Hwa et al.
(2005), the sharp filtering of partially annotated
trees (Tiedemann, 2014), the inclusion of fake root
dependencies for unattached words (Spreyer and
Kuhn, 2009), or the multi-step process of Rasooli
and Collins (2015). Our proposal is, in fact, quite as
straightforward (apart from the use of parallel texts)
as the delexicalized transfer method of McDonald
et al. (2013) while achieving performances that
surpass this state-of-the-art method by a wide
margin, and competing with recent algorithmically
costly methods: it globally outperforms the scores
of (Ma and Xia, 2014) and even achieves the same
performance as (2015) for 1 language out of 5. It
can thus be used as a fair and simple baseline when
evaluating new transfer methodologies.

1058

Our method relies on the observation (Section 2)
that transition-based dependency parsers using the
dynamic oracle strategy can be trained from partially
annotated trees (in which some words may not have
a governor) using exactly the same algorithm that is
used to train from fully annotated tree. As explained
in Section 3, this observation allows us to design a
simple transfer strategy that, first, (partially) projects
syntactic annotations from a source language onto a
target language via unambiguous word alignments
and, second, learns a dependency parser from these
partially annotated target data. We then apply this
strategy for six language pairs.

2 Training Dependency Parsers on
Partially Annotated Data

2.1 Training with a Dynamic Oracle

We consider a transition-based dependency parser
based on the arc-eager algorithm (Nivre, 2003): this
parser builds a dependency tree incrementally by
performing a sequence of actions. At each step of
the parsing process, a classifier scores each possible
action and the highest scoring one is applied.

Training relies on the dynamic oracle of Goldberg
and Nivre (2012): for each sentence, a parse tree
is built incrementally; at each step, if the predicted
action creates an erroneous dependency (or, equiva-
lently, prevents the creation of a gold dependency),
a weight vector is updated, according to the percep-
tron rule. The set of all ‘correct’ actions is built con-
sidering the (potentially wrong) predicted tree and
the gold action is defined as the correct action with
the highest model score.

It is crucial to notice that the training algorithm
is an error-correction learning procedure that
solely depends on its ability to detect when an
action choice will result in an error: when no
error is detected, the construction of the parse
tree continues according to the model prediction.
Consequently, this training procedure can also be
used, unchanged, to train a dependency parser
from partially annotated data: when no supervision
information is available (no reference dependency
is known), all actions are considered as correct; in
this case, the predicted action is one of the correct
actions, the weight vector is not updated, and the
training process goes on.

20 40 60 80 100

76

78

80

% dependencies

U
A

S

full annotation partial annotation

Figure 1: UAS achieved by a parser trained on n% of the de-

pendencies on German.

This observation can be readily generalized to de-
pendency parsers using a beam search procedure.1

For the experiments in Section 3, we use a beam-
search version of the parser trained with an early-
update strategy (Collins and Roark, 2004).

2.2 Experiments on Artificial Datasets

We first carry out a control experiment on datasets in
which dependencies have been artificially removed
to show that learning from partially annotated data is
possible. We compare the performance achieved by
a parser trained on n% of the sentences of the train
set with the performance of a parser trained on the
whole train set, but in which only n% of the depen-
dencies of each sentence are known. In both condi-
tions, the total number of dependencies considered
during training is roughly the same. Figure 1 plots
the parsing performance for German, evaluated by
the UAS, with respect to the percentage of depen-
dencies that were kept. To avoid any bias, the re-
ported scores have been averaged over 10 runs. Sim-
ilar results are observed for 5 other languages of the
Universal Dependency Treebank2 (UDT) (McDon-
ald et al., 2013).

Overall, these results show that learning a parser
from partially annotated data is possible. Two other

1See (Aufrant and Wisniewski, 2016) for a detailed expla-
nation.

2See Section 3.2 for more details on datasets.

1059

conclusions can also be drawn. First, it appears
that the number of training examples can be reduced
without significantly hurting the performance: re-
moving half the training sentences only reduces the
UAS by 1.2 absolute. Second, for a similar num-
ber of annotations (i.e. number of dependencies
known), better results are achieved when more sen-
tences are annotated, even if this annotation is only
partial: in Figure 1, the UAS of a parser trained on
partially annotated sentences is higher than the UAS
of a parser trained from a subset of the training set.

Indeed, in a partial structure, information on un-
known dependencies can be inferred from neigh-
bouring dependencies because of the projectivity
constraints. Therefore, the set of gold actions is
sometimes smaller than the set of possible actions
and an update can happen even if the dependency
is unknown. For instance, when training a German
dependency parser, 35,382 updates are performed
when only 60% of the dependencies are known, to
be compared with the 31,339 updates that take place
when training on 60% of the fully annotated sen-
tences.

3 Application to Dependency Transfer

In this section, we show how learning from partially
annotated data can be used for cross-lingual depen-
dency transfer. A partial projection strategy is first
applied to infer partially annotated data for a target
language from a full-parsed source data. The target
annotations are then used to learn an effective pars-
ing model for the target language.

3.1 Partial Projection of Dependencies

Using sentence-aligned bitexts associating an au-
tomatically parsed text in a resource-rich language
with its translation in target language, dependencies
can readily be projected via alignment links, yield-
ing ‘cheap’, albeit noisy, supervision data. The main
difficulties with the projection arise with many-to-
many links and un-aligned tokens. Hwa et al. (2005)
have proposed several specific heuristics to deal with
the different kinds of alignments and project a full
dependency tree. However, this solution comes at
the expense of deleting words or creating fake de-
pendencies in the target sentence, which may intro-
duce unreliable annotations in the target data.

Absolutely nothing has been done . (en)
ADV NOUN VERB VERB VERB .

ADV PRON ADV VERB VERB VERB .
Absolument rien n’ a été fait . (fr)

ROOT

ROOT

Figure 2: Partial dependency projection from English to

French. Only English dependencies compatible with 1:1 align-

ments, and for which the POS of the aligned words are consis-

tent, are transferred to French.

In this work, we advocate another approach and
show that it is simpler and more effective to ignore
unattached words and many-to-many alignments:
we claim that training a parser from a corpus of high-
quality annotated (albeit partially) data will result
in better parsing performances than a parser trained
from fully-annotated but noisy data.

In practice, parallel sentences are aligned in both
directions with Giza++ (Och and Ney, 2003) and
these alignments are merged with the intersection
heuristic. This heuristic only selects 1:1 align-
ment links that occur in the two directional align-
ments and, intuitively, contains only reliable align-
ment points, as they have been predicted by two in-
dependent models. Note that we do not try to model
the reliability of dependency and/or alignment links,
making our approach easy to implement and param-
eter free.

We additionally consider three simple heuristics
to filter the transferred annotations and improve their
precision: we first remove from the training set tar-
get sentences containing non-projective dependen-
cies,3 as well as sentences for which less than 80%
of the words are attached. The latter case indeed cor-
responds to parallel sentences with few alignment
links that are often not perfect translation of each
other. Finally, following Rasooli and Collins (2015),
we ignore all alignment links that associate words

3As shown in the work of (Mareček, 2011), sentences con-
taining non-projective dependencies often results in low-quality
projected dependency structures.

1060

with different PoS tags. As shown in Figure 2, for
each pair of aligned sentences, only the dependen-
cies for which both the head and the dependent are
each aligned to exactly one word (PoS-consistent)
are projected.4

This approach finally produces an automatically
annotated corpus for the target language that con-
tains mostly accurate annotations, even if the depen-
dency structure is incomplete.

3.2 Datasets and Experimental Setup

All our experiments are carried out on six lan-
guages5 of the Universal Dependency Treebank
Project: German, English, Spanish, French, Italian
and Swedish. We considered as parallel corpora a
subset of the Europarl corpus (Koehn, 2005) that
have exactly the same English sentences, collect-
ing 1, 231, 216 parallel sentences for the 6 language
pairs.

For training the target partial data, we used our
own implementation of the arc-eager dependency
parser with a dynamic oracle, using the features de-
scribed in (Zhang and Nivre, 2011), with a beam size
of 8. The beam-search strategy is used for training
(20 iterations) and decoding.

3.3 Dependency Transfer Experiments

For each language pair, the source dataset (Europarl)
is PoS-tagged and parsed using the transition-based
version of the MateParser (Bohnet and Nivre, 2012),
trained on the UDT corpus with a beam size of
40.6 Dependencies are then (partially) projected
onto the target side of the corpus and filtered using
the method described above. As reported in Table 2,
after filtering, the number of sentences in the train
set varies between 15, 191 for German and 52, 554
for Swedish and the percentage of tokens receiv-
ing a dependency varies from 88.15% for French to
90.84% for German.

Our parser is then trained on the resulting partially
annotated dataset and its performance evaluated on

4To account for the root dependency, we consider that both
the source and target sentences contain an additional ROOT to-
ken that is always aligned.

5These are the languages that are both in Europarl and UDT.
6Here are the supervised scores obtained with the

MateParser (predicted PoS-tags) on the source languages: 92.4
(en), 80.4 (de), 83.1 (es), 83.8 (fr), 84.2 (it) and 85.7 (sv).

sentences
source en multi
filter 100% 80% 80%

ta
rg

et

de 7,346 15,191 70,905
es 9,293 27,700 178,147
fr 6,626 21,381 144,755
it 7,353 21,204 160,864
sv 20,550 52,554 175,201

Table 2: Number of sentences in projected and filtered target

data.

the target UDT test set by the Unlabeled Attachment
Score, UAS (excluding punctuation). Gold PoS
were used for evaluating in order to make results of
our method comparable with state-of-art methods.

The proposed method is compared to three trans-
fer method baselines: the relexicalisation procedure
of McDonald et al. (2011), the method of Ma and
Xia (2014) for transferring cross-lingual knowledge
using entropy regularization, and the recent density-
driven approach of Rasooli and Collins (2015) ex-
ploiting partially annotated data. The results are first
compared for cross-lingual transfer from English
and second, applying a voting method7 for transfer-
ring from multiple sources. Note, however, that a di-
rect comparison with these results is not completely
fair as systems were not trained with the same ex-
act conditions (less features, lower beam size, etc).
As a baseline for comparing parsers, we also report
the scores achieved by Rasooli and Collins (2015)
and by our method on fully projected sentences (’en-
100%’).

3.4 Results

Table 1 reports the results of the various transfer
methods. Our method achieves significantly better
results than the relexicalisation procedure of Mc-
Donald et al. (2011) (up to +8.33 in Spanish) and
outperforms the method of Ma and Xia (2014) for 3
languages (from +0.91 (fr) to +2.86 (sv)) and equal-
izes it for one (it). Finally, for Swedish, it achieves
performance that are on a par with that of Rasooli

7The voting method chooses, for each token of a sentence,
the most frequent head among the projected heads from the vari-
ous source languages if it does not impede the projectivity of the
resulted tree (otherwise the next most frequent head is chosen).
The most frequent “head” may be null. Finally, the sentence
may be partially annotated.

1061

M11 MX14 RC15 this work sup.
source (en) (en) (en) (en-100%) (multi) (en) (en-100%) (multi)

ta
rg

et
de 69.77 74.30 74.32 70.56 79.68 73.40 69.36 75.99 84.43
es 68.72 75.53 78.17 75.69 80.86 77.05 73.98 78.94 85.51
fr 73.13 76.53 79.91 77.03 82.72 77.44 75.89 80.80 85.81
it 70.74 77.74 79.46 77.35 83.67 77.74 75.50 79.39 86.97
sv 75.87 79.27 82.11 78.68 84.06 82.13 77.26 82.97 87.89

Table 1: Parsing quality (evaluated in UAS) of our method and previous works: M11 stands for McDonald et al. (2011), MX14 for

Ma and Xia (2014), RC15 for Rasooli and Collins (2015) and ‘sup’ corresponds to the supervised scores. State-of-the-art scores

are from (Rasooli and Collins, 2015).

and Collins (2015).
It therefore appears that, while being much sim-

pler, the proposed approach achieves results very
competitive with state-of-the-art methods at a much
cheaper computational cost: our results have been
obtained by training a single parser with a beam size
of 8, while Ma and Xia (2014) use a parser with ex-
act inference, the training and inference complexity
of which is O(n4) and the method of Rasooli and
Collins (2015) requires the costly training of 4 dif-
ferent parsers each using a beam size of 64.

Results of Table 1 also show that Rasooli and
Collins (2015) achieves better scores than our
method when training on fully projected trees. This
can be explained by the differing training conditions
(as previously mentioned).8 Finally, these results
show the benefits of considering partial dependency
trees and not only sentences for which a complete
parse tree is transferred: a parser trained with partial
dependencies improves the UAS up to 4.8 points.

4 Conclusion

In this paper, we have proposed and evaluated a very
simple procedure to train a dependency parser with
projected partial annotations. In fact, our training
algorithm is virtually unchanged with respect to the
fully supervised case. Yet, it has proved extremely
effective when combined with an appropriate selec-
tion of the transferred annotations.9

Further improvements could be obtained using
additional tricks, such as better data selection strate-

8Indeed, the supervised scores achieved by Rasooli and
Collins (2015) are 1.03 higher than ours.

9The external parameters used for filtering and training were
selected according to the results of several experiments. The im-
pact of these parameters are examined in Lacroix et al. (2016).

gies or constrained parsing. Besides that, it is worth
noting that our method is not only on a par with the
method of Rasooli and Collins (2015) but could also
be combined with it. Indeed, their first step can be
substituted by our method. Since the latter outper-
forms the former, the combination of the two should
improve their best final scores.

In our future work, we intend to study how this
training strategy behaves for other transition-based
systems or, more generally, for other NLP scenarios
using partially annotated data.

Acknowledgments

This work has been partly funded by a DGA-RAPID
project under grant agreement N.o1429060465 (Pa-
pyrus) and the French Direction générale de
l’armement. We thank the reviewers for their accu-
rate comments and suggestions.

References
Lauriane Aufrant and Guillaume Wisniewski. 2016.

PanParser: a Modular Implementation for Efficient
Transition-Based Dependency Parsing. Technical re-
port, LIMSI, March.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and la-
beled non-projective dependency parsing. In Proceed-
ings of the 2012 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computa-
tional Natural Language Learning, pages 1455–1465,
Jeju Island, Korea, July.

Shay B. Cohen, Dipanjan Das, and Noah A. Smith. 2011.
Unsupervised Structure Prediction with Non-Parallel
Multilingual Guidance. In Proceedings of EMNLP
2011, the Conference on Empirical Methods in Nat-
ural Language Processing, pages 50–61, Edinburgh,
Scotland, UK., July.

1062

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proceed-
ings of ACL 2004, the 42nd Annual Meeting on Asso-
ciation for Computational Linguistics, page 111. As-
sociation for Computational Linguistics.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic Or-
acle for Arc-Eager Dependency Parsing. In Proceed-
ings of COLING 2012, the International Conference
on Computational Linguistics, pages 959–976, Bom-
bay, India.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrapping
Parsers via Syntactic Projection accross Parallel Texts.
Natural language engineering, 11:311–325.

Philipp Koehn. 2005. Europarl: A parallel corpus for
Statistical Machine Translation. In 2nd Workshop on
EBMT of MT-Summit X, pages 79–86, Phuket, Thai-
land.

Ophélie Lacroix, Guillaume Wisnewski, and François
Yvon. 2016. Cross-lingual Dependency Transfer:
What Matters? Assessing the Impact of Pre- and Post-
processing. In Proceedings of the NAACL-16 Work-
shop on Multilingual and Crosslingual Methods in
NLP, MLCL 2016, San Diego, CA, USA. Association
for Computational Linguistics.

Xuezhe Ma and Fei Xia. 2014. Unsupervised depen-
dency parsing with transferring distribution via paral-
lel guidance and entropy regularization. In Proceed-
ings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1337–1348, Baltimore, Maryland, June.

David Mareček. 2011. Combining Diverse Word-
Alignment Symmetrizations Improves Dependency
Tree Projection. In Computational Linguistics and In-
telligent Text Processing, pages 144–154. Springer.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source Transfer of Delexicalized Dependency
Parsers. In Proceedings of EMNLP 2011, the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 62–72.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, Claudia Bedini, Núria Bertomeu Castelló,
and Jungmee Lee. 2013. Universal Dependency An-
notation for Multilingual Parsing. In Proceedings of
ACL 2013, the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 92–97, Sofia, Bulgaria, August.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 629–637.

Joakim Nivre. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. In Proceedings of IWPT
2003, the 8th International Workshop on Parsing Tech-
nologies, Nancy, France.

Franz Joseph Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29:19–51.

Mohammad Sadegh Rasooli and Michael Collins. 2015.
Density-driven cross-lingual transfer of dependency
parsers. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 328–338, Lisbon, Portugal, September. Associ-
ation for Computational Linguistics.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of ACL 2011, the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 682–686, Port-
land, Oregon, USA, June.

Kathrin Spreyer and Jonas Kuhn. 2009. Data-Driven
Dependency Parsing of New Languages Using Incom-
plete and Noisy Training Data. In Proceedings of
CoNLL 2009, the Thirteenth Conference on Compu-
tational Natural Language Learning, pages 12–20,
Boulder, Colorado, June.

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target Language Adaptation of Discriminative
Transfer Parsers. In Proceedings of ACL 2013, the
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 1061–1071, Atlanta, Geor-
gia.

Jörg Tiedemann. 2014. Rediscovering Annotation Pro-
jection for Cross-Lingual Parser Induction. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical
Papers, pages 1854–1864, Dublin, Ireland, August.
Dublin City University and Association for Computa-
tional Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-Language
Parser Adaptation between Related Languages. In
Proceedings of the IJCNLP-08 Workshop on NLP for
Less Privileged Languages, pages 35–42, Hyderabad,
India, January. Asian Federation of Natural Language
Processing.

Yue Zhang and Joakim Nivre. 2011. Transition-based
Dependency Parsing with Rich Non-local Features.
In Proceedings of ACL 2011, the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 188–193, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

1063

Proceedings of NAACL-HLT 2016, pages 1064–1069,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Geolocation for Twitter: Timing Matters

Mark Dredze1,2, Miles Osborne1, Prabhanjan Kambadur1

1 Bloomberg L.P.
731 Lexington Ave, New York, NY 10022

2 Human Language Technology Center of Excellence
Johns Hopkins University, Baltimore, MD 21211

mdredze@cs.jhu.edu mosborne29,pkambadur@bloomberg.net

Abstract

Automated geolocation of social media mes-
sages can benefit a variety of downstream ap-
plications. However, these geolocation sys-
tems are typically evaluated without attention
to how changes in time impact geolocation.
Since different people, in different locations
write messages at different times, these factors
can significantly vary the performance of a ge-
olocation system over time. We demonstrate
cyclical temporal effects on geolocation accu-
racy in Twitter, as well as rapid drops as test
data moves beyond the time period of training
data. We show that temporal drift can effec-
tively be countered with even modest online
model updates.

1 Introduction

Geolocation – the task of identifying a social media
message’s location – can support a variety of down-
stream applications, such as advertising, personal-
ization, event discovery, trend analysis and disease
tracking (Watanabe et al., 2011; Hong et al., 2012;
Kulshrestha et al., 2012; Broniatowski et al., 2013).
Geolocation work has mostly focused on Twitter,
since tweets are readily accessible and true loca-
tion available from user geocoded tweets (inter alia
(Eisenstein et al., 2010; Han et al., 2014; Rout et al.,
2013; Compton et al., 2014; Cha et al., 2015; Jur-
gens et al., 2015; Osborne et al., 2014; Dredze et al.,
2013)).

Most previous work consider the task of author
geolocation, the identification of a author’s primary
(home) location (Eisenstein et al., 2010; Han et al.,
2014). Author geolocation systems rely on multiple

tweets from each author to identify the location. In
this work, we consider the task of tweet geolocation,
where a system identifies the location where a single
tweet was written (Osborne et al., 2014; Dredze et
al., 2013). This approach is necessary when geolo-
cation decisions must be made quickly, with limited
resources, or when the location of a specific tweet is
required.

When focusing on a single tweet, time becomes
relevant. Intuitively, tweets written in the morning
might be in different locations (at home) than say
tweets written during the day (at work). This in-
formation is often ignored but can provide impor-
tant clues as to a tweet’s location. Likewise, mod-
els built using historical data never adapt as time
evolves. These factors may have a significant impact
on geolocation accuracy, and downstream system’s
should be sensitive to these variations.

For the first time, we consider the impact of time
on Twitter geolocation and predict where a post was
made (rather than the more usual, and easier task
of author location). We take a supervised learning
approach, training a multi-class classifier to identify
the city of a tweet. We train a system on 250 million
tweets sampled from a 45 month period, perhaps the
largest evaluation to date. We find that:

• Geolocation accuracy is cyclical, varying signif-
icantly with time.

• While access to massive training data improves
accuracy, these effects are largely lost when
models are deployed on new tweets, in large part
due to new users and duplicate tweets.

• Periodically updating geolocation models, even
with data available from the free Twitter API,

1064

can largely supplant massive training datasets.

Our study is similar to that of Pavalanathan and
Eisenstein (2015), who called into question the ac-
curacy of geolocation models due to mismatches be-
tween the behavior of users in available training data
as compared to users encountered in live data. While
our work provides a cautionary tale, it provides a
guide for how these models can be used in practice.

2 Dataset

We start with every geocoded tweet (based on the
“location” field) from January 1, 2012 to September
30, 2015: 8,530,693,792 tweets.1 These tweets are
associated with a specific location by Twitter (the
“location” field is populated.)

We took several steps to remove tweets that
were not relevant to the task. We removed tweets
posted by location sharing services (FourSquare and
jSwarm) since these are not written by users. We
removed retweets for the same reason. We also
remove tweets that do not have a specific lati-
tude/longitude (geo) while nevertheless containing
a location. Twitter allows user’s to tag a tweet with
a location (populating the location field) even when
the user’s device does not provide a latitude and lon-
gitude (geo field). To ensure we know the precise
location of the user we only consider tweets with the
geo field.

We matched each tweet to a city using the proce-
dure of Han et al. (2014), with 3,709 cities derived
from the geonames database2. Only 2983 locations
contained a tweet; locations without tweets were
mostly in Africa and China, which has low Twit-
ter usage. Following Han et al. (2014) we focus on
English tweets only, removing non-English tweets
based on the metadata language code. We also iden-
tified the tweet’s country for a country prediction
task (161 labels). We divided this dataset into two
time periods. We use tweets from January 1, 2012
to March 30, 2015 for a standard train/dev/test eval-
uation, selecting 2

10,000 of the data for development
and test sets. Data from March 31, 2015 to Septem-
ber 30, 2015 forms an “out of time” sample.

The most common cities were Los Angeles, Lon-
don, Jakarta, Chicago, Kuala Lumpur and Dallas.

1Data is available from third party resellers, such as Gnip.
2http://www.geonames.org/

The city clustering procedure of Han et al. (2014)
greatly influences this list. For example, Los Ange-
les ends up as one large city, whereas the New York
City area is divided into several smaller cities.

3 Geolocation Model

We treat geolocation as a multi-class task, with each
city (or country) a label (Jurgens et al., 2015).

Features All of our features are extracted from a
single tweet (text or metadata) without requiring ad-
ditional queries to the Twitter API. 3 These include:
Text: We extracted unigrams and bigrams from the
text of each tweet after tokenizing with Twokenizer
(O’Connor et al., 2010). We removed all punctua-
tion, and replaced unique usernames and urls with
placeholder tokens. Numbers were replaced with
a NUM token. Profile location: Unigrams and bi-
grams extracted from the user supplied profile loca-
tion field, as well as a feature for the entire loca-
tion string. These fields often provide clues as to
the user’s location, e.g. “New York Living”. Time-
zone: Each tweet has a timezone that reflects a spe-
cific location, e.g. “Pacific Time (US & Canada)”,
“Atlantic Time (Canada)”, “Casablanca”. We also
include the UTC offset of the timezone. Time: We
use a feature indicating the hour of the day (in UTC
time) at which the tweet was posted.

Learning We used vowpal wabbit (version 8.1.1)
(Agarwal et al., 2011), a linear classifier trained us-
ing stochastic gradient descent with adaptive, indi-
vidual learning rates (Duchi et al., 2011) that mini-
mizes the hinge loss. We used feature hashing with a
31-bit feature space. We selected the best model and
parameters based on initial tests using development
data. All other parameters used default settings.

3Our reliance on text features created a very large feature
space, but only a small fraction of these occur with any regu-
larity. Previous work has shown feature selection helpful for
geolocation (Han et al., 2014). We tried L1 regularization for
feature selection without a significant change to our results. It
may be that our larger volume of training data removes the need
for feature selection. Alternatively, we use feature hashing (to
a 31-bit feature space) which can be a form of regularization
as feature collisions mitigate overfitting (Ganchev and Dredze,
2008; Weinberger et al., 2009).

1065

4 Evaluation

We report the four evaluation metrics of Han et
al. (2014): city accuracy (AccCi), country accu-
racy (AccCo), accuracy within 161 km (100 miles)
(Acc@161), and the median error in km (Median).

Baselines We include two baselines: (1) the ma-
jority predictor: always predicts the most popular
label. (2) alias matching: we create a list of aliases
for each of the 2983 cities from the genomes dataset,
which includes the smaller cities clustered together
by Han et al. (2014). We search each tweet and
the user’s profile location for these aliases, assign-
ing a tweet with a matched alias to the corresponding
city; unmatched tweets are assigned the majority la-
bel. When multiple cities match a tweet, we selected
the correct one (if present) using oracle knowledge.
About 90% of matches were in the profile. This
strategy is similar to that of Dredze et al. (2013).

Duplicates A tweet may be duplicated in our
dataset, appearing in both training and held out data,
or appearing multiple times in held out data. We de-
fine duplicates as tweets with identical feature repre-
sentations. We removed duplicates from dev and test
splits, to ensure evaluation examples are unseen in
training, yielding 22,966 dev and 23,240 test tweets.

5 Baseline Results

We begin by establishing the models’ performance
with a large training set, as measured on held out
evaluation data drawn from the same time period.
Here we use a standard setting, where there is no
online adaptation. We include results for city and
country models trained with the tweet text features
alone (content). These evaluations train with a sam-
ple of 25,822,353 tweets, similar to previous large
scale training for geolocation (Han et al., 2014).

Table 2 shows our model beating both baselines,
with the additional features generally improving
over content features alone. Interestingly, improve-
ments from adding features appears to be additive:
the final model’s accuracy is nearly the sum of the
individual improvements from each feature set. On
the non-deduped test dataset (25,941 tweets), the ac-
curacy was higher (city: 0.2920, country: 0.8777)
but the trends of adding features remain unchanged.
Our time feature, which captures a temporal prior

over locations, does not seem to help, providing only
a small boost.

We consider the impact of training data size in
Figure 1, including a model trained on 258,222,490
tweets, an order of magnitude larger than Han et al.
(2014), which improves accuracy by roughly 3%.
This figure provides guidance on how much data is
necessary to do well on this task.

To summarize: our approach yields tweet level
geolocation accuracy similar to, or better than, state
of the art user level geolocation.4 We note that for
small datasets (tens of millions of training examples,
which can be obtained from the Twitter streaming
API), one can obtain a reasonable model.

6 Temporal Factors in Geolocation

We now consider factors that influence geoloca-
tion temporal accuracy using our largest city model
(258M training tweets), which has an accuracy of
0.3302 on test data (0.3062 excluding duplicates).

6.1 Question 1: How do daily and weekly
patterns impact geolocation accuracy?

Twitter traffic varies over the course of a day and a
week. User behavior may change at different times,
and different locations are active at different times.

Figure 3 shows the number of tweets and test ge-
olocation accuracy by the hour of the day (b) and
day of the week (c). The day of the week has a
minor impact on geolocation accuracy; the standard
deviation of the 7 days is 2.7% of the total mean.
Tweet volume has a negative correlation with accu-
racy (−0.435), i.e. more tweets may be indicative
of more people from different locations tweeting,
which makes the task harder. Notably, Monday is
significantly harder, with an accuracy of 1.5 standard
deviations below the mean. However, the hour of the
day has much more significant impact on accuracy;
some times of the day are significantly easier and
harder than the average. The standard deviation is
6.8% of the mean, and tweet volume is strongly neg-
atively correlated with accuracy (−0.647). Geoloca-
tion is easier during times when there are fewer loca-
tions actively tweeting. This is most apparent during

4Direct comparisons are not possible because of different
datasets and tasks. However, our results are on par with the
user-level geolocation system of Han et al. (2014).

1066

258,222,490

25,822,353

2,582,340

258,342
25,941

2,701

Training Examples

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
cc

u
ra

cy

Figure 1: Varying training data size.

Model AccCi AccCo Acc@161 Median AccCo
City Country

Baselines: Majority 0.0209 0.6410 0.0402 3582 0.6363
Alias Match 0.1923 0.7317 0.2096 3169 0.7253

Features: Content 0.0259 0.4093 0.0602 3216 0.4285
+ Profile 0.2120 0.5609 0.2917 1659 0.7537
+ Timezone 0.0415 0.5682 0.0974 1690 0.5273
+ Time 0.0279 0.4282 0.0598 3074 0.4142
All features 0.2708 0.5861 0.3612 1008 0.8734

Figure 2: Results for different features sets on test data from the same time
period as training data for both city and country prediction tasks.

3/31/15 4/30/15 5/30/15 6/29/15 7/29/15 8/28/15 9/27/15
2000

4000

6000

8000

10000

12000

14000

U
se

rs

200000

250000

300000

350000

400000

450000

T
w

e
e
ts

(a)

0 5 10 15 20

Hour

0.26

0.28

0.30

0.32

0.34

A
cc

u
ra

cy

(b)

M Tu W Th F Sa Su

Day

0

500

1000

1500

2000

2500

3000

3500

4000

T
w

e
e
ts

(c)

Figure 3: (a) New users and tweets each day. Accuracy and number of tweets by hour (US eastern) (b) and day (c).

the nighttime in the US, where there are much fewer
tweets overall and many fewer active locations. In
short, the accuracy of a geolocation system depends
on when it is running.

6.2 Question 2: How do changes over time
impact a fixed geolocation model?

We now turn to our data sample taken after the train-
ing data: a 10% sample of 49,307,720 tweets from
2015/3/31 - 2015/9/30.5 These tweets will demon-
strate the accuracy of a trained model deployed on
new data over time.

Evaluating on these tweets (duplicates included),
our model yields an accuracy of 0.2661, down from
0.3302, a 19% relative drop. Surprisingly, this isn’t
a gradual change over time; the drop is quite rapid.
The week immediately following the training period
has an accuracy of 0.2884. Figure 4 shows the de-
cline in accuracy over time.6

5While training data is taken from the first 39 months, it is
biased towards more recent months due to Twitter growth: the
last 12 months (30% of the time) account for 37% of tweets.
We evaluated with a 10% sample for efficiency.

6While accuracy continues to degrade over time, it begins to
rise in August 2015. It may be that there are seasonal effects in
geolocation accuracy, or recent changes by Twitter are making

What factors contribute to this rapid drop? We
consider two: new users and reposted tweets.
New Users One factor affecting geolocation perfor-
mance might be new users joining, posting a few
tweets and then no longer posting. In a sense, users
have a temporal lifespan, after which information
originating from them is of less predictive value.
One measure of this is the number of users encoun-
tered in the evaluation data, which have never been
previously encountered, either in training or earlier
in the evaluation data. Over the six month evaluation
period, the number of new tweets from geocoded
users per day increases, even as a percentage of all
tweets (Figure 3(a)).

We remove all tweets in the evaluation period
from users that we have previously encountered, ei-
ther in training or earlier in evaluation data. Accu-
racy drops to 0.1859, a 30% relative decrease from
0.2661, suggesting that the training data learns fea-
tures specific to the users it observes. By compar-
ison, the alias match baseline has an accuracy of
0.2113 on this data.

While trained models remain effective on users

geolocation easier. However, we were unable to determine the
source of this change.

1067

present in training, it has difficulty generalizing to
new users. Far from a small percentage of the total,
new users make up a significant number of tweets,
at a rate that does not appear to be slowing.
Reposted Tweets Users often repost content, which
can include repeating simple message (e.g. “feeling
good!”) or tweeting the same content to multiple
users. Users are more likely to repost content shortly
after it was first created, making the number of re-
posts go down over time. For example, while 8%
of test tweets from the same time period as training
data are duplicates (they appear in the training data),
only 3.8% of tweets in the six month evaluation pe-
riod are duplicates.

How much of an impact do these reposts have on
accuracy? For the test data from the same time pe-
riod, we saw model performance drop from 0.3302
to 0.3062, a fairly large difference. By comparison,
removing reposts in the the six month evaluation pe-
riod drops accuracy from 0.2661 to 0.2541, a more
modest change. Reposts help to inflate geolocation
accuracy, and their decrease as time progresses from
training removes this accuracy inflation.

7 Question 3: Can periodic model updates
maintain a trained geolocation system?

Our results so far are sobering: shortly after a static
model is deployed performance degrades to a model
using two orders of magnitude less training data
(compare the drop in §6.2 with Figure 1). Increasing
the amount of training data might be an option, but
given our previous results on new users, etc., this is
unlikely to be sufficient.

A simple method for addressing model degrada-
tion over time is to continuously update the model
over time using online learning on new data as it be-
comes available. For example, we can continuously
download a stream of (at least) 1% of geocoded
tweets from the Twitter API to use as training for
updating a deployed system. What is the impact
on a system’s accuracy when it is updated on these
geocoded tweets with SGD updates (§3)?

Figure 4 shows the performance of our system in
an online setting (dashed black line). This model up-
dates on every 100th example (1% of all geocoded
tweets) encountered in the six-month evaluation pe-
riod. When we update this previously trained static

3/31/15

4/20/15

5/10/15

5/30/15

6/19/15
7/9/15

7/29/15

8/18/15
9/7/15

Date

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
cc

u
ra

cy

Existing model (no updates)

New model (updates)

Existing model (updates)

Figure 4: Accuracy over the six months following train-
ing. The horizontal line reflects the existing model’s per-
formance on test from the same time period as training.

model, we see a quick recovery to accuracy levels
that meet or exceed those on the test set from the
same time period as training (horizontal line.)

Finally, we consider the case where a practitioner
starts from scratch with no training data, but up-
dates using just 1% of geocoded tweets. Can some-
one with access to no prior training data build an
effective model? Encouragingly, within 20 days
the new model (solid blue line) catches the previ-
ously trained static model (solid black line, “Ex-
isting model: no updates“). This is an extremely
promising result as it suggests that most practition-
ers who do not have access to all geolocated data
can produce geolocation prediction models that ap-
proximate models trained using hundred of millions
of examples.

8 Conclusion

We have presented a tweet geolocation system that
considers an order of magnitude more data than any
prior work. Despite hundreds of millions of train-
ing examples, the resulting system is sensitive to the
time the tweet was authored. Additionally, accuracy
suffers when deployed on data beyond the training
period. We show that online updates can mitigate
problems caused by concept drift. In short, sheer
volume of data is not enough: geolocation models
should adapt to new data. Encouragingly, starting
from no training data and updating on just 1% of
geocoded tweets, within 20 days we can recover a
model that catches a static model previously trained
on hundreds of millions of tweets.

Acknowledgments We thank Bo Han and Tim Bald-
win for their help in reproducing their city labels.

1068

References

Alekh Agarwal, Olivier Chapelle, Miroslav Dudı́k, and
John Langford. 2011. A reliable effective terascale
linear learning system. CoRR, abs/1110.4198.

David Broniatowski, Michael J. Paul, and Mark Dredze.
2013. National and local influenza surveillance
through twitter: An analysis of the 2012-2013 in-
fluenza epidemic. PLOS ONE, December 9.

Miriam Cha, Youngjune Gwon, and HT Kung. 2015.
Twitter geolocation and regional classification via
sparse coding. In Ninth International AAAI Confer-
ence on Web and Social Media.

Ryan Compton, David Jurgens, and David Allen. 2014.
Geotagging one hundred million twitter accounts with
total variation minimization. In Big Data (Big Data),
2014 IEEE International Conference on, pages 393–
401. IEEE.

Mark Dredze, Michael J Paul, Shane Bergsma, and Hieu
Tran. 2013. Carmen: A twitter geolocation system
with applications to public health. In AAAI Workshop
on Expanding the Boundaries of Health Informatics
Using AI (HIAI).

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research.

Jacob Eisenstein, Brendan O’Connor, Noah A Smith, and
Eric P Xing. 2010. A latent variable model for ge-
ographic lexical variation. In Empirical Methods in
Natural Language Processing (EMNLP).

Kuzman Ganchev and Mark Dredze. 2008. Small sta-
tistical models by random feature mixing. In Proceed-
ings of the ACL08 HLT Workshop on Mobile Language
Processing, pages 19–20.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based twitter user geolocation prediction. Journal of
Artificial Intelligence Research, pages 451–500.

Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexan-
der J Smola, and Kostas Tsioutsiouliklis. 2012. Dis-
covering geographical topics in the twitter stream. In
Proceedings of the 21st international conference on
World Wide Web, pages 769–778. ACM.

David Jurgens, Tyler Finethy, James McCorriston,
Yi Tian Xu, and Derek Ruths. 2015. Geolocation
prediction in twitter using social networks: A critical
analysis and review of current practice. In Proceed-
ings of the 9th International AAAI Conference on We-
blogs and Social Media (ICWSM).

Juhi Kulshrestha, Farshad Kooti, Ashkan Nikravesh, and
P Krishna Gummadi. 2012. Geographic dissection of
the twitter network. In ICWSM.

Brendan O’Connor, Michel Krieger, and David Ahn.
2010. Tweetmotif: Exploratory search and topic sum-
marization for twitter. In International Conference on
Weblogs and Social Media (ICWSM).

Miles Osborne, Sean Moran, Richard McCreadie,
Alexander Von Lunen, Martin D Sykora, Elizabeth
Cano, Neil Ireson, Craig Macdonald, Iadh Ounis, Yu-
lan He, et al. 2014. Real-time detection, tracking,
and monitoring of automatically discovered events in
social media. In Association for Computational Lin-
guistics (ACL).

Umashanthi Pavalanathan and Jacob Eisenstein. 2015.
Confounds and consequences in geotagged twitter
data. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2138–2148, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Dominic Rout, Kalina Bontcheva, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2013. Where’s@ wally?:
a classification approach to geolocating users based on
their social ties. In Proceedings of the 24th ACM Con-
ference on Hypertext and Social Media, pages 11–20.
ACM.

Kazufumi Watanabe, Masanao Ochi, Makoto Okabe,
and Rikio Onai. 2011. Jasmine: a real-time local-
event detection system based on geolocation infor-
mation propagated to microblogs. In Proceedings of
the 20th ACM international conference on Information
and knowledge management, pages 2541–2544. ACM.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature hash-
ing for large scale multitask learning. In Proceedings
of the 26th Annual International Conference on Ma-
chine Learning, pages 1113–1120. ACM.

1069

Proceedings of NAACL-HLT 2016, pages 1070–1075,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Fast and Easy Short Answer Grading with High Accuracy

Md Arafat Sultan Cristobal Salazar Tamara Sumner
Institute of Cognitive Science

Department of Computer Science
University of Colorado, Boulder, CO

{arafat.sultan,crsa7687,sumner}@colorado.edu

Abstract

We present a fast, simple, and high-accuracy
short answer grading system. Given a short-
answer question and its correct answer, key
measures of the correctness of a student re-
sponse can be derived from its semantic sim-
ilarity with the correct answer. Our super-
vised model (1) utilizes recent advances in
the identification of short-text similarity, and
(2) augments text similarity features with key
grading-specific constructs. We present exper-
imental results where our model demonstrates
top performance on multiple benchmarks.

1 Introduction

Short-answer questions are a useful device for elic-
iting student understanding of specific concepts in a
subject domain. Numerous automated graders have
been proposed for short answers based on their se-
mantic similarity with one or more expert-provided
correct answers (Mohler et al., 2011; Heilman and
Madnani, 2013; Ramachandran et al., 2015). From
an application perspective, these systems vary con-
siderably along a set of key dimensions: amount of
human effort involved, accuracy, speed, and ease of
implementation. We explore a design that seeks to
optimize performance along all these dimensions.

Systems developed for the more general task of
short-text semantic similarity provide a good start-
ing point for such a design. Major progress has been
made in this task in recent years, due primarily to
the SemEval Semantic Textual Similarity (STS) task
(Agirre et al., 2012; Agirre et al., 2013; Agirre et
al., 2014; Agirre et al., 2015). However, the utility

of top STS systems has remained largely unexplored
in the context of short answer grading. We seek to
bridge this gap by adopting the feature set of the best
performing STS system at SemEval-2015 (Sultan et
al., 2015). Besides high accuracy, this system also
has a simple design and fast runtime.

Textual similarity alone, however, is inadequate
as a measure of answer correctness. For example,
while the Sultan et al. (2015) system makes the gen-
eral assumption that all content words1 contribute
equally to the meaning of a sentence, domain key-
words (e.g., “mutation” for biological evolution) are
clearly more significant than arbitrary content words
(e.g., “consideration”) for academic text. As another
example, question demoting (Mohler et al., 2011)
proposes discarding words that are present in the
question text as a preprocessing step for grading.
We augment our generic text similarity features with
such grading-specific measures.

We train supervised models with our final fea-
ture set; in two different grading tasks, these mod-
els demonstrate significant performance improve-
ment over the state of the art. In summary, our
contribution is a fast, simple, and high-performance
short answer grading system which we also release
as open-source software at: https://github.
com/ma-sultan/short-answer-grader.

2 Related Work

A comprehensive review of automatic short answer
grading can be found in (Burrows et al., 2015). Here

1meaning-bearing words (e.g., nouns and main verbs), as
opposed to function words that play predominantly syntactic
roles in a sentence (e.g., auxiliary verbs and prepositions).

1070

we briefly discuss closely related work.
Early short answer grading work relied on pat-

terns (e.g., regular expressions) manually extracted
from expert-provided reference answers (Mitchell
et al., 2002; Sukkarieh et al., 2004; Nielsen et al.,
2009). Such patterns encode key concepts repre-
sentative of good answers. Use of manually de-
signed patterns continues to this day, e.g., in (Tan-
dalla, 2012), the winning system at the ASAP an-
swer scoring contest.2 This is a step requiring hu-
man intervention that natural language processing
can help to eliminate. Ramachandran et al. (2015)
propose a mechanism to automate the extraction of
patterns from the reference answer as well as high-
scoring student answers. We adopt the simpler no-
tion of semantic alignment to avoid explicitly gener-
ating complicated patterns altogether.

Direct semantic matching (as opposed to pattern
generation) has been explored in early work like
(Leacock and Chodorow, 2003). With advances
in NLP techniques, this approach has gained pop-
ularity over time (Mohler et al., 2009; Mohler et
al., 2011; Heilman and Madnani, 2013; Jimenez et
al., 2013). Such systems typically use a large set
of similarity measures as features for a supervised
learning model. Features range from string similar-
ity measures like word and character n-gram over-
lap to deeper semantic similarity measures based
on resources like WordNet and distributional meth-
ods like latent semantic analysis (LSA). However,
a large feature set contributes to higher system run-
time and implementation difficulty. While following
this generic framework, we seek to improve on these
criteria by employing a minimal set of core similar-
ity features adopted from (Sultan et al., 2015). Our
features also yield higher accuracy by utilizing more
recent measures of lexical similarity (Ganitkevitch
et al., 2013; Baroni et al., 2014), which have been
shown to outperform traditional resources and meth-
ods like WordNet and LSA.

Short-text semantic similarity has seen major
progress in recent times, due largely to the SemEval
Semantic Textual Similarity (STS) task (Agirre et al.,
2012; Agirre et al., 2013; Agirre et al., 2014; Agirre
et al., 2015). STS systems can serve as a source of
important new features and design elements for au-

2https://www.kaggle.com/c/asap-sas/

tomatic short answer graders (Bär et al., 2012; Han
et al., 2013; Lynum et al., 2014; Hänig et al., 2015).

Surprisingly, few existing grading systems utilize
simple and computationally inexpensive grading-
specific techniques like question demoting (Mohler
et al., 2011) and term weighting. Our model aug-
ments the similarity features using these techniques.

3 Method

Following feature extraction, our system trains a su-
pervised model for grading. As we discuss in Sec-
tion 4, this can be a regressor or a classifier depend-
ing on the task. This section describes our features;
specifics of the models are given in Section 4.

3.1 Features

3.1.1 Text Similarity
Given reference answer R = (r1, ..., rn) and stu-

dent response S = (s1, ..., sm) (where each r and
s is a word token), we compute three generic text
similarity features.

Alignment. This feature measures the proportion
of content words inR and S that have a semantically
similar word in the other sentence. Such pairs are
identified using a word aligner (Sultan et al., 2014).
The semantic similarity of a word pair (ri, sj) is a
weighted sum of their lexical and contextual simi-
larities. A paraphrase database (PPDB, Ganitkevitch
et al. (2013)) identifies lexically similar word pairs;
contextual similarity is computed as average lexical
similarity in (1) dependencies of ri inR and sj in S,
and (2) content words in [-3, 3] windows around ri
in R and sj in S. Lexical similarity scores of pairs
in PPDB as well as weights of word and contextual
similarities are optimized on an alignment dataset
(Brockett, 2007).

To avoid penalizing long student responses that
still contain the correct answer, we also employ a
second version of this feature: the proportion of
aligned content words only in R. We will refer to
this feature as coverage of the reference answer’s
content by the student response.

Semantic Vector Similarity. This feature em-
ploys off-the-shelf word embeddings.3 A sentence-
level semantic vector is computed for each input

3400-dimensional word embeddings reported by Baroni et
al. (2014).

1071

sentence as the sum of its content word embeddings
(lemmatized). The cosine similarity between the R
and S vectors is then used as a feature. While the
alignment features distinguish only between para-
phrases and non-paraphrases, this feature enables in-
tegration of finer-grained lexical similarity measures
between related concepts (e.g., cell and organism).

3.1.2 Question Demoting
We recompute each of the above similarity fea-

tures after removing words that appear in the ques-
tion text from both the reference answer and the stu-
dent response. The objective is to avoid rewarding a
student response for repeating question words.

3.1.3 Term Weighting
To be able to distinguish between domain key-

words and arbitrary content words, in our next set
of features we assign a weight to every content word
in the reference and the student answer based on a
variant of tf-idf. While general short-text similar-
ity models typically use only idf (inverse document
frequency) to penalize general words, the domain-
specific nature of answer grading also enables the
application of a tf (term frequency) measure.

To fully automate the process for a question
and reference answer pair, we identify all content
words in the pair. The top ten Wikipedia pages re-
lated to these words are retrieved using the Google
API. Each page is read along with all linked pages
crawled using Scrapy (Myers and McGuffee, 2015).
The in-domain term frequency (tf d) of a word in the
answer is then computed by extracting its raw count
in this collection of pages. We use the same set of
tools to automatically extract Wikipedia pages in 25
different domains such as Art, Mathematics, Reli-
gion, and Sport. A total of 14,125 pages are re-
trieved, occurrences in which are used to compute
the idf of each word.

We augment our alignment features—both orig-
inal and question-demoted—with term weights to
generate new features. Each word is assigned a
weight equal to its tf d×idf score. The sum of
weights is computed for (1) aligned, and (2) all con-
tent words in the reference answer (after question
demoting, if applicable). The ratio of these two
numbers is then used as a feature. We compute only
coverage features (Section 3.1.1) to avoid comput-

ing term weights for each student response. Thus
the process of crawling and reading the documents
is performed once per question; all the student re-
sponses can subsequently be graded quickly.

3.1.4 Length Ratio
We use the ratio of the number of words in the stu-

dent response to that in the reference answer as our
final feature. The aim is to roughly capture whether
or not the student response contains enough detail.

4 Experiments

We evaluate our features on two grading tasks. The
first task, proposed by Mohler et al. (2011), asks to
compute a real-valued score for a student response
on a scale of 0 to 5. The second task, proposed at
SemEval-2013 (Dzikovska et al., 2013), asks to as-
sign a label (e.g., correct or irrelevant) to a student
response that shows how appropriate it is as an an-
swer to the question. Thus from a machine learning
perspective, the first is a regression task and the sec-
ond is a classification task. We use the NLTK stop-
words corpus (Bird et al., 2009) to identify function
words. Results are discussed below.

4.1 The Mohler et al. (2011) Task

The dataset for this task consists of 80 undergradu-
ate Data Structures questions and 2,273 student re-
sponses graded by two human judges. These ques-
tions are spread across ten different assignments
and two tests, each on a related set of topics (e.g.,
programming basics, sorting algorithms). A refer-
ence answer is provided for each question. Inter-
annotator agreement was 58.6% (Pearson’s ρ) and
.659 (RMSE on a 5-point scale). Average of the two
human scores is used as the final gold score for each
student answer.

We train a ridge regression model (Scikit-learn
(Pedregosa et al., 2011)) for each assignment and
test using annotations from the rest as training ex-
amples. A dev assignment or test is randomly held
out for model selection. Out-of-range output scores,
if any, are rounded to the nearest in-range integer.
Following Mohler et al. (2011), we compute a single
Pearson correlation and RMSE score over all student
responses from all datasets. Average results across
1000 runs of the system are shown in Table 1. Our

1072

System Pearson’s r RMSE

tf-idf .327 1.022
Lesk .450 1.050
Mohler et al. (2011) .518 .978
Our Model .592 .887

Table 1: Performance on the Mohler et al. (2011) dataset with

out-of-domain training. Performances of simpler bag-of-words

models are reported by those authors.

System r RMSE

Ramachandran et al. (2015) .61 .86
Our Model .63 .85

Table 2: Performance on the Mohler et al. (2011) dataset with

in-domain training.

model shows a large and significant performance im-
provement over the state-of-the-art model of Mohler
et al. (two-tailed t-test, p <.001). Their system em-
ploys a support vector machine that predicts scores
using a set of dependency graph alignment and lex-
ical similarity measures. Our features are similar in
intent, but are based on latest advances in identifica-
tion of lexical similarity and monolingual alignment.

Ramachandran et al. (2015) adopt a different
setup to evaluate their model on the same dataset.
For each assignment/test, they use 80% of the data
for training and the rest as test. This setup thus en-
ables in-domain model training. Their system auto-
matically generates regexp patterns intended to cap-
ture semantic variations and syntactic structures of
good answers. Features derived from match with
such patterns as well as term frequencies in the stu-
dent response are used to train a set of random for-
est regressors, whose predictions are then combined
to output a single score. Results in this setup are
shown in Table 2. Again, averaged over 1000 runs,
our model performs better on both evaluation met-
rics. The differences are smaller than before but still
statistically significant (two-tailed t-test, p <.001).

4.2 The SemEval-2013 Task

Instead of a real-valued score, this task asks to assign
one of five labels to a student response: correct, par-
tially correct/incomplete, contradictory, irrelevant,
and non-domain (an answer that contains no domain
content). We use the SCIENTSBANK corpus, con-

System UA UQ UD Wt. Mean
Lexical Overlap .435 .402 .396 .400
Majority .260 .239 .249 .249
ETS1 .535 .487 .447 .460
SoftCardinality1 .537 .492 .471 .480
Our Model .582 .554 .545 .550

Table 3: F1 scores on the SemEval-2013 datasets.

taining 9,804 answers to 197 questions in 15 science
domains. Of these, 3,969 are used for model training
and the remaining 5,835 for evaluation. A reference
answer is provided for each question.

The test set is divided into three subsets with vary-
ing degrees of similarity with the training examples.
The Unseen Answers (UA) dataset consists of re-
sponses to questions that are present in the training
set. Unseen Questions (UQ) contains responses to
in-domain but previously unseen questions. Three of
the fifteen domains were held out for a final Unseen
Domains (UD) test set, containing completely out-
of-domain question-response pairs. For this task,
we train a random forest classifier with 500 trees in
Scikit-learn using our feature set.

Table 3 shows the performance of our model (av-
eraged over 100 runs) along with that of top sys-
tems4 at SemEval-2013 (and of simpler baselines).
ETS (Heilman and Madnani, 2013) employs a lo-
gistic classifier combining lexical and text similar-
ity features. SoftCardinality (Jimenez et al., 2013)
employs decision tree bagging with similarity fea-
tures derived from a set cardinality measure—soft
cardinality—of the question, the reference answer,
and the student response. These features effectively
compute text similarity from commonalities and dif-
ferences in character n-grams.

Each cell on columns 2–4 of Table 3 shows a
weighted F1-score on a test set computed over the
five classes, where the weight of a class is pro-
portional to the number of question-response pairs
in that class. The final column shows a similarly
weighted mean of scores computed over the three
test sets. On each test set, our model outperforms
the top-performing models from SemEval (signifi-
cant at p <.001). Its performance also suffers less
on out-of-domain test data compared to those mod-
els.

4Systems with best overall performance on SCIENTSBANK.

1073

Features Pearson’s r RMSE

All .592 .887
w/o alignment .519 .938
w/o embedding .586 .892
w/o question demoting .571 .903
w/o term weighting .590 .889
w/o length ratio .591 .888

Table 4: Ablation results on the Mohler et al. (2011) dataset.

4.3 Runtime Test

Given parsed input and having stop words removed,
the most computationally expensive step in our sys-
tem is the extraction of alignment features. Each
content word pair across the two input sentences is
assessed in constant time, giving the feature extrac-
tion process (and the whole system) a runtime com-
plexity ofO(nc ·mc), where nc andmc are the num-
ber of content words in the two sentences. Note that
all alignment features can be extracted from a single
alignment of the input sentences.

Run on the Mohler et al. dataset (unparsed;
about 18 words per sentence on average), our system
grades over 33 questions/min on a 2.25GHz core.

4.4 Ablation Study

Table 4 shows the performance of our regression
model on the Mohler et al. dataset without different
feature subsets. Performance falls with each exclu-
sion, but by far the most without alignment-based
features. Features implementing question demoting
are the second most useful. Length ratio improves
model performance the least.

Surprisingly, term weighting also has a rather
small effect on model performance. Further inspec-
tion reveals two possible reasons for this. First,
many reference answers are very short, only con-
taining words or small phrases that are necessary to
answer the question (e.g., “push”, “enqueue and de-
queue”, “by rows”). In such cases, term weighting
has little or no effect. Second, we observe that in
many cases the key words in a correct answer are ei-
ther not domain keywords or are unidentifiable using
tf-idf. Consider the following:

• Question: What is a stack?
• Answer: A data structure that can store ele-

ments, which has the property that the last item

added will be the first item to be removed (or
last-in-first-out).

Important answer words like “last”, “added”, “first”,
and “removed” in this example are not domain key-
words and/or are too common (across different do-
mains) for a measure like tf-idf to work.

5 Conclusions and Future Work

We present a fast, simple, and high-performance
short answer grading system. State-of-the-art mea-
sures of text similarity are combined with grading-
specific constructs to produce top results on multi-
ple benchmarks. There is, however, immense scope
for improvement. Subtle factors like differences
in modality or polarity might go undetected with
coarse text similarity measures. Inclusion of text-
level paraphrase and entailment features can help
in such cases. Additional term weighting mecha-
nisms are needed to identify important answer words
in many cases. Our system provides a simple base
model that can be easily extended with new features
for more accurate answer grading.

Acknowledgments

This material is based in part upon work supported
by the National Science Foundation under Grants
EHR/0835393 and EHR/0835381. We thank Lak-
shmi Ramachandran for clarification of her work.

References
Eneko Agirre, Daniel Cer, Mona Diab, and Aitor

Gonzalez-Agirre. 2012. SemEval-2012 task 6: A Pi-
lot on Semantic Textual Similarity. In SemEval.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 Shared
Task: Semantic Textual Similarity. In *SEM.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. SemEval-2014 Task 10: Multilingual Seman-
tic Textual Similarity. In SemEval.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Iñigo Lopez-Gazpio, Montse Maritxalar, Rada Mihal-
cea, German Rigau, Larraitz Uria, and Janyce Wiebe.
2015. SemEval-2015 Task 2: Semantic Textual Sim-
ilarity, English, Spanish and Pilot on Interpretability.
In SemEval.

1074

Daniel Bär, Chris Biemann, Iryna Gurevych, and Torsten
Zesch. 2012. UKP: Computing Semantic Textual
Similarity by Combining Multiple Content Similarity
Measures. In SemEval.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t Count, Predict! A Systematic Compar-
ison of Context-Counting vs. Context-Predicting Se-
mantic Vectors. In ACL.

Steven Bird, Edward Loper, and Ewan Klein. 2009. Nat-
ural Language Processing with Python. O’Reilly Me-
dia Inc.

Chris Brockett. 2007. Aligning the RTE 2006 Corpus.
Tech Report MSR-TR-2007-77, Microsoft Research.

Steven Burrows, Iryna Gurevych, and Benno Stein.
2015. The Eras and Trends of Automatic Short An-
swer Grading. International Journal of Artificial In-
telligence in Education, 25.1.

Myroslava O. Dzikovska, Rodney Nielsen, Chris
Brew,Claudia Leacock, Danilo Giampiccolo, Luisa
Ben-tivogli, Peter Clark, Ido Dagan, and Hoa Trang
Dang. 2013. Semeval-2013 Task 7: The Joint Stu-
dent Response Analysis and 8th Recognizing Textual
Entailment Challenge. In SemEval.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In NAACL.

Lushan Han, Abhay Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. UMBC EBIQUITY-
CORE: Semantic Textual Similarity Systems. In
*SEM.

Christian Hänig, Robert Remus, and Xose de la Puente.
2015. ExB Themis: Extensive Feature Extraction
from Word Alignments for Semantic Textual Similar-
ity. In SemEval.

Michael Heilman and Nitin Madnani. 2013. ETS: Do-
main Adaptation and Stacking for Short Answer Scor-
ing. In SemEval.

Sergio Jimenez, Claudia Becerra, and Alexander Gel-
bukh. 2013. SOFTCARDINALITY: Hierarchical
Text Overlap for Student Response Analysis. In Se-
mEval.

Claudia Leacock and Martin Chodorow. 2003. C-rater:
Automated Scoring of Short-Answer Questions. Com-
puters and the Humanities, 37(04).

André Lynum, Partha Pakray, Björn Gambäck, and Ser-
gio Jimenez. 2014. NTNU: Measuring Semantic Sim-
ilarity with Sublexical Feature Representations and
Soft Cardinality. In SemEval.

Tom Mitchell, Terry Russell, Peter Broomhead, and
Nicola Aldridge. 2002. Towards Robust Comput-
erised Marking of Free-Text Responses. In Proceed-
ings of the 6th International Computer Assisted As-
sessment (CAA) Conference.

Michael Mohler and Rada Mihalcea. 2009. Text-to-
text Semantic Similarity for Automatic Short Answer
Grading. In EACL.

Michael Mohler, Razvan Bunescu, and Rada Mihalcea.
2011. Learning to Grade Short Answer Questions
Using Semantic Similarity Measures and Dependency
Graph Alignments. In ACL.

Daniel Myers and James W. McGuffee. 2015. Choosing
Scrapy. Computing Sciences in Colleges, 31(1).

Rodney D. Nielsen, Wayne Ward, and James H. Martin.
2009. Recognizing Entailment in Intelligent Tutoring
Systems. Natural Language Engineering, 15(04).

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Machine Learning Re-
search, vol. 12.

Lakshmi Ramachandran, Jian Cheng, and Peter Foltz.
2015. Identifying Patterns For Short Answer Scor-
ing using Graph-based Lexico-Semantic Text Match-
ing. In SemEval.

Frane Šarić, Goran Glavaš, Mladen Karan, Jan Šnajder,
and Bojana Dalbelo Bašić. 2012. TakeLab: Systems
for Measuring Semantic Text Similarity. In SemEval.

Jana Z. Sukkarieh, Stephen G. Pulman and Nicholas
Raikes. 2004. Auto-Marking 2: An Update on the
UCLES-Oxford University research into using Com-
putational Linguistics to Score Short, Free Text Re-
sponses. In Proceedings of the 30th Annual Confer-
ence of the International Association for Educational
Assessment.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2014. Back to Basics for Monolingual Align-
ment: Exploiting Word Similarity and Contextual Ev-
idence. Transactions of the Association for Computa-
tional Linguistics, 2 (May).

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2015. DLS@CU: Sentence Similarity from Word
Alignment and Semantic Vector Composition. In Se-
mEval.

Louis Tandalla. 2012. Scoring Short Answer Essays.
https://kaggle2.blob.core.windows.
net/competitions/kaggle/2959/media/
TechnicalMethodsPaper.pdf.

1075

Proceedings of NAACL-HLT 2016, pages 1076–1081,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Interlocking Phrases in Phrase-based Statistical Machine Translation

Ye Kyaw Thu, Andrew Finch and Eiichiro Sumita
Multilingual Translation Lab.,

Advanced Speech Translation Research and Development Promotion Center,
3-5 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0289, JAPAN

{yekyawthu, andrew.finch, eiichiro.sumita}@nict.go.jp

Abstract

This paper presents an study of the use of in-
terlocking phrases in phrase-based statistical
machine translation. We examine the effect on
translation quality when the translation units
used in the translation hypotheses are allowed
to overlap on the source side, on the target side
and on both sides. A large-scale evaluation
on 380 language pairs was conducted. Our
results show that overall the use of overlap-
ping phrases improved translation quality by
0.3 BLEU points on average. Further analysis
revealed that language pairs requiring a larger
amount of re-ordering benefited the most from
our approach. When the evaluation was re-
stricted to such pairs, the average improve-
ment increased to up to 0.75 BLEU points
with over 97% of the pairs improving. Our
approach requires only a simple modification
to the decoding algorithm and we believe it
should be generally applicable to improve the
performance of phrase-based decoders.

1 Introduction

In this paper we examine the effect on machine
translation quality of using interlocking phrases to
during the decoding process in phrase-based statis-
tical machine translation (PBSMT). The motivation
for this is two-fold.

Firstly, during the phrase-pair extraction process
that occurs in the training of a typical PBSMT sys-
tem, all possible alternative phrase-pairs are ex-
tracted that are consistent with a set of alignment
points. As a consequence, the source and tar-
get sides of these extracted phrase pairs may over-

lap. However, in contrast to this, the decoding pro-
cess traditionally proceeds by concatenating disjoint
translation units; the process relies on the language
model to eliminate awkward hypotheses with re-
peated words produced by sequences of translation
units that overlap.

Secondly, the transduction process in PBSMT is
carried out by generating hypotheses that are com-
posed of sequences of translation units. These se-
quences are normally generated independently, as
modeling the dependencies between them is difficult
due to the data sparseness issues arising from model-
ing with word sequences. The process of interlock-
ing is a way of introducing a form of dependency be-
tween translation units, effectively producing larger
units from pairs of compatible units.

2 Related Work

(Karimova et al., 2014) presented a method to ex-
tract overlapping phrases offline for hierarchical
phrase based SMT. They used the CDEC SMT de-
coder (Dyer et al., 2010) that offers several learn-
ers for discriminative tuning of weights for the new
phrases. Their results showed improvements of 0.3
to 0.6 BLEU points over discriminatively trained
hierarchical phrase-based SMT systems on two
datasets for German-to-English translation. (Trib-
ble and et al., 2003) proposed a method to gener-
ate longer new phrases by merging existing phrase-
level alignments that have overlaping words on both
source and target sides. Their experiments on trans-
lating Arabic-English text from the news domain
were encouraging.

1076

(Roth and McCallum, 2010) proposed a
conditional-random-field approach to discrimi-
natively train phrase based machine translation
in which training and decoding are both cast in a
sampling framework. Different with traditional PB-
SMT decoding that infers both a Viterbi alignment
and the target sentence, their approach produced a
rich overlapping phrase alignment. Their approach
leveraged arbitrary features of the entire source sen-
tence, target sentence and alignment. (Kääriäinen,
2009) proposed a novel phrase-based conditional
exponential family translation model for SMT.
The model operates on a feature representation in
which sentence level translations are represented by
enumerating all the known phrase level translations
that occur inside them. The model automatically
takes into account information provided by phrase
overlaps. Although both of the latter two approaches
were innovative the translation performance was
lower than tranditional PBSMT baselines.

Our proposed approach is most similar to that of
(Tribble and et al., 2003). Our approach differs in
the interlocking process is less constrained; phrase
pairs can interlock independently on source and tar-
get sides, and the interlocking process performed
during the decoding process itself, rather than by
augmenting the phrase-table.

3 Methodology

3.1 Target Interlocking

In the decoding process for PBSMT, the target is
generated from left-to-right phrase-by-phrase. The
process of interlocking the phrases is illustrated in
Figure 1. The si are the source tokens, the tj are
the target tokens, the lower target token sequence on
the left represents the partial translation hypothesis,
and the upper target phrase is the target side of a
translation unit (s3s4, t3t4t5) being used to extend
the hypothesis. An interlock of length k is can occur
if the last k tokens of the partial translation match
the first k tokens of the target side of the translation
unit being used to extend the hypothesis. In this case
the decoder may create an extended hypothesis with
the target side of the translation unit interlocked with
the target word sequence generated so far. In order
to do this, the k interlocked words are not inserted

s1 s2 s3 s4

t1 t2 t3
t3 t4 t5

Figure 1: Interlocking target phrases.

s1 s2 s3 s5 s6 s7

s3 s4 s5

s1 s2 s3

s3 s4 s5
s1 s2 s3

s3 s4 s1

(A) (B)

(C)

Figure 2: Interlocking source phrases.

a second time into the target token sequence and the
word penalty (if pre-calculated) is adjusted to reflect
this. In the example given in Figure 1, the trans-
lation resulting from extending the search with the
interlocking translation unit will be t1t2t3t4t5.

3.2 Source Interlocking

The interlocking of source phrases can occur in three
different ways as shown in Figure 2. In Figure 2 (A),
a source phrase is interlocking with source words to
the left; in (B) a source phrase is interlocking with
source words to the right; and in (C) a source phrase
is interlocking on both sides. The interlocking pro-
cess is handled before the search process begins, at
the time the set of translation options used in the
search is created. Additional interlocking translation
options are created in which the source side phrase
is permitted to overlap with the surrounding source
context, however, later during the search this trans-
lation unit will only be used to translate (cover) the
sequence of non-interlocking words. In this way,
the decoder’s search algorithm can be used without
modification, when dealing with interlocking source
phrases.

4 Experiments

4.1 Corpora

We used twenty languages from the multilingual Ba-
sic Travel Expressions Corpus (BTEC), which is a

1077

collection of travel-related expressions (Kikui et al.,
2003). The languages were Arabic (ar), Danish (da),
German (de), English (en), Spenish (es), French
(fr), Italian (it), Dutch (nl), Portugese (pt), Rus-
sian (ru), Tagalog (tl), Indonesian (id), Malaysian
(ms), Vietnamese (vi), Thai (th), Hindi (hi), Chinese
(zh), Japanese (ja), Korean (ko) and Myanmar (my).
155,121 sentences were used for training, 5,000 sen-
tences for development and 2,000 sentences for eval-
uation.

In addition, we ran experiments on two language
pairs from the Europarl corpus (Koehn, 2005).
The language pairs were English-German, German-
English, English-Spanish and Spanish-English. The
corpus statistics are given in Table 2.

4.2 Experimental Methodology

We used a modified version of our in-house phrase
based SMT system which operates similarly to
Moses (Koehn and Haddow, 2009). GIZA++
(Och and Ney, 2000) was used for word align-
ment, together with the grow-diag-final-and heuris-
tics (Koehn et al., 2003). A lexicalized reordering
model was trained with the msd-bidirectional-fe op-
tion (Tillmann, 2004). We used the SRILM toolkit
to create 5-gram language models with interpolated
modified Kneser-Ney discounting (Stolcke, 2002;
Chen and Goodman, 1996). The weights for the log-
linear models were tuned using the MERT procedure
(Och, 2003). The translation performance was eval-
uated using the BLEU score (Papineni et al., 2001).

We ran three sets of experiments; (1) target inter-
locking, (2) source interlocking and (3) both source
and target interlocking for all possible combinations
of languages (i.e. 380 language pairs). We studied
two methods for accomplishing (3). In the first, in-
terlocking as defined in Sections 3.1 and 3.2 are per-
mitted freely. In the second, the target is allowed to
interlock if and only if the source is also interlocked.
This was similar to the method proposed by (Tribble
and et al., 2003).

4.3 Results

In this section, we will first present the results of the
experiments on the BTEC corpora and then report
the results from the experiments from the Europarl
corpus.

BLEU Difference ≤ 0

0 < BLEU Difference ≤ 0.3

BLEU Difference > 0.3

ar da de en es fr it nl pt ru tl id ms vi th hi zh ja ko my

ar ��� ��� ��� ��� ��� �� ��� � ��� �� � ��� �� ��� ��� ��� ��
 ��� �� ���

da �� ��� �� � �� ��� �� ��� �� �� �� �� �� ��� ��
 ��	 ��	 ��� ��� ���

de �� �� ��� ��� ��� �� �� ��� � ��� �� � �� ��� ��� �� ��� ��� ��
 ��	

en �� � �� ��� �� ��� �� �� �� ��� ��� ��� �� ��� ��� ��� ��� ��
 ��� ��	

es �� �� �� ��� ��� ��� � �� ��� ��� � ��� � ��� ��� ��� ��� ��
 ��� ��	

fr ��� �� �� �� ��� ��� ��� ��� ��� ��� � �� ��� ��� ��� ��� ��� ��� ��	 ���

it � ��� � � � �� ��� �� �� ��� ��� ��� � ��� ��� ��� ��� ��� ��� ��	

nl ��� �� �� �� ��� �� �� ��� �� ��� ��� �� �� ��� ��� ��� � ��� ��� ���

pt ��� �� � � �� ��� �� � ��� �� �� ��� �� ��� ��
 ��
 ��� ��� ��	 ���

ru �� �� �� ��� � � � �� ��� ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ��	

tl � �� ��� � �� ��� �� ��� ��� �� ��� � �� ��� ��� ��� ��	 ��
 ��� ��

id �� �� �� �� ��� ��� �� �� �� ��� �� ��� �� ��� ��� ��� �� ��� �� ���

ms � �� � ��� �� � ��� �� �� �� �� �� ��� �� ��� �� ��� ��� ��	 ���

vi ��� ��� ��	 ��� ��	 ��� ��� ��� ��	 ��� ��� ��� ��� ��� ��� � ��� ��� ��� ���

th ��� ��� ��� ��� � ��� ��� ��
 ��	 ��� ��� ��� ��
 ��� ��� ��� ��� ��� ��� ���

hi ��	 ��� ��� ��� ��
 ��� ��� ��
 ��	 ��� ��
 ��� ��� ��� ��� ��� ��� �� ��� �

zh ��� ��� ��	 ��� ��� ��� ��� ��	 ��� ��� ��� � ��� ��� ��� ��� ��� ��� ��� ���

ja ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� � ��	 ��� ��� ��� ��� ��� �� ���

ko ��� ��� ��� � ��� ��� ��� ��� ��� � ��� ��	 ��� ��� ��� ��� ��� ��� ��� ��

my ��	 ��� ��
 ��� ��� ��� ��� ��� ��� ��	 ��� ��� ��� ��� ��	 ��� ��� ��� ��� ���

Source Language

Ta
rg

et
 L

an
gu

ag
e

Figure 3: BLEU difference by language pair.

4.3.1 BLEU Differences

The difference in BLEU between a baseline sys-
tem, a standard phrase-based SMT system without
interlocking, and the proposed systems in which in-
terlocking phrases where permitted, was calculated,
and the average taken over all 380 language pairs.
The results show that interlocking the phrases gener-
ally improves translation quality, and that the system
gained slightly more from interlocking the target
phrases, than from interlocking the source phrases.
The average BLEU difference was 0.22 from inter-
locking target phrases, 0.14 from overlapping source
phrases and 0.33 from interlocking both source and
target. When the interlocking was constrained to
ensure that both source and target phrases were in-
terlocked, the average BLEU difference dropped to
0.27 BLEU. In the cases where both source and tar-
get phrases were allowed to interlock freely, 77% of
the experiments showed an improvement in BLEU
score.

A sequence of experiments were run on the base-
line system with increasing stack size from 100,
to 1000 in increments of 100. These experiments
showed an increase of 0.07 BLEU points from stack

1078

Src-Trg Corpus Statistics (sentences) Baseline Interlocking

train develop test No-interlock Source Target Src & Trg

en-de 1500,000 3,000 3,000 18.70 21.03 18.83 18.90

de-en 1500,000 3,000 3,000 26.08 24.86 26.05 25.44

en-es 1500,000 3,000 3,000 33.55 35.44 33.68 33.89

es-en 1500,000 3,000 3,000 33.81 36.42 33.90 33.92

Table 2: BLEU scores for the Europarl corpora.

Kendall’s Tau
Distance

Avg BLEU
Difference

% Expts
Showing Gain

[0, 1.00] 0.33 77.3
[0, 0.95] 0.34 78.4
[0, 0.90] 0.38 80.5
[0, 0.85] 0.51 90.5
[0, 0.80] 0.58 93.5
[0, 0.75] 0.63 97.3
[0, 0.70] 0.68 97.3
[0, 0.65] 0.71 97.7
[0, 0.60] 0.72 97.2
[0, 0.55] 0.74 97.3
[0, 0.50] 0.75 100.0

Table 1: Filtering the Set of Language Pairs.

size 100 to stack size 200, followed by a sequence of
scores that did not vary more than 0.01. Therefore,
we conclude that the gains we obtained through in-
terlocking the phrases, could not have been obtained
by simply increasing the amount of searching per-
formed by the baseline system. In other words, the
interlocking method is introducing novel and useful
search steps into the search space.

4.3.2 Results by Language Pair

Figure 3 shows how the gains and losses in BLEU
score were distributed over the set of language pairs.
Lighter cells in the figure represent gains in BLEU,
the black cells represent losses. The order of the lan-
guage pairs has been arranged to show the is a clear
pattern. The languages on the left hand side and up-
per part of the figure are mostly European languages

BLEU Score Difference

Fr
eq
ue
nc
y

0.0 0.5 1.0 1.5 2.0 2.5

0
5

10
15

Figure 4: The Distribution of differences in BLEU
score.

with similar word orders, whereas the remaining
languages are typically Asian languages with dif-
ferent word orders. The language pairs that gained
the most from interlocking on both source and target
were: th-hi, hi-it, ko-de, ko-tl, th-ja, my-ru, my-th,
my-ar, th-my, and it-ja. The languages that lost the
most in BLEU score were: id-pt, ko-my, fr-id, ms-
pt, id-it, da-ar, id-ko, da-es, id-ar, and de-it.

It is clear from Figure 3 that translation among the
group of similar languages does not benefit from our
approach, but the dissimilar languages do. This ob-
servation motivated further analysis of the data in or-
der to develop a method for selecting language pairs

1079

-1 0 1 2

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

BLEU Score Difference

K
en

da
ll's

 T
au

 D
is

ta
nc

e

Figure 5: Plot of the Kendall’s tau distance differ-
ence against BLEU difference.

suitable for our approach.

4.3.3 Kendall’s Tau Distance
Kendall’s tau distance is the minimum number

of transpositions of adjacent symbols necessary to
transform one permutation into another (Kendall,
1938; Birch, 2011), and is one method to gauge the
amount of re-ordering that would be required during
the translation process between two languages.

Figure 5 shows a scatter plot of all of the exper-
iments, plotting BLEU difference against Kendall’s
tau. The points show a strong negative correlation
(coefficient: -0.7). Therefore, we propose to use
Kendall’s tau as a means of selecting appropriate
language pairs to be used with our method.

Table 1 shows the effect of filtering the set of lan-
guage pairs by Kendall’s tau. The effectiveness of
the proposed method increases as languages with
higher Kendall’s tau distance are removed from the
experimental set. When language pairs are selected
according to Kendall’s tau in the range 0 ≤ τ ≤
0.75, the average BLEU gain of the set increases to
0.6 BLEU while still retaining approximately half of
the language pairs in the set. Moreover, the propor-
tion of experiments showing an in improvement in
BLEU increases to over 97%. Figure 4 shows the
distribution of BLEU differences for this subset of

language pairs.

4.3.4 Europarl Corpus

The results of the previous sections were all based
on experiments on the BTEC corpus. This corpus is
unsual in that the sentences are short and the training
data size is also small. In order to establish that our
approach has more general application, we applied
it to four language pairs from the much larger Eu-
roparl corpus. The results on the Europarl corpus are
shown in Table 2. For three of the language pairs we
observed increases in BLEU scores over the baseline
for all interlocking methods with substantial gains
of 1.9 to 2.6 BLEU points coming from the source
interlocking technique. However, the German to En-
glish pair gave a negative result. The results from the
Europarl corpus are generally very encouraging but
the negative result motivates further study on more
language pairs from different domain in the future.

5 Conclusion

In this paper we propose and evaluate a simple
technique for improving the performance of phrase-
based statistical machine translation decoders, that
can be implemented with only minor modifications
to the decoder. In the proposed method phrases are
allowed to interlock freely on both the source and
target side during decoding. The experimental re-
sults, based on a large-scale study involving 380
language pairs provide strong evidence that our ap-
proach is genuinely effective in improving the ma-
chine translation quality. The translation quality im-
proved for 77% of the language pairs tested, and
this was increased to over 97% when the set of lan-
guage pairs was filtered according to Kendall’s tau
distance. The translation quality improved by an av-
erage of up to 0.75 BLEU points on this subset. This
value represents a lower bound on what is possible
with this technique and in future work we intend to
study the introduction of additional features into the
log-linear model to encourage or discourage the use
of interlocking phrases during decoding, and inves-
tigate the effect of increasing the number of inter-
locked words.

1080

References

Alexandra Birch. 2011. Reordering Metrics for Statisti-
cal Machine Translation. Ph.D. thesis, University of
Edinburgh.

Stanley F Chen and Joshua Goodman. 1996. An empiri-
cal study of smoothing techniques for language model-
ing. In Proceedings of the 34th annual meeting on As-
sociation for Computational Linguistics, pages 310–
318. Association for Computational Linguistics.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In Proceed-
ings of ACL.

Matti Kääriäinen. 2009. Sinuhe – statistical machine
translation using a globally trained conditional expo-
nential family translation model. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 1027–1036, Singapore,
August. Association for Computational Linguistics.

Sariya Karimova, Patrick Simianer, and Stefan Riezler.
2014. Offline extraction of overlapping phrases for
hierarchical phrase-based translation. In Proceedings
of the International Workshop on Spoken Language
Translation (IWSLT), pages 236–243.

M. G. Kendall. 1938. A new measure of rank correlation.
Biometrika, 30(1/2):81–93.

G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto.
2003. Creating corpora for speech-to-speech trans-
lation. In Proceedings of EUROSPEECH-03, pages
381–384.

Philipp Koehn and Barry Haddow. 2009. Edinburgh’s
Submission to all Tracks of the WMT2009 Shared
Task with Reordering and Speed Improvements to
Moses. In Proceedings of the Fourth Workshop on Sta-
tistical Machine Translation, pages 160–164.

Philipp Koehn, Franz Josef Och, , and Daniel Marcu.
2003. Statistical phrase-based translation. In In Pro-
ceedings of the Human Language Technology Confer-
ence, Edmonton, Canada.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5,
pages 79–86.

F. J. Och and H. Ney. 2000. Improved statistical align-
ment models. In ACL00, pages 440–447, Hong Kong,
China.

Franz J. Och. 2003. Minimum error rate training for sta-
tistical machine translation. In Proceedings of the 41st
Meeting of the Association for Computational Linguis-
tics (ACL 2003), Sapporo, Japan.

K. Papineni, S. Roukos, T. Ward, and W.J. Zhu. 2001.
Bleu: a Method for Automatic Evaluation of Ma-
chine Translation. IBM Research Report rc22176
(w0109022), Thomas J. Watson Research Center.

Benjamin Roth and Andrew McCallum. 2010. Machine
translation using overlapping alignments and sampler-
ank. In Proceedings of the Ninth Conference of the
Association for Machine Translation in the Americas,
AMTA2010.

Andreas Stolcke. 2002. SRILM - An Extensible Lan-
guage Modeling Toolkit. In Proceedings of the Inter-
national Conference on Spoken Language Processing,
volume 2, pages 901–904, Denver.

Christoph Tillmann. 2004. A unigram orientation model
for statistical machine translation. In Proceedings of
HLT-NAACL 2004: Short Papers, HLT-NAACL-Short
’04, pages 101–104, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Alicia Tribble and et al. 2003. Overlapping phrase-level
translation rules in an smt engine.

1081

Proceedings of NAACL-HLT 2016, pages 1082–1088,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Eyes Don’t Lie:
Predicting Machine Translation Quality Using Eye Movement

Hassan Sajjad, Francisco Guzmán, Nadir Durrani, Ahmed Abdelali,
Houda Bouamor†, Irina Temnikova, Stephan Vogel

Qatar Computing Research Institute, HBKU, Qatar
†Carnegie Mellon University, Qatar

Abstract

Poorly translated text is often disfluent and
difficult to read. In contrast, well-formed
translations require less time to process. In
this paper, we model the differences in reading
patterns of Machine Translation (MT) evalua-
tors using novel features extracted from their
gaze data, and we learn to predict the qual-
ity scores given by those evaluators. We test
our predictions in a pairwise ranking scenario,
measuring Kendall’s tau correlation with the
judgments. We show that our features provide
information beyond fluency, and can be com-
bined with BLEU for better predictions. Fur-
thermore, our results show that reading pat-
terns can be used to build semi-automatic met-
rics that anticipate the scores given by the
evaluators.

1 Introduction

Human evaluation has been the preferred method for
tracking the progress of MT systems. In the past,
the prevalent criterion was to judge the quality of a
translation in terms of fluency and adequacy, on an
absolute scale (White et al., 1994). However, dif-
ferent evaluators focused on different aspects of the
translations, which increased the subjectivity of their
judgments. As a result, evaluations suffered from
low inter- and intra-annotator agreements (Turian et
al., 2003; Snover et al., 2006). This caused a shift to-
wards a ranking-based approach (Callison-Burch et
al., 2007). Unfortunately, the disagreement between
evaluators is still a challenge that cannot be easily
resolved due to the non-transparent thought-process
that evaluators follow to make a judgment.

The eye-mind hypothesis (Just and Carpenter,
1980; Potter, 1983) states that when completing a
task, people cognitively process objects that are in
front of their eyes (i.e. where they fixate their gaze).1

Based on this assumption, it has been possible to
study reading behavior and patterns (Rayner, 1998;
Garrod, 2006; Hansen and Ji, 2010).

The overall difficulty of a sentence and its syn-
tactic complexity affects reading behavior (Coco
and Keller, 2015). Ill-formed sentences take longer
to process, and may cause the reader to jump back
while reading. Hence, by looking into how evalu-
ators read the translations and their accompanying
references, we can learn about: (i) the complexity of
a reference sentence, and (ii) the quality of a trans-
lation sentence.

Using reading patterns from evaluators could be a
useful tool for MT evaluation: (i) to shed light into
the evaluation process: e.g. the general reading be-
havior that evaluators follow to complete their task;
(ii) to understand which parts of a translation are
more difficult for the annotator; and (iii) to develop
semi-automatic evaluation systems that use reading
patterns to predict translation quality.

In this paper, we make a first step towards (iii): us-
ing reading patterns as a method for distinguishing
between good and bad translations. Our hypothesis
is that bad translations are difficult to read, which
may be reflected by the reading patterns of the eval-
uators. Motivated by the notion of reading diffi-
culty, we extracted novel features from the evalua-
tor’s gaze data, and used them to model and predict
the quality of translations as perceived by evaluators.

1Except in cases of covert attention.

1082

2 Features and Model

A perfectly grammatical sentence can be difficult
to read for several reasons: unfamiliar vocabulary,
complex syntactic structure, syntactic or semantic
ambiguity, etc. (Harley, 2013). Reading automatic
translations is even more challenging due to untrans-
lated words, incorrect word order, morphological
disagreements, etc. Cognitively processing difficult
sentences generally results in modified reading pat-
terns (Garrod, 2006; Coco and Keller, 2015).

In this paper, we analyze the reading patterns
of human judges in terms of the word transitions
(jumps), and the time spent on each word (dwell
time); and use them as features to predict the quality
score of a specific translation. For the sake of sim-
plicity, as recommended by Guzmán et al. (2015),
we only consider a monolingual evaluation scenario
and ignore the source text . However, our features
and experimental setup can be extended to include
source-side features.

2.1 Features

Jump features While reading text, the gaze of a
person does not visit every single word, but it ad-
vances in jumps called saccades. These jumps can
go forwards (progressions) or backwards (regres-
sions). The number of regressions correlates with
the reading difficulty of a sentence (Garrod, 2006;
Schotter et al., 2014; Metzner, 2015). In an evalu-
ation scenario, a fluent reading would mean mono-
tonic gaze movement. On the contrary, the reader
may need to jump back multiple times while reading
a poor translation. We classify the word-transitions
according to the direction of the jump and distance
between the start and end words. For subsequent
words n, n+ 1, this would mean a forward jump of
distance equal to 1. All jumps with distance greater
than 4 were sorted into a 5+ bucket. Additionally,
we separate the features for reference and translation
jumps. We also count the total number of jumps.

Total jump distance We additionally aggregate
jump distances2 to count the total distance covered
while evaluating a sentence. We have reference dis-
tance and translation distance features. Again, the

2Jump count and distance features have also shown to be
useful in SMT decoders (Durrani et al., 2011).

idea is that for a well-formed sentence, gaze distance
should be less, compared to a poorly-formed one.

Inter-region jumps While reading a translation,
evaluators can jump between the translation and a
reference to compare them. Intuitively, more jumps
of this type could signify that the translation is
harder to evaluate. Here we count the number of
transitions between reference and translation.

Dwell time The amount of time a person fixates on
a region is a crucial marker for processing difficulty
in sentence comprehension (Clifton et al., 2007) and
moderately correlates with the quality of a transla-
tion (Doherty et al., 2010). Our feature counts the
time spent by the reader on each particular word. We
separate reference and translation features.

Lexicalized Features The features discussed
above do not associate gaze movements with the
words being read. We believe that this information
can be critical to judge the overall difficulty of the
reference sentence, and to evaluate which transla-
tion fragments are problematic to the reader. To
compute the lexicalized features, we extract streams
of reference and translation lexical sequences based
on the gaze jumps, and score them using a tri-gram
language model. Let Ri = r1, r2, . . . , rm be a
sub-sequence of gaze movement over reference and
there are R1, R2, . . . , Rn sequences, the lex feature
is computed as follows:

lex(R) =
n∑
i

log p(Ri)
|Ri|

p(Ri) =
m∑
j

p(rj |rj−1, rj−2)

The normalization factor |Ri| is used to make
the probabilities comparable. We also use un-
normalized scores as additional feature. A similar
set of features lex(T) is computed for the transla-
tions. All features are normalized by the length of
the sentence.

2.2 Model

For predicting the quality scores given by an eval-
uator, we use a linear regression model with ridge

1083

regularization. The ridge coefficient β̂ is the value
of β that minimizes the error:

∑
i

(yi − xTi β)2 + λ

p∑
j=1

β2
j

Here the parameter λ controls the amount of shrink
applied to regression coefficients. A high value of λ
shrinks the coefficients close to zero (Hastie et al.,
2001). We used the implementation provided in the
glmnet package of R (Friedman et al., 2010), which
inherits a cross-validation mechanism that finds the
best value of λ on the training data.

3 Experimental Setup

We used a subset of the Spanish-English portion
of the WMT’12 Evaluation task. We selected 60
medium-length sentences which have been evalu-
ated previously by at least 2 different annotators.
For each sentence we selected the best and worst
translations according to a human evaluation score
based on the expected wins (Callison-Burch et al.,
2012). As a result, we had 60 references with two
corresponding translations each, adding up to a total
of 120 evaluation tasks. Each evaluation task was
performed by 6 different evaluators, resulting in 720
evaluations.

The annotators were presented with a translation-
reference pair at a time. The two evaluation tasks
corresponding to the same reference were presented
at two different times with at least 40 other tasks
in-between. This was done to prevent any possi-
ble spurious effects that may arise from remember-
ing the content of a first translation, when evaluating
the second translation of the same sentence. During
each evaluation task, the evaluators were asked to as-
sess the quality of a translation by providing a score
between 0–100 (Graham et al., 2013). The observed
inter-annotator agreement (Cohen’s kappa) among
our annotators was 0.321. This is slightly higher
than the overall inter-annotator agreement of 0.284
reported in WMT’12 for the Spanish-English.3 For
reading patterns we use the EyeTribe eye-tracker at

3For a rough comparison only. Note that these two num-
bers are not exactly comparable given that they are calculated
on different subsets of the same data. Still, there is a fair agree-
ment between the our evaluators and the expected wins from
WMT’12 (avg. pairwise kappa of 0.381)

a sampling frequency of 30Hz. Please refer to Ab-
delali et al. (2016) for our Eye-Tracking setup and
to know about iAppraise, an evaluation environment
that supports eye-tracking.

3.1 Evaluation

In our evaluation, we used eye-tracking features to
predict the quality of a translation in a pairwise sce-
nario in a protocol similar to the one from WMT’12.
First, we obtained the predicted scores ŷkA, ŷkB for
translations A and B when evaluated by evaluator
k. Then, we computed the agreements w.r.t. the
scores ykA, ykB provided by the evaluator for the
same pair of translations. That is, we considered an
agreement when rankings were in order, e.g. ŷkA >
ŷkB ⇐⇒ ykA > ykB . Otherwise, we considered
it a disagreement. Finally, we computed Kendall’s
tau correlation coefficient as follows: τ = agg−dis

agg+dis .
We evaluated the performance using a 10-fold cross-
validation. While the folds were selected randomly,
we ensured that all translations corresponding to the
same sentence were included in the same fold, to
prevent any overlap between train and test.

4 Results

In this section, we first analyze the results of co-
herent feature sets to measure their predictive power
and to validate the intuitions about the information
they capture. Later, we use combination of features
and assess their suitability as evaluation metrics.

4.1 Gaze as a translation quality predictor

In Table 1, we show the results for the predictive
models trained on different feature sets. For simplic-
ity, we divide the feature groups in: reference only
features (I), translation only features (II), translation
and reference features (III); and lexicalized features
(IV). In the last group, we also add a tri-gram lan-
guage model scores for comparison purposes.

Reference only features In section I of the ta-
ble, we observe the prediction results for the mod-
els that only used features from the references. Un-
surprisingly, most of these features lack the predic-
tive power to determine whether translationA is bet-
ter than translation B (τ from 0.06 to 0.13). One
would expect that important phenomena that can be

1084

observed only on the reference (e.g. the overall dif-
ficulty of the sentence), are neutralized in a pairwise
setting, because an evaluator would read both in-
stances of the reference text similarly.4

However, some features like the dwell time (τ =
0.13) yield better results than others. This could be
explained by the need to go back to the reference,
when reading a confusing translation, thus spending
more time reading the reference.

Translation only features In section II, we ob-
serve the results for the translation features. At a
first glance, we realize that the correlation results
are much higher than for the reference features (τ
from 0.17 to 0.23). This supports the hypothesis
that reading patterns can help to distinguish good
from bad translations. Furthermore, it also supports
specific intuitions about these reading patterns. For
example, the fluency of a sentence is important (for-
ward jumps, τ = 0.17), but the number of regres-
sions are better predictors of the quality of a sen-
tence (τ = 0.22). Additionally, the time spent read-
ing a translation (dwell time) is a good predictor of
the quality (τ = 0.22). All of the above validate
the intuition that reading patterns capture informa-
tion about the quality of a translation. In general,
using translation eye-tracking features in a pairwise
evaluation, can help to predict which translation is
better.

Translation and reference features Reference
and translation features are not independent. Inter-
region jumps capture the number of times that eval-
uators go between translation and references before
making judgment. In section III, we observe that
these features can be useful to predict the quality of
a translation (τ = 0.18).

Lexicalized features In the last rows of the ta-
ble, we show that reading patterns help to evaluate
more than just the fluency of a translation. A simple
language model score (BLM), is a weaker quality
predictor (τ = 0.17) than most of the eye-tracking
translation features. Using the lexicalized version of
the jump features gives additional predictive power
(τ = 0.22). Furthermore, by adding the total num-

4Although there could be differences based on correspond-
ing translation, which may result in different values for the ref-
erence features.

SYS Feature Sets (total features) τ

I. Eye-tracking: Reference
EyeReffj Forward jumps (5) 0.06
EyeRefbj Backward jumps (5) 0.11
EyeRefdist Total jump distance (1) 0.09
EyeRefvisit Total number of jumps (1) 0.10
EyeReftime Dwell time (1) 0.13

II. Eye-tracking: Translation
EyeTrafj Forward jumps (5) 0.17
EyeTrabj Backward jumps (5) 0.22
EyeTradist Total jump distance (1) 0.19
EyeTravisit Total number of jumps(1) 0.23
EyeTratime Dwell time (1) 0.22

III. Eye-tracking: Inter-region
EyeInter Jumps b/w regions (2) 0.18

IV. Lexicalized features
BLM Language model (6) 0.17
EyeLexall Lexicalized gaze jumps combined (6) 0.22

Table 1: Results of individual eye-tracking features
based on reference region, translation region, inter-
region and lexicalized information

ber of jumps and backward jumps to the LM fea-
tures, we would obtain a considerable gain in corre-
lation (τ = 0.30). This suggests that the reading
patterns capture information about more than just
fluency.

4.2 Gaze to build an evaluation metric

So far, we’ve shown that the individual sets of
features based on reading patterns can help to
predict translation quality, and that this goes beyond
simple fluency. One question that remains to be
answered is whether these features could be used
as a whole to evaluate the quality of a translation
semi-automatically. That is, whether we can use the
gaze information, and other lexical information to
anticipate the score that an evaluator will assign to
a translation. Here, we present evaluation results
combining several of these gaze features, and
compare them against BLEU (Papineni et al., 2002),
which uses lexical information and is designed to
measure not only fluency but also adequacy.

In Table 2, we present results in the following way:
in (I) we present the best non-lexicalized feature

1085

combinations that improve the predictive power of
the model. In (II) we re-introduce the results of lex-
icalized jumps feature. In (III) we present results
of BLEU and the combination of eye-tracking fea-
tures with it. Finally in (IV) we present the human-
to-human agreement measured in average Kendall’s
tau and in max human-to-human Kendall’s tau.

Combinations of translation jumps In section I
we present several combinations of features. All of
them include the backward jumps feature. This fea-
ture provides predictive power (τ = 0.22), which
is orthogonal to other features. This is in line with
our initial hypothesis that for a bad translation, an
evaluator needs to go back and forth several times to
understand it. Combining the backward jumps with
the total number of jumps (CTJ1) slightly increases
the correlation to τ = 0.25. Adding the jump dis-
tance (CTJ2) also increases its τ to 0.27. While this
correlation is lower than BLEU (τ = 0.34), it does
showcase the predictive power of the reading pat-
terns.

Combinations with BLEU When we combined
BLEU with the translation jumps, we observed an
increment in the τ to 0.37. Combining BLEU with
the lexicalized jumps, yields the best combination
(τ = 0.42). Although moderate, these increments
suggest that the reading patterns could be capturing
additional phenomenon besides adequacy and flu-
ency, such as structural complexity. These phenom-
ena remain to be explored in future work.

Human performance On average, evaluators
agreements with each other are fair (τ = 0.33) and
below the best combination (CB3), while the maxi-
mum agreement of any two evaluators is relatively
higher (τ = 0.53). This tells us that on average
the semi-automatic approach to evaluation that we
propose here is already competitive to predictions
done by another (average) human. However, there is
still room for improvement with respect to the most-
agreeing pair of evaluators.

5 Related Work

Eye-tracking devices have been used previously
in the MT research. Stymne et al. (2012) used
eye-tracking to identify and classify MT errors.

SYS Feature Sets τ

I. Combination of translation jumps
EyeTrabj Backward jumps 0.22
CTJ1 Backward jumps, total jumps 0.25
CTJ2 Backward jumps, total jumps, distance 0.27

II. Eye-tracking: Best Lexicalized
EyeLexall Lexicalized gaze jumps 0.22

III. Combinations with BLEU
Bbleu BLEU 0.34
CB1 Bbleu + EyeTrabj 0.38
CB2 Bbleu + CTJ2 0.39
CB3 Bbleu + EyeLexall 0.42

IV. Human performance
Avg Avg. human-to-human agreement 0.33
Max Max. human-to-human agreement 0.53

Table 2: Result of combining several jump and lex-
icalized features with BLEU. The column Feature
Sets shows the name of the systems whose features
are combined for that particular run. We also in-
cluded the average and maximum observed tau be-
tween any two evaluators, as a reference.

Doherty et al. (2010) conducted a study using eye-
tracking for MT evaluation and showed correlation
between fixations and BLEU scores. Doherty and
O’Brien (2014) evaluated the quality of machine
translation output in terms of its usability by an
end user. Guzmán et al. (2015) used eye-tracking
to show that having monolingual environment
improves the consistency of the evaluation.

Our work is different, as we: i) proposed novel eye-
tracking features and ii) model gaze movements to
predict human judgment.

6 Conclusion

We have shown that the reading patterns detected
through eye-tracking can be used to predict human
judgments of automatic translations. To this end, we
extracted novel lexicalized and non-lexicalized fea-
tures from the eye-tracking data motivated by no-
tions of reading difficulty, and used them to predict
the quality of a translation. We have shown that
these features capture more than just the fluency of
a translation, and provide complementary informa-
tion to BLEU. In combination, these features can
be used to produce semi-automatic metrics with im-
proved the correlation with human judgments.

1086

In the future, we plan to extend our experiments to
a large set of users and different language pairs. Ad-
ditionally we plan to improve the feature set to take
into account phenomena such as early termination,
i.e. when an evaluator makes a judgment before fin-
ishing reading a translation. We plan to deepen our
analysis to determine what kind of information is be-
ing used beyond fluency and adequacy.

References

Ahmed Abdelali, Nadir Durrani, and Francisco Guzmán.
2016. iAppraise: A Manual Machine Translation
Evaluation Environment Supporting Eye-tracking. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego, California.

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn,
Christof Monz, and Josh Schroeder. 2007. (Meta-)
Evaluation of Machine Translation. In Proceedings of
the Second Workshop on Statistical Machine Transla-
tion, Prague, Czech Republic.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Machine
Translation. In Proceedings of the Seventh Work-
shop on Statistical Machine Translation, pages 10–
51, Montréal, Canada. Association for Computational
Linguistics.

Charles Clifton, Adrian Staub, and Keith Rayner. 2007.
Eye Movements in Reading Words and Sentences. Eye
Movements: A Window on Mind and Brain, pages
341–372.

Moreno I. Coco and Frank Keller. 2015. The Interac-
tion of Visual and Linguistic Saliency during Syntac-
tic Ambiguity Resolution. The Quarterly Journal of
Experimental Psychology, 68(1):46–74.

Stephen Doherty and Sharon O’Brien. 2014. Assess-
ing the Usability of Raw Machine Translated Out-
put: A User-Centered Study Using Eye Tracking. In-
ternational Journal of Human-Computer Interaction,
30(1):40–51.

Stephen Doherty, Sharon O’Brien, and Michael Carl.
2010. Eye Tracking as an Automatic MT Evaluation
Technique. Machine translation, 24(1):1–13.

Nadir Durrani, Helmut Schmid, and Alexander Fraser.
2011. A Joint Sequence Translation Model with In-
tegrated Reordering. In Proceedings of the Associa-
tion for Computational Linguistics: Human Language
Technologies (ACL-HLT’11), Portland, OR, USA.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani.
2010. Regularization Paths for Generalized Linear
Models via Coordinate Descent. Journal of Statistical
Software, 33(1):1–22.

Simon Garrod. 2006. Psycholinguistic Research Meth-
ods. The Encyclopedia of Language and Linguistics,
2:251–257.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous Measurement Scales
in Human Evaluation of Machine Translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, Sofia, Bulgaria.

Francisco Guzmán, Ahmed Abdelali, Irina Temnikova,
Hassan Sajjad, and Stephan Vogel. 2015. How do Hu-
mans Evaluate Machine Translation. In Proceedings
of the 10th Workshop on Statistical Machine Transla-
tion, Lisbon, Portugal.

Dan Witzner Hansen and Qiang Ji. 2010. In the Eye
of the Beholder: A Survey of Models for Eyes and
Gaze. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 32(3):478–500.

Trevor A Harley. 2013. The Psychology of Language:
From Data to Theory. Psychology Press.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
2001. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New
York, NY, USA.

Marcel A. Just and Patricia A. Carpenter. 1980. A The-
ory of Reading: From Eye Fixations to Comprehen-
sion. Psychological review, 87(4):329.

Paul-Philipp Metzner. 2015. Eye Movements and Brain
Responses in Natural Reading. Ph.D. thesis, Univer-
sity of Potsdam.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
Association for Computational Linguistics, ACL ’02,
pages 311–318, Philadelphia, PA, USA.

Mary C. Potter. 1983. Representational Buffers: The
Eye-Mind Hypothesis in Picture Perception, Reading,
and Visual Search. Eye Movements in Reading: Per-
ceptual and Language Processes, pages 423–437.

Keith Rayner. 1998. Eye Movements in Reading and
Information Processing: 20 Years of Research. Psy-
chological bulletin, 124(3):372.

Elizabeth R. Schotter, Randy Tran, and Keith Rayner.
2014. Dont Believe What You Read (Only
Once) Comprehension Is Supported by Regressions
During Reading. Psychological science, page
0956797614531148.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proceedings of the 7th Biennial Conference of

1087

the Association for Machine Translation in the Ameri-
cas, Cambridge, Massachusetts, USA.

Sara Stymne, Henrik Danielsson, Sofia Bremin,
Hongzhan Hu, Johanna Karlsson, Anna Prytz Lillkull,
and Martin Wester. 2012. Eye Tracking as a Tool
for Machine Translation Error Analysis. In Proceed-
ings of the International Conference on Language
Resources and Evaluation, Istanbul, Turkey.

Joseph Turian, Luke Shen, and I. Dan Melamed. 2003.
Evaluation of Machine Translation and its Evaluation.
In Proceedings of Machine Translation Summit IX,
New Orleans, LA, USA.

John White, Theresa O’Connell, and Francis O’Mara.
1994. The ARPA MT Evaluation Methodologies:
Evolution, Lessons, and Future Approaches. In Pro-
ceedings of the Association for Machine Translation in
the Americas Conference, Columbia, Maryland, USA.

1088

Proceedings of NAACL-HLT 2016, pages 1089–1094,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Making Dependency Labeling Simple, Fast and Accurate

Tianxiao Shen1 Tao Lei2 Regina Barzilay2

1The Institute for Theoretical Computer Science (ITCS)
Institute for Interdisciplinary Information Sciences

Tsinghua University
2MIT CSAIL

1shentianxiao0831@gmail.com
2{taolei, regina}@csail.mit.edu

Abstract

This work addresses the task of dependency
labeling—assigning labels to an (unlabeled)
dependency tree. We employ and extend a
feature representation learning approach, op-
timizing it for both high speed and accu-
racy. We apply our labeling model on top of
state-of-the-art parsers and evaluate its perfor-
mance on standard benchmarks including the
CoNLL-2009 and the English PTB datasets.
Our model processes over 1,700 English sen-
tences per second, which is 30 times faster
than the sparse-feature method. It improves
labeling accuracy over the outputs of top
parsers, achieving the best LAS on 5 out of
7 datasets1.

1 Introduction

Traditionally in dependency parsing, the tasks of
finding the tree structure and labeling the de-
pendency arcs are coupled in a joint achitecture.
While it has potential to eliminate errors propogated
through a separated procedure, joint decoding intro-
duces other sources of issues that can also lead to
non-optimal labeling assignments. One of the issues
arises from inexact algorithms adopted in order to
solve the hard joint search problem. For instance,
many parsers (Nivre et al., 2007; Titov and Hender-
son, 2007; Zhang et al., 2013; Dyer et al., 2015;
Weiss et al., 2015) adopt greedy decoding such as
beam search, which may prune away the correct la-
beling hypothesis in an early decoding stage. An-
other issue is caused by the absence of rich label

1Our code is available at https://github.com/
shentianxiao/RBGParser/tree/labeling.

features. Adding dependency labels to the combina-
torial space significantly slows down the search pro-
cedure. As a trade-off, many parsers such as MST-
Parser, TurboParser and RBGParser (McDonald et
al., 2005; Martins et al., 2010; Zhang et al., 2014)
incorporate only single-arc label features to reduce
the processing time. This restriction greatly limits
the labeling accuracy.

In this work, we explore an alternative approach
where the dependency labeling is applied as a sep-
arate procedure, alleviating the issues described
above. The potential of this approach has been ex-
plored in early work. For instance, McDonald et al.
(2006) applied a separate labeling step on top of the
first-order MSTParser. The benefit of such approach
is two-fold. First, finding the optimal labeling as-
signment (once the tree structure is produced) can
be solved via an exact dynamic programming algo-
rithm. Second, it becomes relatively cheap to add
rich label features given a fixed tree, and the ex-
act algorithm still applies when high-order label fea-
tures are included. However, due to performance is-
sues, such approach has not been adopted by the top
performing parsers. In this work, we show that the
labeling procedure, when optimized with recent ad-
vanced techniques in parsing, can achieve very high
speed and accuracy.

Specifically, our approach employs the recent
distributional representation learning technique for
parsing. We apply and extend the low-rank ten-
sor factorization method (Lei et al., 2014) to the
second-order case to learn a joint scoring function
over grand-head, head, modifier and their labels.
Unlike the prior work which additionally requires

1089

traditional sparse features to achieve state-of-the-art
performance, our extention alone delivers the same
level of accuracy, while being substantially faster.
As a consequence, the labeling model can be applied
either as a refinement (re-labeling) step on top of ex-
isting parsers with negligible cost of computation, or
as a part of a decoupled procedure to simplify and
speed up the dependency parsing decoding.

We evaluate on all datasets in the CoNLL-2009
shared task as well as the English Penn Treebank
dataset, applying our labeling model on top of state-
of-the-art dependency parsers. Our labeling model
processes over 1,700 English sentences per sec-
ond, which is 30 times faster than the sparse-feature
method. As a refinement (re-labeling) model, it
achieves the best LAS on 5 out of 7 datasets.

2 Method

2.1 Task Formulation
Given an unlabeled dependency parsing tree y of
sentence x, where y can be obtained using exist-
ing (non-labeling) parsers, we classify each head-
modifier dependency arc h → m ∈ y with a partic-
ular label lh→m. Let l =

⋃
h→m∈y{lh→m}, our goal

is to find the assignment with the highest score:

l∗ = arg max
l

S(x,y, l)

For simplicity, we omit x,y in the following dis-
cussion, which remain the same during the labeling
process. We assume that the score S(l) decomposes
into a sum of local scores of single arcs or pairs of
arcs (in the form of grand-head–head–modifier), i.e.

S(l) =
∑

h→m∈y
s1(h

q→ m) +
∑

g→h→m∈y
s2(g

p→ h
q→ m)

where p = lg→h, q = lh→m.
Parameterizing the scoring function s1(h

q→ m)
and s2(g

p→ h
q→ m) is a key challenge. We follow

Lei et al. (2014) to learn dense representations of
features, which have been shown to better generalize
the scoring function.

2.2 Scoring
The representation-based approach requires little
feature engineering. Concretely, let φg, φh, φm ∈
Rn be the atomic feature vector of the grand-
head, head and modifier word respectively, and

Unigram features:
form form-p form-n
lemma lemma-p lemma-n
POS POS-p POS-n
morph bias
Bigram features:
POS-p, POS POS, POS-n
form, POS lemma, POS
lemma, POS-p lemma, POS-n
Trigram features:
POS-p, POS, POS-n

Table 1: Word atomic features used by our model. POS, form,
lemma and morph stand for the POS tag, word form, word
lemma and morphology features respectively. The suffix -p
refers to the previous token, and -n refers to the next.

φg→h,p, φh→m,q ∈ Rd be the atomic feature vector
of the two dependency arcs respectively. It is easy
to define and compute these vectors. For instance,
φg (as well as φh and φm) can incorperate binary
features which indicate the word and POS tag of the
current token (and its local context), while φg→h,p
(and φh→m,q) can indicate the label, direction and
length of the arc between the two words.

The scores of the arcs are computed by (1)
projecting the atomic vectors into low-dimensional
spaces; and (2) summing up the element-wise prod-
ucts of the resulting dense vectors:

s1(h
q→ m) =

r1∑
i=1

[U1φh]i[V1φm]i[W1φh→m,q]i

where r1 is a hyper-parameter denoting the dimen-
sion after projection, and U1, V1 ∈ Rr1×n, W1 ∈
Rr1×d are projection matrices to be learned.

The above formulation can be shown equivalent
to factorizing a huge score table T1(·, ·, ·) into the
product of three matrices U1, V1 and W1, where T1

is a 3-way array (tensor) storing feature weights of
all possible features involving three components—
the head, modifier and the arc between the two. Ac-
cordingly, the formula to calculate s1(·) is equivalent
to summing up all feature weights (from T1) over the
structure h

q→ m.2

We depart from the prior work in the following
aspects. First, we naturally extend the factorization
approach to score second-order structures of grand-

2We refer readers to the original work (Lei et al., 2014) for
the derivation and more details.

1090

head, head and modifier,

s2(g
p→ h

q→ m) =
r2∑

i=1

[U2φg]i[V2φh]i[W2φm]i

[X2φg→h,p]i[Y2φh→m,q]i

Here r2 is a hyper-parameter denoting the dimen-
sion, and U2, V2,W2 ∈ Rr2×n, X2, Y2 ∈ Rr2×d are
additional parameter matrices to be learned. Sec-
ond, in order to achieve state-of-the-art parsing ac-
curacy, prior work combines the single-arc score
s1(h

q→ m) with an extensive set of sparse features
which go beyond single-arc structures. However, we
find this combination is a huge impediment to de-
coding speed. Since our extention already captures
high-order structures, it readily delivers state-of-the-
art accuracy without the combination. This change
results in a speed-up of an order of magnitude (see
section 2.4 for a further discussion).

2.3 Viterbi Labeling

We use a dynamic programming algorithm to find
the labeling assignment with the highest score. Sup-
pose h is any node apart from the root, and g is h’s
parent. Let f(h, p) denote the highest score of sub-
tree hwith lg→h fixed to be p. Then we can compute
f(·, ·) using a bottom-up method, from leaves to the
root, by transition function

f(h, p) =
∑

h→m∈y
max

q

{
f(m, q) + s1(h

q→ m)

+ s2(g
p→ h

q→ m)
}

And the highest score of the whole tree is

f(root) =
∑

root→m∈y
max

q
f(m, q) + s1(root

q→ m)

Once we get f(·, ·), we can determine the labels
backward, in a top-down manner. The time com-
plexity of our algorithm is O(NL2 · T), where N
is the number of words in a sentence, L is the num-
ber of total labels, and T is the time of computing
features and scores.

2.4 Speed-up

In this section, we discuss two simple but effective
strategies to speed up the labeling procedure.

Pruning We prune unlikely labels by simply ex-
ploiting the part-of-speech (POS) tags of the head
and the modifier. Specifically, let 1(posh, posm, l)

denote whether there is an arc h l→ m in the train-
ing data such that h’s POS tag is posh and m’s POS
tag is posm. In the labeling process, we only con-
sider the possible labels that occur with the corre-
sponding POS tags. Let K be the average number
of possible labels per arc, then the time complexity
is dropped to O(NK2 · T) approximately. In prac-
tice, K ≈ L/4. Hence this pruning step makes our
labeler 16 times faster.

Using Representation-based Scoring Only The
time to compute scores, i.e. T , consists of building
the features and fetching the corresponding feature
weights. For traditional methods, this requires enu-
merating feature templates, constructing feature ID
and searching the feature weight in a look-up table.
For representation-based scoring, the dense word
representations (e.g. U1φh) can be pre-computed,
and the scores are obtained by simple inner products
of small vectors. We choose to use representation-
based scoring only, therefore reducing the time to
O(NK2 · (r1 + r2) +NT ′). In practice, we find the
labeling process becomes about 30 times faster.

2.5 Learning
Let D = {(xi,yi, li)}Mi=1 be the collection of M
training samples. Our goal is to learn the values
of the set of parameters Θ = {U1, V1,W1, U2, V2,
W2, X2, Y2} based on D. Following standard prac-
tice, we optimize the parameter values in an online
maximum soft-margin framework, minimizing the
structural hinge loss:

loss(Θ) = max
l̂

{
S(̂l) + ‖li − l̂‖1

}
− S(li)

where ‖li − l̂‖1 is the number of different labels be-
tween li and l̂. We adjust parameters Θ by ∆Θ via
passive-aggressive update:

∆Θ = max
{
C,

loss(Θ)
‖δΘ‖2

}
· δΘ

where δΘ = dloss(Θ)
dΘ denotes the derivatives and C

is a regularization hyper-parameter controlling the
maximum step size of each update.

To counteract over-fitting, we follow the common
practice of averaging parameters over all iterations.

1091

Model Catalan Chinese Czech English German Japanese Spanish
UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

Best Shared Task - 87.86 - 79.17 - 80.38 - 89.88 - 87.48 - 92.57 - 87.64
Bohnet (2010) - 87.45 - 76.99 - 80.96 - 90.33 - 88.06 - 92.47 - 88.13
Zhang and McDonald (2014) 91.41 87.91 82.87 78.57 86.62 80.59 92.69 90.01 89.88 87.38 92.82 91.87 90.82 87.34
Alberti et al. (2015) 92.31 89.17 83.34 79.50 88.35 83.50 92.37 90.21 90.12 87.79 93.99 93.10 91.71 88.68
RBG 91.37 87.31 82.16 77.24 88.88 81.90 92.75 90.04 90.88 87.91 94.18 93.38 91.50 87.69

+ our labeling 88.29 77.12 84.04 90.38 88.68 93.59 88.71

Table 2: Pipelined Results on CoNLL-2009.

3 Results

Experimental Setup We test our model on the
CoNLL-2009 shared task benchmark with 7 differ-
ent languages as well as the English Penn Treebank
dataset. Whenever available, we use the predicted
POS tags, word lemmas and morphological informa-
tion provided in the datasets as atomic features. Fol-
lowing standard practice, we use unlabeled attach-
ment scores (UAS) and labeled attachment scores
(LAS) as evaluation measure3. In order to compare
with previous reported numbers, we exclude punctu-
ations for PTB in the evaluation, and include punc-
tuations for CoNLL-2009 for consistency.

We use RBGParser4, a state-of-the-art graph-
based parser for predicting dependency trees, and
then apply our labeling model to obtain the depen-
dency label assignments. To demonstrate the effec-
tiveness of our model on other systems, we also ap-
ply it on two additional parsers – Stanford Neural
Shift-reduce Parser (Chen and Manning, 2014)5 and
TurboParser (Martins et al., 2010)6. In all reported
experiments, we use the default suggested settings
to run these parsers. The hyper-parameters of our
labeling model are set as follows: r1 = 50, r2 = 30,
C = 0.01.

Labeling Performance To test the performance of
our labeling method, we first train our model us-
ing the gold unlabeled dependency trees and eval-
uate the labeling accuray on CoNLL-2009. Table 3
presents the results. For comparison, we implement
a combined system which adds a rich set of tradi-
tional, sparse features into the scoring function and
jointly train the feature weights. As shown in the ta-
ble, using our representation-based method alone is

3We use the official evaluation script from CoNLL-X:
http://ilk.uvt.nl/conll/software.html

4https://github.com/taolei87/RBGParser
5http://nlp.stanford.edu/software/nndep.shtml
6http://www.cs.cmu.edu/˜ark/TurboParser/

Ours + Sparse Features Ours only
LAS Speed LAS Speed

Catalan 96.33 30 96.42 1070
Chinese 94.16 38 93.16 1304
Czech 95.54 71 95.60 2065
English 97.00 62 96.88 1751
German 96.93 113 96.89 1042
Japanese 98.92 305 98.95 2778
Spanish 96.53 43 96.68 1142

Table 3: LAS and parsing speed (sentence per second) based
on unlabeled golden trees.

UAS
Labeled Unlabeled

RBG 93.48 93.33

LAS

Before After
Stanford NN 89.37 89.55
Turbo 90.22 90.65
RBG 91.00 91.43

Runtime

Joint Two-step
Stanford NN 4.4 3.3
Turbo 182.1 119.4
RBG 365.4 305.7

Table 4: Joint vs. Separate analysis on PTB.

super fast, being 30 times faster than the implemen-
tation with traditional feature computation and able
to process over 1,700 English sentences per second.
It does not affect the LAS accuracy except for Chi-
nese.

PTB Results Table 4 shows the performance on
the English PTB dataset. We use RBGParser to pre-
dict both labeled and unlabeled trees, and there is
no significant difference between their UAS. This
finding lays the foundation for a separate procedure,
as the tree structure does not vary much comparing
to the joint procedure, and we can exploit rich la-
bel features and sophisticated algorithms to improve
the LAS. Our re-labeling model improves over the
predictions generated by the three different parsers,
ranging from 0.2% to 0.4% LAS gain. Moreover, the
labeling procedure runs in only 1.5 seconds on the
test set. If we use the existing parsers to only predict

1092

unlabeled trees, we also obtain speed improvement,
even for the highly speed-optimzed Stanford Neural
Parser.

CoNLL-2009 Results In Table 2, we compare our
model with the best systems7 of the CoNLL-2009
shared task, Bohnet (2010), Zhang and McDonald
(2014) as well as the most recent neural network
parser (Alberti et al., 2015). Despite the simplic-
ity of the decoupled parsing procedure, our labeling
model achieves LAS performance on par with the
state-of-the-art neural network parser. Specifically,
our model obtains the best LAS on 5 out of 7 lan-
guages, while the neural parser outperforms ours on
Catalan and Chinese.

4 Conclusion

The most common method for dependency parsing
couples the structure search and label search. We
demonstrate that decoupling these two steps yields
both computational gains and improvement in label-
ing accuracy. Specifically, we demonstrate that our
labeling model can be used as a post-processing step
to improve the accuracy of state-of-the-art parsers.
Moreover, by employing dense feature representa-
tions and a simple pruning strategy, we can signif-
icantly speed up the labeling procedure and reduce
the total decoding time of dependency parsing.

Acknowledgments

We thank Yuan Zhang for his help on the ex-
periments, and Danqi Chen for answering ques-
tions about their parser. We also thank the
MIT NLP group and the reviewers for their com-
ments. This work was supported in part by
the National Basic Research Program of China
Grant 2011CBA00300, 2011CBA00301, the Na-
tional Natural Science Foundation of China Grant
61361136003.

References

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing and
tagging with neural networks. In Proceedings of the

7Winners include Bohnet (2009), Che et al. (2009), Ges-
mundo et al. (2009) and Ren et al. (2009).

2015 Conference on Empirical Methods in Natural
Language Processing.

Bernd Bohnet. 2009. Efficient parsing of syntactic and
semantic dependency structures. In Proceedings of
the Thirteenth Conference on Computational Natural
Language Learning: Shared Task.

Bernd Bohnet. 2010. Very high accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings of
the 23rd International Conference on Computational
Linguistics.

Wanxiang Che, Zhenghua Li, Yongqiang Li, Yuhang
Guo, Bing Qin, and Ting Liu. 2009. Multilingual
dependency-based syntactic and semantic parsing. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning: Shared Task.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term mem-
ory. arXiv preprint arXiv:1505.08075.

Andrea Gesmundo, James Henderson, Paola Merlo, and
Ivan Titov. 2009. A latent variable model of syn-
chronous syntactic-semantic parsing for multiple lan-
guages. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning:
Shared Task.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proceedings of the 52th
Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics.

André FT Martins, Noah A Smith, Eric P Xing, Pe-
dro MQ Aguiar, and Mário AT Figueiredo. 2010.
Turbo parsers: Dependency parsing by approximate
variational inference. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings of
the conference on Human Language Technology and
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning. Association for Computational Lin-
guistics.

1093

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering.

Han Ren, Donghong Ji, Jing Wan, and Mingyao Zhang.
2009. Parsing syntactic and semantic dependencies
for multiple languages with a pipeline approach. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning: Shared Task.

Ivan Titov and James Henderson. 2007. A latent vari-
able model for generative dependency parsing. In Pro-
ceedings of 10th International Conference on Parsing
Technologies (IWPT).

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL 2015.

Hao Zhang and Ryan McDonald. 2014. Enforcing struc-
tural diversity in cube-pruned dependency parsing. In
Proceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics.

Hao Zhang, Liang Zhao, Kai Huang, and Ryan McDon-
ald. 2013. Online learning for inexact hypergraph
search. In Proceedings of EMNLP.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014. Greed is good if randomized: New
inference for dependency parsing. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

1094

Proceedings of NAACL-HLT 2016, pages 1095–1101,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Deep Lexical Segmentation and Syntactic Parsing in the Easy-First
Dependency Framework

Matthieu Constant♠♦ Joseph Le Roux♣ Nadi Tomeh♣
♠ Université Paris-Est, LIGM, Champs-sur-Marne, France
♦ Alpage, INRIA, Université Paris Diderot, Paris, France

♣ LIPN, Université Paris Nord, CNRS UMR 7030, Villetaneuse, France
matthieu.constant@u-pem.fr, leroux@lipn.fr, tomeh@lipn.fr

Abstract

We explore the consequences of representing
token segmentations as hierarchical structures
(trees) for the task of Multiword Expression
(MWE) recognition, in isolation or in com-
bination with dependency parsing. We pro-
pose a novel representation of token segmen-
tation as trees on tokens, resembling depen-
dency trees. Given this new representation,
we present and evaluate two different archi-
tectures to combine MWE recognition and de-
pendency parsing in the easy-first framework:
a pipeline and a joint system, both taking ad-
vantage of lexical and syntactic dimensions.
We experimentally validate that MWE recog-
nition significantly helps syntactic parsing.

1 Introduction

Lexical segmentation is a crucial task for natural
language understanding as it detects semantic units
of texts. One of the main difficulties comes from
the identification of multiword expressions [MWE]
(Sag et al., 2002), which are sequences made of mul-
tiple words displaying multidimensional idiomatic-
ity (Nunberg et al., 1994). Such expressions may ex-
hibit syntactic freedom and varying degree of com-
positionality, and many studies show the advantages
of combining MWE identification with syntactic
parsing (Savary et al., 2015), for both tasks (Wehrli,
2014). Indeed, MWE detection may help parsing,
as it reduces the number of lexical units, and in turn
parsing may help detect MWEs with syntactic free-
dom (syntactic variations, discontinuity, etc.).

In the dependency parsing framework, some pre-
vious work incorporated MWE annotations within

syntactic trees, in the form of complex subtrees ei-
ther with flat structures (Nivre and Nilsson, 2004;
Eryiğit et al., 2011; Seddah et al., 2013) or deeper
ones (Vincze et al., 2013; Candito and Constant,
2014). However, these representations do not cap-
ture deep lexical analyses like nested MWEs. In
this paper, we propose a two-dimensional repre-
sentation that separates lexical and syntactic layers
with two distinct dependency trees sharing the same
nodes1. This representation facilitates the annota-
tion of complex lexical phenomena like embedding
of MWEs (e.g. I will (take a (rain check))). Given
this representation, we present two easy-first depen-
dency parsing systems: one based on a pipeline ar-
chitecture and another as a joint parser.

2 Deep Segmentation and Dependencies

This section describes a lexical representation able
to handle nested MWEs, extended from Constant
and Le Roux (2015) which was limited to shallow
MWEs. Such a lexical analysis is particularly rele-
vant to perform deep semantic analysis.

A lexical unit [LU] is a subtree of the lexical seg-
mentation tree composed of either a single token unit
or an MWE. In case of a single token unit, the sub-
tree is limited to a single node. In case of an MWE,
the subtree is rooted by its leftmost LU, from which
there are arcs to every other LU of the MWE. For
instance, the MWE in spite of made of three single
token units is a subtree rooted by in. It comprises
two arcs: in→ spite and in→ of. The MWE make

1This is related to the Prague Dependency Treebank (Hajič
et al., 2006) which encodes MWEs in tectogrammatical trees
connected to syntactic trees (Bejček and Straňák, 2010).

1095

The Los Angeles Lakers made a big deal out of it

ROOT

lex submwe

mwe

lex

lex
mwe

mwe

lex

mwe
lex

Figure 1: Deep segmentation of Los Angeles Lakers made a big deal out of it represented as a tree.

The Los Angeles Lakers made a big deal out of it

ROOT

lex mwe

mwe

lex

lex
mwe

mwe
lex

mwe
lex

Figure 2: Shallow segmentation of Los Angeles Lakers made a big deal out of it represented as a tree.

big deal is more complex as it is formed of a single
token unit make and an MWE big deal. It is repre-
sented as a subtree whose root is make connected to
the root of the MWE subtree corresponding to big
deal. The subtree associated with big deal is made
of two single token units. It is rooted by big with
an arc big → deal. Such structuring allows to find
nested MWEs when the root is not an MWE itself,
like for make big deal. It is different for the MWE
Los Angeles Lakers comprising the MWE Los Ange-
les and the single token unit Lakers. In that case, the
subtree has a flat structure, with two arcs from the
node Los, structurally equivalent to in spite of that
has no nested MWEs. Therefore, some extra infor-
mation is needed in order to distinguish these two
cases. We use arc labels.

Labeling requires to maintain a counter l in or-
der to indicate the embedding level in the leftmost
LU of the encompassing MWE. Labels have the
form sublmwe for l ≥ 0. Let U = U1...Un be
a LU composed of n LUs. If n = 1, it is a sin-
gle token unit. Otherwise, subtree(U, 0), the lexical
subtree2 for U is recursively constructed by adding

arcs subtree(U1, l+1) sublmwe−−−−−→ subtree(Ui, 0) for
i 6= 1. In the case of shallow representation, every
LUs of U are single token units.

Once built the LU subtrees (the internal depen-
dencies), it is necessary to create arcs to connect
them and form a complete tree : that we call ex-

2The second argument l corresponds to the embedding level.

ternal dependencies. LUs are sequentially linked
together: each pair of consecutive LUs with roots
(wi,wj), i < j, gives an arc wi

lex−−→ wj . Figure 1
and Figure 2 respectively display the deep and shal-
low lexical segmentations of the sentence The Los
Angeles Lakers made a big deal out of it.

For readibility, we note mwe for sub0mwe and
submwe for sub1mwe.

3 Multidimensional Easy-first Parsing

3.1 Easy-first parsing

Informally, easy-first proposed in Goldberg and El-
hadad (2010) predicts easier dependencies before
risky ones. It decides for each token whether it must
be attached to the root of an adjacent subtree and
how this attachment should be labeled3. The order in
which these decisions are made is not decided in ad-
vance: highest-scoring decisions are made first and
constrain the following decisions.

This framework looks appealing in order to test
our assumption that segmentation and parsing are
mutually informative, while leaving the exact flow
of information to be learned by the system itself: we
do not postulate any priority between the tasks nor
that all attachment decisions must be taken jointly.
On the contrary, we expect most decisions to be
made independently except for some difficult cases
that need both lexical and syntactic knowledge.

We now present two adaptations of this strategy to
3Labels are an extension to Goldberg and Elhadad (2010)

1096

build both lexical and parse trees from a unique se-
quence of tokens4. The key component is to use fea-
tures linking information from the two dimensions.

3.2 Pipeline Architecture

In this trivial adaptation, two parsers are run sequen-
tially. The first one builds a structure in one dimen-
sion (i.e. for segmentation or syntax). The second
one builds a structure in the other dimension, with
the result of the first parser available as features.

3.3 Joint Architecture

The second adaptation is more substantial and takes
the form of a joint parsing algorithm. This adap-
tation is provided in Algorithm 1. It uses a single
classifier to predict lexical and syntactic actions. As
in easy-first, each iteration predicts the most cer-
tain head attachment action given the currently pre-
dicted subtrees, but here it may belong to any di-
mension. This action can be mapped to an edge in
the appropriate dimension via function EDGE. Func-
tion score(a,i) computes the dot-product of feature
weights and features at position i using surrounding
subtrees in both dimensions5.

Algorithm 1 Joint Easy-first parsing
1: function JOINT EASY-FIRST PARSING(w0...wn)
2: Let A be the set of possible actions
3: arcss,arcsl := (∅, ∅)
4: hs,hl := w0 . . . wn, w0 . . . wn

5: while |hl| > 1 ∨ |hs| > 1 do
6: â, î := argmaxa∈A,i∈[|hd|] score(a,i)
7: (par, lab, child, dim) := EDGE((hs, hl), â, î)
8: arcsdim := arcsdim ∪ (par, lab, child)
9: hdim := hdim\{child}

10: end while
11: return (arcsl, arcss)
12: end function
13: function EDGE((hs, hl), (dir, lab, dim), i)
14: if dir =← then . we have a left edge
15: return (hdim[i], lab, hdim[i + 1], dim)
16: else
17: return (hdim[i + 1], lab, hdim[i], dim)
18: end if
19: end function

We can reuse the reasoning from Goldberg and
Elhadad (2010) and derive a worst-case time com-

4It is straightforward to add any number of tree structures.
5Let us note that the algorithm builds projective trees for

each dimension, but their union may contain crossing arcs.

English French
Corpus EWT FTB Sequoia
words 55,590 564,798 33,829
MWE labels 4,649 49,350 6,842
ratio 0.08 0.09 0.20
MWE rep. shallow+ shallow deep

Table 1: Datasets statistics. The first part describes the number

of words in training sets with MWE label ratio. shallow+ refers

to a shallow representation with enriched MWE labels indicat-

ing the MWE strength (collocation vs. fixed).

plexity of O(n log n), provided that we restrict fea-
ture extraction at each position to a bounded vicinity.

4 Experiments

4.1 Datasets

We used data sets derived from three different ref-
erence treebanks: English Web Treebank (Linguis-
tic Data Consortium release LDC2012T13)[EWT],
French treebank (Abeillé et al., 2003) [FTB], Se-
quoia Treebank (Candito and Seddah, 2012) [Se-
quoia]. These treebanks have MWE annotations
available on at least a subpart of them. For EWT,
we used the STREUSLE corpus (Schneider et al.,
2014b) that contains annotations of all types of
MWEs, including discontiguous ones. We used the
train/test split from Schneider et al. (2014a). The
FTB contains annotations of contiguous MWEs. We
generated the dataset from the version described in
Candito and Constant (2014) and used the shallow
lexical representation, in the official train/dev/test
split of the SPMRL shared task (Seddah et al.,
2013). The Sequoia treebank contains some limited
annotations of MWEs (usually, compounds having
an irregular syntax). We manually extended the cov-
erage to all types of MWEs including discontiguous
ones. We also included deep annotation of MWEs
(in particular, nested ones). We used a 90%/10%
train/test split in our experiments. Some statistics
about the data sets are provided in table 4.1. Tokens
were enriched with their predicted part-of-speech
(POS) and information from MWE lexicon6 lookup
as in Candito and Constant (2014).

6We used the Unitex platform (www-igm.univ-mlv.
fr/˜unitex/ for French and the STREUSLE corpus web
site (www.ark.cs.cmu.edu/LexSem/) for English.

1097

4.2 Parser and features

Parser. We implemented our systems by modify-
ing the parser of Y. Goldberg7 also used as a base-
line. We trained all models for 20 iterations with
dynamic oracle (Goldberg and Nivre, 2013) using
the following exploration policy: always choose an
oracle transition in the first 2 iterations (k = 2), then
choose model prediction with probability p = 0.9.

Features. One-dimensional features were taken
directly from the code supporting Goldberg and
Nivre (2013). We added information on typograph-
ical cues (hyphenation, digits, capitalization, . . .)
and the existence of substrings in MWE dictionaries
in order to help lexical analysis. Following Constant
et al. (2012) and Schneider et al. (2014a), we used
dictionary lookups to build a first naive segmenta-
tion and incorporate it as a set of features. Two-
dimensional features were used in both pipeline and
joint strategies. We first added syntactic path fea-
tures to the lexical dimension, so syntax can guide
segmentation. Conversely, we also added lexical
path features to the syntactic dimension to provide
information about lexical connectivity. For instance,
two nodes being checked for attachment in the syn-
tactic dimension can be associated with information
describing whether one of the corresponding node is
an ancestor of the other one in the lexical dimension
(i.e. indicating whether the two syntactic nodes are
linked via internal or external paths).

We also selected automatically generated features
combining information from both dimensions. We
chose a simple data-driven heuristics to select com-
bined features. We ran one learning iteration over
the FTB training corpus adding all possible combi-
nations of syntactic and lexical features. We picked
the templates of the 10 combined features whose
scores had the greatest absolute values. Although
this heuristics may not favor the most discriminant
features, we found that the chosen features helped
accuracy on the development set.

4.3 Results

For each dataset, we carried out four experiments.
First we learned and ran independently two distinct

7We started from the version available at the time
of writing at https://bitbucket.org/yoavgo/
tacl2013dynamicoracles

baseline easy-first parsers using one-dimensional
features: one producing a lexical segmentation, an-
other one predicting a syntactic parse tree. We also
trained and ran a joint easy-first system predict-
ing lexical segmentations and syntactic parse trees,
using two-dimensional features. We also experi-
mented the pipeline system for each dimension, con-
sisting in applying the baseline parser on one dimen-
sion and using the resulting tree as source of two-
dimensional features in a standard easy first parser
applied on the other dimension. Since pipeline ar-
chitectures are known to be prone to error propaga-
tion, we also run an experiment where the pipeline
second stage is fed with oracle first-stage trees.

Results on the test sets are provided in table 2,
where LAS and UAS are computed with punctua-
tion. Overall, we can see that the lexical information
tends to help syntactic prediction while the other
way around is unclear.

Syntactic Lexical
Model UAS LAS UAS LAS F1 (Pr / Rc)

FTB
Distinct 87.44 85.09 96.69 94.75 79.47 (81.18/77.83)
Pipeline 87.74 85.39† 96.74 94.83 79.82 (81.56/78.15)
–oracle trees 88.96 86.98† 97.89 96.62† 87.27 (87.78/86.76)
Joint 87.69 85.32† 96.79 94.89 80.11 (82.51/77.85)
Le Roux et al. (2014) CRF 80.49
Le Roux et al. (2014) combination 82.44
Candito and Constant (2014) graph-based parsing + CRF

89.24 86.97 78.60
Sequoia

Distinct 84.88 81.74 89.70 85.00 67.60 (73.56/62.53)
Pipeline 85.91 82.84† 89.57 84.70 67.04 (72.24/62.53)
–oracle trees 85.95 83.05† 90.03 85.64† 69.36 (75.23/64.34)
Joint 86.19 82.99† 89.32 84.76 68.58 (72.75/64.86)

EWT
Distinct 87.45 83.91 93.96 90.75 53.93 (66.42/45.39)
Pipeline 88.45 84.76† 94.02 90.80 53.19 (68.09/43.64)
–oracle trees 88.20 84.76† 94.23 91.09 55.05 (71.15/44.89)
Joint 87.98 84.24 93.72 90.49 51.20 (64.64/42.39)
Schneider et al. (2014a) Baseline 53.85 (60.99/48.27)
Schneider et al. (2014a) Best (oracle POS and clusters) 57.71 (58.51/57.00)

Table 2: Results on our three test sets. Statistically significant

differences (p-value < 0.05) from the corresponding “distinct”

setting are indicated with †. Rows -oracle trees are the same as

pipeline but using oracle, instead of predicted, trees.

5 Discussion

The first striking observation is that the syntactic di-
mension does not help the predictions in the lexi-
cal dimension, contrary to what could be expected.
In practice, we can observe that variations and dis-
continuity of MWEs are not frequent in our data
sets. For instance, Schneider et al. (2014a) notice

1098

that only 15% of the MWEs in EWT are discontigu-
ous and most of them have gaps of one token. This
could explain why syntactic information is not use-
ful for segmentation. On the other hand, the lexical
dimension tends to help syntactic predictions. More
precisely, while the pipeline and the joint approach
reach comparable scores on the FTB and Sequoia,
the joint system has disappointing results on EWT.
The good scores for Sequoia could be explained by
the larger MWE coverage.

In order to get a better intuition on the real impact
of each of the three approaches, we broke down the
syntax results by dependency labels. Some labels
are particularly informative. First of all, the preci-
sion on the modifier label mod, which is the most
frequent one, is greatly improved using the pipeline
approach as compared with the baseline (around 1
point). This can be explained by the fact that many
nominal MWEs have the form of a regular noun
phrase, to which its internal adjectival or preposi-
tional constituents are attached with the mod label.
Recognizing a nominal MWE on the lexical dimen-
sion may therefore give a relevant clue on its cor-
responding syntactic structure. Then, the dep cpd
connects components of MWE with irregular syntax
that cannot receive standard labels. We can observe
that the pipeline (resp. the joint) approach clearly
improves the precision (resp. recall) as compared
with the baseline (+1.6 point). This means that the
combination of a preliminary lexical segmentation
and a possibly partial syntactic context helps im-
proving the recognition of syntax-irregular MWEs.
Coordination labels (dep.coord and coord) are par-
ticularly interesting as the joint system outperforms
the other two on them. Coordination is known to
be a very complex phenomenon: these scores would
tend to show that the lexical and syntactic dimen-
sions mutually help each other.

When comparing this work to state-of-the-art sys-
tems on data sets with shallow annotation of MWEs,
we can see that we obtain MWE recognition scores
comparable to systems of equivalent complexity
and/or available information. This means that our
novel representation which allows for the annotation
of more complex lexical phenomena does not dete-
riorate scores for shallow annotations.

gold distinct pipeline joint
Label count recall prec. recall prec. recall prec.
mod 7782 80.39 78.18 80.62 79.13 80.94 78.68
obj.p 6247 96.86 96.43 96.70 96.56 96.69 96.44
det 5269 97.67 97.89 97.70 97.76 97.76 97.72
ponct 4682 71.94 71.98 72.32 72.57 72.53 72.35
dep 3350 84.66 83.98 84.72 83.35 84.90 83.67
suj 2044 90.66 92.93 91.39 92.70 91.39 93.49
obj 1716 88.29 87.98 88.69 87.52 88.11 88.52
dep cpd 1604 84.66 87.84 86.28 87.54 85.10 89.39
root 1235 92.23 92.23 92.79 92.79 92.96 92.96
dep.coord 931 83.89 83.80 83.46 84.73 83.46 85.48
coord 832 58.77 59.27 60.10 60.39 59.98 60.71
aux.tps 516 97.09 99.40 97.67 99.41 97.29 99.41
a obj 398 75.13 77.06 73.37 79.56 73.62 78.98
obj.cpl 367 83.11 83.79 84.20 84.20 84.74 83.83
ats 345 79.71 83.33 79.42 82.78 79.42 83.03
mod.rel 334 70.96 76.21 70.36 73.90 68.26 73.55
de obj 329 75.08 74.62 76.60 77.30 75.38 76.07
p obj 268 58.58 79.70 61.19 79.61 60.45 80.60
aff 245 84.90 79.09 86.53 79.70 88.57 78.06
aux.pass 242 95.04 95.44 94.63 95.02 94.21 95.00
ato 30 33.33 83.33 40.00 85.71 43.33 86.67
arg 22 50.00 68.75 59.09 65.00 59.09 59.09
aux.caus 21 85.71 94.74 85.71 94.74 85.71 94.74
comp 11 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Results on FTB development set, broken down by de-

pendency labels. Scores correspond to recall and precision.

6 Conclusions and Future Work

In this paper we presented a novel representation
of deep lexical segmentation in the form of trees,
forming a dimension distinct from syntax. We ex-
perimented strategies to predict both dimensions in
the easy-first dependency parsing framework. We
showed empirically that joint and pipeline process-
ing are beneficial for syntactic parsing while hardly
impacting deep lexical segmentation.

The presented combination of parsing and seg-
menting does not enforce any structural constraint
over the two trees8. We plan to address this issue in
future work. We will explore less redundant, more
compact representations of the two dimensions since
some annotations can be factorized between the two
dimensions (e.g. MWEs with irregular syntax) and
some can easily be induced from others (e.g. se-
quential linking between lexical units).

Acknowledgments

This work has been partly funded by the French
Agence Nationale pour la Recherche, through the
PARSEME-FR project (ANR-14-CERA-0001) and
as part of the Investissements d’Avenir program
(ANR-10-LABX-0083)

8for instance, aligned arc or subtrees

1099

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Anne
Abeillé, editor, Treebanks. Kluwer, Dordrecht.

Eduard Bejček and Pavel Straňák. 2010. Annotation of
multiword expressions in the prague dependency tree-
bank. Language Resources and Evaluation, 44(1-2).

Marie Candito and Matthieu Constant. 2014. Strategies
for contiguous multiword expression analysis and de-
pendency parsing. In ACL 14-The 52nd Annual Meet-
ing of the Association for Computational Linguistics.
ACL.

Marie Candito and Djamé Seddah. 2012. Le corpus
Sequoia : annotation syntaxique et exploitation pour
l’adaptation d’analyseur par pont lexical. In TALN
2012 - 19e conférence sur le Traitement Automatique
des Langues Naturelles, Grenoble, France.

Matthieu Constant and Joseph Le Roux. 2015. De-
pendency representations for lexical segmentation. In
Proceedings of the international workshop on sta-
tistical parsing of morphologically-rich languages
(SPMRL 2015).

Matthieu Constant, Anthony Sigogne, and Patrick Wa-
trin. 2012. Discriminative strategies to integrate mul-
tiword expression recognition and parsing. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’12), pages
204–212.

Gülşen Eryiğit, Tugay İlbay, and Ozan Arkan Can.
2011. Multiword Expressions in Statistical Depen-
dency Parsing. In Proceedings of the Second Work-
shop on Statistical Parsing of Morphologically Rich
Languages, SPMRL ’11, pages 45–55, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguis-
tics, pages 742–750. Association for Computational
Linguistics.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic oracles.
Transactions of the association for Computational
Linguistics, 1:403–414.

J. Hajič, J. Panevová, E. Hajičová, P. Sgall, P. Pajas,
Štěpánek, Havelka J., Mikulová J., Z. M., Žabokrtský,
and M. Ševčı́ková Razı́mová. 2006. Prague depen-
dency treebank 2.0. Linguistic Data Consortium.

Joseph Le Roux, Antoine Rozenknop, and Matthieu Con-
stant. 2014. Syntactic parsing and compound recogni-
tion via dual decomposition: Application to french. In
COLING.

Joakim Nivre and Jens Nilsson. 2004. Multiword units in
syntactic parsing. Proceedings of Methodologies and
Evaluation of Multiword Units in Real-World Applica-
tions (MEMURA).

Geoffrey Nunberg, Ivan A. Sag, and Thomas Wasow.
1994. Idioms. Language, 70:491 – 538.

Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword ex-
pressions: A pain in the neck for nlp. In In Proc. of
the 3rd International Conference on Intelligent Text
Processing and Computational Linguistics (CICLing-
2002, pages 1–15.

Agata Savary, Manfred Sailer, Yannick Parmen-
tier, Michael Rosner, Victoria Rosén, Adam
Przepiórkowski, Cvetana Krstev, Veronika Vincze,
Beata Wójtowicz, Gyri Smørdal Losnegaard, Carla
Parra Escartı́n, Jakub Waszczuk, Matthieu Con-
stant, Petya Osenova, and Federico Sangati. 2015.
PARSEME – PARSing and Multiword Expressions
within a European multilingual network. In 7th
Language & Technology Conference: Human Lan-
guage Technologies as a Challenge for Computer
Science and Linguistics (LTC 2015), Poznań, Poland,
November.

Nathan Schneider, Emily Danchik, Chris Dyer, and
Noah A Smith. 2014a. Discriminative lexical se-
mantic segmentation with gaps: running the mwe
gamut. Transactions of the Association for Compu-
tational Linguistics, 2:193–206.

Nathan Schneider, Spencer Onuffer, Nora Kazour, Emily
Danchik, Michael T. Mordowanec, Henrietta Conrad,
and Noah A. Smith. 2014b. Comprehensive anno-
tation of multiword expressions in a social web cor-
pus. In Nicoletta Calzolari, Khalid Choukri, Thierry
Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation, pages 455–461, Reykjavı́k, Iceland, May.
ELRA.

Djamé Seddah, Reut Tsarfaty, Sandra K’́ubler, Marie
Candito, Jinho Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Gold-
berg, Spence Green, Nizar Habash, Marco Kuhlmann,
Wolfgang Maier, Joakim Nivre, Adam Przepi-
orkowski, Ryan Roth, Wolfgang Seeker, Yannick
Versley, Veronika Vincze, Marcin Woliński, Alina
Wróblewska, and Eric Villemonte de la Clérgerie.
2013. Overview of the spmrl 2013 shared task: A
cross-framework evaluation of parsing morphologi-
cally rich languages. In Proceedings of the 4th Work-
shop on Statistical Parsing of Morphologically Rich
Languages, Seattle, WA.

1100

Veronika Vincze, János Zsibrita, and Istvàn Nagy T.
2013. Dependency parsing for identifying hungarian
light verb constructions. In Proceedings of Interna-
tional Joint Conference on Natural Language Process-
ing (IJCNLP 2013), Nagoya, Japan.

Eric Wehrli. 2014. The relevance of collocations for
parsing. In Proceedings of the 10th Workshop on Mul-
tiword Expressions (MWE), pages 26–32, Gothenburg,
Sweden, April. Association for Computational Lin-
guistics.

1101

Proceedings of NAACL-HLT 2016, pages 1102–1108,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Sentiment Composition of Words with Opposing Polarities

Svetlana Kiritchenko and Saif M. Mohammad
National Research Council Canada

{svetlana.kiritchenko,saif.mohammad}@nrc-cnrc.gc.ca

Abstract

In this paper, we explore sentiment composi-
tion in phrases that have at least one positive
and at least one negative word—phrases like
happy accident and best winter break. We
compiled a dataset of such opposing polar-
ity phrases and manually annotated them with
real-valued scores of sentiment association.
Using this dataset, we analyze the linguistic
patterns present in opposing polarity phrases.
Finally, we apply several unsupervised and su-
pervised techniques of sentiment composition
to determine their efficacy on this dataset. Our
best system, which incorporates information
from the phrase’s constituents, their parts of
speech, their sentiment association scores, and
their embedding vectors, obtains an accuracy
of over 80% on the opposing polarity phrases.

1 Introduction

The Principle of Compositionality states that the
meaning of an expression is determined by the
meaning of its constituents and by its grammatical
structure (Montague, 1974). By extension, senti-
ment composition is the determining of sentiment
of a multi-word linguistic unit, such as a phrase or
a sentence, based on its constituents. In this work,
we study sentiment composition in phrases that in-
clude at least one positive and at least one nega-
tive word—for example, phrases such as happy ac-
cident, couldn’t stop smiling, and lazy sundays. We
refer to them as opposing polarity phrases. Such
phrases present a particular challenge for automatic
sentiment analysis systems that often rely on bag-of-
word features.

Word–sentiment associations are commonly cap-
tured in sentiment lexicons. However, most existing
manually created sentiment lexicons include only
single words. Lexicons that include sentiment asso-
ciations for multi-word phrases as well as their con-
stituent words can be very useful in studying sen-
timent composition. We refer to them as sentiment
composition lexicons (SCLs).

We created a sentiment composition lexicon for
opposing polarity phrases and their constituent
words (Kiritchenko and Mohammad, 2016c).1 Both
phrases and single words were manually annotated
with real-valued sentiment association scores using
an annotation scheme known as Best–Worst Scal-
ing.2 We refer to the created resource as the Sen-
timent Composition Lexicon for Opposing Polarity
Phrases (SCL-OPP). The lexicon includes entries
for 265 trigrams, 311 bigrams, and 602 unigrams.

In this paper, we use SCL-OPP to analyze regu-
larities present in different kinds of opposing polar-
ity phrases. We calculate the extent to which differ-
ent part-of-speech combinations result in phrases of
positive and negative polarity. We also show that for
most phrases, knowing the parts of speech and po-
larities of their constituents is not enough to reliably
predict the sentiment of the phrase.

We apply several unsupervised and supervised
techniques of sentiment composition to determine
their efficacy on predicting the sentiment of oppos-
ing polarity phrases. Our experiments indicate that

1www.saifmohammad.com/WebPages/SCL.html#OPP
2Best–Worst Scaling has been shown to produce reliable

real-valued sentiment association scores (Kiritchenko and Mo-
hammad, 2016a).

1102

the sentiment of the last unigram or the sentiment of
the most polar unigram in the phrase are not strong
predictors of the overall sentiment of the phrase.
Similarly, adjectives and verbs do not always domi-
nate the sentiment in such phrases. Finally, we show
that the constituent words, their parts of speech, their
sentiment association scores, and their embedding
vectors are all useful features—a supervised senti-
ment composition system that incorporates them ob-
tains accuracies over 80% on both bigram and tri-
gram opposing polarity phrases.

2 Related Work

A number of approaches have been proposed to ad-
dress sentiment composition, which include man-
ually derived syntactic rules (Moilanen and Pul-
man, 2007; Neviarouskaya et al., 2010), combina-
tion of hand-written rules and statistical learning
(Choi and Cardie, 2008), and machine learning ap-
proaches (Nakagawa et al., 2010; Yessenalina and
Cardie, 2011; Dong et al., 2015). Much work has
been devoted to model the impact of negators and
(to a lesser degree) intensifiers, words commonly
referred to as contextual valence shifters, on senti-
ment of words they modify (Polanyi and Zaenen,
2004; Kennedy and Inkpen, 2005; Liu and Seneff,
2009; Wiegand et al., 2010; Taboada et al., 2011;
Kiritchenko et al., 2014). Kiritchenko and Moham-
mad (2016b) created a sentiment composition lexi-
con for negators, modals, and adverbs (SCL-NMA)
through manual annotation and analyzed the effect
of these groups of modifiers on sentiment in short
phrases. Recently, recursive deep model approaches
have been proposed for handling sentiment of syn-
tactic phrases through sentiment composition over
parse trees (Socher et al., 2013; Zhu et al., 2014; Ir-
soy and Cardie, 2014; Tai et al., 2015). In this work,
we apply several unsupervised and supervised tech-
niques of sentiment composition for a specific type
of phrases—opposing polarity phrases.

3 Creating a Sentiment Lexicon for
Opposing Polarity Phrases

This section summarizes how we created a sen-
timent composition lexicon for opposing polarity
phrases using the Best–Worst Scaling annotation
technique. For more details we refer the reader

Term Sentiment
score

best winter break 0.844
breaking free 0.172
isn’t long enough -0.188
breaking -0.500
heart breaking moment -0.797

Table 1: Example entries in SCL-OPP.

to (Kiritchenko and Mohammad, 2016c). Table 1
shows a few example entries from the lexicon.
Term selection: We polled the Twitter API (from
2013 to 2015) to collect about 11 million tweets that
contain emoticons: ‘:)’ or ‘:(’. We will refer to this
corpus as the Emoticon Tweets Corpus. From this
corpus, we selected bigrams and trigrams that had
at least one positive word and at least one negative
word. The polarity labels (positive or negative) of
the words were determined by simple look-up in
existing sentiment lexicons: Hu and Liu lexicon (Hu
and Liu, 2004), NRC Emotion lexicon (Mohammad
and Turney, 2010; Mohammad and Turney, 2013),
MPQA lexicon (Wilson et al., 2005), and NRC’s
Twitter-specific lexicon (Kiritchenko et al., 2014;
Mohammad et al., 2013).3 In total, 576 opposing
polarity n-grams (bigrams and trigrams) were
selected. We also chose for annotation all unigrams
that appeared in the selected set of bigrams and
trigrams. There were 602 such unigrams. Note that
even though the multi-word phrases and single-word
terms were drawn from a corpus of tweets, most of
the terms are used in everyday English.

Best–Worst Scaling Method of Annotation: Best–
Worst Scaling (BWS), also sometimes referred to as
Maximum Difference Scaling (MaxDiff), is an an-
notation scheme that exploits the comparative ap-
proach to annotation (Louviere and Woodworth,
1990; Louviere et al., 2015). Annotators are given
four items (4-tuple) and asked which term is the Best
(highest in terms of the property of interest) and
which is the Worst (least in terms of the property
of interest). Responses to the BWS questions can
then be translated into real-valued scores through a
simple counting procedure: For each term, its score
is calculated as the percentage of times the term was

3If a word was marked with conflicting polarity in two lexi-
cons, then that word was not considered as positive or negative.

1103

SCP Occ. # phrases
5adj. +4adj. →4phrase 0.76 17
5adj. +4noun→5phrase 0.59 68
4adj. +5noun→5phrase 0.53 73
4adverb +5adj. →5phrase 0.89 18
4adverb +5verb→5phrase 0.91 11
5noun +4noun→4phrase 0.60 10
4noun +5noun→5phrase 0.52 25
5verb + det. +4noun→5phrase 0.65 17
5verb +4noun→5phrase 0.82 17

Table 2: Sentiment composition patterns (SCPs) in SCL-OPP.

4denotes a positive word or phrase,5denotes a negative word

or phrase. ‘Occ.’ stands for occurrence rate of an SCP.

chosen as the Best minus the percentage of times the
term was chosen as the Worst (Orme, 2009). The
scores range from -1 to 1.

We employ Best–Worst Scaling for sentiment an-
notation by providing four (single-word or multi-
word) terms at a time and asking which term is the
most positive (or least negative) and which is the
least positive (or most negative). Each question was
answered by eight annotators through a crowdsourc-
ing platform, CrowdFlower.4 We refer to the result-
ing lexicon as the Sentiment Composition Lexicon
for Opposing Polarity Phrases (SCL-OPP).

Portions of the created lexicon have been used as
development and evaluation sets in SemEval-2016
Task 7 ‘Determining Sentiment Intensity of English
and Arabic Phrases’ (Kiritchenko et al., 2016).5 The
objective of that task was to test different meth-
ods of automatically predicting sentiment associa-
tion scores for multi-word phrases.

4 Sentiment Composition Patterns

SCL-OPP allows us to explore sentiment composi-
tion patterns in opposing polarity phrases. We de-
fine a Sentiment Composition Pattern (SCP) as a
rule that includes on the left-hand side the parts of
speech (POS) and the sentiment associations of the
constituent unigrams (in the order they appear in the
phrase), and on the right-hand side the sentiment as-
sociation of the phrase. Table 2 shows examples.
SCPs that have a positive phrase on the right-hand
side will be called positive SCPs, whereas SCPs that

4Let majority answer refer to the option most chosen for a
question. 81% of the responses matched the majority answer.

5http://alt.qcri.org/semeval2016/task7/

have a negative phrase on the right-hand side will be
called negative SCPs. Below are some questions re-
garding SCPs and opposing polarity phrases that we
explore here:

• Which SCPs are common among opposing po-
larity phrases?

• With the same left-hand side of an SCP, how
often is the composed phrase positive and how
often is the composed phrase negative? For ex-
ample, when negative adjectives combine with
a positive noun, how often is the combined
phrase negative?

• Are some parts of speech (of constituent words)
more influential in determining the sentiment
of a phrase than others?

To answer these questions, each of the entries in
SCL-OPP is marked with the appropriate SCP. The
part-of-speech sequence of a phrase is determined
by looking up the most common part-of-speech se-
quence for that phrase in the Emoticon Tweets Cor-
pus.6 Next, for every left-hand side of an SCP, we
determine the ratio of ‘how often occurrences of
such combinations in SCL-OPP resulted in a posi-
tive phrase’ to ‘how often such combinations were
seen in total’. We will refer to these scores as the
occurrence rates (‘Occ.’) of positive SCPs. The oc-
currence rates of negative SCPs are calculated in a
similar manner.

Table 2 presents all SCPs with the left-hand side
combination appearing at least ten times in SCL-
OPP, and whose occurrence rate is equal to or greater
than 50%. For example, the second row tells us that
there are 68 bigrams in SCL-OPP such that the first
word is a negative adjective and the second word is
a positive noun. Out of these 68 bigrams, 59% are
negative, and the remaining 41% are positive, so the
occurrence rate of this pattern is 0.59.

The most common SCPs in our lexicon are “4adj.
+5noun→5phrase” (73) and “5adj. +4noun→
5phrase” (68). Observe that the occurrence rates of
the patterns are spread over the entire range from
52% to 91%. Only two patterns have very high
occurrence rates (around 90%): “4adverb + 5adj.
→5phrase” and “4adverb + 5verb→5phrase”.

6The corpus was automatically POS tagged using the CMU
Tweet NLP tool (Gimpel et al., 2011).

1104

Thus, for most opposing polarity phrases, their sen-
timent cannot be accurately determined based on the
POS and sentiment of the constituents alone.

Both SCPs with high occurrence rates include ad-
verbs that serve as intensifiers—words that increase
or decrease the degree of association of the follow-
ing word with positive (negative) sentiment (e.g., in-
credibly slow, dearly missed). Only the degree of as-
sociation for the next word is changed while its po-
larity (positive or negative) is often preserved. Some
adjectives can also play the role of an intensifier
when combined with another adjective (e.g., crazy
talented) or a noun (e.g., epic fail). For example,
the adjective great, often considered highly positive,
becomes an intensifier when combined with some
nouns (e.g., great loss, great capture). Other adjec-
tives determine the polarity of the entire phrase (e.g.,
happy tears, bad luck). Therefore, the occurrence
rates of patterns like “5adj. +4noun→5phrase”
are low. Overall, even though adjectives and verbs
are frequently the primary source of sentiment in the
phrase, some nouns can override their sentiment as
in new crisis or leave a smile. SCL-OPP includes
phrases corresponding to many different kinds of
sentiment composition patterns, and therefore, it is
a useful resource for studying linguistic underpin-
nings of sentiment composition as well as for eval-
uating sentiment composition algorithms for oppos-
ing polarity phrases.

5 Automatically Predicting Sentiment

We now investigate whether accurate models of sen-
timent composition for opposing polarity phrases
can be learned. We conduct experiments with sev-
eral baseline unsupervised classifiers as well super-
vised techniques using features, such as unigrams,
POS, sentiment scores, and word embeddings.

The problem of sentiment composition can be for-
mulated in two different ways: a binary classifi-
cation task where the system has to predict if the
phrase is positive or negative; and a regression task
where the system has to predict the real-valued sen-
timent association score of the phrase. We evalu-
ate binary classification with simple accuracy (acc.)
and the regression task with Pearson correlation co-
efficient (r). Learning and evaluation are performed
separately for bigrams and trigrams.

5.1 Baseline Classifiers

The oracle ‘majority label’ baseline assigns to all
instances the most frequent polarity label in the
dataset. The ‘last unigram’ baseline returns the sen-
timent score (or the polarity label) of the last un-
igram in the phrase. For the regression task, we
use the real-valued sentiment score of the unigram
whereas for the binary classification task we use the
polarity label (positive or negative). The ‘most po-
lar unigram’ baseline assigns to the phrase the sen-
timent score (or the polarity label) of the most polar
word in that phrase, i.e., the word with the high-
est absolute sentiment score. The ‘part-of-speech
(POS) rule’ baseline assigns sentiment as follows:

1. If the phrase has an adjective, return the senti-
ment score (polarity) of the last adjective;

2. Else, if the phrase has a verb, return the senti-
ment score (polarity) of the last verb;

3. Else, return the sentiment score (polarity) of the
most polar word.

5.2 Supervised Classifiers

We train a Support Vector Machines classifier with
RBF kernel for the binary classification task and a
Support Vector regression model with RBF kernel
for the regression task using the LibSVM package
(Chang and Lin, 2011). For both tasks, the mod-
els are trained using different combinations of the
following features obtained from the target phrase:
all unigrams, POS tag of each unigram, sentiment
label of each unigram, sentiment score of each uni-
gram, and the word embedding vector for each un-
igram. The word embeddings are obtained by run-
ning word2vec software (Mikolov et al., 2013) on
the Emoticon Tweets Corpus. We use the skip-gram
model with the default parameters and generate 200-
dimensional vectors for each unigram present in the
corpus. For each task, ten-fold cross-validation is
repeated ten times, and the results are averaged.

5.3 Results

The results for all baseline and supervised meth-
ods are presented in Table 3. The ‘majority label’,
‘last unigram’, ‘most polar unigram’, and ‘POS rule’
baselines are shown in rows a to d. Observe that the
sentiment association of the last unigram is not very

1105

Binary Regression
Features (Acc.) (Pearson r)

2-gr 3-gr 2-gr 3-gr
Baselines
a. majority label 56.6 60.8 - -
b. last unigram 57.2 59.3 0.394 0.376
c. most polar unigram 66.9 69.8 0.416 0.551
d. POS rule 65.6 63.8 0.531 0.515
Supervised classifiers
e. POS + sent. label 65.7 64.2 - -
f. POS + sent. score 74.9 74.8 0.662 0.578
g. row f + uni 82.0 81.3 0.764 0.711
h. row f + emb(avg) + emb(max) 78.2 79.5 0.763 0.710
i. row f + emb(conc) 80.2 76.5 0.790 0.719
j. row f + emb(conc) + uni 82.6 80.9 0.802 0.753
k. POS + emb(conc) + uni 76.3 80.2 0.735 0.744

Table 3: Performance of the automatic systems on SCL-OPP.

Features used: unigrams (uni), part-of-speech of a unigram

(POS), sentiment binary label of a unigram (sent. label), senti-

ment real-valued score of a unigram (sent. score), embeddings

(emb). ‘emb(conc)’ is the concatenation of the embedding vec-

tors of the constituent unigrams; ‘emb(avg)’ is the average vec-

tor of the unigram embeddings; ‘emb(max)’ is maximal vector

of the unigram embeddings.

predictive of the phrase’s sentiment (row b).7 Both
the ‘most polar unigram’ and the ‘POS rule’ classi-
fiers perform markedly better than the majority base-
line. Interestingly, the ‘most polar unigram’ clas-
sifier outperforms the slightly more sophisticated
‘POS rule’ approach on most tasks. Also, we found
that within bigram phrases that contain adjectives or
verbs, the adjective or verb constituents are the most
polar words in only about half of the instances (and
even less so in trigrams). This indicates that adjec-
tives and verbs do not always dominate the senti-
ment in a phrase.

The results obtained using supervised techniques
with various feature combinations are presented in
rows e to k (Table 3). Using only POS and bi-
nary sentiment labels of the constituent unigrams,
the supervised learning algorithm does not perform
much better than our ‘POS rule’ baseline (the ac-
curacies in row e are just slightly higher than those

7Note that the results for the ‘last unigram’ baseline are still
better than the results of random guessing (acc = 50, r = 0). For
the majority of n-grams in SCL-OPP, the polarity of the first
unigram is opposite to the polarity of the last unigram. Thus,
the results for a similar ‘first unigram’ baseline (not shown here)
are worse than those obtained by the ‘last unigram’ baseline.

in row d). With access to real-valued sentiment
scores of unigrams much more accurate models can
be learned (row f). Furthermore, the results show
that the sentiment of a phrase depends on its con-
stituent words and not only on the sentiment of the
constituents (row g shows markedly better perfor-
mance than row f; all the differences are statistically
significant, p < .01). Concatenating word embed-
dings was found to be more effective than averag-
ing. (Averaging is common when creating features
for sentences). Having access to both unigrams and
word embedding features produces the best results.
(The differences between the scores in row i and
row j are statistically significant, p < .01.) Row k
shows results of the model trained without the gold
sentiment scores of the unigrams. Observe that for
bigrams, there is a substantial drop in performance
compared to row j (6.3-point drop in accuracy on
the binary task, 6.7-point drop in Pearson correlation
on the regression task) whereas for trigrams the per-
formance is not affected as much (less than 1-point
change on both tasks). Thus, having access to senti-
ment scores of constituents is particularly useful for
determining sentiment of bigram phrases.

6 Conclusions

We created a real-valued sentiment composition lex-
icon for opposing polarity phrases and their con-
stituent words, through manual annotation. We
analyzed patterns of sentiment composition across
phrases formed with different POS combinations.
Further, we applied several unsupervised and super-
vised techniques of sentiment composition to deter-
mine their efficacy on opposing polarity phrases. We
showed that for most phrases the sentiment of the
phrase cannot be reliably predicted only from the
parts of speech and sentiment association of their
constituent words, and that the constituent words,
their parts of speech, their sentiment scores, and
their embedding vectors are all useful features in su-
pervised sentiment prediction on this dataset.

We intend to use SCL-OPP in the following appli-
cations: (1) to automatically create a large coverage
sentiment lexicon of multi-word phrases and apply
it in downstream applications such as sentence-level
sentiment classification, and (2) to investigate how
the human brain processes sentiment composition.

1106

References

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A Library for Support Vector Machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–
27:27.

Yejin Choi and Claire Cardie. 2008. Learning with com-
positional semantics as structural inference for subsen-
tential sentiment analysis. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 793–801.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and Ke Xu.
2015. A statistical parsing framework for sentiment
classification. Computational Linguistics.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for
Twitter: Annotation, features, and experiments. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 168–
177, New York, NY, USA.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language. In
Advances in Neural Information Processing Systems,
pages 2096–2104.

Alistair Kennedy and Diana Inkpen. 2005. Sentiment
classification of movie and product reviews using con-
textual valence shifters. In Proceedings of the Work-
shop on the Analysis of Informal and Formal Infor-
mation Exchange during Negotiations (FINEXIN), Ot-
tawa, Ontario, Canada.

Svetlana Kiritchenko and Saif M. Mohammad. 2016a.
Capturing reliable fine-grained sentiment associations
by crowdsourcing and best–worst scaling. In Pro-
ceedings of The 15th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL), San Diego, California.

Svetlana Kiritchenko and Saif M. Mohammad. 2016b.
The effect of negators, modals, and degree adverbs on
sentiment composition. In Proceedings of the Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA).

Svetlana Kiritchenko and Saif M. Mohammad. 2016c.
Happy accident: A sentiment composition lexicon for
opposing polarity phrases. In Proceedings of 10th edi-
tion of the the Language Resources and Evaluation
Conference (LREC), Portorož, Slovenia.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts. Journal of Artificial Intelligence Research,
50:723–762.

Svetlana Kiritchenko, Saif M. Mohammad, and Moham-
mad Salameh. 2016. SemEval-2016 Task 7: De-
termining sentiment intensity of English and Arabic
phrases. In Proceedings of the International Work-
shop on Semantic Evaluation (SemEval), San Diego,
California, June.

Jingjing Liu and Stephanie Seneff. 2009. Review senti-
ment scoring via a parse-and-paraphrase paradigm. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 161–169.

Jordan J. Louviere and George G. Woodworth. 1990.
Best-worst analysis. Working Paper. Department of
Marketing and Economic Analysis, University of Al-
berta.

Jordan J. Louviere, Terry N. Flynn, and A. A. J. Marley.
2015. Best-Worst Scaling: Theory, Methods and Ap-
plications. Cambridge University Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop at
ICLR.

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions evoked by common words and phrases: Using
Mechanical Turk to create an emotion lexicon. In Pro-
ceedings of the NAACL-HLT Workshop on Computa-
tional Approaches to Analysis and Generation of Emo-
tion in Text, LA, California.

Saif M. Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word–emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Saif M. Mohammad, Svetlana Kiritchenko, and Xiaodan
Zhu. 2013. NRC-Canada: Building the state-of-the-
art in sentiment analysis of tweets. In Proceedings of
the International Workshop on Semantic Evaluation,
Atlanta, Georgia.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
composition. In Proceedings of Recent Advances in
Natural Language Processing (RANLP), volume 7,
pages 378–382.

Richard Montague. 1974. Formal Philosophy; Selected
papers of Richard Montague. Yale University Press.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classification
using CRFs with hidden variables. In Proceedings of
the Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 786–794.

Alena Neviarouskaya, Helmut Prendinger, and Mitsuru
Ishizuka. 2010. Recognition of affect, judgment,

1107

and appreciation in text. In Proceedings of the In-
ternational Conference on Computational Linguistics,
pages 806–814.

Bryan Orme. 2009. Maxdiff analysis: Simple counting,
individual-level logit, and HB. Sawtooth Software,
Inc.

Livia Polanyi and Annie Zaenen. 2004. Contextual va-
lence shifters. In Proceedings of the Exploring At-
titude and Affect in Text: Theories and Applications
(AAAI Spring Symposium Series).

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Seat-
tle, USA.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kimberly
Voll, and Manfred Stede. 2011. Lexicon-based meth-
ods for sentiment analysis. Computational Linguis-
tics, 37(2):267–307.

Kai Sheng Tai, Richard Socher, and Christopher D Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 1556–1566, Beijing, China.

Michael Wiegand, Alexandra Balahur, Benjamin Roth,
Dietrich Klakow, and Andrés Montoyo. 2010. A sur-
vey on the role of negation in sentiment analysis. In
Proceedings of the Workshop on Negation and Spec-
ulation in Natural Language Processing (NeSp-NLP),
pages 60–68, Stroudsburg, PA, USA.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Joint Con-
ference on HLT and EMNLP, pages 347–354, Strouds-
burg, PA, USA.

Ainur Yessenalina and Claire Cardie. 2011. Compo-
sitional matrix-space models for sentiment analysis.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
172–182.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-
lana Kiritchenko. 2014. An empirical study on the
effect of negation words on sentiment. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pages 304–313, Balti-
more, Maryland, June.

1108

Proceedings of NAACL-HLT 2016, pages 1109–1114,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning to Recognize Ancillary Information for
Automatic Paraphrase Identification

Simone Filice
DICII,

University of Roma, Tor Vergata
filice@info.uniroma2.it

Alessandro Moschitti∗
ALT, Qatar Computing Research Institute,

HBKU
amoschitti@qf.org.qa

Abstract

Previous work on Automatic Paraphrase Iden-
tification (PI) is mainly based on modeling
text similarity between two sentences. In con-
trast, we study methods for automatically de-
tecting whether a text fragment only appear-
ing in a sentence of the evaluated sentence pair
is important or ancillary information with re-
spect to the paraphrase identification task. En-
gineering features for this new task is rather
difficult, thus, we approach the problem by
representing text with syntactic structures and
applying tree kernels on them. The results
show that the accuracy of our automatic An-
cillary Text Classifier (ATC) is promising, i.e.,
68.6%, and its output can be used to improve
the state of the art in PI.

1 Introduction

Automatic PI is the task of detecting if two texts
convey the same meaning. For example, the fol-
lowing two sentences from the Microsoft Research
Paraphrase Corpus (MSRP) (Dolan et al., 2004):

S1a: Although it’s unclear whether Sobig was to
blame, The New York Times also asked employees at
its headquarters yesterday to shut down their com-
puters because of ”system difficulties.”

S1b: The New York Times asked employees at its
headquarters to shut down their computers yester-
day because of ”computing system difficulties.”

are paraphrases, while these other two are not:

∗ Professor at DISI, University of Trento.

S2a: Dr. Anthony Fauci, director of the National In-
stitute of Allergy and Infectious Diseases, agreed.

S2b: ”We have been somewhat lucky,” said Dr. An-
thony Fauci, director of the National Institute of Al-
lergy and Infectious Diseases.

Most previous work on automatic PI, e.g., (Madnani
et al., 2012; Socher et al., 2011), is based on a di-
rect comparison between the two texts, exploiting
different similarity scores into a machine learning
framework. However, these methods consider sen-
tences as monolithic units and can thus be misled by
ancillary information that does not modify the main
meaning expressed in the text.

For example, the additional text fragment (ATF),
“Although it’s unclear whether Sobig was to blame”,
from S1a expresses ancillary information, which
does not add much to the message of S1b, thus
the sentences are considered paraphrases. In con-
trast, S2b contains the ATF, “We have been some-
what lucky”, whose meaning is not linked to any
constituent of S1b. Since such text expresses rele-
vant information, the two sentences are not consid-
ered paraphrases.

In this paper, we study and design models for ex-
tracting ATFs from a sentence with respect to an-
other one and classifying if their meaning is ancil-
lary or important. For this purpose, we built a cor-
pus of sentence pairs using MSRP, where at least one
pair member always contains ATFs. We use SVMs
with tree kernels applied to syntactic representations
(Severyn and Moschitti, 2012) of ATFs for learning
automatic ATCs.

The results derived on MSRP show (i) a promis-
ing accuracy of our ATC and (ii) the output of ATC

1109

Figure 1: A pair of non-paraphrase sentences and its corresponding additional fragment.

can be used as a feature for improving the state-of-
the-art PI model.

2 Ancillary clauses in PI

Our main purpose in studying computational ap-
proaches to the detection of ancillary information is
its practical application to PI. Thus, given a pair of
sentences (in general two texts), we define ATFs as
ancillary information if their semantics:

(i) only appears in one of the two sentences and

(ii) does not change the main meaning of the sen-
tence, i.e., either the sentences are paraphrases
or, if they are not, such ATFs are not the reason
for their different meaning.

The definition above along with a syntactic repre-
sentation of the sentences can be applied to a para-
phrase corpus to build a dataset of ancillary vs. im-
portant ATFs. For example, Fig. 1 shows the shallow
tree representation1 we proposed in (Severyn and
Moschitti, 2012) of the sentences, S2a and S2b, re-
ported in the introduction, where the red label ρ in-
dicates that there is a link between the lemmas of the
two sentences (also shown by the dashed edges). ρ
can be propagated to the upper nodes to mark the re-
lated constituents. For example, the lemma National
is matched by the two sentences, thus both its father
node, NNP, and its grandfather constituent, NP, are
marked.

Such representation makes the extraction of ATFs
easier. For instance, Fig. 1 shows the text fragment

1The shallow trees are constituted by four levels: (i) word
lemmas as leaves, (ii) POS-tags as parent of lemmas,
(iii) phrases grouping POS-tag nodes and (iv) a final root S.

of S2b, “We have been somewhat lucky”, on the right.
This is an ATF since it is not aligned with any frag-
ments of S2a. Moreover, since it expresses a central
information to the sentence meaning, S2b cannot be
in paraphrase relation with S2a. Conversely, the ATF
of S1a, “Although it’s unclear whether Sobig was to
blame”, is ancillary to the main meaning of the sen-
tence, indeed, the annotators marked S1a and S1b as
a valid paraphrase.

3 Building the ATC corpus

The previous section has shown an approach to ex-
tract ATFs that can be potentially ancillary. This
uses an alignment approach based on lexical similar-
ity, which may fail to align some text constituents.
However, these mistakes only affect the precision
in extracting ATFs rather than the recall. In other
words, we can build a corpus that considers most
cases of additional information.

In particular, we design the following simple
heuristic: let Fi and Fj be the largest not aligned
(possibly discontinuous) word sequences appearing
in the sentence pair (Si, Sj), where Fi ∈ Si and
Fj ∈ Sj . We define ATF as the largest text between
Fi and Fj subject to d = |size(Fi)− size(Fj)| >
τ , where size(F) is the number of words2 appear-
ing in F . If the condition is not satisfied no ATF is
extracted.

The condition over d is important because the sen-
tence aligner may fail to match some subsequences,
creating false ATFs. However, what is missed from
one sentence will be missed also in the other sen-

2Only verbs, nouns, adjectives, adverbs and numbers were
considered, assuming all the others as “not informative words”.

1110

Train Test
τ Ancillary Important Total Ancillary Important Total
1 971 687 1658 387 687 1074
2 426 364 790 166 151 317
3 166 169 335 62 79 141
4 59 73 132 21 36 57

Table 1: Number of additional clauses extracted from MSRP.

tence. Thus, in general, if we set a small d then
Fi and Fj misalignments may generate false ATFs.
In contrast, a large d would clearly prevent this
problem, although small ATFs (of size < d) may
be discarded. More precisely, smaller values of
τ may cause the selection of fragments that have
corresponding fragments in the other sentence, ex-
pressed with dissimilar words (i.e., the aligner failed
to match those constituents). Larger values of τ
make the heuristic more precise, but less effective
in retrieving smaller ATFs.
The ATF corpus. We applied the heuristic above
to extract an ATF (if exists) from each sentence pair
of MSRP. The number of the extracted ATFs de-
pends on τ as reported in Table 1. A manual in-
spection of the retrieved fragments revealed that:
(i) small values of τ , namely, 1 and 2, cause the
extraction of many fragments from one sentence
corresponding to fragments expressed with differ-
ent words in the other sentence: these are not ATFs.
(ii) With τ = 3, the heuristic is very precise and
captures most ATFs appearing in the sentence pairs.
(iii) Higher values of τ cause many valid fragments
to be missed.

Once ATFs are generated, we need to label them
as ancillary or important for PI such that this data
can be used for training and testing ATC. Interest-
ingly, the data can be automatically labeled exploit-
ing the MSRP annotation: given a sentence pair
from MSRP, we (i) extract the ATF from it and
(ii) automatically annotate it as ancillary if the pair
is a paraphrase and not ancillary otherwise. In other
words, an ATF is considered ancillary only if it is ex-
tracted from a paraphrase pair. To verify the correct-
ness of this approach, two experts manually labeled
the obtained data extracted with τ = 3 and found
that only 3.3% of the data was mislabeled with re-
spect to one annotator. The Cohen’s kappa agree-
ment between the annotators was 85%.

4 Experiments

In these experiments, we first evaluate state-of-the-
art PI models to create our baseline, then we experi-
ment with our ATC and finally, we combine them to
show that ATC can improve PI.

4.1 Deriving PI baselines

Dataset. We used MSRP, which consists of 4,076
sentence pairs in the training set and 1,725 sentence
pairs in test set. About 66% of the pairs are para-
phrases. The pairs were extracted from topically
similar Web news articles, applying some heuris-
tics that select potential paraphrases to be anno-
tated by human experts. We represent the sentence
pairs using shallow trees generated with the Stanford
parser3.

Models. We adopted our state-of-the-art PI ap-
proach we proposed in (Filice et al., 2015). This,
given two pairs of sentences, pa = 〈a1, a2〉 and
pb = 〈b1, b2〉, represents instances as shown Fig. 1,
and applies tree kernels to them. In particular, we
used our best kernel com derived in the work above:

SMK(pa, pb) = sf
(
SPTK(a1, b1)× SPTK(a2, b2),

SPTK(a1, b2)× SPTK(a2, b1)
)
,

where sf(x1, x2) = 1
c log(e

cx1 + ecx2), and SPTK
is the Smoothed Partial Tree Kernel (Croce et al.,
2011). SMK considers the inherent symmetry of the
PI task and evaluates the best alignment between the
sentences in the input pairs. The sf is a softmax
operation used in place of the max function4, which
is not a valid kernel function. SPTK uses a simi-
larity function between words: we generated it with
the word2vec tool5 (Mikolov et al., 2013) using the

3nlp.stanford.edu/software/corenlp.shtml
4c=100 produces accurate approximation.
5https://code.google.com/p/word2vec

1111

Model Acc (%) P R F1
LK 75.9 78.4 88.1 82.9

SMK 76.4 76.6 92.9 83.9
SMK+LK 77.7 79.4 8.99 84.4

(Socher et al., 2011) 76.8 − − 83.6
(Madnani et al., 2012) 77.4 − − 84.1

Table 2: Results on Paraphrase Identification.

skip-gram model applied to the UkWaC corpus (Ba-
roni et al., 2009).

Results. As illustrated in Table 2, a binary Sup-
port Vector Machine equipped with SMK achieves a
very high accuracy. Moreover, SMK combined with
a linear kernel (LK) over similarity metrics6 attains
the state of the art in PI.

4.2 Experimental Evaluation on ATC

Dataset and models. We created an ATC dataset
with τ = 3 as described in Sec. 3. We make this
dataset available7. We learned ATC with the C-SVM
algorithm (Chang and Lin, 2011) inside KeLP8. The
examples are represented using the shallow tree like
the one on the right of Fig. 1. We used three dif-
ferent tree kernels: the Syntactic Tree Kernel (STK)
by Collins and Duffy (2001), the Partial Tree Ker-
nel (PTK) by Moschitti (2006) and SPTK using the
word2vec similarity defined before.

Given the small size of such dataset (Only 8% of
MSRP instances have additional fragments), we per-
formed a 5-fold cross validation. Table 3 illustrates
the Accuracy, Precision, Recall and F1 of our mod-
els. ATC based on SPTK provides the best accu-
racy, i.e., 68.6%, which is a promising result for this
research. The second most accurate classifier uses
PTK, which is more flexible than STK.

4.3 Using ATC in PI

We carried out error analysis on PI and observed
that the used classifier commits a systematic error:
when two sentences share a very similar large part
(identical in the extreme case) and one sentence has
an ATF, it almost always classifies the sentences as

6These include cosine similarities of lemmas, POS-tags, and
n-grams, longest common substring and longest common subse-
quence measures and Tree Kernel intra-pair similarities.

7http://alt.qcri.org/resources/ancillary
8https://github.com/SAG-KeLP

Kernel Acc (%) P R F1

STK 65.1 ± 6.5 65.4 ± 8.0 58.3 ± 5.6 61.5 ± 5.8
PTK 67.4 ± 8.2 69.7 ± 8.8 56.5 ± 7.7 62.4 ± 7.8

SPTK 68.6 ± 9.4 71.0 ± 9.0 57.9 ± 9.7 63.7 ± 9.3

Table 3: Results of Ancillary Text Classifiers

paraphrases, even if the ATF contains important in-
formation that invalidates the paraphrase relation.
This kind of mistakes can be corrected by ATC.

Thus, we created the following ensemble model:
given a pair to be classified, we apply our heuristic
for ATF extraction. If the heuristic does not find any
fragment in the pair, we only rely on the prediction
provided by PI. Otherwise, we combine the predic-
tion of ATC applied to ATF with the one of the PI
classifier using a stacking strategy (Wolpert, 1992),
i.e., the two predictions become the input features of
a third classifier that makes the final decision.

To train this meta-classifier, we need the predic-
tions from ATC and PI computed on a validation set.
Hence, we split the training set in two parts: one
part is used for training ATC and PI, while the other
is classified with the trained models to produce the
predictions for the meta-classifier. Then, the roles
of the two parts are inverted. The meta-classifier is
a linear SVM (Fan et al., 2008) implemented with
KeLP.

Note that: (i) since we use 5-fold cross-validation,
for each fold, we needed to apply the process de-
scribed above to each fold; and (ii) all the learning
algorithms and kernels adopt default parameters to
also facilitate the reproducibility of our results.

Results. Table 4 reports the comparison between
PI and PI combined with ATC (trained with SPTK).
The performance is derived only on sentence pairs
with ATFs.

The first column indicates the kernel used by the
PI classifier, while the second column reports ’+’ or
’-’ to indicate if PI is combined with ATC or not,
respectively. We note that ATC produces a great im-
provement, ranging from 8 absolute percent points
over LK to about 3 points over SMK+LK, i.e., the
state-of-the-art model. As expected, the more ac-
curate the baseline is, the lower the improvement is
produced.

It should be noted that only a relative small subset

1112

PI ATC Acc (%) P R F1

LK - 62.2± 5.4 57.8± 7.0 75.1± 7.4 65.3± 6.9
LK + 70.4± 5.5† 69.2± 6.8 68.2± 4.7 68.7± 5.7

SMK - 64.7± 6.0 59.0± 6.5 84.9± 4.6 69.5± 5.9
SMK + 69.1± 5.5 ‡ 66.9± 6.4 69.7± 5.8 68.2± 5.9

SMK+LK - 70.5± 4.0 66.3± 6.7 77.3± 6.1 71.2± 5.3
SMK+LK + 73.2± 5.2‡ 72.5± 5.4 71.3± 3.9 71.8± 3.9

Table 4: PI classifier performance using ATC. The test set is restricted to examples having additional fragments. † and ‡ mark

statistically significant differences in accuracy compared to the counterpart model not using ATC with confidence levels of 95%

and 90%, respectively (t-test).

PI ATC Acc (%) P R F1

LK - 75.5± 0.5 78.6± 0.9 87.6± 1.9 82.8± 0.4
LK + 76.2± 1.0† 79.5± 0.1 87.2± 2.2 83.1± 0.8

SMK - 75.6± 0.8 77.1± 0.4 90.7± 1.2 83.3± 0.7
SMK + 75.9± 0.9† 77.9± 1.3 89.7± 1.2 83.4± 0.6

SMK+LK - 78.1± 1.1 80.7± 0.6 88.6± 2.1 84.4± 0.9
SMK+LK + 78.3± 1.1‡ 81.1± 0.9 88.2± 1.8 84.5± 0.8

Table 5: PI classifier performance using ATC on the testset. † and ‡ mark statistically significant differences in accuracy compared

to the counterpart model not using ATC with confidence levels of 95% and 90%, respectively (t-test).

of MSRP contains additional fragments (about 8%
when τ = 3). Thus, the impact on the entire PI test-
set cannot be large. Tab. 5 reports the accuracy of the
previous models on the entire testset. An improve-
ment over all models, state-of-the-art included, can
be still observed, although it is less visible.

5 Conclusions

In this paper, we study and design models for learn-
ing to detect ancillary information in the context of
PI. We used a heuristic rule for selecting additional
fragments from paraphrase pairs, which, applied to
MSRP, generates our ATF dataset. We manually an-
notated the latter for training and testing our ATCs.

Our experiments using several kernel models
show that ATC can achieve a good accuracy (about
69%) and significantly impact the PI accuracy. Our
results suggest that:

(i) it is possible to recognize information humans
believe is ancillary; and

(ii) to go beyond the current results and technology
for high-level semantic tasks (e.g., PI), we can-
not just rely on shallow similarity features, but
we rather need to build components that ana-

lyze different aspects of text and then combine
the output of the different modules.

In the future, it would be interesting to use meth-
ods similar to those successfully used in question
answering research, e.g., matching entities in the
sentence trees using linked open data (Tymoshenko
et al., 2014; Tymoshenko and Moschitti, 2015) or
enriching trees with semantic information automat-
ically produced by classifiers, e.g., (Severyn et al.,
2013a; Severyn et al., 2013b).

Acknowledgements

This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action) and by an IBM Fac-
ulty Award.

References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and

Eros Zanchetta. 2009. The wacky wide web: a
collection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines. ACM Transac-

1113

tions on Intelligent Systems and Technology, 2:27:1–
27:27.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Advances in Neural
Information Processing Systems 14, pages 625–632.
MIT Press.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings EMNLP.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Proc.
of COLING ’04, Stroudsburg, PA, USA.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. Liblinear: A library
for large linear classification. J. Mach. Learn. Res.,
9:1871–1874, June.

Simone Filice, Giovanni Da San Martino, and Alessandro
Moschitti. 2015. Structural representations for learn-
ing relations between pairs of texts. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 1003–1013, Beijing, China,
July. Association for Computational Linguistics.

Nitin Madnani, Joel Tetreault, and Martin Chodorow.
2012. Re-examining machine translation metrics for
paraphrase identification. In Proceedings of NAACL
HLT ’12. ACL.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees. In
Proc. of ECML’06, pages 318–329.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of an-
swer re-ranking. In Proceedings of the 35th interna-
tional ACM SIGIR conference on Research and de-
velopment in information retrieval, pages 741–750.
ACM.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013a. Building structures from classifiers
for passage reranking. In CIKM.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013b. Learning adaptable patterns for
passage reranking. In CoNLL.

Richard Socher, Eric H. Huang, Jeffrey Pennington, An-
drew Y. Ng, and Christopher D. Manning. 2011. Dy-
namic pooling and unfolding recursive autoencoders
for paraphrase detection. In Advances in Neural Infor-
mation Processing Systems 24: 25th Annual Confer-
ence on Neural Information Processing Systems 2011.

Proceedings of a meeting held 12-14 December 2011,
Granada, Spain., pages 801–809.

Kateryna Tymoshenko and Alessandro Moschitti. 2015.
Assessing the impact of syntactic and semantic struc-
tures for answer passages reranking. In CIKM, pages
1451–1460. ACM.

Kateryna Tymoshenko, Alessandro Moschitti, and Aliak-
sei Severyn. 2014. Encoding semantic resources in
syntactic structures for passage reranking. In Proceed-
ings of EACL.

David H. Wolpert. 1992. Stacked generalization. Neural
Networks, 5:241–259.

1114

Proceedings of NAACL-HLT 2016, pages 1115–1120,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning a POS tagger for AAVE-like language∗

Anna Jørgensen
University of Amsterdam

Science Park 107
1098 XG Amsterdam, NL

jorgensen@uva.nl

Dirk Hovy
University of Copenhagen

Njalsgade 140
2300 Copenhagen S, DK
dirk.hovy@hum.ku.dk

Anders Søgaard
University of Copenhagen

Njalsgade 140
2300 Copenhagen S, DK

soegaard@hum.ku.dk

Abstract

Part-of-speech (POS) taggers trained on
newswire perform much worse on domains
such as subtitles, lyrics, or tweets. In addition,
these domains are also heterogeneous, e.g.,
with respect to registers and dialects. In this
paper, we consider the problem of learning
a POS tagger for subtitles, lyrics, and tweets
associated with African-American Vernacular
English (AAVE). We learn from a mixture
of randomly sampled and manually annotated
Twitter data and unlabeled data, which we au-
tomatically and partially label using mined tag
dictionaries. Our POS tagger obtains a tag-
ging accuracy of 89% on subtitles, 85% on
lyrics, and 83% on tweets, with up to 55% er-
ror reductions over a state-of-the-art newswire
POS tagger, and 15-25% error reductions over
a state-of-the-art Twitter POS tagger.

1 Introduction

Modern part-of-speech (POS) taggers perform well
on what some consider canonical language, as found
in domains such as newswire, for which sufficient
manually-annotated data is available. For many do-
mains, such as subtitles, lyrics, and tweets, however,
labeled data is scarce, if existing, and the perfor-
mance of off-the-shelf POS taggers is prohibitive of
downstream applications.

Furthermore, subtitles, lyrics and tweets are very
heterogeneous. Subtitles span from Shakespeare to
The Wire, and the lyrics of Elvis Costello are very
different from those of Tupac Shakur. Twitter can

∗This work was supported by ERC Starting Grant
No. 313695.

be anything from teenagers discussing where to go
tonight, to researchers discussed the implications of
new findings. All three sources of data exhibit a very
high degree of linguistic variation, some of which is
due to the dialects of the speakers or authors.

In this paper, we use a corpus of POS-annotated
tweets recently released by CMU,1 consisting of
semi-randomly sampled US tweets. We want to
use this corpus to learn a POS tagger for subti-
tles, lyrics, and tweets, which are typically associ-
ated with African-American Vernacular English
(AAVE). We believe our POS tagger can broaden
the coverage of NLP tools, and serve as an impor-
tant tool for large-scale sociolinguistic analyses of
language use associated with AAVE (Jørgensen et
al., 2015; Stewart, 2014), which relies on the accu-
racy of these NLP tools.

We combine several recent trends in domain adap-
tation, namely word embeddings, clusters, sam-
pling, and the use of type constraints. Word rep-
resentations learned from representative unlabeled
data, such as word clusters or embeddings, have
been proven useful for increasing the accuracy
of NLP tools for low-resource languages and do-
mains (Owoputi et al., 2013; Aldarmaki and Diab,
2015; Gouws and Søgaard, 2015). Since similar
words receive similar labels, this can give the model
support for words not in the training data. In this pa-
per, we use word clusters and word embeddings in
both our baseline and system models.

Using unlabeled data to estimate a target distribu-
tion for importance sampling, or for semi-supervised

1https://github.com/brendano/ark-tweet-nlp/
tree/master/data/twpos-data-v0.3

1115

learning (Søgaard, 2013), as well as wide-coverage,
crowd-sourced tag dictionaries to obtain more robust
predictions for out-of-domain data have been suc-
cesfully used for domain adaptation (Das and Petrov,
2011; Hovy et al., 2015a; Li et al., 2012). In this
paper, we use automatically-harvested tag dictionar-
ies for the target variety(/-ies) in two different set-
tings: for labeling the unlabeled data using a tech-
nique elaborating on previous work (Li et al., 2012;
Wisniewski et al., 2014; Hovy et al., 2015a), and
for imposing type constraints at test time in a semi-
supervised setting (Garrette and Baldridge, 2013;
Plank et al., 2014a). Our best models are obtained
using partially labeled training data created using tag
dictionaries.

Our contributions We present a POS tagger for
AAVE-like language, mining tag dictionaries from
various websites and using them to create par-
tially labeled data. Our contributions include:
(i) a POS tagger that performs significantly bet-
ter than existing tools on three datasets contain-
ing AAVE markers, (ii) a new domain adaptation
algorithm combining ambiguous and cost-sensitive
learning, and (iii) an annotated corpus and trained
POS tagger made publicly available at https://
bitbucket.org/soegaard/aave-pos16.

2 Data

For historical reasons, most of the manually anno-
tated corpora available today are newswire corpora.
In contrast, very little data is available for domains
such as subtitles, lyrics and tweets — especially for
language varieties such as AAVE. Learning robust
models for AAVE-like language and other language
varieties is often further complicated by the absence
of standard writing systems (Boujelbane et al., 2013;
Bernhard and Ligozat, 2013; Duh and Kirchhoff,
2005).

In this paper, we use three manually annotated
data sets, consisting of subtitles from the televi-
sion series The Wire, hip-hop lyrics from black
American artists and tweets posted within the south-
eastern corner of the United States. We do not use
this data for training, but only for evaluation, so
our experiments use unsupervised (or weakly super-
vised) domain adaptation.

Although the language use in the three domains

vary, they have several things in common: the
register is very informal, and the subtitles, lyrics
and tweets contain slang terms such as loc’d
out, cheesing with and po’, spoken language fea-
tures such as uh-hum, huh and oh, phonologically-
motivated spelling variations such as dat mouf,
missin’ and niggas and contractions such as we’ll
and I’d. These features are infrequent in or absent
from most commonly used training corpora for NLP.

The data was annotated by two trained linguists
with experience in analyzing AAVE, using the Uni-
versal Part-of-Speech tagset (Petrov et al., 2011).
They obtained an inter-annotator agreement score of
93.6%. The test sections consist of 528 sentences
(subtitles), 509 sentences (lyrics), and 374 sentences
(tweets). In addition, we had 546 sentences of sub-
titles annotated for development data. Note that
we only use one domain for development to avoid
overly optimistic performance estimates.

For all experiments, we use a publicly available
implementation of structured perceptron2 and train
on the 1827 tweets from the CMU Twitter Cor-
pus (Gimpel et al., 2011). Note that despite the fact
that the training data also comes from an informal
domain, the distribution of POS tags in this data set
is different from those of the test sets. For instance,
the percentage of determiners in the CMU Twitter
corpus is on average 4% lower than in our test do-
mains, and there are 7% more pronouns in the test
sets than in the CMU Twitter corpus.

We also create a large unlabeled corpus of data
that is representative of our test sets. This corpus,
consisting of 4.5M sentences, is created using subti-
tles from the TV series The Wire and The Boondocks,
English hip-hop lyrics, and tweets from the south-
eastern states of the US. None of the unlabeled data
overlaps with our evaluation datasets. We use this
corpus for two purposes: to induce word clusters and
embeddings, and to partially annotate a portion of it
automatically, which we include in the training data
of our ambiguous supervision model (see Section 3
below).

3 Robust learning

Word representations To learn word embeddings
from our unlabeled corpus, we use the Gensim im-

2https://github.com/coastalcph/rungsted

1116

plementation of the word2vec algorithm (Mikolov
et al., 2013b; Mikolov et al., 2013a). We
also learn Brown clusters from a large corpus of
tweets3 (Owoputi et al., 2013), and add both as ad-
ditional features to our training and test sets. The
word representations capture latent similarities be-
tween words, but more importantly enable our tag-
ging model to generalize to unseen words.

Partially labeled data Model performance gen-
erally benefits from additional data and constraints
during training (Hovy and Hovy, 2012; Täckström
et al., 2013). We therefore also use the unlabeled
data and tag dictionaries as additional, partially la-
beled training data. For this purpose, we extract a
tag dictionary for AAVE-like language from various
crowdsourced online lexicons.

Partial constraints from tag dictionaries have pre-
viously been used to filter out incorrect label se-
quences from projected labels from parallel cor-
pora (Wisniewski et al., 2014; Das and Petrov, 2011;
Täckström et al., 2013). We use a combination of
a publicly available dump of Wiktionary4 (Li et al.,
2012), entries from Hepster’s glossary of musical
terms5, a list of African-American names6 and Ur-
ban Dictionary7 (UD). We augment our tag dictio-
nary by scraping UD for all words in our unlabeled
corpus and extracting the part-of-speech information
where available. See an example entry for the word
hooch below, which has five possible parts of speech
in our tag dictionary: VERB, NOUN, ADJ, PRON,
ADV.

Hooch: ”Chewing tobacco commonly
placed in the lower lip region. Hooch can
be used as a verb, noun, adjective, pro-
noun, or an adverb.”

We use the tag dictionary to label the unlabeled
corpus. E.g., when we see the word hooch, we
assign it the label VERB/NOUN/ADJ/PRON/ADV.
We present two ways of using this data for learning

3http://www.cs.cmu.edu/˜ark/TweetNLP/
4https://code.google.com/p/

wikily-supervised-pos-tagger/
5http://www.dinosaurgardens.com/

wp-content/uploads/2007/12/hepsters.html
6http://www.behindthename.com/submit/

names/usage/african-american/3
7http://www.urbandictionary.com

better POS models: one where the tag dictionaries
are used in an ambiguously supervised setting, and
one where they are used as type constraints at pre-
diction time in a self-training setup.

Ambiguous supervision Our algorithm is related
to work in cross-lingual transfer (Wisniewski et al.,
2014; Das and Petrov, 2011; Täckström et al., 2013)
and domain adaptation (Hovy et al., 2015a; Plank et
al., 2014a), where tag dictionaries are used to filter
projected annotation. We use the tag dictionaries to
obtain partial labeling of in-domain training data.

Our baseline sequence labeling algorithm is the
structured perceptron (Collins, 2002). This algo-
rithm performs additive updates passing over labeled
data, comparing predicted sequences to gold stan-
dard sequences. If the predicted sequence is identi-
cal to the gold standard, no update is performed. We
use a cost-sensitive structured perceptron (Plank et
al., 2014b) to learn from the partially labeled data.

Each update for a sequence can be broken
down into a series of transition and emission
updates, passing over the sequence item-by-item
from left to right. For a word like hooch la-
beled VERB/NOUN/ADJ/PRON/ADV, we perform
an update proportional to the cost associated with
the predicted label. If the predicted label is not in
the mined label set, e.g., PRT, we update with a cost
of 1.0 (multiplied by the learning rate α); if the pre-
dicted label is in the mined label set, we do not up-
date our model. This means that the POS model is
not penalized for predicting any of the five supplied
labels. We did consider distributing a small cost be-
tween the candidates in the mined label sets, but this
led to slightly worse performance on our develop-
ment data.

In the experiments below, we also filter the par-
tially labeled data by the amount of ambiguity ob-
served in our labels. At one extreme, we require all
words to have a single label, as in fully labeled data.
Hovy et al. (2015b) also used a tag dictionary to ob-
tain fully labeled data for domain adaptation. At the
other end of the scale, we use all the partially labeled
data, allowing up to 12 tags per words. Finally, we
also experiment with using only sentences from our
unlabeled data such that the tag dictionary assigns at
most two (2) or three (3) labels to each word.

We also experimented with using different

1117

Baselines Ambiguous Self-train Stanford GATE CMU
Test set Baseline +Cluster +Clust+Emb

Lyrics 83.9 85.0 85.2 85.2 85.0 77.7 83.0 81.5
Subtitles 87.8 88.4 89.0 89.0 88.8 83.7 87.5 85.6
Tweets 75.0 79.0 78.8 83.0 80.0 61.4 77.1 80.0

Average 82.2 84.1 84.3 85.7 84.6 74.3 82.5 82.4

Table 1: Main results

amounts of ambiguously labeled data. The best

Figure 1: Learning curve ambiguous learning

performing system on development data uses both
Wiktionary and the tag dictionaries associated with
AAVE, only 100 ambiguously labeled data points
for training, a cost of 0.0 for predicting labels in
the mined label sets, no threshold on ambiguity
levels (but leaving only sentences covered by our
tag dictionaries), the CMU Brown clusters, and 20-
dimensional word2vec embeddings with a sliding
window of nine (9). The results of this system are
shown in Table 1 as Ambiguous.

Self-training with type constraints Our second
system uses the harvested tag dictionary for type
constraints when making predictions on the unla-
beled data for self-training. The search space of pos-
sible labels for each word is simply restricted to the
tags provided for that word by the tag dictionary.

For our self-training experiments, we experiment
with pool size, but heuristically set the stopping cri-
terion to be when the development set accuracy of
the tagger decreases over three consecutive itera-
tions. we obtained the best performance on de-

velopment data using the tag dictionary without
Wikipedia, using all entries for type constraints, the
CMU Brown clusters, and 10-dimensional embed-
dings with a window size of five (5). The results of
this model are listed in Table 1 as Self-training.

Pre-Normalization We also experimented with
test-time pre-normalization of the input, using the
normalization dictionary of Han et al. (2011), but
this led to worse performance on development data.

4 Results and error analysis

Table 1 shows the baseline accuracies, with and
without clusters and embeddings, as well as the per-
formance of the two developed systems described
above. All results for both ambiguous supervi-
sion and self-training with type constraints signifi-
cantly outperform the simple baseline with p < 0.01
(Wilcoxon). The system using ambiguous supervi-
sion is also significantly better than the baseline with
clusters and word embeddings on the Twitter data.
The fact that we generally see worse performance
on Twitter data than on the two other data set (even
though the systems were trained on Twitter data) can
be attributed to a higher type-token ratio.

We also provide the accuracies of three publicly
available POS taggers in Table 1. The three POS
systems are the bidirectional Stanford Log-linear
POS Tagger8 , the GATE Twitter POS tagger9 , and
the CMU POS Tagger.10 We observe that our am-
biguous learning system outperforms all three sys-
tems on all test sets.

8http://nlp.stanford.edu/software/
tagger.shtml

9https://gate.ac.uk/wiki/
twitter-postagger.html

10https://github.com/brendano/
ark-tweet-nlp/

1118

Test set Lyrics Subtitles Tweets Av.

Baseline 64% 78% 48% 63%
Ambiguous 71% 83% 78% 77%
Self-train 70% 82% 61% 71%

Table 2: Accuracies on unseen words

Our improvements are primarily due to better per-
formance on unseen words. Both systems improve
the accuracy on OOV items for all three test sets,
with the ambiguous learning system reducing the
error by an average of 14%, and the self-training
system reducing it by 7.7% on average. However,
we also see an average increase in performance on
known words of 1% for both systems. This increase
is highest for tweets (2%) and around 0.5% for the
subtitles and hip-hop lyrics test sets. The main rea-
son for the increased overall performances of our
systems is therefore the improved accuracy on OOV
words. Table 2 shows that the accuracy on OOVs in-
creases on all three test sets for both developed sys-
tems over baseline.

The OOV words learned in these two test sets are
mainly verbs such as sittin’, gettin’ and feelin’ (g-
dropped spellings), and words that are infrequent in
canonical written language such as ’em and ho.

We observe that our systems improve perfor-
mance on traditionally closed word classes such
as pronouns, adpositions, determiners and conjunc-
tions. These increases can be ascribed to the systems
having learned from the additional information pro-
vided on spelling variations such as ’cause, fo’ and
ya and unknown entities such as dis, dat, sum.

Finally, we note that increasing the number of
training examples for ambiguous learning seems to
come with diminishing returns. The learning curve
is presented in Figure 1.

5 Conclusions

We explore several techniques to learn better POS
models for AAVE-like subtitles, lyrics, and tweets
from a manually annotated Twitter corpus. Our sys-
tems perform significantly better than three state-of-
the-art POS taggers for English, with error reduc-
tions up to 55%. The improvements were shown to
be primarily due to better handling of OOV words.

References
Hanan Aldarmaki and Mona Diab. 2015. Robust part-of-

speech tagging of Arabic text. In Proceedings of the
Second Workshop on Arabic Natural Language Pro-
cessing, Beijing, China.

Delphine Bernhard and Anne-Laure Ligozat. 2013.
Hassle-free pos-tagging for the Alsatian dialects. In
Marcos Zampieri and Sascha Diwersy, editors, Non-
Standard Data Sources in Corpus Based-Research,
pages 85–92. ZSM Studien.

Rahma Boujelbane, Meriem Ellouze Khemekhem, and
Lamia Hadrich Belguith. 2013. Mapping rules for
building a Tunisian dialect lexicon and generating cor-
pora. In International Joint Conference on Natural
Language Processing, pages 419–428.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In EMNLP.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In ACL, pages 256–263.

Kevin Duh and Katrin Kirchhoff. 2005. Pos tagging of
dialectal Arabic: A minimally supervised approach. In
Proceedings in the ACL Workshop on Computational
Approaches to Semitic Languages.

Dan Garrette and Jason Baldridge. 2013. Learning a
part-of-speech tagger from two hours of annotation. In
Proceedings of NAACL-HLT, pages 138–147.

Kevin Gimpel, Nathan Schneider, Brendan OConnor, Di-
panjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A. Smith. 2011. Part-of-speech tagging for twit-
ter: Annotation, features, and experiments. In ACL.

Stephen Gouws and Anders Søgaard. 2015. Simple task-
specific bilingual word embeddings. In Human Lan-
guage Technologies: The 2015 Annual Conference of
the North American Chapter of the ACL, pages 1386–
1390.

Bo Han and Timothy Baldwin. 2011. Lexical Normali-
sation of Short Text Messages: Makn Sens a #twitter.
In ACL.

Dirk Hovy and Eduard Hovy. 2012. Exploiting partial
annotations with em training. In Proceedings of the
NAACL-HLT Workshop on the Induction of Linguis-
tic Structure, pages 31–38. Association for Computa-
tional Linguistics.

1119

Dirk Hovy, Barbara Plank, Héctor Martı́nez Alonso, and
Anders Søgaard. 2015a. Mining for unambiguous
instances to adapt part-of-speech taggers to new do-
mains. In Human Language Technologies: The 2015
Annual Conference of the North American Chapter of
the ACL, pages 1256–1261.

Dirk Hovy, Barbara Plank, Héctor Martı́nez Alonso, and
Anders Søgaard. 2015b. Mining for unambiguous
instances to adapt pos taggers to new domains. In
NAACL-HLT.

Anna Jørgensen, Dirk Hovy, and Anders Søgaard. 2015.
Challenges of studying and processing dialects in so-
cial media. In Proceedings of the ACL Workshop on
Noisy User-generated Text.

Shen Li, João V. Graça, and Ben Taskar. 2012. Wiki-
ly supervised part-of-speech tagging. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning.

T. Mikolov, K. Chen, G Corrado, and J. Dean. 2013a.
Efficient estimation of word representations in vector
space. ArXiv e-prints.

T. Mikolov, W.T. Yih, and G. Zweig. 2013b. Linguistic
regularities in continuous space word representations.
In Proceedings of NAACL-HLT.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of
NAACL-HLT.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. In Proceedings of
LREC.

Barbara Plank, Dirk Hovy, Ryan McDonald, and Anders
Søgaard. 2014a. Adapting taggers to twitter with not-
so-distant supervision. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1783–
1792.

Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014b.
Learning part-of-speech taggers with inter-annotator
agreement loss. In EACL.

Anders Søgaard. 2013. Semi-supervised learning and
domain adaptation for NLP. Morgan & Claypool.

Ian Stewart. 2014. Now We Stronger Than Ever:
African-American syntax on Twitter. In Proceedings
of the Student Research Workshop to the 14th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 26–30, Gothenburg,
Sweden, April.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre, 2013. Token and Type

Constraints for Cross-Lingual Part-of-Speech Tag-
ging, pages 1–12. Association for Computational Lin-
guistics.

Guillaume Wisniewski, Nicolas Pécheux, Sophir
Gahbiche-Braham, and François Yvon. 2014. Cross-
lingual part-of-speech tagging through ambiguous
learning. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing.

1120

Proceedings of NAACL-HLT 2016, pages 1121–1126,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

PIC a Different Word: A Simple Model for Lexical Substitution in Context

Stephen Roller
Department of Computer Science
The University of Texas at Austin
roller@cs.utexas.edu

Katrin Erk
Department of Linguistics

The University of Texas at Austin
katrin.erk@mail.utexas.edu

Abstract

The Lexical Substitution task involves select-
ing and ranking lexical paraphrases for a target
word in a given sentential context. We present
PIC, a simple measure for estimating the ap-
propriateness of substitutes in a given con-
text. PIC outperforms another simple, com-
parable model proposed in recent work, es-
pecially when selecting substitutes from the
entire vocabulary. Analysis shows that PIC
improves over baselines by incorporating fre-
quency biases into predictions.

1 Introduction

Lexical substitution (McCarthy and Navigli, 2009)
is a task in which word meaning in context is de-
scribed not through dictionary senses but through
substitutes (paraphrases) chosen by annotators. For
example, consider the following usage of the adjec-
tive bright: “The bright girl was reading a book.”
Valid lexical substitutions for bright include adjec-
tives like smart and intelligent, but not words like
luminous or colorful.

Originally introduced as a SemEval task in 2007,
lexical substitution has often been used to evaluate
the ability of distributional models to handle pol-
ysemy (Erk and Padó, 2008; Thater et al., 2010;
Dinu and Lapata, 2010; Van de Cruys et al., 2011;
Melamud et al., 2015b; Melamud et al., 2015a;
Kawakami and Dyer, 2015). Recent models include
a simple but high-performing method by Melamud
et al. (2015b), which uses the Skip-gram model of
Mikolov et al. (Mikolov et al., 2013) to compute the
probability of a substitute given a sentence context,

and integrates it with the probability of the substi-
tute given the target. The current state of the art is
held by another model of Melamud (Melamud et al.,
2015a), which uses a more complex architecture.

In this paper we build on the simple model of
Melamud et al. (2015b), as simpler methods are eas-
ier to recreate and integrate into larger pipelines.1

We explore a weak form of supervision that recently
has proved beneficial on many NLP tasks: using a
language modeling task on unannotated data. We
find a strong improvement over Melamud’s simple
measure, particularly on the all-words ranking task.
Interestingly, analysis of PIC shows it improves over
baselines by incorporating frequency biases into pre-
dictions.

2 Prior Work

In the lexical substitution task, an annotator is given
a target word in context and generates one or more
substitutes. As multiple annotators label a target,
the result is a weighted list of substitutes, where
weights indicate how many annotators chose a par-
ticular substitute (McCarthy and Navigli, 2009).

There have been numerous approaches on the lex-
ical substitution task of varying complexity and us-
ing various lexical resources (McCarthy and Nav-
igli, 2007). Some approaches focus on explic-
itly modeling an in-context vector (Erk and Padó,
2008; Dinu and Lapata, 2010; Thater et al., 2010;
Van de Cruys et al., 2011; Kremer et al., 2014;
Kawakami and Dyer, 2015), while others approach
it using more sophisticated pipelines, in both super-

1Code and models available at https://github.com/
stephenroller/naacl2016.

1121

vised (Szarvas et al., 2013) and unsupervised (Mela-
mud et al., 2015a) settings. The latter is the current
state-of-art system, and is based around generating
and pruning second-order word representations us-
ing language models.

In this work, we limit our comparisons to the
model of Melamud et al. (2015b), a method which
performs nearly state-of-art, is extremely easy to
implement, and is a good testbed for focused hy-
potheses. They propose a novel measure which
uses dependency-based word and context embed-
dings derived from Skip-gram Negative Sampling
algorithm (SGNS) (Mikolov et al., 2013; Levy and
Goldberg, 2014a). Their measure addCos for es-
timating the appropriateness of a substitute s as a
substitute for t in the context C = {c1, c2, . . .} is
defined as follows:2

addCos(s|t, C) = cos(s, t) +
∑
c∈C

cos(s, c).

They also propose a similar measure balAddCos,
which controls for the context size:

balAddCos(s|t, C) = |C|cos(s, t) +
∑
c∈C

cos(s, c).

3 Proposed Measure

We propose a new measure, called Probability-in-
Context (PIC), based on SGNS context vectors to
estimate the appropriateness of a lexical substitute.
Similar to balAddCos, the measure has two equally-
weighted, independent components measuring the
appropriateness of the substitute for both the target
and the context, each taking the form of a softmax:3

PIC(s|t, C) = P (s|t)× P (s|C)

P (s|t) =
1
Zt

exp
{
sT t
}

P (s|C) =
1
ZC

exp

{∑
c∈C

sT [Wc+ b]

}
2We abuse notation and allow s, t and c to refer to both the

lexical items and their corresponding vectors.
3Note that P (s|t) measures paradigmatic similarity of s and

t, while P (s|C) is syntagmatic fit to the context. For P (s|t),
Mikolov et al. (2013) show that cosine similarity of SGNS em-
beddings predicts paradigmatic similarity. P (s|C) can be inter-
preted as the PMI of s and C (Levy and Goldberg, 2014b).

The values Zt and ZC are normalizing constants
to make sure each distribution sums to one. This
measure has two free parameters, W and b, which
act as a linear transformation over the context vec-
tors. These parameters are estimated from the orig-
inal corpus, and are trained to maximize the pre-
diction of a target from only its syntactic contexts
(c.f. Section 4.4). Given this formulation, a natural
question is why not train the embeddings to opti-
mize the softmax directly? We choose to parameter-
ize the measure rather than the embeddings because
(i) SGNS embeddings are already popular and read-
ily available and (ii) it ensures the quality of embed-
dings remains constant across experimental settings.

To measure the importance of parameteriza-
tion, we also compare to a non-parameterized PIC
(nPIC), which only uses a softmax over the dot prod-
uct:

nPIC(s|t, C) = P (s|t)× Pn(s|C)

Pn(s|C) =
1
Zn

exp

{∑
c∈C

sT c

}
4 Experimental Setup

We compare our proposed measures to three base-
lines: OOC, the Out-of-Context cosine similarity
between the word and target (cos(s, t)), and the
addCos and balAddCos measures. It is important
to note that existing papers on Lexical Substitution
all contain subtle differences in experimental setup
(vocabulary coverage, candidate pooling, etc.). We
compare to our own re-implementation of the base-
lines, so our numbers differ slightly from those in
the literature.

4.1 Data sets
We evaluate on three lexical substitution data sets.

SE07: The data set used in the original SemEval
2007 shared task (McCarthy and Navigli, 2007) con-
sists of 201 words manually chosen to exhibit poly-
semy, with 10 sentences per target. For a given target
in a particular context, five annotators were asked to
propose up to 3 substitutes. As all our experiments
are unsupervised, we always evaluate over the entire
data set, rather than the original held-out test set.

Coinco: The Concepts-in-Context data set (Kre-
mer et al., 2014) is a large lexical substitution cor-
pus with proposed substitutes for nearly all content

1122

words in roughly 2,500 sentences from a mixture of
genres (newswire, emails, and fiction). Crowdsourc-
ing was used to obtain a minimum of 6 contextually-
appropriate substitutes for over 15k tokens.

TSWI2: The Turk bootstrap Word Sense Inven-
tory 2.0 (Biemann, 2012) is a crowdsourced lexical
substitution corpus focused on about 1,000 common
English nouns. The data set contains nearly 25,000
contextual uses of these nouns. Though the data set
was originally constructed to induce a word-sense
lexicon based on common substitution patterns, here
we only use it as a lexical substitution data set.

4.2 Task Evaluation

We compare models on two variations of the lexical
substitution task: candidate ranking and all-words
ranking. In the candidate ranking task, the model
is given a list of candidates and must select which
are most appropriate for the given target. We follow
prior work in pooling candidates from all substitu-
tions for a given lemma and POS over all contexts,
and measure performance using Generalized Aver-
age Precision (GAP). GAP is similar to Mean Aver-
age Precision, but weighted by the number of times
a substitute was given by annotators. See Thater et
al. (2010) for full details of the candidate ranking
task.

The second task is the much more difficult task
of all-words ranking. In this task, the model is not
provided any gold list of candidates, but must se-
lect possible substitutes from the entire vocabulary.4

We measure performance by (micro) mean Preci-
sion@1 and P@3: that is, of a system’s top one/three
guesses, the percentage also given by human annota-
tors. These evaluation metrics are similar to the best
and oot metrics reported in the literature, but we find
P@1 and P@3 easier to interpret and analyze.

4.3 Word and Context Vectors

We use the word and context vectors released by
Melamud et al. (2015b),5 which were previously
shown to perform strongly in lexical substitution
tasks. These embeddings were computed from a cor-

4All models are also hardcoded not to predict substitutes
with the same stem as the target, e.g. for the bright girl ex-
ample, models cannot predict brighter or brightest.

5http://www.cs.biu.ac.il/nlp/resources/
downloads/lexsub_embeddings

pus of (word, relation, context) tuples extracted from
ukWaC and processed using the dependency-based
word2vec model of Levy and Goldberg (2014a).
These embeddings contain 600d vectors for 173k
words and about 1M syntactic contexts.

4.4 Training Procedure

To train the W and b parameters, we extract to-
kens with syntactic contexts using the same corpus
(ukWaC), parser (Chen and Manning, 2014), and ex-
traction procedure used to generate the embeddings.
See (Melamud et al., 2015b) for complete details.
After extracting every token with its contexts, we
randomly sample 10% of the data to reduce compu-
tation time, leaving us with 190M tokens for training
W and b. We use sampled softmax to reduce train-
ing time (Jean et al., 2015), sampling 15 negative
candidates uniformly from the vocabulary, optimiz-
ing cross-entropy over just these 16 words per sam-
ple. We optimizeW and b in one epoch of stochastic
gradient descent (SGD) with a learning rate of 0.01,
momentum of 0.98, and a batch size of 2048. We
found all of these hyperparameters worked well ini-
tially, and did not tune them.

5 Results

Table 1 contains results for all measures across all
experimental settings.

The first observation we make is that the PIC mea-
sure performs best in all evaluations on all data
sets by a significant margin.6 In the GAP evalua-
tion, all measures perform substantially better than
the OOC baseline, and the nPIC measure performs
comparably to balAddCos. We note that context-
sensitive measures give the most improvement in
SE07, reflecting its greater emphasis on polysemy.

As we turn to the all-words ranking evaluations,
we observe that the absolute numbers are much
lower, reflecting the increased difficulty of the task.
We also see the that nPIC and PIC both improve
greatly over all baselines: The nPIC measure is a
relative 30% improvement over balAddCos in SE07
and Coinco, and the PIC measure is a relative 50%
improvement over balAddCos in 5 evaluations.

Since both measures have a clear improvement
over the baselines, especially in the more difficult

6Wilcoxon signed-rank test, p < 0.01

1123

Measure SE07 Coinco TWSI2
Candidate Ranking (GAP)

OOC 44.2 44.5 57.9
addCos 51.2 46.3 62.2
balAddCos 49.6 46.5 61.3
nPIC 51.3 46.4 61.8
PIC 52.4 48.3 62.8
All-Words Ranking (Mean Precision@1)
OOC 11.7 10.9 9.8
addCos 12.9 10.5 7.9
balAddCos 13.4 11.8 9.8
nPIC 17.3 16.3 11.1
PIC 19.7 18.2 13.7
All-Words Ranking (Mean Precision@3)
OOC 9.7 8.6 7.0
addCos 9.0 7.9 6.1
balAddCos 9.8 9.1 7.4
nPIC 13.1 12.1 7.9
PIC 14.8 13.8 10.1

Table 1: Lexical Substitution results for candidate ranking

(GAP) and all-words ranking tasks (P@1, P@3).

all-words task, we next strive to understand why.

5.1 Analysis

We first an few cherry and lemon-picked examples
to give intuitions about why our model performs bet-
ter. Table 2 contains the cherry example, where our
model performs better than prior work. While OOC
and balAddCos both suggest replacements with rea-
sonable semantics, but are all misspelled. nPIC and
PIC only pick words with the correct spellings, with
the exception of “realy.”

Table 3 shows the lemon example, where our
model performs worse. We notice that the unusual
“sea-change” item is prominent in the OOC and
balAddCos models, but has dropped from the rank-
ings in our models. From these and other examples,
we hypothesize the model is simply guessing more
frequent terms.

We consider a few experiments with this hypoth-
esis that the measures do better because they cap-
ture better unigram statistics than the baselines. Re-
cent literature found that the vector norm of SGNS
embeddings correlates strongly with word frequency
(Wilson and Schakel, 2015). We verified this for

ourselves, computing the Spearman’s rank correla-
tion between the corpus unigram frequency and the
vector length and found rho = 0.90, indicating the
two correlate very strongly. Since the dot prod-
uct is also the unnormalized cosine, it follows that
nPIC and PIC should depend on unigram frequency.

To verify that the nPIC and PIC measures are
indeed preferring more frequent substitutes, we
compare the single best predictions (P@1) of the
balAddCos and nPIC systems on all-words predic-
tion on Coinco. Roughly 42% of the predictions
made by the systems are identical, but of the remain-
ing items, 74% of predictions made by nPIC have
a higher corpus frequency than balAddCos (where
chance is 50%). We find balAddCos and PIC make
the same prediction 37% of the time, and PIC pre-
dicts a more frequent word in 83% of remaining
items. The results for SE07 and TWSI2 are similar.

This indicates that the unigram bias is even higher
for PIC than nPIC. To gain more insight, we manu-
ally inspect the learned parametersW and b. We find
that the W matrix is nearly diagonal, with the val-
ues along the diagonal normally distributed around
µ = 1.11 (σ = 0.02) and the rest of the ma-
trix normally distributed roughly around 0 (µ=2e-5,
σ=0.02). This is to say, the PIC model is approxi-
mately learning to exaggerate the magnitude of the
dot product, sT c. This suggests one could even re-
place our parameter W with a single scaling param-
eter, though we leave this for future work.

To inspect the bias b, we compute the inner prod-
uct of the b vector with the word embedding matrix,
to find each word’s a priori bias, and correlate it with
word frequencies. We find rho = 0.25, indicating
that b is also capturing unigram statistics.

Is it helpful in lexical substitution to prefer more
frequent substitutes? To test this, we pool all anno-
tator responses for all contexts in Coinco, and find
the number of times a substitute is given correlates
strongly with frequency (rho = 0.54).

These results emphasize the importance of incor-
porating unigram frequencies when attempting the
lexical substitution task (as with many other tasks
in NLP). Compared to cosine, the dot product in
nPIC stresses unigram frequency, and the parame-
ters W and b strengthen this tendency.

1124

OOC balAddCos nPIC PIC
You can sort of challenge them well, did you

really know the time when you said yes?
trully proably realy actually

actually trully truly truly
actaully acutally actually already
acutally actaully hardly barely
proably probaly definitely just

Table 2: Example where the PIC performs better in the All-Words Ranking task. The target word and correct answers are bolded.

OOC balAddCos nPIC PIC
As a general rule, point of view should not change during a scene.
sea-change alter reoccur re-occur

alter sea-change re-occur appear
shift shift prevail overstate

downshift downshift deviate differ
re-configure increase/decrease divulged disappear

Table 3: Example where the PIC performs worse the All-Words Ranking task. The target word and correct answers are bolded.

6 Conclusion

We have presented PIC, a simple new measure for
assessing the appropriateness of a substitute in a
particular context for the Lexical Substitution task.
The measure assesses the fit of the substitute both to
the target word and the sentence context. It signifi-
cantly outperforms comparable baselines from prior
work, and does not require any additional lexical re-
sources. An analysis indicates its performance im-
provements derive primarily from a tendency to lean
more strongly on unigram statistics than baselines.
In future work, our measure could be simplified by
implementing the bias as a single scaling parameter.

Acknowledgments

We would like to thank Karl Pichotta, Martin Reidl,
and the anonymous reviewers for their helpful com-
ments and suggestions. This research was supported
by the NSF grant IIS 1523637 We acknowledge the
Texas Advanced Computing Center for providing
grid resources that contributed to these results.

References
Chris Biemann. 2012. Turk bootstrap word sense in-

ventory 2.0: A large-scale resource for lexical sub-
stitution. In Proceedings of the Eighth International

Conference on Language Resources and Evaluation,
pages 4038–4042, Istanbul, Turkey, May. European
Language Resources Association.

Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 740–
750, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1162–1172, Cambridge,
MA, October. Association for Computational Linguis-
tics.

Katrin Erk and Sebastian Padó. 2008. A structured vec-
tor space model for word meaning in context. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 897–906,
Honolulu, Hawaii, October. Association for Computa-
tional Linguistics.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target
vocabulary for neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 1–10, Beijing, China, July. Association
for Computational Linguistics.

Kazuya Kawakami and Chris Dyer. 2015. Learning to

1125

Represent Words in Context with Multilingual Super-
vision. ArXiv e-prints, abs/1511.04623, November.

Gerhard Kremer, Katrin Erk, Sebastian Padó, and Stefan
Thater. 2014. What substitutes tell us - analysis of an
”all-words” lexical substitution corpus. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 540–549, Gothenburg, Sweden, April. Associa-
tion for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, pages 302–308, Baltimore, Maryland,
June. Association for Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014b. Neural word em-
bedding as implicit matrix factorization. In Advances
in Neural Information Processing Systems 27, pages
2177–2185. Curran Associates, Inc.

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In Pro-
ceedings of the Fourth International Workshop on Se-
mantic Evaluations, pages 48–53, Prague, Czech Re-
public, June. Association for Computational Linguis-
tics.

Diana McCarthy and Robert Navigli. 2009. The English
lexical substitution task. Language Resources and
Evaluation, 43(2):139–159. Special Issue on Com-
putational Semantic Analysis of Language: SemEval-
2007 and Beyond.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2015a. Modeling word meaning in context with sub-
stitute vectors. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 472–482, Denver, Colorado, May–
June. Association for Computational Linguistics.

Oren Melamud, Omer Levy, and Ido Dagan. 2015b. A
simple word embedding model for lexical substitution.
In Proceedings of the 1st Workshop on Vector Space
Modeling for Natural Language Processing, pages 1–
7, Denver, Colorado, June. Association for Computa-
tional Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. In Proceedings of International
Conference on Learning Representations.

György Szarvas, Chris Biemann, and Iryna Gurevych.
2013. Supervised all-words lexical substitution us-
ing delexicalized features. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 1131–1141.

Stefan Thater, Hagen Fürstenau, and Manfred Pinkal.
2010. Contextualizing semantic representations us-
ing syntactically enriched vector models. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 948–957, Uppsala,
Sweden, July. Association for Computational Linguis-
tics.

Tim Van de Cruys, Thierry Poibeau, and Anna Korho-
nen. 2011. Latent vector weighting for word meaning
in context. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 1012–1022, Edinburgh, Scotland, UK., July. As-
sociation for Computational Linguistics.

Benjamin J. Wilson and Adriaan M. J. Schakel. 2015.
Controlled experiments for word embeddings. ArXiv
e-prints, abs/1510.02675, October.

1126

Proceedings of NAACL-HLT 2016, pages 1127–1132,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bootstrapping Translation Detection and Sentence Extraction
from Comparable Corpora

Kriste Krstovski†,§ and David A. Smith‡
†Harvard-Smithsonian Center for Astrophysics, Cambridge, MA

§College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA
‡College of Computer and Information Science, Northeastern University, Boston, MA

kkrstovski@cfa.harvard.edu, dasmith@ccs.neu.edu

Abstract

Most work on extracting parallel text from
comparable corpora depends on linguistic re-
sources such as seed parallel documents or
translation dictionaries. This paper presents a
simple baseline approach for bootstrapping a
parallel collection. It starts by observing doc-
uments published on similar dates and the co-
occurrence of a small number of identical to-
kens across languages. It then uses fast, on-
line inference for a latent variable model to
represent multilingual documents in a shared
topic space where it can do efficient nearest-
neighbor search. Starting from the Giga-
word collections in English and Spanish, we
train a translation system that outperforms one
trained on the WMT’11 parallel training set.

1 Introduction

In statistical machine translation (SMT), the qual-
ity of the translation model is highly dependent on
the amount of parallel data used to build it. Paral-
lel data has usually been generated through the pro-
cess of human translation, which imposes signifi-
cant costs when building systems for new languages
and domains. To alleviate this problem, researchers
have considered comparable corpora—a collection
of multilingual documents that are only topically
aligned but not necessary translations of each other
(Fung and Cheung, 2004). While most previous ap-
proaches for mining comparable corpora heavily de-
pend on initializing the learning process with some
translation dictionaries or parallel text, we use mul-
tilingual topic models to detect document transla-
tion pairs and extract parallel sentences with only

minimum cross-language prior knowledge: the pub-
lication dates of articles and the tendency of some
vocabulary to overlap across languages. Processing
only four years of Gigaword news stories in English
and Spanish, we are able to outperform the WMT’11
baseline system trained on parallel News Commen-
tary corpus (Table 1).

2 Prior Work on Comparable Corpora

Most previous, if not all, approaches for mining
comparable corpora heavily depend on bilingual re-
sources, such as translation lexica, bitext, and/or a
pretrained baseline MT system. This paper, in con-
trast, investigates building MT systems from com-
parable corpora without such resources. In a widely
cited early paper, Munteanu and Marcu (2005) use a
bilingual dictionary and a collection of parallel sen-
tences to train IBM Model 1 and a maximum en-
tropy classifier to determine whether two sentences
are translations of each other. Tillmann and Xu
(2009) and Smith et al. (2010) detect parallel sen-
tences by training IBM Model 1 and maximum en-
tropy classifiers, respectively. In later work on de-
tecting sentence and phrase translation pairs, Cettolo
et al. (2010) and Hoang et al. (2014) use SMT sys-
tems to translate candidate documents; Quirk et al.
(2007) use parallel data to train a translation equiva-
lence model; and Ture and Lin (2012) use a trans-
lation lexicon to build a scoring function for par-
allel documents. More recently, Ling et al. (2013)
trained IBM Model 1 on bitext to detect translation-
ally equivalent phrase pairs within single microblog
posts. Abdul-Rauf and Schwenk (2009), Uszkoreit
et al. (2010), and Gahbiche-Braham et al. (2011),

1127

rather than trying to detect translated sentence pairs
directly, translate the entire source language side of
a comparable corpus into the target language with
a baseline SMT system and then search for corre-
sponding documents.

On the other hand, there exist approaches that
mine comparable corpora without any prior trans-
lation information or parallel data. Examples of this
approach are rarer, and we briefly mention two: En-
right and Kondrak (2007) use singleton words (ha-
pax legomena) to represent documents in a bilingual
collection for the task of detecting document trans-
lation pairs, and Krstovski and Smith (2011) con-
struct a vocabulary of overlapping words to repre-
sent documents in multilingual collections. The lat-
ter approach demonstrates high precision vs. recall
values on various language pairs from different lan-
guages and writing systems when detecting transla-
tion pairs on a document level such as Europarl ses-
sions. Recently proposed approaches, such as (Kle-
mentiev et al., 2012) use monolingual corpora to es-
timate phrase-based SMT parameters. Unlike our
paper, however, they do not demonstrate an end-to-
end SMT system trained without any parallel data.

Our approach differs from these and other previ-
ous approaches by not relying on any initial trans-
lation dictionary or any bitext to train a seed SMT
system. Therefore, the primary experimental com-
parison that we perform is between no bitext at all
and a system trained with some bitext.

3 Bootstrapping Approach

Our bootstrapping approach (Figure 1) is a two-
stage system that used the Overlapping Cosine
Distance (OCD) approach of Krstovski and Smith
(2011) as its first step. OCD outputs a ranked
list of candidate document pairs, which are then
fed through a sentence-alignment system (Moore,
2002). A polylingual topic model (PLTM) (Mimno
et al., 2009) is then trained on the aligned portions of
these documents. Using the trained model, we infer
topics on the whole comparable training set. Once
represented as points in the topic space, documents
are then compared for similarity using divergence
based metrics such as Hellinger (He) distance. Re-
sults from these comparisons create a single ranked
list of text translation pairs, which are on a sub docu-

Figure 1: The bilingual collection processing pipeline.

ment length level. From this single ranked list, using
thresholding, we again extract the top n candidate
translation pairs that are then fed to an aligner for
further refinement.

3.1 Discovering Document Translation Pairs

For a given comparable corpus, OCD assumes that
there is a set of words that exist in both languages
that could be used as features in order to discrimi-
nate between documents that are translations of each
other, documents that carry similar content, and doc-
uments that are not related. Firstly, for each lan-
guage in the collection a vocabulary is created which
consists of all word types seen in the corpora of that
language. Words found in both source (s) and tar-
get (t) languages are extracted and the overlapping
list of words are then used as dimensions for con-
structing a feature vector template. Documents in
both languages are then represented using the tem-
plate vector whose dimensions are the tf·idf val-
ues computed on the overlapping words which we
now consider as features. While the number of
overlapping words is dependent on the families of
the source and target languages and their orthogra-
phy, Krstovski and Smith (2011) showed that this
approach yields good results across language pairs
from different families and writing systems such
as English-Greek, English-Bulgarian and English-
Arabic where, as one would expect, most shared
words are numbers and named entities.

We compare these vector representations effi-
ciently using Cosine (Cos) distance and locality sen-
sitive hashing (Charikar, 2002). This results in a sin-
gle ranked list of all document pairs. Compared to
the traditional cross-language information retrieval
(CLIR) task where a set of document queries is
known in advance, there is no prior information on
the documents in the source language that may or
may not have translation documents in the target
language of the collection. Due to the length in-

1128

variance of Cos distance, the single ranked list may
contain document pairs with high similarity value
across all documents in the target language. This
issue in OCD is resolved by applying length and di-
versity filtering. Length filtering removes translation
pairs where the length of the target document t is
not within ±20% of the source document s length,
lf : 0.8 ≤ |s| / |t| ≤ 1.2 . For a given source doc-
ument, diversity filtering is done by allowing only
the top five ranked target document pairs to be con-
sidered in the single ranked list. Limiting the num-
ber of target documents for a given source document
may discard actual document translation pairs such
as in a comparable corpus of news stories where doc-
uments in the target language originate from large
number of news source. While it may restrict more
document translation pairs to be discovered, the di-
versity filtering, on the other hand prevents from
limiting the number of discovered similar and trans-
lation documents to be from the same topic and do-
main and thus introduces diversity on another, do-
main or topic based, level.

3.2 Representing Multilingual Collections with
Topics

Latent topic models are statistical models of text that
discover underlying hidden topics in a text collec-
tion. We use PLTM (Mimno et al., 2009), a mul-
tilingual variant of LDA, which assumes that doc-
ument tuples in multilingual parallel and compara-
ble corpora are drawn from the same tuple-specific
multinomial distribution over topics θ. For each doc-
ument in the tuple, PLTM assumes that words are
generated from a language L specific topic distribu-
tion over words βL. Using this generative model we
represent documents in multiple languages in a com-
mon topic space which allows us to perform similar-
ity comparisons across documents in different lan-
guages.

The original PLTM posterior inference is approx-
imated using collapsed Gibbs sampling (Mimno et
al., 2009). While more straightforward to imple-
ment, this inference approach requires iterating over
the multilingual collection multiple times to achieve
convergence. This incurs a computational cost that
could be significant for large collections such as Gi-
gaword. Moreover, detecting and retrieving docu-
ment translation pairs requires all-pairs comparison

across documents in both languages with a worst
case time complexity of O(N2) which is imprac-
tical for large comparable corpora. One solution
to this problem is to parallelize the brute-force ap-
proach through the MapReduce framework (Ture et
al., 2011; Ture and Lin, 2012) but this approach re-
quires special programming methods.

In order to use the PLTM on large collections and
avoid the bottleneck introduced by Gibbs sampling,
we use the online variational Bayes (VB) approach
originally developed by (Hoffman et al., 2010) for
LDA model to develop a fast, online PLTM model.
As in the regular VB approach, online VB approx-
imates the hidden parameters θ, z and β using the
free variational parameters: γ, φ and λ. Rather
than going over the whole collection of documents
to bring the variational parameters to a convergence
point, Krstovski and Smith (2013) perform updates
of the variational parameters γ and φL on docu-
ment batches and update the λL variational param-
eter as a weighted average of its stochastic gradi-
ent based approximation and its value on the pre-
vious batch. The approximation is done through
Expectation-Maximization (EM).

Unlike the usual metric spaces where two vec-
tors are compared using distance metrics such as
Euclidean (Eu) or Cos distance, in the probability
simplex similarity is computed using information-
theoretic measurements such as Kullback-Leibler,
Jensen-Shannon divergence and He distance. We
alleviate the O(N2) worst case time-complexity in
the probability simplex by utilizing approximate
nearest-neighbor (NN) search techniques proven in
the metric space. More specifically, we use the for-
mulaic similarity between He and Eu: He(p, q) ≡
Eu(x, y), when ∀i : i = 1, n of xi and yi, xi =

√
pi

and yi =
√
qi, and compute He distance using

Eu based, approximate NN computation approaches
such as k-d trees1 (Bentley, 1975).

4 Experiments and Results

We demonstrate the performance of the bootstrap-
ping approach on the task of extracting parallel sen-
tences to train a translation system. We evaluate MT
systems trained on extracted parallel sentences and

1We use k-d tree implementation in the ANN library (Mount
and Arya, 2010).

1129

compare their performance against MT systems cre-
ated using clean parallel collections. MT systems
were evaluated with the standard BLEU metric (Pa-
pineni et al., 2002) on two official WMT test sets
that cover different domains: News (WMT’11) and
Europarl (WMT’08). We trained the Moses SMT
system (Koehn et al., 2007) following the WMT
shared task guidelines for building a baseline system
with one of two parallel training collections from
WMT’11: English-Spanish News Commentary (v6)
and Europarl (v6). MT systems were trained us-
ing test-domain specific language models (LM) —
English News Commentary for News test and En-
glish Europarl for the Europarl test. Our compara-
ble corpus consists of news stories from the English
(LDC2011T07) and Spanish (LDC2011T12) Giga-
word collections.

We perform the following processing in each step
of the pipeline. We run OCD on days of news origi-
nating from multiple news agencies or more specifi-
cally on news stories originating from the same day
which we consider as the “minimal supervision” in
initiating the bootstrapping process. Since the OCD
approach generates a single list of ranked document
translation pairs, for the second stage of our pipeline
we consider the top n document translation pairs.
We define n to be all document translation pairs
whose Cos similarity is between the range of the
max (i.e. the top 1 scored document translation pair
in the single ranked list) and max

2 . Unlike previ-
ous thresholding based on absolute values (Ture et
al., 2011), this approach allows us to utilize thresh-
old values that are automatically adjusted to the dy-
namic range of the Cos distance of a particular cor-
pus. Sentences from the top n news stories are ex-
tracted and are further aligned. The output of the
aligner is then used as a training set for the PLTM
model. We represent each of the news stories using
the per story aligned sentences. Once trained, we
use the PLTM model to infer topics back on to the
news stories. We then again create a single ranked
list of translation news story pairs by computing di-
vergence based similarity using He distance (§3.2).
Keeping the top n ranked news story pairs, we ob-
tain a list of what we believe are parallel documents
which we then use to extract sentence pairs. Sen-
tences are finally processed through an aligner and
then used as the training corpus to our MT system.

Training Source Bitext Extr. Test Set
News Comm. (NC) 131k 0 23.75
Europarl (EP) 1,750k 0 23.91
Gigaword (GW) 0 926k 24.28*

NC+GW 131k 926k 24.92*

EP+GW 1,750k 926k 25.90*

Table 1: BLEU score values computed over the WMT’11
News test set with MT systems developed using extracted
and parallel sources of training data. * denotes statistical
significance level (p-value≤0.001) above NC.

The Gigaword collection contains news stories
generated from various agencies in different lan-
guages. On any given day, a news story in English
may or may not cover the same topic as one in a dif-
ferent language. To perform a fair evaluation with
the WMT’11 News test, we considered stories pub-
lished in non-overlapping years2: 2010, 2009, 2005
and 2004. Table 1 shows the performance compar-
ison, on the News test set (WMT’11), of the MT
system trained on extracted parallel sentences from
four years of Gigaword data (GW) with a MT system
trained on two WMT’11 baseline parallel collec-
tions: Europarl (EP) and News Commentary (NC).
While over 10 times bigger than NC, EP is out of do-
main and thus performs only slightly better. On the
News test set, parallel sentences automatically ex-
tracted from only four years of Gigaword data out-
perform systems trained on clean NC or EP bitext.

In order to determine statistically significant dif-
ferences between the results of different MT systems
we ran the randomization test (Smucker et al., 2007)
on the News test set with 10k iterations. In each it-
eration we performed permutations across the trans-
lation sentences obtained from the two MT systems
whose statistical difference in performance we eval-
uate.

Table 2 shows the performance comparison on the
Europarl test set (WMT’08) between the MT system
trained on the extracted parallel sentences and the
two MT baseline systems. On this test set, unsur-
prisingly, EP training performed very well.

Table 3 gives a summary of ablation experiments
that we performed across the two stages of our
bootstrapping approach. More specifically, we ex-

2We did not consider news stories from 2006-2008 due to a
known issue with diacritic marks in the Spanish collection.

1130

Training Source Bitext Extr. Test Set
News Comm. (NC) 131k 0 25.43
Europarl (EP) 1,750k 0 32.06
Gigaword (GW) 0 926k 23.88
NC+GW 131k 926k 25.61
EP+GW 1,750k 926k 31.59

Table 2: BLEU score values computed over the WMT’08
Europarl test set with MT systems developed using ex-
tracted and parallel sources of training data.

Pipeline
Configuration

Extr.
Test Set

News Europarl
OCD 684k 24.00‡ 23.84
OCD (dedup.) 469k 23.84 23.75
GW 926k 24.28*,† 23.88
GW (dedup.) 588k 24.20*,§ 24.67

Table 3: Summary of ablation experiments: BLEU score
values of MT systems trained on extracted bitext by OCD
alone and with PLTM reestimation along with the dedu-
plication (dedup.) effect. * denotes statistical significance
level (p-value≤0.001) above NC. ‡ denotes statistical sig-
nificance level (p-value≤0.05) above NC. † denotes sta-
tistical significance level (p-value≤0.001) above OCD.
§ denotes statistical significance level (p-value≤0.03)
above OCD.

plored using bitext extracted by OCD alone, with-
out PLTM reestimation, to train a MT system. Both
extracted bitext sets also contained many duplicate
sentence pairs. In this set of experiments we also
explored the effect of deduplicating them, i.e. going
over the extracted set of English-Spanish sentence
pairs and removing the duplicate ones. Bitext ex-
tracted by OCD alone without PLTM reestimation
performed only slightly worse on WMT’11. The
OCD-only data, however, only showed 70% over-
lap with OCD+PLTM (GW). Deduplicating the two
bitexts (dedup.) hurts OCD somewhat more than
OCD+PLTM. On the Europarl test set, however,
deduplicating OCD+PLTM bitext caused a signifi-
cant boost from 23.88 to 24.67, while causing slight
performance drop for OCD (cf. NC-trained 25.43).
These interactions of test domain, redundancy, and
model settings leave room for further studies of the
performance of our bootstrapping approach.

5 Conclusion

We introduced a bootstrapping approach for de-
tecting document translations and extracting paral-
lel sentences through latent topic models that are
trained with minimal prior knowledge and no lexical
resources. The proposed approach is able to extract
parallel sentences from comparable corpora to train
MT models that outperform a baseline model trained
on a parallel collection.

Acknowledgments

This work was supported in part by the Harvard-
Smithsonian CfA predoctoral fellowship, in part by
the Center for Intelligent Information Retrieval and
in part by NSF grant #IIS-0910884. Any opinions,
findings and conclusions or recommendations ex-
pressed in this material are those of the authors and
do not necessarily reflect those of the sponsor.

References

Sadaf Abdul-Rauf and Holger Schwenk. 2009. On
the use of comparable corpora to improve smt perfor-
mance. In EACL, pages 16–23.

Jon Louis Bentley. 1975. Multidimensional binary
search trees used for associative searching. CACM,
18(9):509–517.

Mauro Cettolo, Marcello Federico, and Nicola Bertoldi.
2010. Mining parallel fragments from comparable
texts. In IWSLT, pages 227–234.

Moses S. Charikar. 2002. Similarity estimation tech-
niques from rounding algorithms. In STOC, pages
308–388.

Jessica Enright and Grzegorz Kondrak. 2007. A
fast method for parallel document identification. In
NAACL/HLT, pages 29–32.

Pascale Fung and Percy Cheung. 2004. Mining very-
non-parallel corpora: Parallel sentence and lexicon ex-
traction via bootstrapping and em. In EMNLP, pages
57–63.

Souhir Gahbiche-Braham, Hélène Bonneau-Maynard,
and François Yvon. 2011. Two ways to use a noisy
parallel news corpus for improving statistical machine
translation. In the 4th Workshop on Building and Us-
ing Comparable Corpora: Comparable Corpora and
the Web, pages 44–51.

Cuong Hoang, Anh-Cuong Le, Phuong-Thai Nguyen,
Son Bao Pham, and Tu Bao Ho. 2014. An efficient

1131

framework for extracting parallel sentences from non-
parallel corpora. Fundamenta Informaticae - Com-
puting and Communication Technologies, 130(2):179–
199.

Matthew Hoffman, David Blei, and Francis Bach. 2010.
Online learning for latent Dirichlet allocation. In
NIPS, pages 856–864.

Alexandre Klementiev, Ann Irvine, Chris Callison-
Burch, and David Yarowsky. 2012. Toward statisti-
cal machine translation without parallel corpora. In
EACL, pages 130–140.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In ACL on
Interactive Poster and Demonstration Sessions, pages
177–180.

Kriste Krstovski and David A. Smith. 2011. A mini-
mally supervised approach for detecting and ranking
document translation pairs. In WMT, pages 207–216.

Kriste Krstovski and David Smith. 2013. Online polylin-
gual topic models for fast document translation detec-
tion. In WMT, pages 252–261.

Wang Ling, Guang Xiang, Chris Dyer, Alan Black, and
Isabel Trancoso. 2013. Microblogs as parallel cor-
pora. In ACL, pages 176–186.

David Mimno, Hanna Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In EMNLP, pages 880–889.

Robert C. Moore. 2002. Fast and accurate sentence
alignment of bilingual corpora. In AMTA, pages 135–
144.

David M. Mount and Sunil Arya, 2010. ANN: A Library
for Approximate Nearest Neighbor Searching. http:
//www.cs.umd.edu/˜mount/ANN.

Dragos Stefan Munteanu and Daniel Marcu. 2005. Im-
proving machine translation performance by exploit-
ing non-parallel corpora. Computational Linguistics,
31(4):477–504.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic evalu-
ation of machine translation. In ACL, pages 311–318.

Chris Quirk, Raghavendra Udupa U, and Arul Menezes.
2007. Generative models of noisy translations with ap-
plications to parallel fragment extraction. In MT Sum-
mit, pages 321–327.

Jason R. Smith, Chris Quirk, and Kristina Toutanova.
2010. Extracting parallel sentences from compa-
rable corpora using document level alignment. In
NAACL/HLT, pages 403–411.

Mark D. Smucker, James Allan, and Ben Carterette.
2007. A comparison of statistical significance tests
for information retrieval evaluation. In CIKM, pages
623–632.

Christoph Tillmann and Jian-ming Xu. 2009. A sim-
ple sentence-level extraction algorithm for comparable
data. In NAACL/HLT, Companion Volume: Short Pa-
pers, pages 93–96.

Ferhan Ture and Jimmy Lin. 2012. Why not grab a free
lunch?: mining large corpora for parallel sentences to
improve translation modeling. In NAACL/HLT, pages
626–630.

Ferhan Ture, Tamer Elsayed, and Jimmy Lin. 2011. No
free lunch: Brute force vs. locality-sensitive hashing
for cross-lingual pairwise similarity. In SIGIR, pages
943–952.

Jakob Uszkoreit, Jay M. Ponte, Ashok C. Popat, and
Moshe Dubiner. 2010. Large scale parallel document
mining for machine translation. In COLING, pages
1101–1109.

1132

Proceedings of NAACL-HLT 2016, pages 1133–1138,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Discriminative Reranking for Grammatical Error Correction with
Statistical Machine Translation

Tomoya Mizumoto
Tohoku University

tomoya-m@ecei.tohoku.ac.jp

Yuji Matsumoto
Nara Institute of Science and Technology

matsu@is.naist.jp

Abstract

Research on grammatical error correction has
received considerable attention. For dealing
with all types of errors, grammatical error cor-
rection methods that employ statistical ma-
chine translation (SMT) have been proposed
in recent years. An SMT system generates
candidates with scores for all candidates and
selects the sentence with the highest score as
the correction result. However, the 1-best re-
sult of an SMT system is not always the best
result. Thus, we propose a reranking approach
for grammatical error correction. The rerank-
ing approach is used to re-score N-best results
of the SMT and reorder the results. Our ex-
periments show that our reranking system us-
ing parts of speech and syntactic features im-
proves performance and achieves state-of-the-
art quality, with an F0.5 score of 40.0.

1 Introduction

Research on assisting second language learners has
received considerable attention, especially regarding
grammatical error correction of essays written by
English as a Second Language (ESL) learners. To
address all types of errors, grammatical error correc-
tion methods that use statistical machine translation
(SMT) have been proposed (Brockett et al., 2006;
Mizumoto et al., 2012; Buys and van der Merwe,
2013; Yuan and Felice, 2013; Felice et al., 2014;
Junczys-Dowmunt and Grundkiewicz, 2014). SMT-
based error correction systems have achieved rank-
ings first and third in the CoNLL2014 Shared Task
(Ng et al., 2014).

Figure 1: Flow of reranking.

SMT systems generate many candidates of trans-
lation. SMT systems generate scored candidates and
select a sentence having the highest score as the
translation result. However, the 1-best result of SMT
system is not always the best result because the scor-
ing is conducted only with local features. In other
words, N-best (N > 1) results may be better than the
1-best result.

Reranking approaches have been devised to solve
the scoring problem. Reranking is a method that
re-scores N-best candidates of SMT and reorders
the candidates by score. Figure 1 shows a flow of
reranking. First, N-best results are obtained by a
grammatical error correction system using SMT for
a learner sentence (A in Figure 1). A reranking sys-

1133

tem then re-scores the N-best results and reorders
them (B in Figure 1).

In this study, we apply a discriminative rerank-
ing method to the task of grammatical error cor-
rection. Syntactic information is not considered in
the phrase-based SMT. We show that using syntac-
tic features in the reranking system can improve er-
ror correction performance. Although reranking us-
ing only surface features (Shen et al., 2004) is not
effective for grammatical error correction, reranking
using syntactic features improves the F0.5 score.

2 Related Work for Reranking

Reranking approaches have been proposed for com-
mon SMT tasks (Shen et al., 2004; Carter and Monz,
2011; Li and Khudanpur, 2008; Och et al., 2004).
Shen et al. (2004) first used a perceptron-like algo-
rithm for reranking of common SMT tasks. How-
ever, they used only a few features.

Li and Khudanpur (2008) proposed a reranking
approach that uses a large-scale discriminative N-
gram language model for common SMT tasks. They
extended the reranking method for automatic speech
recognition (Roark et al., 2007) to SMT tasks. The
approach of Carter and Monz (2011) was similar to
that of Li and Khudanpur (2008), but they used addi-
tional syntactic features (e.g. part of speech (POS),
parse tree) for reranking of common SMT tasks.

The reranking approach has been used in gram-
matical error correction based on phrase-based SMT
(Felice et al., 2014). However, their method uses
only language model scores. In the reranking step,
the system can consider not only surface but also
syntactic features such as those in the approach of
Carter and Monz (2011). We use syntactic features
in our reranking system.

Heafield et al. (2009) proposed a system combi-
nation method for machine translation that is sim-
ilar to that of reranking. System combination is a
method that merges the outputs of multiple systems
to produce an output that is better than each individ-
ual system. Susanto et al. (2014) applied this system
combination to grammatical error correction. They
combined pipeline systems based on classification
approaches and SMT systems. Classifier-based sys-
tems use syntactic features as POS and dependency
for error correction. However, syntactic information

Table 1: Oracle score of grammatical error correction

N-best Precision Recall F0.5

1 43.9 24.5 37.9
10 79.1 36.7 64.3
50 89.5 43.1 73.6
100 92.3 45.3 76.4

is not considered in combining systems.

3 Why is Reranking Necessary?

Grammatical error correction using SMT has the
same problem as that of common SMT task: the 1-
best correction by the system is not always the best.
To prove this, we conducted a grammatical error cor-
rection experiment using SMT and calculated N-best
oracle scores. The oracle scores are calculated by
selecting the correction candidate with the highest
score from the N-best results for each sentence.

Table 1 shows oracle scores of a baseline gram-
matical error correction system using SMT1. Al-
thogh the F0.5 score of the 1-best output was 37.9,
the F0.5 of the 10-best oracle score was 64.3. The
higher the value of N-best, the higher is the oracle
score. This result reveals that the 1-best correction
by a grammatical error correction system using SMT
is not always the best.

Advantage of Reranking Two advantages exist
for using a reranking approach for grammatical error
correction. The first is that a reranking system can
use POS and syntactic features unlike phrase-based
SMT. With some errors, the relation between distant
words must be considered (e.g., article relation be-
tween a and dolls in the phrase a big Snoopy dolls).

The second advantage is that POS taggers and
parsers can analyze error-corrected candidates more
properly than they analyze erroneous sentences,
which enables more accurate features to be obtained.
Thus, the fact that taggers for N-best corrected re-
sults work much better than for learner original sen-
tences is promising.

4 Proposed Method

In this section, we explain our discriminative rerank-
ing method and features of reranking for grammati-

1See 5.1 for a baseline system

1134

Table 2: Features for reranking. Examples show features for the sentence I agree with this statement to a large extent. The features

excluding “Web dependency N-gram” are binary valued. “Web dependency N-gram” is unit interval [0,1] valued.

Feature name Examples
Word 2,3-gram I agree; I agree with; agree with; agree with this; this statement
POS 2,3,4,5-gram PRP VBP; PRP VBP IN; PRP VBP IN DT; PRP VBP IN DT NN
POS-function word 2,3,4,5-gram PRP VBP; PRP VBP with; PRP VBP with this; PRP VBP with this NN
Web dependency N-gram prep-agree-with-statment; det-a-extent

cal error correction.

4.1 Discriminative Reranking Method
In this study, we use a discriminative reranking algo-
rithm using perceptron which successfully exploits
syntactic features for N-best reranking for common
translation tasks (Carter and Monz, 2011). Figure 2
shows the standard perceptron algorithm for rerank-
ing. In this figure, T is the number of iterations for
perceptron learning and N is the number of learner
original sentences in the training corpus. In addition,
GEN(x) is the N-best list generated by a grammat-
ical error correction system using SMT for an input
sentence and ORACLE(xi) determines the best cor-
rection for each of the N-best lists according to the
F0.5 score. Moreover w is the weight vector for fea-
tures and ϕ is the feature vector for candidate sen-
tences. When selecting the sentence with the high-
est score from candidate sentences (line 5), if the
selected sentence matches oracle sentence, then the
algorithm proceeds to next sentence. Otherwise, the
weight vector is updated.

The disadvantage of perceptron is instability
when training data are not linearly separable. As a
solution to this problem, an averaged perceptron al-
gorithm was proposed (Freund and Schapire, 1999).
In this algorithm, weight vector wavg is defined as:

wavg =
1
T

T

∑
t=1

1
N

N

∑
i=1

wi
t (1)

To select the best correction from N-best candi-
dates, we use the following formula:

S(z) = βϕ0(z)+w ·ϕ(z) (2)

where ϕ0(z) is the score calculated by the SMT sys-
tem for each translation hypothesis. This score is
weighted by β . Using ϕ0(z) as a feature in the per-
ceptron algorithm is possible, but this may lead to

1: w← 0
2: for t = 1 to T do
3: for i = 1 to N do
4: yi← ORACLE(xi)
5: zi← argmaxx∈GEN(xi)ϕ(z) ·w
6: if zi ̸= yi then
7: w← w+ϕ(yi)−ϕ(zi)
8: end if
9: end for

10: end for
11: return w

Figure 2: Perceptron algorithm for ranking.

under-training (Sutton et al., 2006). We select the
value for β with the highest F0.5 score by changing
β from 0 to 100 in 0.1 increments on the develop-
ment data.

4.2 Features of Discriminative Reranking for
Grammatical Error Correction

In this study, we use the features used in Carter and
Monz (2011) as well as our new features of POS
and dependency. We use the features extracted from
the following sequences: POS tag , shallow parse
tag, and shallow parse tag plus POS tag sequences
(Carter and Monz, 2011). From these sequences,
features are extracted based on the following three
definitions:

1. (ti−2ti−1ti), (ti−1ti), (tiwi)

2. (ti−2ti−1wi)

3. (ti−2wi−2ti−1wi−1tiwi), (ti−2ti−1wi−1tiwi),
(tt−1wi−1tiwi), (ti−1tiwi)

Here, wi is a word at position i and ti is a tag (POS
or shallow parse tag) at position i.

Table 2 shows our new features. For the
“POS-function N-gram” feature, if words are con-

1135

Table 3: Experimental results. TP, FN, and FP denote true positive, false negative, and false positive, respectively.Asterisks indicate

that the difference between the baseline and reranking results is statistically significant (p < 0.01, bootstrap test).

Precision Recall F0.5 TP FN FP GLEU
Baseline

1 1-best result of SMT 43.9 24.5 37.9 598 1847 764 65.7
2 Reranking by N-gram LM 39.5 31.7 37.6 834 1797 1280 64.7
3 CAMB (CoNLL2014) 39.7 30.1 37.3 772 1793 1172 64.5
4 CUUI (CoNLL2014) 41.8 24.9 36.8 623 1881 868 64.8

Discriminative reranking
5 Word 2,3-gram 43.7 24.8 37.9 606 1834 781 65.7
6 Features of Carter (2011) 44.3 26.7 39.1 669 1837 842 65.8
7 Our features (Table 2) 45.8 26.6 40.0* 657 1813 778 66.1
8 All features (6+7) 44.4 27.1 39.4* 679 1827 851 65.8

tained in a stop word list, we use surface form, other-
wise we use POS tags. “Web dependency N-gram”
is feature used in Dahlmeier et al. (2012). We col-
lect log frequency counts for dependency N-grams
from a large dependency-parsed web corpus and
normalize all real-valued feature values to a unit in-
terval [0,1].

5 Experiments of Reranking

We conducted experiments on grammatical error
correction to observe the effect of discriminative
reranking and our syntactic features.

5.1 Experimental Settings

We used phrase-based SMT which many previous
studies used for grammatical error correction for a
baseline system. We used cicada 0.3.52 for the ma-
chine translation tool and KenLM3 as the language
modeling tool. We used ZMERT4 as the parameter
tuning tool and implemented the averaged percep-
tron for reranking.

The translation model was trained on the Lang-8
Learner Corpora v2.0. We extracted English es-
says that were written by ESL learners and cleaned
noise with the method proposed in (Mizumoto et
al., 2011). From the results, we obtained 1,069,127
sentence pairs. We used a 5-gram language model
built on the “Associated Press Worldstream English

2http://www2.nict.go.jp/univ-com/multi_
trans/cicada/

3https://kheafield.com/code/kenlm/
4http://cs.jhu.edu/˜ozaidan/zmert/

Service” from English Gigaword corpus and NU-
CLE 3.2 (Dahlmeier et al., 2013). We used these
two language models as separate feature functions
in the SMT system.

For training data of reranking, Lang-8 Learner
Corpora was split into 10 parts and each part was
corrected by a grammatical error correction system
trained on the other nine parts. We selected 10 as
N for N-best reranking. PukWaC corpus (Baroni et
al., 2009) was used for constructing our “Web de-
pendency N-gram” feature. We use Stanford Parser
3.2.05 as a dependency parser.

CoNLL-2013 test set were split into 700 sen-
tences for parameter tuning of SMT and 681 sen-
tences for tuning parameter beta. CoNLL-2014 test
set, 1,312 sentences were used for evaluation. We
used M2 Scorer as an evaluation tool (Dahlmeier
and Ng, 2012). This scorer calculates precision, re-
call, and F0.5 scores. We used F0.5 as a tuning metric.
In addition, we used GLEU (Napoles et al., 2015)
as evaluation metrics.

5.2 Experimental Results and Discussion

Table 3 shows the experimental results. We used
the 1-best result of the SMT correction system and
reranking by probability of the large N-gram lan-
guage model (Felice et al., 2014) as baseline sys-
tems. In addition, we compared the systems that are
ranked first (CAMB) and second (CUUI) (Felice et
al., 2014; Rozovskaya et al., 2014) in CoNLL2014

5http://nlp.stanford.edu/software/
lex-parser.shtml

1136

Shared Task.
The discriminative reranking system with our fea-

tures achieved the best F0.5 score. The difference be-
tween the results of baseline and reranking using our
features was statistically significant (p < 0.01). Be-
cause a large N-gram language model was adopted
for reranking, recall increased considerably but pre-
cision declined. This result is extremely similar to
that of the CAMB system, which is an SMT-based
error correction system that reranks by using a large
N-gram language model. When we compare the
reranking system using our features to CUUI, our
system is better in all metrics.

When we use the discriminative reranking with
our features, both precision and recall increase. In
the experimental results of system combination (Su-
santo et al., 2014), recall increases but precision de-
clines with respect to original SMT results. In ad-
dition, precision increases but recall declines with
respect to pipeline results.

The reranking that employed all features gener-
ated a lower F0.5 score than when only our features
were used. One reason for this is that the roles of
features overlap. These experiments revealed that
reranking is effective in grammatical error correc-
tion tasks and that POS and syntactic features are
important.

6 Conclusion

We proposed a reranking approach to grammati-
cal error correction using phrase-based SMT. Our
system achieved F0.5 score of 40.0 (an increase of
2.1 points from that of the baseline system) on the
CoNLL2014 Shared Task test set. We showed that
POS and dependency features are effective for the
reranking of grammatical error correction.

In future work, we will use the adaptive reg-
ularization of weight vectors (AROW) algorithm
(Crammer et al., 2009) instead of the averaged per-
ceptron. In addition, we will apply the pairwise ap-
proach to ranking (Herbrich et al., 1999) used in in-
formation retrieval to rerank of grammatical error
correction.

References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and

Eros Zanchetta. 2009. The WaCky Wide Web: A Col-

lection of Very Large Linguistically Processed Web-
Crawled Corpora. Language Resources and Evalua-
tion, 43(3):209–226.

Chris Brockett, William B. Dolan, and Michael Gamon.
2006. Correcting ESL Errors Using Phrasal SMT
Techniques. In Proceedings of COLING-ACL, pages
249–256.

Jan Buys and Brink van der Merwe. 2013. A Tree Trans-
ducer Model for Grammatical Error Correction. In
Proceedings of CoNLL Shared Task, pages 43–51.

Simon Carter and Christof Monz. 2011. Syntactic
Discriminative Language Model Rerankers for Sta-
tistical Machine Translation. Machine Translation,
25(4):317–339.

Koby Crammer, Alex Kulesza, and Mark Dredze. 2009.
Adaptive Regularization of Weight Vectors. In NIPS,
pages 414–422.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better Eval-
uation for Grammatical Error Correction. In Proceed-
ings of NAACL-HLT, pages 568–572.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng Ng.
2012. NUS at the HOO 2012 Shared Task. In Pro-
ceedings of BEA, pages 216–224.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of Learner
English: The NUS Corpus of Learner English. In Pro-
ceedings of BEA, pages 22–31.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of CoNLL Shared
Task, pages 15–24.

Yoav Freund and Robert E. Schapire. 1999. Large Mar-
gin Classification Using the Perceptron Algorithm.
Machine Learning, 37(3):277–296.

Kenneth Heafield, Greg Hanneman, and Alon Lavie.
2009. Machine translation system combination with
flexible word ordering. In Proceedings of Workshop
on SMT, pages 56–60.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer.
1999. Support Vector Learning for Ordinal Regres-
sion. In Proceedings of ICANN, pages 97–102.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU System in the CoNLL-2014 Shared
Task: Grammatical Error Correction by Data-Intensive
and Feature-Rich Statistical Machine Translation. In
Proceedings of CoNLL Shared Task, pages 25–33.

Zhifei Li and Sanjeev Khudanpur. 2008. Large-scale
Discriminative n-gram Language Models for Statisti-
cal Machine Translation. In Proceedings of AMTA.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata,
and Yuji Matsumoto. 2011. Mining Revision Log of

1137

Language Learning SNS for Automated Japanese Er-
ror Correction of Second Language Learners. In Pro-
ceedings of IJCNLP, pages 147–155.

Tomoya Mizumoto, Yuta Hayashibe, Mamoru Komachi,
Masaaki Nagata, and Yuji Matsumoto. 2012. The Ef-
fect of Learner Corpus Size in Grammatical Error Cor-
rection of ESL Writings. In Proceedings of COLING,
pages 863–872.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground Truth for Grammati-
cal Error Correction Metrics. In Proceedings of ACL-
IJCNLP, pages 588–593.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on Grammatical Error Correction. In Proceedings of
CoNLL Shared Task, pages 1–14.

Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur,
Anoop Sarkar, Kenji Yamada, Alex Fraser, Shankar
Kumar, Libin Shen, David Smith, Katherine Eng,
Viren Jain, Zhen Jin, and Dragomir Radev. 2004.
A Smorgasbord of Features for Statistical Machine
Translation. In Proceedings of HLT-NAACL, pages
161–168.

Brian Roark, Murat Saraclar, and Michael Collins. 2007.
Discriminative n-gram language modeling. Computer
Speech Language, 21(2):373–392.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons, Dan
Roth, and Nizar Habash. 2014. The Illinois-Columbia
System in the CoNLL-2014 Shared Task. In Proceed-
ings of CoNLL Shared Task, pages 34–42.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004.
Discriminative Reranking for Machine Translation. In
Proceedings of HLT-NAACL.

Raymond Hendy Susanto, Peter Phandi, and Hwee Tou
Ng. 2014. System combination for grammatical er-
ror correction. In Proceedings of EMNLP, pages 951–
962.

Charles Sutton, Michael Sindelar, and Andrew McCal-
lum. 2006. Reducing Weight Undertraining in Struc-
tured Discriminative Learning. In Proceedings of
HLT-NAACL, pages 89–95.

Zheng Yuan and Mariano Felice. 2013. Constrained
Grammatical Error Correction using Statistical Ma-
chine Translation. In Proceedings of CoNLL Shared
Task, pages 52–61.

1138

Proceedings of NAACL-HLT 2016, pages 1139–1144,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations

Kyle Booten and Marti A. Hearst
UC Berkeley

Berkeley, CA 94720
kbooten@berkeley.edu, hearst@berkeley.edu

Abstract

Quotations are kernels not just of wisdom but
also of beautiful and striking language. While
recent studies have characterized the stylistic
features of quotations, we characterize the or-
der of stylistic information within quotations.
Analyzing a corpus of two-sentence quota-
tions collected from the social network Tum-
blr, we explore the ways that both low-level
features and high-level features tend to occur
in either the first or second sentence. Through
analysis of examples, we interpret these ten-
dencies as manifestations of rhetorical pat-
terns. Results from a prediction task suggest
that stylistic patterns are more prominent in
quotations than in a comparison corpus.

1 Introduction

The ancient arts of rhetoric described ways of wield-
ing language to make it particularly persuasive or
memorable. Central in this endeavor—a predecessor
to modern linguistics (Dolven, 2013)—was the de-
scription of rhetorical “tropes” or “figures,” patterns
of language from the level of the phoneme (as in the
case of rhyme or alliteration) to higher-level syntac-
tic and even logical structures (Peacham, 1954). In
the figure of epistrophe, successive clauses end with
the same words. In pysma, the speaker (or writer)
launches a series of sharp and vehement questions;
this and other rhetorical figures describe language at
the level of discourse—that is, the relationship be-
tween linguistic elements across sentences.

Recent studies of quotations have described what
makes certain fragments of text more memorable
than others (Danescu-Niculescu-Mizil et al., 2012;

Guerini et al., 2015); this ongoing project can be
seen as a contemporary, empirical investigation of
the rhetorical arts. Inspired by the way that clas-
sical rhetoricians described complicated and high-
level linguistic patterns, the present study takes the
novel step of analyzing the way linguistic elements
are sequenced within quotations. After describing a
minimalistic set of stylistic features designed to cap-
ture common patterns in quotations, we demonstrate
that some features tend to occur in certain positions
within a quotation. We investigate whether quotes
are more predictable than other genres in a “Quote
Ordering Task” in which the goal is to distinguish
the correct version of a quotation from one whose
sentences have been reversed.

2 Related Work

2.1 Style of Memorable Language

Danescu-Niculescu-Mizil et al. (2012) used a vari-
ety of features to distinguish popular movie quota-
tions from unmemorable lines from the same movie.
By modeling word and part-of-speech sequences of
quotes and non-quotes, they found that quotations
tended to use less common words but that these
words were placed in more common syntactic pat-
terns. The researchers evocatively hint at some
“common syntactic scaffolding” that structures quo-
tations, and we build on this finding by characteriz-
ing these patterns. They also found that quotations
tend to contain linguistic features that make them
more “generalizable,” such as tendency toward in-
definite over definite articles.

Other researchers have attempted to analyze quo-
tations in ways that evoke the traditional figures

1139

of rhetoric. Exploring the same movie quotes cor-
pus as well as other corpora, Guerini et al. (2015)
found that memorable quotes were more euphonic,
with more instances of rhyme and alliteration than
their non-memorable counterparts. Kuznetsova et
al. (2013) developed several methods for quantify-
ing the creativity of word combinations like “dis-
advantageous peace,” and found that quotes were
more likely to contain creative combinations than
non-quotes. In terms of classical rhetoric, such un-
expected word combinations could embody figures
such as oxymoron.

2.2 High-Level Style

To investigate quotations in a new way, we are in-
spired by researchers who have analyzed text qual-
ity using what may be called “high-level” features
— i.e., moving beyond the specific lexical, syntac-
tic, or phonemic properties of sentences to explore
the overall structure of sentences or even the discur-
sive relationships between them.

Feng et al. (2012) engineered features from sen-
tences’ CFG parse trees to describe their overall
structure and classify them in terms of a priori
rhetorical categories, such as loose vs. periodic.
They found that these features were helpful for au-
thorship classification, and a later study used similar
features to predict the success of novels (Ashok et
al., 2013). Wible and Tsao (2010) and Gianfortoni et
al. (2011) designed n-gram based features to capture
local lexico-syntactic sequences within sentences.

Looking at the level of discourse, Louis and
Nenkova (2012) found that adjacent sentences “ex-
hibit stable patterns of syntactic co-occurence” —
i.e., certain types of sentences tend to follow certain
other types of sentences. Furthermore, they demon-
strated that sentences with similar communicative
purposes are syntactically similar, so syntax can be
taken as a proxy for communicative purpose. We
build on both of these observations.

3 Data-sets

Quotations 1. We gathered a data-set of quotations
from the social network Tumblr (Chang et al., 2014).
Like other social networks, Tumblr has become a
place where users frequently share quotations. In
fact, users have the option of using a “quote” data-

type, which provides separate text-entry fields for
the quotation and its source. We gathered quotes
via Tumblr’s API. Users sometimes use the “quote”
data-type to share messages that are not actually
quotations, most often brief personal musings. To
minimize such non-quotes in our corpus, we re-
tained only those quotes that users themselves had
described with the hashtag “#quote.” Since we were
interested primarily in discourse-level schemas of
quotations, we retained only quotations that were
exactly two sentences long. In the pre-processing
of this and other corpora we removed repeats within
and between corpora. We also removed quotations
containing quotations (i.e. reported speech), as they
were used in highly inconsistent ways in the Tumblr
data. (n=4237)

Quotations 2. A test set. We repeated the same
steps described above for Tumblr quotes gathered
with the “#quotation” hashtag. (n=1846)

Non-Quotes 1. As a comparison corpus, we gath-
ered two-sentence paragraphs from the Brown cor-
pus (Francis and Kucera, 1979). After the same pre-
processing steps, we were left with a collection of
such paragraphs. (n=1846)

Non-Quotes 2. Again mining the Brown Corpus,
we also gathered sequential pairs of sentences ran-
domly chosen from paragraphs longer than two sen-
tences. (n=1846)

4 Features

Take the following quotation from our data set, at-
tributed to Philip Roth: “You cannot observe peo-
ple through an ideology. Your ideology observes
for you.”1 In simple terms, this quotation is a nega-
tive statement (“cannot”) followed by a positive one.
Yet the opposite pattern can likewise appear in quo-
tations, as in this one attributed to William Blake:
“Great things are done when men and mountains
meet. This is not done by jostling in the street.”
Some quotations begin with questions; others end
with them. Some (like the one by Roth) begin with
a generic “you,” while others deploy this pronoun
in the second sentence. We describe each sentence
of each quotation in terms of the following features
meant to capture general lexical and syntactic pat-

1This quote also exemplifies antimetabole, in which words
in the first clause appear reversed in the second.

1140

Feature #S1 #S2 χ2 NQ2?

Highest χ2

It 60 175 56.3 x
But 18 93 50.7 x
it 266 436 41.2 x
And 33 93 28.6 x
They 7 44 26.8 x

Other Unigrams
People 21 2 15.7
? 120 66 15.7
simply 3 20 12.6
Do 38 13 12.3
Love 19 3 11.6
When 43 22 6.8
n’t 262 209 6.0
not 212 170 4.6
What 45 28 4.0

High-Level
CC + NP + VP . 11 68 41.1 x
WHNP + SQ + S + . 39 9 18.7
NP + VP + . 883 748 11.2
WHADVP + SQ + . 18 5 7.3
CC + PP + , + NP + VP + . 2 12 7.1
CC + SBAR + , + NP + VP + . 5 16 5.8
IN + NP + VP + . 2 10 5.3
S + , + S + CC + S + . 5 0 5.0
INTJ + , + NP + VP + . 7 1 4.5
CC + NP + ADVP + VP + . 2 9 4.5

Table 1: Features that preferentially occur in a sentence posi-

tion, sorted by χ2 value; dominant sentence position is in bold.

Highest χ2 represents the top five unigrams. Other Unigrams

represents other select examples. NQ2 is whether feature is also

ordered in the same way in the comparison corpus (“x” if this is

the case).

terns in quotations, regardless of what other more
classical rhetorical figures they may contain.

Unigrams. As a baseline feature, we note in
which sentence, 1 or 2, a unigram occurs.

High-Level Syntax. Feng et al. (2012) found that
the top level of syntactic parse trees (in the case
of Stanford PCFG Parser’s output, which we also
used (Klein and Manning, 2003), two levels beneath
ROOT) provided a useful feature for authorship iden-
tification. For instance, the sentence “Forgotten is
forgiven.” can be represented by the construction NP
+ VP + ., a noun phrase followed by a verb phrase
followed by punctuation. This feature, they argue,
provides an interpretable representation of the gen-
eral syntactic structure of a sentence. We directly
employ this feature.

General/Abstract Words. Through qualitative
analysis of our data, we noticed that many quota-
tion make pronouncements about nouns that might
be considered as generalizations or abstractions. For

instance: “Peace comes from within. Do not seek
it without.” In this case, the abstract noun “peace”
is the subject of the first sentence. To capture such
nouns, we first use the Stanford Dependency Parser
(Chen and Manning, 2014) to extract all words in
the head position of nominal subject dependencies
(excluding stopwords). Using WordNet, we check
whether the word’s most common synset is both
within the hyponym hierarchy of the synset “ab-
straction.n.06” and within a minimum distance (5)
of it2; if so, we consider this noun Abstract.3 The
most common such nouns in the Quotations 1 cor-
pus are not necessarily concept words like “peace”.
For instance, the word “men” appears in this list;
many quotations use the word to evoke a general-
ized (male) subject.4 We consider a nominal sub-
ject to be General if it is within a minimum distance
(6) of its root hypernym. As a feature, we observe
which (if either) sentence contains more such Ab-
stract or General nouns, normalized by the number
of nominal subject dependencies per sentence.

5 Differences Between Sentence Positions

5.1 Feature Comparison

Using balanced subsets of Quotations 1 and Non-
Quotes 1 (n=1846), we investigated which feature
was more likely to occur in either one of the two
sentences’ positions within a two-sentence text. For
each feature we used a χ2 test (α=.05) to compare
the number of times the feature occurred in first sen-
tences with the number of times the feature occurred
in second sentences. Table 1 presents features with
a statistically-significant tendency to appear in one
sentence or the other, limited to those features that
occur at least 5 times and are among the 300 most
common features of its type for that corpus. We sug-
gest that this type of analysis can shed light on some
of the overarching stylistic strategies of quotations:

Negative-to-Positive: As shown in Table 1, “n’t”

2We found this number by taking the whole number above
the mean of distances to the “abstraction.n.06” synset of a sam-
ple of nouns from Project Gutenberg text. For General words
we did the same but averaging distances to a noun’s root hyper-
nym.

3Kao and Jurafsky Kao and Jurafsky (2012) investigated ab-
stractions in poetry using a dictionary of abstract terms.

4“The mass of men lead lives of quiet desperation.” (H.D.
Thoreau)

1141

and “not” were ore likely to occur in the first sen-
tence position than the second sentence position.
This tendency suggests that quotations that begin
with a negative construction (like the earlier quote
by Roth) are more common than those ending with
one (like the earlier quote by Blake). Quotes that
contain “not” in the first sentence often use the first
sentence to make a negative claim about reality, fol-
lowed by a positive claim. Such quotations tend
to use repetitive structures or other types of paral-
lelism, such as antimetabole:

We are not human beings having a spiritual
experience. We are spiritual beings having a
human experience. (P. de Chardin)

In quotations, “Never” was also more likely to oc-
cur in the first sentence than the second sentence,
as was “Do”; studying examples revealed that “Do”
was very often followed by “not” or “n’t.” These sta-
tistical tendencies point to the ways that Negative-
to-Positive constructions also take the form of a neg-
ative commandment (e.g., “Never do X”) in the first
sentence, followed either by a positive command-
ment or an explanation of the reasoning for the com-
mandment:

Do not worry about your difficulties in mathe-
matics. I can assure you mine are still greater.
(A. Einstein)

Cross-Sentence Conjunction: For both Quota-
tions 1 and Non-Quotes 1, the high-level syntax fea-
ture with the highest χ2 value was CC + NP + VP +
.. This feature tended to occur in the second sen-
tence for both collections; likewise, for both sen-
tences “But” and “And” were more likely to appear
in the second sentence. This is not surprising, as co-
ordinating conjunctions mark the “conjunction” re-
lationship of cohesion (Halliday and Hasan, 2014)
(i.e. clauses that begin with conjunctions like “But”
implicitly refer back to a previous clause). How-
ever, for Quotations 1, this syntax pattern was over
six times as likely to occur in the second sentence,
compared to nearly two times for Non-Quotes 2, a
statistically-significant difference (χ2, p<.01). In
the Quotations 1 corpus, other high-level features
beginning with a coordinating conjunction were also
more likely to occur in sentence 1 than 2, including
CC + PP + , + NP + VP + . and CC + SBAR + , +
NP + VP + .. For instance:

Where a goat can go, a man can go. And
where a man can go, he can drag a gun.
(William Phillips)

Similarly, the high-level syntax pattern IN + NP +
VP + . was more likely to occur in the second sen-

tences of quotations than the first sentence; this pat-
tern also indicates cohesion:

One of the most adventurous things left us is
to go to bed. For no one can lay a hand on our
dreams. (E.V. Lucas)

We note that either of these quotations could be
rephrased as a single sentence, such as:

One of the most adventurous things left us is
to go to bed, for no one can lay a hand on our
dreams.

We speculate that there is something stylistically
powerful about such sentences in which the second
sentence begins with a coordinating or subordinating
conjunction. (Perhaps such quotations create a “dra-
matic” pause for the reader between the sentences.)

Questions: Table 1 shows that high-level syntax
patterns that indicate questions, WHNP + SQ + . and
WHADVP + SQ + . occurred more frequently in the
first sentence position than the second sentence po-
sition, as did the unigram “When.” Examining data
with the WHNP + SQ + . pattern revealed that many
of these quotations were actually jokes that take the
form of a question/answer dyad.

Sweeping Declarations: For Quotations 1, Ab-
stract Nouns and General Nouns as nominal subjects
were more prevalent in the first than in the second
sentence (χ2, p<.01). For Non-Quotes 1, General
Nouns were also significantly more likely to occur in
the first sentence (χ2, p<.01); this was not the case
for General Nouns. For quotations only, however,
“is” was more likely to occur in the first sentence;
likewise, the NP + VP + . pattern was also more
likely to occur in the first sentences of quotations.
Remaining open to other interpretations, we suggest
that these facts point to the tendency of quotations
to begin with sweeping declarations about “people,”
“life,” “truth,” and other broad concepts, kernels of
wisdom which the next sentence elaborates or illus-
trates:

Love is a trap. When it appears, we see only
its light, not its shadows. (P. Coelho)

“Simply”: Certain unigrams that tend to occur in
a particular sentence can also point to a very specific
rhetorical pattern. For instance, the word “simply”
was more likely to appear in the second sentence of a
quotation than the first. Quotations that manifest this
tendency often use this word to emphasize the sec-
ond sentence’s proposition with respect to the first
sentence:

1142

I used to dream about escaping my ordinary
life, but my life was never ordinary. I had sim-
ply failed to notice how extraordinary it was.
(R. Riggs)

6 Quote Order Task

We have analyzed stylistic patterns in quotations.
However, are these patterns characteristic of quo-
tations? To explore this question and to investigate
the overall robustness of our features, we define a
Quote Ordering Task, the goal of which is to dis-
tinguish between the original and reversed versions
of a quotation. This experiment is in the tradition
of tasks for evaluating models of text coherence,
such as the one used by Louis and Nenkova (2012).
During training, the classifier is shown either the
original or reversed version of a quote. At
test time, the classifier must identify each quote as
either original or reversed.

We conducted two experiments. First, using
Naive Bayes classifiers, we performed a 5-fold
cross-validation test on balanced subsets of three of
the four data-sets: Quotations 1, Non-Quotes 1, and
Non-Quotes 2 (n=1846 for each). Next we trained
on all of Quotations 1 (n=4237) and tested on a sep-
arate test set, Quotations 2 (n=1846). In this sec-
ond test, we trained on both the original and
reversed version of each quote. Table 2 reports
results for both tests under various conditions.

For these tests, “high-level features” refers to
high-level syntax (of the first sentence, of the sec-
ond sentence, and both in a sequence), which
if either sentence contains more Abstract Nouns,
and which if either sentence contain more Gen-
eral Nouns. Combined with unigrams (includ-
ing stopwords), these features offered slight but
not statistically-significant benefit for Non-Quotes
1 in the cross-validation test and slight but not
statistically-significant benefit in the second test
(testing on Quotations 2). It remains a challenge to
integrate such features for classification purposes.

In both tests, however, we were able to predict
the order of quotations upwards of 60% of the time.
This was not the case for the non-quotes corpora. In
cross-validation, the classifier achieved a high score
of 62.6% on Quotations 1, 56.0% on Non-Quotes 1,
and 52.9% on Non-Quotes 2. The mean top score for
Quotations 1 was higher than for the other two col-

Feature Set Q1 NQ1 NQ2 Q2
Unigrams 62.6 55.6 52.9 63.7
All High-Level Features 57.8 54.1 52.2 58.0
All Features 62.6 56.0 52.7 63.9

Table 2: Performance on Quote Ordering Task for Quotations

1, Non-Quotes 1, and Non-Quotes 2 (5-fold cross-validation,

baseline = 50%) and on a separate test set, Quotations 2 (base-

line = 52%).

lections (two-tailed t-test, p<.01). This is evidence
that quotations as a genre are more “formulaic” than
other textual sequences, their order more easily pre-
dicted. We suggest that adherence to latent stylis-
tic patterns is part of what makes quotations seem
quotable; as rhetoricians have observed since antiq-
uity, there is power in a pattern.

7 Conclusion

We have analyzed linguistic style not merely as the
presence of features but also the order of features
across sentences. In quotations, certain words as
well as categories of words and syntactic patterns
are more likely to appear in the first or second of
two-sentence texts. While other genres may also ex-
hibit regularities in the patterning of stylistic infor-
mation, our results indicate that this stylistic pattern-
ing may be especially strong in quotations. Further
research could compare a wider variety of genres.
Next steps include investigating the relationship to
rhetorical goals and running studies with users to de-
termine if they are consciously aware of these stylis-
tic elements when they post quotations. We would
like to a better understanding of why people chose
to share the quotations they do.

Analyzing discourse-level stylistic tendencies
may prove useful for various applications. Bender-
sky and Smith (2012) demonstrated a method for au-
tomatically culling quotations from textual corpora,
yet their method was limited to individual sentences.
Taking into account the stylistic schemas of quota-
tions could facilitate the gathering of multi-sentence
quotations and assist “creative text retrieval” (Veale,
2011) more generally. In the context of social media
platforms where quotes circulate, stylistic patterns
could also be used to recommend users stylistically-
similar quotations to read.

1143

References
Vikas Ganjigunte Ashok, Song Feng, and Yejin Choi.

2013. Success with style: Using writing style to pre-
dict the success of novels. Poetry, 580(9):70.

Michael Bendersky and David A Smith. 2012. A dictio-
nary of wisdom and wit: Learning to extract quotable
phrases. In Proceedings of the NAACL-HLT 2012
Workshop on Computational Linguistics for Litera-
ture, pages 69–77.

Yi Chang, Lei Tang, Yoshiyuki Inagaki, and Yan Liu.
2014. What is tumblr: A statistical overview and
comparison. ACM SIGKDD Explorations Newsletter,
16(1):21–29.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750.

Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon
Kleinberg, and Lillian Lee. 2012. You had me at
hello: How phrasing affects memorability. In Pro-
ceedings of the 50th Annual Meeting of the Association
for Computational Linguistics, pages 892–901. Asso-
ciation for Computational Linguistics.

Jeff Dolven. 2013. Style. In Roland Greene, editor, The
New Princeton Encyclopedia of Poetry and Poetics,
pages 1369–1370. Princeton University Press, Prince-
ton.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.
Characterizing stylistic elements in syntactic struc-
ture. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 1522–1533. Association for Computational Lin-
guistics.

W Nelson Francis and Henry Kucera. 1979. Brown cor-
pus manual. Brown University.

Philip Gianfortoni, David Adamson, and Carolyn P Rosé.
2011. Modeling of stylistic variation in social me-
dia with stretchy patterns. In Proceedings of the First
Workshop on Algorithms and Resources for Modelling
of Dialects and Language Varieties, pages 49–59. As-
sociation for Computational Linguistics.

Marco Guerini, Gözde Özbal, and Carlo Strapparava.
2015. Echoes of persuasion: The effect of euphony
in persuasive communication. In Human Language
Technologies: The 2015 Annual Conference of the
North American Chapter of the ACL (NAACL 2015),
pages 1483–1493.

Michael Alexander Kirkwood Halliday and Ruqaiya
Hasan. 2014. Cohesion in english. Routledge.

Justine Kao and Dan Jurafsky. 2012. A computational
analysis of style, affect, and imagery in contemporary
poetry. In NAACL Workshop on Computational Lin-
guistics for Literature, pages 8–17.

Dan Klein and Christopher D Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1, pages 423–430. Associ-
ation for Computational Linguistics.

Polina Kuznetsova, Jianfu Chen, and Yejin Choi. 2013.
Understanding and quantifying creativity in lexical
composition. In EMNLP, pages 1246–1258.

Annie Louis and Ani Nenkova. 2012. A coherence
model based on syntactic patterns. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1157–1168. Asso-
ciation for Computational Linguistics.

Henry Peacham. 1954. The garden of eloquence (1593):
a facsimile reproduction. Scholars’ Facsimiles &
Reprints.

Tony Veale. 2011. Creative language retrieval: A robust
hybrid of information retrieval and linguistic creativ-
ity. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies-Volume 1, pages 278–287. As-
sociation for Computational Linguistics.

David Wible and Nai-Lung Tsao. 2010. Stringnet as
a computational resource for discovering and investi-
gating linguistic constructions. In Proceedings of the
NAACL HLT workshop on extracting and using con-
structions in computational linguistics, pages 25–31.
Association for Computational Linguistics.

1144

Proceedings of NAACL-HLT 2016, pages 1145–1151,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Right-truncatable Neural Word Embeddings

Jun Suzuki and Masaaki Nagata
NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237 Japan
{suzuki.jun, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper proposes an incremental learning
strategy for neural word embedding methods,
such as SkipGrams and Global Vectors. Since
our method iteratively generates embedding
vectors one dimension at a time, obtained vec-
tors equip a unique property. Namely, any
right-truncated vector matches the solution of
the corresponding lower-dimensional embed-
ding. Therefore, a single embedding vector
can manage a wide range of dimensional re-
quirements imposed by many different uses
and applications.

1 Introduction

Word embedding vectors obtained from ‘neural
word embedding methods’, such as SkipGram,
continuous bag-of-words (CBoW) and the fam-
ily of vector log-bilinear (vLBL) models (Mnih
and Kavukcuoglu, 2013; Mikolov et al., 2013a;
Mikolov et al., 2013c; Mikolov et al., 2013b) have
now become an important fundamental resource for
tackling many natural language processing (NLP)
tasks. These NLP tasks include part-of-speech tag-
ging (Tsuboi, 2014; Ling et al., 2015), dependency
parsing (Chen and Manning, 2014; Dyer et al., 2015;
Alberti et al., 2015), semantic role labeling (Zhou
and Xu, 2015; Woodsend and Lapata, 2015), ma-
chine translation (Sutskever et al., 2014), sentiment
analysis (Kim et al., 2015), and question answer-
ing (Wang and Nyberg, 2015).

The main purpose of this paper is to further en-
hance the ‘usability’ of obtained embedding vectors
in actual use. To briefly explain our motivation, we
first introduce the following concept:

Definition 1 (D′-right-truncated vector1). Let w′

and w′′ be vectors, whose dimensions are D′ and
D′′, respectively. Namely, w′ = (w′1, . . . , w′D′)
and w′′ = (w′′1 , . . . , w′′D′′). Suppose w matches
the concatenation of w′ and w′′, that is, w =
(w′1, . . . , w′D′ , w

′′
1 , . . . , w

′′
D′′). Then, we define w′ as

a D′-right-truncated vector of w.

This paper focuses on the fact that the appropriate
dimension of embedding vectors strongly depends
on applications and uses, and is basically determined
based on the performance and memory space (or
calculation speed) trade-off. Indeed, the actual di-
mensions of the previous studies listed above are di-
verse; often around 50, and at most 1000. It is worth
noting here that each dimension of embedding vec-
tors obtained by conventional methods has no inter-
pretable meaning. Thus, we basically need to re-
train D′-dimensional embedding vectors even if we
already have a well-trained D-dimensional vector.
In addition, we cannot take full advantage of freely
available high-quality pre-trained embedding vec-
tors2 since their dimensions are already given and
fixed, i.e., D=300.

To reduce the additional computational cost of the
retraining, and to improve the ‘usability’ of embed-
ding vectors, we propose a framework for incremen-
tally determining embeddings one dimension at a
time from 1 to D. As a result, our method always
offers the relation that ‘any D′-right-truncated em-

1The term ‘right-truncated’ is originally taken from ‘right-
truncatable prime’

2i.e., ‘GoogleNews-vectors-negative300’ ob-
tained from https://code.google.com/archive/p/word2vec/,
and ‘glove.840B.300d’ obtained from
http://nlp.stanford.edu/projects/glove/

1145

bedding vector is the solution for D′-dimensional
embeddings of our method’. Therefore, in actual
use, we only need to construct a relatively higher-
dimensional embedding vector ‘just once’, i.e., D =
1000, and then truncate it to an appropriate dimen-
sion for the application.

2 Neural Word Embedding Methods

Let U and V be two sets of predefined vocabularies
of possible inputs and outputs. Let |U| and |V| be
the number of words in U and V , respectively. Then,
neural word embedding methods generally assign a
D-dimensional vector to each word in U and V . We
denote ei as representing the i-th input vector, and
oj for the j-th output vector. In the rest of this paper,
for convenience the notation ‘i’ is always used as the
index of input vectors, and ‘j’ as the index of output
vectors, where 1 ≤ i ≤ |U| and 1 ≤ j ≤ |V|.

We introduce E and O that represent lists of
all input and output vectors, respectively. Namely,
E = (e1, · · · , e|U|) and O = (o1, · · · ,o|V|). X
represents training data. Then, embedding vectors
are obtained by solving the following form of a min-
imization problem defined in each neural word em-
bedding method:

(Ê, Ô) = arg min
E,O

{
Ψ(E,O | X)

}
, (1)

where Ψ represents the objective function, and Ê
and Ô are lists of solution embedding vectors.

Hereafter, we use Ψ as an abbreviation of
Ψ(E,O | X). For example, the objective function Ψ
of ‘SkipGram with negative sampling (SGNS)’ can
be written in the following form3 :

Ψ =
∑
(i,j)

(
ci,jL(xi,j) + c′i,jL(−xi,j)

)
, (2)

where xi,j = ei · oj , and L(x) represents a logistic
loss function, namely, L(x) = log(1 + exp(−x)).
Moreover, ci,j and c′i,j represent co-occurrences of
the i-th input and j-th output words in training data
and negative sampling data, respectively.

Another example, the objective function Ψ of the
‘Global Vector (GloVe)’ can be written in the fol-

3We can obtain this form by a simple reformulation from the
original objective of SGNS (Mikolov et al., 2013b).

Input: X : training data, D: maximum number of di-
mensions (iterations)

1: E(0) ← ∅, O(0) ← ∅, and B(0) ← 0, d← 0
2: repeat
3: d← d+ 1
4: (q̄d, r̄d)←updateParams1D(X ,B(d−1)) // Eq. 5
5: E(d) ← appendVec(E(d−1), q̄d)
6: O(d) ← appendVec(O(d−1), r̄d)
7: B(d) ← updateBias(B(d−1), q̄d, r̄d) // Eq. 4
8: until d = D
Output: (E(D),O(D))

Figure 1: An algorithm for solving an iterative additional coor-

dinate optimization formulation for obtaining embedding vec-

tors.

lowing form (Pennington et al., 2014):

Ψ =
1
2

∑
(i,j)

βi,j(xi,j −mi,j)2, (3)

where mi,j and βi,j represent certain co-occurrence
and weighting factors of the i-th input and the j-
th output words, respectively. For example, βi,j =
min(1, (ci,j/xmax)γ), and mi,j = log(ci,j) are used
in (Pennington et al., 2014), where xmax and γ are
tunable hyper-parameters.

3 Incremental Construction of Embedding

This section explains our proposed method. The ba-
sic idea is very simple and clear: we convert the
minimization problem shown in Eq. 1 to a series
of minimization problems, each of whose individ-
ual problem determines one additional dimension of
each embedding vector. We refer to this formulation
of embedding problems as ‘ITerative Additional Co-
ordinate Optimization (ITACO)’ formulation. Fig. 1
shows our entire optimization algorithm for this for-
mulation.

3.1 Bias terms and optimization variables

Suppose d represents a discrete time step, where d ∈
{1, . . . , D}. Let B(d) be a matrix representation of
bias terms at the d-th time step, and b(d)

i,j denote the

(i, j)-factor of B(d). Then, we define that b(d)
i,j for all

(i, j) and d have the following recursive relation:

b
(d)
i,j =

d∑
k=1

ei,koj,k = b
(d−1)
i,j + ei,doj,d, (4)

1146

Figure 2: Relation of ei and q̄d used to represent input vectors

in this paper.

where we define b(0)
i,j = 0 for all (i, j). This rela-

tion implies that the solutions of former optimiza-
tions are used as bias terms in latter optimizations.

Next, we define q̄d and r̄d as the vector represen-
tations of the concatenation of all the input and out-
put parameters at the d-th step, respectively, that is,
q̄d = (e1,d, . . . , e|U|,d) and r̄d = (o1,d, . . . , o|V|,d).
Note that ei used in the former part of this paper
is a D-dimensional vector while q̄d and r̄d defined
here are |U|-dimensional and |V|-dimensional vec-
tors, respectively. Moreover, there are relations that
ei,d is the d-th factor of ei, and, at the same time, the
i-th factor of q̄d.

Fig. 2 illustrates the relation of ei and q̄d in this
paper. We omit to explicitly show the relation of oj
and r̄d, which are used to represent output vectors
because of the space reason. However obviously,
they also have the same relation as ei and q̄d.

3.2 Individual optimization problem

Then, we define the d-th optimization problem in
our ITACO formulation as follows:

(q̄d, r̄d) = arg min
q̄,r̄

{
Ψ̄
(
q̄, r̄|X ,B(d−1)

)}
subject to:

|V|
|U| ||q̄||p = ||r̄||p,

(5)

where || · ||p represents the Lp-norm. We generally
assume that p = {1, 2,∞}, and often select p = 2.
Note that q̄d is optimization parameters in the d-th
optimization problem while B(d−1) is the constant.
Fig. 3 illustrates the relation of B(d−1) and q̄d.

We assume that the objective function Ψ̄ takes an
identical form as used in one of the conventional
methods such as SGNS and GloVe as shown by

Figure 3: Relation of B(d−1) and q̄d, which are the constant

and optimization parameters in the d-th optimization problems,

respectively.

Eqs. 2 and 3. The difference appears in the vari-
ables; our ITACO formulation uses xi,j =eioj + bi,j
rather than xi,j =ei ·oj as described in Sec. 2.

3.3 Improving stability of embeddings

The additional norm constraint in Eq. 5 is introduced
to improve stability. The optimization problems of
neural word embedding methods including SGNS
and GloVe can be categorized as a bi-convex op-
timization problem (Gorski et al., 2007); they are
convex with respect to the parameters E if the pa-
rameters O are assumed to be constants, and vice
versa. One well-known drawback of unconstrained
bi-convex optimization is that the optimization pa-
rameters can possibly diverge to ±∞ (See Exam-
ple 4.3 in (Gorski et al., 2007)). This is because the
objective function only cares about the inner prod-
uct value of two vectors. Therefore, each parameter
can easily have a much larger value, i.e., o1 = 109,
if e1 is smaller and approaches a zero value i.e.,
e1 = 10−10. This is mainly caused by inconsistent
scale problem. Thus, our norm constraint in Eq. 5
can eliminate this problem by maintaining the scale
of q̄ and r̄ at the same level.

3.4 Optimization algorithm

To solve Eq. 5, we employ the idea of the ‘Alternat-
ing Convex Optimization (ACO)’ algorithm (Gorski
et al., 2007). ACO and its variants have been widely
developed in the context of (non-negative) matrix
factorization, i.e., (Kim et al., 2014), and are empir-
ically known to be an efficient method in practice.
The main idea of ACO is that it iteratively and al-

1147

ternatively updates one parameter set, i.e., q̄, while
the other distinct parameter set is fixed, i.e., r̄. In
our case, ACO solves the following two optimiza-
tion problems iteratively and alternately:

q̄d = arg min
q̄

{
Ψ̄(q̄, r̄ | X ,B(d−1))

}
(6)

r̄d = arg min
r̄

{
Ψ̄(q̄, r̄ | X ,B(d−1))

}
. (7)

There are at least two advantages of using ACO; (1)
Eqs. 6 and 7 both become convex optimization prob-
lems. Therefore, the global optimum solution can be
obtained when ∂eiΨ̄ = 0 for all i and ∂oj Ψ̄ = 0 for
all j, respectively. (2) ACO guarantees to converge
to a stationary point (one of the local minima)4.

For example, by a simple reformulation of ∂eiΨ̄=
0, we obtain the closed form solution of Eq. 6 with
the GloVe objective, that is,

ei =

∑
j βi,j(mi,j − bi,j)oj∑

j βi,j(oj)2
∀i. (8)

Similarly, the closed form solution of Eq. 7 is:

oj =
∑

i βi,j(mi,j − bi,j)ei∑
i βi,j(ei)2

∀j. (9)

Thus, we can solve Eqs. 6 and 7 without performing
iterative estimation. Next, we obtain the following
equation by a simple reformulation of ∂eiΨ̄ = 0 for
the SGNS objective:∑

j

ci,joj =
∑
j

(ci,j + c′i,j)σ(eioj + bi,j)oj , (10)

where σ(x) represents a sigmoid function, that is,
σ(x) = 1

1+exp(−x) . Similarly, we also obtain the
following form of the equation for Eq. 7:∑

i

ci,jei =
∑
i

(ci,j + c′i,j)σ(eioj + bi,j)ei. (11)

These equations are efficiently solvable by a sim-
ple binary search procedure since each equation only
has a single parameter, that is, ei or oj ,

During the optimization, there is no guarantee that
the constraint |V||U| ||q̄||p = ||r̄||p always holds. Fortu-
nately, the following transformations always satisfy

4We somehow prevent the divergence of optimization pa-
rameters (Gorski et al., 2007)

Input: X : training data, B: matrix form of bias terms,
ε: constant for convergence check

1: q̄← 1, and r̄← 0
2: repeat
3: r̄← updateIVec1D(r̄ | q̄,B) // Eq. 11 or 9
4: (q̄, r̄)← scaleVec(q̄, r̄) // Eq. 12
5: q̄← updateOVec1D(q̄ | r̄,B) // Eq. 10 or 8
6: (q̄, r̄)← scaleVec(q̄, r̄) // Eq. 12
7: until ConvergenceCheck(ε)
Output: (q̄, r̄)

Figure 4: Procedure of updateParams1D in Fig. 1 using the

ACO-based algorithm.

this norm constraint:

ẽi =
|U|
|V|

ei
||q̄||p

(|V|
|U| ||q̄||p||r̄||p

) 1
2 ∀i

õj =
oj
||r̄||p

(|V|
|U| ||q̄||p||r̄||p

) 1
2 ∀j,

(12)

which also maintain ẽiõj = eioj , and the objective
value. Thus, we can safely apply them at any time
during the optimization.

Finally, Fig. 4 shows the optimization procedure
when using the ACO framework.

4 Experiments

As in previously reported neural word embedding
papers, our training data was taken from a Wikipedia
dump (Aug. 2014). We used hyperwords tool5

for our data preparation (Levy et al., 2015).
We compared our method, ITACO, with the

widely used conventional methods, SGNS and
GloVe. We used the word2vec implementa-
tion6 to obtain word embeddings of SGNS, and
glove implementation7 for GloVe. Many tunable
hyper-parameters were selected based on the rec-
ommended default values of each implementation,
or suggestion explained in (Levy et al., 2015). For
ITACO, we selected the Glove objective to solve
Eqs. 6 and 7 since it requires a lower calculation cost
than the SGNS objective.

We prepared three types of linguistic benchmark
tasks, namely word similarity estimation (Similar-
ity), word analogy estimation (Analogy), and sen-
tence completion (SentComp) tasks. We gathered

5https://bitbucket.org/omerlevy/hyperwords
6https://code.google.com/p/word2vec/ (We made a modifi-

cation to save the context vector as well as the word vector.)
7http://nlp.stanford.edu/projects/glove/

1148

Analogy
Methods D=10 50 100 300 500 1000

ITACO (trunc) ∗2.6 38.0 51.5 63.5 65.4 ∗65.6
SGNS (trunc) 0.0 11.8 34.6 57.4 61.9 63.2
GloVe (trunc) 0.1 20.1 42.3 60.7 63.2 ∗65.6
SGNS (retrain) 1.7 37.7 51.8 62.3 64.0 –
GloVe (retrain) ∗2.6 ∗42.6 ∗57.0 ∗65.6 ∗66.4 –

Similarity
Methods D=10 50 100 300 500 1000

ITACO (trunc) 41.6 55.2 58.5 61.4 62.2 62.9
SGNS (trunc) 29.0 46.1 52.5 60.7 61.8 ∗64.5
GloVe (trunc) 29.3 46.2 50.6 56.8 58.5 59.9
SGNS (retrain) ∗46.4 ∗58.2 ∗61.3 ∗63.9 ∗64.2 –
GloVe (retrain) 38.7 51.4 54.2 56.8 58.1 –

SentComp
Methods D=10 50 100 300 500 1000

ITACO (trunc) ∗29.2 ∗32.3 32.1 ∗34.3 ∗35.4 ∗36.6
SGNS (trunc) 24.2 26.2 29.9 32.1 32.3 36.1
GloVe (trunc) 22.8 24.3 26.7 26.7 28.2 27.7
SGNS (retrain) 24.8 29.7 ∗33.0 32.7 33.9 –
GloVe (retrain) 26.3 27.3 27.1 28.1 28.1 –

Table 1: Results of right-truncated embedding vectors (trunc),

and standard embedding vectors (retrain). ‘∗’ represents the

best results in the corresponding column.

nine datasets for Similarity (Rubenstein and Goode-
nough, 1965; Miller and Charles, 1991; Agirre et al.,
2009; Agirre et al., 2009; Bruni et al., 2014; Radin-
sky et al., 2011; Huang et al., 2012; Luong et al.,
2013; Hill et al., 2014), three for Analogy (Mikolov
et al., 2013a; Mikolov et al., 2013c) , and one for
SentComp (Mikolov et al., 2013a).

Table 1 shows all the results of our experiments8.
The rows labeled ‘(trunc)’ show the performance of
D-right-truncated embedding vectors, whose origi-
nal vector of dimension is D = 1000. Thus, they
were obtained from a single set of embedding vec-
tors with D= 1000 for each corresponding method.
Next, the rows labeled ‘(retrain)’ show the perfor-
mance provided by SGNS or GloVe that were in-
dependently constructed with using a standard set-
ting and corresponding D. Note that the results of
‘ITACO (retrain)’ are identical to those of ‘ITACO
(trunc)’. Moreover, ‘GloVe (trunc)’ and ‘GloVe (re-
train)’ in D = 1000 are equivalent, as are ‘SGNS
(trunc)’ and ‘SGNS (retrain)’. Thus, these results

8Results for SGNS and GloVe are the average performance
of ten runs as suggested in (Suzuki and Nagata, 2015)

were omitted from the table.
First, comparing ‘(retrain)’ and ‘(trunc)’ in SGNS

and GloVe, our experimental results first explicitly
revealed that SGNS and GloVe with the simple trun-
cation approach ‘(trunc)’ cannot provide effective
lower-dimensional embedding vectors. This obser-
vation strongly supports the significance of exis-
tence of our proposed method, ITACO.

Second, in most cases ITACO successfully pro-
vided almost the same performance level as the best
SGNS and GloVe (retrain) results. We emphasize
that ITACO constructed embedding vectors ‘just
once’, while SGNS and GloVe required us to retrain
embedding vectors in the corresponding times. In
addition, single run of ITACO for D = 1000 took
approximately 12,000 seconds in our machine envi-
ronment, which was almost equivalent to run 4 itera-
tions of SGNS and 8 iterations of GloVe. The results
of SGNS and GloVe in Table 1 were obtained by
10 iterations and 20 iterations, respectively, which
are one of the standard settings to run SGNS and
GloVe9. This fact verified that ITACO can run effi-
ciently as in the same level as SGNS and GloVe.

5 Conclusion

This paper proposed a method for generating in-
teresting right-truncatable word embedding vectors.
Our experiments revealed that the embedding vec-
tors obtained with our method, ITACO, in any lower
dimensions work as well as those obtained by SGNS
and Glove. In addition, ITACO can also be a good
alternative of SGNS and GloVe in terms of the exe-
cution speed of a single run. Now, we are free from
retraining different dimensions of embedding vec-
tors by using ITACO. Our method significantly re-
duces the total calculation cost and storage, which
improves the ‘usability’ of embedding vectors10.

Acknowledgment

We thank three anonymous reviewers for their help-
ful comments.

9The performance of 4 iterations of SGNS and 8 iterations
of GloVe were much lower than those of 10 iterations and 20
iterations of SGNS and GloVe shown in Table 1, respectively.

10The right-truncatable embedding vectors used in our exper-
iments will be available in author’s homepage

1149

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
Study on Similarity and Relatedness Using Distribu-
tional and WordNet-based Approaches. In Proceed-
ings of Human Language Technologies: The 2009 An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics, NAACL
’09, pages 19–27, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved Transition-Based Parsing
and Tagging with Neural Networks. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 1354–1359, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal Distributional Semantics. J. Artif. Int.
Res., 49(1):1–47, January.

Danqi Chen and Christopher Manning. 2014. A Fast and
Accurate Dependency Parser using Neural Networks.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 740–750, Doha, Qatar, October. Association for
Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 334–343, Beijing, China, July. Association for
Computational Linguistics.

Yoav Goldberg and Omer Levy. 2014. word2vec Ex-
plained: Deriving Mikolov et al.’s Negative-sampling
Word-embedding Method. CoRR, abs/1402.3722.

Jochen Gorski, Frank Pfeuffer, and Kathrin Klamroth.
2007. Biconvex Sets and Optimization with Biconvex
Functions: a Survey and Extensions. Math. Meth. of
OR, 66(3):373–407.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
SimLex-999: Evaluating Semantic Models with (Gen-
uine) Similarity Estimation. ArXiv e-prints, August.

Eric H. Huang, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2012. Improving Word Represen-
tations via Global Context and Multiple Word Proto-
types. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long
Papers - Volume 1, pages 873–882. Association for
Computational Linguistics.

Jingu Kim, Yunlong He, and Haesun Park. 2014. Al-
gorithms for Nonnegative Matrix and Tensor Factor-
izations: a Unified View Based on Block Coordinate
Descent Framework. Journal of Global Optimization,
58(2):285–319.

Jonghoon Kim, Francois Rousseau, and Michalis Vazir-
giannis. 2015. Convolutional Sentence Kernel from
Word Embeddings for Short Text Categorization. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 775–
780, Lisbon, Portugal, September. Association for
Computational Linguistics.

Omer Levy and Yoav Goldberg. 2014. Neural
Word Embedding as Implicit Matrix Factorization.
In Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
2177–2185. Curran Associates, Inc.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015.
Improving Distributional Similarity with Lessons
Learned from Word Embeddings. Transactions of the
Association for Computational Linguistics, 3.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso,
Ramon Fermandez, Silvio Amir, Luis Marujo, and
Tiago Luis. 2015. Finding Function in Form: Compo-
sitional Character Models for Open Vocabulary Word
Representation. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1520–1530, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Thang Luong, Richard Socher, and Christopher Manning.
2013. Better Word Representations with Recursive
Neural Networks for Morphology. In Proceedings of
the Seventeenth Conference on Computational Natural
Language Learning, pages 104–113, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed Representa-
tions of Words and Phrases and their Compositionality.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 746–751, Atlanta, Georgia,
June. Association for Computational Linguistics.

1150

George A. Miller and Walter G. Charles. 1991. Contex-
tual Correlates of Semantic Similarity. Language &
Cognitive Processes, 6(1):1–28.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
Word Embeddings Efficiently With Noise-contrastive
Estimation. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 26,
pages 2265–2273. Curran Associates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Represqentation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar,
October. Association for Computational Linguistics.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich,
and Shaul Markovitch. 2011. A Word at a Time:
Computing Word Relatedness Using Temporal Se-
mantic Analysis. In Proceedings of the 20th Inter-
national Conference on World Wide Web, WWW ’11,
pages 337–346, New York, NY, USA. ACM.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual Correlates of Synonymy. Commun. ACM,
8(10):627–633, October.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Jun Suzuki and Masaaki Nagata. 2015. A Unified Learn-
ing Framework of Skip-Grams and Global Vectors. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 186–191,
Beijing, China, July. Association for Computational
Linguistics.

Yuta Tsuboi. 2014. Neural Networks Leverage Corpus-
wide Information for Part-of-speech Tagging. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
938–950, Doha, Qatar, October. Association for Com-
putational Linguistics.

Di Wang and Eric Nyberg. 2015. A Long Short-
Term Memory Model for Answer Sentence Selection
in Question Answering. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Pa-
pers), pages 707–712, Beijing, China, July. Associa-
tion for Computational Linguistics.

Kristian Woodsend and Mirella Lapata. 2015. Dis-
tributed Representations for Unsupervised Semantic

Role Labeling. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2482–2491, Lisbon, Portugal, September.
Association for Computational Linguistics.

Jie Zhou and Wei Xu. 2015. End-to-end Learning of
Semantic Role Labeling using Recurrent Neural Net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1127–1137, Beijing, China, July. Association
for Computational Linguistics.

Geoffrey Zweig and Christopher J.C. Burges. 2011. The
microsoft research sentence completion challenge.
Technical Report MSR-TR-2011-129, Microsoft Re-
search, December.

1151

Proceedings of NAACL-HLT 2016, pages 1152–1157,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

MAWPS: A Math Word Problem Repository

Rik Koncel-Kedziorski*1, Subhro Roy*2, Aida Amini1,
Nate Kushman3, and Hannaneh Hajishirzi1

1University of Washington, 2University of Illinois Urbana Champaign, 3Microsoft Research
{kedzior, amini91, hannaneh}@uw.edu, sroy9@illinois.edu, nkushman@microsoft.com

Abstract

Recent work across several AI subdisciplines
has focused on automatically solving math
word problems. In this paper we introduce
MAWPS, an online repository of Math Word
Problems, to provide a unified testbed to eval-
uate different algorithms. MAWPS allows for
the automatic construction of datasets with
particular characteristics, providing tools for
tuning the lexical and template overlap of a
dataset as well as for filtering ungrammatical
problems from web-sourced corpora. The on-
line nature of this repository facilitates easy
community contribution. At present, we have
amassed 3,320 problems, including the full
datasets used in several prominent works.

1 Introduction

Automatically solving math word problems has
proved a difficult and interesting challenge for the
AI research community (Feigenbaum et al., 1995).
Math word problems serve as a testbed for algo-
rithms that build a precise understanding of what is
being asserted in text. Consider the following:

Rachel bought two coloring books. One had
23 pictures and the other had 32. After one
week she had colored 44 of the pictures. How
many pictures does she still have to color?

To solve such a problem, an algorithm must model
implicit and explicit quantities in the text and their
relationships through mathematical operations.

Many researchers have taken on this challenge
to design data-driven approaches to solve different

* denotes equal contribution

types of math word problems (Hosseini et al., 2014;
Kushman et al., 2014; Roy and Roth, 2015; Zhou et
al., 2015; Koncel-Kedziorski et al., 2015). Treat-
ments of this task range from template-matching
to narrative-building, and methods including integer
linear programming, factorization, and more appear
in the literature. As a result of the variety of ap-
proaches, several datasets have emerged. The va-
riety of math word problems in these datasets is
such that researchers have already begun specializ-
ing in the types of problems that their systems are
able to successfully solve. Additionally, in some
datasets one may find significant repetition of com-
mon words, a small set of equation templates used
again and again, or problem texts which map to
highly degraded grammatical structures. Therefore,
designing general algorithms that can address dif-
ferent problem types while still being robust to the
variations across datasets has remained a challenge.

In response to the burgeoning interest in this task,
we present MAWPS (MAth Word ProblemS, pro-
nounced mops), a framework for building an on-
line repository of math word problems. Our frame-
work includes a collection of varying types of math
word problems, their answers, and equation tem-
plates, as well as interfaces which allow researchers
to dynamically update and add more problem types.
Additionally, in light of the problematic features of
the current datasets cited above, our framework pro-
vides the possibility for customizing a dataset with
regard to considerations such as lexical and template
overlap or grammaticality, allowing researchers to
choose how many of the difficulties of open do-
main web-sourced word problem texts they want

1152

to tackle. We report the important characteristics
of the current available data as well as the perfor-
mance of some state-of-the-art systems on various
subsets of the data. MAWPS is located at http:
//lang.ee.washington.edu/MAWPS.

2 Related Work
Recently, automatically solving math word prob-
lems has attracted several researchers. Specific
topics include number word problems (Shi et al.,
2015), logic puzzle problems (Mitra and Baral,
2015), arithmetic word problems (Hosseini et al.,
2014; Roy and Roth, 2015), algebra word prob-
lems (Kushman et al., 2014; Zhou et al., 2015;
Koncel-Kedziorski et al., 2015), and geometry word
problems (Seo et al., 2015).

A few recent works, Kushman et al. (2014) and
Zhou et al. (2015) focus on solving math word prob-
lems by matching quantities and variables (nouns)
extracted from the problem text to templates appear-
ing in the training data. These methods have a broad
scope, but they rely heavily on overlap between tem-
plates in the training and test data. As shown in our
experiments, when that overlap is reduced, the per-
formance of the systems drops significantly.

Other work has focused on more limited domains,
but aims to reduce the reliance on data overlap.
Hosseini et al. (2014) solve addition and subtrac-
tion problems by learning to categorize verbs for
the purpose of updating a world representation de-
rived from the problem text. Roy and Roth (2015)
treat arithmetic word problem templates as equa-
tion trees and introduce a method for learning the
least governing node for two text quantities. Koncel-
Kedziorski et al. (2015) focus on single equation
problems and use typed semantically-rich equation
trees where nodes correspond to numbers and an as-
sociated type derived from the problem text, and ef-
ficiently enumerate the space of these trees using in-
teger linear programming.

Our work is also inspired by the recent work in
introducing datasets to evaluate question answering
and reading comprehension tasks that require rea-
soning and entailment. In contrast to Richardson et
al. (2013), our work is focused on making a dataset
for math word problems to evaluate robustness, scal-
ability, and scope of algorithms in quantitative rea-
soning. In contrast to Weston et al. (2015), our work

has more natural text and a larger vocabulary, does
not use synthetic data, and is only focused on math
word problems which is an extension of the counting
sub-category introduced in that work.

3 Data
We compile a dataset of arithmetic and algebra word
problems of varying complexity from different web-
sites. This data extends the published word problem
datasets used in Hosseini et al. (2014), Kushman et
al. (2014), Koncel-Kedziorski et al. (2015), and Roy
and Roth (2015). In addition to this strong founda-
tion, the MAWPS repository provides interfaces for
adding new word problems, allowing for its exten-
sion and development.

Noting that word problem datasets have varied
with regard to noisiness and repetition, we define
several data characteristics to capture these proper-
ties below. We then allow a user of the repository to
select a subset of the data that optimizes these char-
acteristics. The three data characteristics that can be
automatically manipulated by MAWPS are:
Lexical Overlap. Lexical overlap describes the
reuse of lexemes among problems in a dataset. For
example, several problems may describe tickets be-
ing sold for a play, with only the number of adult and
child tickets changed among them. These problems
would have high lexical overlap. Previous work
has shown that lexeme reuse in a dataset allows for
spurious associations between the problem text and
a correct solution (Koncel-Kedziorski et al., 2015).
Researchers have sought to reduce this characteris-
tic in their data so as to facilitate the development of
more robust methods.
Template Overlap. By template we mean an
equation where numerical values are replaced by a
consistent, ordered set of constant variables. For ex-
ample, the equations (12∗2)+7 = x and (6∗15)+
105 = x have the same template, (a∗b)+c = x. As
shown in Roy and Roth (2015) and elsewhere, the
appearance of a similar template in the training data
is a requirement for some systems at test time. More
general math word problem solvers have been intro-
duced that reduce or eliminate this reliance. MAWPS

provides for the automatic construction of a dataset
with minimized template overlap.
Grammaticality. Many math word problems for
use in AI research are drawn from user-submitted

1153

Repository
Reduce	Lexical	

Overlap

Minimize	Template	
Overlap

Automatic	Optimization	Tools

Grammaticality	
Checker

Word	
Problem	
Dataset

Online	Interfaces	for	
Contributing	

Problems/Datasets
MAWPS

Figure 1: MAWPS System overview: Online interfaces
allow for extending repository. Optimization Tools allow
for real-time delivery of usable datasets with particular
characteristics.

online sources. Some problems from these sources
contain grammatical errors including morphologi-
cal agreement failures, misspellings, and other more
complicated ungrammaticalities (for example, “Joan
paid $8.77 on a cat toy, and a cage cost her $10.97
with a $20 bill.”). While some researchers wish to
develop methods robust to these kind of errors, oth-
ers would focus on the subset of the data that adheres
to a high-precision, expertly developed grammar of
English. To facilitate both lines of research, we al-
low for the selection of only those problems which
meet this judgment, or the full data.

4 System Overview

The goal of the MAWPS repository is to provide an
extendable collection of math word problems which
allows researchers to select the portion of the data
that meets their needs. To facilitate the growth of the
collection, our framework allows for easily adding
a single word problem or a whole dataset to the
repository. We design backend tools which allow
researchers to select a dataset with reduced lexical
overlap, minimized template overlap, or improved
grammaticality characteristics even as the repository
continues to grow through community contribution.
Figure 1 shows an outline of the MAWPS system.

4.1 Reduce Lexical Overlap

We consider the lexical overlap of a dataset D to be
the average of the pairwise lexical overlap between
each pair of problems in D. First, let W (p) denote
the set of unique unigrams and bigrams in a problem

p. Then PairLex(p, q) = |W (p)∩W (q)|
|W (p)∪W (q)| denotes the

pairwise lexical overlap between problems p and q.
We formally define the lexical overlap of a dataset

D as

Lex(D) =
1
N

∑
pi,pj∈D
i<j

PairLex(pi, pj)

where N =
(|D|

2

)
is the number of problem pairs

in D. Given a dataset D and a target subset size k,
MAWPS automatically finds a subset D′ of reduced
lexical overlap by solving the following optimiza-
tion problem: minD′⊆D,|D′|=k Lex(D′).

This is the remote clique problem1, which is NP
hard. As a result, we resort to a greedy strategy
which gives an approximation ratio of 2 (Birnbaum
and Goldman, 2007). We define flex(p,D′) =∑

q∈D′ PairLex(p, q), which describes the overlap
between a problem p and dataset D′. The greedy
method to generate subset D′ of D is as follows: we
iteratively add a problem p from D \D′ to D′ which
minimizes the value of flex(p,D′). That is, at each
step, we add a problem which has the least average
pairwise lexical overlap with the problems already in
D′. We repeat this process, starting with a randomly
initialized singleton set, until a set of k problems is
created.

4.2 Minimize Template Overlap
The template overlap of a dataset D is defined anal-
ogously to lexical overlap as the average of the pair-
wise template overlap between each pair of prob-
lems of D. Let PairTempl(p, q) be 1 if p and q have
the same template (corresponding to the gold equa-
tion), and 0 otherwise. We then define the template
overlap of a dataset D as

Tmpl(D) =
1
N

∑
pi,pj∈D
i<j

PairTempl(pi, pj)

where N =
(|D|

2

)
. Given a dataset D and

a target subset size k, the template overlap re-
duced subset of D is generated by the following:
minD′⊆D,|D′|=k Tmpl(D′).

1Given a complete graph with nonnegative edge weights
satisfying the triangle inequality and a positive integer p, the
remote-clique problem is to find a subset of p vertices having a
maximum-weight induced subgraph.

1154

Dataset # Probs|D| # Gramm.
Lexical Overlap (Lex) Template Overlap (Tmpl)

k = |D|/2 k = |D| Reduction k = |D|/2 k = |D| Reduction
AddSub 395 357 6.1 7.9 22.8 33 37.2 11.3

SingleOp 562 491 6.1 7.8 21.8 24.7 25.4 2.8
MultiArith 600 526 7.8 9.4 17.0 19.7 22.1 10.9
SingleEq 508 434 5.4 6.8 20.6 11 17.9 38.5

SimulEq-S 514 437 4.7 6 21.7 2.9 12.5 76.8
SimulEq-L 1155 980 4.4 5.7 22.8 0.1 3.3 97.0

Table 1: Characteristics of datasets added to our repository. # Gramm. is no. of problems which passed our grammat-
icality check, the Lex column reports minimum lexical overlap for size k dataset, the Tmpl column reports minimum
template overlap for size k dataset, Reduction denotes the % decrease in overlap value obtained by our system, when
going from k = |D| to k = |D|/2. We report all numbers as percentages.

Dataset System All |D| Gramm. Lex (|D|/2) Tmpl (|D|/2) Random (|D|/2)
SingleEq (Koncel-Kedziorski et al., 2015) 72.2 74.2 63.6 67.0 67.2

SimulEq-S (Kushman et al., 2014) 68.7 70.3 61.1 59.9 66.8

Table 2: Effect of lexical, template overlap and grammaticality data characteristics over various systems.

This again is an instance of remote clique prob-
lem, and we follow a similar greedy strategy. We de-
fine ftmpl(p,D′) =

∑
q∈D′ PairTempl(p, q), which

describes the overlap between a problem p and
dataset D′. The greedy method to generate subset
D′ of D is as follows: we iteratively add a prob-
lem p from D \D′ to D′ which minimizes the value
of ftmpl(p,D′). In other words, the algorithm itera-
tively chooses problem p from D \D′ and adds it to
D′ such that (if possible) p adds a new template to
D′. If there are no new templates to be added, then
a p whose template is least frequent among those of
D′ is selected. This process is repeated until D′ has
k problems.

4.3 Template/Lexical Interaction

Given a dataset and a target subset size k, we would
like a subset with the best lexical and template over-
lap characteristics. As an approximation, we reduce
the arithmetic mean of the two overlap values. This
mean can be expressed as H(D) = 1

2(Lex(D) +
Tmpl(D)). A similar greedy iterative approach as
before generates the required dataset with the afore-
mentioned approximation guarantee.

4.4 Grammaticality

Given a dataset, MAWPS can automatically remove
ungrammatical word problems, resulting in a sub-
set with improved grammaticality. Our system
uses the broad-coverage, linguistically precise En-
glish Resource Grammar (ERG) (Flickinger, 2000;

Flickinger, 2011) for determining grammaticality.
The ERG is a continually-developed implemen-
tation of the grammatical theory of Head-Driven
Phrase Structure Grammar that covers an increas-
ingly wide variety of phenomena. Moreover, the
ERG makes binary decisions for sentence accept-
ability: if it cannot find a valid parse among its rules,
it returns no parse for that sentence. This contrasts
with statistical parsers whose utility for this task is
limited by the difficulties of tuning a cutoff confi-
dence threshold for acceptability. We allow for fil-
tering problems with ungrammatical sentences.

5 Properties of Current Data

We initialize our repository by extending the pub-
licly available datasets. We list them below in order
of increasing complexity of the final equation form.
• AddSub: Collection of addition, subtraction

problems (Hosseini et al., 2014).
• SingleOp: Collection of single operation arith-

metic problems (Roy et al., 2015).
• MultiArith: Collection of multi-step arithmetic

problems (Roy and Roth, 2015).
• SingleEq: Single equation problems from

(Koncel-Kedziorski et al., 2015).
• SimulEq-S: Single and two equation word prob-

lems from (Kushman et al., 2014).
• SimulEq-L: Collection of single and multiple

equation word problems, superset of SimulEq-S.
Table 1 shows the characteristics of the datasets

under various conditions of grammaticality, lexi-

1155

cal and template overlap. Template overlap varies
greatly across datasets, and decreases sharply with
increase of complexity of target equation. Lexical
overlap, on the other hand, does not show much
variation, with most datasets having overlap value
of around 7%. Our system effectively reduces over-
lap, obtaining around 20% reduction in most cases
(going from k = |D| to k = |D|/2). In the case of
template overlap, this reduction varies greatly based
on the complexity of target equation, ranging from
2.8% for SingleOp to 97% for SimulEq-L.

As no current system can process SimulEq-L, we
report the performance of the two most general sys-
tems (Koncel-Kedziorski et al., 2015; Kushman et
al., 2014) on SingleEq and SimulEq-S under differ-
ent overlap and grammaticality properties in Table 2.
We use a 5-fold cross validation setup and report
average accuracy across folds. We include perfor-
mance on a randomly selected dataset of the same
size to analyze the effect of decreased data-size on
performance.

Both systems gain from the pruning of grammati-
cally incorrect problems from the dataset. Our re-
sults support the findings of Koncel-Kedziorski et
al. (2015) regarding the diminishing performance of
systems when faced with reduced lexical and tem-
plate overlap. We expect, as that work showed, that
further reducing these characteristics would result in
even lower performance. The results on a random
subset of the data show that data set size does not
have as strong of an effect on algorithm performance
as lexical or template overlap.

6 Conclusion

In this paper, we introduced MAWPS, a repository of
math word problems. MAWPS offers a large collec-
tion of data from new and published datasets, pro-
vides interfaces for adding data, and includes data
optimization tools. As current results show, de-
signing general algorithms that can address different
problem types while still being robust to the tem-
plate or lexical variations has remained a challenge.
We hope that our framework will help facilitate com-
parison between results while allowing researchers
to focus on targets such as all grammatical problems
or all single equation problems. We also include an
official 80/20 test/train split of all problems available
at the time of this publication.

Acknowledgments: This research was supported
by the Allen Institute for AI (66-9175), Allen Dis-
tinguished Investigator Award, NSF (IIS-1352249),
DARPA (FA8750-13-2-0008) and a Google research
faculty award. We thank the anonymous reviewers
for their helpful comments.

References
Benjamin Birnbaum and Kenneth J. Goldman. 2007. An

Improved Analysis for a Greedy Remote-Clique Al-
gorithm Using Factor-Revealing LPs. Algorithmica,
55(1):42–59.

Edward A Feigenbaum, Julian Feldman, and Paul Armer.
1995. Computers and Thought. AAAI press.

Dan Flickinger. 2000. On building a more effcient gram-
mar by exploiting types. Natural Language Engineer-
ing, 6(01):15–28.

Dan Flickinger. 2011. Accuracy vs. Robustness in
Grammar Engineering. Language from a cognitive
perspective: Grammar, usage, and processing, pages
31–50.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to Solve
Arithmetic Word Problems with Verb Categorization.
In EMNLP, pages 523–533.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Ang. 2015. Pars-
ing Algebraic Word Problems into Equations. TACL,
3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to Automatically
Solve Algebra Word Problems. In ACL, pages 271–
281.

Arindam Mitra and Chitta Baral. 2015. Learning to au-
tomatically solve logic grid puzzles. In EMNLP.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. MCTest: A Challenge Dataset for
the Open-Domain Machine Comprehension of Text.
In EMNLP, volume 1, page 2.

Subhro Roy and Dan Roth. 2015. Solving General Arith-
metic Word Problems. In EMNLP.

Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reasoning
about Quantities in Natural Language. TACL.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Et-
zioni, and Clint Malcolm. 2015. Solving Geometry
Problems: Combining Text and Diagram Interpreta-
tion. In EMNLP.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically Solv-
ing Number Word Problems by Semantic Parsing and
Reasoning. In EMNLP.

1156

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards AI-complete Ques-
tion Answering: a set of prerequisite toy tasks. arXiv
preprint arXiv:1502.05698.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to Solve Algebra Word Problems Using
Quadratic Programming. In EMNLP.

1157

Proceedings of NAACL-HLT 2016, pages 1158–1162,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Cross-genre Event Extraction with Knowledge Enrichment

Hao Li and Heng Ji
Computer Science Department

Rensselaer Polytechnic Institute
jih@rpi.edu

Abstract

The goal of Event extraction is to extract struc-
tured information of events that are of interest
from unstructured documents. Existing event
extractors for social media suffer from two
major problems: lack of context and informal
nature. In this paper, instead of conducting
event extraction solely on each social media
message, we incorporate cross-genre knowl-
edge to boost the event extractor performance.
Experiment results demonstrate that without
any additional annotations, our proposed ap-
proach is able to provide 15% absolute F-score
improvement over the state-of-the-art.

1 Introduction

The rapid development of social media and social
networks since 2000s has made it an important chan-
nel of information dissemination. Because of its
real-time nature, social media can be used as a sen-
sor to gather up-to-date information about the state
of the world. Effective automatic detection and ex-
traction of events from the media will be an ex-
tremely important contribution. Recently there has
been increasing interests in event extraction from so-
cial media (Yang et al., 1998; Kleinberg, 2003; He et
al., 2007; Weng and Lee, 2011; Benson et al., 2011;
Ritter et al., 2012).

Identifying and extracting events in social media
is more challenging than traditional event extraction
due to two major reasons: (1). Lack of Context:
compared with traditional genres (e.g., new articles),
social media context is usually short and incomplete
(e.g., each tweet has a length limitation of 140 char-

acters). Lacking of context, a single tweet itself usu-
ally cannot provide a complete picture of the corre-
sponding events. For example, for the tweet “Pray
for Mali - the situation is coming to light, and it isn’t
pretty.”, an event extraction/discovery system (e.g.
(Ji and Grishman, 2008)) fails to discover that it is
about the same war event in Mali as mentioned in
the news article “State military forces on Friday re-
took a key town in northern Mali after intense fight-
ing that included help from French military forces,
a defense ministry spokesman said.” (2). Informal
Nature: social media messages are written in an in-
formal style, which causes the poor performance of
event extractors designed for formal genres. For ex-
ample, the tweet “#AaronSwartz, Dead @ 26, #Car-
menOrtiz “pushed him to exhaustion” don’t let her
get away with this! #scandal.” includes an “Die”
event with Aaron Swartz as the Victim. However,
the person name “AaronSwartz” appears in the hash-
tag “#AaronSwartz” and “Dead at 26” is written as
“Dead @ 26”. Existing supervised name taggers
and event extractors fail to identify the same “Die”
event mentioned in the news article “Internet ac-
tivist Aaron Swartz dead at 26”.

Based on the intuition that news articles contain
more detailed and formal information than tweet
messages, we apply an unsupervised knowledge en-
richment algorithm to link each tweet to its most
relevant news article. By incorporating the cross-
genre knowledge to tweets, we are able to formulate
the task of event extraction on tweets as the task of
cross-genre extraction for tweets and news articles.
Thus we can alleviate the previous mentioned chal-
lenges in single-genre event extraction for tweets to

1158

t1: Crowds rally in Belfast for flag protest#thetruth
n1: Protesters march in Northern Ireland: Under a
gray, overcast sky, more than 1,000 protesters gath-
ered Saturday in the Northern Ireland city of Belfast
carrying large Union flags, some wrapped around
their shoulders.
te1: {EventPhrase = [rally, protest], EventArgument
= Belfast, Time = 2013-01-14}
ne1: {EventType = Conflict, EventPhrase = march,
EventArgument = [protesters, Northern Ireland,
Belfast]}
e1: {EventType = Conflict, EventPhrase = [rally,
protest, march], EventArgument = [protesters, North-
ern Ireland, Belfast], Time = 2013-01-14}.

Table 1: Cross-genre Event Extraction Example

some extent. To the best of our knowledge, it is
the first work to conduct cross-genre event extrac-
tion through unsupervised knowledge enrichment.

2 Problem Definition

Given a tweet ti, our cross-genre event extraction
framework first discovers its most relevant news arti-
cle ni, then identifies event tuples (event phrases and
event arguments) for the tweet (tei) and the news ar-
ticle (nei) respectively, and finally conducts merging
on the event extraction outputs from both genres to
produce the cross-genre event extraction result (ei).
For example in Table 1, given the following tweet t1,
n1 is retrieved as its most relevant news article. te1
and ne1 are the extracted event tuples for the tweet
and the news article respectively and e1 is the final
cross-genre event extraction output after merging.
To evaluate the performance of an event extractor,
the precision, recall and f-measure of the extracted
event phrases and event arguments will be measured
using the following criteria: an event phrase is cor-
rectly labeled if it matches a reference trigger; an ar-
gument is correctly labeled if it matches a reference
argument.

3 Approach

3.1 Baseline Event Extraction Systems

We use two state-of-the-art event extraction sys-
tems (Ritter et al., 2012; Li et al., 2013) to extract
events from tweets and news articles respectively.
The tweet event extractor TwiCal-Event (Ritter et
al., 2012) is able to extract open-domain significant

events from Twitter. It is a supervised system that
identifies event phrases and event participants with
tailored part-of-speech tagging and shallow parsing
for tweets. In addition, it is also able to discover
event categories and classify extracted events based
on latent variable models. It takes tweets as in-
put and outputs a four-tuple representation of events
which includes event participants, event phrase, cal-
endar date, and event type. The news event extrac-
tor (Li et al., 2013) is a joint framework based on
structured prediction which extracts triggers and ar-
guments simultaneously while incorporating diverse
lexical, syntactic, semantic and global features. It
takes raw documents as input, distinguish events
from non-events by classifying event triggers and
identifying and classifying argument roles.

3.2 Knowledge Enrichment Approach

To produce the latent vector representations for
the whole dataset, we follow the same procedure
in (Guo et al., 2013): represent the dataset in a ma-
trix X, where each cell stores the TF-IDF values of
words. Word vectors P and tweet vectors Q are op-
timized by minimizing the following objective func-
tion:

∑
i

∑
j

Wij (P·,i ·Q·,j −Xij)
2 + λ||P ||22 + λ||Q||22

+δ · (Q·,j1 ·Q·,j2
|Q·,j1 ||Q·,j2 |

− 1)2

Wi,j =
{

1, if Xij 6= 0
wm, if Xij = 0

(1)

where λ is a regularization term, Q·,j1 and Q·,j2
are linked pairs connected by text-to-text relations,
|Q·,j | denotes the length of vector Q·,j and the co-
efficient δ denotes the importance of the text-to-text
links. we follow the same optimization procedure as
(Steck, 2010) by alternating Least Square [ALS] is
used for inference on P and Q.

After obtaining the vector representations for the
whole dataset, for each tweet, we retrieve its cross-
genre knowledge by finding the news article with the
highest cosine similarity.

1159

Experiment Setting
Single Tweets Single News + System Linking + Perfect Linking

P
re

c
is

io
n

 (
%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System Event Extractor
Perfect Event Extractor

Figure 1: Event extraction precision

Experiment Setting
Single Tweets Single News + System Linking + Perfect Linking

R
e

c
a

ll
(%

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Event Extractor
Perfect Event Extractor

Figure 2: Event extraction recall

4 Experiments

4.1 Data Description

We use the same dataset as (Guo et al., 2013) which
contains 34,888 tweets and 12,704 news articles.
For each tweet, we consider the url-referred news
article as its gold standard cross-genre knowledge
– the most relevant news document. As the news
event extractor is designed for a closed set of 33
event types (ace, 2005) while the tweet event extrac-
tor is for open domain, in this paper we only focus
on the tweet-news pairs that the news event extrac-
tion output is not empty. We randomly selected 50
tweet-news pairs for the cross-genre event extraction
annotation and evaluation.

4.2 Experiment Results

Figure 1, 2 and 3 present the Precision (P), Recall
(R) and F-measure (F) of the overall event extrac-
tion performance for different settings respectively.

Experiment Setting
Single Tweets Single News + System Linking + Perfect Linking

F
-m

e
a

s
u

re
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Event Extractor
Perfect Event Extractor

Figure 3: Event extraction f-measure

From these experiment results, we have the follow-
ing four observations:

1. Event Extraction solely on tweet messages
achieves the lowest precision, recall and f-measure.
It exactly confirms our motivation of conducting
knowledge enrichment for event extraction in tweet
messages. Because of the informal nature of tweet
messages, the event extractor misidentified 54.16%
of the events thus the precision is low. Take the
ill-formatted tweet in Section 1 as an example,
the named entity “AaronSwartz” is in the hashtag
“#AaronSwartz” and “Dead at 26” is written as
“Dead @ 26”. It makes the automatic event extrac-
tor extremely difficult to identify the “Die” event for
the person “Aaron Swartz”.

The low recall is mainly caused by the “lack of
context” problem. Due to the length limitation of
tweets, users tend to use recapitulate languages to
describe an event. For Example, the following tweet
“Well. That sucks. ‘Deepening Crisis for the Boe-
ing 787’” actually refers to an “emergency land-
ing” event made by “All Nippon Airways” in “west-
ern Japan”. The user only mentioned the summary
“Deepening Crisis for the Boeing 787” to refer to
the actual event. Therefore, the single-genre event
extractor missed the event trigger “landing” and the
event arguments “All Nippon Airways” and “west-
ern Japan”.

2. Both single-genre event extractors can con-
tribute to the cross-genre event extractor through the
cross-genre linking process. Even with the auto-
matic linking output, Figure 2 and Figure 3 show
29.9% recall and 14.0% f-measure improvement

1160

over single-genre event extractor for tweets. It is
because that in most cases, news articles cover more
information than tweets as they are produced by pro-
fessional news agencies while tweets are written by
individuals with a 140-character length limitation.
In the following example, although referring to the
same events, the news article covers more event in-
formation than the tweet, thus the cross-genre event
extractor can surpass the single-genre event extrac-
tor for tweets.
News: Deepening Crisis for the Dreamliner The two
largest Japanese airlines said they would ground their
fleets of Boeing 787 aircraft after one operated by All
Nippon Airways made an emergency landing in western
Japan.
Tweets: Well. That sucks. “Deepening Crisis for the
Boeing 787”

For some certain cases, the cross-genre event ex-
tractor is also able to benefit from single-genre event
extractor for tweets. For the following example,
the event extractor for news articles missed the “At-
tack” event as “Halt an ... Advance” is an un-
usual phrase to describe an “Attack” event. How-
ever, in the related tweet, “Battling” is a strong
indicator of an “Attack” event and the event ex-
tractor for tweets is able to catch it. As a re-
sult, we are able to extract the overall event tu-
ples {EventPhrase=[Advance,Battling], EventPatic-
ipant=[France,Islamist,Mali]}.
News: French Troops Help Mali Halt an Islamist Ad-
vance France answered an urgent plea from the govern-
ment of its former colony to help blunt an advance into
the center of the country by Islamist extremist militants.
Tweets: France Battling Islamists in Mali #rebels tarnish
W. African #Islam Western #intervention

3. Either improving single-genre event extractors
or achieving better cross-genre linking performance
is able to boost the overall event extraction perfor-
mance. From Figure 1, 2 and 3, we can observe
that higher quality of single-genre event extractors
will significantly enhance the precision while bet-
ter linking performance will mainly contribute to a
higher recall.

4. Compared with cross-genre linking accuracy,
the quality of single-genre event extractors is more
important. Figure 3 shows that “Gold Event Extrac-
tor + System Linking” achieved 26.3% higher F-
measure score than “System Event Extractor + Gold

Linking”. It is mainly because of two reasons: on
one hand, the errors of single-genre event extractors
will be propagated to the final event output; on the
other hand, the current linking system is able to pro-
vide reasonable linking results thus the use of per-
fect linking will not have too much gain.

5 Remaining Challenges

Linking Errors: mistakenly linking tweets to irrel-
evant news articles. For example, the tweet “The
lack of investigative movement - his return and his
flippant attitude is what is insulting. Not his new
placement.” is about a “Movement” event that As-
semblyman returns to Albany after scandal. How-
ever, the tweets express the event so implicitly that
the automatic linking system is not able to discover
its corresponding news article.

Extraction Errors: single-genre event extractors
failed on both the tweet side and the news arti-
cle side. For the following example, both single
genre event extractors missed the “Threaten” event
between the vice president Hugo Chvez and those
questioning the legitimacy of Chavez’s government.
Tweet: #Venezuela VP warns those questioning the
legitimacy of #Chavez’s government: “Watch your
words and your actions.”
News: The vice president threatened action against
any who question the legality of delaying the
swearing-in of President Hugo Chvez, who is still
in Cuba.

6 Conclusions and Future Work

In this paper we study the bottlenecks of event ex-
traction for tweets. We have two observations: (1).
Because of the “lack of context” and “informal na-
ture” characteristics of tweets, conducting event ex-
traction solely on tweet messages cannot produce
satisfactory results; (2) The events embedded in
tweets and news articles are often complementary.
Based on these observations, we proposed to link
each tweet to its most relevant news article, and
further incorporated this cross-genre knowledge to
conduct cross-genre event extraction. Experiment
results showed that without any additional annota-
tion, our proposed cross-genre event extractor is able
to outperform state-of-the-art tweet event extraction.
Our future research will focus on joint modeling

1161

of cross-genre event extraction in the training stage
through cross-genre knowledge enrichment.

Acknowledgment

This work was supported by the U.S. DARPA
DEFT Program No.FA8750-13-2-0041, ARL NS-
CTA No. W911NF-09-2-0053, NSF Award IIS-
1523198, AFRL DREAM project, and a gift award
from Bosch. The views and conclusions contained
in this document are those of the authors and should
not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Gov-
ernment. The U.S. Government is authorized to re-
produce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here
on.

References

2005. ACE (automatic content extraction) english an-
notation guidelines for events, Jan. [Online]. Avail-
able: https://www.ldc.upenn.edu/collaborations/past-
projects/ace, (Date Last Accessed, Nov 4th, 2015).

Edward Benson, Aria Haghighi, and Regina Barzilay.
2011. Event discovery in social media feeds. In ACL,
pages 389–398.

Weiwei Guo, Hao Li, Heng Ji, and Mona T. Diab. 2013.
Linking tweets to news: A framework to enrich short
text data in social media. In Proc. Annu. Meeting of the
Assoc. for Comput. Linguist., pages 239–249, Sofia,
Bulgaria.

Qi He, Kuiyu Chang, and Ee-Peng Lim. 2007. Analyz-
ing feature trajectories for event detection. In Proc.
Int. ACM SIGIR Conf., pages 207–214, Amsterdam,
Netherland.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Proc.
Annu. Meeting of the Assoc. for Comput. Linguist.,
pages 254–262, Columbus, OH.

Jon M. Kleinberg. 2003. Bursty and hierarchical struc-
ture in streams. Data Min. Knowl. Discov., 7(4):373–
397.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event ex-
traction via structured prediction with global features.
In Proc. Annu. Meeting of the Assoc. for Comput. Lin-
guist., pages 73–82, Sofia, Bulgaria.

Alan Ritter, Mausam, Oren Etzioni, and Sam Clark.
2012. Open domain event extraction from twitter. In
Proc. ACM SIGKDD Conf. on Knowl. Discovery and
Data Mining, pages 1104–1112, Beijing, China.

Harald Steck. 2010. Training and testing of recom-
mender systems on data missing not at random. In
Proc. ACM SIGKDD Conf. on Knowl. Discovery and
Data Mining, pages 713–722, Washington, DC.

Jianshu Weng and Bu-Sung Lee. 2011. Event detection
in twitter. In Proc. Int. AAAI Conf. on Web and Social
Media, pages 401–408, Barcelona, Catalonia, Spain.

Yiming Yang, Thomas Pierce, and Jaime G. Carbonell.
1998. A study of retrospective and on-line event de-
tection. In SIGIR, pages 28–36.

1162

Proceedings of NAACL-HLT 2016, pages 1163–1168,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Emergent: a novel data-set for stance classification

William Ferreira
Department of Computer Science
University College London, UK

Andreas Vlachos
Department of Computer Science

University of Sheffield, UK

Abstract

We present Emergent, a novel data-set de-
rived from a digital journalism project for ru-
mour debunking. The data-set contains 300
rumoured claims and 2,595 associated news
articles, collected and labelled by journalists
with an estimation of their veracity (true, false
or unverified). Each associated article is sum-
marized into a headline and labelled to indi-
cate whether its stance is for, against, or ob-
serving the claim, where observing indicates
that the article merely repeats the claim. Thus,
Emergent provides a real-world data source
for a variety of natural language processing
tasks in the context of fact-checking. Fur-
ther to presenting the dataset, we address the
task of determining the article headline stance
with respect to the claim. For this purpose
we use a logistic regression classifier and de-
velop features that examine the headline and
its agreement with the claim. The accuracy
achieved was 73% which is 26% higher than
the one achieved by the Excitement Open Plat-
form (Magnini et al., 2014).

1 Introduction

The advent of New Media, such as Twitter, Face-
book, etc., enables news stories and rumours to
be published in real-time to a global audience, by-
passing the usual verification procedures used by
more traditional Old Media news outlets. However,
the line between Old and New Media is becoming
blurred as news aggregators lift stories from social
media and re-publish them without fact-checking.

This issue could be helped by developing meth-
ods for automated fact-checking of news stories, part

of the reporter’s black box envisioned in Cohen et
al. (2011) and one of the main objectives in com-
putational journalism. While this task is related
to a variety of natural language processing tasks
such as textual entailment and machine comprehen-
sion, it poses additional challenges due to its open-
domain, real-world nature. Previous work by Vla-
chos and Riedel (2014) proposed using data from
fact-checking websites such as Politifact1, but the la-
belling provided by the journalists is only the degree
of truthfulness of the claims, without any machine-
readable verdicts to supervise the various steps in
deciding it. Thus, the task defined by the dataset pro-
posed remains too challenging for the NLP methods
currently available.

In this paper we propose to use data from the
Emergent Project (Silverman, 2015), a rumour de-
bunking project carried out in collaboration with the
Tow Center for Digital Journalism at Columbia Jour-
nalism School2. Consisting of 300 claims and 2,595
associated news articles, the Emergent project con-
tains a rich source of labelled data that can be used
in a variety of NLP tasks, created by journalists as
part of their normal workflow, thus real-world and at
no annotation cost.

We leverage the Emergent dataset to investigate
the task of classifying the stance of a news article
headline with respect to its associated claim, i.e.
for each article headline we assign a stance label
which is one of for, against, or observing, indicat-
ing whether the article is supporting, refuting, or just
reporting the claim, respectively. The large number

1http://www.politifact.com/
2http://towcenter.org/

1163

of claims in the dataset allows us to assess the gen-
eralization of the method evaluation to new claims
more reliably than in previous work that either used
a small number of claims (e. g. seven in Lukasik et
al., 2015) or did not separate training claims from
testing claims (Qazvinian et al., 2011).

We develop a stance classification approach based
on multiclass logistic regression, using features ex-
tracted from the article headline and the claim,
achieving an accuracy of 73% on our test data-set,
also demonstrating that features relying on syntax,
word alignment and paraphrasing contribute to the
performance. Since the task bears similarities with
textual entailment, we compare it against the Excite-
ment Open Platform (Magnini et al., 2014) which
achieved a substantially lower accuracy of 47%.

2 The Emergent data

The claims in Emergent are collected by journalists
from a variety of sources such as rumour sites, e.g.
snopes.com, and Twitter accounts such as @Hoaxal-
izer. Their subjects include topics such as world and
national U.S. news and technology stories. Once a
claim is identified, the journalist searches for articles
that mention the claim and decides on the stance of
each such article:
• for: The article states that the claim is true,

without any kind of hedging.
• against: The article states that the claim is

false, without any kind of hedging.
• observing: The claim is reported in the article,

but without assessment of its veracity.
The journalist also summarises the article into a
headline. In parallel to the article-level stance de-
tection, a claim-level veracity judgement is reached
as more articles associated with the claim are exam-
ined. The veracity of each claim is initially unver-
ified, later becoming either true or false when the
journalist decides that adequate evidence from the
associated articles has been compiled. Finally, the
source and the number of times each associated ar-
ticle is shared are recorded. An example of a claim
verified on Emergent appears in Figure 1.

There are a number of tasks for which the Emer-
gent data can be useful for development and evalu-
ation. The article-level stance labels can be used to
develop a stance detection system between the claim

Claim: Robert Plant ripped up an $800 million
contract offer to reunite Led Zeppelin
Source: mirror.co.uk (shares: 39,140)
Headline: Led Zeppelin’s Robert Plant turns
down £500MILLION to reform supergroup
Stance: for
Source: usnews.com (shares: 850)
Headline: No, Robert Plant Didn’t Rip Up an $800
Million Contract
Stance: against
Source: forbes.com (shares: 3,360)
Headline: Robert Plant Reportedly Tears Up $800
Million Led Zeppelin Reunion Contract
Stance: observing
Veracity: False

Figure 1: Example verification taken from http://www.

emergent.info/led-zeppelin-contract. The full

text of the articles is omitted for brevity.

and an associated article. The claim-level verac-
ity labels would be straightforward to use for fact-
checking. Finally, the article headlines can be used
for focused summarization.

In this paper we focus on stance detection of an
article with respect to the claim using the head-
line provided by the journalist. For this purpose
we obtained a database dump from the developers
of Emergent and extracted all claims and associ-
ated article headlines. We made no attempt to ex-
clude a claim or article based on grammatical er-
rors or complex syntactic structure. Our final data-
set contains 300 claims, and 2,595 associated arti-
cle headlines, with an average ratio of 8.65 (7.31)
articles per claim; the minimum number of arti-
cles per claim is 1 and the maximum number is 50.
The class distribution of article stances is 47.7% for,
15.2% against and 37.1% observing. This dataset
was split into training and test set parts, containing
2,071 and 524 instances respectively, ensuring that
each claim appeared in only one of the parts. Both
the database dump and the extracted claim-article
headline dataset are available from https://
github.com/willferreira/mscproject.

3 Stance Classification

We treat stance classification as a 3-way classifica-
tion task using a logistic regression classifier with

1164

L1 regularization (Pedregosa et al., 2011)3 and we
explore two types of features: those extracted solely
from the article headline and those extracted by
combining the headline and the claim. The for-
mer are aimed at capturing the cases in which the
stance of headline can be determined without con-
sulting the claim, which is often the case with ob-
serving cases, as they often use hedging. The latter
are aimed at determining the entailment relation be-
tween them. All feature engineering was conducted
using 10-fold cross-validation on the training data.
Our implementation is available from https://
github.com/willferreira/mscproject.

Headline features The features extracted from the
headline are the commonly used bag of words rep-
resentation (BoW) and whether it ends in a ques-
tion mark (Q). In addition, we added two features
representing the minimum distance from the root of
the sentence to common refuting (e. g. deny) and
hedging/reporting (e.g. claim, presumably) words
(RootDist). As an example of the RootDist fea-
ture, consider the dependency parse in Figure 2. The
minimum number of edges from the root to a hedg-
ing/refuting word (“not” in the example) is three.
The dependency parses were obtained using Stan-
ford CoreNLP (Manning et al., 2014) and the word
lists were compiled using online resources.

Claim-headline features While the article head-
line often provides adequate features to classify its
stance, we also need to take into account its entail-
ment relation with the claim. Therefore, based on
the work by Rus and Lintean (2012) we compute
an alignment using the Paraphrase Database (PPDB)
(Pavlick et al., 2015) and the Kuhn-Munkres algo-
rithm (Kuhn, 1955; Munkres, 1957) as follows. For
each word pairing between the claim and the head-
line an edge is created and assigned a score by the
following scheme:
• if the stems of the words are identical, assign

maxScore
• else, if the words are paraphrases according to

PPDB, assign their maximum paraphrase score
• else, assign minScore

3Specifically, we used the sklearn
LogisticRegression classifier with the default pa-
rameters, and L1 penalization.

maxScore and minScore were set to +10 and -10 re-
spectively. Running the Kuhn-Munkres algorithm
on this graph finds the maximum scoring 1-to-1
word alignment and the score of this alignment,
normalized by the length of the claim or headline,
whichever is the shorter. An additional feature is
extracted to indicate if in an aligned pair of words,
one of them — either in the claim or or the arti-
cle headline — is negated according to the parser.
Furthermore, we extracted the subject-verb-object
(SVO) triples from the claim and the article head-
line (typically one in each) and matched them as
follows. For each component of the triples we ex-
tracted from PPDB the following labels: equiva-
lence, forwardEntailment, backwardEntailment, in-
dependence or noRelation. Thus the matching of an
SVO triple in the claim to one in the headline is rep-
resented by a concatenation of three labels, each cor-
responding to the relation between the subjects, the
verbs and the objects (SVO). Finally, we computed
the cosine similarity between the vector representa-
tions for the claim and the headline (word2vec). The
representations were calculated by multiplying the
word2vec vectors (Mikolov et al., 2013a) for each
word, which we found to perform better than ad-
dition. We utilised pre-trained vectors trained on
part of the Google News dataset, comprising 300-
dimensional vectors for 3 million words and phrases
(Mikolov et al., 2013b).

4 Results

Since none of the stance labels dominates the label
distribution, we evaluate the performance primar-
ily using accuracy, also reporting per-class Precision
and Recall. A majority baseline would achieve 47%,
but would always predict for. For a better baseline
we used the lexical overlap between the claim and
the article headline, which we defined as the per-
centage of the ratio of the number of lemmas in com-
mon between them to the number of lemmas in their
union. Using the training data we calculated the av-
erage overlap for each stance and found that for in-
stances exhibit higher overlap, followed by observ-
ing and then by against. Following this, we defined
two overlap thresholds, minFor and maxAgainst. If
the overlap of a claim-headline pair is higher than
minFor it is labeled for, if lower than maxAgainst it

1165

Iraq Says Arrested Woman Is Not The Wife of ISIS Leader al-Baghdadi

root

nsubj dep

nsubj

cop

neg

det

ccomp

nn

nn

prep of

Figure 2: Dependency structure for sentence containing a refuting word.

method acc. for against observing
overlap 32% 50%/42% 18%/52% 32%/9%

EOP 47% 52%/77% 100%/1% 34%/29%
classifier 73% 71%/89% 82%/70% 74%/54%

Table 1: Test set accuracy and per stance precision and recall.

is labeled against, otherwise observing.
The comparison between the baseline and the L1-

regularized logistic regression classifier with the fea-
tures described in the previous section appears in Ta-
ble 1. As it can be observed, the proposed classi-
fier performs much better in accuracy with substan-
tial gains in all stances. Both approaches are mostly
challenged by instances of the observing class, since
the article headlines with that stance are quite simi-
lar to the claim, which is also the case for the more
populous for class. We also compare our classifier
against the Excitement Open Platform (EOP) tex-
tual entailment classifier (Magnini et al., 2014). In
particular, we used the MaxEntClassificationEDA
classifier with the RTE-3 pre-trained model which
we found to be the best performing one among
those available achieving 33% accuracy. Finally, we
trained the same classifier on the Emergent training
data achieving 47%, which is 26% lower than the
proposed method.

In order to assess the contribution of the features
developed we conducted an ablation analysis and the
results appear in Table 2. The L1 regularization used
enforces sparsity which helps highlight the features
relevant for each stance. The RootDist feature has
a substantial contribution as it helps distinguish the
observing from the for class. We also evaluated a
model using only BoW, Q and word2vec features
and the performance was 3% lower than using the
complete feature set, thus highlighting the contribu-
tion of the features relying on alignment, syntax and

Feature 10-fold cv test chosen for stance
-BoW 1.66% 5.15% ALL

-Q 1.85% 0.19% observing
-RootDist 2.02% 2.48% for, observing

-PPDB 0.47% 0.76% for
-Neg 0.29% 0% for, against

-SVO 0.20% 0.19% for, observing
-word2vec 0.049% -0.19% against

Table 2: Ablation results: each row represents the drop in ac-

curacy caused by removing the corresponding feature(s). The

last column shows for which stance label(s) the feature(s) had

non-zero weight(s).

the PPDB. Finally, the fact that -word2vec did not
help, especially when compared to PPDB, can be
partly attributed to the inability of methods relying
solely on contexts to learn antonymy.

5 Related work

The task defined by the Emergent dataset differs
from recent work in stance classification (Qazvinian
et al., 2011; Lukasik et al., 2015; Zhao et al., 2015)
not only in the number of claims from which the arti-
cle headlines are derived, but also in that correct pre-
diction requires considering entailment relation be-
tween the claim and the headline. It also differs from
work on target-specific stance prediction in debates
(Walker et al., 2012; Hasan and Ng, 2013), since
the targets considered there are topic labels such as
abortion, instead of event claims as in this work.

Emergent, being derived from the workflow of
journalists is more realistic than data-sets designed
for textual entailment such as FraCas (Cooper et al.,
1996) and SICK (Marelli et al., 2014) that are con-
structed artificially. Compared to the crowdsourced
dataset of Bowman et al. (2015), it is smaller but
of a different nature, since the former assumes that

1166

all sentences are visual representations, while news
tend be more varied.

Stance detection in the context of Emergent is
one component in the process of fact-checking
claims appearing in the news which are usually
more complex than the entity-relation-entity or
entity-property-number triples considered in previ-
ous work (Nakashole and Mitchell, 2014; Vlachos
and Riedel, 2015). The choice of claims to fact-
check is a task in its own right, as shown by Hassan
et al. (2015). Finally, the only other use of data from
the Emergent project is by Liu et al. (2015); how-
ever their focus was not on the NLP aspects of the
task but on using Twitter data to assess the veracity
of the claim, ignoring the articles and their stances
curated by the journalists.

6 Conclusions - Future work

In this paper we proposed Emergent, a new real-
world dataset derived from the digital journalism
project Emergent which can be used for a variety
of NLP tasks in the context of fact-checking. We fo-
cus on stance detection, for which the large number
of claims in the dataset compared to previous work
allows for more reliable assessment of the general-
ization capabilities of the methods evaluated. We
proceed to develop a model for stance classification
using multiclass logistic regression and show how
features beyond the typically used bag of words can
be beneficial, achieving accuracy 26% better than an
RTE system trained on the same data. We make both
the datasets and our code available.

Despite its advantages, the dataset collected is
rather small to learn all the nuances of the task. Thus
in future work we will explore ways of incorporat-
ing large amounts of raw text in training stance clas-
sification models, possibly using a neural network
architecture. Finally, stance detection is one of the
tasks in the fact-checking process of Emergent. In
future work we will develop methods for the other
tasks involved, such as classifying the stance of a
whole article towards a claim and truth assessment.

Acknowledgments

Many thanks to Craig Silverman and the Tow Center
for Digital Journalism at Columbia University for al-
lowing us to use the data from the Emergent Project.

The research reported in this paper was conducted
while the first author was at University College Lon-
don.

References
Samuel R. Bowman, Gabor Angeli, Christopher Potts,

and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu.
2011. Computational Journalism: a call to arms to
database researchers. Proceedings of the 5th Bien-
nial Conference on Innovative Data Systems Research
(CIDR 2011) Asilomar, California, USA., pages 148–
151.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Josef Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, Steve Pul-
man, Ted Briscoe, Holger Maier, and Karsten Konrad.
1996. Using the framework. Technical report, The
FraCas Consortium.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance Clas-
sification of Ideological Debates: Data, Models, Fea-
tures, and Constraints. In IJCNLP, pages 1348–1356.
Asian Federation of Natural Language Processing /
ACL.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015. Detecting check-worthy factual claims in presi-
dential debates. In Proceedings of the 24th ACM Inter-
national Conference on Information and Knowledge
Management.

Harold W. Kuhn. 1955. The Hungarian Method for the
assignment problem. Naval Research Logistics Quar-
terly, 2:83–97.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, and Sameena Shah. 2015. Real-time rumor
debunking on twitter. In Proceedings of the 24th
ACM International on Conference on Information and
Knowledge Management, pages 1867–1870.

Michael Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Classifying tweet level judgements of rumours
in social media. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 2590–2595, Lisbon, Portugal, Septem-
ber. Association for Computational Linguistics.

Bernardo Magnini, Roberto Zanoli, Ido Dagan, Kathrin
Eichler, Günter Neumann, Tae-Gil Noh, Sebastian
Pado, Asher Stern, and Omer Levy. 2014. The excite-
ment open platform for textual inferences. In Proceed-
ings of the ACL 2014 System Demonstrations. ACL, 6.

1167

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), Reykjavik, Ice-
land, may. European Language Resources Association
(ELRA).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc.

James Munkres. 1957. Algorithms for the assignment
and transportation problems. Journal of the Society
for Industrial and Applied Mathematics, 5(1):32–38.

Ndapandula Nakashole and Tom M Mitchell. 2014.
Language-Aware Truth Assessment of Fact Candi-
dates. Acl, pages 1009–1019.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 425–430, Beijing, China, July. Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Vahed Qazvinian, Emily Rosengren, Dragomir R. Radev,
and Qiaozhu Mei. 2011. Rumor has it: Identify-
ing misinformation in microblogs. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1589–1599.

Vasile Rus and Mihai Lintean. 2012. A comparison
of greedy and optimal assessment of natural language

student input using word-to-word similarity metrics.
In Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 157–162,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Craig Silverman. 2015. Lies, Damn Lies and Viral Con-
tent. http://towcenter.org/research/
lies-damn-lies-and-viral-content/,
February.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
Checking: Task definition and dataset construction.
Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence, pages 18–22.

Andreas Vlachos and Sebastian Riedel. 2015. Identifica-
tion and verification of simple claims about statistical
properties. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing.

Marilyn Walker, Pranav Anand, Rob Abbott, and Ricky
Grant. 2012. Stance Classification using Dialogic
Properties of Persuasion. In Proceedings of the 2012
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 592–596.

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. En-
quiring minds: Early detection of rumors in social me-
dia from enquiry posts. In Proceedings of the 24th
International Conference on World Wide Web, pages
1395–1405.

1168

Proceedings of NAACL-HLT 2016, pages 1169–1174,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

BIRA: Improved Predictive Exchange Word Clustering

Jon Dehdari1,2 and Liling Tan2 and Josef van Genabith1,2

1DFKI, Saarbrücken, Germany
{jon.dehdari,josef.van genabith}@dfki.de

2University of Saarland, Saarbrücken, Germany
liling.tan@uni-saarland.de

Abstract

Word clusters are useful for many NLP tasks
including training neural network language
models, but current increases in datasets are
outpacing the ability of word clusterers to han-
dle them. Little attention has been paid thus
far on inducing high-quality word clusters at
a large scale. The predictive exchange algo-
rithm is quite scalable, but sometimes does
not provide as good perplexity as other slower
clustering algorithms.

We introduce the bidirectional, interpolated,
refining, and alternating (BIRA) predictive ex-
change algorithm. It improves upon the pre-
dictive exchange algorithm’s perplexity by up
to 18%, giving it perplexities comparable to
the slower two-sided exchange algorithm, and
better perplexities than the slower Brown clus-
tering algorithm. Our BIRA implementation
is fast, clustering a 2.5 billion token English
News Crawl corpus in 3 hours. It also reduces
machine translation training time while pre-
serving translation quality. Our implementa-
tion is portable and freely available.

1 Introduction

Words can be grouped together into equivalence
classes to help reduce data sparsity and better gener-
alize data. Word clusters are useful in many NLP ap-
plications. Within machine translation word classes
are used in word alignment (Brown et al., 1993;
Och and Ney, 2000), translation models (Koehn and
Hoang, 2007; Wuebker et al., 2013), reordering
(Cherry, 2013), preordering (Stymne, 2012), target-
side inflection (Chahuneau et al., 2013), SAMT

(Zollmann and Vogel, 2011), and OSM (Durrani et
al., 2014), among many others.

Word clusterings have also found utility in pars-
ing (Koo et al., 2008; Candito and Seddah, 2010;
Kong et al., 2014), chunking (Turian et al., 2010),
NER (Miller et al., 2004; Liang, 2005; Ratinov and
Roth, 2009; Ritter et al., 2011), structure transfer
(Täckström et al., 2012), and discourse relation dis-
covery (Rutherford and Xue, 2014).

Word clusters also speed up normalization in
training neural network and MaxEnt language
models, via class-based decomposition (Goodman,
2001a). This reduces the normalization time from
O(|V |) (the vocabulary size) to ≈ O(

√|V |) . More
improvements to O(log(|V |)) are found using hier-
archical softmax (Morin and Bengio, 2005; Mnih
and Hinton, 2009) .

2 Word Clustering

Word clustering partitions a vocabulary V, grouping
together words that function similarly. This helps
generalize language and alleviate data sparsity. We
discuss flat clustering in this paper. Flat, or strict
partitioning clustering surjectively maps word types
onto a smaller set of clusters.

The exchange algorithm (Kneser and Ney, 1993)
is an efficient technique that exhibits a general time
complexity of O(|V | × |C| × I), where |V | is the
number of word types, |C| is the number of classes,
and I is the number of training iterations, typically
< 20 . This omits the specific method of exchang-
ing words, which adds further complexity. Words
are exchanged from one class to another until con-
vergence or I .

1169

One of the oldest and still most popular exchange
algorithm implementations is mkcls (Och, 1995)1,
which adds various metaheuristics to escape local
optima. Botros et al. (2015) introduce their imple-
mentation of three exchange-based algorithms. Mar-
tin et al. (1998) and Müller and Schütze (2015)2

use trigrams within the exchange algorithm. Clark
(2003) adds an orthotactic bias.3

The previous algorithms use an unlexicalized
(two-sided) language model: P (wi|wi−1) =
P (wi|ci)P (ci|ci−1) , where the class ci of the pre-
dicted word wi is conditioned on the class ci−1 of
the previous word wi−1 . Goodman (2001b) altered
this model so that ci is conditioned directly upon
wi−1 , hence: P (wi|wi−1) = P (wi|ci)P (ci|wi−1) .
This new model fractionates the history more, but it
allows for a large speedup in hypothesizing an ex-
change since the history doesn’t change. The re-
sulting partially lexicalized (one-sided) class model
gives the accompanying predictive exchange al-
gorithm (Goodman, 2001b; Uszkoreit and Brants,
2008) a time complexity ofO((B+ |V |)× |C| × I)
where B is the number of unique bigrams in the
training set.4 We introduce a set of improvements
to this algorithm to enable high-quality large-scale
word clusters.

3 BIRA Predictive Exchange

We developed a bidirectional, interpolated, refining,
and alternating (BIRA) predictive exchange algo-
rithm. The goal of BIRA is to produce better clusters
by using multiple, changing models to escape local
optima. This uses both forward and reversed bigram
class models to improve cluster quality by evaluat-
ing log-likelihood on two different models. Unlike
using trigrams, bidirectional bigram models only
linearly increase time and memory requirements,
and in fact some data structures can be shared. The
two directions are interpolated to allow softer inte-

1https://github.com/moses-smt/mgiza
2http://cistern.cis.lmu.de/marlin
3http://bit.ly/1VJwZ7n
4Green et al. (2014) provide a Free implementation of

the original predictive exchange algorithm within the Phrasal
MT system, at http://nlp.stanford.edu/phrasal .
Another implementation is in the Cicada semiring MT system.

gration of these two models:

P (wi|wi−1, wi+1) , P (wi|ci) (1)

· (λP (ci|wi−1)
+ (1− λ)P (ci|wi+1))

The interpolation weight λ for the forward direction
alternates to 1− λ every a iterations (i):

λi :=

{
1− λ0 if i mod a = 0
λ0 otherwise

(2)

Figure 1 illustrates the benefit of this λ-inversion to
help escape local minima, with lower training set
perplexity by inverting λ every four iterations:

●

●

● ● ● ● ● ● ● ● ● ● ● ●

650

700

750

800

5 10
Iteration

P
er

pl
ex

ity

Clusterer

●
Predictive
Exchange

+Rev

Figure 1: Training set perplexity using lambda inversion

(+Rev), using 100M tokens of the Russian News Crawl

(cf. §4.1). Here a = 4, λ0 = 1, and |C| = 800 .

The time complexity isO(2×(B+|V |)×|C|×I) .
The original predictive exchange algorithm can be
obtained by setting λ = 1 and a = 0 .5

Another innovation, both in terms of cluster qual-
ity and speed, is cluster refinement. The vocabulary
is initially clustered into |G| sets, where |G| � |C|,
typically 2–10 . After a few iterations (i) of this,
the full partitioning Cf is explored. Clustering G
converges very quickly, typically requiring no more
than 3 iterations.6

|C|i :=

{
|G| if i ≤ 3
|C|f otherwise

(3)

The intuition behind this is to group words first
into broad classes, like nouns, verbs, adjectives, etc.
In contrast to divisive hierarchical clustering and
coarse-to-fine methods (Petrov, 2009), after the ini-
tial iterations, the algorithm is still able to exchange

5The time complexity isO((B+ |V |)× |C| × I) if λ = 1 .
6The piecewise definition could alternatively be conditioned

upon a percentage threshold of moved words.

1170

Pre
dE
x

+B
iDi

+R
efi
ne

+R
ev

+B
iDi
+R

efi
ne

+R
ev
+R

efi
ne

+B
iDi
+R

ev

+B
iDi
+R

ev
+R

efi
ne

450

500

550

Pe
rp
le
xi
ty

Russian News Crawl, T=100M, |C|=800

Figure 2: Development set PP of combinations of improve-

ments to predictive exchange (cf. §3), using 100M tokens of the

Russian News Crawl, with 800 word classes.

any word to any cluster—there is no hard constraint
that the more refined partitions be subsets of the ini-
tial coarser partitions. This gives more flexibility
in optimizing on log-likelihood, especially given the
noise that naturally arises from coarser clusterings.
We explored cluster refinement over more stages
than just two, successively increasing the number of
clusters. We observed no improvement over the two-
stage method described above.

Each BIRA component can be applied to any
exchange-based clusterer. The contributions of each
of these are shown in Figure 2, which reports the
development set perplexities (PP) of all combina-
tions of BIRA components over the original pre-
dictive exchange algorithm. The data and con-
figurations are discussed in more detail in Sec-
tion 4. The greatest PP reduction is due to using
lambda inversion (+Rev), followed by cluster re-
finement (+Refine), then interpolating the bidirec-
tional models (+BiDi), with robust improvements
by using all three of these—an 18% reduction in
perplexity over the predictive exchange algorithm.
We have found that both lambda inversion and clus-
ter refinement prevent early convergence at local op-
tima, while bidirectional models give immediate and
consistent training set PP improvements, but this is
attenuated in a unidirectional evaluation.

We observed that most of the computation for the
predictive exchange algorithm is spent on the log-
arithm function, calculating δ ← δ − N(w, c) ·
logN(w, c) .7 Since the codomain of N(w, c) is

7δ is the change in log-likelihood, and N(w, c) is the count

N0 , and due to the power law distribution of the al-
gorithm’s access to these entropy terms, we can pre-
compute N · logN up to, say 10e+7, with minimal
memory requirements.8 This results in a consider-
able speedup of around 40% .

4 Experiments

Our experiments consist of both intrinsic and extrin-
sic evaluations. The intrinsic evaluation measures
the perplexity (PP) of two-sided class-based models
for English and Russian, and the extrinsic evalua-
tion measures BLEU scores of phrase-based MT of
Russian↔English and Japanese↔English texts.

4.1 Class-based Language Model Evaluation
In this task we used 400, 800, and 1200 classes
for English, and 800 classes for Russian. The data
comes from the 2011–2013 News Crawl monolin-
gual data of the WMT task.9 For these experiments
the data was deduplicated, shuffled, tokenized, digit-
conflated, and lowercased. In order to have a large
test set, one line per 100 of the resulting (shuffled)
corpus was separated into the test set.10 The min-
imum count threshold was set to 3 occurrences in
the training set. Table 1 shows information on the
resulting corpus.

Corpus Tokens Types Lines
English Train 1B 2M 42M
English Test 12M 197K 489K
Russian Train 550M 2.7M 31M
Russian Test 6M 284K 313K

Table 1: Monolingual training & test set sizes.

The clusterings are evaluated on the PP of an ex-
ternal 5-gram unidirectional two-sided class-based
language model (LM). The n-gram-order interpola-
tion weights are tuned using a distinct development
set of comparable size and quality as the test set.

Table 2 and Figure 3 show perplexity results us-
ing a varying number of classes. Two-sided ex-
change gives the lowest perplexity across the board,
although this is within a two-sided LM evaluation.

of a given word followed by a given class.
8This was independently discovered in Botros et al. (2015).
9http://www.statmt.org/wmt15/

translation-task.html
10The data setup script is at http://www.dfki.de/

˜jode03/naacl2016.sh .

1171

●

●

●140

160

180

200

220

400 600 800 1000 1200
Number of Classes

P
er

pl
ex

ity

Clusterer

● BIRA

Brown

2−Sided Exchange

Pred. Exchange

English News Crawl, T = 109

Figure 3: 5-gram two-sided class-based LM perplexities for

various clusterers on English News Crawl varying the number

of classes.

We also evaluated clusters derived from word2vec
(Mikolov et al., 2013) using various configura-
tions11, and all gave poor perplexities. BIRA gives
better perplexities than both the original predictive
exchange algorithm and Brown clusters.12 The Rus-
sian experiments yielded higher perplexities for all
clusterings, but otherwise the same comparative re-
sults.

Training Set 2-Side Ex. BIRA Brown Pred. Ex.
EN, |C| = 400 193.3 197.3 201.8 220.5
EN, |C| = 800 155.0 158.1 160.2 178.3
EN, |C| = 1200 138.4 140.4 141.5 157.6
RU, |C| = 800 322.4 340.7 350.4 389.3

Table 2: 5-gram two-sided class-based LM perplexities.

In general Brown clusters give slightly worse
results relative to exchange-based clusters, since
Brown clustering requires an early, permanent
placement of frequent words, with further re-
strictions imposed on the |C|-most frequent
words (Liang, 2005).13 Liang-style Brown cluster-
ing is only efficient on a small number of clusters,
since there is a |C|2 term in its time complexity.

11Negative sampling & hierarchical softmax; CBOW & skip-
gram; various window sizes; various dimensionalities.

12For the two-sided exchange we used mkcls; for the origi-
nal pred. exchange we used Phrasal’s clusterer; for Brown clus-
tering we used Percy Liang’s brown-cluster (329dc). All had
min-count=3, and all but mkcls (which is not multithreaded)
had threads=12, iterations=15.

13Recent work by Derczynski and Chester (2016) loosens
some restrictions on Brown clustering.

Training Set mkcls BIRA Brown Phrasal
EN, |C| = 400 39.0 1.0 2.3 3.1
EN, |C| = 800 48.8 1.4 12.5 5.1
EN, |C| = 1200 68.8 1.7 25.5 6.2
RU, |C| = 800 75.0 1.5 14.6 5.5

Table 3: Clustering times (hours) of full training sets. Mkcls

implements two-sided exchange, and Phrasal implements one-

sided predictive exchange.

The original predictive exchange algorithm has
a more fractionated history than the two-sided
exchange algorithm. Interestingly, increasing the
number of clusters causes a convergence in the
word clusterings themselves, while also causing
a divergence in the time complexities of these
two varieties of the exchange algorithm. The
metaheuristic techniques employed by the two-
sided clusterer mkcls can be applied to other
exchange-based clusterers—including ours—for
further improvements.

Table 3 presents wall clock times using the full
training set, varying the number of word classes
|C| (for English).14 The predictive exchange-based
clusterers (BIRA and Phrasal) exhibit slow increases
in time as the number of classes increases, while the
others (Brown and mkcls) are much more sensi-
tive to |C| . Our BIRA-based clusterer is three times
faster than Phrasal for all these sets.

We performed an additional experiment, adding
more English News Crawl training data.15 Our
implementation took 3.0 hours to cluster 2.5 bil-
lion training tokens, with |C| = 800 using modest
hardware.14

4.2 Machine Translation Evaluation
We also evaluated the BIRA predictive exchange al-
gorithm extrinsically in machine translation. As dis-
cussed in Section 1, word clusters are employed in a
variety of ways within machine translation systems,
the most common of which is in word alignment
where mkcls is widely used. As training sets get
larger every year, mkcls struggles to keep pace, and

14All time experiments used a 2.4 GHz Opteron 8378 featur-
ing 16 threads.

15Adding years 2008–2010 and 2014 to the existing training
data. This training set was too large for the external class-based
LM to fit into memory, so no perplexity evaluation of this clus-
tering was possible.

1172

is a substantial time bottleneck in MT pipelines with
large datasets.

We used data from the Workshop on Ma-
chine Translation 2015 (WMT15) Russian↔English
dataset and the Workshop on Asian Translation 2014
(WAT14) Japanese↔English dataset (Nakazawa et
al., 2014). Both pairs used standard configurations,
like truecasing, MeCab segmentation for Japanese,
MGIZA alignment, grow-diag-final-and phrase ex-
traction, phrase-based Moses, quantized KenLM 5-
gram modified Kneser-Ney LMs, and MERT tuning.

|C| EN-RU RU-EN EN-JA JA-EN
10 20.8→20.9∗ 26.2→26.0 23.5→23.4 16.9→16.8
50 21.0→21.2∗ 25.9→25.7 24.0→23.7∗ 16.9→16.9

100 20.4→21.1 25.9→25.8 23.8→23.5 16.9→17.0
200 21.0→20.8 25.8→25.9 23.8→23.4 17.0→16.8
500 20.9→20.9 25.8→25.9∗ 24.0→23.8 16.8→17.1∗

1000 20.9→21.1 25.9→26.0∗∗ 23.6→23.5 16.9→17.1

Table 4: BLEU scores (mkcls→BIRA) and significance across

cluster sizes (|C|).

The BLEU score differences between using
mkcls and our BIRA implementation are small but
there are a few statistically significant changes, us-
ing bootstrap resampling (Koehn, 2004). Table 4
presents the BLEU score changes across varying
cluster sizes (*: p-value< 0.05, **: p-value< 0.01).
MERT tuning is quite erratic, and some of the BLEU

differences could be affected by noise in the tun-
ing process in obtaining quality weight values. Us-
ing our BIRA implementation reduces the translation
model training time with 500 clusters from 20 hours
using mkcls (of which 60% of the time is spent on
clustering) to just 8 hours (of which 5% is spent on
clustering).

5 Conclusion

We have presented improvements to the predictive
exchange algorithm that address longstanding draw-
backs of the original algorithm compared to other
clustering algorithms, enabling new directions in us-
ing large scale, high cluster-size word classes in
NLP.

Botros et al. (2015) found that the one-sided
model of the predictive exchange algorithm pro-
duces better results for training LSTM-based lan-
guage models compared to two-sided models, while

two-sided models generally give better perplexity in
class-based LM experiments. Our paper shows that
BIRA-based predictive exchange clusters are com-
petitive with two-sided clusters even in a two-sided
evaluation. They also give better perplexity than the
original predictive exchange algorithm and Brown
clustering.

The software is freely available at https://
github.com/jonsafari/clustercat .

Acknowledgements

We would like to thank Hermann Ney and Kazuki
Irie, as well as the reviewers for their useful com-
ments. This work was supported by the QT21
project (Horizon 2020 No. 645452).

References

Rami Botros, Kazuki Irie, Martin Sundermeyer, and
Hermann Ney. 2015. On Efficient Training of
Word Classes and their Application to Recurrent Neu-
ral Network Language Models. In Proceedings of
INTERSPEECH-2015, pages 1443–1447, Dresden,
Germany.

Peter E. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. 1993. The Mathematics
of Statistical Machine Translation: Parameter Estima-
tion. Computational Linguistics, 19(2):263–311.

Marie Candito and Djamé Seddah. 2010. Pars-
ing Word Clusters. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 76–84, Los
Angeles, CA, USA.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and
Chris Dyer. 2013. Translating into Morphologically
Rich Languages with Synthetic Phrases. In Proceed-
ings of EMNLP, pages 1677–1687, Seattle, WA, USA.

Colin Cherry. 2013. Improved Reordering for Phrase-
Based Translation using Sparse Features. In Proceed-
ings of NAACL-HLT, pages 22–31, Atlanta, GA, USA.

Alexander Clark. 2003. Combining Distributional and
Morphological Information for Part of Speech Induc-
tion. In Proceedings of EACL, pages 59–66.

Leon Derczynski and Sean Chester. 2016. Generalised
Brown Clustering and Roll-up Feature Generation. In
Proceedings of AAAI, Phoenix, AZ, USA.

Nadir Durrani, Philipp Koehn, Helmut Schmid, and
Alexander Fraser. 2014. Investigating the Usefulness
of Generalized Word Representations in SMT. In Pro-
ceedings of Coling, pages 421–432, Dublin, Ireland.

1173

Joshua Goodman. 2001a. Classes for Fast Maximum
Entropy Training. In Proceedings of ICASSP, pages
561–564.

Joshua T. Goodman. 2001b. A Bit of Progress in Lan-
guage Modeling, Extended Version. Technical Report
MSR-TR-2001-72, Microsoft Research.

Spence Green, Daniel Cer, and Christopher Manning.
2014. An Empirical Comparison of Features and Tun-
ing for Phrase-based Machine Translation. In Proc. of
WMT, pages 466–476, Baltimore, MD, USA.

Reinhard Kneser and Hermann Ney. 1993. Im-
proved clustering techniques for class-based statis-
tical language modelling. In Proceedings of EU-
ROSPEECH’93, pages 973–976, Berlin, Germany.

Philipp Koehn and Hieu Hoang. 2007. Factored Trans-
lation Models. In Proceedings of EMNLP-CoNLL,
pages 868–876, Prague, Czech Republic.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP, pages 388–395.

Lingpeng Kong, Nathan Schneider, Swabha
Swayamdipta, Archna Bhatia, Chris Dyer, and
Noah A. Smith. 2014. A Dependency Parser for
Tweets. In Proceedings of EMNLP, pages 1001–1012,
Doha, Qatar.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple Semi-supervised Dependency Parsing. In Pro-
ceedings of ACL: HLT, pages 595–603, Columbus,
OH, USA.

Percy Liang. 2005. Semi-Supervised Learning for Natu-
ral Language. Master’s thesis, MIT.

Sven Martin, Jörg Liermann, and Hermann Ney. 1998.
Algorithms for Bigram and Trigram Word Clustering.
Speech Communication, 24(1):19–37.

Tomáš Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. In Workshop Proceedings of
the International Conference on Learning Representa-
tions (ICLR), Scottsdale, AZ, USA.

Scott Miller, Jethran Guinness, and Alex Zamanian.
2004. Name Tagging with Word Clusters and Discrim-
inative Training. In Susan Dumais, Daniel Marcu, and
Salim Roukos, editors, Proceedings of HLT-NAACL,
pages 337–342, Boston, MA, USA.

Andriy Mnih and Geoffrey Hinton. 2009. A Scalable Hi-
erarchical Distributed Language Model. In D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, editors, Ad-
vances in NIPS-21, volume 21, pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal Probabilistic Neural Network Language Model. In
Proceedings of AISTATS, volume 5, pages 246–252.

Thomas Müller and Hinrich Schütze. 2015. Robust Mor-
phological Tagging with Word Representations. In

Proceedings of NAACL, pages 526–536, Denver, CO,
USA.

Toshiaki Nakazawa, Hideya Mino, Isao Goto, Sadao
Kurohashi, and Eiichiro Sumita. 2014. Overview of
the first Workshop on Asian Translation. In Proceed-
ings of the Workshop on Asian Translation (WAT).

Franz Josef Och and Hermann Ney. 2000. A Comparison
of Alignment Models for Statistical Machine Trans-
lation. In Proceedings of Coling, pages 1086–1090,
Saarbrücken, Germany.

Franz Josef Och. 1995. Maximum-Likelihood-
Schätzung von Wortkategorien mit Verfahren der kom-
binatorischen Optimierung. Bachelor’s thesis (Studi-
enarbeit), Friedrich-Alexander-Universität Erlangen-
Nürnburg, Germany.

Slav Petrov. 2009. Coarse-to-Fine Natural Language
Processing. Ph.D. thesis, University of California at
Berkeley, Berkeley, CA, USA.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition. In
Proc. of CoNLL, pages 147–155, Boulder, CO, USA.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named Entity Recognition in Tweets: An Ex-
perimental Study. In Proceedings of EMNLP 2011,
pages 1524–1534, Edinburgh, Scotland.

Attapol Rutherford and Nianwen Xue. 2014. Discover-
ing Implicit Discourse Relations Through Brown Clus-
ter Pair Representation and Coreference Patterns. In
Proc. of EACL, pages 645–654, Gothenburg, Sweden.

Sara Stymne. 2012. Clustered Word Classes for Pre-
ordering in Statistical Machine Translation. In Pro-
ceedings of the Joint Workshop on Unsupervised and
Semi-Supervised Learning in NLP, pages 28–34, Avi-
gnon, France.

Oscar Täckström, Ryan McDonald, and Jakob Uszkor-
eit. 2012. Cross-lingual Word Clusters for Direct
Transfer of Linguistic Structure. In Proceedings of
NAACL:HLT, pages 477–487, Montréal, Canada.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceed-
ings of ACL, pages 384–394, Uppsala, Sweden.

Jakob Uszkoreit and Thorsten Brants. 2008. Distributed
Word Clustering for Large Scale Class-Based Lan-
guage Modeling in Machine Translation. In Proc. of
ACL: HLT, pages 755–762, Columbus, OH, USA.

Joern Wuebker, Stephan Peitz, Felix Rietig, and Hermann
Ney. 2013. Improving Statistical Machine Translation
with Word Class Models. In Proceedings of EMNLP,
pages 1377–1381, Seattle, WA, USA.

Andreas Zollmann and Stephan Vogel. 2011. A Word-
Class Approach to Labeling PSCFG Rules for Ma-
chine Translation. In Proceedings of ACL-HLT, pages
1–11, Portland, OR, USA.

1174

Proceedings of NAACL-HLT 2016, pages 1175–1180,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Integrating Morphological Desegmentation into Phrase-based Decoding

Mohammad Salameh† Colin Cherry‡ Grzegorz Kondrak†

†Department of Computing Science ‡National Research Council Canada
University of Alberta 1200 Montreal Road

Edmonton, AB, T6G 2E8, Canada Ottawa, ON, K1A 0R6, Canada
{msalameh,gkondrak}@ualberta.ca Colin.Cherry@nrc-cnrc.gc.ca

Abstract

When translating into a morphologically com-
plex language, segmenting the target language
can reduce data sparsity, while introducing
the complication of desegmenting the system
output. We present a method for decoder-
integrated desegmentation, allowing features
that consider the desegmented target, such as a
word-level language model, to be considered
throughout the entire search space. Our re-
sults on a large-scale, English to Arabic trans-
lation task show significant improvement over
the 1-best desegmentation baseline.

1 Introduction

State-of-the-art systems for translating into morpho-
logically complex languages, such as Arabic, em-
ploy morphological segmentation of the target lan-
guage in order to reduce data sparsity and improve
translation quality. For example, the Arabic word
Ñî �DËðYË ldwlthm “for their country” is segmented
into the prefix +Ë l+ “for”, the stem �éËðX dwlp “coun-
try” and the suffix Ñë+ +hm “their.” The segmen-
tation sometimes involves performing orthographic
normalizations, such as transforming the stem-final t
to p. The result is not only a reduction in the number
of word types, but also better token-to-token corre-
spondence with the source language.

Morphological segmentation is typically per-
formed as a pre-processing step before the train-
ing phase, which results in a model that translates
the source language into segmented target language.
Desegmentation is the process of transforming the
segmented output into a readable word sequence,

which can be performed using a table lookup com-
bined with a small set of rules. Desegmentation is
usually applied to the 1-best output of the decoder.
However, this pipeline suffers from error propaga-
tion: errors made during decoding cannot be cor-
rected, even when desegmentation results in an ille-
gal or extremely unlikely word. Two principal types
of solutions have been proposed for this problem:
rescoring and phrase-table desegmentation.

The rescoring approach desegments either an
n-best list (Oflazer and Durgar El-Kahlout, 2007)
or lattice (Salameh et al., 2014), and then re-ranks
with features that consider the desegmented word
sequence of each hypothesis. Rescoring features
include the score from an unsegmented target lan-
guage model and contiguity indicators that flag
target words that were translated from contiguous
source tokens. Rescoring widens the desegmenta-
tion pipeline, allowing desegmentation features to
reduce the number of translation errors. However,
these features are calculated for only a subset of the
search space, and the extra rescoring step compli-
cates the training and translation processes.

Phrase-table desegmentation (Luong et al., 2010)
also translates into a segmented target language,
but alters training to perform word-boundary-aware
phrase extraction. The extracted phrases are con-
strained to contain only complete target words, with-
out any dangling affixes. With this restriction in
place, the phrase table can be desegmented before
decoding begins, allowing the decoder to track fea-
tures over both the segmented and desegmented
target. This ensures that desegmentation features
are integrated into the complete search space, and

1175

side-steps the complications of rescoring. How-
ever, Salameh et al. (2015) show experimentally that
these benefits are not worth giving up phrase-pairs
with dangling affixes, which are eliminated by word-
boundary-aware phrase extraction.

We present a method for decoder-integrated de-
segmentation that combines the strengths of these
two approaches. Like a rescoring approach, it places
no restrictions on what morpheme sequences can ap-
pear in the target side of a phrase pair. Like phrase-
table desegmentation, its desegmentation features
are integrated directly into decoding and considered
throughout the entire search space. We achieve this
by augmenting the decoder to desegment hypotheses
on the fly, allowing the inclusion of an unsegmented
language model and other features. Our results on
a large-scale, NIST-data English to Arabic transla-
tion task show significant improvements over the 1-
best desegmentation baseline, and match the perfor-
mance of the state-of-the-art lattice desegmentation
approach of Salameh et al. (2014), while eliminating
the complication and cost of its rescoring step. Our
approach is implemented as a single stateful feature
function in Moses (Koehn et al., 2007), which we
will submit back to the community.

2 Method

Our approach extends the multi-stack phrase-based
decoding paradigm to enable the extraction of word-
level features inside morpheme-segmented models.1

We assume that the target side of the parallel cor-
pus has been segmented into morphemes with pre-
fixes and suffixes marked.2 This allows us to define
a complete word as a maximal morpheme sequence
consisting of 0 or more prefixes, followed by at most
one stem, and then 0 or more suffixes.

We also assume access to a desegmentation func-
tion that takes as input a morpheme sequence match-
ing the above definition, and returns the correspond-
ing word as output. Depending on the complexity of
the segmentation, desegmentation can be achieved
through simple concatenation, a small set of rules,
a statistical table (Badr et al., 2008), or a statis-

1The ideas presented here could also be applied to hierarchi-
cal decoding, which would require generalizing them to account
for right context as well as left.

2Throughout this paper, we use a token-final “+” to denote a
prefix, and a token-initial “+” for a suffix.

tical transducer (Salameh et al., 2013). El Kholy
and Habash (2012) provide an extensive study on
the influence of segmentation and desegmentation
on English-to-Arabic SMT. In this work, we adopt
the Table+Rules technique of El Kholy and Habash
(2012) for English-Arabic SMT. The technique re-
lies on a look-up table that stores mappings of
segmented-unsegmented forms, and falls back on
manually crafted rules for segmented sequences not
found in the table. When a segmented form has mul-
tiple desegmentation options available in the table,
we select the most frequent option.

The output of a phrase-based decoder is built from
left to right, and at each step, a hypothesis is ex-
panded with a phrasal translation of a previously un-
covered source segment. We augment this process
with in-decoder desegmentation, which monitors the
target sequence of each translation hypothesis as it
grows, detecting morpheme sequences that corre-
spond to complete words and desegmenting them on
the fly to generate new features. This is described in
detail in Section 2.1.

The task of determining whether a word is com-
plete is non-trivial. We are never sure if we will
see another suffix as we expand the hypothesis, so
we can only recognize a complete word as we begin
the next word. For example, take hyp1 in Figure 1.
This hypothesis ends with a stem nšr, which may
end a complete word, as is the case when we ex-
pand to hyp2, or may represent a word that is still in
progress, which occurs as we extend to hyp3. This
means that the word-based scoring of the morpheme
sequence l+ nšr must be delayed or approximated
until we know what follows. A related challenge
involves scoring phrase-pairs out of context, as is
required for future-cost estimates. Take, for exam-
ple, the target phrase +h AfkAr added by hyp3 in
Figure 1. Without the context, we have insufficient
information at the left boundary to score +h with
word-based models, while AfkAr at the right bound-
ary may or may not form a complete word. Here,
there is no choice but to approximate. The quality
of these approximations and the length of our delays
will determine how effective our new features will
be when incorporated into beam search.

1176

Figure 1: Decoding the Arabic translation of the phrase “to

spread his ideas through”.

2.1 Decoder Integration

A typical phrase-based decoder represents a hy-
pothesis with a state that contains the information
to guide search and calculate features, such as the
source coverage vector and the target context for the
language model. Hypotheses with identical states
can be recombined to improve search efficiency. We
augment the state with two structures: (1) a buffer
Q containing all of the morphemes that contribute
to the current word in progress, represented as a
queue of tokens; and (2) n-gram context C for the
word-level target language model. The search’s
initial state begins with an empty Q and with n-1
beginning-of-sentence tokens in C.

When a state is extended with a target phrase P,
we update the in-decoder desegmentation structures
Q and C with Algorithm 1. Tokens are appended
to Q until a token t would begin a new word, at
which point the tokens from Q are desegmented and
the resulting word is used to calculate features and
update the target context. Following the lower de-
coding path in Figure 1, Q would be emptied and
desegmented first during hyp3 when t = AfkAr, cal-
culating features for W = lnšrh.

The main cost of in-decoder desegmentation
comes from maintaining the context necessary to
evaluate the n-gram, word-level language model.
As each desegmented word in C will correspond
to at least one segmented token, the system’s effec-
tive language-model order in terms of segmented to-
kens will frequently be much larger than n. Storing
larger language-model contexts make it less likely
that states will be equal to one another, which re-
duces the amount of recombination the system can
do, and increases the number of states that must be
expanded during search.

Algorithm 1 Desegmentation State Update
1: Input: State variables Q, C
2: Input: Extending phrase P
3: for each token t in P do
4: if t cannot continue the word in Q then
5: W = Desegmentation of tokens in Q
6: Extract word-level features for W
7: (Word-level LM score is p(W |C))
8: Update current feature vector
9: Update C with W

10: Empty Q
11: Append token t to Q

2.2 Delayed and Optimistic Scoring

In the above approach, desegmentation and feature
scoring are applied only when a complete word is
formed. We refer to this as delayed scoring because
the features for a token are not applied until other to-
kens have been added to the hypothesis. For exam-
ple, in Figure 1, the tokens l+ nšr added in hyp1 are
not evaluated with word-level features until hyp2 or
hyp3 completes the word. This delay results in inac-
curate scoring of hypotheses, as the cost from these
tokens is hidden until Q is emptied. These inaccu-
racies can lead to poor pruning choices and search
errors during beam search.

Alternatively, we can perform optimistic scoring,
which tries to score the contents ofQ as early as pos-
sible. In this case, we assume that the contents of Q
form a complete word, without waiting for the next
token to confirm it. With each hypothesis extension,
when the last token in P is processed and added to
the queue, we desegment the contents of Q and ex-
tract features, but without emptying Q. The scores
of these features are cached in a variable S that does
not affect recombination, as the scores are determin-
istic given Q, C and the model. When a later token
confirms the end of the word, we subtract S from the
scores derived from the actual desegmented word,
to account for our earlier approximation. Note that
for a Q containing only a prefix, we must still delay
scoring.

2.3 Features

Three features are extracted from each desegmented
form: an unsegmented language model, contiguity

1177

indicators, and a desegmented word penalty.
The unsegmented n-gram language model scores

W in the context of C, as shown in Algorithm 1.
This language model will heavily penalize mal-
formed Arabic words, as they will appear as out-
of-vocabulary items. Furthermore, it will evalu-
ate well-formed Arabic words in a larger, word-
level context, complementing the morpheme-level
n-gram language model that is naturally included in
SMT systems built over a segmented target.

We also implement the contiguity features pro-
posed by Salameh et al. (2014). These indicators
check if the desegmented form is generated from
a contiguous block of source tokens, a block with
1 discontiguity, or a block with multiple disconti-
guities. These features enable the decoder to pre-
fer desegmented words whose component segments
were translated from contiguous or nearly contigu-
ous source sequences. This encourages the system
to select a more local, and hopefully safer, transla-
tion path when possible.

Finally, most phrase-based decoders incorporate
a “word penalty” feature that counts the number of
target tokens in a hypothesis. When the target lan-
guage has been segmented into morphemes, this ac-
tually corresponds to a morpheme penalty. However,
with in-decoder desegmentation, we now have the
option to count either words or morphemes. There is
reason to believe that by counting words, instead of
morphemes, we will give the system greater control
over the length of its output word sequence, which
is particularly relevant because of BLEU’s brevity
penalty. We try both options in our experiments.
Unfortunately, the obvious solution of including two
features, a word count and a morpheme count, did
not perform well during development.

2.4 Future costs
For future cost estimates, we must also provide out-
of-context feature scores for each phrase-pair in our
system. To do so, we ignore suffixes appearing at
the beginning of a target phrase and prefixes appear-
ing at the end. We assume that the remaining to-
kens form complete words, and desegment and score
them to provide out-of-context scores. We also con-
sider dangling affixes as half words, with a count of
0.5, for out-of-context scoring of the word penalty
feature.

3 Experiments

We use the NIST 2012 dataset (1.49 million sen-
tence pairs excluding UN pairs) to train an English-
to-Arabic system. The system is tuned with the
NIST 2004 (1353 pairs) evaluation set and tested us-
ing NIST 2005 (1056 sentences) and the newswire
portion of NIST 2008 (813 pairs) and NIST 2009
(586 pairs). As there are multiple English reference
translations provided for these evaluation sets, we
use the first reference as our source text.

The Arabic part of the training set is mor-
phologically segmented and tokenized by MADA
3.2 (Habash et al., 2009) using the Penn Arabic
Treebank (PATB) segmentation scheme. Variants
of Alif and Ya characters are uniformly normalized.
We generate a desegmentation table from the Arabic
side of the training data by collecting mappings of
segmented forms to surface forms.

We align the parallel data with GIZA++ (Och et
al., 2003), and decode with Moses (Koehn et al.,
2007). The decoder’s log-linear model uses a stan-
dard feature set, including four phrase table scores,
six features from a lexicalized distortion model,
along with a phrase penalty and a distance-based
distortion penalty. KN-smoothed 5-gram language
models are trained on both the segmented and un-
segmented views of the target side of the parallel
data. We experiment with word penalties based on
either morphemes or desegmented words. The de-
coder uses Moses’ default search parameters, ex-
cept for the maximum phrase length, which is set
to 8, and the translation table limit, which is set to
40. The decoder’s log-linear model is tuned with
MERT (Och, 2003) using unsegmented Arabic ref-
erence translations. When necessary, we desegment
our 100-best-lists before MERT evaluates each hy-
pothesis. We evaluate with BLEU (Papineni et al.,
2002) measured on unsegmented Arabic, and test
statistical significance with multeval (Clark et al.,
2011) over 3 tuning replications.

We test four systems that differ in their deseg-
mentation approach. The NoSegm. baseline in-
volves no segmentation. The One-best baseline
translates into segmented Arabic and desegments the
decoder’s 1-best output. The Lattice system is the
lattice-desegmentation approach of Salameh et al.
(2014). We implement our in-Decoder desegmenta-

1178

System WP mt05 mt08 mt09
NoSegm. word 33.2 18.6 25.6
One-best morph. 33.8 19.1 26.8
Lattice morph. 34.4 19.7 27.4

Delayed morph. 34.1 19.4 27.0
word 34.1 19.5 26.8

Optimistic morph. 34.2 19.6 27.2
word 34.5 19.7 27.2

Table 1: Evaluation of the desegmentation methods using

BLEU score. Both Delayed and Optimistic refer to in-Decoder

Desegmentation method used. WP shows whether Word

Penalty feature is based on a complete desegmented word or

a morpheme.

tion approach as a feature functions in Moses, test-
ing scoring variants (delayed vs. optimistic), and
word penalty variants (morpheme vs. word).

Table 1 shows the results on three NIST test sets,
each averaged over 3 tuning replications. The lat-
tice approach is significantly better than the 1-best
system, which in turn is significantly better than the
unsegmented baseline. Our Optimistic in-decoder
approach with word penalty calculated on word to-
kens is significantly (p < 0.05) better than the 1-best
approach, and effectively matches the quality of the
more complex lattice approach.

All of the systems with word-level features im-
prove over 1-best desegmentation, as their features
penalize desegmentations resulting in illegal words
or unlikely word sequences. We see a small, con-
sistent benefit from optimistic scoring. Error anal-
ysis reveals that translations with many consecu-
tive stems benefit the most from this variant, which
makes sense, as our approximations would be exact
in these cases. Using a word penalty calculated on
word tokens appears to work slightly better on aver-
age than one calculated on morphemes.

Typically, one would hope to surpass a rescoring
approach with decoder integration; however, our lat-
tice implementation fully searches its lattice, even
if composition with the word-level language model
would cause the lattice to explode in size. That is,
lattice desegmentation has an advantage, as it trades
time-efficiency for a perfect search that ignores the
complexity introduced by expanded n-gram con-
text. A lattice beam search that dynamically calcu-
lates word-level language model scores while prun-

ing away unlikely paths would provide a more fair,
and more efficient, comparison point.

Lattice rescoring also involves many steps, requir-
ing one to train and tune a complete segmented sys-
tem with segmented references, then desegment lat-
tices and compose them with a word LM, and then
tune a lattice rescorer on unsegmented references.
In contrast, our system is implemented as a single
decoder feature function in Moses.3 This one func-
tion replaces the lattice desegmentation, LM com-
position, and lattice rescoring steps, greatly simpli-
fying the translation pipeline.

4 Conclusions and Future Work

We have presented a method for in-decoder deseg-
mentation, which allows a phrase-based decoder to
simultaneously consider both segmented and deseg-
mented views of the target language. We have
shown that this approach outperforms 1-best deseg-
mentation, and matches the performance of lattice
desegmentation, while eliminating the complication
of its lattice transformation and rescoring steps.

We are interested in building an unsegmented,
word-level language model that can provide mean-
ingful estimates for morphological segments, which
would improve scoring for out-of-context phrases
and incomplete words. Also, our system currently
considers only the most likely desegmentation of
each segmented word. Inspired by the disambiguat-
ing desegmentation system of El Kholy and Habash
(2012), we would like to extend our system to pro-
pose multiple desegmentation candidates for each
word, and allow the decoder to select the correct
form using its other features.

Acknowledgments

This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC).

3This function references a desegmentation table and an un-
segmented language model, which are needed to carry out Al-
gorithm 1. Even though it is conceptually one function, it pro-
duces a vector of feature scores, producing the various features
described in Section 2.3.

1179

References
Ibrahim Badr, Rabih Zbib, and James Glass. 2008. Seg-

mentation for English-to-Arabic statistical machine
translation. In Proceedings of ACL, pages 153–156.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and Noah A.
Smith. 2011. Better hypothesis testing for statistical
machine translation: Controlling for optimizer insta-
bility. In Proceedings of ACL, pages 176–181.

Ahmed El Kholy and Nizar Habash. 2012. Ortho-
graphic and morphological processing for English—
Arabic statistical machine translation. Machine Trans-
lation, 26(1-2):25–45, March.

Nizar Habash, Owen Rambow, and Ryan Roth. 2009.
Mada+tokan: A toolkit for Arabic tokenization, dia-
critization, morphological disambiguation, POS tag-
ging, stemming and lemmatization. In Khalid Choukri
and Bente Maegaard, editors, Proceedings of the Sec-
ond International Conference on Arabic Language Re-
sources and Tools, Cairo, Egypt, April. The MEDAR
Consortium.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open source
toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the Association for
Computational Linguistics Companion Volume Pro-
ceedings of the Demo and Poster Sessions, pages 177–
180, Prague, Czech Republic, June.

Minh-Thang Luong, Preslav Nakov, and Min-Yen Kan.
2010. A hybrid morpheme-word representation
for machine translation of morphologically rich lan-
guages. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing,
pages 148–157, Cambridge, MA, October.

Franz Josef Och, Hermann Ney, Franz Josef, and
Och Hermann Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29.

Franz Joseph Och. 2003. Minimum error rate training
for statistical machine translation. In Proceedings of
ACL, pages 160–167.

Kemal Oflazer and Ilknur Durgar El-Kahlout. 2007. Ex-
ploring different representational units in English-to-
Turkish statistical machine translation. In Proceedings
of the Second Workshop on Statistical Machine Trans-
lation, pages 25–32, Prague, Czech Republic, June.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2013. Reversing morphological tokenization in
English-to-Arabic SMT. In Proceedings of the 2013
NAACL HLT Student Research Workshop, pages 47–
53, Atlanta, Georgia, June.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2014. Lattice desegmentation for statistical ma-
chine translation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 100–110.

Mohammad Salameh, Colin Cherry, and Grzegorz Kon-
drak. 2015. What matters most in morphologically
segmented smt models? In Proceedings of the Ninth
Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, pages 65–73, Denver, Colorado,
USA, June. Association for Computational Linguis-
tics.

1180

Proceedings of NAACL-HLT 2016, pages 1181–1186,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

The Instantiation Discourse Relation:
A Corpus Analysis of Its Properties and Improved Detection

Junyi Jessy Li and Ani Nenkova
University of Pennsylvania

{ljunyi,nenkova}@seas.upenn.edu

Abstract

INSTANTIATION is a fairly common discourse
relation and past work has suggested that it
plays special roles in local coherence, in sen-
timent expression and in content selection in
summarization. In this paper we provide the
first systematic corpus analysis of the rela-
tion and show that relation-specific features
can improve considerably the detection of the
relation. We show that sentences involved
in INSTANTIATION are set apart from other
sentences by the use of gradable (subjec-
tive) adjectives, the occurrence of rare words
and by different patterns in part-of-speech us-
age. Words across arguments of INSTANTI-
ATION are connected through hypernym and
meronym relations significantly more often
than in other sentences and that they stand
out in context by being significantly less sim-
ilar to each other than other adjacent sentence
pairs. These factors provide substantial pre-
dictive power that improves the identification
of implicit INSTANTIATION relation by more
than 5% F-measure.

1 Introduction

In an INSTANTIATION relation, one text span ex-
plains in further detail the events, reasons, behaviors
and attitudes mentioned in the other (Miltsakaki et
al., 2008), as illustrated by the segments below:
[a] Other fundamental “reforms” of the 1986 act have been
threatened as well.

[b] The House seriously considered raising the top tax rate paid

by individuals with the highest incomes.

Sentence [a] mentions “other reforms” and a threat
to them, but leaves unspecified what are the reforms

or how they are threatened. Sentence [b] provides
sufficient detail for the reader to infer more con-
cretely what has happened.

The INSTANTIATION relation has some special
properties. A study of discourse relations as in-
dicators for content selection in single document
summarization revealed that the first sentences from
INSTANTIATION pairs are included in human sum-
maries significantly more often than other sentences
(Louis et al., 2010) and that being a first sentence
in an INSTANTIATION relation is the most powerful
indicator for content selection related to discourse
relation sense. The sentences between which the
relation holds also contain more sentiment expres-
sions than other sentences (Trnavac and Taboada,
2013), making it a special target for sentiment anal-
ysis applications. Moreover, INSTANTIATION rela-
tions appear to play a special role in local coherence
(Louis and Nenkova, 2010), as the flow between IN-
STANTIATION sentences is not explained by the ma-
jor coherence theories (Kehler, 2004; Grosz et al.,
1995). Many of the sentences in INSTANTIATION

relation contain entity instantiations (complex ex-
amples of set-instance anaphora), such as “several
EU countries”—“the UK”, “footballers”—“Wayne
Rooney” and “most cosmetic purchase”—“lipstick”
(McKinlay and Markert, 2011), raising further ques-
tions about the relationship between INSTANTIA-
TIONS and key discourse phenomena.

Detecting an INSTANTIATION, however, is hard.
In the Penn Discourse Treebank (PDTB) (Prasad et
al., 2008), INSTANTIATION is one of the few re-
lations that are more often implicit, i.e., expressed
without a discourse marker such as “for exam-

1181

ple”. Identifying implicit discourse relation is an ac-
knowledged difficult task (Braud and Denis, 2015;
Ji and Eisenstein, 2015; Rutherford and Xue, 2014;
Biran and McKeown, 2013; Park and Cardie, 2012;
Lin et al., 2009; Pitler et al., 2009), but the chal-
lenge is exacerbated due to the lack of explicit IN-
STANTIATIONs: explicit relations are shown to im-
prove their implicit counterparts using data source
expansion (Rutherford and Xue, 2015). Moreover,
detecting INSTANTIATION also involves the skewed
class distribution problem (Li and Nenkova, 2014a)
because although it is one of the largest class of im-
plicit relations, it constitutes less than 10% of all the
implicit relations annotated in the PDTB.

In this work, we identify a rich set of factors
that sets apart each sentence in an implicit INSTAN-
TIATION and the pair as a whole. We show that
these factors improve the identification of implicit
INSTANTIATION by at least 5% in F-measure and
8% in balanced accuracy compared to prior systems.

2 Presence of INSTANTIATION

We use the Penn Discourse Tree Bank (PDTB)
(Prasad et al., 2008) for the analysis and experiments
presented in this paper. There are a total of 1,747 IN-
STANTIATION relations in the PDTB, of which 83%
are implicit. INSTANTIATIONs make up 8.7% of all
implicit relations and is the 5th largest among the 16
second-level relations in the PDTB.

3 Characteristics of INSTANTIATION

We identify significant factors1 that characterize: (i)
s1 and s2: the first and second sentence in an IN-
STANTIATION pair vs. all other sentences; (ii) s1 vs.
s2: adjacent sentence pairs in INSTANTIATION rela-
tion vs. all other adjacent sentence pairs.

Our analysis is conducted on the PDTB except
section 23, which is reserved for testing as in prior
work (Lin et al., 2014; Biran and McKeown, 2015).
In total, there are 1,337 INSTANTIATION sentence
pairs and 43,934 non-INSTANTIATION sentences for
the corpus analysis.

1p < 0.05 according to paired Wilcoxon signed rank test for
real valued comparison between the two sentences in a relation,
non-paired Wilcoxon rank sum for real valued factors in dif-
ferent types of sentences, and Kruskal-Wallis for binary valued
features across different types of sentences.

s1 s2 ¬ Inst.

#words/sent 18.4∗ 26.8∗ 23.9
Table 1: Average # words. [∗]: significant (p < 0.05) com-

pared to non-instantiation sentences.

s1 s2 ¬ Inst.

%oov/sent 0.68∗ 1.54 1.46
Table 2: Average % of rare words per sentence. [∗]: significant

(p < 0.05) compared to non-instantiation sentences.

Sentence length. Intuitively, longer sentences are
more likely to involve details. Table 1 demonstrates
that there is an average of 8.4-word difference in
length between the two sentences in an INSTAN-
TIATION relation; moreover, s1s are significantly
shorter (more than 5 words on average) than other
sentences, and s2s are significantly longer.

Rare words. For each sentence, we compute the
percentage of words that are not present in the
400K vocabulary of the Glove vector representa-
tions (Pennington et al., 2014). Table 2 shows
that s1 of INSTANTIATIONs contain significantly
fewer out-of-vocabulary words compared to either
s2 and non-INSTANTIATIONs. We also compare
the difference in unigram probability2 of content
word pairs across sentence pairs, i.e., (wi, wj), wi ∈
s1, wj ∈ s2. Compared to non-INSTANTIATION,
words across INSTANTIATION arguments show sig-
nificantly larger average unigram log probability dif-
ference (1.24 vs. 1.22). These numbers show that
the first sentences of INSTANTIATION do not involve
many unfamiliar words — an indication of higher
readability (Pitler and Nenkova, 2008).

Gradable adjectives. The use of gradable ad-
jectives (Frazier et al., 2008; de Marneffe et al.,
2010)—popular, high, likely— may require further
explanation to justify the appropriateness of their
use. Here we compute the average percentage of
gradable adjectives in a sentence. The list of ad-
jectives is from Hatzivassiloglou and Wiebe (2000)
and the respective percentages are shown in Table 3.
Compared to other sentences, s1 of INSTANTIATION

involves significantly more gradable adjectives.

2We use a unigram language model on year 2006 of the New
York Times Annotated Corpus (Sandhaus, 2008).

1182

s1 s2 ¬ Inst.

%gradable adj 2.96∗ 2.22 2.22
Table 3: Average % of gradable adjectives per sentence. [∗]:
significant (p < 0.05) compared to non-instantiation sentences.

s1 > s2 CC EX JJR JJS NNS PDT RB† RBR VBG
VBN VBP VBZ†

s1 < s2 NN NNP† PRP TO VBD WRB

s1 vs ¬Inst. CD− JJ− MD− NN− NNP− NNS+ PRP−

RB+ TO− VB− VBD− VBG+ VBP+

VBZ+ WDT−

s2 vs ¬Inst. CD+ DT+ MD− NNP+ NNS+ PRP+ RB−

VB− VBN−

Table 4: POS tags significantly different in percentage com-

pared to non-instantiation. [†]: significance in non-instantiation

pairs in the other direction. [+/−]: used more/less often than

non-instantiation.

Parts of speech. We study word categories that
are heavily or rarely used with INSTANTIATION

by inspecting the percentage of part-of-speech tags
found in each sentence. In Table 4, we show
POS tags whose presence is significantly differ-
ent across arguments in INSTANTIATION but not
so across non-INSTANTIATION, with significance
in non-INSTANTIATION in the reverse direction de-
noted in †. Four cases of POS occurrences are in-
spected:

• more often in s1 compared to s2,
• more often in s2 compared to s1,
• more (+) or less (-) in s1 compared to non-

INSTANTIATION,
• more (+) or less (-) in s2 compared to non-

INSTANTIATION.

We see that s1 of INSTANTIATION contains more
characteristic POS usage than s2. There are more
comparative adjectives and adverbs as well as fewer
nouns in s1 compared to s2 in INSTANTIATION

pairs. The usage of verbs is also different between
two arguments and s1 contains more conjunctions
and existential there. On the other hand, s2 con-
tains more nouns, numbers, determiners, personal
pronouns and proper nouns, intuitively associated
with the presence of detailed information.

Wordnet relations. Here we consider word-level
relationships across arguments using Wordnet (Fell-
baum, 1998). For each noun, verb, adjective and

Relation (pos) Inst. ¬ Inst.

hypernym (n) 18.01∗ 21.63
meronym (n) 18.66∗ 15.48
holonym (n) 17.14 15.07

indirect hypernym (n) 19.17 21.03
hyponym (n) 20.33 21.75

group (v) 72.5∗ 68.7
indirect hypernym (v) 38.5∗ 41.7

hypernym (v) 76.25 74.79
hyponym (v) 80.76 78.44
entailment (v) 4.94 4.18

cause (v) 17.65 17.00

similar to (adj) 3.78 2.77
also see (adj) 6.25 5.78

Table 5: Percentage of sentence pairs with Wordnet relation-

ships. [∗]: significant (p < 0.05) compared to non-instantiation

sentence pairs.

s1 s2 ∆sim

Inst. 0.282∗ 0.275∗ 0.007
¬ Inst. 0.390 0.358 0.042∗

Table 6: Average Jaccard similarity of an adjacent sentence pair

s1, s2 with immediate context. [∗]: significant (p < 0.05)

compared to non-instantiation sentence pairs.

adverb content word pairs across arguments, we cal-
culate the percentage of sentences with each type
of Wordnet relation. Shown in Table 5, among IN-
STANTIATION sentence pairs there are significantly
more noun-noun pairs with hypernym or meronym
relationships and verbs with indirect hypernym rela-
tionship. We also observe significantly more seman-
tically similar verbs (group (v)).

Lexical similarity. Finally, we inspect the similar-
ity between sentences in each pair as well as be-
tween each sentence in a pair and their immediate
prior context; specifically:

• Between s1 and s2;
• Between s1 and C and between s2 and C,

where C denotes up to two sentences immedi-
ately before s1.

We compute the Jaccard similarity between sen-
tences using their nouns, verbs, adjectives and ad-
verbs. INSTANTIATION arguments are significantly
less similar than other adjacent sentence pairs (0.335
vs. 0.505), indicating higher difference in content.

1183

System P R F BA

Inst. specific 0.3072 0.6986 0.4268 0.7862
Vote (L&N) 0.3052 0.6438 0.4141 0.7632

L&N 0.3028 0.4521 0.3626 0.6843
B&M 0.2542 0.2055 0.2273 0.5786

Lin et al. 0.5500 0.1507 0.2366 0.5704
Brown-concat 0.1333 0.3836 0.1979 0.5919

Table 7: Precision, recall, F-measure and balanced accuracy of

identifying INSTANTIATION.

Shown in Table 6, both arguments of INSTANTI-
ATION are less similar to the immediate context.
While other sentence pairs follow the pattern that s2
is much less similar to s1’s immediate context, this
phenomenon is not significant for INSTANTIATION.

4 Experiments

In this section, we demonstrate the benefit of ex-
ploiting INSTANTIATION characteristics in the iden-
tification of the relation.

Settings. Following prior work that identifies
the more detailed (second-level) relations in the
PDTB (Biran and McKeown, 2015; Lin et al., 2014),
we use sections 2-21 as training, section 23 as test-
ing. The rest of the corpus is used for development.
The task is to predict if an implicit INSTANTIATION

relation holds between pairs of adjacent sentences in
the same paragraph. Sentence pairs with INSTANTI-
ATION relation constitute the positive class; all other
non-explicit relations3 constitute the negative class.
We use Logistic Regression with class weights in-
versely proportional to the size of each class.

Features. The factors discussed in § 3 are adopted
as the only features in the classifier. We use the av-
erage values of s1 and s2 and their difference for:
the number of words, difference in number of words
compared to the sentence before s1, the percentage
of OOVs, gradable adjectives, POS tags and Jaccard
similarity to immediate context. We use the min-
imum, maximum and average differences in word-
pair unigram log probability, and average Jaccard
similarity across sentence pairs. For Wordnet rela-
tions, we use binary features indicating the presence
of a relation.

3including AltLex, EntRel and NoRel

Results. To compare with our INSTANTIATION-
specific classifier (Inst. specific), we show results
from two state-of-the-art PDTB discourse parsers
that identify second-level relations: Biran and McK-
eown (2015) (B&M) and Lin et al. (2014). We
also compare the results with the classifier from our
prior work (Li and Nenkova, 2014b) (L&N). In that
work we introduce syntactic production-stick fea-
tures, which minimize the occurrence of zero val-
ues in instance representation. Furthermore, we re-
implemented Brown-cluster features (concatenation
of clusters in each sentence) that have been shown to
perform well in identifying INSTANTIATION’s par-
ent class EXPANSION (Braud and Denis, 2015).4

Table 7 shows the precision, recall, F-measure
and balanced accuracy (average of the accuracies
for the positive and negative class respectively) for
each system. We show balanced accuracy rather
than overall accuracy due to the highly skewed class
distribution. For Inst. specific, we use a threshold
of 0.65 for positive labels5. We also use it along
with L&N for a soft voting classifier where the la-
bel is assigned to the class with larger weighted pos-
terior probability sum from each classifier6. Both
classifiers achieved at least 5% improvement of F-
measure and 8%-10% improvement of balanced ac-
curacy compared to other systems. These improve-
ments mostly come from a dramatic improvement
in recall. The improvement achieved by the vot-
ing classifier also indicate that Inst. specific pro-
vide complementary signals to syntactic production
rules. Note that compared to Lin et al., Inst. spe-
cific behaves very differently in precision and recall,
indicating potential for further system combination.

Finally, we analyze the confusion matrix induced
by false positives and false negatives across Lin
et al., B&M, Inst. specific and soft vote7. In Ta-
ble 8, we list relations contributing at least 10%
to false positives for at least one system. Remark-
ably, INSTANTIATION is consistently confused with

4The dimension of clusters are tuned on the development
set. As in prior work, we use clusters in Turian et al. (2010).

5Tuned on development set.
6The weights are: 0.9 for L&N and 1.0 for Inst. specific,

tuned on development set. We also tried voting with Brown-
concat but it did not outperform combining with L&N.

7For other systems, we did not perform full implicit dis-
course parsing.

1184

Relation Lin et al. B&M Inst. Vote

Restatement 33.3 34.1 28.7 30.8
Cause 22.2 25.0 33.9 33.6

Contrast 22.2 6.8 9.6 10.3
Conjunction 11.1 4.5 6.1 2.8

EntRel 11.1 18.2 17.4 19.6
Table 8: Relations involved in false positives, ≥ 10% for least

one system.

a constant set of relations: RESTATEMENT, CAUSE

and EntRel. Different from other systems, the
Inst. specific classifier demonstrates more confu-
sion towards CAUSE than RESTATEMENT. On the
false negative side, all 62 mistakes are not anno-
tated (i.e., NoRel/EntRel) in Lin et al. For the 58
false negatives in B&M, we observe above 10%:
NoRel/EntRel (56.9%), CAUSE (19.0%), RESTATE-
MENT (13.8%), consistent with relations relations
involved in false positives.

5 Conclusion

We have characterized the implicit INSTANTIATION

relation by studying significant factors that discrim-
inate individual arguments and the sentence pairs
connected by the relation. We show distinctive pat-
terns in sentence length, word usage, semantic rela-
tionships between words as well as cross-argument
and contextual similarity associated with INSTANTI-
ATION. Using these factors as features we demon-
strate significant improvement on the detection of
implicit INSTANTIATION relation.

References
Or Biran and Kathleen McKeown. 2013. Aggregated

word pair features for implicit discourse relation dis-
ambiguation. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics:
Short Papers, pages 69–73.

Or Biran and Kathleen McKeown. 2015. PDTB dis-
course parsing as a tagging task: The two taggers ap-
proach. In Proceedings of the 16th Annual Meeting of
the Special Interest Group on Discourse and Dialogue,
pages 96–104.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classi-
fication. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2201–2211.

Marie-Catherine de Marneffe, Christopher D. Manning,
and Christopher Potts. 2010. “Was it good? It was
provocative.” Learning the meaning of scalar adjec-
tives. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
167–176.

Christiane Fellbaum. 1998. WordNet. Wiley Online Li-
brary.

Lyn Frazier, Charles Clifton Jr., and Britta Stolterfoht.
2008. Scale structure: Processing minimum standard
and maximum standard scalar adjectives. Cognition,
106(1):299 – 324.

Barbara J. Grosz, Scott Weinstein, and Aravind K. Joshi.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse. Computational Linguis-
tics, 21(2).

Vasileios Hatzivassiloglou and Janyce M. Wiebe. 2000.
Effects of adjective orientation and gradability on sen-
tence subjectivity. In Proceedings of the 18th Confer-
ence on Computational Linguistics - Volume 1, pages
299–305.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associa-
tion for Computational Linguistics, 3:329–344.

Andrew Kehler. 2004. Discourse coherence. The hand-
book of pragmatics, pages 241–265.

Junyi Jessy Li and Ani Nenkova. 2014a. Addressing
class imbalance for improved recognition of implicit
discourse relations. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 142–150.

Junyi Jessy Li and Ani Nenkova. 2014b. Reducing spar-
sity improves the recognition of implicit discourse re-
lations. In Proceedings of the 15th Annual Meeting of
the Special Interest Group on Discourse and Dialogue,
pages 199–207.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009 Con-
ference on Empirical Methods in Natural Language
Processing, pages 343–351.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014.
A PDTB-styled end-to-end discourse parser. Natural
Language Engineering, 20:151–184.

Annie Louis and Ani Nenkova. 2010. Creating local
coherence: An empirical assessment. In Human Lan-
guage Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 313–316.

Annie Louis, Aravind Joshi, and Ani Nenkova. 2010.
Discourse indicators for content selection in summa-
rization. In Proceedings of the SIGDIAL 2010 Confer-
ence, pages 147–156.

1185

Andrew McKinlay and Katja Markert. 2011. Modelling
entity instantiations. In Proceedings of the Interna-
tional Conference Recent Advances in Natural Lan-
guage Processing 2011, pages 268–274.

Eleni Miltsakaki, Livio Robaldo, Alan Lee, and Aravind
Joshi. 2008. Sense annotation in the Penn Discourse
Treebank. In Computational Linguistics and Intelli-
gent Text Processing, volume 4919 of Lecture Notes
in Computer Science, pages 275–286. Springer Berlin
Heidelberg.

Joonsuk Park and Claire Cardie. 2012. Improving im-
plicit discourse relation recognition through feature set
optimization. In Proceedings of the 13th Annual Meet-
ing of the Special Interest Group on Discourse and Di-
alogue, pages 108–112.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Empirical Methods in
Natural Language Processing, 12:1532–1543.

Emily Pitler and Ani Nenkova. 2008. Revisiting read-
ability: A unified framework for predicting text qual-
ity. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 186–
195.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009. Au-
tomatic sense prediction for implicit discourse rela-
tions in text. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 683–691.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0. In
Proceedings of the International Conference on Lan-
guage Resources and Evaluation.

Attapol Rutherford and Nianwen Xue. 2014. Discov-
ering implicit discourse relations through brown clus-
ter pair representation and coreference patterns. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 645–654.

Attapol Rutherford and Nianwen Xue. 2015. Improving
the inference of implicit discourse relations via classi-
fying explicit discourse connectives. In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 799–808.

Evan Sandhaus. 2008. The New York Times Annotated
Corpus LDC2008T19. Linguistic Data Consortium,
Philadelphia.

Radoslava Trnavac and Maite Taboada. 2013. Discourse
relations and affective content in the expression of sen-
timent in texts. In 11th ICGL Conference–Workshop
on The semantic field of emotions: Interdisci.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 384–394.

1186

Proceedings of NAACL-HLT 2016, pages 1187–1197,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Sparse Bilingual Word Representations for Cross-lingual Lexical Entailment

Yogarshi Vyas and Marine Carpuat
Department of Computer Science

University of Maryland
College Park, MD 20742, USA

yogarshi@cs.umd.edu, marine@cs.umd.edu

Abstract

We introduce the task of cross-lingual lexical
entailment, which aims to detect whether the
meaning of a word in one language can be in-
ferred from the meaning of a word in another
language. We construct a gold standard for
this task, and propose an unsupervised solu-
tion based on distributional word representa-
tions. As commonly done in the monolingual
setting, we assume a word e entails a word f if
the prominent context features of e are a sub-
set of those of f . To address the challenge of
comparing contexts across languages, we pro-
pose a novel method for inducing sparse bilin-
gual word representations from monolingual
and parallel texts. Our approach yields an F-
score of 70%, and significantly outperforms
strong baselines based on translation and on
existing word representations.

1 Introduction

Multilingual Natural Language Processing lacks
techniques to automatically compare and contrast
the meaning of words across languages. Machine
translation (Koehn, 2010) lets us discover transla-
tion correspondences in bilingual texts, but a word
and its translation often do not cover the exact same
semantic space: distinct word senses might trans-
late differently (Gale et al., 1992; Diab and Resnik,
2002, among others); semantic relations and asso-
ciations do not always translate, an important is-
sue when constructing multilingual ontologies (Fell-
baum and Vossen, 2012); and words in parallel text
might be translated non-literally due to lexical gaps

(Santos, 1990; Bentivogli and Pianta, 2000) or deci-
sions of the translator, as becomes clear when com-
paring multiple translations of the same source text
(Bhagat and Hovy, 2013).

As a result, correct word translations found in par-
allel corpora exhibit a variety of relations including
equivalence, hypernymy, and meronymy. For in-
stance, even after removing noisy examples (John-
son et al., 2007) from a Machine Translation bilex-
icon induced from parallel corpora (Koehn et al.,
2007), we find that the French word “appartement”
(apartment) is linked to related but not strictly equiv-
alent English words, such as “home” or “condo”.

house ||| foyer (foyer)
house ||| maison (house)
house ||| chambre (chamber)
home ||| appartement
condo ||| appartement

apartment ||| appartement
Table 1: Examples of translations drawn from an English-

French bilexicon automatically learned on parallel text.

We aim to design models that capture these differ-
ences and similarities in word meaning across lan-
guages, beyond translation correspondences. As a
first step, we introduce cross-lingual lexical entail-
ment, the task of detecting whether the meaning of
a word in one language can be inferred from the
meaning of a word in another language. In mono-
lingual settings, lexical entailment has received sig-
nificant attention as a representation-agnostic way
of modeling lexical semantics, and as a step to-
ward textual inference (Zhitomirsky-Geffet and Da-
gan, 2009; Turney and Mohammad, 2015; Levy et

1187

al., 2015; Pavlick et al., 2015). We hypothesize that
the cross-lingual task can help do the same with mul-
tilingual texts.

Building on prior work on the monolingual task,
we take an unsupervised approach, and use a direc-
tional semantic similarity metric motivated by the
distributional inclusion hypothesis (Geffet and Da-
gan, 2005a; Kotlerman et al., 2010): we assume a
word e entails a word f if the prominent context fea-
tures of e are a subset of those of f . However, we
face a new challenge in the cross-lingual case: how
can we represent and compare word contexts across
languages? Our solution leverages recent work on
sparse representations for natural language process-
ing. We develop sparse bilingual word representa-
tions that represent contexts based on interpretable
dimensions that are aligned across languages.

As we will see, this approach successfully detects
cross-lingual lexical entailment (with an F-score of
70%), and significantly outperforms strong base-
lines based (1) on machine translation, and (2) on ex-
isting dense bilingual word representations. Along
the way, we construct a new dataset to evaluate
cross-lingual lexical entailment, and also show the
benefits of our approach in the monolingual setting.

2 A Cross-Lingual View of Lexical
Entailment

Zhitomirsky-Geffet and Dagan (2009) formalize
lexical entailment as a substitutional relationship.
Under their definition, given a word pair (w, v), w
entails v if the following two conditions are fulfilled

1. The meaning of a possible sense of w implies a
possible sense of v, and

2. w can substitute for v in a sentence, such that
the meaning of the modified sentence entails
the meaning of the original sentence.

As a result, monolingual lexical entailment in-
cludes various semantic relations, such as syn-
onymy, hypernymy, some meronymy relations, but
also cause-effect relations (murder entails death),
and other associations (ocean entails water) (Kotler-
man et al., 2010).

We extend this definition to the cross-lingual case
by modifying the second condition. Given a word

pair (w′, v′), where w′ is a word in language e and
v′ is a word in language f , w′ entails v′ if

1. The meaning of a possible sense of w′ implies
a possible sense of v′, and

2. Given a sentence T in f containing v′, w′ can
substitute for v′ in the translation of T in e, such
that the meaning of the modified sentence en-
tails the meaning of the original sentence.

Cross-lingual lexical entailment helps us refine
our understanding of semantic mappings across lan-
guages: while the French word ouvrier can be trans-
lated as worker in English, knowing that worker
does not entail ouvrier could be useful in many mul-
tilingual applications, including machine translation
and its evaluation, question answering or entity link-
ing in multilingual texts.

As can be seen in Table 2, lexical entailment is
not always preserved by translation: while aspirin
entails the English word drug, it does not entail the
French drogue, which only refers to the narcotic
sense of drug and not to its medicinal sense.

English-English English-French
affection→ feeling affection→ sentiment
aspirin→ drug aspirin 6→ drogue
water→ wet water→ humide
feeling 6→ nostalgia feeling 6→ nostalgie

Table 2: Examples of monolingual and cross-lingual lexical en-

tailment: → can be read as “entails”, 6→ as “does not entail”.

When evaluating lexical entailment, we use the
same approach as in monolingual tasks (Baroni et
al., 2012; Baroni and Lenci, 2011; Kotlerman et al.,
2010; Turney and Mohammad, 2015): given a bilin-
gual word pair, systems are asked to make a binary
true/false decision on whether the first word entails
the second. We describe the collection of gold stan-
dard annotations in Section 5.2.

3 Unsupervised Detection of Lexical
Entailment

We choose to detect lexical entailment without su-
pervision. As in the monolingual case, detection can
be done using a scoring function which quantifies
the directional semantic similarity of an input word
pair. On monolingual tasks, despite reaching better

1188

performance, supervised systems do not really learn
entailment relations for word pairs, but instead learn
when a particular word in the pair is a “prototypi-
cal hypernym” (Levy et al., 2015). 1 Thus, we limit
our investigation to unsupervised models. As a re-
sult, our approach only requires a small number of
annotated examples to tune the scoring threshold.

We use the balAPinc score (Kotlerman et al.,
2009), which is based on the distributional inclusion
hypothesis (Geffet and Dagan, 2005b): given feature
representations of the contexts of two words u and
v, u is assumed to entail v if all features of u tend to
appear within the features of v.

Formally, balAPinc is the geometric mean of a
symmetric similarity score, LIN (Lin, 1998), and an
asymmetric score, APinc. Given a directional entail-
ment pair (u→ v),

balAPinc(u→ v) =
√

LIN(u, v) · APinc(u→ v)

Assume we are given ranked feature lists FVu and
FVv for words u and v respectively. Let wu(f) de-
note the weight of a particular feature f in FVu. LIN
is defined by

LIN(u, v) =

∑
f∈FVu∩FVv

[wu(f) + wv(f)]∑
f∈FVu

wu(f) +
∑

f∈FVv

wv(f)
(1)

APinc is a modified asymmetric version of the
Average Precision metric used in Information Re-
trieval:

APinc(u→ v) =

|FVu|∑
r=1

[P (r, FVu, FVv) · rel′(fr)]
|FVu|

(2)

where,

P (r, FVu, FVv)

=
|# features of v in top r features of u |

r

rel′(f) =

{
1 iff ∈ FVu
0 otherwise

1Given a word pair such as (dog,animal), supervised meth-
ods tend to learn that animal is very likely to be a category word
i.e. one that is likely to be a hypernym, and do not take into ac-
count the relationship of animal with dog.

Thus, to use balAPinc for cross-lingual lexical en-
tailment, we need a ranked list of features that cap-
ture information about the context of words in two
languages. In the monolingual case, features are di-
mensions in a distributional semantic space. For the
cross-lingual task, we need to represent words in two
languages in the same space, or in spaces where a
one-to-one mapping between dimensions exists.

4 Learning Sparse Bilingual Word
Representations

As we will see in Section 9, there is a wealth of ex-
isting methods for learning representations that cap-
ture context of words in two different languages in
the literature. However, they have been evaluated
on tasks that do not require much semantic analy-
sis, such as translation lexicon induction or docu-
ment categorization. In contrast, detecting lexical
entailment requires the ability to capture more subtle
semantic distinctions. This requires bilingual repre-
sentations to capture both the full range of word con-
texts observed in original language texts, as well as
cross-lingual correspondences from translated texts.

We propose a new model that uses sparse non-
negative embeddings to represent word contexts as
interpretable dimensions, and facilitate context com-
parisons across languages. This is an instance of
sparse coding, which consists of modeling data vec-
tors as sparse linear combinations of basis elements.
In contrast with dimensionality reduction techniques
such as PCA, the learned basis vectors need not be
orthogonal, which gives more flexibility to represent
the data (Mairal et al., 2009). These models have
been introduced as word representations in monolin-
gual settings (Murphy et al., 2012) with the goal of
obtaining interpretable, cognitively-plausible repre-
sentations. We review the monolingual models, be-
fore introducing our novel bilingual formulation.

4.1 Review: Learning Monolingual Sparse
Representations

Previous work (Murphy et al., 2012; Faruqui et al.,
2015) on obtaining sparse monolingual representa-
tions is based on a variant of the Nonnegative Matrix
Factorization problem. Given a matrix X contain-
ing v dense word representations arranged row-wise,
sparse representations for the v words can be ob-

1189

tained by solving the following optimization prob-
lem

argmin
A,D

v∑
i=1

||AiDT −Xi||22 + λ||Ai||1

subject to Aij >= 0,∀i, j (3)

DT
i Di <= 1,∀i

The first term in the objective 3 aims to factor-
ize the dense representation matrix X into two ma-
trices, A and D such that the l2 reconstruction er-
ror is minimized. The second term is an l1 regu-
larizer on A which encourages sparsity, where the
level of sparsity is controlled by the λ hyperparame-
ter. This, together with the non-negativity constraint,
helps in obtaining sparsified and interpretable repre-
sentations in A since non-negativity has been shown
to correlate with interpretability. Note that the ob-
jective function on its own is degenerate since it can
be trivially optimized by making the entries of D
arbitrarily large and choosing corresponding small
values as entries of A. To avoid this, an additional
constraint is imposed on D.

4.2 Proposed Bilingual Model

Learning bilingual word representations for entail-
ment requires two sources of information:

• Monolingual distributional representations in-
dependently learned from large amounts of text
in each language. We denote them as two in-
put matrices, Xe and Xf , of respective sizes
ve × ne and vf × nf . Each row in Xe repre-
sents the representation of a particular word in
the first language, e, while Xf represents word
representations for the other language f .

• Cross-lingual correspondences that enable
comparison across languages. We define a
“score” matrix S of size ve×vf , which captures
high-confidence correspondences between the
vocabularies of the two languages. There are
many ways of defining S. As a starting point,
we define each row of S as a one-hot vector
that identifies the word in f that is most fre-
quently aligned with the e word for that row in
a large parallel corpus. This reduction leads to

a many-to-one mapping from e to f , which cap-
tures translation ambiguity by allowing multi-
ple words in e to be aligned to the same word
in f .

We formulate the following optimization problem
to obtain sparse bilingual representations:

argmin
Ae,De,Af ,Df

ve∑
i=i

1
2
||AeiDe

T −Xei||22 + λe||Aei||1

+
vf∑
j=i

1
2
||Af jDf

T −Xf j ||22 + λf ||Af j ||1

+
ve∑
i=1

vf∑
j=1

1
2
λxSij ||Aei −Af j ||22 (4)

subject to Ae > 0 ;Dei
T.Dei ≤ 1, 1 ≤ i ≤ ve;

Af > 0 ;Df j
T.Df j ≤ 1, 1 ≤ j ≤ vf ;

The first two rows and the constraints in Equation
4 can be understood as in Equation 3 - they encour-
age sparsity in word representations for each lan-
guage. The third row imposes bilingual correspon-
dence constraints, weighted by the regularizer λx: it
encourages words in e and f that are strongly aligned
according to S to have similar representations.

4.3 Optimization
Equations 3 and 4 define non-differentiable, non-
convex optimization problems and finding the glob-
ally optimally solution is not feasible. However, var-
ious methods used to solve convex problems work
well in practice. We use Forward Backward Split-
ting, a proximal gradient method for which an effi-
cient generic solver, FASTA, is available (Goldstein
et al., 2015; Goldstein et al., 2014). FASTA (Fast
Adaptive Shrinkage / Thresholding Algorithm) is
designed to minimize functions of the form f(Ax)+
g(x), where f is a differentiable function, g is a
function (possibly non-differentiable) for which we
can calculate the proximal operator, and A is a lin-
ear operator. For the objective function in our model,
the l1 terms form g and the l2 terms form f .

We have now described all components of the
model required to detect bilingual lexical entail-
ment: solving objective 4 as described yields sparse
representations for words in the two languages that
can be compared directly using the balAPinc metric.

1190

5 Constructing a Gold Standard

5.1 Existing Monolingual Test Suites

A comprehensive suite of lexical entailment test
beds is available for English (Levy et al., 2015).
They were constructed either by asking humans to
annotate entailment relations directly (Kotlerman et
al., 2010), or by deriving entailment labels from
semantic relation annotations (Baroni et al., 2012;
Baroni and Lenci, 2011; Turney and Mohammad,
2015). Each test set has 900 to 1300 positive exam-
ples of lexical entailment - word pairs (w, v) such
that w → v. All but one are balanced.

5.2 Creating a Cross-Lingual Test Set

We select French as the second language: it is a good
starting point for studying cross-lingual entailment,
as it is a resource-rich language with many available
bilingual annotators. We will construct data sets for
more distant language pairs in future work.

We aim to construct a balanced test set of posi-
tive and negative bilingual entailment examples in
the spirit of the existing English test beds. While it
is attractive to leverage existing English examples,
we cannot translate them directly as entailment rela-
tions might be affected by translation ambiguity (as
illustrated in Table 2).

We therefore obtain annotated bilingual examples
using a two step process: (1) automatic translation of
monolingual examples, and (2) manual annotation
through crowdsourcing. For a sample of positive ex-
amples of entailment we → ve in the monolingual
datasets, we generate up to two French translations
for ve, vf1 and vf2, using the top translations from
BabelNet (Navigli and Ponzetto, 2012) and Google
Translate. vf1 and vf2 are then paired back with we,
thus generating two unannotated crosslingual exam-
ples. Annotation is crowdsourced on Crowdflower
2: for each example pair (we, vf), workers are asked
to label it as true (we → vf) or false (we 6→ vf). We
select the positive examples annotated with high-
agreement, and obtain the same number of negative
examples by applying the same translation process
to negative examples3.

2http://crowdflower.com
3Manual annotation is unnecessary for negative examples: it

is unlikely that a negative example w 6→ v will become posi-
tive by translating v automatically. We verified this by asking

5.3 Crowdsourcing Cross-lingual Entailment
Judgments

Detecting lexical entailment for bilingual word pairs
is a non-trivial annotation task, and requires a good
command of both French and English. For quality
control, we first ask a bilingual speaker in our group
to conduct a pilot annotation task, which we use to
evaluate workers’ ability to perform the task. In ad-
dition, Crowdflower allows us to present this task
to only workers who have a proven knowledge of
French, and to georestrict the task to countries most
likely to have French-English bilinguals.

N Examples
0 (animal,couleur), (animal,reptile),

(art, serpent)
1 (asp, vertébré), (chancellor, guide),

(psychotherapy,capacité)
2 (bookmark, marque), (postman, ouvrier),

(endurance, force)
3 (cricket,insecte), (muse,divinité),

(parapet, paroi)
4 (ape, animal), (reimbursement,paiement),

(lady,adulte)
5 (epistle,lettre), (gin,boisson),

(potato,nourriture)
Table 3: Randomly selected examples for each level of annota-

tor agreement: N is the number of annotators who labeled pair

as true (out of five)

This approach yielded a large number of high-
quality annotations quickly. 1680 cross-lingual pairs
were presented to five annotators each. 24 pairs did
not receive enough judgments. For the remaining
1656 pairs, four or more annotators agreed for 75%
of examples (Figure 1).

This result first shows that we can indeed gener-
ate a gold standard for the challenging task of cross-
lingual lexical entailment using such crowdsourcing
techniques. We ensure high-quality annotations by
selecting all 945 (w, v) where four or more annota-
tors agree that w → v.

In addition, the degree of agreement sheds light
on how the notion of lexical entailment is inter-
preted by non-expert annotators. In Table 3, we
present randomly selected examples for each agree-

a bilingual speaker to manually check a random sample of 100
such translated pairs, which were all found to remain negative.

1191

0 1 2 3 4 5

Number of annotators (out of 5) who labelled a pair as true

0

100

200

300

400

500

600

N
u
m

b
e
r

o
f

p
a
ir

s

Figure 1: Agreement statistics for dataset creation. X-axis in-

dicates number of annotators who labeled pair as true (out of

five)

ment level. The bottom two rows represent clear
positive examples, that are cross-lingual equivalents
of hypernymy or synonymy relations: e.g., gin is a
kind of drink (boisson in French). The top row rep-
resent clear negative examples, where the two words
are unrelated (e.g., art and serpent, which means
snake in English) or the directionality is wrong (e.g.,
animal ← reptile). The middle rows where one to
three annotators chose to annotate the word pair as
negative contain less clear-cut cases, including as-
sociation relations (e.g., endurance → force), and
examples where entailment judgments requires tak-
ing into account more subtle word sense or transla-
tion distinctions (e.g., bookmark can be translated as
marque for a positive example, but the most frequent
sense of marque translates into English as brand, for
which the entailment relation does not hold.)

6 Experimental Conditions

We estimate the following models for evaluation on
the test sets described in the previous section.

6.1 Sparse Bilingual Model
Estimating sparse, bilingual representations as de-
scribed in Section 4.2 first requires learning dense
monolingual representations in two languages (Xe

and Xf). We can in principle use any type of dense
representations. We choose to train GloVe (Penning-
ton et al., 2014) vectors on a corpus comprised of Gi-
gaword and Wikipedia to learn dense representations
of 2000 dimensions for English and French. English
vectors are trained on a corpus of 4.9B words, while

French vectors are trained on 1.2B words.
Second, we construct S by word-aligning large

amounts of parallel corpora using a fast implemen-
tation of IBM model 2 (Dyer et al., 2013). We com-
bine Europarl (Koehn, 2005), News Commentary 4,
and Wikipedia 5 to create a large parallel corpus of
72M English tokens and 78M French tokens. All
corpora are tokenized and lowercased.

We learn 100-dimensional sparse representations
with hyperparameters λe = λf = 0.5, λx = 10.

6.2 Contrastive Models

We also learn two other sets of 100-dimensional
word representations, as a basis for comparison.

First, we learn sparse monolingual English word
representations, which will be used in monolingual
lexical entailment experiments (Section 7.1). These
are trained using the non-negative sparse method de-
scribed in Section 4.1, on the same 4.9B word En-
glish corpus that was used for learning bilingual rep-
resentations.

Second, we learn dense bilingual word repre-
sentations using BiCVM (Hermann and Blunsom,
2014), to use as a baseline for our cross-lingual lex-
ical entailment experiments (Section 7.2). BiCVM
uses sentence aligned parallel corpora to learn rep-
resentations for words in two languages, with the
objective that when these representations are com-
posed into representations for parallel sentences, the
Euclidean distance between the parallel sentences
should be minimized. We learn English-French vec-
tors on the parallel corpora described in Section 6.1.

7 Results

7.1 Monolingual Tasks

We first evaluate the monolingual version of our
sparse model on English test sets. While our fo-
cus is on the cross-lingual setting, the monolingual
evaluation lets us compare a version of our newly
proposed approach with existing lexical entailment
results (Levy et al., 2015), obtained using dense
word representations compared with cosine similar-
ity. This is not a controlled comparison, as train-
ing conditions are not comparable. Nevertheless it

4http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz
5https://sites.google.com/site/iwsltevaluation2015/data-

provided

1192

English Dataset Levy et al. Sparse+cosine Sparse+balAPinc
Baroni et al. (2012) .788 .745 .744

Baroni and Lenci (2011) .197 .552 .546
Kotlerman et al. (2010) .461 .620 .618

Turney and Mohammad (2015) .642 .576 .587
Table 4: Evaluating sparse representations on monolingual lexical entailment (F-score): we compare previously published unsu-

pervised results (Levy et al.) to our sparse word representations. While this is not a controlled comparison, we can see that our

word representations yield roughly comparable performance to prior work.

is reassuring to see that sparse word representations
are roughly on par with previously published results.
This suggests that they indeed provide good features
for discovering entailment relations, using both co-
sine and balAPinc as metrics6.

Results (Table 4) show that sparse representa-
tions lead to performance comparable to previous
approaches, thus providing a strong motivation for
using the same for the crosslingual task.

7.2 Cross-lingual Task

Word Representations Cosine balAPinc
bilingual + dense .528 .548

monolingual + sparse .663 .675
bilingual + sparse .687 .703

Table 5: F-Score on Cross-lingual Lexical Entailment Task. All

results are obtained by 10-fold cross-validation. Using balAP-

inc with features from the sparse bilingual representations out-

performs all other approaches.

We evaluate our proposed approach on the new
English-French lexical entailment test set. We eval-
uate the impact of choosing a sparse representa-
tion by comparing our approach to the dense bilin-
gual word representations obtained with the BiCVM
model (Section 6.2). We also evaluate the usefulness
of bilingual vs. monolingual word representations:
given a bilingual example (we, vf), we translate vf
into English using Google Translate, and then detect
lexical entailment using English sparse representa-
tions for the English pair (we, ve) as described in
Section 6.2.

6While cosine and balAPinc yield comparable F-scores
here, balAPinc is still a better metric as it captures direction-
ality. If the test sets included examples of both entailment di-
rection for every pair, cosine would yield incorrect predictions
for as many as half of the examples, since its predictions would
be the same regardless of the direction.

Results are summarized in Table 5. First, we ob-
serve that balAPinc outperforms cosine for all word
representations, confirming that the directional met-
ric is better suited to discovering lexical entailment.
Second, all sparse models significantly outperform
the model based on dense representation, which sug-
gests that sparsity helps discover useful context fea-
tures. Finally, our proposed approach (balAPinc
with features from sparse bilingual representations)
yields the best result overall, perofrming better than
the second best model (cosine with features from
sparse bilingual representations) by approximately
1.6 points. This difference is highly statistically sig-
nificant (at p < 0.01) according to the McNemar’s
Test (Dietterich, 1998). Our model also outper-
forms translation followed by monolingual entail-
ment, confirming the need for models that directly
compare the meaning of words across languages, in-
stead of using translation as a proxy.

8 Discussion

8.1 Examining bilingual dimensions learned
One motivation for using sparse representations is
that they yield interpretable dimensions: one can
summarize a dimension using the top scoring words
in its column. Interpreting five randomly selected
dimensions learned in our bilingual model (Table 6)
shows that we indeed learn English and French di-
mensions that align well, but that are not identical
- reflecting the difference in contexts observed in
monolingual English vs. French corpora, as needed
to detect lexical entailment.

8.2 Sparse Vectors Help Capture
Distributional Inclusion

One advantage of our sparse representations over
dense bilingual representations is that they can bet-
ter leverage an asymmetric scoring function like

1193

French Dimensions English Dimensions
logiciel, fichiers, web, microsoft files, web, microsoft, www

université, collège, lycée, conseil de administration university, college, graduate, faculty
virus informatique, virus, infection, cellules virus, viruses, infection, cells

doigts, genoux, jambes, muscles bruises, fingers, toes, knees
budapest, stockholm, copenhague, buenos lahore, dhaka, harare, karachi

Table 6: Top scoring words in 5 randomly selected French and English dimensions learned by our bilingual model.

balAPinc . Consider the following two pairs
from our dataset - (mesothelioma,tumeur) and (tu-
mor,mésothéliome). The former is a positive exam-
ple since mesothelioma → tumeur, but the latter is
negative (since not all tumors are mesotheliomas.)

Cosine similarity is unable to differentiate be-
tween these two cases, assigning a high score to both
these pairs, causing both of them to be labeled posi-
tive. However, balAPinc with sparse representations
teases them apart by giving a high score to the first
pair and a low score to the second.

In the bilingual sparse model, mesothelioma and
mésothéliome have only one non-zero entry (in the
dimension corresponding to [‘virus’, ‘viruses’, ‘in-
fection’, ‘cells’, ‘cancer’]) whereas tumeur and tu-
mor have five non-zero entries in their representa-
tions. Based on the distributional inclusion hypothe-
sis, this difference in the number of non-zero entries
is a strong basis for mesothelioma→ tumor.

8.3 Benefits of Bilingual Modeling

Examining the results of the approach based on
translation followed by monolingual entailment con-
firms the problems raised by sense ambiguities.

Consider the English word drug, which can be
translated into the French drogue when used in the
narcotics sense, and médicament when used in the
medicinal sense. Thus the pair (antibiotic,drogue)
that is correctly labeled as negative in the cross-
lingual case, gets converted to (antibiotic,drug) by
translation and is then incorrectly labeled as posi-
tive. Similarly, the pair (coriander, herbe), which
is positive in the crosslingual case, gets translated
to (coriander, grass) because the French herbe is
primarily aligned to the English grass (rather than
herb). The translated pair is labeled negative.

9 Related Work

Bilingual Word Representations Much re-
cent work targets the problem of learning low-
dimensional multilingual word representations,
using matrix decomposition techniques such as
Principal Component Analysis and Canonical
Correlation Analysis (Gaussier et al., 2004; Jagarla-
mudi and Daumé III, 2012; Gardner et al., 2015),
Latent Dirichlet Allocation (Mimno et al., 2009;
Jagarlamudi and Daumé III, 2010), and neural
distributional representations (Klementiev et al.,
2012; Gouws et al., 2015; Lu et al., 2015, among
others). However, these models have typically been
evaluated on translation induction or document cat-
egorization, which, unlike lexical entailment, focus
on capturing coarse cross-lingual correspondences.

Sparse Word Representations While cooccur-
rence matrices and their PPMI transformed variants
are early examples of sparse representations, recent
work has leveraged Nonnegative Sparse Embedding
(NNSE) (Murphy et al., 2012). These models have
been augmented to incorporate different types of lin-
guistically motivated constraints, such as composi-
tionality of words into phrases (Fyshe et al., 2015),
or a hierarchical regularizer that captures knowledge
of word relations (Yogatama et al., 2015).

Sparse representations have also been used for
monolingual lexical entailment in the Boolean Dis-
tributional Semantic Model (Kruszewski et al.,
2015), which shares our hypothesis on the useful-
ness of sparsity in meaning representations. How-
ever, they are meant to be used in different settings:
while the boolean features can interestingly capture
formal semantics, they are not as useful in our unsu-
pervised setting, since they do not provide the fea-
ture rankings required to use the balAPinc metric.

Cross-Lingual Semantic Analysis To the best of
our knowledge, lexical entailment has not been pre-

1194

viously addressed in a cross-lingual setting. The
long tradition of lexical semantic analysis in cross-
lingual settings has mostly focused on using trans-
lations to characterize word meaning (Diab and
Resnik, 2002; Carpuat and Wu, 2007; Lefever and
Hoste, 2010; McCarthy et al., 2013, among oth-
ers). An exception is Cross-lingual Textual Entail-
ment (Mehdad et al., 2010), which aims to detect
whether an English hypothesis H entails a text T
written in another language. We plan to use our lex-
ical models to address this task in the future.

10 Conclusion

In this work, we introduced the task of cross-lingual
lexical entailment, which aims to detect whether the
meaning of a word in one language can be inferred
from the meaning of a word in another language. We
constructed a dataset with gold annotations through
crowdsourcing, and presented a top-performing so-
lution based on novel sparse bilingual word repre-
sentations that leverages both word co-occurrence
patterns in monolingual corpora and bilingual cor-
respondences learned in parallel text7.

A key limitation of this work is that we address
lexical entailment out of context, based on word rep-
resentations that collapse multiple word senses into
a single vector . These could be addressed in fu-
ture work by adapting existing methods for learn-
ing sense-specific representations for dense vectors
(Jauhar et al., 2015; Ettinger et al., 2016; Reisinger
and Mooney, 2010; Guo et al., 2014; Huang et al.,
2012; Neelakantan et al., 2015) to our sparse rep-
resentations, and target cross-lingual textual entail-
ment tasks, which focus on full sentences rather than
isolated words. We also plan to study lexical entail-
ment on more languages and example types, as well
as investigate the usefulness of our bilingual repre-
sentations in higher level multilingual applications
such as machine translation.

Acknowledgments

The authors would like to thank Tom Goldstein,
Roberto Navigli and Peter Turney for their assis-
tance with tools and datasets, Philip Resnik and the
CLIP lab at the University of Maryland for stimulat-

7Data and code are available at
http://cs.umd.edu/∼yogarshi.

ing discussions, and the reviewers for their insight-
ful feedback. This work was partially funded by an
Amazon Academic Research Award.

References
Marco Baroni and Alessandro Lenci. 2011. How we

blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEometrical
Models of Natural Language Semantics, pages 1–10.
Association for Computational Linguistics.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and
Chung-chieh Shan. 2012. Entailment above the word
level in distributional semantics. In EACL 2012, pages
23–32. Association for Computational Linguistics.

Luisa Bentivogli and Emanuelle Pianta. 2000. Look-
ing for lexical gaps. In Proceedings of the Ninth
EURALEX International Congress, EURALEX 2000:
Stuttgart, Germany, August 8th-12th, 2000, pages
663–669.

Rahul Bhagat and Eduard Hovy. 2013. What is a para-
phrase? Computational Linguistics.

Marine Carpuat and Dekai Wu. 2007. Improving Statis-
tical Machine Translation using Word Sense Disam-
biguation. In Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing (EMNLP-CoNLL 2007), pages 61–72, Prague,
June.

Mona Diab and Philip Resnik. 2002. An Unsupervised
Method for Word Sense Tagging using Parallel Text.
In Proceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 255–262,
Philadelphia, Pennsylvania, July.

Thomas G Dietterich. 1998. Approximate statistical
tests for comparing supervised classification learning
algorithms. Neural computation, 10(7):1895–1923.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013.
A simple, fast, and effective reparameterization of ibm
model 2. Association for Computational Linguistics.

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting sense-specific word vectors using
parallel text. In Proceedings of NAACL.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In ACL 2015, pages
1491–1500.

Christiane Fellbaum and Piek Vossen. 2012. Challenges
for a multilingual wordnet. Language Resources and
Evaluation, 46(2):313–326.

Alona Fyshe, Leila Wehbe, Partha P. Talukdar, Brian
Murphy, and Tom M. Mitchell. 2015. A composi-
tional and interpretable semantic space. In Proceed-
ings of the 2015 Conference of the North American

1195

Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 32–41,
Denver, Colorado, May–June. Association for Com-
putational Linguistics.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. A method for disambiguating word
senses in a large corpus. Computers and the Humani-
ties, 26:415–439.

Matt Gardner, Kejun Huang, Evangelos Papalexakis,
Xiao Fu, Partha Talukdar, Christos Faloutsos, Nicholas
Sidiropoulos, and Tom Mitchell. 2015. Translation
invariant word embeddings. In EMNLP 2015, pages
1084–1088.

E. Gaussier, J.-M. Renders, I. Matveeva, C. Goutte, and
H. Déjean. 2004. A geometric view on bilingual
lexicon extraction from comparable corpora. In Pro-
ceedings of the 42Nd Annual Meeting on Association
for Computational Linguistics, ACL ’04, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Maayan Geffet and Ido Dagan. 2005a. The distributional
inclusion hypotheses and lexical entailment. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, pages 107–114. Asso-
ciation for Computational Linguistics.

Maayan Geffet and Ido Dagan. 2005b. The distributional
inclusion hypotheses and lexical entailment. In ACL
2005.

Tom Goldstein, Christoph Studer, and Richard Bara-
niuk. 2014. A field guide to forward-backward split-
ting with a FASTA implementation. arXiv eprint,
abs/1411.3406.

Tom Goldstein, Christoph Studer, and Richard Bara-
niuk. 2015. FASTA: A generalized imple-
mentation of forward-backward splitting, January.
http://arxiv.org/abs/1501.04979.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed representa-
tions without word alignments. In Proceedings of the
32nd International Conference on Machine Learning
(ICML).

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embeddings
by exploiting bilingual resources. In Proceedings of
COLING, pages 497–507.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilin-
gual models for compositional distributed semantics.
In ACL.

Eric H Huang, Richard Socher, Christopher D Manning,
and Andrew Y Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers-
Volume 1, pages 873–882. Association for Computa-
tional Linguistics.

Jagadeesh Jagarlamudi and Hal Daumé III. 2010. Ex-
tracting multilingual topics from unaligned compa-
rable corpora. In Proceedings of the 32Nd Euro-
pean Conference on Advances in Information Re-
trieval, ECIR’2010, pages 444–456, Berlin, Heidel-
berg. Springer-Verlag.

Jagadeesh Jagarlamudi and Hal Daumé III. 2012. Reg-
ularized interlingual projections: Evaluation on mul-
tilingual transliteration. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 12–23, Jeju Island, Korea,
July. Association for Computational Linguistics.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL.

John Howard Johnson, Joel Martin, George Foster, and
Roland Kuhn. 2007. Improving translation quality by
discarding most of the phrasetable. In Proceedings of
EMNLP 2007, pages 967–975.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representa-
tions of words. In Proceedings of COLING 2012,
pages 1459–1474, Mumbai, India, December. The
COLING 2012 Organizing Committee.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondrej Bojar, Alexandra Con-
stantin, and Evan Herbst. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In Annual
Meeting of the Association for Computational Linguis-
tics (ACL), demonstration session, Prague, Czech Re-
public, June.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5,
pages 79–86. Citeseer.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2009. Directional distributional
similarity for lexical expansion. In ACL-IJCNLP
2009, pages 69–72. Association for Computational
Linguistics.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distributional
similarity for lexical inference. Natural Language En-
gineering, 16(04):359–389.

German Kruszewski, Denis Paperno, and Marco Baroni.
2015. Deriving boolean structures from distributional
vectors. Transactions of the Association for Computa-
tional Linguistics, 3:375–388.

1196

Els Lefever and Véronique Hoste. 2010. Semeval-2010
task 3: Cross-lingual word sense disambiguation. In
Proceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 15–20, Uppsala, Sweden,
July.

Omer Levy, Steffen Remus, Chris Biemann, and Ido Da-
gan. 2015. Do supervised distributional methods re-
ally learn lexical inference relations? In NAACL HLT
2015, pages 970–976.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of the 36th Annual
Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computa-
tional Linguistics-Volume 2, pages 768–774. Associa-
tion for Computational Linguistics.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Deep multilingual correlation
for improved word embeddings. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 250–256, Denver,
Colorado, May–June. Association for Computational
Linguistics.

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro. 2009. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, pages 689–
696. ACM.

Diana McCarthy, Ravi Som Sinha, and Rada Mihalcea.
2013. The cross-lingual lexical substitution task. Lan-
guage Resources and Evaluation, 47(3):607–638.

Yashar Mehdad, Matteo Negri, and Marcello Federico.
2010. Towards cross-lingual textual entailment. In
NAACL 2010, pages 321–324.

David Mimno, Hanna M. Wallach, Jason Naradowsky,
David A. Smith, and Andrew McCallum. 2009.
Polylingual topic models. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 2 - Volume 2, EMNLP ’09,
pages 880–889, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Brian Murphy, Partha Talukdar, and Tom Mitchell. 2012.
Learning effective and interpretable semantic models
using non-negative sparse embedding. In Proceedings
of COLING 2012, pages 1933–1950, Mumbai, India,
December. The COLING 2012 Organizing Commit-
tee.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2015. Effi-

cient non-parametric estimation of multiple embed-
dings per word in vector space. arXiv preprint
arXiv:1504.06654.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. Adding semantics to data-driven para-
phrasing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1512–1522, Beijing, China, July. Association
for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP 2014, pages 1532–1543.

Joseph Reisinger and Raymond J Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 109–
117. Association for Computational Linguistics.

Diana Santos. 1990. Lexical gaps and idioms in machine
translation. In Proceedings of the 13th conference on
Computational linguistics-Volume 2, pages 330–335.

Peter D Turney and Saif M Mohammad. 2015. Ex-
periments with three approaches to recognizing lex-
ical entailment. Natural Language Engineering,
21(03):437–476.

Dani Yogatama, Manaal Faruqui, Chris Dyer, and Noah
Smith. 2015. Learning word representations with hi-
erarchical sparse coding. In Proceedings of the 32nd
International Conference on Machine Learning, pages
87–96.

Maayan Zhitomirsky-Geffet and Ido Dagan. 2009. Boot-
strapping distributional feature vector quality. Compu-
tational Linguistics, 35(3):435–461.

1197

Proceedings of NAACL-HLT 2016, pages 1198–1207,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Towards Automatic Detection of Abnormal Cognitive Decline

and Dementia Through Linguistic Analysis of Writing Samples

Weissenbacher Davy

Department of Biomedical
Informatics, ASU

Scottsdale, AZ, USA

davy.weissen-

bacher@asu.edu

Johnson A. Travis

Department of Neurology
Mayo Clinic

Scottsdale, AZ, USA

Wojtulewicz Laura

Department of Biomedical
Informatics, ASU

Scottsdale, AZ, USA

Dueck Amylou

Department of Biostatistics
Mayo Clinic

Scottsdale, AZ, USA

Locke Dona

Department of Psychiatry
and Psychology, Mayo Clinic

Scottsdale, AZ, USA

Caselli Richard

Department of Neurology
Mayo Clinic

Scottsdale, AZ, USA

 Gonzalez Graciela
Department of Biomedical

Informatics, ASU
Scottsdale, AZ, USA

Graciela.Gon-

zalez@asu.edu

Abstract

Given the limited success of medication in re-

versing the effects of Alzheimer’s and other

dementias, a lot of the neuroscience research

has been focused on early detection, in order

to slow the progress of the disease through

different interventions. We propose a Natural

Language Processing approach applied to de-

scriptive writing to attempt to discriminate

decline due to normal aging from decline due

to pre-dementia conditions. Within the context

of a longitudinal study on Alzheimer’s dis-

ease, we created a unique corpus of 201 de-

scriptions of a control image written by sub-

jects of the study. Our classifier, computing

linguistic features, was able to discriminate

normal from cognitively impaired patients to

an accuracy of 86.1% using lexical and se-

mantic irregularities found in their writing.

This is a promising result towards elucidating

the existence of a general pattern in linguistic

deterioration caused by dementia that might

be detectable from a subject’s written descrip-

tive language.

1 Introduction

Alzheimer’s disease is prevalent and becoming

more so as the world’s population ages (Prince et

al., 2014). Since no cure is known, it is hoped that

early detection and intervention might slow the on-

set of symptomatic cognitive decline and dementia.

Clinical methods to detect Alzheimer’s disease are

typically applied well after symptoms have pro-

gressed to a troubling degree, and may be costly.

Families, however, often report earlier signs of the

disease through their language interactions with

their elders. This has led clinical researchers to

study linguistic differences to detect the disease in

conversational speech (Asp and de Villiers, 2010).

One approach is to search for non-informative

phrases or semantic incoherences, which was con-

firmed to distinguish patients with Alzheimer’s

disease from controls (Nicholas et al., 1985). A

strong limitation for its automatic application is the

need of a trained expert to annotate the incoher-

ences and scoring by hand.

We propose in this study to use Natural Lan-

guage Processing (NLP) to evaluate samples of a

patient’s descriptive writing in order to attempt to

1198

discriminate decline due to normal aging from de-

cline due to pre-demented conditions. The Arizona

Alzheimer’s Disease Center (ADC) is a longitudi-

nal study of patients with Alzheimer’s disease and

normal control subjects, who receive an annual

battery of clinical and neuropsychological exams,

to which we added the following brief and a simple

task. Participants are asked to describe, in writing,

a picture typically used within the speech-based

Boston battery (Nicholas and Brookshire, 1993).

We collected 201 descriptions written by ADC

participants by hand, which were scanned, tran-

scribed, and later analyzed. We describe here a sta-

tistical machine learning method relying on lexical,

syntactical and semantical features to discriminate

evidence of abnormal deterioration in the writings

of the patients. Our results confirm a correlation

between linguistic decline on this writing task and

the cognitive decline revealed by the more time

consuming neuropsychological test battery.

2 Background

Alzheimer’s disease (AD) is a highly prevalent

neurodegenerative dementia that increases expo-

nentially with age. It is the most common form of

dementia in the United States. AD is characterized

by a severe memory deficit and at least one of the

following: aphasia (an impairment of language, af-

fecting the production or comprehension of speech

and the ability to read or write), apraxia (loss of the

ability to execute or carry out skilled movements

and gestures), agnosia (inability to recognize and

identify objects or persons), and a disturbance in

the internal control of cognitive processes (such as

reflection, planning, working memory, etc.)

(American Psychiatric Association, 1994). While

clinical testing often leads to an accurate diagnosis

during its middle and late stages, several signs may

alert a patient’s family to much earlier stages of the

disease even in the absence of frank aphasia (Obler

and de Santi, 2000).

Given the repeated failures of experimental

therapies targeting dementia stage AD, current

strategies are targeting early intervention at pre-

clinical and early symptomatic stages thereby ne-

cessitating more accurate methods for earlier de-

tection of AD. Mild Cognitive Impairment (MCI),

is defined as abnormal cognitive decline relative to

age-matched peers that does not impair normal ac-

tivities of daily living (Gauthier et al., 2006). AD is

a frequent but not invariant cause. Some MCI pa-

tients may even recover, but all AD patients transi-

tion through the MCI stage before developing

frank dementia (Petersen et al., 2001). As a result,

an increasing number of clinical studies are trying

to define and predict each stage in the life of an

AD patient: normal, MCI and Alzheimer (Drum-

mond et al., 2015).

2.1 Predicting Cognitive Decline with Lan-

guage

Test batteries commonly used to measure cognitive

decline include tests to evaluate the language pro-

duction of patients, but they are criticized for their

simplicity. For example, the Mini-Mental State

Examination (MMSE), a widely used screening

tool, asks to name 2 objects, to repeat a phrase,

write a sentence and obey a 3-step instruction.

Bucks et al., 2000, citing Sabat, 1994, assert that

these structured tests break down language into ar-

tificial components that fail to represent the psy-

chological and sociological context involved in

daily conversations. As a consequence, such tests

may be insensitive to early linguistic decline, when

anomalies are already detectable by patients’ fami-

lies (Key-DeLyria, 2013).

More sophisticated exercises have been pro-

posed to complement the existing linguistic test

batteries (Asp and de Villiers, 2010). These exer-

cises are centered around conversation and narra-

tion abilities of patients. Conversation and narra-

tion abilities are developed in the early age of chil-

dren (around 2-3 years for conversation and around

4 years for narration). Since they play a fundamen-

tal role in cognitive and social development, they

are intensively studied. Cognitive tests addressing

narration capabilities can probe memory, spontane-

ity and the quality of interactions with the interloc-

utor. Tests can be complex, like narrating through

informal conversation a habitual task, a memorable

day of their life, or an event they participated in

during the last week or month. Typically, the exact

utterances are not captured, but rather the examiner

notes if the narrative was coherent, or if the ex-

pected events were mentioned. Simpler tests ask

patients to comment on an image, or a sequence of

related images or to narrate a movie previously

displayed. The patients participating in our study

are receiving an extensive battery of tests annually

1199

to which we added a linguistic task. We therefore

opted for a simple exercise of image description to

avoid exhausting our participants. While the ma-

jority of the exercises testing the narration abilities

are spoken, with the exception of (Hayashi et al.,

2015) and (Hirst and Feng, 2012), all studies work

with a corpus of transcribed oral narratives. We

opted for a written version for a direct analysis of

written language, a form that remains relatively

unexplored (Hayashi et al., 2015).

2.2 Clinical Studies for Linguistic Decline

Prediction

A seminal longitudinal study (Snowdon et al.,

1996) demonstrated that writing performance in

young women correlated with development of AD

in old age. Since then, clinical studies of cognitive

decline have been scrutinizing all linguistic levels

(Reilly et al., 2011), lexical, syntactical, semantical

and pragmatic (Bolshakov and Gelbukh, 2004), in

order to detect elements deteriorating with normal

aging, those commonly observed degraded in the

MCI stage, and finally their disintegration during

the continuous phases of dementia. Various prop-

erties of language are studied, e.g. number of

words, size of sentences, number and correctness

of anaphoric references, number of propositions

per sentence, number of relevant facts and the

structure of the narration (Hier et al., 1985; Drum-

mond et al., 2015). These properties are most often

computed manually on samples of small size (usu-

ally around 50 patients) and appropriate statistical

tests are used to determine the properties which

can discriminate controls, MCI and AD patients.

From these studies has emerged a general pat-

tern of pathological language decline observed dur-

ing the MCI and the early stage of dementia (Obler

and de Santi, 2000). Phonology and morphology

are conserved. Syntax is also mostly spared even if

it tends to be simplified. Degradations are mainly

found at the lexical and semantical levels (Hier et

al., 1985). At the lexical level, the vocabulary is

reduced with fewer words and fewer occurrences.

It becomes more abstract and vague with multiple

phrasal repetitions (Xuan et al., 2011). At the se-

mantic level, complex questions are reduced and,

early in the dementia phase, patients have difficul-

ty making exact and pertinent remarks (Nicholas

and Brookshire, 1993). Empty words and incom-

plete sentences are often observed in oral exercis-

es.

These alterations of the language seem to allow

caregivers and researchers to distinguish decline

due to normal aging from pathological decline but,

further studies with larger patient numbers are

needed to confirm these initial results. A signifi-

cant limitation in clinical environment has been the

need for a trained language pathologist to annotate

and evaluate all linguistic productions of each pa-

tient examined. More recently, however, some ef-

forts have been made to automate the annotation

process using NLP techniques. The next section

reviews the progress made.

2.3 Automatic prediction of Linguistic De-

cline

A first hypothesis to detect the cognitive decline in

an older person is to compare his/her writing at a

young age with his/her writing at an old age. In

(Hirst and Feng, 2012) sophisticated stylometric

measures were tested to identify the differences

caused by the disease in the style of three well-

known authors (2 probable ADs and 1 healthy).

However, not only were results not decisive given

the small number of subjects, but this approach re-

quired a large amount of writings from the same

person in order to establish the shift in the style of

that person, conditions rarely met with common

subjects. A variant of this approach is to compute

two distinct profiles by modeling separately nor-

mal subjects and aphasic subjects from their writ-

ings. The results reported in (Holmes and Singh,

1996) report 88% of subjects correctly predicted

from a corpus of 100 conversations. Few features

were used and the computation of some of them

still required a human intervention.

Bigger set of features can be explored with the

use of NLP and machine learning. A first attempt

in (Thomas et al., 2005) was to combine stylo-

metric features (Stamatatos, 2009) and language

model within a classifier. Their classifier obtained

reasonable performances with 70% accuracy when

distinguishing cognitively impaired from normal

subjects in 95 oral interviews. In (Jarrold et al.,

2010), the authors evaluated 80 features from vari-

ous categories computed using dictionaries and

predefined rules: positive sentiments words, social-

ly related words, use of the first person, among

1200

others. The performance reported an accuracy of

82.6% in the prediction task in 45 interviews.

The most efficient features for discrimination

are semantic features which capture the abilities of

a subject to understand and convey a set of perti-

nent information (Nicholas and Brookshire, 1993).

Automatic computation of such features are still

challenging for automatic systems. Therefore, sev-

eral publications integrated heuristics for compu-

ting such features. A prototype to approximate the

density of idea has been released by (Brown et al.,

2008). Idea density can be thought of as the total

number of assertions or claims whether true or

false, in a proposition. The number of claims is es-

timated from the number of verbs, adjec-

tives/adverbs and conjunctions given certain condi-

tions. The integration of the idea density proved to

be significant to separate AD subjects from con-

trols in (Jarrold et al., 2010).

3 Methods

3.1 Corpus Description and Preprocessing

In the context of the ADC study we created a cor-

pus for our experiments. At the day of writing, the

total number of subjects participating in the ADC

study was roughly 500 corresponding to about 200

normal controls, 100 with MCI and 200 with AD

or other form of degenerative dementia. In the be-

ginning of the year 2015, in collaboration with the

five institutes participating on the ADC study, a

cognitive test was added to the protocol of the

study. Subjects were asked to describe an image at

the end of their annual visit. This control image is

the same for all subjects (Nicholas and Brookshire,

1993). The image (Figure 1) represents a family

having a picnic near a lake. Subjects were asked to

write (by hand) a detailed description of the scene

in the picture. No time limit is imposed, and the

time it takes them to write their description is not-

ed. The test giver is asked to read the description

when the subject completes it, asking the subjects

to clarify any unreadable words and to write them

in the descriptions. We collected 201 descriptions

for this study, 154 from healthy subjects and 47

from subjects in decline. The collection process is

ongoing1.

We developed a web site to centralize the col-

lection of the scans of the descriptions from the

different institutions. The web site offers a basic

interface to display the scans and to transcribe their

contents. We trained a student (native English

speaker) to transcribe the scans, preserving, as

much as possible, the original presentation of the

description (i.e. punctuations, uppercase, indents

and new lines) as well as misspellings and crossed

words.

Alzheimer Patient

Jane and Joe went out to blow But the weather was windy

in the Oposit Direction, so they decided To blow the joint

rather place and go home and have a bond fire in Their

backyard and enjoy all the cooked things they could

Normal Patient

A family outing at a lake shore showed people doing sev-

eral things. Mom and Dad sat on a blanket while dad read

a book. Dad was over comfortable without his shoes,

while mom listened to the radio and poured herself a cup

of coffee. Junior was having fun flying his kite, and the

family dog was interested in what all was going on. An-

other of the family was spending quiet time and fisher-

man, and another was playing in the shallow water. Other

friends waved to them as they sailed by. It was a perfect

day with just enough wind to move the flag and provide

lift for the kite. It must have been comfortable sitting un-

der the shade tree.

Table 1: Example of writings AD vs Normal Patient.

The descriptions are processed through an NLP

pipeline composed of several off-the-shelf NLP

modules. First, a homemade tokenizer and the

Stanford Lemmatizer2 are applied. Part of Speech

as well as chunks are computed thanks to Genia

1 The corpus is fully de-identified and will be publicly re-

leased at the end of the study.
2 Available at http://stanfordnlp.github.io/CoreNLP/

Figure 1: The picnic scene described by the ADC cohort

of patients.

1201

tagger3. The descriptions are split into phrases by

the sentence splitter found in the ANNIE tools

suites of the Gate pipeline4. To compute the lan-

guage models we have integrated the character

Ngrams module provided by LingPipe5 as well as a

specific Perl module Text::NGrams (Keselj et al.,

2003) for computing character Ngram frequencies.

Finally, for computing the semantic features de-

scribe below (section 3.2.3), we compute vectors

of words which are semantically close to a selected

set of words that correspond to a model descrip-

tion. To generate these vectors we have selected

the tool Word2Vec6. We used the vectors trained

on part of Google News dataset (about 100 billion

words).

For each sample writing, we have access to all

information acquired during the ADCC study

about the subjects enrolled. This includes personal

information (e.g. gender, sex or education), social

and medical information (e.g. social status, smok-

ing habit, depression) as well as the subjects’ tests

administered during the visits. For our experi-

ments, we used the primary diagnostic made dur-

ing the last visit of a subject. If the subject was di-

agnosed with any form of dementia, including pos-

sible or probable Alzheimer’s, or with MCI, the

subject was labeled as Declined. If the subject was

not diagnosed with dementia we checked the score

measuring the cognitive status. This score is as-

signed by a neuropsychologist and it summarizes

the performance of the subject during the cognitive

exams. If the neuropsychologist diagnosed the sub-

ject as cognitively impaired or as demented, the

subject is labeled as Declined. Finally, we checked

the Clinical Dementia Rating (CDR) global score

(Morris et al., 1997). The CDR is assigned using a

semi-structured standardized interview completed

with the subject's caregiver and the subject inde-

pendently. The CDR score is used to help diag-

nose dementia, indicating: Normal, MCI, Early

Dementia, Moderate Dementia, and Severe De-

mentia, depending on its value. Administrators of

the CDR are trained in a standardized fashion. If

the score of the CDR indicated the subject as MCI

3 Available at http://www.nactem.ac.uk/GENIA/tagger/
4 Available at https://gate.ac.uk/
5 Available at http://alias-i.com/lingpipe/
6 The tool and its documentation are available at

https://code.google.com/p/word2vec/

or Dementia, then we labeled the subject as De-

clined, otherwise the subject was NotInDecline.

These labels were used as gold standard during our

experiments.

3.2 A Classifier for Detecting Linguistic De-

cline

In order to automate the analysis of the descrip-

tions of our 201 subjects we created a classifier to

discriminate subjects in abnormal decline from

subjects with normal aging decline. Our classifier

incorporates various features proposed by us or

found in the literature. The following sections de-

tails the features and the motivations for their use.

3.2.1 Lexical Features

Adjective/Noun/verb/Pronoun ratios (Thomas et

al., 2005). Given an abnormal decline we expected

an important impoverishment of the vocabulary.

Our initial hypothesis was a sensitive diminution

of the number of adjective and pronouns since they

are indicative of a precise description and complex

syntactic structures. These ratios were computed

by taking the number of adjec-

tives/nouns/verbs/pronouns divided by the total

number of tokens contains in a description. We re-

lied on the POS tags to determine if a word was a

noun, adjective or verb. To find the pronouns we

matched a list of 73 pronouns.

Type Token Ratio (Thomas et al., 2005). The use of

this ratio was supported by the idea that a subject

presenting an abnormal decline will see his/her vo-

cabulary reduced and would tend to repeat general

words. This ratio was computed by taking the size

of the vocabulary of a description over the total

number of tokens. The vocabulary was found by

adding up the lemmas occurring in the description.

Documents, Sentences and Tokens length (Hirst

and Feng, 2012). The length of the different com-

ponents of a document are often a good indicator

of the quality of the writing and the ability to pro-

duce long and complex descriptions. We expressed

several statistics which describe the description.

The description length is expressed in number of

tokens and punctuations. The size of the longest

and shortest sentences, min-max sentence length,

were used as features as well as the average of the

length of all sentences occurring in the description.

1202

The average length of the tokens occurring in the

description was also added as feature.

Misspelling Ratio (Proposed). For this ratio we

considered only orthographic errors present in a

description. Since longer descriptions are more

likely to have more misspellings we normalized

the metric by dividing the number of errors with

the total number of tokens in the description. To

discover automatically the misspellings we used

the rule-based spell checker languagetool-3.07. As

for the previous ratios we assumed that a higher

percentage of misspellings would reflect an under-

lying lexical problems.

3.2.2 Stylometric Features

Functional Words Ratio (Hirst and Feng, 2012).

Functional words are known to be good indicators

of a personal style (Stamatatos, 2009). We

matched an extended dictionary of 337 entries to

retrieve the functional words in our descriptions.

The ratio was given by the number of functional

words over the total number of tokens in a descrip-

tion.

Brunét’s Index and Honoré’s Statistic (Thomas et

al., 2005). Both metrics are length insensitive ver-

sions of the type token ratio and often reported as

useful features for discriminating abnormal decline

in the literature. They were computed by the fol-

lowing equations:

Brunét’s Index = NV−0.165 and Honoré’s Statistic =

 where V is the total vocabulary,

N the total number of tokens and V1 the total num-

ber of hapax.

Character NGrams and Character NGram Fre-

quencies (Thomas et al., 2005). Ngrams of words

capture lexical regularities hidden in the writing

style of an author as well as its syntactic complexi-

ty. They also help to highlight syntactic errors.

Since sparsity problems raise quickly when

Ngrams of words are created from a small size

corpus, we preferred to use Ngrams of characters.

By taking the most frequent Ngrams for both pro-

files Normal subjects and subjects in decline, we

expected to capture the set of words which are the

most indicative of each profile. We set the size of

the Ngrams to 5 for the character NGrams and to

7 Available at http://wiki.languagetool.org/java-api

10 for the Character NGram Frequencies. We lim-

ited to the 2000 most frequent Ngrams. Those pa-

rameters were set manually and can be optimized

in future experiments.

3.2.3 Semantic Features

Idea Density (Brown et al., 2008) To compute the

idea density detailed in section 2.3, a heuristic to

estimate the quantity of information convey in the

description, we integrated the software CPIDR

3.28. No change has been made in the set of rules

used by the software.

Word2Vec Distance (Proposed). A characteristic of

subjects in abnormal decline is their inability to

convey pertinent information and to digress from

the initial subject. To model this characteristic we

propose a new feature which takes advantage of

the specificity of our corpus: all subjects, normal

and subjects in decline, are describing the same

image. By taking only descriptions written by

normal subjects we obtained a set of words de-

scribing correctly the image. We named this set

generative words. All functional words were re-

moved from this set. Our hypothesis was that sub-

jects in decline would use less words from genera-

tive words and add more inappropriate words (giv-

en the context of the image). Since the size of our

corpus is small, not all relevant words were present

in generative words. We extended generative

words into a set called Word2Vec clusters by add-

ing for each word of generative words, the corre-

sponding vector returned by Word2Vec. These

vectors are composed by words semantically close

to the generative words. This includes synonyms,

meronyms, hyperonyms but also correlated words.

At run time, when an unknown description was

submitted to the system, we created a subset of

Word2Vec clusters, called Filtered Word2Vec clus-

ters, by taking all vectors Vi in Word2Vec clusters

related to the words Wi occurring in the unknown

description. We added Vi in Filtered Word2Vec

clusters if Wi was the generating word of Vi or if Wi

was a word occurring in Vi with Wi belonging to the

set generative words. If Wi was found in a vector Vj

∈ Word2Vec clusters but Vj was generated by a

word wj not occurring in the unknown description,

8 The software and its documentation are freely available at

http://ai1.ai.uga.edu/caspr/

1203

Vj was not added in Filtered Word2Vec clusters.

This filtering step is crucial to guarantee good per-

formances when using this feature. Additional tests

were performed without filtering Word2Vec clus-

ters and a significant drop of performances was

observed due to noise or ambiguity in the vector

generated by Word2Vec, for example vectors gen-

erated by go, be etc. The filtering step insures that

the vectors of Filtered Word2Vec clusters contain

only words semantically related with the content of

the unknown description. Given the set of words in

Filtered Word2Vec clusters the distance is the ratio

of words Wi in Filtered Word2Vec clusters and to-

tal number of words in Wi.

3.2.4 Subject Features

All clinical information about the subjects partici-

pating in the ADC study were available during our

experiments. We retained only criteria known to

affect linguistic competences or known to contrib-

ute to the development of the disease. Age and

gender are important factors for the Alzheimer’s

disease as well as the version of the APOE gene of

a subject. The presence of an e4 allele increases

significantly the risk of the disease. Education and

primary language (native English speaker or not)

are obvious attributes to consider to measure the

linguistic abilities as well as the social status of the

subject. A subject living alone, with relatives or

spouse will not have the same opportunities to

speak.

4 Results

We evaluated our classifier on the data mining

platform Weka. This platform implements state-of-

the art machine learning algorithms (Witten et al.,

2011). The size of our corpus being small we opted

for a leave-one-out cross validation. We chose the

framework of a Bayesian Network (BN) (Koller

and Friedman, 2009) to perform the evaluation of

our classifier. For all following experiments we

learned the structure of the network and its condi-

tional probabilities automatically from our data.

No Naive Bayes structure were a priori imposed

during the training and the number of possible par-

ents for a node were manually set to 20. We select-

ed this machine learning algorithm because it

learns complex decision functions, its decisions are

interpretable by medical experts, it has very few

global parameters to set up and it was fast to train

on our problem.

Our first experiment evaluated the performances

of our classifier when all features were used (Table

2). We confirmed the quality of our classifier by

comparing its performances with a baseline classi-

fier. The baseline classifier predicted the majority

class label

Classifier Accuracy (%) FN FP

Baseline 76.6 47 0

Bayesian Network

 - All Features 83.1 25 9

 - Selected Features 86.1 21 7

Table 2: Performances of the classifiers for decline detec-

tion. Considering Decline as the targeted class, False Positive

are Normal patients labeled as patients in decline and False

Negative are patients in decline labeled as Normal patients.

NotInDecline for all instances. The baseline system

obtained 76.6% of accuracy (Acc). With this set-

ting, our classifier obtained a better score with

80.6% Acc. and thus demonstrated its abilities to

learn the difference between normal subjects from

subjects in abnormal decline using linguistic fea-

tures.

We proceeded to an ablation study to assess the

benefits of each feature. We removed one at a time

each feature, or complementary features such as

min-max length of sentence, and rerun the train-

ing/testing of our classifier. The results are detailed

in Table 3. For brevity we did not report in the ta-

ble the features which did not change the score of

our classifier once removed.

Feature removed Accuracy (%)

None 83.1

Misspelling Ratio 85.1

Word2Vec Distance 81.9

Brunét’s Index 82.1

Average Sentence Length +

Min-Max Sentence Length
83.6

Ngram Frequencies 85.1

Ngrams 81.6

Patient APOE

Patient Age

84.1

82.6

Table 3: Performances of the Bayesian Network during the

ablation study.

In the light of the ablation study we performed a

second experiment to determine the optimal per-

1204

formances of our classifier. We run several feature

selection/reduction algorithms implemented in the

Weka platform. The Correlation-based Feature Se-

lection algorithm (CFS) (Hall, 1999) found a set of

features which maximized the performances of the

classifier. Under this setting our classifier outper-

formed the baseline system with a score of 86.1

Acc. against 76.6 Acc (Table 2). Inspection of the

confusion matrix shown that the classifier correctly

recognized 24 patients in abnormal decline and

149 normal patients. Considering Decline as the

targeted class, our classifier mistakenly predicted 7

False Positives (FP) and 21 False Negatives (FN).

We reproduced comparable performances with

other machine learning algorithms using this set of

features. A multilayer perceptron got a score of

84.6% Acc., a random forest 81.1% Acc. and a

bagging algorithm 83.6% Acc. Five features only

were selected by the CFS algorithm: Ngrams,

Honoré’s Statistic, Misspelling Ratio, Age and the

Word2Vec Distance. This set of features differs

from the set indicated by the ablation study but ob-

tained better performances on our task. When

trained and tested using only the four features

which improved the classification during the abla-

tion study, the score of the classifier reached 85.6

Acc. with 4 FP and 25 FN.

From these experiments we can conclude that

our system showed promising performances when

learning to discriminate subjects in abnormal cog-

nitive decline from their writings. The ablation

study and the set of optimal features found by the

CFS algorithm seem to confirm the existence of

the general pattern postulated in the clinical litera-

ture where lexical and semantical capacities are

damaged during the cognitive decline. The most

important features were the semantic features,

Ngrams and Word2Vec, with a total drop of 2.7

points when they were removed. Both features cap-

ture the tendency of the subjects in decline to de-

scribe few topics of the image, resulting in a low

Word2Vec distance, and to digress from the de-

scription task by mentioning several facts or state-

ments that could not be inferred from the image or

were not plausible with its content. These digres-

sions caused the system to compute a higher prob-

ability for the description written by a subject in

decline to be generated by the profile of the ab-

normal subjects and a low probability for being

generated by the profile of the normal subjects.

The profile of abnormal subjects contained more

words than the profile of normal subjects, this lat-

ter containing only words related to the image.

The decline of the lexical capacities are suggested

by the higher number of misspellings made by sub-

jects in decline as well as the positive role of the

Brunét’s Index or Honoré’s Statistic Brunet during

the classification.

4.1 Analysis of Errors

The prediction of abnormal decline is a hard learn-

ing problem. Since it is still difficult to clinically

diagnose the cognitive decline and potentially the

following dementia, the labels of the target class in

our corpus remains uncertain. Patients labeled

normal can quickly show sign of decline and MCIs

can recover over time. Therefore, for our analysis,

we focused more on the capacity of our classifier

to detect good descriptions rather than to strictly

predict the target class. Additional analysis of our

errors will be carried out by pathologists special-

ized in aphasia.

The 7 FPs where all primary diagnosed normal

during their last visit. Their ages varied from 69 to

86 year old. Our manual inspection of their writ-

ings revealed that 4 descriptions presented strong

irregularities which may explain the decision of

our classifier. In the first case we found short de-

scriptions containing misspellings, repeated

phrases, ungrammatical sentences and descriptions

focused on small details of the image. In the sec-

ond case, descriptions were longer but they all con-

tained digressions such as “The turtle is shuffling

back to be with the water.” (no turtle is drawn in

the image), or “Mom is torn between the playtime

there and being being with her friends back home”

(the woman seems perfectly relaxed). Additional

analysis of such digressions on our corpus are

needed to know how strongly they are correlated

with the decline. The reasons the classifier tagged

the last 3 descriptions as Decline remained unclear.

The Bayesian Networks learned for these instances

are currently analyzed to understand which fea-

tures deceived the classifier. The BN classifiers

learned are probabilistic directed acyclic graphs

which represent causal relations between variables.

They can be displayed in a dedicated Graphical

User Interface where values for different variables

observed can be manually imposed to see the

1205

changes on the likelihood of the others unseen var-

iables.

The 21 FNs can be separated in 3 groups: 2 pa-

tients whose primary diagnosis were AD, 11 whose

primary diagnosis were MCIs and 8 normal pa-

tients but whose cognitive exams results (3 pa-

tients) or global CDR (5 patients) showed signs of

decline.

Our corpus contains in total 7 cases of patients

diagnosed with AD, 5 cases were correctly classi-

fied by the system and 2 incorrectly, making it fair-

ly sensitives to strong signs of decline. The majori-

ty of the classifier's errors were made on light and

mild impairments. In order to understand these er-

rors we randomly selected 10 descriptions written

by these patients and proceeded to a manual exam-

ination. A clear difference with the descriptions of

the FPs is the absence of digressions. Only one de-

scription mentioned some implausible facts, others

strictly described the image with most of its topics

commented. 6 descriptions presented anomalies

like misspellings, phrases repeated,

verbs/auxiliaries missing, incomplete sentences or

wrong choices of pronouns and, for 2 of them, a

simplified syntax with unnatural constructions (e.g.

“A coulle having a picnic, the man with a book the

girl pouring a soda.”). The 4 remaining descrip-

tions exhibit a good quality and would be difficult

to discriminate with linguistic features only.

5 Conclusion and Perspectives

With the general aging of the population more at-

tention has been given to Alzheimer’s disease. In

this study we presented a NLP system to predict

early signs of cognitive decline, which precedes

the disease, based on the analysis of written de-

scriptions of an image. To perform our experi-

ments we created a corpus which is, to the best of

our knowledge, unique by its nature and its size.

With a final score of 86.1% Accuracy our system

outperformed our baseline system and showed

state-of-the-art performances with existing classifi-

ers working on oral interviews. Our results suggest

a correlation between abnormal cognitive decline

and the dislocation of the language ability. Our ab-

lation study revealed that our system discriminates

patients with abnormal decline using lexical and

semantical irregularities found in their writings,

consolidating the hypothesis of a general pattern in

the linguistic impairment already postulated in the

literature. The analysis of its classification errors

showed the limitation of our approach: the pres-

ence of linguistic irregularities are not always suf-

ficient to diagnose abnormal decline and may not

always be observed in writings of patients already

diagnosed in abnormal decline. To overcome this

limitation we are currently designing a classifier

based on Conditional Random Fields. This classi-

fier will integrate all information available about

our patients (i.e. medical, cognitive, linguistic, and

imaging information) and will allow the represen-

tation of the performances of the patients over the

time.

Acknowledgement

Research reported in this publication was partially

supported by the NIH/NIA under grant P30

AG019610.

References

American Psychiatric Association, 1994. Diagnostic and

statistical manual of mental disorders (4th ed.).

Elissa Asp and Jessica de Villiers. 2010. When Lan-

guage Breaks Down: Analysing Discourse in Clinical

Contexts. Cambridge University Press.

Igor A. Bolshakov and Alexander Gelbukh, editors.

2004. Computational Linguistics: Models, Resources,

Applications. Igor A. Bolshakov and Alexander Gel-

bukh.

C. Brown, T. Snodgrass, S.J. Kemper, R. Herman, and

M.A. Covington. 2008. Automatic measurement of

propositional idea density from part-of-speech tag-

ging. Behavior Research Methods, 40(2):540–545.

R. S. Bucks, S. Singh, J. M. Cuerden, and G. K. Wil-

cock. 2000. Analysis of spontaneous, conversational

speech in dementia of alzheimer type: Evaluation of

an objective technique for analysing lexical perfor-

mance. Aphasiology, 14(1):71–91.

T. Hayashi, H. Nomura, R. Mochizuki, A. Ohnuma, T.

Kimpara, K. Suzuki, E. Mor. 2015. Writing Impairments

in Japanese Patients with Mild Cognitive Impairment

and with Mild Alzheimer’s Disease. Dementia Geri-

atric Cognitive Disorders Extra, 5:309-319

C. Drummond, G. Coutinho, R. Paz Fonseca, N. As-

suno, A. Teldeschi, R. de Oliveira-Souza, J. Moll, F.

Tovar-Moll, and P. Mattos. 2015. Deficits in narrative

discourse elicited by visual stimuli are already pre-

sent in patients with mild cognitive impairment.

Frontiers in Aging Neuroscience, 7(96).

1206

Serge Gauthier, Barry Reisberg, Michael Zaudig,

Ronald C Petersen, Karen Ritchie, Karl Broich, Syl-

vie Belleville, Henry Brodaty, David Bennett, How-

ard Chertkow, Jeffrey L Cummings, Mony de Leon,

Howard Feldman, Mary Ganguli, Harald Hampel,

Philip Scheltens, Mary C Tierney, Peter Whitehouse,

and Bengt Winblad. 2006. Mild cognitive impair-

ment. The Lancet, 367(9518):1262 – 1270.

Daniel B. Hier, Karen Hagenlocker, and Andrea G.

Shindler. 1985. Language disintegration in dementia:

Effects of etiology and severity. Brain and Language,

25(1):117–133.

Graeme Hirst and Vanessa Wei Feng. 2012. Changes in

style in authors with alzheimer’s disease. English

Studies, 93(3):357–370.

D. Holmes and S. Singh. 1996. A stylometric analysis of

conversational speech of aphasic patients. Literary

and Linguistic Computing, 11:45–60.

William L. Jarrold, Bart Peintner, Eric Yeh, Ruth Kras-

now, Harold S. Javitz, and Gary E. Swan. 2010. Lan-

guage analytics for assessing brain health: Cognitive

impairment, depression and pre-symptomatic alz-

heimer’s disease. In Yiyu Yao, Ron Sun, Tomaso

Poggio, Jiming Liu, Ning Zhong, and Jimmy Huang,

editors, Brain Informatics, volume 6334 of Lecture

Notes in Computer Science, pages 299–307. Springer

Berlin Heidelberg.

Vlado Keselj, Fuchun Peng, Nick Cercone, and Calvin

Thomas. 2003. N-gram-based author profiles for au-

thorship attribution. In Pacific Association for Com-

putational Linguistics.

Daphne Koller and Nir Friedman. 2009. Probabilistic

Graphical Models: Principles and Techniques. MIT

press.

Linda E. Nicholas and Robert H. Brookshire. 1993. A

system for quantifying the informativeness and effi-

ciency of the connected speech of adults with apha-

sia. Journal of Speech, Language, and Hearing Re-

search, 36(2):338–350.

M. Nicholas, L. Obler, M. Albert, and N.

HelmEstabrooks. 1985. Empty speech in alzheimer’s

disease and fluent aphasia. Journal of Speech and

Hearing Research, 28(3):405–410.

Loraine K. Obler and Susan de Santi, 2000. Methods for

Studying Language Production, chapter 20. Lise

Menn and Nan Bernstein Ratner, lawrence erlbaum

associates edition.

Ronald C. Petersen, Rachelle Doody, Alexander Kurz,

Richard C. Mohs, John C. Morris, Peter V. Rabins, Ka-

ren Ritchie, Martin Rossor, Leon Thal, and Bengt

Winblad. 2001. Current concepts in mild cognitive

impairment. Archives of Neurology, 58(12):1985–

1992.

Martin Prince, Emiliano Albanese, Maelenn Guerchet,¨

and Matthew Prina. 2014. World alzheimer report

2014. Alzheimer’s Disease International (ADI).

Jamie Reilly, Joshua Troche, and Murray Grossman,

2011. Language Processing in Dementia, chapter 12,

pages 336–368. Wiley-Blackwell.

S. R. Sabat. 1994. Language function in alzheimer’s

disease: a critical review of selected literature. Lan-

guage and Communication, 14:331–351.

David A. Snowdon, Susan J. Kemper, James A. Morti-

mer, Lydia H. Greiner, David R. Wekstein, and Wil-

liam R. Markesbery. 1996. Linguistic ability in early

life and cognitive function and alzheimer’s disease in

late life: Findings from the nun study. JAMA,

275(7):528–532.

Efstathios Stamatatos. 2009. A survey of modern au-

thorship attribution methods. JASIST, 60(3):538–

556.

Calvin Thomas, Vlado Keselj, Nick Cercone, Kenneth

Rockwood, and Elissa Asp. 2005. Automatic detec-

tion and rating of dementia of alzheimer type through

lexical analysis of spontaneous speech. In Proceed-

ings of the IEEE International Conference on Mecha-

tronics and Automation.

Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011. Data

Mining: Practical Machine Learning Tools and Tech-

niques. Morgan Kaufmann.

Le Xuan, Ian Lancashire, Graeme Hirst, and Regina

Jokel. 2011. Longitudinal detection of dementia

through lexical and syntactic changes in writing: A

case study of three british novelists. Literary and

Linguistic Computing, 26(4):435–461.

JC. Morris and C. Ernesto and K. Schafer and M. Coats

and S. Leon and M. Sano and LJ Thal and P. Wood-

bury. 1997. Clinical dementia rating training and reli-

ability in multicenter studies: the Alzheimer's Disease

Cooperative Study experience. Neurology

48(6):1508-1510.

S. Key-DeLyria. 2013. What are the methods for diag-

nosing MCI? Neurophysiology and Neurogenic

Speech and Language Disorders, 23: 14-22.

Mark A. Hall. 1999. Correlation-based Feature Selec-

tion for Machine Learning. Ph.D. thesis, University

of Waikato.

1207

Proceedings of NAACL-HLT 2016, pages 1208–1216,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Consensus Maximization Fusion of Probabilistic Information Extractors

Miguel Rodrı́guez and Sean Goldberg and Daisy Zhe Wang
University of Florida, Dept of Computer Science, Gainesville, FL, USA

{mer,sean,daisyw}@cise.ufl.edu

Abstract

Current approaches to Information Extraction
(IE) are capable of extracting large amounts
of facts with associated probabilities. Because
no current IE system is perfect, complemen-
tary and conflicting facts are obtained when
different systems are run over the same data.
Knowledge Fusion (KF) is the problem of ag-
gregating facts from different extractors. Ex-
isting methods approach KF using supervised
learning or deep linguistic knowledge, which
either lack sufficient data or are not robust
enough. We propose a semi-supervised appli-
cation of Consensus Maximization to the KF
problem, using a combination of supervised
and unsupervised models. Consensus Maxi-
mization Fusion (CM Fusion) is able to pro-
mote high quality facts and eliminate incor-
rect ones. We demonstrate the effectiveness
of our system on the NIST Slot Filler Valida-
tion contest, which seeks to evaluate and ag-
gregate multiple independent information ex-
tractors. Our system achieved the highest F1
score relative to other system submissions.

1 Introduction

The abundance of unstructured text on the web such
as news, discussion forums, wiki pages, etc. has in-
creased the interest of the research community in the
automatic extraction of information at scale. Infor-
mation extractors can be used to construct or expand
Knowledge Bases (KBs) through a process known as
Knowledge Base Population (KBP) or Construction.
Facts in a KB are typically modeled as (subject,
relation, object) triples such as (Facebook,
org:city of headquarters, Menlo Park).

No current information extractor is perfectly
accurate and different models exhibit different
strengths and weaknesses. As a result, many state-
of-the-art KBs in academia and industry employ
multiple complementary information extractors for
KBP. NELL(Mitchell and Fredkin, 2014) employs
rules, statistically-learned pattern extractors, and
context extractors among others. YAGO (Suchanek
et al., 2007) uses heuristic extractors at text and on-
tological levels and Google has multiple extractors
crawling text, tables, and HTML.

Different extraction systems may also agree or
disagree on the information they extract. Con-
sider three systems that extract the facts (Facebook,
org:city of headquarters, Menlo Park), (Facebook,
org:city of headquarters, Palo Alto), and (Face-
book, org:city of headquarters, Menlo Park) with
probabilities 0.6, 0.3, and 0.5 respectively. The Palo
Alto extraction is erroneous and should be removed.
The two Menlo Park extractions should be promoted
by agreement and have their confidences increased.

The aggregation of facts from multiple extractors
into a single probabilistic triple is known as Knowl-
edge Fusion (KF) (Dong et al., 2014) and can be
modeled as an ensemble learning problem. Previous
ensemble approaches at the output layer divide into
unsupervised and supervised methods (Gao et al.,
2010). Unsupervised methods establish a consen-
sus or majority vote among extractors without distin-
guishing the merit of each, but perform poorly if all
the extractors are weak. Supervised methods such
as stacking achieve better performance by learning
weights for each extractor and combining them as a
weighted sum. The difficulty in obtaining training

1208

data usually results in high precision, but low recall
among all facts.

As a solution to the low recall problem we present
a probabilistic ensemble fusion model based on
Consensus Maximization (CM) (Gao et al., 2009),
which is a semi-supervised learning method able to
combine the strengths of both supervised and unsu-
pervised approaches. In the knowledge fusion do-
main, where the number of unsupervised systems
can be rather large compared to those with manu-
ally labeled data, Consensus Maximization Fusion
is able to leverage both for improved performance.

We apply our CM Fusion approach to the NIST
Slot Filling Validation (SFV) task, an ensemble
learning problem that aims to combine multiple in-
formation extractors participating in the NIST En-
glish Slot Filling (ESF) task. Our experiments show
an improved F1 score relative to the current state-of-
the-art SFV systems.

We make the following overall contributions in
this paper:

• Present a novel probabilistic fusion system that
incorporates Consensus Maximization to solve
the Knowledge Fusion problem.

• Develop an application of our system to the
NIST Slot Filling Validation task.

• Outline an evaluation of our system that im-
proves upon the previous state-of-the-art F1
score by 28%.

Though we choose to focus on the SFV task in
this paper, there are clear applications beyond this
and to the Knowledge Fusion problem in general.
The remainder of this paper is organized as follows.
In Section 2, we discuss background material on the
ESF and SFV tasks as well as the Consensus Maxi-
mization algorithm. Section 3 outlines our CM Fu-
sion system and how it maps into the knowledge fu-
sion problem. Our experiments are detailed in Sec-
tion 4 and we conclude in Section 5.

2 Background

Here we present the appropriate background knowl-
edge on the English Slot Filling (ESF) and Slot Fill-
ing Validation (SFV) tasks that are part of the NIST
Text Analysis Conference (TAC). We also introduce

the Consensus Maximization framework that forms
the foundation of CM Fusion.

2.1 Knowledge Base Construction: Slot Filling

A knowledge base is a repository of information
about people, places, and things. The usual repre-
sentation is as (subject, relation, object)
triple. The subject and object are entities such as
Facebook or Menlo Park. The relation is some
property that holds between the subject and object
and usually adheres to a fixed ontology such as
headquarters in. Knowledge Base population in-
volves the generation of triples from unstructured
text sources.

To facilitate and encourage further research into
KBP, NIST has organized a series of workshops
known as the Text Analysis Conference (TAC). The
English Slot Filler (ESF) task involves connecting
a (subject, relation, *) pair with a set of
corresponding object attributes. Teams compete
with each other to develop the best system for the
job (Surdeanu and Ji, 2014).

Each team receives as input a set of queries
in XML format and a text corpus. The
queries are empty slots such (Facebook,
org:city of headquarters, *) and the corpus is
a formatted set of web pages, newswire, and
discussion forums. For each query slot, the systems
extract the appropriate attribute as either a single
value or list of values or NIL. Overall evaluation
is determined by final F1 score across all queries.
Query evaluation occurs after submission by a team
of human judges. Teams do not know their final
accuracy at submission time.

2.2 Ensembling ESF: Slot Filling Validation

The massive quantity of data makes manual labeling
impossible and thus system evaluation very difficult.
A parallel TAC task is Slot Filling Validation (SFV),
which aims to develop a meta-classifier for the pur-
pose of validating individual systems. SFV systems
receive as input the set of query results from each
ESF system. Without any truth information, they
must evaluate the evidence from each query and re-
turn a final slot value. The process of sorting con-
flicting and complementary information from dif-
ferent systems and aggregating into a unified KB is
equivalent to the Knowledge Fusion problem.

1209

Sys. Slot Filler Provenance Prob
03 1 Menlo Park D1:683-692 0.087
03 2 Menlo Park D1:683-692 0.197
12 4 Menlo Park D2:655-665 0.987
10 3 Menlo Park D3:683-692 1.000
13 3 San Francisco D4:974-986 1.000
07 4 San Francisco D5:3534-3544 0.210
09 1 Chinatown D6:3520-3529 0.200
16 1 California D6:7250-7258 1.000
10 2 California D7:263-267 1.000

Table 1: Slot fillers extracted by multiple systems for the query

(Facebook, org:city of headquarters). The columns represent

each system, their response, document provenance, and ex-

tracted probabilities.

Table 1 shows an example set of query re-
sults from different systems for the (Facebook,
org:city of headquarters, *) slot. Included with the
slot filler are provenance information about where
the filler was mentioned in the corpus and the sys-
tem’s confidence probability.

As stated in the introduction, previous work in
SFV has used majority voting (Sammons et al.,
2014) or stacking (Viswanathan et al., 2015) to com-
bine the output of multiple ESF systems. The lack
of ground truth motivated the majority voting ap-
proach of (Sammons et al., 2014), which performs
decently in precision and recall. Because of the an-
nual nature of the TAC-KBP competition, some sys-
tems repeat submissions in successive years. While
current truth data is not available, for a small num-
ber of systems there is data available from previous
years on a different set of queries. (Viswanathan et
al., 2015) uses those systems as training data in a
stacking ensemble. Viewing each triple as a binary
classification problem into true or false, they extract
features based on the probabilities each ESF system
gave to each fact (or 0.0 if they did not extract the
fact) and train an L1-regularized SVM with a linear
kernel. While this gives high precision, the lack of
systems participating in multiple years leads to very
low recall among all extracted facts.

2.3 Consensus Maximization

Consensus Maximization (Gao et al., 2009) is an
ensemble learning method that merges both super-
vised and unsupervised learning models into a sin-

gle cohesive framework. While unsupervised mod-
els don’t provide class labels, they do provide con-
straints that reduce the hypothesis space of the over-
all learning problem. Examples in the same cluster
are likely to receive the same class label and may im-
prove prediction accuracy through increased model
diversity.

Like majority voting and stacking, CM operates at
the output level of each individual model and aims
to predict the conditional probabilities of each ex-
ample belonging to each class. By providing class
labels, supervised models naturally partition the ex-
ample space into groups and give those groups la-
bels. Unsupervised models do the same partition-
ing, but cannot label the groups. Using the super-
vised methods and their examples as a starting point,
CM propagates labels to other unsupervised clusters
containing the same examples and to other examples
within those clusters.

Formally, the framework of Consensus Maxi-
mization is a constrained optimization problem over
a bipartite graph. The two sets of nodes are object
nodes and group nodes. Each Object node repre-
sents a single example given to each system for clas-
sification/clustering. Group nodes represent within-
system partitions. There are as many partitions as
there are classes. For c classes and m systems, there
will be v = cm total groups.

The conditional probabilities are expressed in the
form of matrices Un×c for objects and Qv×c for
groups, where rows are object or group nodes from
the graph and columns are classes. Rows or columns
of the matrix are denoted with the vector ~ui or ~qi.
Each element uiz ∈ Un×c represents the conditional
probability of object i belonging to class z. Simi-
larly, each element qjz ∈ Qn×v represents the condi-
tional probability of group j belong class z as shown
in the following equations:

uiz = P (y = z|xi) (1)

qjz = P (y = z|gi) (2)

The adjacency matrix of the bipartite graph is rep-
resented by An×v where aij = 1 when xi has been
assigned to group gj by its respective model, or 0
otherwise. Initial group label assignments are pro-
vided by supervised models and encoded in the ma-

1210

trix Yv×c, where yjz = 1 if the group gj comes from
supervised learning and belongs to class z, or 0 oth-
erwise. The sum of the rows of Y determines if a
group node belongs to a supervised or unsupervised
model. Let kj =

∑c
z=1 yjz binarily represent such

scenario. Note that kj = 0 when there is no super-
vised evidence for group j. The consensus among
models is formulated as the following optimization
problem:

min
Q,U

(
n∑
i=1

v∑
j=1

aij ‖ ~ui − ~qj ‖2

+ α

v∑
j=1

kj ‖ ~qj − ~yj ‖2

+ β

n∑
i=1

hi ‖ ~ui − ~fi ‖2)

s.t

~ui ≥ ~0, | ~ui |= 1, i = 1, . . . , n

~qj ≥ ~0, | ~qj |= 1, j = 1, . . . , v

(3)

The first term finds consensus across models by
minimizing the deviation between the conditional
probability of object i in the vector ~ui, and the con-
ditional probability of the groups, ~uj , where it has
been originally assigned by the input models. The
second term penalizes deviations of the group prob-
ability ~qj from its initial assignment ~yj , with α being
the penalization factor that has to be paid for violat-
ing supervised predictions. Consensus Maximiza-
tion does not require labeled objects to estimate the
probability matrices Q and U . Nevertheless, a small
amount known labels can help bias the optimization
and improve the model. If l objects have known la-
bels, the matrix Fn×c encodes this information such
that fiz = 1 when xi’s true label is z and 0 other-
wise. In this matrix, i is the index of an object node,
and z a class label. The sum of rows in F determine
if an object has a label assigned, hi =

∑c
z=1 fiz .

For instance, ~fi = ~0 represents an objects without
labeled data. The third term in the objective function
penalizes deviations of the conditional probability of
an object ~ui from its known label ~fi; when hi = 0
this term is dismissed. Labeled variables incorpo-
rated in CM are not final. The value of β is the pe-
nalization factor for violating label constraints. For

a fuller treatment of the methodology, see (Gao et
al., 2009).

3 Consensus Maximization Fusion

In this section we describe the ensemble CM Fu-
sion system we built for combining multiple infor-
mation extractors. Similar to (Viswanathan et al.,
2015), we view the slot filling problem in terms of
a binary classification task. The set of all extrac-
tions across all systems produce an initial knowl-
edge base of facts. This KB is noisy and redundant
and contains a lot of conflicting and complementary
evidence. For each fact in the KB, we fuse decisions
coming from each system into a true class and a false
class.

Figure 1 shows the architecture of the system. Of-
fline all individual extractors operate over the same
corpus and produce their extractions. A preprocess-
ing step canonicalizes strings and clusters systems
producing the same extraction. The feature extrac-
tion step converts set of probabilities about each
system’s fact into the unsupervised feature vector.
For the systems for which previous years evaluation
data is available we train 6 different meta-classifiers.
Their decisions on the same corpus comprise the su-
pervised feature vector. The supervised and unsu-
pervised data are passed into the consensus maxi-
mization component that produces a final aggregated
probability for each value. As part of a final cleaning
process, constraints are applied that remove certain
mutually exclusive conflicting facts.

For the remainder of this section we describe each
component of our Consensus Maximization Fusion
system in more detail.

3.1 Preprocessing

Our system takes as input extractions produced us-
ing a number of information extractors that differ in
their methodology and application. Their output is
uniform and their “filled slots” correspond to a set
of extracted facts. Each fact is processed by trans-
forming all text into lower case and deleting trailing
spaces. Using exact string match we map each fact
onto a cluster of the multiple systems that extracted
it.

1211

Stacked(
Ensemble(
(3.2)

Corpus

Extractions

Extractions
Preprocessing(

and(
Mapping(
(3.1)

CM
Fusion
(3.3)

Constraint(
Checking
(3.4)

ExtractionsCorpus

Corpus

Unmapped(systems

Figure 1: Consensus Maximization Fusion system components and pipeline.

3.2 Stacked Ensemble

Consensus Maximization Fusion is able to take into
account supervised and unsupervised systems for
knowledge fusion. The supervised portion is able to
weight certain systems using previously labeled data
and combine their decisions into a meta-classifier.
The unsupervised portion operating over unlabeled
data treats every system equally and is closer in spirit
to a majority vote.

Of the extractors submitting results to ESF, about
10% had participated in previous years where la-
beled data was available. This idea was used in
(Viswanathan et al., 2015) to generate a series meta-
classifiers using stacking. A meta-classifier com-
bines the outputs of multiple systems using learned
weights. (Viswanathan et al., 2015) generate a to-
tal of 6 meta-classifiers for comparison that differ
in classifier type and feature vector. The basic fea-
ture vector includes one entry for each system and
with the value being that system’s extraction prob-
ability. Two additional feature vectors were gener-
ated by adding relational information for each sys-
tem and both relational information and provenance
information. These three feature vectors were in-
dependently trained using logistic regression (LR)
and SVM for a total of 6 meta-classifiers. CM Fu-
sion runs each trained meta-classifier over the same
ESF corpus and uses their output as an additional 6
systems in the ensemble combination. Though we
use only 6 our method generalizes to any number of
meta-classifiers.

3.3 Fusing Systems

In total there are S systems submitting runs to be
ensemble by CM Fusion. N of these systems have
evaluation data for the training a total of M meta-
classifiers. The top half of Figure 2 shows the col-
lection of supervised meta-classifiers and remaining
unsupervised systems.

Symbol Definition
o1, ..., ok Unique facts extracted
g1, ..., g2m Group nodes from meta-classifiers
g2m+1, ..., gt Group nodes from unmapped runs
A = [aij] Indicator of fact i in group j
U = ~ui Conditional prob of oi = true
Q = ~qi Indicator of unmapped run gi = yes
Y = ~yj Indicator of meta-classifier gj = yes

F = ~fi oi label if known a priori
Table 2: CM Fusion notations mapped to the SFV task.

Consensus Maximization operates as a bipartite
graph between object nodes representing examples
to classify and group nodes representing classes
within each system. In the knowledge fusion do-
main, each object node pertains to a specific fact
triple under consideration. The two classes for each
system (Yes/No) all combined represent the set of
group nodes. The translation component of CM Fu-
sion generates the bipartite graph in Figure 2 as input
to the consensus maximization component.

The overall goal of consensus maximization is to
combine labeled predictions from the M supervised
meta-classifiers and consensus predictions from the
unsupervised systems using a constrained optimiza-
tion framework. As recalled in Section 2, CM opti-
mizes U and Q, which are conditional probabilities
between object nodes (facts) and classes (Yes/No)
and between group nodes (output classes for each
system) and classes (Yes/No) respectively. Because
we are only interested in the Yes class probabili-
ties, the matrices collapse into vectors ~u and ~q as
per equation 3. ~ui is initialized as an uninformed
prior with value 0.5 for each object node. Since un-
supervised output labels are known a priori, ~qj re-
mains unchanged in the optimization process and
encodes the pertinence of each group node j to a
Yes/No class. Finally ~yj includes the supervised
meta-classifier output for each group. Running the

1212

Run$1 Run$2 Run$N.
.
.Conf.$1 Conf.$2 Conf.$N

Meta$
Classifier$

1

Yes
g1

Meta$
Classifier$

M
.$.$.

Run$N+1 Run$N+2 Run$S

No
g2

Yes
g2m91

No
g2m

Yes
g2m+1

No
g2m+2

Yes No Yes No
gt

O1 O2 O3 Ok

.$.$. .$.$.a1,1 at,ka2m+2,ka2m+2,1

Figure 2: CM Bipartite graph for SFV. Object nodes corre-

spond to facts. Each of S systems partition facts into Yes or No

classes, which act as groups in CM translation.

optimization program generates a final ~ui that gives
a posterior probability for each fact. Table 2 maps
all CM symbols in equation 3 to their corresponding
elements in the SFV problem definition.

3.4 Enforced Constraints
After applying consensus maximization, there may
be some facts that can be eliminated using function-
ality constraints. A slot is functional when it has
only one possible value for its filler. Functional slots
with different fillers may have certain facts elimi-
nated based on mutual exclusion. As an example,
consider the various slot filler responses in Table 1.
An organization can only have its headquarters in
one city at any given time. In this case Menlo Park
should be chosen based on it having the maximum
probability and all other facts eliminated. When the
extraction probability is the same for multiple sys-
tems, one of the extractions is chosen at random.
Nevertheless, this is hardly ever the case.

4 Experiments

We evaluate our system using a collection of queries
supplied by TAC-KBP SFV. In this section we
more fully describe the dataset and our experiment
methodology. We compare to the current state-of-
the-art ESF and SFV systems and show an improve-
ment in F1 score. Finally, we provide an analysis of
our results.

4.1 Datasets
Three datasets were used for training and testing
spread across the three years that the English Slot

Filling task has been run. Each team in the compe-
tition submits multiple models vying for the highest
score on unseen training data. Each submission is
viewed as a different system in our ensemble. 2013
contains 52 systems. 2014 contains 65 and 2015
contains 69. In 2013 and 2014 we use only ESF data,
but 2015 adds Cold Start Knowledge Base (CSKB)
data. The total number of labeled queries in both
2013 and 2014 were 100 each. 2015 had 9340 un-
labeled queries. In addition, 2015 had 164 labeled
queries supplied for initial system assessment that
was incorporated into the training data for 2015 sub-
missions.

We performed two distinct experiments and com-
pared multiple baselines for each. Table 3 shows
results where we trained on 2013 only and tested on
2014 data only. Table 4 results are for training on
2013 and 2014 data and testing on 2015 data.

4.2 0-Hop and 1-Hop Queries

The 2015 ESF task introduced more complex
queries into the fold. 1-hop queries use the
result of a previous query to answer a new
query. For example, consider a query ask-
ing for all companies headquartered in the same
city as Facebook. The equivalent 1-hop query
is (Facebook, org:city of headquarters, ?x), (?x,
gpe:headquarters in city, *). The second part of the
query can be seen as a join to the first part using a
common answer in both. The terminology exploits
the idea of “hopping” from one query to another. By
contrast, a regular slot filling task is a 0-hop query.

4.3 Evaluation

All systems were evaluated using the standard met-
rics of precision, recall, and F1 which is the har-
monic mean of precision and recall. Precision is
the amount of correctly extracted facts compared to
the total facts extracted by the system. Recall is
the amount of correct facts compared all facts in the
ground truth. In review:

Recall(R) =
Correct
Total

(4)

Precision(P) =
Correct

Extracted
(5)

F1 = 2
PR

P +R
(6)

1213

Method P R F1
LR 0.648 0.335 0.441

LR + REL 0.662 0.343 0.452
LR + PROV + REL 0.634 0.374 0.470

SVM 0.639 0.319 0.425
SVM + REL 0.720 0.299 0.422

SVM + PROV + REL 0.729 0.298 0.423
MV 0.467 0.447 0.457

Stanford 0.585 0.298 0.395
CM Fusion 0.549 0.538 0.544

Table 3: Result comparisons for the testing on the 2014 SFV

task with training done on 2013 ESF data. The first 6 methods

correspond to stacking while the others correspond to majority

vote, the best performing 2014 ESF system, and CM Fusion.

By increasing recall, CM Fusion has the highest F1 among all

baselines.

The 0-hop queries are scored trivially on the cor-
rectness of the slot filler. The 1-hop queries require
two verifications to undergo scoring. The 0-hop
query from which it was derived must both exist and
be correct. Any slot fillers that don’t meet this crite-
ria are omitted even if their 1-hop slot was ultimately
correct. For example, the 1-hop extraction (Palo
Alto, gpe:headquarters in city, Hewlett-Packard)
will be ignored even though it is correct because the
0-hop query (Facebook, gpe:city of headquarters,
Palo Alto) that derives it is incorrect (Facebook is
headquarted in Menlo Park).

4.4 Results

Table 3 shows results using 2013 ESF systems as
training data for the meta-classifiers and 2014 ESF
systems as testing data. The first 6 rows are a combi-
nation of classifiers and feature vectors using stack-
ing as described in (Viswanathan et al., 2015). MV
refers to the majority voting described (Sammons et
al., 2014). Majority voting accepts a fact if a cer-
tain number of systems above some learned thresh-
old have extracted it. Both of these systems show-
cased results on the 2014 SFV task. The Stanford
system (Angeli et al., 2014) was the best perform-
ing ESF system during the 2014 competition. The
final row is our CM Fusion algorithm. Only 0-hop
queries are used for these results.

Table 4 showcases two of the three runs we offi-
cially submitted as part of the recent 2015 SFV task

P R F1 Queries
2013 & 2014 0.528 0.481 0.504

2014 only 0.477 0.539 0.506 0-Hop
BBN 0.493 0.391 0.436

2013 & 2014 0.393 0.097 0.155
2014 only 0.314 0.141 0.194 1-Hop
Stanford 0.184 0.304 0.229

2013 & 2014 0.503 0.307 0.381
2014 only 0.436 0.358 0.393 ALL

BBN 0.378 0.261 0.309

Table 4: Summary of submissions to the SFV 2015 task for

different query types. We trained the meta-classifiers on 2014

ESF data or 2013 and 2014 ESF data. Comparison is made to

the highest scoring individual ESF system by F1.

for different query types. For each query, the first
two rows refer to our CM Fusion system with dif-
ferent training data and the final row the best per-
forming 2015 ESF system for that particular query
type. 2015 results are not officially published yet for
either ESF or SFV. Nevertheless, at 2015 workshop
announcing the results, CM Fusion was awarded as
the top ranked SFV system by F1 score.

4.5 Analysis

The main drawback between previous ensemble sys-
tems that utilize only supervised systems is high pre-
cision, but very low recall. This is evidenced in
the disproportion between precision and recall in the
first 6 systems of Table 3. Majority voting, while
learning a threshold using supervision, does include
some unsupervised consensus.

The main idea behind CM Fusion is to take into
account the answers from potentially well-ranked
extractors that stacking meta-classifiers omit due
lack of training data. CM Fusion outperforms both
approaches in terms of F1 by greatly increasing the
recall while maintaining high precision. It also pro-
duces better results than the best performing 2014
ESF system. On 2015 data in Table 4, both systems
outperform the best performing 2015 ESF system.

The benefit of using CM Fusion over other su-
pervised ensemble models is the ability to use un-
supervised systems that lack sufficient training data.
When these systems agree on extractions, their con-
sensus can be a source of discriminative power
which CM Fusion is able to harness. For our submis-

1214

Figure 3: Extracted facts among unsupervised systems that

agree with at least one supervised system using 2015 queries.

The x-axis shows the minimum number of systems used for

consensus.

sion trained only on 2014 ESF data, Figures 3 and 4
break down the difference between extracted facts
derivable only from supervised systems and those
able to be attained from unsupervised systems.

Specifically, Figure 3 measures the number of ex-
tracted facts supported by a consensus of the num-
ber of systems on the x-axis that also agree with the
output of a supervised system. Blue bars represent
the amount of correct extractions and red bars in-
correct extractions. When only supervision is used
there is good precision across the board. Figure 4
shows the number of extracted facts supported only
by a consensus of systems on the x-axis without any
supervision. The disparity in the scale of facts ex-
tracted supports the recall of supervised systems.
When only a few systems agree on an extraction,
about as many good facts are extracted as bad ones.
As consensus increases, precision greatly improves.
This idea of unsupervised consensus is exactly what
improves CM Fusion over supervised ensemble ap-
proaches.

To understand the impact of the number of unsu-
pervised systems fused and the quality of the fused
runs in the ensemble, we applied CM Fusion in
an incremental fashion by adding one unsupervised
system at a time and scored the produced ensem-
ble at each step. Techniques for ranking unsuper-
vised systems are outside the scope of this work, for
simplicity we examine the best- and worst-cases for
adding systems incrementally. Ranking each unsu-
pervised system by its final individual F1 score on

Figure 4: Extracted facts among unsupervised systems using

2015 queries using only unsupervised consensus. The x-axis

shows the minimum number of systems used for consensus.

The scale is larger than Figure 3 because agreement with a su-

pervised system is not needed.

the SFV 2015 data, we ran CM Fusion adding the
best performing run (CMF-BEST) and worst per-
forming run (CMF-WORST) at each step. The re-
sults are displayed in Figure 5. For comparison, we
also included the results of the best performing ESF
system (BBN-F1) and the score of a supervised-
only ensemble (SUP-ONLY). Fusing unsupervised
systems with lower accuracy negatively affects the
quality of the ensemble compared to supervised-
only. When ensembleing very similar runs, such as
runs submitted by the same team, the diversity of the
systems is compromised and may lower the ensem-
ble quality. On the other hand, unsupervised sys-
tems with higher accuracy can rapidly increase the
quality of the ensemble above the best individual re-
sults and reach the highest ensemble score. Never-
theless, more does not necessarily mean better, as
shown in the plateau of the best-case plot in Fig-
ure 5, when noisy systems are added to the ensemble
the F1 score is maintained. The average case would
lie somewhere in between the extremes of the best-
and worst-case. As is shown, a large number of sys-
tems are extremely error-prone, but the combination
using CM Fusion produces a result ultimately supe-
rior.

5 Conclusions

This paper presented our Consensus Maximization
Fusion of multiple probabilistic information extrac-
tors. This approach combines supervised stacking

1215

Figure 5: Incremental CM Fusion in terms of adding best-

performing (blue) and worst-performing (green) systems one-

by-one. Performance is ranked by F1 scores from the 2015 SFV

dataset. F1 scores are in the range [0.03− 0.309] with an aver-

age F1 of 0.140

meta-classifiers with unsupervised extraction out-
puts in an ensemble classifier. Our system outper-
formed the current state-of-the-art ensemble mod-
els submitted to the TAC-KBP Slot Filler Valida-
tion task in 2014. CM Fusion was also chosen as
the leading system at the 2015 TAC-KBP Workshop.
This is the first cross-model ensemble approach that
fuses multiple knowledge graphs obtained from both
supervised and unsupervised information extractors.
Optimal performance is attained when the extractors
represent different systems running over the same
corpus and the shared extraction density is high.

The canonicalization of facts in CM Fusion rep-
resents a new state-of-the-art contribution to entity-
centric information extraction compared to tradi-
tional document-centric approaches. While our ap-
proach has been experimentally verified using TAC-
KBP data, it generalizes to overlapping ensemble of
knowledge bases. Some such as NELL (Mitchell
and Fredkin, 2014) have a small supervised hu-
man feedback component and others such as Ope-
nIE (Banko et al., 2007) are entirely unsupervised.
Future work concerns using CM Fusion to to align
and canonicalize multiple such knowledge bases to
solve the knowledge fusion problem.

Acknowledgments

This work is partially supported by NSF IIS
Award #1526753, DARPA under FA8750-12-2-

0348-2 (DEFT/CUBISM) and graduate fellowships
from Fulbright and Sandia National Labs

References
Gabor Angeli, Julie Tibshirani, Jean Y Wu, and Christo-

pher D Manning. 2014. Combining distant and partial
supervision for relation extraction. In Proceedings of
the 2014 conference on empirical methods in natural
language processing (EMNLP).

Michele Banko, Michael J Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction for the web. In IJCAI, vol-
ume 7, pages 2670–2676.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 601–610. ACM.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei
Han. 2009. Graph-based consensus maximization
among multiple supervised and unsupervised models.
In Advances in Neural Information Processing Sys-
tems, pages 585–593.

Jing Gao, Wei Fan, and Jiawei Han. 2010. On the power
of ensemble: Supervised and unsupervised methods
reconciled. In Tutorial on SIAM data mining confer-
ence(SDM). Citeseer.

Tom Mitchell and E Fredkin. 2014. Never ending lan-
guage learning. In Big Data (Big Data), 2014 IEEE
International Conference on, pages 1–1. IEEE.

Mark Sammons, Yangqiu Song, Ruichen Wang, Gourab
Kundu, Chen-Tse Tsai, Shyam Upadhyay, Siddarth
Ancha, Stephen Mayhew, and Dan Roth. 2014.
Overview of ui-ccg systems for event argument extrac-
tion, entity discovery and linking, and slot filler vali-
dation. Urbana, 51:61801.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on
World Wide Web, pages 697–706. ACM.

Mihai Surdeanu and Heng Ji. 2014. Overview of the en-
glish slot filling track at the tac2014 knowledge base
population evaluation. In Proc. Text Analysis Confer-
ence (TAC2014).

Vidhoon Viswanathan, Nazneen Fatema Rajani, Yinon
Bentor, and Raymond Mooney. 2015. Stacked en-
sembles of information extractors for knowledge-base
population. In Proceedings of ACL.

1216

Proceedings of NAACL-HLT 2016, pages 1217–1222,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies

Barret Zoph∗, Ashish Vaswani∗, Jonathan May, and Kevin Knight
Information Sciences Institute

Department of Computer Science
University of Southern California

{zoph, avaswani, jonmay, knight}@isi.edu

Abstract

We present a simple algorithm to efficiently
train language models with noise-contrastive
estimation (NCE) on graphics processing
units (GPUs). Our NCE-trained language
models achieve significantly lower perplexity
on the One Billion Word Benchmark language
modeling challenge, and contain one sixth of
the parameters in the best single model in
Chelba et al. (2013). When incorporated into
a strong Arabic-English machine translation
system they give a strong boost in translation
quality. We release a toolkit so that others
may also train large-scale, large vocabulary
LSTM language models with NCE, paralleliz-
ing computation across multiple GPUs.

1 Introduction

Language models are used to compute probabili-
ties of sequences of words. They are crucial for
good performance in tasks like machine translation,
speech recognition, and spelling correction. They
can be classified into two categories: count-based
and continuous-space language models. The lan-
guage modeling literature abounds with success-
ful approaches for learning-count based language
models: modified Kneser-Ney smoothing, Jelinek-
Mercer smoothing, etc. In recent years, continuous-
space language models such as feed-forward neu-
ral probabilistic language models (NPLMs) and re-
current neural network language models (RNNs)1

∗Equal contribution.
1Henceforth we will use terms like ”RNN” and ”LSTM”

with the understanding that we are referring to language models
that use these formalisms

have outperformed their count-based counterparts
(Chelba et al., 2013; Zaremba et al., 2014; Mikolov,
2012). RNNs are more powerful than n-gram lan-
guage models, as they can exploit longer word con-
texts to predict words. Long short-term memory lan-
guage models (LSTMs) are a class of RNNs that
have been designed to model long histories and are
easier to train than standard RNNs. LSTMs are cur-
rently the best performing language models on the
Penn Treebank (PTB) dataset (Zaremba et al., 2014).

The most common method for training LSTMs,
maximum likelihood estimation (MLE), is pro-
hibitively expensive for large vocabularies, as it in-
volves time-intensive matrix-matrix multiplications.
Noise-contrastive estimation (NCE) has been a suc-
cessful alternative to train continuous space lan-
guage models with large vocabularies (Mnih and
Teh, 2012; Vaswani et al., 2013). However, NCE
in its standard form is not suitable for GPUs, as
the computations are not amenable to dense ma-
trix operations. In this paper, we present a natu-
ral modification to the NCE objective function for
language modeling that allows a very efficient GPU
implementation. Using our new objective, we train
large multi-layer LSTMs on the One Billion Word
benchmark (Chelba et al., 2013), with its full 780k
word vocabulary. We achieve significantly lower
perplexities with a single model, while using only
a sixth of the parameters of a very strong base-
line model (Chelba et al., 2013). We release our
toolkit2 to allow researchers to train large-scale,
large-vocabulary LSTMs with NCE. The contribu-
tions in this paper are the following:

2www.github.com/isi-nlp/Zoph_RNN

1217

• A fast and simple approach for handling large
vocabularies effectively on the GPU.
• Significantly improved perplexities (43.2) on

the One Billion Word benchmark over Chelba
et al. (2013)
• Extrinsic machine translation improvement

over a strong baseline.
• Fast decoding times because in practice there is

no need to normalize.

2 Long Short Term Memory Language
Models

In recent years, LSTMs (Hochreiter and Schmid-
huber, 1997) have achieved state-of-the-art perfor-
mance in many natural language tasks such as lan-
guage modeling (Zaremba et al., 2014) and statis-
tical machine translation (Sutskever et al., 2014;
Luong et al., 2015). LSTMs were designed to
have longer memories than standard RNNs, allow-
ing them to exploit more context to make predic-
tions. To compute word probabilities, the LSTM
reads words left-to-right, updating its memory after
each word and producing a hidden state h, which
summarizes all of the history. For details on the
architecture and computations of the LSTM, the
reader can refer to (Zaremba et al., 2014). In this
model the probability of word w given history u is

P (w | u) =
p(w | u)
Z(u)

, (1)

where p(w | u) = expDwh
T + bw is an unnor-

malized probability. Dw and bw are the output
word embedding and biases respectively, which are
learned during training. The normalization constant
is Z(u) =

∑
w∈V

p(w | u), and V is the vocabulary.

3 Noise Contrastive Estimation For
Training Neural Language Models

The standard approach for estimating neural lan-
guage models is maximum liklelihood estimation
(MLE), where we learn the parameters θ∗ that max-
imize the likelihood of the training data,

θ∗ = arg maxθ
∑
w,u

logP (w | u; θ) (2)

However, for each training instance, gradient-based
approaches for MLE require a summation over all
units in the output layer, one for each word in V .
This makes MLE training infeasible for large vocab-
ularies.

Noise-contrastive estimation (NCE) (Gutmann
and Hyvärinen, 2010) has been successfully adopted
for training neural language models with large vo-
cabularies (Mnih and Teh, 2012; Vaswani et al.,
2013; Baltescu and Blunsom, 2014; Williams et al.,
2015). NCE avoids repeated summations by train-
ing the model to correctly classify between gener-
ated noise samples and words observed in the train-
ing data. For each training pair ui, wi, we generate
k noise samples, w̄i1 . . . , w̄ik from a noise distribu-
tion q(w), which is known. We label ui, wi as true
(C = 1), and all ui, w̄ik as false (C = 0). We then
train the parameters to maximize the binary classifi-
cation log likelihood,

L =
∑
i

(
logP (C = 1 | ui, wi)+∑

k

logP (C = 0 | u, w̄ik)
)
,

(3)

where

P (C = 1 | w,u) =
p(w|u)
Z(u)

p(w|u)
Z(u) + k · q(w)

, (4)

and P (C = 0 | w,u) = 1− P (C = 1 | w,u).
We learn parameters to maximize this objective

with gradient ascent. In NCE, we treat Z(u) as an-
other parameter and learn its estimate along with the
rest of the parameters. Following Mnih and Teh
(2012) and Vaswani et al. (2013), we freeze Z(u)
to 1 and the model learns to approximately satisfy
the constraint. In practice, we find that our mean for
Z(u) is very close to 1 and the variance is quite small
(Section 6). For each training instance, we com-
pute gradients for the observed word and each noise
word, reducing the time complexity fromO(|V |) for
MLE to O(k). However, unlike MLE, since we typ-
ically sample different noise samples for each train-
ing instance, our gradient computations for the NCE
objective are not amenable to dense matrix opera-
tions, making it difficult to benefit from fast dense
matrix arithmetic on GPUs. In this paper, we present

1218

a simple solution to this problem: sharing the noise
samples across all the training instances in a mini-
batch. Sharing noise samples allows us to describe
NCE gradients with dense matrix operations, and
implement them easily on the GPU. In the next sec-
tion, we describe our NCE implementation on the
GPU with shared noise samples.

4 Our NCE Modification

In typical Noise-Contrastive Estimation, the objec-
tive function requires noise samples coming from
some distribution (in our case, the uniform distri-
bution). The objective function for NCE is shown
above in Equation 3, where we must calculate
P (C = 1 | w,u) for the true word and the noise
samples generated. There are three components to
this calculation: p(w | u) , Z(u) , and k · q(w). In
NCE we fix Z(u) to be one, so we only need to cal-
culate p(w | u) and k · q(w). The term k · q(w) is
simply an O(1) lookup, so the only costly operation
is computing p(w | u) for all k noise samples and
the true word. The operation to compute p(w | u)
for a single word w is expDwh

T + bw where Dw

and bw represent the word embedding and bias cor-
responding to the word we are computing it for.

The main cost in calculating the NCE objective
function is computing expDwh

T + bw, where in
normal NCE a dense matrix multiplication cannot
be done. The reason is that the noise samples gen-
erated per training example will be different. There-
fore, when we parallelize our algorithm by running
multiple training examples in parallel (a minibatch),
theDw we need are different per hT that we are run-
ning in parallel. If a constraint is set such that the
noise samples must be the same across all training
examples in the minibatch, then a matrix multipli-
cation can be done to compute expDwh

T + bw for
all words across that minibatch. This matrix mul-
tiplication is DhTM , where hTM is now a matrix of
all the hidden states being used in parallel, whereas
before hT was just a vector. Additionally, D is the
matrix of word embedding for the samples that are
being shared across a minibatch. Before, this was
not possible as the D matrix would have to be much
larger, being (minibatch size) · (k + 1) in size, mak-
ing the algorithm run much slower. An alternative
is to not restrict the noise samples to be the same,

but then we must use a sparse matrix multiplica-
tion as in Williams et al. (2015), which is neither
as fast nor as easy to implement. A comparison be-
tween these two approaches is shown in Figure 1.
We find that sharing noise samples across the mini-
batch gives us significant speedups over a baseline
of using different noise samples for each word in the
minibatch. These timings were calculated for a sin-
gle layer LSTM with 1000 hidden units, a vocab-
ulary of 350k, and a minibatch of 128. Not sur-
prisingly, MLE is quite expensive, limiting it’s use
for large vocabularies. Additionally, the memory
requirements for NCE are much lower than MLE,
since we do not need to store the gradient which has
the same size as the output embedding matrix. For
this MLE run, we had to distribute the computation
across two GPUs because of memory limitations.

5 Experiments

We conducted two series of experiments to validate
the efficiency of our approach and the quality of the
models we learned using it: An intrinsic study of
language model perplexity using the standard One
Billion Word benchmark (Chelba et al., 2013) and
an extrinsic end-to-end statistical machine transla-
tion task that uses an LSTM as one of several feature
functions in re-ranking. Both experiments achieve
excellent results.

5.1 Language Modeling
For our language modeling experiment we use the
One Billion Word benchmark proposed by Chelba et
al. (2013). In this task there are roughly 0.8 billion
words of training data. We use perplexity to evalu-
ate the quality of language models we train on this
data. We train an LSTM with 4 layers, where each
layer has 2048 hidden units, with a target vocabulary
size of 793,471. For training, we also use dropout to
prevent overfitting. We follow Zaremba et al. (2014)
for dropout locations, and we use a dropout rate of
0.2. The training is parallelized across 4 GPUs, such
that each layer lies on its own GPU and communi-
cates its activations to the next layer once it finishes
its computation.

5.2 Statistical Machine Translation
We incorporate our LSTM as a rescoring feature
on top of the output of a strong Arabic-English

1219

syntax-based string-to-tree statistical machine trans-
lation system (Galley et al., 2006; Galley et al.,
2004). That system is trained on 208 million words
of parallel Arabic-English data from a variety of
sources, much of which is Egyptian discussion fo-
rum content. The Arabic side is morphologically
segmented with MADA-ARZ (Habash et al., 2013).
We use a standard set of features, including two con-
ventional count-based language models, as well as
thousands of sparsely-occurring, lexicalized syntac-
tic features (Chiang et al., 2009). The system addi-
tionally uses a source-to-target feed-forward neural
network translation model during decoding, analo-
gous to the model of (Devlin et al., 2014). These
features are tuned with MIRA (Chiang et al., 2009)
on approximately 63,000 words of Arabic discus-
sion forum text, along with three references. We
evaluate this baseline on two test sets, each with ap-
proximately 34,000 words from the same genre used
in tuning.

We generate n-best lists (n = 1000) of unique
translations for each sentence in the tuning set and
re-rank the translations using an approach based on
MERT (Och, 2003). We collapse all features other
than language models, text length, and derivation
size into a single feature, formed by taking the dot
product of the previously learned feature and weight
vectors. We then run a single iteration of MERT on
the n-best lists to determine optimal weights for the
collapsed feature, the uncollapsed features, and an
LSTM feature formed by taking the score of the hy-
pothesis according to the LSTM described in Sec-
tion 5.1. We use the weights to rerank hypotheses
from the n-best lists of the two test sets. We re-
peated this experiment, substituting instead a two-
layer LSTM trained on the English side of the train-
ing data.

6 Results

Our two experiments with LSTMs trained with our
modification of NCE show strong results in their
corresponding tasks.

Our perplexity results are shown in Table 1, where
we get significantly lower perplexities than the best
single model from Chelba et al. (2013), while having
almost 6 times fewer parameters. We also compute
the partition function values, log

(
Z(u)

)
, for our de-

velopment set and we find that the mean is 0.058 and
the variance is 0.139, indicating that training has en-
couraged self-normalization.

Model Parameters Perplexity
Chelba et al. (2013) 20m 51.3
NCE (ours) 3.4m 43.2

Table 1: For the One Billion Word Benchmark, our NCE

method performs significantly better than the best single model

in the baseline, Chelba et al. (2013), while using many fewer

parameters.

Recently, (Józefowicz et al., 2016) achieved state-
of-the-art language modeling perplexities (30.0) on
the billion word dataset with a single model, using
importance sampling to approximate the normaliza-
tion constant, Z(u).

Independent of our work, they also share noise
samples across the minibatch. However, they use
8192 noise samples, while we achieve strong per-
plexities with 100 noise samples. We also show
significant improvements in machine translation, ex-
ploiting self-normalization for fast decoding, in ad-
dition to releasing a efficient toolkit that practition-
ers can use.

Table 2 shows our re-scoring experiments. When
we incorporate only the LSTM trained on the BOLT
dataset we get a +1.1 BLEU improvement on Tune,
+1.4 on Test 1, and +1.1 on Test 2. When we
also incorporate the LSTM trained on the One Bil-
lion Word dataset as a feature, we see another
+0.2 BLEU increase on Tune and Test 2. In

System Tune Test 1 Test 2
Baseline SMT 38.7 38.9 39.7
LSTM (BOLT) 39.8 40.3 40.8
LSTM (1b+BOLT) 40.0 40.3 41.0

Table 2: Our NCE-based language model successfully re-ranks

Arabic-to-English n-best lists. The baseline is a state-of-the-

art, statistical string-to-tree system. BOLT is a 208m-word, in-

domain English corpus; “1b” refers to the One Billion Word

benchmark corpus.

these re-scoring experiments we simply use the un-
normalized numerator p(w | u) as our word score,
which means we never have to compute the costly
partition function, Z(u). This is because the parti-
tion function is so close to 1 that the un-normalized

1220

Th
ro

ug
hp

ut
 (x

 1
k

w
or

ds
 p

er
 s

ec
on

d)

0

5

10

15

20

Number of noise samples

100 200 500 1000 2000 5000

Shared (NCE) Baseline (NCE) MLE

Figure 1: Sharing noise samples across the minibatch is at least 4 times faster than a baseline of not sharing them.

scores are very close to the normalized ones.

7 Conclusion

We describe a natural extension to NCE that
achieves a large speedup on the GPU while also
achieving good empirical results. LSTM models
trained with our NCE modification achieve strong
results on the One Billion Word dataset. Addition-
ally, we get good BLEU gains when re-ranking n-
best lists from a strong string-to-tree machine trans-
lation system. We also release an efficient toolkit for
training LSTM language models with NCE.

8 Acknowledgments

This work was carried out with funding from
DARPA (HR0011-15-C-0115) and ARL/ARO
(W911NF-10-1-0533).

References
P. Baltescu and P. Blunsom. 2014. Pragmatic neu-

ral language modelling in machine translation. arXiv
preprint arXiv:1412.7119.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants,
and P. Koehn. 2013. One billion word benchmark for

measuring progress in statistical language modeling.
CoRR, abs/1312.3005.

D. Chiang, K. Knight, and W. Wang. 2009. 11,001 new
features for statistical machine translation. In Proc.
NAACL.

J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. Schwartz,
and J. Makhoul. 2014. Fast and robust neural net-
work joint models for statistical machine translation.
In Proc. ACL.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In Proc. HLT-NAACL.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models.
In Proc. ACL-COLING.

M. Gutmann and A. Hyvärinen. 2010. Noise-contrastive
estimation: A new estimation principle for unnormal-
ized statistical models. In Proc. AI Stats.

N. Habash, R. Roth, O. Rambow, R. Eskander, and
N. Tomeh. 2013. Morphological analysis and disam-
biguation for dialectal arabic. In Proc. NAACL.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural Computation, 9(8):1735–1780.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the limits
of language modeling. CoRR, abs/1602.02410.

M. Luong, H. Pham, and C. Manning. 2015. Effective

1221

approaches to attention-based neural machine transla-
tion. arXiv preprint arXiv:1508.04025.

Tomáš Mikolov. 2012. Statistical language models based
on neural networks. Presentation at Google, Mountain
View, 2nd April.

A. Mnih and Y. W. Teh. 2012. A fast and simple algo-
rithm for training neural probabilistic language mod-
els. arXiv preprint arXiv:1206.6426.

F. J. Och. 2003. Minimum error rate training in statistical
machine translation. In Proc. ACL.

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Proc.
NIPS, pages 3104–3112.

A. Vaswani, Y. Zhao, V. Fossum, and D. Chiang. 2013.
Decoding with large-scale neural language models im-
proves translation. In Proc. EMNLP.

W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robin-
son. 2015. Scaling recurrent neural network language
models. CoRR, abs/1502.00512.

W. Zaremba, I. Sutskever, and O. Vinyals. 2014. Re-
current neural network regularization. arXiv preprint
arXiv:1409.2329.

1222

Proceedings of NAACL-HLT 2016, pages 1223–1232,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Automatically Inferring Implicit Properties in Similes

Ashequl Qadir and Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112, USA

{asheq,riloff}@cs.utah.edu

Marilyn A. Walker
Natural Language and Dialogue Systems Lab

University of California Santa Cruz
Santa Cruz, CA 95064, USA
mawalker@ucsc.edu

Abstract
A simile is a figure of speech comparing two
fundamentally different things. Sometimes, a
simile will explain the basis of a comparison
by explicitly mentioning a shared property.
For example, “my room is as cold as Antarc-
tica” gives “cold” as the property shared by
the room and Antarctica. But most similes do
not give an explicit property (e.g., “my room
feels like Antarctica”) leaving the reader to in-
fer that the room is cold. We tackle the prob-
lem of automatically inferring implicit prop-
erties evoked by similes. Our approach in-
volves three steps: (1) generating candidate
properties from different sources, (2) evaluat-
ing properties based on the influence of mul-
tiple simile components, and (3) aggregated
ranking of the properties. We also present an
analysis showing that the difficulty of infer-
ring an implicit property for a simile correlates
with its interpretive diversity.

1 Introduction

A simile is a figure of speech comparing two essen-
tially unlike things, typically using “like” or “as”
(Paul, 1970). Comparing fundamentally different
types of entities is what makes a simile figurative
(Israel et al., 2004). Similes may be closed or open
(Beardsley, 1981). A closed simile explains the
basis for a comparison by explicitly mentioning a
shared property. For example, the simile “my room
is as cold as Antarctica” gives “cold” as the prop-
erty shared by both the room and Antarctica. But
most similes do not explicitly mention the basis for
comparison, leaving people to infer what the enti-
ties have in common. An open simile expressing

the same comparison is “my room feels like Antarc-
tica”, where the shared property of being cold is left
implicit. In our study of similes in tweets, we found
that 92% of similes are open similes so the property
must be inferred. Our research tackles this problem
of inferring the implicit property evoked by an open
simile.

Inferring the basis of comparison in a simile
is central to natural language understanding and
metaphor interpretation. For example, “John was
like a lion in battle” is probably a statement about
John’s bravery or courage, not a description of
John’s physical appearance. Methods to under-
stand figurative similes could also be valuable to un-
derstand metaphor in other linguistic constructions,
such as predicate nominals (e.g., “he is a lion”).
Furthermore, identifying the implicit property of a
simile could be useful for sentiment analysis, be-
cause similes are often used to express positive and
negative feelings (Li et al., 2012). For example,
“John was like a lion in battle” contains only neutral
words, but inferring “bravery” as the implicit prop-
erty suggests that the simile has positive polarity.

We designed a three step process to infer the im-
plicit properties of open similes. First, we gen-
erate candidate properties for a simile by harvest-
ing words that are associated with its verb (“event”)
or object of comparison (“vehicle”) using a variety
of methods, including syntactic patterns, dictionary
definitions, and word embeddings. Each candidate
property is generated from just one component of
the simile. The second step of the process then eval-
uates each property’s compatibility with the com-
plementary component of the simile (event or vehi-

1223

cle). Finally, the third step of the process aggregates
all of the candidates generated by different methods
and ranks them based on collective evidence from
the different sources. We evaluate the performance
of our approach using gold standard properties pro-
vided by seven human annotators. We also present
an analysis of the similes in our data set with respect
to their interpretive diversity (intuitively, a measure
of how many plausible interpretations a simile has).
We show that our method performs best on similes
with low diversity, as one would expect since their
implicit properties are most clear to humans.

2 Problem Description and Data

A simile typically consists of four key components:
the topic or tenor (subject of the comparison), the
vehicle (object of the comparison), the event (act
or state), and a comparator (usually “as”, “like”,
or “than”) (Niculae and Danescu-Niculescu-Mizil,
2014). For the simile “the room feels like Antarc-
tica”, “room” is the tenor, “feels” is the event, and
“Antarctica” is the vehicle. A property (shared at-
tribute) can optionally be included to explicitly state
how the tenor is being compared with the vehicle,
(e.g., “the room is as cold as Antarctica”).

Table 1 shows examples of open similes from our
Twitter data set, along with several properties in-
ferred by our human annotators (our data set will be
described in Section 2.1). We represent each sim-
ile using just the head noun of the tenor and vehicle,
and the lemma of the event. Veale and Hao (2007)
observed that when a property is explicitly given, it
is usually a salient property of the vehicle. Table
1 illustrates some examples of inferred properties
that are strongly associated with the vehicle (e.g.,
“melodic” and “dulcet” are musical attributes).

We observed that implicit properties can be
strongly evoked from the event as well. For ex-
ample, most inferred properties for “person buzz
like fridge” emanate from the word “buzz”, such as
“humming”, “vibrating”, “distracting”, and “annoy-
ing”. Similarly, the tenor can also evoke properties,
as we see with the inferred property “squinty” for
the simile “eye feel like clam” although our obser-
vation is that this is less common. The event and the
tenor need to be semantically rich to evoke implicit
properties. The event in many similes is a form of

“to be” or a perception verb (e.g., “feels”), which
are semantically weak and contribute little. A tenor
provides limited information when it is a pronoun or
unknown entity (e.g., “John drives like a snail” is
understandable without knowing who John is).

Simile Properties Inferred by Humans
laugh be like music melodic, pleasing, dulcet, tinkly
person sound like prophet wise, insightful, prescient,

enlightened
eye feel like clam slimy, squinty, weary, gummy,

heavy
person look like carrot orange, thin, scrawny, slim, tall
person buzz like fridge humming, vibrating, distracting,

annoying, motorized
person fight like animal ferociously, scratches, tenaciously
person be like shark sneaky, primordial, dangerous, cold
time be like river flowing, fast, winding, unending,

moving
praise be like sunlight warm, rejuvenating, energizing,

cheerful

Table 1: Similes with sample properties inferred by humans.

Ultimately, an implicit property must be compat-
ible with the vehicle, event, and the tenor in order
for a simile to make sense. For example, Antarctica
is strongly associated with the color “white”, but it
would not make sense to infer the property “white”
for the simile “my room feels like Antarctica” be-
cause of the verb “feel”. Although in this example
the tenor “room” is still compatible with “white” and
will not help to eliminate “white” as a property, in
other similes it may (e.g., rivers can be “wide”, but
time can not be, so “wide” can be eliminated as an
implicit property in the simile “time be like river”).

A novel aspect of our work is that our architec-
ture is designed to consider a property’s compatibil-
ity with multiple components. In this research, for
generating candidate properties and utilizing their
influence for compatibility, we particularly focus on
the vehicle and event terms. Initially, we generate
candidate properties from the vehicle and the event
separately. But the second step then evaluates each
candidate property’s compatibility with the comple-
mentary simile component. If a property was ini-
tially generated from the vehicle, then we evaluate
its compatibility with the event; if a property was ini-
tially generated from the event, then we evaluate its
compatibility with the vehicle. This approach em-
phasizes the need to consider multiple components
of a simile when inferring implicit properties.

1224

2.1 Collecting Similes with Implicit Properties

For our research, we created a new data set of open
similes, where the property is implicit. Similes are
common on Twitter, so we extracted similes from
roughly 140 million English tweets collected dur-
ing the time period 2/13/2013 – 4/15/2014. To iden-
tify similes, we applied a part-of-speech tagger de-
signed for Twitter (Owoputi et al., 2013) to tweets
containing the word “like” and applied rules to rec-
ognize simple noun phrases and verb phrases. We
then selected tweets matching the syntactic pattern:
NP1 V ERB like NP2, where NP2 can contain
only a noun and an optional indefinite article. We
required similes to have a vehicle term with no pre-
modifiers to avoid problems associated with corefer-
ence (e.g., “the man” or “that man”) and to focus on
vehicles that represent general concepts. We leave
for future work the challenge of tackling multi-word
vehicle phrases (e.g., “my room is like stepping into
a hurricane” or “my room is like a boots store”).

This selection process extracted many similes, but
it also extracted literal comparisons with no apparent
property (e.g., “this flower smells like a rose”) and
statements that are not comparisons (e.g., “I called
like five times”). To focus on figurative similes with
an implicit property, we further filtered the collec-
tion to only retain similes with vehicle terms that had
occurred in comparisons with an explicit property.
Using the same Twitter data, we extracted nouns that
appeared in the following syntactic patterns, which
represent comparison constructions with an adjecti-
val property: ADJ like [a, an] NOUN (e.g., “red
like a tomato”) and ADJ as [a, an] NOUN (e.g.,
“red as a tomato”). We only kept similes whose ve-
hicle occurred in these patterns. Finally, we filtered
similes that contain a pronoun (except personal pro-
nouns in the tenor, which we generalized to a “per-
son” token), common person first names1, profan-
ity,2 or words not in a dictionary3 to avoid issues
with Twitter language such as misspellings, elon-
gated words, etc.

1http://deron.meranda.us/data/census-derived-all-first.txt
2http://www.bannedwordlist.com/lists/swearWords.txt
3Using Wordnik: https://www.wordnik.com/

2.2 Gold Standard Implicit Properties

We developed a gold standard set of implicit proper-
ties for each simile using Mechanical Turk. We pre-
qualified 7 workers, who each annotated 700 similes
with frequency≥ 3 randomly selected from our col-
lection. Each annotator was asked to provide up to
2 properties that best captured the most likely basis
for comparison between the tenor and vehicle. We
also provided the annotators with the option to label
a simile as Invalid if it was not a simile at all (most
commonly due to parse errors, such as “he looks like
ran”) or label a simile as having No Property (often
due to literal or underspecified comparisons, such
as “she looks like my aunt”). The annotators were
asked to give adjectives, adverbs, or verbs but oc-
casionally they provided a noun. Table 1 presents
sample annotated simile properties.

Among the 700 similes, a majority of the annota-
tors labeled 59 of them as either Invalid or No Prop-
erty, so we did not use these. We set aside 183 sim-
iles (29%) as a development set and the remaining
458 similes (71%) as a test set.

3 Inferring Implicit Properties

Our research tackles the problem of inferring prop-
erties in open similes by decomposing the problem
into three subtasks: (1) generating candidate proper-
ties, (2) evaluating the candidate properties with re-
spect to multiple simile components, and (3) aggre-
gated ranking of the properties. Figure 1 illustrates
our approach.

Figure 1: Framework for inferring implicit properties.

First, the vehicle and event components of a
simile are used individually to generate candidate
properties. We investigate a variety of candidate
generation methods, including harvesting properties

1225

from syntactic structures and dictionary definitions,
identifying relevant properties using statistical co-
occurrence, and assessing similarity between word
embedding vectors.

Second, the candidates generated by each method
are evaluated based on their strength of association
with the complementary component of the simile.
For candidates generated from the vehicle term, we
evaluate them based on their association with the
event term, and vice versa. We explore three asso-
ciation measures: point-wise mutual information to
measure statistical co-occurrence, and vector simi-
larity using single and composite word embeddings.

Third, we produce an aggregate ranking over the
entire set of properties hypothesized by all of the
candidate generation methods. Intuitively, we view
each candidate generation method as an independent
source, and look at the aggregate evidence across the
set of different candidate generation methods (simi-
lar to an ensemble). Each property is scored based
on its average rank across the different methods, so
that properties highly ranked by multiple methods
are preferred.

3.1 Candidate Property Generation

We generate candidate properties from the vehicle
and event words of a simile. However when the
event is a form of “to be” or a perception verb (taste,
smell, feel, sound, look), we do not generate candi-
date properties from the event because the verb is too
general. Only 73 (16%) of the similes in our evalu-
ation data have a verb other than “to be” or a per-
ception verb. We restrict properties to be adjectives,
adverbs, or verb forms that can function as nominal
premodifiers (e.g., “crying baby”, “wilted lettuce”).
We explore a total of seven methods for generating
candidate properties and generate candidates using
our entire Twitter corpus.

Modifying ADJ: Given a vehicle term, we extract
pre-modifying adjectives. For example, “ripe” is
extracted for the vehicle “tomato” from the phrase
“ripe tomato”.

Predicate ADJ: Given a vehicle term, we extract
adjectives in predicate adjective constructions with
the vehicle. For example, “red” is extracted for the
vehicle “tomato” from the phrase “tomato is red”.

Modifying ADV: Given an event term (verb), we ex-

tract adverbs that precede or follow the verb. For ex-
ample, “immaturely” is extracted for the event “act”
due to the phrase “acts immaturely”.

Explicit Property: We extract properties mentioned
explicitly in comparison phrases. For vehicle terms,
we extract properties from phrases of the form:
“ADJ/ADV like NP” (e.g., “cold like Antarctica”)
and “ADJ/ADV as NP” (e.g., “cold as Antarctica”).
For event terms, we extract properties from phrases
of the form: “VERB ADJ/ADV like” and “VERB as
ADJ/ADV as” (e.g., “feels as cold as”).

Dictionary Definition: Dictionary definitions often
mention salient properties associated with a word.
We harvest adjectives, adverbs and verbs (function-
ing as premodifiers) as candidate properties from the
dictionary definitions of the vehicle and event terms.
For the definitions, we use Wordnik4, which con-
tains 5 source dictionaries: Heritage Dictionary of
the English Language, Wiktionary, the Collabora-
tive International Dictionary of English, The Cen-
tury Dictionary and Cyclopedia, and WordNet 3.0
(Miller, 1995).

PMI: Given a vehicle or event term, we compute
point-wise mutual information (PMI) between that
term and candidate properties (appearing in ≥ 100
tweets) in our Twitter corpus.

Word Embedding: We train a word embedding
model using our tweet collection, limiting the vo-
cabulary to nouns, verbs, adjectives and adverbs that
occurred in ≥ 100 tweets. For training, we use
word2vecf5 (Levy and Goldberg, 2014) which al-
lows training for arbitrary context using the skip-
gram model. We use 300 dimensions for the out-
put word and context vectors. Candidate proper-
ties are generated by selecting the words whose con-
text vector6 is most similar to the vehicle or event’s
word vector using cosine similarity. To control for
noisy candidates, we require that the property oc-
curred with the vehicle (or event) as a bigram with
frequency ≥ 10 in the Twitter corpus.

For each generation method, we rank the candi-
dates and select the top 20 properties. For the four
methods that use syntactic patterns, we calculate

4https://www.wordnik.com/
5https://bitbucket.org/yoavgo/word2vecf
6properties are expected in the context of a component word.

1226

P(property | vehicle) based on the number of times
the property and the vehicle appear together in that
syntactic construction among all times the vehicle
appear in that syntactic construction. We use this
probability to rank the candidates. For the dictio-
nary definition method, we sort the properties based
on how many of the 5 dictionaries mention the prop-
erty in the word’s definition. We break ties based on
the frequency of the property in the definitions. For
the word embedding-based method, we use cosine
similarity scores.

3.2 Productivity of the Candidate Generation
Methods

First we investigate how many candidates each
method is able to generate. If a method generates
too few candidates, it will not be very useful. Con-
versely, if a method generates a large number of can-
didates, then our ranking framework needs to be ro-
bust to rank the plausible properties higher than the
properties that do not fit.

Average Min Max
of Candidates Generated from Vehicle

Modifying ADJ 423.62 1 3177
Predicate ADJ 104.21 0 1070
Explicit Property 8.28 0 116
Dictionary Def. 20.5 0 71

of Candidates Generated from Event
Modifying ADV 68.67 2 223
Explicit Property 19.85 0 61
Dictionary Def.* 18.59 3 55

Figure 2: Statistics about candidates generated by different

methods. Similes with a “to be” or perception verb were ex-

cluded for the methods that use the event as the source.

Figure 2 presents statistics about the candidate
properties generated by different methods. The PMI

and Word Embedding-based methods were excluded
here as these methods evaluate all words in the cor-
pus. The methods that used the explicit property ex-
traction patterns and dictionary definitions generate
fewer candidates than the methods that used gen-
eral syntactic structures. The trend lines in Figure 2
show that these methods do not generate more than
20 candidate properties for most similes.

3.3 Coverage of the Generated Candidates

Next, we investigate the effectiveness of our candi-
date generation methods. The last column of Table 2
shows candidate ranking results based on Mean Re-
ciprocal Rank (MRR) for the top 20 properties pro-
duced by each candidate generation method. MRR
is calculated by:

MRR =
1
|S|
∑
s∈S

1
(rank of 1st acceptable property)

where S is the set of similes. We observe that the
PMI method (for both vehicles and events) and the
Dictionary Definition method (for events) produced
low MRR scores < 0.10. Therefore we decided not
to use these candidate generation methods.7

One of our primary concerns is assessing the abil-
ity of our candidate generation methods to generate
at least some acceptable properties. We expect them
to over-generate, but they need to produce at least
one acceptable property or the downstream compo-
nents will be helpless. To assess this, we evaluated
the coverage of each candidate generation method
based on the Top 10, Top 20, and Top 30 proper-
ties that it produced. Coverage is the percentage
of similes for which the method generates at least
one gold standard property (from the human annota-
tors). Table 2 shows that the Dictionary Definitions
for vehicles was the best performing method for the
Top 10 candidates, generating at least one accept-
able property for 40% of the similes. The Modify-
ing ADJ method performed best for the Top 30 can-
didates, generating an acceptable property for 63%
of similes. Note that the Explicit Property method
performs reasonably well (40% coverage for Top 30
properties generated from vehicles and 6% coverage
for properties generated from events), but clearly is

7We made this decision based on similar results observed on
our development data.

1227

not sufficient on its own, showing the limitation of
harvesting explicitly stated properties.

Top10 Top20 Top30 MRR
Coverage of Candidates Generated from Vehicle

PMI* 18% 31% 37% .06
Modifying ADJ 39% 55% 63% .16
Predicate ADJ 28% 39% 43% .11
Explicit Property 37% 39% 40% .23
Dictionary Def. 40% 47% 49% .22
Word Embedding 35% 48% 58% .15
ALL 76% 84% 86% n/a

Coverage of Candidates Generated from Event
PMI* 2% 3% 4% .09
Modifying ADV 4% 5% 5% .13
Explicit Property 4% 5% 6% .16
Dictionary Def.* 3% 4% 4% .09
Word Embedding 5% 6% 6% .16
ALL 9% 10% 10% n/a

All Candidates
TOTAL 78% 86% 88% n/a

Table 2: Coverage and MRR for the candidate generation meth-

ods. Top10, Top20, Top30 = percent of similes with a plausible

property within top 10, 20, 30 ranked properties. Methods ex-

cluded in “ALL” and “TOTAL” rows are marked with (*). In the

MRR calculation when the event component is source, similes

with a “to be” or a perception verb were excluded.

The ALL rows show the coverage obtained by
combining the property lists from all generation
methods listed above in the table. The combined
set of properties (Top 30) generated from vehicles
yields 86% coverage, while the combined set of
properties generated from events yields only 10%
coverage (partly because these methods apply to
only 16% of the similes), showing that vehicles are
more effective for candidate generation. However,
the TOTAL row shows that combining properties
generated from both vehicles and events yields 88%
coverage using the Top 30 candidates. The Top 20
candidates provide coverage that is nearly as good
(86%) with substantially fewer properties to process
downstream, so we use the Top 20 candidates for all
of our experiments.8

3.4 Ranking the Candidate Properties Using
Influence from the Second Component

Next, we investigate whether the initial ranking re-
sults in the previous step can be improved by con-

8The decision to use the Top 20 candidates was based on
similar results on our development data.

sidering the second component of the simile. Intu-
itively, suppose that “green”, “slow”, and “endan-
gered” are generated as candidate properties from
the vehicle “turtle” (e.g., for “dad drives like a tur-
tle”). Taking the event verb “drive” into account can
help to rank “slow” more highly than the other can-
didates. We explore three criteria to rank candidates
generated from one simile component based on its
association with the second component (unless the
event is “to be” in which case we retain the original
candidate ranking because the verb is too general).
PMI with second component (PMI): We calculate
Pointwise Mutual Information between a candidate
property and the second component of a simile.
Embedding word vector similarity with the sec-
ond component (EMB1): We use our trained word
embeddings model to calculate cosine similarity be-
tween a candidate property and the second compo-
nent of the simile. As before, for properties we use
the context vectors.
Embedding word vector similarity with compos-
ite simile vector (EMB2): For a given event and
vehicle, we create a composite simile vector by per-
forming element-wise addition of the vectors for the
event and the vehicle, and calculate cosine similar-
ity with the candidate properties. For example, for
“person talks like robot”, the vectors for “talk” and
“robot” are used to create a composite vector, and
the similarity of the resulting vector with a candidate
property’s context vector is used as the ranking crite-
ria. The intuition here is to capture what is common
in the context distribution (Mikolov et al., 2013) of
“robot” and “talk”, and the context vector of a suit-
able property should have strong similarity with the
resulting vector.

3.5 Results for Candidate Re-ranking
Table 3 presents MRR results after the initially gen-
erated candidates are re-ranked using the influence
of the second simile component. For comparison,
the MRR results from Table 2 are also presented in
the first column (Orig).

Influence from the second simile component as-
sessed with PMI and EMB1 improved the MRR
scores for some candidate generation methods (e.g.,
Predicate ADJ), but did not for others (e.g., Mod-
ifying ADV). However using the composite word
embedding vector (EMB2) to capture the common

1228

Ranking Method Orig PMI EMB1 EMB2

Candidates Generated from Vehicle
Modifying ADJ .16 .22 .19 .24
Predicate ADJ .11 .16 .14 .22
Explicit Property .23 .25 .23 .28
Dictionary Def. .22 .21 .20 .25
Word Embedding .15 .19 .20 .21

Candidates Generated from Event
Modifying ADV .13 .10 .13 .19
Explicit Property .16 .18 .18 .18
Word Embedding .16 .11 .14 .18
Table 3: MRR scores for candidate ranking methods.

aspects in the context distributions of the event and
vehicle consistently improved MRR for all candi-
date generation methods. Consequently, we use the
composite word embedding vector as the ranking
method for each set of candidate properties.

3.6 Aggregated Ranking

Finally, we need to consider all of the properties pro-
duced by the various candidate generation methods.
As we saw in Table 2, they produce complemen-
tary sets of properties and coverage is highest when
we use all of them together. To produce an aggre-
gated ranking of all candidate properties, we calcu-
late the harmonic mean of the rank for each individ-
ual candidate generation method. This approach re-
wards properties that have a consistently high rank-
ing across different methods.

For comparison, we also show results for a voting
method where a candidate property is ranked based
on how many different methods generated it. To
break ties, we used the frequency of the candidate
in our Twitter corpus.

3.7 Results for Aggregated Ranking

Our final results use two gold standard property sets:
(1) Gd (Gold): uses the set of properties from the
human annotators, and (2) Gd+WN expands Gold
with WordNet synsets (words in the same synset of
a gold property are added) and WordNet’s “similar
to” relation (words that are connected to a gold prop-
erty by the relation are added). The reason for using
Gd+WN is to include synonyms of a gold property
that would otherwise be considered wrong (e.g., if
a human annotator said “beautiful” and our system
said “pretty”).

The first two columns in Table 4 present MRR

MRR Top 1 Top 5

Gd
Gd +
WN

Gd
Gd +
WN

Gd
Gd +
WN

Voted .25 .35 14% 21% 36% 52%
Mean .33 .41 21% 27% 46% 58%

Table 4: Aggregate ranking results.

results for our final ranking. The results show that
with both Gd and Gd+WN, our aggregated ranking
using harmonic mean yields much better MRR re-
sults than the individual methods and better than the
Voted method, yielding our highest MRR: .33 and
.41.

The last 4 columns of Table 4 present the percent-
age of similes for which an acceptable property was
ranked #1 (Top 1) or within the Top 5. Our aggregate
ranking scheme ranks an acceptable property in the
Top 1 position for 27% of similes based on Gd+WN,
and inferred an acceptable property within the Top 5
positions for 58% of all similes.

For the above evaluations, any property given by
the annotators is deemed correct, and any consensus
that the annotators may have had is not accounted
for. To address this, we retained properties with
different degrees of consensus, and subdivided the
evaluation data set. Each subset of the data kept sim-
iles that have properties from a minimum number of
annotators, and only those properties are used as the
gold standard. WordNet synsets and “similar to” re-
lations are also used in determining consensus.

Min # of
Annotators 1 2 3 4 5 6 7
of Similes
in Data Set 641 588 418 252 136 67 27

Figure 3: Ranking results tracked by annotation consensus with

Gd+WN gold standard, and corresponding data set sizes.

1229

Figure 3 shows that for all degrees of consensus,
the aggregated ranking is consistently better than the
method that uses the explicit property extraction pat-
terns, which was the best individual candidate gen-
eration method. When properties given by at least 2
annotators are considered as the gold standard, MRR
is lower than when properties given by any annota-
tor are used. With higher consensus, MRR gradually
increases, which is probably because the properties
with high consensus have stronger association with
the simile components, so are easier to infer.

4 Analysis and Discussion

Our gold standard property collection confirmed our
intuition that some similes have many plausible in-
terpretations while others do not. We hypothesized
that this should contribute to the difficulty of implicit
property inference. Utsumi and Kuwabara (2005)
introduced “interpretive diversity” with the hypoth-
esis that similes with more diversity in the inferred
property tend to be more metaphorical, and the val-
ues of salience of the properties are more uniform.
They used Shannon’s entropy to measure the inter-
pretive diversity of a simile.

To explore our hypothesis regarding difficulties
associated with property inference, we first clus-
ter our gold-standard annotated properties. When a
property appears in the WordNet synset of another
property, or if two properties are connected by the
WordNet “similar to” relation, we group the prop-
erties to form property clusters. So each property
cluster represents a set of words that are synonyms
of each other. We aggregate frequency statistics of
individual words in a cluster and measure interpre-
tive diversity of a simile using Shannon’s entropy
(here, X is the random variable representing prop-
erty clusters of a simile):

H(X) = −
∑
x∈X

P (x) log2 P (x)

Figure 4 shows the entropy curve after the 641
similes are sorted by the entropy values of their
property clusters. Based on changes in the slope of
the curve, we then divided the data into 3 subsets,
similes with high (1–100 similes), medium (101–
500 similes), and low (501–641 similes) interpre-
tive diversity. Table 5 presents examples of sim-
iles in each category. High interpretive diversity

Figure 4: Entropy as interpretive diversity of similes.

High Interpretive Diversity
person act like mom : bossy (2), friendly, nuturing,

overbearing, loving, scolding, caring, hovers, strict
protective, cleans, nurturing, annoying

person act like baby : {childish,immature,young} (4),
crying (2), whine, silly, cry, dependent, needy,
pouting, whiny, weak

Medium Interpretive Diversity
person look like robot : stiff (5), jointed, stoic, blank,

expressionless, mechanical, inhuman, dull, uneasy
girl be like butterfly : {beautiful,pretty} (4), free (2),

delicate (2), graceful (2), fluttering, floating,
happy, flowy

Low Interpretive Diversity
person act like clown : {goofy,ridiculous,silly} (5),
{amusing,comical,funny} (5), stupid, degrading,
disruptive, childish

throat feel like sandpaper : {rough,scratchy} (9),
coarse (2), raspy, sore, dry

Table 5: Similes with different levels of interpretive diversity.

Aggregated frequencies are presented within parenthesis.

is clearly demonstrated by “person act like mom”,
showing properties with many different characteris-
tics attributed to mom. Note that the properties con-
tain both positive (e.g., friendly, loving) and negative
(scolding, annoying) attributes. On the other side of
the spectrum are similes with low interpretive diver-
sity, as exemplified by “throat feel like sandpaper”
where the vocabulary of the property set is more lim-
ited.

Table 6 shows that it is much harder to infer the
implicit property in similes with high interpretive di-
versity, demonstrated by a .19 difference in MRR
score from high to low. This trend is also consis-
tent when we see the percentage of similes for which
the system ranks a plausible property at the topmost

1230

Diversity High Medium Low
MRR .31 .40 .50
Top 1 15% 26% 37%
Top 5 47% 57% 66%

Table 6: Results for different subsets of similes divided by in-

terpretive diversity, using Gold+WN properties.

position (Top 1) or within the Top 5. It is possible
that with low interpretive diversity, when the prop-
erty distribution is unimodal or bimodal, statistical
associations between a property and simile compo-
nents are stronger, and so more easily discovered by
our candidate generation and ranking methods.

5 Related Work

Similes have been studied in linguistics and psy-
cholinguistics to understand how humans process
similes, comparisons, and metaphors, and the inter-
play among different components of these linguistic
forms. Glucksberg et al. (1997) presented a property
attribution model of metaphor comprehension where
the candidate properties are selected from a vehicle
and applied to a topic. Chiappe and Kennedy (2000)
investigated if the number of properties varies be-
tween a metaphor and its simile form. The im-
pacts of semantic dimensions of tenor and prop-
erty salience have been compared by Gagné (2002).
Fishelov (2007) experimented with affective conno-
tation and degrees of difficulty associated with un-
derstanding a simile when a simile property is con-
ventional or unconventional, or no property is given.
Hanks (2005) manually categorized vehicle nouns of
similes into semantic categories.

Automatic approaches that use computational
models for similes are relatively rare. Veale and
Hao (2007) extracted salient properties of vehicles
from the web using “as ADJ as a/an NOUN” extrac-
tion pattern to acquire knowledge for concept cate-
gories. Veale (2012) built a knowledge-base of af-
fective stereotypes by characterizing simile vehicles
with salient properties. Li et al. (2012) used explicit
property extraction patterns to determine the senti-
ment that properties convey toward simile vehicles.
Niculae and Yaneva (2013) and Niculae (2013) used
constituency and dependency parsing-based tech-
niques to identify similes in text. Qadir et al. (2015)
classified similes into positive and negative affec-
tive polarities using supervised classification, with

features derived from simile components. Nicu-
lae and Danescu-Niculescu-Mizil (2014) designed
a classifier with domain specific, domain agnostic,
and metaphor inspired features to determine when
comparisons are figurative.

Computational approaches to work on figurative
language also include figurative language identifi-
cation using word sense disambiguation (Rentoumi
et al., 2009), harvesting metaphors by using noun
and verb clustering-based techniques (Shutova et al.,
2010), interpreting metaphors by generating literal
paraphrases (Shutova, 2010), etc.

Although previous research has extensively used
explicit property extraction patterns for various
tasks, none has explored the impact of multiple
simile components for inferring properties. To our
knowledge, we are the first to introduce the task
of automatically inferring the implicit properties in
open similes, which is fundamental to automatic un-
derstanding of similes.

6 Conclusion

In this work, we addressed the problem of infer-
ring implicit properties in open similes. We showed
that acceptable properties for most similes can be
identified by harvesting properties using syntac-
tic structures, dictionary definitions, statistical co-
occurrence, and word embedding vectors. We then
demonstrated that capturing the combined influence
of a simile’s event and vehicle terms using a com-
posite word embedding vector improved our ability
to rank candidate properties. Finally, we showed
that properties harvested by different methods can
be aggregated and effectively ranked using the har-
monic mean of rankings from the individual meth-
ods. Our method for inferring implicit properties
performed best on similes with low interpretive di-
versity. In future work, we plan to use the inferred
properties to improve affective polarity recognition
in similes.

Acknowledgments

This material is based upon work supported in part
by the National Science Foundation under grants
IIS-1450527 and IIS-1302668.

1231

References
Monroe C Beardsley. 1981. Aesthetics, problems in the

philosophy of criticism. Hackett Publishing.
Dan L Chiappe and John M Kennedy. 2000. Are

metaphors elliptical similes? Journal of Psycholin-
guistic Research, 29(4):371–398.

David Fishelov. 2007. Shall i compare thee? simile un-
derstanding and semantic categories. Journal of liter-
ary semantics, 36(1):71–87.

Christina L Gagné. 2002. Metaphoric interpretations of
comparison-based combinations. Metaphor and Sym-
bol, 17(3):161–178.

Sam Glucksberg, Matthew S McGlone, and Deanna Man-
fredi. 1997. Property attribution in metaphor compre-
hension. Journal of memory and language, 36(1):50–
67.

Patrick Hanks. 2005. Similes and sets: The en-
glish preposition like. Languages and Linguis-
tics: Festschrift for Fr. Cermak. Charles University,
Prague.

Michael Israel, Jennifer Riddle Harding, and Vera Tobin.
2004. On simile. Language, culture, and mind, 100.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics, volume 2, pages 302–308.

Bin Li, Haibo Kuang, Yingjie Zhang, Jiajun Chen, and
Xuri Tang. 2012. Using similes to extract basic senti-
ments across languages. In Web Information Systems
and Mining, pages 536–542. Springer.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Vlad Niculae and Cristian Danescu-Niculescu-Mizil.
2014. Brighter than gold: Figurative language in user
generated comparisons. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2008–2018. Asso-
ciation for Computational Linguistics.

Vlad Niculae and Victoria Yaneva. 2013. Computational
considerations of comparisons and similes. In ACL
(Student Research Workshop), pages 89–95.

Vlad Niculae. 2013. Comparison pattern matching and
creative simile recognition. In Proceedings of the Joint
Symposium on Semantic Processing.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A. Smith. 2013.
Improved part-of-speech tagging for online conver-
sational text with word clusters. In Proceedings of

the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 380–390, At-
lanta, Georgia, June. Association for Computational
Linguistics.

Anthony M Paul. 1970. Figurative language. Philosophy
& Rhetoric, pages 225–248.

Ashequl Qadir, Ellen Riloff, and Marilyn Walker. 2015.
Learning to recognize affective polarity in similes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
190–200, Lisbon, Portugal, September. Association
for Computational Linguistics.

Vassiliki Rentoumi, George Giannakopoulos, Vangelis
Karkaletsis, and A. George Vouros. 2009. Sentiment
analysis of figurative language using a word sense dis-
ambiguation approach. In Proceedings of the Interna-
tional Conference RANLP-2009, pages 370–375. As-
sociation for Computational Linguistics.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of the 23rd International Confer-
ence on Computational Linguistics, pages 1002–1010.
Association for Computational Linguistics.

Ekaterina Shutova. 2010. Automatic metaphor interpre-
tation as a paraphrasing task. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 1029–1037. Association
for Computational Linguistics.

Akira Utsumi and Yuu Kuwabara. 2005. Interpretive di-
versity as a source of metaphor-simile distinction. In
Proceedings of the 27th Annual Meeting of the Cogni-
tive Science Society, pages 2230–2235.

Tony Veale and Yanfen Hao. 2007. Learning to under-
stand figurative language: from similes to metaphors
to irony. In Proceedings of CogSci.

Tony Veale. 2012. A context-sensitive, multi-faceted
model of lexico-conceptual affect. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics: Short Papers-Volume 2, pages
75–79. Association for Computational Linguistics.

1232

Proceedings of NAACL-HLT 2016, pages 1233–1239,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Visual Storytelling
Ting-Hao (Kenneth) Huang1∗, Francis Ferraro2∗, Nasrin Mostafazadeh3, Ishan Misra1, Aishwarya Agrawal4,

Jacob Devlin6, Ross Girshick5, Xiaodong He6, Pushmeet Kohli6, Dhruv Batra4, C. Lawrence Zitnick5,
Devi Parikh4, Lucy Vanderwende6, Michel Galley6, Margaret Mitchell6

Microsoft Research
1 Carnegie Mellon University, 2 Johns Hopkins University, 3 University of Rochester,

4 Virginia Tech, 5 Facebook AI Research
6 Corresponding authors: {jdevlin,lucyv,mgalley,memitc}@microsoft.com

Abstract

We introduce the first dataset for sequential
vision-to-language, and explore how this data
may be used for the task of visual storytelling.
The first release of this dataset, SIND1 v.1,
includes 81,743 unique photos in 20,211 se-
quences, aligned to both descriptive (caption)
and story language. We establish several
strong baselines for the storytelling task, and
motivate an automatic metric to benchmark
progress. Modelling concrete description as
well as figurative and social language, as pro-
vided in this dataset and the storytelling task,
has the potential to move artificial intelligence
from basic understandings of typical visual
scenes towards more and more human-like un-
derstanding of grounded event structure and
subjective expression.

1 Introduction

Beyond understanding simple objects and concrete
scenes lies interpreting causal structure; making
sense of visual input to tie disparate moments to-
gether as they give rise to a cohesive narrative of
events through time. This requires moving from rea-
soning about single images – static moments, de-
void of context – to sequences of images that depict
events as they occur and change. On the vision side,
progressing from single images to images in context
allows us to begin to create an artificial intelligence
(AI) that can reason about a visual moment given
what it has already seen. On the language side, pro-
gressing from literal description to narrative helps to
learn more evaluative, conversational, and abstract

∗T.H. and F.F. contributed equally to this work.
1Sequential Images Narrative Dataset. This and future re-

leases are made available on sind.ai.

Figure 1: Example language difference between descrip-
tions for images in isolation (DII) vs. stories for images
in sequence (SIS).

language. This is the difference between, for ex-
ample, “sitting next to each other” versus “having
a good time”, or “sun is setting” versus “sky illumi-
nated with a brilliance...” (see Figure 1). The first
descriptions capture image content that is literal and
concrete; the second requires further inference about
what a good time may look like, or what is special
and worth sharing about a particular sunset.

We introduce the first dataset of sequential im-
ages with corresponding descriptions, which cap-
tures some of these subtle but important differ-
ences, and advance the task of visual storytelling.
We release the data in three tiers of language for
the same images: (1) Descriptions of images-
in-isolation (DII); (2) Descriptions of images-in-
sequence (DIS); and (3) Stories for images-in-
sequence (SIS). This tiered approach reveals the ef-
fect of temporal context and the effect of narrative
language. As all the tiers are aligned to the same
images, the dataset facilitates directly modeling the
relationship between literal and more abstract visual
concepts, including the relationship between visual

1233

beach (684) breaking up (350) easter (259)
amusement park (525) carnival (331) church (243)
building a house (415) visit (321) graduation ceremony (236)
party (411) market (311) office (226)
birthday (399) outdoor activity (267) father’s day (221)

Table 1: The number of albums in our tiered dataset for
the 15 most frequent kinds of stories.

imagery and typical event patterns. We additionally
propose an automatic evaluation metric which is best
correlated with human judgments, and establish sev-
eral strong baselines for the visual storytelling task.

2 Motivation and Related Work

Work in vision to language has exploded, with re-
searchers examining image captioning (Lin et al.,
2014; Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Xu et al., 2015; Chen et al., 2015; Young
et al., 2014; Elliott and Keller, 2013), question an-
swering (Antol et al., 2015; Ren et al., 2015; Gao
et al., 2015; Malinowski and Fritz, 2014), visual
phrases (Sadeghi and Farhadi, 2011), video under-
standing (Ramanathan et al., 2013), and visual con-
cepts (Krishna et al., 2016; Fang et al., 2015).

Such work focuses on direct, literal description of
image content. While this is an encouraging first
step in connecting vision and language, it is far from
the capabilities needed by intelligent agents for nat-
uralistic interactions. There is a significant differ-
ence, yet unexplored, between remarking that a vi-
sual scene shows “sitting in a room” – typical of
most image captioning work – and that the same vi-
sual scene shows “bonding”. The latter description
is grounded in the visual signal, yet it brings to bear
information about social relations and emotions that
can be additionally inferred in context (Figure 1).
Visually-grounded stories facilitate more evaluative
and figurative language than has previously been
seen in vision-to-language research: If a system can
recognize that colleagues look bored, it can remark
and act on this information directly.

Storytelling itself is one of the oldest known hu-
man activities (Wiessner, 2014), providing a way to
educate, preserve culture, instill morals, and share
advice; focusing AI research towards this task there-
fore has the potential to bring about more human-
like intelligence and understanding.

Flickr Album

Story 1

Description

for Images

in Isolation

&

in Sequences

Re-telling

Story 1

Caption in Sequence

Storytelling

Story 2

Story 3

Re-telling

Preferred Photo

Sequence

Story 4

Story 5

Figure 2: Dataset crowdsourcing workflow.

Figure 3: Interface for the Storytelling task, which con-
tains: 1) the photo album, and 2) the storyboard.

3 Dataset Construction

Extracting Photos We begin by generating a list
of “storyable” event types. We leverage the idea that
“storyable” events tend to involve some form of pos-
session, e.g., “John’s birthday party,” or “Shabnam’s
visit.” Using the Flickr data release (Thomee et al.,
2015), we aggregate 5-grams of photo titles and de-
scriptions, using Stanford CoreNLP (Manning et al.,
2014) to extract possessive dependency patterns. We
keep the heads of possessive phrases if they can be
classified as an EVENT in WordNet3.0, relying on
manual winnowing to target our collection efforts.2

These terms are then used to collect albums using
the Flickr API.3 We only include albums with 10 to
50 photos where all album photos are taken within a
48-hour span and CC-licensed. See Table 1 for the
query terms with the most albums returned.

The photos returned from this stage are then pre-
sented to crowd workers using Amazon’s Mechani-
cal Turk to collect the corresponding stories and de-
scriptions. The crowdsourcing workflow of devel-
oping the complete dataset is shown in Figure 2.

Crowdsourcing Stories In Sequence We develop
a 2-stage crowdsourcing workflow to collect natu-
ralistic stories with text aligned to images. The first
stage is storytelling, where the crowd worker selects
a subset of photos from a given album to form a

2We simultaneously supplemented this data-driven effort by
a small hand-constructed gazetteer.

3https://www.flickr.com/services/api/

1234

D
II

A black frisbee

is sitting on

top of a roof.

A man playing

soccer outside of

a white house

with a red door.

The boy is

throwing a

soccer ball by

the red door.

A soccer ball is

over a roof by a

frisbee in a rain

gutter.

Two balls and a

frisbee are on

top of a roof.

A roof top

with a black

frisbee laying

on the top of

the edge of it.

A man is standing

in the grass in

front of the house

kicking a soccer

ball.

A man is in

the front of

the house

throwing a

soccer ball up.

A blue and white

soccer ball and

black Frisbee are

on the edge of

the roof top.

Two soccer balls

and a Frisbee are

sitting on top of

the roof top.

A discus got

stuck up on

the roof.

Why not try

getting it down

with a soccer

ball?

Up the soccer

ball goes.

It didn't work so

we tried a volley

ball.

Now the discus,

soccer ball, and

volleyball are all

stuck on the roof.

D
IS

S

IS

Figure 4: Example descriptions of images in isolation
(DII); descriptions of images in sequence (DIS); and sto-
ries of images in sequence (SIS).

photo sequence and writes a story about it (see Fig-
ure 3). The second stage is re-telling, in which the
worker writes a story based on one photo sequence
generated by workers in the first stage.

In both stages, all album photos are displayed in
the order of the time that the photos were taken,
with a “storyboard” underneath. In storytelling, by
clicking a photo in the album, a “story card” of the
photo appears on the storyboard. The worker is in-
structed to pick at least five photos, arrange the or-
der of selected photos, and then write a sentence or
a phrase on each card to form a story; this appears as
a full story underneath the text aligned to each im-
age. Additionally, this interface captures the align-
ments between text and photos. Workers may skip
an album if it does not seem storyable (e.g., a col-
lection of coins). Albums skipped by two workers
are discarded. The interface of re-telling is simi-
lar, but it displays the two photo sequences already
created in the first stage, which the worker chooses
from to write the story. For each album, 2 work-
ers perform storytelling (at $0.3/HIT), and 3 work-
ers perform re-telling (at $0.25/HIT), yielding a total
of 1,907 workers. All HITs use quality controls to
ensure varied text at least 15 words long.

Crowdsourcing Descriptions of Images In Iso-
lation & Images In Sequence We also use
crowdsourcing to collect descriptions of images-
in-isolation (DII) and descriptions of images-in-
sequence (DIS), for the photo sequences with sto-
ries from a majority of workers in the first task (as
Figure 2). In both DII and DIS tasks, workers are
asked to follow the instructions for image caption-

Data

Set

#(Txt, Img)

Pairs (k)

Vocab

Size (k)

Avg.

#Tok
%Abs Frazier Yngve Ppl

Brown 52.1 47.7 20.8 15.2% 18.5 77.2 194.0

DII 151.8 13.8 11.0 21.3% 10.3 27.4 147.0

DIS 151.8 5.0 9.8 24.8% 9.2 23.7 146.8

SIS 252.9 18.2 10.2 22.1% 10.5 27.5 116.0

5

Table 2: A summary of our dataset,6 following the pro-
posed analyses of Ferraro et al. (2015), including the Fra-
zier and Yngve measures of syntactic complexity. The
balanced Brown corpus (Marcus et al., 1999), provided
for comparison, contains only text. Perplexity (Ppl) is
calculated against a 5-gram language model learned on a
generic 30B English words dataset scraped from the web.

man sitting black chatting amount trunk went [female] see

woman white large gentleman goers facing got today saw

standing two front enjoys sofa bench [male] decided came

holding young group folks egg enjoying took really started

wearing image shoreline female great time

Desc.-in-Iso. Desc.-in-Seq. Story-in-Seq.

man

woman

standing

holding

wearing

Table 3: Top words ranked by normalized PMI.

ing proposed in MS COCO (Lin et al., 2014) such
as describe all the important parts. In DII, we use
the MS COCO image captioning interface.4 In DIS,
we use the storyboard and story cards of our story-
telling interface to display a photo sequence, with
MS COCO instructions adapted for sequences. We
recruit 3 workers for DII (at $0.05/HIT) and 3 work-
ers for DIS (at $0.07/HIT).

Data Post-processing We tokenize all sto-
rylets and descriptions with the CoreNLP tok-
enizer, and replace all people names with generic
MALE/FEMALE tokens,5 and all identified named
entities with their entity type (e.g., location).
The data is released as training, validation, and test
following an 80%/10%/10% split on the stories-in-
sequence albums. Example language from each tier
is shown in Figure 4.

4 Data Analysis

Our dataset includes 10,117 Flickr albums with
210,819 unique photos. Each album on average has
20.8 photos (σ = 9.0). The average time span of each
album is 7.9 hours (σ = 11.4). Further details of each
tier of the dataset are shown in Table 2.7

4https://github.com/tylin/coco-ui
5We use those names occurring at least 10,000 times.

https://ssa.gov/oact/babynames/names.zip
6The DIS columns VocabSize-Ppl estimated based on

17,425 Txt,Img pairs. Full set will be updated shortly.
7We exclude words seen only once.

1235

We use normalized pointwise mutual information
to identify the words most closely associated with
each tier (Table 3). Top words for descriptions-
in-isolation reflect an impoverished disambiguat-
ing context: References to people often lack so-
cial specificity, as people are referred to as simply
“man” or “woman”. Single images often do not
convey much information about underlying events
or actions, which leads to the abundant use of pos-
ture verbs (“standing”, “sitting”, etc.). As we turn to
descriptions-in-sequence, these relatively uninfor-
mative words are much less represented. Finally, top
story-in-sequence words include more storytelling
elements, such as names ([male]), temporal refer-
ences (today) and words that are more dynamic and
abstract (went, decided).

5 Automatic Evaluation Metric

Given the nature of the complex storytelling task,
the best and most reliable evaluation for assessing
the quality of generated stories is human judgment.
However, automatic evaluation metrics are useful to
quickly benchmark progress. To better understand
which metric could serve as a proxy for human eval-
uation, we compute pairwise correlation coefficients
between automatic metrics and human judgments on
3,000 stories sampled from the SIS training set.

For the human judgements, we again use crowd-
sourcing on MTurk, asking five judges per story to
rate how strongly they agreed with the statement “If
these were my photos, I would like using a story like
this to share my experience with my friends”.8 We
take the average of the five judgments as the final
score for the story. For the automatic metrics, we use
METEOR,9 smoothed-BLEU (Lin and Och, 2004),
and Skip-Thoughts (Kiros et al., 2015) to compute
similarity between each story for a given sequence.
Skip-thoughts provide a Sentence2Vec embedding
which models the semantic space of novels.

As Table 4 shows, METEOR correlates best with
human judgment according to all the correlation co-
efficients. This signals that a metric such as ME-
TEOR which incorporates paraphrasing correlates
best with human judgement on this task. A more

8Scale presented ranged from “Strongly disagree” to
“Strongly agree”, which we convert to a scale of 1 to 5.

9We use METEOR version 1.5 with hter weights.

METEOR BLEU Skip-Thoughts
r 0.22 (2.8e-28) 0.08 (1.0e-06) 0.18 (5.0e-27)
ρ 0.20 (3.0e-31) 0.08 (8.9e-06) 0.16 (6.4e-22)
τ 0.14 (1.0e-33) 0.06 (8.7e-08) 0.11 (7.7e-24)

Table 4: Correlations of automatic scores against human
judgements, with p-values in parentheses.

Beam=10 Greedy -Dups +Grounded
23.55 19.10 19.21 –

Table 6: Captions generated per-image with METEOR
scores.

detailed study of automatic evaluation of stories is
an area of interest for a future work.

6 Baseline Experiments

We report baseline experiments on the storytelling
task in Table 7, training on the SIS tier and testing
on half the SIS validation set (valtest). Example out-
put from each system is presented in Table 5. To
highlight some differences between story and cap-
tion generation, we also train on the DII tier in iso-
lation, and produce captions per-image, rather than
in sequence. These results are shown in Table 7.

To train the story generation model, we use a
sequence-to-sequence recurrent neural net (RNN)
approach, which naturally extends the single-image
captioning technique of Devlin et al. (2015) and
Vinyals et al. (2014) to multiple images. Here, we
encode an image sequence by running an RNN over
the fc7 vectors of each image, in reverse order. This
is used as the initial hidden state to the story decoder
model, which learns to produce the story one word
at a time using softmax loss over the training data
vocabulary. We use Gated Recurrent Units (GRUs)
(Cho et al., 2014) for both the image encoder and
story decoder.

In the baseline system, we generate the story us-
ing a simple beam search (size=10), which has been
successful in image captioning previously (Devlin et
al., 2015). However, for story generation, the re-
sults of this model subjectively appear to be very
poor – the system produces generic, repetitive, high-
level descriptions (e.g., “This is a picture of a dog”).

Beam=10 Greedy -Dups +Grounded
23.13 27.76 30.11 31.42
Table 7: Stories baselines with METEOR scores.

1236

+Viterbi This is a picture of a family. This is a picture of a cake. This is a picture of a dog. This is a
picture of a beach. This is a picture of a beach.

+Greedy The family gathered together for a meal. The food was delicious. The dog was excited to be
there. The dog was enjoying the water. The dog was happy to be in the water.

-Dups The family gathered together for a meal. The food was delicious. The dog was excited to be
there. The kids were playing in the water. The boat was a little too much to drink.

+Grounded The family got together for a cookout. They had a lot of delicious food. The dog was happy to
be there. They had a great time on the beach. They even had a swim in the water.

Table 5: Example stories generated by baselines.

This is a predictable result given the label bias prob-
lem inherent in maximum likelihood training; recent
work has looked at ways to address this issue di-
rectly (Li et al., 2016).

To establish a stronger baseline, we explore sev-
eral decode-time heuristics to improve the quality of
the generated story. The first heuristic is to lower
the decoder beam size substantially. We find that
using a beam size of 1 (greedy search) significantly
increases the story quality, resulting in a 4.6 gain in
METEOR score. However, the same effect is not
seen for caption generation, with the greedy caption
model obtaining worse quality than the beam search
model. This highlights a key difference in generat-
ing stories versus generating captions.

Although the stories produced using a greedy
search result in significant gains, they include many
repeated words and phrases, e.g., “The kids had a
great time. And the kids had a great time.” We intro-
duce a very simple heuristic to avoid this, where the
same content word cannot be produced more than
once within a given story. This improves METEOR
by another 2.3 points.

An advantage of comparing captioning to story-
telling side-by-side is that the captioning output may
be used to help inform the storytelling output. To
this end, we include an additional baseline where
“visually grounded” words may only be produced
if they are licensed by the caption model. We define
the set of visually grounded words to be those which
occurred at higher frequency in the caption training
than the story training:

P (w|Tcaption)
P (w|Tstory) > 1.0 (1)

We train a separate model using the caption an-
notations, and produce an n-best list of captions for
each image in the valtest set. Words seen in at
least 10 sentences in the 100-best list are marked
as ‘licensed’ by the caption model. Greedy decod-
ing without duplication proceeds with the additional
constraint that if a word is visually grounded, it can
only be generated by the story model if it is licensed
by the caption model for the same photo set. This
results in a further 1.3 METEOR improvement.

It is interesting to note what a strong effect rel-
atively simple heuristics have on the generated sto-
ries. We do not intend to suggest that these heuris-
tics are the right way to approach story generation.
Instead, the main purpose is to provide clear base-
lines that demonstrate that story generation has fun-
damentally different challenges from caption gener-
ation; and the space is wide open to explore for train-
ing and decoding methods to generate fluent stories.

7 Conclusion and Future Work

We have introduced the first dataset for sequen-
tial vision-to-language, which incrementally moves
from images-in-isolation to stories-in-sequence. We
argue that modelling the more figurative and so-
cial language captured in this dataset is essential for
evolving AI towards more human-like understand-
ing. We have established several strong baselines
for the task of visual storytelling, and have moti-
vated METEOR as an automatic metric to evaluate
progress on this task moving forward.

1237

References

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answer-
ing. In International Conference on Computer Vision
(ICCV).

Jianfu Chen, Polina Kuznetsova, David Warren, and
Yejin Choi. 2015. Déjà image-captions: A corpus of
expressive descriptions in repetition. In Proceedings
of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 504–514, Denver,
Colorado, May–June. Association for Computational
Linguistics.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine transla-
tion. CoRR.

Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta,
Li Deng, Xiaodong He, Geoffrey Zweig, and Margaret
Mitchell. 2015. Language models for image caption-
ing: The quirks and what works. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
2: Short Papers), pages 100–105, Beijing, China, July.
Association for Computational Linguistics.

Desmond Elliott and Frank Keller. 2013. Image descrip-
tion using visual dependency representations. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1292–
1302, Seattle, Washington, USA, October. Association
for Computational Linguistics.

Hao Fang, Saurabh Gupta, Forrest N. Iandola, Ru-
pesh Srivastava, Li Deng, Piotr Dollár, Jianfeng
Gao, Xiaodong He, Margaret Mitchell, John C. Platt,
C. Lawrence Zitnick, and Geoffrey Zweig. 2015.
From captions to visual concepts and back. In Com-
puter Vision and Pattern Recognition (CVPR).

Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao K.
Huang, Lucy Vanderwende, Jacob Devlin, Michel Gal-
ley, and Margaret Mitchell. 2015. A survey of cur-
rent datasets for vision and language research. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 207–213,
Lisbon, Portugal, September. Association for Compu-
tational Linguistics.

Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang,
Lei Wang, and Wei Xu. 2015. Are you talking to
a machine? dataset and methods for multilingual im-
age question. In C. Cortes, N.D. Lawrence, D.D. Lee,

M. Sugiyama, R. Garnett, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28,
pages 2287–2295. Curran Associates, Inc.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama,
R. Garnett, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 28, pages 3276–
3284. Curran Associates, Inc.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis
Kalanditis, Li-Jia Li, David A Shamma, Michael Bern-
stein, and Li Fei-Fei. 2016. Visual genome: Connect-
ing language and vision using crowdsourced dense im-
age annotations.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting objec-
tive function for neural conversation models. NAACL
HLT 2016.

Chin-Yew Lin and Franz Josef Och. 2004. Automatic
evaluation of machine translation quality using longest
common subsequence and skip-bigram statistics. In
Proceedings of the 42Nd Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’04, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014,
pages 740–755. Springer.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In Z. Ghahra-
mani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q.
Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 1682–1690. Curran As-
sociates, Inc.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Mitchell Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Brown corpus,
treebank-3.

1238

Vignesh Ramanathan, Percy Liang, and Li Fei-Fei. 2013.
Video event understanding using natural language de-
scriptions. In Computer Vision (ICCV), 2013 IEEE In-
ternational Conference on, pages 905–912. IEEE.

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015. Ex-
ploring models and data for image question answering.
In C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama,
R. Garnett, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 28, pages 2935–
2943. Curran Associates, Inc.

Mohammad Amin Sadeghi and Ali Farhadi. 2011.
Recognition using visual phrases. In Computer Vision
and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on, pages 1745–1752. IEEE.

Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian
Borth, and Li-Jia Li. 2015. The new data and new
challenges in multimedia research. arXiv preprint
arXiv:1503.01817.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2014. Show and tell: a neural image
caption generator. In CVPR.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and tell: A neural image
caption generator. In Computer Vision and Pattern
Recognition.

Polly W Wiessner. 2014. Embers of society: Firelight
talk among the ju/hoansi bushmen. Proceedings of the
National Academy of Sciences, 111(39):14027–14035.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. arXiv preprint arXiv:1502.03044.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

1239

Proceedings of NAACL-HLT 2016, pages 1240–1249,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

PRIMT: A Pick-Revise Framework for Interactive Machine Translation

Shanbo Cheng, Shujian Huang, Huadong Chen, Xinyu Dai and Jiajun Chen
State Key Laboratory for Novel Software Technology

Nanjing University
Nanjing 210023, China

{chengsb, huangsj, chenhd, daixy, chenjj}@nlp.nju.edu.cn

Abstract
Interactive machine translation (IMT) is a
method which uses human-computer interac-
tions to improve the quality of MT. Tradition-
al IMT methods employ a left-to-right order
for the interactions, which is difficult to di-
rectly modify critical errors at the end of the
sentence. In this paper, we propose an IMT
framework in which the interaction is decom-
posed into two simple human actions: pick-
ing a critical translation error (Pick) and revis-
ing the translation (Revise). The picked phrase
could be at any position of the sentence, which
improves the efficiency of human computer in-
teraction. We also propose automatic sugges-
tion models for the two actions to further re-
duce the cost of human interaction. Experi-
ment results demonstrate that by interactions
through either one of the actions, the transla-
tion quality could be significantly improved.
Greater gains could be achieved by iteratively
performing both actions.

1 Introduction
To obtain high quality translations, human transla-

tors usually have to modify the results generated by
a machine translation (MT) system (called post edit-
ing, PE). In many cases, PE needs a lot of modifica-
tions, which is time-consuming (Plitt and Masselot,
2010). To speed up the process, interactive ma-
chine translation (IMT) is proposed which instantly
update the translation result after every human ac-
tion (Langlais et al., 2000; Foster et al., 2002; Bar-
rachina et al., 2009; Koehn, 2009; González-Rubio
et al., 2013; Alabau et al., 2014). Because the trans-
lation quality could be improved after every update,

IMT is expected to generate high quality transla-
tions with less human actions (Sanchis-Trilles et al.,
2014).
Typical IMT systems usually use a left-to-

right sentence completing framework pioneered by
Langlais et al (2000), in which the users process the
translation from the beginning of the sentence and
interact with the system at the left-most error. By
assuming the translation from the beginning to the
modified part (called "prefix") to be correct, the sys-
tem generates new translations after the given pre-
fix (Koehn, 2009; Barrachina et al., 2009; Ortiz,
2011; Alabau et al., 2014).
Despite the success of this left-to-right frame-

work, one potential weakness is that it is difficult to
modify critical translation errors at the end of a sen-
tence. Critical translation errors are those errors that
has large impact on the translation of other words or
phrases. When a translation ambiguity occurs at the
end of a sentence while it causes translation errors at
the beginning, modifying this critical errors first may
bring great positive effects on previous parts of the
translation, which may reduce human efforts in an
IMT process. Modifying from left to right will delay
the modification of the ambiguity point and lowers
the interaction efficiency.
Critical errors are often caused by the inheren-

t difficulty of translating source phrases. Mohit
et al. (2007) proposed a classifier to identify the
difficult-to-translate phrases (DTPs), whichwere ex-
tracted from syntactic trees. They demonstrated that
asking human to translate theseDTPs can bring a sig-
nificant gain to the overall translation quality com-
pared to translating other phrases. However, to our

1240

Source 南亚 各国 外长 商讨 自由 贸易区 和 反 恐 问题
(south asian)(countries)(foreign minister)(discuss) (free)(trade zone)(and)(anti)(terrorism)(issue)

Ref south asian foreign ministers discuss free trade zone and anti-terrorism issues
Baseline south asian foreign ministers to discuss the issue of free trade area and the
L2R south asian foreign ministers discuss the issue of free trade area and the
PR south asian foreign ministers discuss free trade area and anti-terrorism issues

Table 1: Examples of applying the Left-to-right (L2R) framework and the Pick-Revise framework (PR) in modifying a Chinese-
English translation. Both the PR and left-to-right actions are performed only once. The first row shows the Chinese words and their
translations. The following rows are the reference translations, the translation of the baseline system, the translation after a L2R
interaction cycle and the translation after a PR interaction cycle, respectively. The dashed underline phrase is picked as the error to
be modified by L2R. The underline phrase is picked as the error to be modified. The bold parts show the positive effects of revising
the selected translation error on the translation of their contexts in a constrained decoding.

best knowledge, there is no practice in integrating
these DTPs into an IMT framework.
In this paper, we propose a Pick-Revise IMT

framework (PRIMT) to explicitly split the modifi-
cation of a translation result into two very simple
actions. Firstly, a wrongly-translated phrase is se-
lected from the whole sentence (Pick); secondly, the
correct translation is selected from the translation ta-
ble (or manually added) to replace the original one
(Revise). Our system then re-translates the sentence
and searches for the best translation using previous
modifications as constraints (Section 2). Further-
more, we propose two automatic suggestion models
that could predict the wrongly-translated phrases and
select the revised translation, respectively (Section
3). With the suggestion models, users only perform
one of the actions (picking or revising) and let the
suggestion models complete the other one. In this
case, the interactions could be further simplified to
be only one of the actions, which is as simple as one
mouse click.
Experiment results show that by performing on-

ly one mouse click, the translation quality could be
significantly improved (around +2 BLEU points in
one PR cycle). Performing both two actions multi-
ple times will bring greater gain in translation qual-
ity (+17 BLEU) with a relatively low Keystroke
and Mouse-action Ratio (KSMR) (Barrachina et al.,
2009) (3.3% KSMR).

2 The Pick-Revise IMT Framework
2.1 PRIMT System
We first explain the difference between Pick-

Revise (PR) framework and left-to-right frame-

work (Foster et al., 2002) with an example (in Ta-
ble 1). For the given input source sentence, the MT
system firstly generates a baseline translation. In
the left-to-right framework human translator modi-
fies the left-most error from "to discuss" to "discuss".
But this modification may not bring any positive ef-
fects on the other part of the translation. So more
interactions are needed to further improve the trans-
lation quality.

In our pick-revise framework, the human trans-
lator picks the phrase " 反 恐" which was consid-
ered the most critical translation error, and revise the
translation from "the" to "anti-terrorism" according
to phrase table. After a PR cycle, our constrained
decoder re-translates the sentence. It not only gen-
erates the correct translation for the pick-revise pair
(PRP), but also improves the translation around the
PRP (bold parts).

Compared to left-to-right framework, our frame-
work canmodify themost critical error at first, which
brings larger improvements on translation quality
and improves the efficiency of human interactions.

Figure 1 shows an overview of our framework.
For a source sentence s1...sn, our framework iter-
atively generates the translation using a constrained
decoder. The constraints come from previous pick-
ing and revising processes. The picking and revising
results can also be collected for model adaptation.
The whole process continues until the translation is
considered acceptable by the users. We explain the
key components of our framework below.

1241

..Start.

Constrained
Decoder

.

Revising

.

Acceptable?

. Model Adaptation.

Picking

.

Stop

.
s1...sn

.

e1...en

.

no

.

(sj
i ,t)

.

(sj
i ,t′)

.

yes

.

(sj
i ,t′)

Figure 1: An overview of PRIMT framework.

2.2 Picking
In the picking step, the users pick the wrongly-

translated phrase, (sj
i ,t)1, to be revised. The picking

process aims at finding critical errors in the transla-
tion, caused by errors in the translation table or in-
herent translation ambiguities. The more critical the
error is, the larger translation quality improvement
can be achieved by correcting the error (Mohit and
Hwa, 2007). Critical errors might have a large influ-
ence to the translation of their context.
To make the picking step easier to be integrated

into MT system, we limit the selection of transla-
tion errors to be those phrases in the previous PR-
cycle output. If it's the first PR-cycle, then those er-
rors come from phrases used to generate the base-
line translation. For more convenient user interac-
tions, in our PRIMT system, critical errors can be
picked from both the source and target side by simply
a mouse click on it. The correspondence/alignment
between source and target phrases are visualized for
easier human observation.
Green et al. (2014) demonstrated that perform-

ing post-editing, i.e. directly editing the translation
errors, could get acceptable translations faster than
performing left-to-right IMT. Such result also indi-
cates that identifying critical translation errors is not
a difficult task for human to perform.

2.3 Revising
In the revising step, the users revise the translation

of sj
i by selecting the correct translation t′ from the

translation table, or manually add one if there is no
1sj

i is the phrase that covers the source words from index i
to j, and translated into t.

correct translation in the translation table. Whether
to perform selection or adding depends on the quality
of the translation table. When the translation system
is trained with large enough parallel data, the quality
of the translation table is usually high enough to offer
the correct translation.
For a picked phrase, the translation options in the

phrase table could be presented to the users as a list.
The users just need to click on the correct translation
to complete the revising step. The users could also
type a new translation through a separated input area.

2.4 Decoder and Model Adaptation
A pick-revise pair (PRP), (sj

i , t′), is obtained af-
ter a PR cycle for a source sentence. We use a con-
strained decoder to search for the best translation
with the previous PRPs as constraints. The con-
strained search algorithm is similar to the algorithm
in a typical phrase-basedmachine translation (Koehn
et al., 2003). The only exception is that it makes
an extra comparison between each translation option
and previous PR pairs, which ignores all the phras-
es that overlap with the source side of a PRP. As a
result, a lot of translation options are ignored, which
makes the search space much smaller than standard
decoding. In this way, we could guarantee that all
the PRPs are correctly translated and the whole pro-
cess can be carried out in real-time.
The system could collect all PRPs and adapt the

models using methods described in Germann (2014)
or Marie (2015). In our current implementation, we
mainly focus on the picking and revising step and
leave model adaptation as future work.

3 Automatic Suggestion Models
To further reduce the human actions, we propose

to use automatic suggestion models for the picking
and revising step, respectively. Such models can of-
fer suggestions to users in both picking and revising
steps. Because both picking and revising actions are
performing selections from multiple candidates, we
use classifier-based approaches to model these two
steps. In the following subsections, we will intro-
duce how we define the picking and revising tasks
as classification tasks and how we choose features to
model the tasks. Note that these automatic sugges-
tion models could be interpreted as simplified confi-
dence measurements.

1242

3.1 The Picking Suggestion Model (PSM)
3.1.1 PSM Training
The picking process aims at selecting critical er-

rors which has huge impact on the translation quality
of their context. The goal of PSM is to automatical-
ly recognize those phrases that might be wrongly-
translated, and suggest users to pick these phrases.
In real world systems, the users can either accept or
refuse the suggestion.
Within all the phrases of a source sentence, we

need to separate the wrongly-translated phrases and
correctly-translated phrases. Because translation er-
rors often cause low translation quality, we use the
translation quality gain after the revising action as a
measurement. We treat those phrases that achieve
translation quality improvement after revising as
wrongly-translated phrases; those lead to translation
quality deterioration as correctly-translated phrases.
We select phrases that lead to a BLEU improve-

ment/deterioration greater than a threshold as posi-
tive/negative instances. In this paper, the threshold
is set as 10% of the BLEU score of the baseline sen-
tence.

3.1.2 PSM Features
Modeling the picking process needs two aspects

of information. One of them is to determine whether
the phrase is difficult-to-translate; the other is to de-
termine whether the current translation option is cor-
rect. We use features from translation models (TM-
s), language models (LMs), lexical reordering mod-
els (LRMs), as well as counting and lexical features
in Table 2. These features cover information of the
source side, target side, translation ambiguity, and
context, etc.

3.2 The Revising Suggestion Model (RSM)
3.2.1 RSM Training
The revising process aims at selecting a correc-

t translation for a given phrase under the given con-
text. The goal of RSM is to predict the correct trans-
lation and suggest users to replace the wrong trans-
lation with the predicted one. The users can either
accept it or use another translation.
Translation table has multiple translation option-

s for one phrase. Within the translation option set
of a source phrase, we need to separate the correc-

Category Description

TM

TM scores of baseline translation
Normalized TM scores of baseline
translation
TM entropy of all translation options

LM

LM score of baseline translation
LM score of previous/next phrase
translation
LM score of each target word
LM score of the bigram at the border of
current and previous/next phrase

LRM LRM scores of baseline translation
LRM scores of previous/next phrase
translation

Count Source/target word count
Number of translation options for current
source phrase

POS POS-tags of source words
POS-tags of previous/next word of source
phrase

Lexical Source words
Target words

Table 2: Features for the PSM.

t and wrong translation options. Instead of asking
human translators to label these translations, we use
two criteria to distinguish correct translation options
from wrong translation options.
Firstly, the correct translation option should be a

substring of the references, which ensures the cor-
rectness of the options itself. Secondly, the correc-
t translation option should be consistent with pre-
trained word alignment on the translated sentence
pair2. This is to ensure that the translation option
does not get credit for words that are not translations
of the source side phrase. The remaining options are
considered wrong translations.
With the above criteria, we select all correct trans-

lation options as positive instances for the revis-
ing step, and randomly sample the same number of
wrong translation options to be negative instances.
Specifically, translation options that are used by the
baseline system are included as negative instances.

3.2.2 RSM Features
The features used for RSM are showed in Table 3.

For translations of a given source phrase, there is no
need to compare their source-side information be-
cause these translation options share the same source
phrase and context. So these features mainly focus

2We trained word alignments with Giza++(Och and Ney,
2003)

1243

on estimating the translation quality of a given trans-
lation option. As a result, features for RSM only in-
cluding the scores for TM, LM and LRM, etc, which
are simpler compared to PSM.

Category Description
TM TM scores of current translation option

LM LM score of current translation option
LM score of each target word

LRM LRM scores of current translation option
count Target word count
Lexical Target words

Table 3: Features for the RSM

4 Experiments

4.1 Experiment Settings

4.1.1 Translation Settings
Through out the experiments, we use an in-house

implementation of the phrase-based machine trans-
lation system (Koehn et al., 2003) and incorpo-
rate our PRIMT framework into the translation sys-
tem. The parallel data for training the translation
model includes 8.2 million sentences pairs from
LDC2002E18, LDC2003E14, LDC2004E12, LD-
C2004T08, LDC2005T10, LDC2007T09. A 5-
gram language model is trained with MKN smooth-
ing (Chen and Goodman, 1999) on Xinhua portion
of Gigaword which contains 14.6 million sentences.
We use a combination of NIST02 and NIST03 to
tune the MT system parameters and train the sug-
gestion models. We test the system on NIST04 and
NIST05 data. The translation results are evaluated
with case insensitive 4-gram BLEU (Papineni et al.,
2002). Our baseline phrase-based MT system has
comparable performance with the open source toolk-
it Moses (Koehn et al., 2003).

4.1.2 Classification Settings
We use three classification models to model the

automatic suggestion models: the maximum entropy
model, the SVMmodel and the neural network mod-
el. We use a maximum entropy model (Zhang, 2004)
with 30 iterations of L-BFGS. We use the LibSVM
implementation (Chang and Lin, 2011) with RBF k-
ernel and L2 regularization (c = 128, γ = 0.5). We
use a feedforward neural network with the CNTK
implementation (Agarwal et al., 2014). The neural

network has one hidden layer of 80 nodes, with sig-
moid function as the activation function.
We use one-hot representation for the source and

target word features when using the maximum en-
tropy and SVMmodel, and use pre-trained word em-
beddings (Mikolov et al., 2013) for the neural model.

4.2 Methodology
4.2.1 Simulated Human Interaction
Because real-world human interactions are expen-

sive and time-consuming to obtain, we use simulat-
ed human interactions for picking and revising in the
experiment.
Directly identifying critical errors in the transla-

tion is not an easy task without human annotation.
Instead, we find critical errors by judging the in-
fluence of a given error to the translation of their
context. We try picking every phrase in a baseline
translation result and revising it using the simulated
revising strategy (described below). The influence
of the phrase is measured by the translation quali-
ty improvement after re-translation with the current
phrase be revised. The phrase with the highest trans-
lation quality improvement is picked to be the simu-
lated human picking result.
Given the phrase to be revised, the simulated

revising action is straightforward. Among all the
translation options that are considered correct (Sec.
3.2.1), we choose the longest one to be the simulated
human revising result.
With the above simulated actions, one PR cy-

cle takes exactly two mouse clicks and none key-
stroke. For fair comparison, we use the same simu-
lated revising action for the left-to-right framework.
Each cycle of left-to-right framework also takes t-
wo mouse clicks. We also compare the post editing
method which selects the most critical error and ed-
its it to be the simulated revising translation. The
key-stroke count for each editing is the number of
characters of the correct phrase translation.

4.3 Translation Quality Improvement in Ideal
Environment

Our first experiment is to test the PRIMT perfor-
mance in an ideal environment. We conduct experi-
ments on sentences for which the reference could be
generated by our currentMT system using forced de-
coding. Forced decoding forces the decoder to gen-

1244

Data NIST04(forced) NIST05(forced)
BLEU KSMR BLEU KSMR

Baseline 44.59 0 41.48 0
PR*1 63.21 (+18.62) 2.2 55.10 (+13.62) 2.2
PR*2 70.82 (+26.23) 4.3 63.03 (+21.55) 4.4
PR*3 73.99 (+29.50) 6.5 68.56 (+27.08) 6.7
PR*4 75.48 (+30.89) 8.6 72.20 (+30.72) 8.9
PR*5 76.59 (+32.00) 10.8 73.90 (+32.42) 11.1
PR*6 78.07 (+33.48) 12.9 75.22 (+33.74) 13.3
PR*7 79.27 (+34.68) 15.1 75.57 (+34.09) 15.5
PR*8 79.54 (+34.93) 17.2 76.02 (+34.54) 17.8
L2R*1 49.32 (+4.73) 2.2 46.34 (+4.86) 2.2
PE*1 49.77 (+5.18) 8.3 46.81 (+5.33) 8.2

Table 4: Experiments on sentences that can be forced-decoded
for both NIST04 and NIST05 data, with 186 and 92 sentence
counts, respectively. (PR*n denotes system that repeat picking
and revising for n cycles; the PE system post edits the most
critical error; the L2R system modifies the left most error).

erate translations exactly the same as the references.
A reference translation could be generated by forced
decoding means that it won't be necessary to input
new words to generate a correct translation. Because
we only simulate human revising actions as selecting
the best translation option from phrase table (without
adding new options), such a setting guarantees that
the phrase table contains the correct translation for
every phrase.
Table 4 shows that picking and revising the most

critical error (PR*1) can bring +18 and +13 BLEU
improvements in the two data sets, respectively. Re-
vising the left-most error (L2R*1) only achieves an
improvement around +5 BLEU. This result demon-
strates that picking the critical error to be revised is
critical in our PR framework. Compared to the left-
to-right method, our framework has the advantage
of correcting the critical errors in a high priority. By
correcting such errors, the BLEU gain is much larger
than left-to-right correction.
Post-editing the most critical error (PE*1) uses

8% KSMR, but only brings +5 BLEU improvement.
Compared to post-editing, which just edits the criti-
cal error without affecting other parts of the transla-
tion, our PRIMT framework can re-decode for better
translations with less human interactions.
In 8 PR-cycles (PR*8) (around 17% KSMR), the

PRIMT achieves very high quality translation result-
s with a BLEU score higher than 75 (around +35
BLEU to baseline). These results demonstrate the
efficiency of PRIMT in multiple interactions.

Data NIST04 NIST05
BLEU KSMR BLEU KSMR

Baseline 31.83 0 30.64 0
PR*1 42.88 (+11.05) 1.1 41.47 (+10.83)) 1.1
PR*2 48.21 (+16.38) 2.2 45.76 (+15.12) 2.2
PR*3 50.12 (+18.29) 3.3 48.33 (+17.69) 3.3
L2R*1 35.61 (+3.78) 1.1 33.85 (+3.21) 1.1
PE*1 34.74 (+2.91) 4.3 34.18 (+2.54) 4.8

Table 5: Experiments on bothNIST04 andNIST05 data. (PR*n
denotes system that repeat picking and revising for n cycles;
the PE system post edits the most critical error; the L2R system
corrects the left most error).

ASM Classifier NIST04 NIST05

PSM
MaxEnt 0.70/0.62/0.66 0.69/0.60/0.64
SVM 0.71/0.68/0.69 0.69/0.66/0.67

Feedforward 0.71/0.73/0.72 0.68/0.70/0.69

RSM
MaxEnt 0.71/0.58/0.63 0.70/0.57/0.63
SVM 0.70/0.61/0.0.65 0.68/0.62/0.65

Feedforward 0.66/0.67/0.66 0.65/0.65/0.65

Table 6: Classification performance of automatic suggestion
models. The three values of each cell denotes the precision, re-
call and F-score, respectively, calculated on positive instances
of corresponding classifier.

4.4 Translation Quality Improvement in
General Environment

We also validate the improvements of translation
quality in a general environment. We perform simi-
lar experiments on all NIST04 and NIST05 data. In
some of the sentences, the translation table might not
contain the correct translation for source phrase, due
to the limitation of the training of our current MT
system.

The results are listed in Table 5. Although the
BLEU score in general environment are lower than
those in ideal environment, the results show basi-
cally the same trends as in the previous experiment.
The third row (PR*1) in Table 5 shows that picking
and revising the most critical error can bring around
+11 BLEU improvements in both data sets. The im-
provements in L2R*1 (+3.2) and PE*1 (+2.5) are
much less. Three PR-cycles (around 3.3 KSMR) can
achieve +17 BLEU improvements (PR*3). Com-
pared to left-to-right and PE methods, our frame-
work still has a significant advantage in the general
environment.

1245

4.5 Using Automatic Suggestion Models

We validate the effectiveness of our automat-
ic suggestion models by both classification perfor-
mance and translation performance.
Table 6 shows the classification performances of

the PSM and the RSM, with different models. The
precision and recall are calculated on positive in-
stances in the test set, because only those instances
that are predicted as positive will be used in the IMT
system. Because it is harder to automatically iden-
tify the correct translation, we keep the translation
unchanged when the RSM classifies all translation
options to be negative.
The performance of the three classifiers are sim-

ilar. Feedforward neural network has a moderate
advantage. In general, the PSM could recognize
the critical translation errors with an F-score around
0.67. The RSM achieves about 0.65 F-score for rec-
ognizing the correct translation. The F-scores are all
in the range between 60 and 70, which is reasonable
considering the difficulty of the tasks themselves.
We also evaluate the translation improvements

when automatic suggestion models are used in the
PR framework (Table 7). If the picking action per-
forms a random pick of phrase (RandomPicking),
there is barely no improvement in the translation
quality, even with the simulated revising action. For
comparison, using PSM could achieve a significant
BLEU improvement of around 2 BLEU, on both test
sets. It suggests that the BLEU gain does not come
from the long reference translation match in the re-
vising step. Picking critical errors is crucial in our
framework.
Choosing the most critical error and performing a

random revising action (RandomRevising) brings no
improvement in BLEU either. Using our RSM could
still improve the translation quality by 1.5 BLEU.
In general, using one of our PSM and RSM could

still achieve significant improvement in translation
quality. But the uses only need to perform one type
of actions, which might be more suitable to be per-
formed by a single human translator. However, the
improvement is relatively small compared to fully
simulated results, suggesting that human involve-
ment is still critical for improve the translation qual-
ity. Better modeling or training with larger data may
also improvement the performance of automatic sug-

NIST04 NIST05
Baseline 31.83 30.64

RandomPicking 31.92 (+0.09) 30.69 (+0.05)

PSM
MaxEnt 33.89 (+2.06) 32.57 (+1.93)
SVM 34.01 (+2.18) 32.66 (+2.02)

FeedForward 34.23 (+2.40) 32.81 (+2.17)
RandomRevising 31.90 (+0.07) 30.71 (+0.08)

RSM
MaxEnt 33.62 (+1.79) 32.38 (+1.74)
SVM 33.73 (+1.90) 32.42 (+1.78)

FeedForward 33.77 (+1.94) 32.44 (+1.80)

Table 7: Improvements of translation quality using random se-
lection and automatic suggestion models.

gestions.

5 Example Analysis

We further analyze the performance of our PRIMT
system by examples. Table 8 shows the PRIMT pro-
cedure of improving translation quality for three dif-
ferent sentences.
In the first sentence, two PR cycles (4.7% KSM-

R) lead to a perfect translation. In the first PR cy-
cle (PR*1), revising the translation of "第六" from
"the" to "the 6th" improves the neighboring transla-
tion. The translation of "证实" change from "con-
firms" to "confirm", which is a positive effect. In
PR*2, revising the translation of "病例" from "cas-
es" to "case" also changes the neighborhood transla-
tion (the translation of "禽流感死亡病例" changes
to "death case from the bird flu"). After two PR cy-
cles, the reference translation is obtained.
In our current settings, the reference translation

could not always be obtained. Themaximum achiev-
able BLEU is around 60-70 in general environment.
The next two examples shows some possible expla-
nations.
In the second sentence in Table 8, "需要一定" is

picked in the first PR cycle. Revising the translation
from "a" to "need a certain" makes the translation of
"通常" changing from "is" to "usually". In the nex-
t PR cycle, revising the translation of "过程" from
"process" to "course" makes the neighboring trans-
lation changing from "," to ", and". Meanwhile, the
position of "course" moves to the right place (in front
of ","). In the last PR cycle, the translation of "很难"
is revised from "it" to "it cannot be". After three PR
cycles, the translation quality improves significant-
ly. However, the translation is still different from the

1246

Source 世卫 组织 证实 越南 第六1 个 禽流感 死亡 病例2

(world health) (organization) (confirm) (vietnam) (6th) () (bird flu) (death) (case)
Ref the world health organization confirms the 6th death case from the bird flu in vietnam
Baseline the world health organization confirmed the bird flu death cases in vietnam
PR*1 the world health organization confirms the 6th1 bird flu death cases in vietnam
PR*2 the world health organization confirms the 6th death case2 from the bird flu in vietnam

Source 民族 和解 通常 需要 一定1 的 过程2 , 很难3 一蹴而就4 。
(national) (reconciliation) (usually) (need) (certain) () (course) (,) (cannot) (accomplish in one action) (.)

Ref national reconciliation usually need a certain course , and it cannot be accomplished in one action .
Baseline national reconciliation is a very difficult process takes .
PR*1 national reconciliation process usually need a certain1 takes very difficult .
PR*2 national reconciliation usually need a certain course2 , and it accomplished .
PR*3 national reconciliation usually need a certain course , and it cannnot be3 accomplished .
Human national reconciliation usually need a certain course , and it cannnot be accomplished in one action4 .

Source 然而, 以色列的2 回答 无法1 充分扫除 美国 的 疑问 。
(however) (israel's) (reply) (fail) (full clear) (the us) () (doubt) (.)

Ref however , israel 's reply failed to fully clear the us doubts .
Baseline however , the israeli response to the full removal of united states .
PR*1 however , the israeli response failed to1 fully clear doubts . the us
PR*2 however , israel 's2 reply failed to fully clear doubts . the us

Table 8: Examples of applying PR actions multiple times in the Chinese-English translation. The superscript i of the underline
phrases, Pi in source sentence denotes the underline phrase is picked in the i-th PR cycle as the critical error. The original translation
of Pi is the underline phrase without superscript in PR*(i − 1) (Baseline is PR*0). The correct translation is the underline parts
with superscript in PR*i. The bold parts shows the positive effects on other parts near the PRPs.

reference. This is because " 一蹴而就" should be
translated into "accomplished in one action" instead
of "accomplished". But there is no suitable trans-
lation options for it in the current phrase table. So
the system cannot generate a perfect translation. The
problemswill be less significant when real-world hu-
man translators are involved. Human translator in-
puts the correct translation "accomplished in one ac-
tion", the system will generate the reference transla-
tion after constrained decoding (Human).

In the last sentence in Table 8, "无法" is picked
as the critical error. Revising the translation from
"to the" to "failed to", leads to an improvement on
neighboring phrase (the translation of "充分扫除"
to "fully clear"). In the second PR cycle, "以色列
的" is picked. Revising the translation from "the is-
raeli" to "israel 's", makes the translation of "回答"
change from "response" to "reply", which is also a
positive effect. However, after two PR cycles, all
phrase translations are correct, but the translation is
still different from the reference. This is because the
language model and lexical reordering model prefer
the wrong phrase ordering, which put "the us" at the

end of the whole sentence. This problem raises from
the MT system itself, which may not be solved di-
rectly in our current framework.
If more interactions are allowed, for example, per-

forming reordering operations, the above problems
could be solved. But the interactions become more
complex, and may not be acceptable to human trans-
lators. Other solutions includes using better statisti-
cal models such as neural language models (Bengio
et al., 2003). This is an interesting issue we will look
into.

6 Conclusion

We introduced a pick-revise IMT framework,
PRIMT, where the users could pick critical transla-
tion errors anywhere in the sentence and revise the
translation. By correcting the critical error instead
of the left most one, our framework could improve
the translation quality in a quicker andmore efficien-
t way. By using automatic suggestion models, we
could reduce human interaction to a single type, ei-
ther picking or revising. It is also possible to let dif-
ferent human translators to perform different action-

1247

s. In this case every translator will focus on a single
action, which might be easier to train and may have
higher efficiency.
On the other hand, the performance of curren-

t framework is still related to the underlyingMT sys-
tem. Further improvement could be achieved by sup-
porting other type of interactions, such as reordering
operations, or building the system with stronger sta-
tistical models. We will also conduct real-world ex-
periments to see how this new IMT frameworkwork-
s when human translators are actually involved.

7 Acknowledgement

The authors would like to thank the anonymous
reviewers for their valuable comments. This work is
supported by the National Natural Science Founda-
tion of China (No. 61300158, 61472183), the Jiang-
su Provincial Research Foundation for Basic Re-
search (No. BK20130580). This research is partial-
ly supported by the Collaborative Innovation Cen-
ter of Novel Software Technology and Industrializa-
tion, Nanjing University. Shujian Huang is the cor-
responding author.

References
Amit Agarwal, Eldar Akchurin, Chris Basoglu, Guoguo

Chen, Scott Cyphers, Jasha Droppo, Adam Ev-
ersole, Brian Guenter, Mark Hillebrand, Xuedong
Huang, Zhiheng Huang, Vladimir Ivanov, Alexey
Kamenev, Philipp Kranen, Oleksii Kuchaiev, Wolf-
gang Manousek, Avner May, Bhaskar Mitra, Olivi-
er Nano, Gaizka Navarro, Alexey Orlov, Marko
Padmilac, Hari Parthasarathi, Baolin Peng, Alex-
ey Reznichenko, Frank Seide, Michael L. Seltzer,
Malcolm Slaney, Andreas Stolcke, Huaming Wang,
Kaisheng Yao, Dong Yu, Yu Zhang, and Geoffrey
Zweig. 2014. An introduction to computational net-
works and the computational network toolkit. Techni-
cal Report MSR-TR-2014-112, August.

Vicent Alabau, Christian Buck, Michael Carl, Francis-
co Casacuberta, M Garcıa-Martınez, Ulrich German-
n, Jesús González-Rubio, Robin Hill, Philipp Koehn,
LA Leiva, et al. 2014. Casmacat: A computer-assisted
translation workbench. In Proceedings of the 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 25--28.

Sergio Barrachina, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, et al. 2009. Statistical approaches to

computer-assisted translation. Computational Lin-
guistics, 35(1):3--28.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137--1155.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST),
2(3):27.

Stanley F Chen and Joshua Goodman. 1999. An empir-
ical study of smoothing techniques for language mod-
eling. Computer Speech & Language, 13(4):359--393.

George Foster, Philippe Langlais, and Guy Lapalme.
2002. User-friendly text prediction for translators. In
Proceedings of the ACL-02 conference on Empirical
methods in natural language processing-Volume 10,
pages 148--155. Association for Computational Lin-
guistics.

Ulrich Germann. 2014. Dynamic phrase tables for ma-
chine translation in an interactive post-editing scenari-
o. In AMTA 2014 Workshop on Interactive and Adap-
tive Machine Translation, Vancouver, BC, Canada,
pages 20--31.

Jesús González-Rubio, Daniel Ortiz-Martínez, José-
Miguel Benedí, and Francisco Casacuberta. 2013. In-
teractive machine translation using hierarchical trans-
lation models. In Conference on Empirical Methods in
Natural Language Processing, pages 244--254.

Spence Green, Sida I Wang, Jason Chuang, Jeffrey
Heer, Sebastian Schuster, and Christopher DManning.
2014. Human effort and machine learnability in com-
puter aided translation. In Conference on Empirical
Methods in Natural Language Processing, pages 1225-
-1236.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Proceed-
ings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguis-
tics on Human Language Technology-Volume 1, pages
48--54. Association for Computational Linguistics.

Philipp Koehn. 2009. A web-based interactive comput-
er aided translation tool. In Proceedings of the ACL-
IJCNLP 2009 Software Demonstrations, pages 17--20.
Association for Computational Linguistics.

Philippe Langlais, George Foster, and Guy Lapalme.
2000. Transtype: a computer-aided translation typ-
ing system. In Proceedings of the 2000 NAACL-ANLP
Workshop on Embedded machine translation systems-
Volume 5, pages 46--51. Association for Computation-
al Linguistics.

Benjamin Marie, Lingua et Machina, France Le Ches-
nay, and Aurélien Max. 2015. Touch-based pre-post-
editing of machine translation output. In Conference

1248

on Empirical Methods in Natural Language Process-
ing.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111--3119. Neural Information Processing Sys-
tems.

Behrang Mohit and Rebecca Hwa. 2007. Localization
of difficult-to-translate phrases. In Proceedings of the
Second Workshop on Statistical Machine Translation,
pages 248--255. Association for Computational Lin-
guistics.

Franz Josef Och and Hermann Ney. 2003. A systemat-
ic comparison of various statistical alignment models.
Computational Linguistics, 29(1):19--51.

Daniel Ortiz. 2011. Advances in fully-automatic and in-
teractive phrase-based statistical machine translation.
Ph.D. thesis, Universitat Politècnica de València.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting on association for computational
linguistics, pages 311--318. Association for Computa-
tional Linguistics.

Mirko Plitt and François Masselot. 2010. A productivi-
ty test of statistical machine translation post-editing in
a typical localisation context. The Prague Bulletin of
Mathematical Linguistics, 93:7--16.

Germán Sanchis-Trilles, Vicent Alabau, Christian Buck,
Michael Carl, Francisco Casacuberta, Mercedes Gar-
cía-Martínez, Ulrich Germann, Jesús González-Rubio,
Robin L Hill, Philipp Koehn, et al. 2014. Interactive
translation prediction versus conventional post-editing
in practice: a study with the casmacat workbench. Ma-
chine Translation, 28(3-4):217--235.

Le Zhang. 2004. Maximum entropy modeling toolkit for
python and c++.

1249

Proceedings of NAACL-HLT 2016, pages 1250–1255,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Incorporating Side Information into Recurrent Neural Network Language
Models

Cong Duy Vu Hoang
University of Melbourne

Melbourne, VIC, Australia
vhoang2@student.unimelb.edu.au

Gholamreza Haffari
Monash University

Clayton, VIC, Australia
gholamreza.haffari@monash.edu

Trevor Cohn
University of Melbourne

Melbourne, VIC, Australia
t.cohn@unimelb.edu.au

Abstract

Recurrent neural network language models
(RNNLM) have recently demonstrated vast
potential in modelling long-term dependen-
cies for NLP problems, ranging from speech
recognition to machine translation. In this
work, we propose methods for conditioning
RNNLMs on external side information, e.g.,
metadata such as keywords, description, doc-
ument title or topic headline. Our experiments
show consistent improvements of RNNLMs
using side information over the baselines for
two different datasets and genres in two lan-
guages. Interestingly, we found that side in-
formation in a foreign language can be highly
beneficial in modelling texts in another lan-
guage, serving as a form of cross-lingual lan-
guage modelling.

1 Introduction

Neural network approaches to language modelling
(LM) have made remarkable performance gains over
traditional count-based ngram LMs (Bengio et al.,
2003; Mnih and Hinton, 2007; Mikolov et al., 2011).
They offer several desirable characteristics, includ-
ing the capacity to generalise over large vocabular-
ies through the use of vector space representation,
and – for recurrent models (Mikolov et al., 2011)
– the ability to encode long distance dependencies
that are impossible to include with a limited context
windows used in conventional ngram LMs. These
early papers have spawned a cottage industry in neu-
ral LM based applications, where text generation
is a key component, including conditional language
models for image captioning (Kiros et al., 2014;

Vinyals et al., 2015) and neural machine translation
(Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2015).

Inspired by these works for conditioning LMs on
complex side information, such as images and for-
eign text, in this paper we investigate the possibility
of improving LMs in a more traditional setting, that
is when applied directly to text documents. Typi-
cally corpora include rich side information, such as
document titles, authorship, time stamp, keywords
and so on, although this information is usually dis-
carded when applying statistical models. However,
this information can be highly informative, for in-
stance, keywords, titles or descriptions, often in-
clude central topics which will be helpful in mod-
elling or understanding the document text. We pro-
pose mechanisms for encoding this side informa-
tion into a vector space representation, and means
of incorporating it into the generating process in a
RNNLM framework. Evaluating on two corpora and
two different languages, we show consistently sig-
nificant perplexity reductions over the state-of-the-
art RNNLM models.

The contributions of this paper are as follows:

1. We propose a framework for encoding struc-
tured and unstructured side information, and its
incorporation into a RNNLM.

2. We introduce a new corpus, the RIE corpus,
based on the Europarl web archive, with rich
annotations of several types of meta-data.

3. We provide empirical analysis showing consis-
tent improvements from using side information
across two datasets in two languages.

1250

2 Problem Formulation & Model

We first review RNNLM architecture (Mikolov et
al., 2011) before describing our extension in §2.2.

2.1 RNNLM Architecture

The standard RNNLM consists of 3 main layers: an
input layer where each input word has its embedding
via one-hot vector coding; a hidden layer consisting
of recurrent units where a state is conditioned recur-
sively on past states; and an output layer where a
target word will be predicted. RNNLM has an ad-
vantage over conventional n-gram language model
in modelling long distance dependencies effectively.

In general, an RNN operates from left-to-right
over the input word sequence; i.e.,

ht = RU (xt,ht−1)

= f
(
W (hh)ht−1 +W (ih)xt + b(h)

)
xt+1 ∼ softmax

(
W (ho)ht + b(o)

)
;

where f(.) is a non-linear function, e.g., tanh, ap-
plied element-wise to its vector input; ht is the cur-
rent RNN hidden state at time-step t; and matrices
W and vectors b are model parameters. The model
is trained using gradient-based methods to optimise
a (regularised) training objective, e.g. the likelihood
function. In principle, a recurrent unit (RU) can be
employed using different variants of recurrent struc-
tures such as: Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), Gated Recur-
rent Unit (GRU) (Cho et al., 2014), or recently
deeper structures, e.g. Depth Gated Long Short
Term Memory (DGLSTM) – a stack of LSTMs with
extra connections between memory cells in deep
layers (Yao et al., 2015). It can be regarded as
being a generalisation of LSTM recurrence to both
time and depth. Such deep recurrent structure may
capture long distance patterns at their most general.
Empirically, we found that RNNLM with DGLSTM
structure appears to be best performer across our
datasets, and therefore is used predominantly in our
experiments.

2.2 Incorporating Side Information

Nowadays, many corpora are archived with side in-
formation or contextual meta-data. In this work, we

htht-1

xt

xt+1

e

htht-1

xt

xt+1

e

a) b)

Figure 1: Integration methods for auxiliary information, e: a)

as input to the RNN, or b) as part of the output softmax layer.

argue that such information can be useful for lan-
guage modelling (and presumably other NLP tasks).
By providing this auxiliary information directly to
the RNNLM, we stand to boost language modelling
performance.

The first question in using side information is how
to encode these unstructured inputs, y, into a vector
representation, denoted e. We discuss several meth-
ods for encoding the auxiliary vector:
BOW additive bag of words, e =

∑
t yt, and

average the average embedding vector,

e =
1
T

∑
t yt, both inspired by (Hermann

and Blunsom, 2014a);
bigram convolution with sum-pooling,

e =
∑

t tanh (yt−1 + yt) (Hermann and
Blunsom, 2014b); and

RNN a recurrent neural network over the word se-
quence (Sutskever et al., 2014), using the final
hidden state(s) as e.

From the above methods, we found that BOW
worked consistently well, outperforming the other
approaches, and moreover lead to a simpler model
with faster training. For this reason we report only
results for the BOW encoding. Note that when using
multiple auxiliary inputs, we use a weighted combi-
nation, e =

∑
iW

(ai)e(i).
The next step is the integration of e into the

RNNLM. We consider two integration methods: as
input to the hidden state (denoted input), and con-
nected to the output softmax layer (output), as
shown in Figure 1 a and b, respectively. In both
cases, we compare experimentally the following in-
tegration strategies:
add adding the vectors together, e.g., using xt +

e as the input to the RNN, such that

1251

ht = RU (xt + e,ht−1);
stack concatenating the vectors, e.g., using[

x>t e>
]> for generating the RNN hidden

state, such that ht = RU
([

xt
e

]
,ht−1

)
;

and
mlp feeding both vectors into an extra perceptron

with single hidden layer, using a tanh non-
linearity and projecting the output to the re-
quired dimensionality; i.e.,

h′
t = tanh

(
W (hh′)ht +W (he)e+ b(h′)

)
xt+1 ∼ softmax

(
W (ho)h′

t + b(o)
)
.

Note that add requires the vectors to be the same di-
mensionality, while the other two methods do not.
The stack method can be quite costly, given that it
increases the size of several matrices, either in the
recurrent unit (for input) or the output mapping for
word generation. This is a problem in the latter case:
given the large size of the vocabulary, the matrix
W (ho) is already very large and making it larger
(doubling the size, to become W (h′o)) has a size-
able effect on training time (and presumably also
propensity to over-fit). The output+stack method
does however have a compelling interpretation as a
jointly trained product model between a RNNLM
and a unigram model conditioned on the side in-
formation, where both models are formulated as
softmax classifiers. Considered as a product model
(Hinton, 2002; Pascanu et al., 2013), the two com-
ponents can concentrate on different aspects of the
problem where the other model is not confident, and
allowed each model the ability to ‘veto’ certain out-
puts, by assigning them a low probability.

3 Experiments

Datasets. We conducted our experiments on two
datasets with different genres in two languages. As
the first dataset, we use the IWSLT2014 MT track
on TED Talks1 due to its self-contained rich auxil-
iary information, including: title, description, key-
words, and author related information. We chose
the English-French pair for our experiments2 . The
statistics of the training set is shown in Table 1. We

1https://wit3.fbk.eu/ (IWSLT’14 MT Track)
2Our method can be also applied to other language pairs.

tokens (M) types (K) docs sents (K)

TED-en 4.0 18.3 1414 179
TED-fr 4.3 22.6 1414 179
RIE-en 13.7 15.0 200 460
RIE-fr 14.9 19.4 200 460

Table 1: Statistics of the training sets, showing in each cell the

number of word tokens, types, documents (talks or plenaries),

and sentences. Note that “types” here refers to word frequency

thresholded at 5 and 15 for TED Talks and RIE datasets, respec-

tively.

used dev2010 (7 talks/817 sentences) for early stop-
ping of training neural network models. For evalu-
ation, we used different testing sets over years, in-
cluding tst2010 (10/1587), tst2011 (7/768), tst2012
(10/1083).

As the second dataset, we crawled the entire Euro-
pean Parliament3 website, focusing on plenary ses-
sions. Such sessions contain useful structural in-
formation, namely multilingual texts divided into
speaker sessions and topics. We believe that those
texts are interesting and challenging for language
modelling tasks. Our dataset contains 724 plenary
sessions over 12.5 years until June 2011 with mul-
tilingual texts in 22 languages4. We refer to this
dataset by RIE5 (Rich Information Europarl). We
randomly select 200/5/30 plenary sessions as the
training/development/test sets, respectively. We be-
lieve that the new data including side information
pose another challenge for language modelling. Fur-
thermore, the sizes of our working datasets are an or-
der of magnitude larger than the standard Penn Tree-
bank set which is often used for evaluating neural
language models.

Set-up and Baselines. We have used cnn6 to im-
plement our models. We use the same configura-
tions for all neural models: 512 input embedding
and hidden layer dimensions, 2 hidden layers, and
vocabulary sizes as given in Table 1. We used
the same vocabulary for the auxiliary and modelled
text. We trained a conventional 5−gram language
model using modified Kneser-Ney smoothing, with
the KenLM toolkit (Heafield, 2011). We used the

3http://www.europarl.europa.eu/
4We ignored the period from June 2011 onwards, as from

this date the EU stopped creating manual human translations.
5This dataset will be released upon publication.
6https://github.com/clab/cnn/

1252

Method test2010 test2011 test2012
5-gram LM 79.9 77.4 89.9

RNNLM 65.8 63.9 73.0
LSTM 54.1 52.2 58.4
DGLSTM 53.1 52.1 58.8

input+add+k 52.9 52.1 57.5
input+mlp+k 53.3 51.5 57.3
input+stack+k 53.7 51.9 58.1
output+mlp+k 51.7 50.6 55.8
output+mlp+t 52.3 53.5 58.3
output+mlp+d 52.0 49.8 56.3
output+mlp+k+t 51.4 51.1 56.8
output+mlp+k+d 51.2 49.7 55.1
output+mlp+t+d 52.6 51.5 57.2
output+mlp+k+t+d 51.1 50.6 56.3

Table 2: Perplexity scores based on the English part of TED

talks dataset in IWSLT14 MT. +k, +t, +d: with keywords, title,

and description as auxiliary side information respectively. bold:

Statistically significant better than the best baseline.

Wilcoxon signed-rank test (Wilcoxon, 1945) to mea-
sure the statistical significance (p < 0.05) on dif-
ferences between sentence-level perplexity scores
of improved models compared to the best base-
line. Throughout our experiments, punctuation, stop
words and sentence markers (〈s〉, 〈/s〉, 〈unk〉) are fil-
tered out in all auxiliary inputs. We observed that
this filtering was required for BOW to work rea-
sonably well. For each model, the best perplexity
score on development set is used for early stopping
of training models, which was obtained after 2-5 and
2-3 epochs on TED Talks and RIE datasets, respec-
tively.

Results & Analysis. The perplexity results on
TED Talks dataset are presented in Table 2 and
3. RNNLM variants consistently achieve substan-
tially better perplexities compared to the conven-
tional 5−gram language model baseline.7 Of the ba-
sic RNNLM models (middle), the DGLSTM works
consistently better than both the standard RNN and
the LSTM. This may be due to better interactions of
memory cells in hidden layers. Since the DGLSTM
outperformed others8, we used it for all subsequent
experiments. For TED Talks dataset, there are three

7For fair comparison, when computing the perplexity with
the 5-gram LM, we exclude all test words marked as 〈unk〉 (i.e.,
with low counts or OOVs) from consideration.

8This concurs with the finding in (Yao et al., 2015), who
showed that DGLSTM produced the state-of-the-art results over
Penn Treebank dataset.

Method test2010 test2011 test2012
5-gram LM 65.1 60.3 64.8

LSTM 45.0 42.5 44.0
DGLSTM 44.0 41.9 43.0

output+mlp+t 42.1 40.6 42.5
output+mlp+d 40.9 38.9 40.3
output+mlp+t+d 41.7 39.8 42.8

output+mlp+k 40.8 38.3 39.7
output+mlp+d+k 40.2 38.3 39.4

Table 3: Perplexity scores based on the French part of TED

talks dataset in IWSLT14 MT. Note that +k means with key-

words in English.

kinds of side information, including keywords, ti-
tle, description. We attempted to inject those into
different RNNLM layers, resulting in model vari-
ants as shown in Table 2. First, we chose “key-
words” (+k) information as an anchor to figure out
which incorporation method works well. Comparing
input+add+k, input+mlp+k and input+stack+k, the
largest decrease is obtained by output+mlp+k con-
sistently across all test sets (and development sets,
not shown here). We further evaluated the addition
of other side information (e.g., “description” (+d),
“title” (+t)), finding that +d has similar effect as +k
whereas +t has a mixed effect, being detrimental for
one test set (test2011). We suspect that it is due to
often-times short sentences of titles in that test, af-
ter our filtering step, leading to a shortage of useful
information fed into neural network learning. Inter-
estingly, the best performance is obtained when in-
corporating both +k and +d, showing that there is
complementary information in the two auxiliary in-
puts. Further, we also achieved the similar results
in the counterpart of English part (in French) using
output+mlp with both +t and +d as shown in Ta-
ble 3. In French data, no “keywords” information is
available. For this reason, we run additional exper-
iments by injecting English keywords as side infor-
mation into neural models of French. Interestingly,
we found that “keywords” side information in En-
glish effectively improves the modelling of French
texts as shown in Table 3, serving as a new form of
cross-lingual language modelling.

We further achieved similar results by incorpo-
rating the topic headline in the RIE dataset. The
consistently-improved results (in Table 4) demon-
strate the robustness of the output+mlp approach.

1253

Method test (en) test (fr)
5-gram LM 55.7 38.5

LSTM 40.3 28.5
DGLSTM 36.4 25.4

output+mlp+h 33.3 24.0

Table 4: Perplexity scores based on the sampled RIE dataset.

+h: topic headline.

4 Conclusion

We have proposed an effective approach to boost the
performance of RNNLM using auxiliary side infor-
mation (e.g. keywords, title, description, topic head-
line) of a textual utterance. We provided an empir-
ical analysis of various ways of injecting such in-
formation into a distributed representation, which
is then incorporated into either the input, hidden,
or output layer of RNNLM architecture. Our ex-
perimental results reveal consistent improvements
are achieved over strong baselines for different
datasets and genres in two languages. Our future
work will investigate the model performance on a
closely-related task, i.e., neural machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015). Fur-
thermore, we will explore learning methods to com-
bine utterances with and without the auxiliary side
information.

Acknowledgements

The authors would like to thank the reviewers for
valuable comments and feedbacks. Cong Duy Vu
Hoang was supported by research scholarships from
the University of Melbourne, Australia. Dr Trevor
Cohn was supported by the ARC (Future Fellow-
ship).

References

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
Machine Translation by Jointly Learning to Align and
Translate. In Proceedings of International Conference
on Learning Representations (ICLR 2015), September.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Proper-
ties of Neural Machine Translation: Encoder–Decoder

Approaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation, pages 103–111, Doha, Qatar, October.
Association for Computational Linguistics.

Kenneth Heafield. 2011. KenLM: Faster and Smaller
Language Model Queries. In Proceedings of the
EMNLP 2011 Sixth Workshop on Statistical Machine
Translation, pages 187–197, Edinburgh, Scotland,
United Kingdom, July.

K. M. Hermann and P. Blunsom. 2014a. Multilingual
Distributed Representations without Word Alignment.
In Proceedings of International Conference on Learn-
ing Representations (ICLR 2014), December.

Karl Moritz Hermann and Phil Blunsom. 2014b. Multi-
lingual Models for Compositional Distributed Seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 58–68, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Geoffrey E Hinton. 2002. Training Products of Experts
by Minimizing Contrastive Divergence. Neural com-
putation, 14(8):1771–1800.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735–
1780, November.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Continuous Translation Models. In Proceedings of
Empirical Methods in Natural Language Processing
(EMNLP 2013).

Ryan Kiros, Ruslan Salakhutdinov, and Rich Zemel.
2014. Multimodal Neural Language Models. In Pro-
ceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 595–603.

T. Mikolov, S. Kombrink, A. Deoras, and J. H. Burget,
L.and Cernocky. 2011. RNNLM - Recurrent Neural
Network Language Modeling Toolkit. In 2011 IEEE
Workshop on Automatic Speech Recognition & Under-
standing (ASRU). IEEE Automatic Speech Recogni-
tion and Understanding Workshop, December.

Andriy Mnih and Geoffrey Hinton. 2007. Three New
Graphical Models for Statistical Language Modelling.
In Proceedings of the 24th International Conference
on Machine Learning, pages 641–648.

R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. 2013.
How to Construct Deep Recurrent Neural Networks.
ArXiv e-prints, December.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
In Advances in Neural Information Processing Sys-
tems (NIPS 2014), pages 3104–3112.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and Tell: A Neural Image
Caption Generator. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June.

1254

Frank Wilcoxon. 1945. Individual Comparisons by
Ranking Methods. Biometrics Bulletin, 1 (6):80–83,
Dec.

K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer.
2015. Depth-Gated LSTM. ArXiv e-prints, August.

1255

Proceedings of NAACL-HLT 2016, pages 1256–1261,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Capturing Semantic Similarity for Entity Linking
with Convolutional Neural Networks

Matthew Francis-Landau, Greg Durrett and Dan Klein
Computer Science Division

University of California, Berkeley
{mfl,gdurrett,klein}@cs.berkeley.edu

Abstract

A key challenge in entity linking is making ef-
fective use of contextual information to dis-
ambiguate mentions that might refer to differ-
ent entities in different contexts. We present
a model that uses convolutional neural net-
works to capture semantic correspondence be-
tween a mention’s context and a proposed tar-
get entity. These convolutional networks oper-
ate at multiple granularities to exploit various
kinds of topic information, and their rich pa-
rameterization gives them the capacity to learn
which n-grams characterize different topics.
We combine these networks with a sparse lin-
ear model to achieve state-of-the-art perfor-
mance on multiple entity linking datasets, out-
performing the prior systems of Durrett and
Klein (2014) and Nguyen et al. (2014).1

1 Introduction

One of the major challenges of entity linking is re-
solving contextually polysemous mentions. For ex-
ample, Germany may refer to a nation, to that na-
tion’s government, or even to a soccer team. Past
approaches to such cases have often focused on col-
lective entity linking: nearby mentions in a docu-
ment might be expected to link to topically-similar
entities, which can give us clues about the identity of
the mention currently being resolved (Ratinov et al.,
2011; Hoffart et al., 2011; He et al., 2013; Cheng
and Roth, 2013; Durrett and Klein, 2014). But an
even simpler approach is to use context information
from just the words in the source document itself to
make sure the entity is being resolved sensibly in
context. In past work, these approaches have typi-
cally relied on heuristics such as tf-idf (Ratinov et

1Source available at
github.com/matthewfl/nlp-entity-convnet

al., 2011), but such heuristics are hard to calibrate
and they capture structure in a coarser way than
learning-based methods.

In this work, we model semantic similarity be-
tween a mention’s source document context and its
potential entity targets using convolutional neural
networks (CNNs). CNNs have been shown to be ef-
fective for sentence classification tasks (Kalchbren-
ner et al., 2014; Kim, 2014; Iyyer et al., 2015) and
for capturing similarity in models for entity linking
(Sun et al., 2015) and other related tasks (Dong et
al., 2015; Shen et al., 2014), so we expect them to be
effective at isolating the relevant topic semantics for
entity linking. We show that convolutions over mul-
tiple granularities of the input document are useful
for providing different notions of semantic context.
Finally, we show how to integrate these networks
with a preexisting entity linking system (Durrett and
Klein, 2014). Through a combination of these two
distinct methods into a single system that leverages
their complementary strengths, we achieve state-of-
the-art performance across several datasets.

2 Model

Our model focuses on two core ideas: first, that topic
semantics at different granularities in a document
are helpful in determining the genres of entities for
entity linking, and second, that CNNs can distill a
block of text into a meaningful topic vector.

Our entity linking model is a log-linear model
that places distributions over target entities t given
a mention x and its containing source document.
For now, we take P (t|x) ∝ expw>fC(x, t; θ),
where fC produces a vector of features based on
CNNs with parameters θ as discussed in Section 2.1.
Section 2.2 describes how we combine this simple
model with a full-fledged entity linking system. As
shown in the middle of Figure 1, each feature in fC

1256

m

d

c

Source Document

Document

Context

Mention
Pink Floyd

The others are The
Beatles, Led
Zeppelin, Pink
Floyd and Van
Halen.

This includes the band members:
Cambell, Savage, Elliott, Collen, Allen.
As of 1992, the band consisted of
Elliott (vocals), Collen (guitar)
Campbell (guitar), Savage (bass
guitar), and Allen (drums). The band
has sold over 65 million albums
wordwide, and have two albums with
RIAA diamond certification, Pyromania
and Hysteria. History Early years

= sdoc

= scontext

= sment

g

w1w2w3...wn

:=
n−�∑
j=1

max{0, M wj:j+�}:= cosim(s, t)

sdoc

sment

scontext

ttitle,e

tdoc,e

fC(s, te)

e

t

Target Entity Links

Entity Title

Entity Article
Gavin Floyd

Gavin Christopher Floyd (born January 27, 1983) is a
professional baseball starting pitcher for the Atlanta Braves of
Major League Baseball (MLB). He previously pitched in MLB
for the Philadelphia Phillies and Chicago White Sox. Floyd
stands 6' 5" tall, weighs 220 pounds, and throws and bats
right-handed. Professional career Draft and Minor Leagues
The Philadelphia Phillies selected Floyd with the fourth
overall selection of the 2001 draft. In his first professional
season (2002), Floyd pitched for the Class A Lakewood

ttitle,e =

tdoc,e =

Figure 1: Extraction of convolutional vector space features fC(x, te). Three types of information from the input document and two
types of information from the proposed title are fed through convolutional networks to produce vectors, which are systematically
compared with cosine similarity to derive real-valued semantic similarity features.

is a cosine similarity between a topic vector asso-
ciated with the source document and a topic vector
associated with the target entity. These vectors are
computed by distinct CNNs operating over different
subsets of relevant text.

Figure 1 shows an example of why different kinds
of context are important for entity linking. In this
case, we are considering whether Pink Floyd might
link to the article Gavin Floyd on Wikipedia
(imagine that Pink Floyd might be a person’s nick-
name). If we look at the source document, we see
that the immediate source document context around
the mention Pink Floyd is referring to rock groups
(Led Zeppelin, Van Halen) and the target entity’s
Wikipedia page is primarily about sports (baseball
starting pitcher). Distilling these texts into succinct
topic descriptors and then comparing those helps tell
us that this is an improbable entity link pair. In
this case, the broader source document context actu-
ally does not help very much, since it contains other
generic last names like Campbell and Savage that
might not necessarily indicate the document to be
in the music genre. However, in general, the whole
document might provide a more robust topic esti-
mate than a small context window does.

2.1 Convolutional Semantic Similarity

Figure 1 shows our method for computing topic vec-
tors and using those to extract features for a potential
Wikipedia link. For each of three text granularities

in the source document (the mention, that mention’s
immediate context, and the entire document) and
two text granularities on the target entity side (title
and Wikipedia article text), we produce vector rep-
resentations with CNNs as follows. We first embed
each word into a d-dimensional vector space using
standard embedding techniques (discussed in Sec-
tion 3.2), yielding a sequence of vectorsw1, . . . , wn.
We then map those words into a fixed-size vector
using a convolutional network parameterized with a
filter bank M ∈ Rk×d`. We put the result through a
rectified linear unit (ReLU) and combine the results
with sum pooling, giving the following formulation:

convg(w1:n) =
n−∑̀
j=1

max{0,Mgwj:j+`} (1)

where wj:j+` is a concatenation of the given word
vectors and the max is element-wise.2 Each con-
volution granularity (mention, context, etc.) has a
distinct set of filter parameters Mg.

This process produces multiple representative
topic vectors sment, scontext, and sdoc for the source
document and ttitle and tdoc for the target entity, as
shown in Figure 1. All pairs of these vectors be-
tween the source and the target are then compared
using cosine similarity, as shown in the middle of
Figure 1. This yields the vector of features fC(s, te)
which indicate the different types of similarity; this

2For all experiments, we set ` = 5 and k = 150.

1257

vector can then be combined with other sparse fea-
tures and fed into a final logistic regression layer
(maintaining end-to-end inference and learning of
the filters). When trained with backpropagation, the
convolutional networks should learn to map text into
vector spaces that are informative about whether the
document and entity are related or not.

2.2 Integrating with a Sparse Model
The dense model presented in Section 2.1 is effec-
tive at capturing semantic topic similarity, but it is
most effective when combined with other signals
for entity linking. An important cue for resolving
a mention is the use of link counts from hyperlinks
in Wikipedia (Cucerzan, 2007; Milne and Witten,
2008; Ji and Grishman, 2011), which tell us how
often a given mention was linked to each article on
Wikipedia. This information can serve as a useful
prior, but only if we can leverage it effectively by tar-
geting the most salient part of a mention. For exam-
ple, we may have never observed President Barack
Obama as a linked string on Wikipedia, even though
we have seen the substring Barack Obama and it un-
ambiguously indicates the correct answer.

Following Durrett and Klein (2014), we introduce
a latent variable q to capture which subset of a men-
tion (known as a query) we resolve. Query gen-
eration includes potentially removing stop words,
plural suffixes, punctuation, and leading or tail-
ing words. This processes generates on average 9
queries for each mention. Conveniently, this set of
queries also defines the set of candidate entities that
we consider linking a mention to: each query gener-
ates a set of potential entities based on link counts,
whose unions are then taken to give on the possible
entity targets for each mention (including the null
link). In the example shown in Figure 1, the query
phrases are Pink Floyd and Floyd, which generate
Pink Floyd and Gavin Floyd as potential link
targets (among other options that might be derived
from the Floyd query).

Our final model has the form P (t|x) =∑
q P (t, q|x). We parameterize P (t, q|x) in a log-

linear way with three separate components:

P (t, q|x) ∝ exp
(
w>(fQ(x, q) + fE(x, q, t) + fC(x, t; θ))

)
fQ and fE are both sparse features vectors and are
taken from previous work (Durrett and Klein, 2014).

fC is as discussed in Section 2.1. Note that fC has
its own internal parameters θ because it relies on
CNNs with learned filters; however, we can compute
gradients for these parameters with standard back-
propagation. The whole model is trained to maxi-
mize the log likelihood of a labeled training corpus
using Adadelta (Zeiler, 2012).

The indicator features fQ and fE are described in
more detail in Durrett and Klein (2014). fQ only
impacts which query is selected and not the disam-
biguation to a title. It is designed to roughly cap-
ture the basic shape of a query to measure its de-
sirability, indicating whether suffixes were removed
and whether the query captures the capitalized sub-
sequence of a mention, as well as standard lexical,
POS, and named entity type features. fE mostly
captures how likely the selected query is to corre-
spond to a given entity based on factors like an-
chor text counts from Wikipedia, string match with
proposed Wikipedia titles, and discretized cosine
similarities of tf-idf vectors (Ratinov et al., 2011).
Adding tf-idf indicators is the only modification we
made to the features of Durrett and Klein (2014).

3 Experimental Results

We performed experiments on 4 different entity link-
ing datasets.

• ACE (NIST, 2005; Bentivogli et al., 2010):
This corpus was used in Fahrni and Strube
(2014) and Durrett and Klein (2014).

• CoNLL-YAGO (Hoffart et al., 2011): This cor-
pus is based on the CoNLL 2003 dataset; the
test set consists of 231 news articles and con-
tains a number of rarer entities.

• WP (Heath and Bizer, 2011): This dataset con-
sists of short snippets from Wikipedia.

• Wikipedia (Ratinov et al., 2011): This
dataset consists of 10,000 randomly sampled
Wikipedia articles, with the task being to re-
solve the links in each article.3

3We do not compare to Ratinov et al. (2011) on this dataset
because we do not have access to the original Wikipedia dump
they used for their work and as a result could not duplicate their
results or conduct comparable experiments, a problem which
was also noted by Nguyen et al. (2014).

1258

ACE CoNLL WP Wiki4

Previous work
DK2014 79.6 — — —
AIDA-LIGHT — 84.8 — —

This work
Sparse features 83.6 74.9 81.1 81.5
CNN features 84.5 81.2 87.7 75.7
Full 89.9 85.5 90.7 82.2

Table 1: Performance of the system in this work (Full) com-
pared to two baselines from prior work and two ablations.
Our results outperform those of Durrett and Klein (2014) and
Nguyen et al. (2014). In general, we also see that the convolu-
tional networks by themselves can outperform the system using
only sparse features, and in all cases these stack to give substan-
tial benefit.

We use standard train-test splits for all datasets ex-
cept for WP, where no standard split is available.
In this case, we randomly sample a test set. For
all experiments, we use word vectors computed by
running word2vec (Mikolov et al., 2013) on all
Wikipedia, as described in Section 3.2.

Table 1 shows results for two baselines and three
variants of our system. Our main contribution is
the combination of indicator features and CNN fea-
tures (Full). We see that this system outperforms the
results of Durrett and Klein (2014) and the AIDA-
LIGHT system of Nguyen et al. (2014). We can
also compare to two ablations: using just the sparse
features (a system which is a direct extension of
Durrett and Klein (2014)) or using just the CNN-
derived features.5 Our CNN features generally out-
perform the sparse features and improve even further
when stacked with them. This reflects that they cap-
ture orthogonal sources of information: for example,
the sparse features can capture how frequently the
target document was linked to, whereas the CNNs
can capture document context in a more nuanced
way. These CNN features also clearly supersede
the sparse features based on tf-idf (taken from (Rati-
nov et al., 2011)), showing that indeed that CNNs
are better at learning semantic topic similarity than
heuristics like tf-idf.

In the sparse feature system, the highest weighted

4The test set for this dataset is only 40 out of 10,000 docu-
ments and subject to wide variation in performance.

5In this model, the set of possible link targets for each
mention is still populated using anchor text information from
Wikipedia (Section 2.2), but note that link counts are not used
as a feature here.

ACE CoNLL WP
cosim(sdoc, tdoc) 77.43 79.76 72.93
cosim(sment, ttitle) 80.19 80.86 70.25
All CNN pairs 84.85 86.91 82.02

Table 2: Comparison of using only topic information derived
from the document and target article, only information derived
from the mention itself and the target entity title, and the full
set of information (six features, as shown in Figure 1). Nei-
ther the finest nor coarsest convolutional context can give the
performance of the complete set. Numbers are reported on a
development set.

features are typically those indicating the frequency
that a page was linked to and those indicating spe-
cific lexical items in the choice of the latent query
variable q. This suggests that the system of Dur-
rett and Klein (2014) has the power to pick the right
span of a mention to resolve, but then is left to gener-
ally pick the most common link target in Wikipedia,
which is not always correct. By contrast, the full
system has a greater ability to pick less common
link targets if the topic indicators distilled from the
CNNs indicate that it should do so.

3.1 Multiple Granularities of Convolution

One question we might ask is how much we gain by
having multiple convolutions on the source and tar-
get side. Table 2 compares our full suite of CNN
features, i.e. the six features specified in Figure 1,
with two specific convolutional features in isola-
tion. Using convolutions over just the source doc-
ument (sdoc) and target article text (tdoc) gives a
system6 that performs, in aggregate, comparably to
using convolutions over just the mention (sment)
and the entity title (ttitle). These represent two
extremes of the system: consuming the maximum
amount of context, which might give the most ro-
bust representation of topic semantics, and consum-
ing the minimum amount of context, which gives
the most focused representation of topics seman-
tics (and which more generally might allow the sys-
tem to directly memorize train-test pairs observed
in training). However, neither performs as well as
the combination of all CNN features, showing that
the different granularities capture complementary
aspects of the entity linking task.

6This model is roughly comparable to Model 2 as presented
in Sun et al. (2015).

1259

destroying missiles . spy planes has died of his wounds him which was more depressing
and destroying missiles . spy vittorio sacerdoti has told his a trip and you see
by U.N. weapons inspectors . his bail hearing , his “ i can see why
inspectors are discovering and destroying bail hearing , his lawyer i think so many americans
are discovering and destroying missiles died of his wounds after his life from the depression
an attack using chemical weapons from scott peterson ’s attorney trip and you see him
discovering and destroying missiles . ’s murder trial . she , but dumb liberal could
attack munitions or j-dam weapons has told his remarkable tale i can see why he
sanctions targeting iraq civilians , murder trial . she asking one passage . you cite
its nuclear weapons and missile trial lawyers are driving doctors think so many americans are

Table 3: Five-grams representing the maximal activations from different filters in the convolution over the source document (Mdoc,
producing sdoc in Figure 1). Some filters tend towards singular topics as shown in the first and second columns, which focus on
weapons and trials, respectively. Others may have a mix of seemingly unrelated topics, as shown in the third column, which does
not have a coherent theme. However, such filters might represent a superposition of filters for various topics which never cooccur
and thus never need to be disambiguated between.

ACE CoNLL WP
Google News 87.5 89.6 83.8
Wikipedia 89.5 90.6 85.5

Table 4: Results of the full model (sparse and convolutional
features) comparing word vectors derived from Google News
vs. Wikipedia on development sets for each corpus.

3.2 Embedding Vectors

We also explored two different sources of embed-
ding vectors for the convolutions. Table 4 shows that
word vectors trained on Wikipedia outperformed
Google News word vectors trained on a larger cor-
pus. Further investigation revealed that the Google
News vectors had much higher out-of-vocabulary
rates. For learning the vectors, we use the standard
word2vec toolkit (Mikolov et al., 2013) with vector
length set to 300, window set to 21 (larger windows
produce more semantically-focused vectors (Levy
and Goldberg, 2014)), 10 negative samples and 10
iterations through Wikipedia. We do not fine-tune
word vectors during training of our model, as that
was not found to improve performance.

3.3 Analysis of Learned Convolutions

One downside of our system compared to its purely
indicator-based variant is that its operation is less in-
terpretable. However, one way we can inspect the
learned system is by examining what causes high ac-
tivations of the various convolutional filters (rows of
the matrices Mg from Equation 1). Table 3 shows
the n-grams in the ACE dataset leading to maximal
activations of three of the filters from Mdoc. Some
filters tend to learn to pick up on n-grams character-

istic of a particular topic. In other cases, a single fil-
ter might be somewhat inscrutable, as with the third
column of Table 3. There are a few possible explana-
tions for this. First, the filter may generally have low
activations and therefore have little impact in the fi-
nal feature computation. Second, the extreme points
of the filter may not be characteristic of its overall
behavior, since the bulk of n-grams will lead to more
moderate activations. Finally, such a filter may rep-
resent the superposition of a few topics that we are
unlikely to ever need to disambiguate between; in
a particular context, this filter will then play a clear
role, but one which is hard to determine from the
overall shape of the parameters.

4 Conclusion

In this work, we investigated using convolutional
networks to capture semantic similarity between
source documents and potential entity link targets.
Using multiple granularities of convolutions to eval-
uate the compatibility of a mention in context and
several potential link targets gives strong perfor-
mance on its own; moreover, such features also im-
prove a pre-existing entity linking system based on
sparse indicator features, showing that these sources
of information are complementary.

Acknowledgments

This work was partially supported by NSF Grant
CNS-1237265 and a Google Faculty Research
Award. Thanks to the anonymous reviewers for their
helpful comments.

1260

References

Luisa Bentivogli, Pamela Forner, Claudio Giuliano,
Alessandro Marchetti, Emanuele Pianta, and Kateryna
Tymoshenko. 2010. Extending English ACE
2005 Corpus Annotation with Ground-truth Links
to Wikipedia. In Proceedings of the Workshop on
The People’s Web Meets NLP: Collaboratively Con-
structed Semantic Resources.

Xiao Cheng and Dan Roth. 2013. Relational Inference
for Wikification. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Silviu Cucerzan. 2007. Large-Scale Named Entity Dis-
ambiguation Based on Wikipedia Data. In Proceed-
ings of the Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Ques-
tion Answering over Freebase with Multi-Column
Convolutional Neural Networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics (ACL) and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Greg Durrett and Dan Klein. 2014. A Joint Model for
Entity Analysis: Coreference, Typing, and Linking.
In Transactions of the Association for Computational
Linguistics (TACL).

Angela Fahrni and Michael Strube. 2014. A latent vari-
able model for discourse-aware concept and entity dis-
ambiguation. In Gosse Bouma and Yannick Parmen-
tier 0001, editors, Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, EACL 2014, April 26-30, 2014,
Gothenburg, Sweden, pages 491–500. The Association
for Computer Linguistics.

Zhengyan He, Shujie Liu, Yang Song, Mu Li, Ming
Zhou, and Houfeng Wang. 2013. Efficient collective
entity linking with stacking. In EMNLP, pages 426–
435. ACL.

Tom Heath and Christian Bizer. 2011. Linked Data:
Evolving the Web into a Global Data Space. Morgan
& Claypool, 1st edition.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol,
Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust Disambiguation of Named Entities in
Text. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep Unordered Composi-
tion Rivals Syntactic Methods for Text Classification.

In Proceedings of the Association for Computational
Linguistics (ACL).

Heng Ji and Ralph Grishman. 2011. Knowledge Base
Population: Successful Approaches and Challenges.
In Proceedings of the Association for Computational
Linguistics (ACL).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 655–665, Balti-
more, Maryland, June. Association for Computational
Linguistics.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP).

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (ACL).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems (NIPS) 26, pages 3111–3119.

David Milne and Ian H. Witten. 2008. Learning to Link
with Wikipedia. In Proceedings of the Conference on
Information and Knowledge Management (CIKM).

Dat Ba Nguyen, Johannes Hoffart, Martin Theobald,
and Gerhard Weikum. 2014. AIDA-light: High-
Throughput Named-Entity Disambiguation. In Pro-
ceedings of the Workshop on Linked Data on the Web
co-located with the 23rd International World Wide
Web Conference (WWW).

NIST. 2005. The ACE 2005 Evaluation Plan. In NIST.
Lev Ratinov, Dan Roth, Doug Downey, and Mike An-

derson. 2011. Local and Global Algorithms for Dis-
ambiguation to Wikipedia. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1375–1384.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and
Grégoire Mesnil. 2014. Learning Semantic Represen-
tations Using Convolutional Neural Networks for Web
Search. In Proceedings of the 23rd International Con-
ference on World Wide Web (WWW).

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling Men-
tion, Context and Entity with Neural Networks for En-
tity Disambiguation. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1333–1339.

Matthew D. Zeiler. 2012. AdaDelta: An Adaptive Learn-
ing Rate Method. CoRR, abs/1212.5701.

1261

Proceedings of NAACL-HLT 2016, pages 1262–1267,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

K-Embeddings: Learning Conceptual Embeddings for Words using Context

Thuy Vu and D. Stott Parker
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095

{thuy;stott}@cs.ucla.edu

Abstract

We describe a technique for adding contex-
tual distinctions to word embeddings by ex-
tending the usual embedding process — into
two phases. The first phase resembles existing
methods, but also constructs K classifications
of concepts. The second phase uses these clas-
sifications in developing refined K embed-
dings for words, namely wordK-embeddings.
The technique is iterative, scalable, and can
be combined with other methods (including
Word2Vec) in achieving still more expressive
representations.

Experimental results show consistently large
performance gains on a Semantic-Syntactic
Word Relationship test set for different K set-
tings. For example, an overall gain of 20% is
recorded at K = 5. In addition, we demon-
strate that an iterative process can further tune
the embeddings and gain an extra 1% (K =
10 in 3 iterations) on the same benchmark. The
examples also show that polysemous concepts
are meaningfully embedded in ourK different
conceptual embeddings for words.

1 Introduction

Neural-based word embeddings are vectorial repre-
sentations of words in high dimensional real valued
space. Success with these representations have re-
sulted in their being considered for an increasing
range of natural language processing (NLP) tasks.
Recent advances in word embeddings have shown
great effects that are pushing forward state-of-the-art
results in NLP (Koo et al., 2008; Turian et al., 2010;
Collobert et al., 2011; Yu et al., 2013; Mikolov et al.,

2013a; Mikolov et al., 2013b; Mikolov et al., 2013c).
Embedding learning models for words are also being
adapted for tasks in other research fields (Reinanda
et al., 2015; Vu and Parker, 2015). The Continuous
bag of words (CBOW) and Skip-gram (Mikolov et
al., 2013a) are currently considered as state-of-the-
art in learning algorithms for word embeddings.

The ability of words to assume different roles
(syntax) or meanings (semantics) presents a basic
challenge to the notion of word embedding (Erk and
Padó, 2008; Reisinger and Mooney, 2010; Huang et
al., 2012; Tian et al., 2014; Neelakantan et al., 2014;
Chen et al., 2015). External resources and features
are introduced to address this challenge. In general,
individuals with no linguistic background can gener-
ally resolve these differences without difficulty. For
example, they can distinguish “bank” as referring to
a riverside or a financial establishment without se-
mantic or syntactic analysis.

Distinctions of role and meaning often follow
from context. The idea of exploiting context in lin-
guistics was introduced with a distributional hypoth-
esis: “linguistic items with similar distributions have
similar meanings” (Harris, 1954). Firth soon after-
wards emphasized this in a famous quote: “a word is
characterized by the company it keeps” (1957).

We propose to exploit only context information to
distinguish different concepts behind words in this
paper. The contribution of this paper is to note that
a two-phase word embedding training can be helpful
in adding contextual information to existing embed-
ding methods:

• we use learned context embeddings to effi-

1262

ciently cluster word contexts into K classifi-
cations of concepts, independent of the word
embeddings.

• this approach can complement existing sophis-
ticated, linguistically-based features, and can
be used with word embeddings to achieve gains
in performance by considering contextual dis-
tinctions for words.

• two-phase word embedding may have other ap-
plications as well, conceivably permitting some
‘non-linear’ refinements of linear embeddings.

In the next section we present our learning strat-
egy for word K-embeddings, outlining how the
value of K affects its power in increasing syntac-
tic and semantic distinctions. Following this, a large-
scale experiment serves to validate the idea — from
several different perspectives. Finally, we offer con-
clusions about how adding contextual distinctions to
word embeddings (with our second phase of embed-
ding) can gain power in distinguishing among dif-
ferent aspects of words.

2 Learning Word K-Embeddings

The use of multiple semantic representations for a
word in resolving polysemy has a significant liter-
ature (Erk and Padó, 2008; Reisinger and Mooney,
2010; Huang et al., 2012; Tian et al., 2014; Nee-
lakantan et al., 2014; Chen et al., 2015). Strategies
often focus on discrimination using syntactic and se-
mantic information.

We investigate another direction — the extension
of the word embedding process into a second phase
— which allows context information to be consol-
idated with the embedding. Rather than annotating
words with features, our technique treats context as
second-order in nature, suggesting an additional rep-
resentation step.

Our learning strategy for word K-embeddings is
therefore done, possibly iteratively, in two phases:

1. Annotating words with concepts (defined by
their contextual clusters)

2. Training embeddings using the resulting anno-
tated text.

2.1 Concept Annotation using Context
Embeddings

We propose to annotate words with concepts given
by learned context embeddings, which are an under-
utilized output of word embedding training. Our
strategy is based on the assumption that the context
of a word is useful for discriminating its conceptual
alternatives in polysemy. In general, our concept an-
notation for words is performed in two steps — clus-
tering of context embeddings followed by annota-
tion.

Specifically, we first employ a clustering algo-
rithm to cluster the context embeddings. K-means
is our algorithm of choice. The clustering algorithm
will assign each context word to a distinct cluster.
This result is then used to re-assign words in train-
ing data to their contextual cluster.

Second, we annotate words in the training data
with their most common contextual cluster (of their
context words). We define context words to mean
the surrounding words of a given word. Formally,
a word is annotated with a concept given by the fol-
lowing function:

max
c∈C

∑
(wi,ci)∈W

f(ci, c)

Here W is the set of context words of the current
word, and f(ci, cj) is a boolean function whose out-
put is 1 if the input parameters are equal:

f(ci, cj) =

{
1, if ci = cj

0, otherwise.

The cluster-annotated dataset is then passed into
the next training phase.

2.2 Training Word K-Embeddings
The second phase is similar to existing word embed-
ding training systems. The number of clustersK de-
fines the maximum number of different representa-
tions for words. Table 1 presents the statistics for dif-
ferent selections ofK using the dataset mentioned in
the Experiments section.

Each value K in Table 1 is shown with the total
number of embeddings and vocabulary size. Words
in the vocabulary can have up to K different em-
beddings for different annotated concepts. As K
increases, the size of the vocabulary decreases —

1263

K total embeddings vocabulary size ratio
1 1,965,139 1,965,139 1.00
5 2,807,016 1,443,061 1.95

10 2,740,351 1,474,704 1.86
15 3,229,945 1,374,055 2.35
20 3,236,882 1,410,521 2.29
25 3,382,722 1,383,162 2.45
30 3,404,150 1,418,027 2.40

Table 1: Total embeddings and vocabulary size for different K

for Wikipedia dataset. Words with frequency lower than 5 are

filtered during pre-processing.

yet remains largely stable for different values of K
greater than 1. This is explained by the count of
words being scattered to different concepts, result-
ing in a lower word count per concept. In our set-
ting, concept-annotated words with fewer than 5 oc-
currences will be discarded during training of word
embeddings.

It is interesting to note that the total number of
embeddings is broadly stable and less affected by
K. For example, as we allow up to 10 different con-
cepts for a word (K = 10), the total number of em-
beddings grows only slightly compared to the result
for K = 1. The average number of embeddings for
a word is 1.86 for K = 10. In other words, concept
annotations do converge as we increase K.

2.3 Word K-Embedding Training Workflow

Figure 1 presents our proposed workflow to train
context-based conceptual word K-embeddings. Our
system allows each word to have at most K differ-
ent embeddings, where each is a representation for a
certain concept.

The input to the workflow is a large-scale text
dataset. Initially, we compute context embeddings
for words as presented previously. We can derive
context embeddings directly from the training of al-
most any context-based word embeddings, where
word embeddings are computed via their context
words.

Subsequently, we cluster context embeddings into
groups which reflect varied concepts on some se-
mantic vector space. Each context embedding is as-
signed to a cluster denoting its conceptual role as a
context word. Any clustering algorithm for vectors
can be applied for this task.

Embeddings of annotated context words are used

Text Context Embeddings

Context-based Concepts

Concept Annotated Text

Word K-Embeddings

clustering algorithm

concept annotation

word embeddings training

co
ntext embeddings training

cont
ex

te
m

be
dd

in
gs

tra
in

ing

Figure 1: Training Word K-Embeddings

to compute concepts of words in a sentence. We hy-
pothesize that the concept of a word is defined by
the concept of its surrounding words. We annotate
concepts for all words in the training data.

Finally, the concept-annotated training data is
passed into any standard algorithm for training
word embeddings for the conceptual word K-
embeddings.

3 Experiments

3.1 Settings

Our training data for word embeddings is Wikipedia
for English, downloaded on November 29, 2014.
It consists of 4,591,457 articles, with a total of
2,015,823,886 words. The dataset is pre-processed
with sentence and word tokenization. We convert
text to lower-case prior to training. We consider
|W |= 5 for the size of the context window W pre-
sented in Section 2.1.

We used the Semantic-Syntactic Word Relation-
ship test set (Mikolov et al., 2013a) for our exper-
imental studies. This dataset consists of 8,869 se-
mantic and 10,675 syntactic queries. Each query is a
tuple of four words (A,B,C,D) for the question “A
is to B as C to what?”. These queries can be either
semantic or syntactic. D, to be predicted from the
learned embeddings, is defined as the closest word
to the vector (A−B + C). We used Word2Vec for
training and scikit-learn for clustering tasks.

1264

We evaluate the accuracy of the prediction of D
in these queries. A query is considered hit if there
exists at least one correct match and all the words
are in the same concept group. This is based on the
assumption that if “A is to B as C is to D”, either
(A,B) and (C,D) OR (A,C) and (B,D) have to
be in the same concept group.

3.2 Results
The embeddings learned in phases 1 and 2 can be
compared, using different values for K in the K-
means clustering. Word relationship performance re-
sults are shown in Table 2.

Our proposed technique in phase 2 achieves con-
sistently high performance. For example, whenK =
5, our absolute performance is 89% and 81% in se-
mantic and syntactic relationship evaluations, gain-
ing 24% and 16% from the standard CBOW model
(phase 1). When K = 25, the performance yields
the best combined result. As shown in Table 1, the
total number of embeddings and vocabulary size dif-
fer by a small multiplicative factor as K increases.

In another comparison, Figure 2 plots our K-
Embeddings results versus the results of a relaxed
evaluation for CBOW, which considers the top K
embeddings instead of the best. Even though our
evaluation is restricted to one-best for each of the
K embeddings, the overall (combined) performance
for different K settings is still consistently better
than the top K embeddings of CBOW. Moreover,
for a specific K setting, the total number of differ-
ent embeddings considered in K-Embeddings is al-
ways less than that of the topK. For example, in our
peak result (K = 25), the total number of embed-
dings considered in the evaluation set is only about
76.17% of the total embeddings with the top 25 of
CBOW.

In addition, we also compare the performances
of K-embeddings in multiple iterations under the
same K setting in Table 3. It shows that the K-
embeddings are improved after certain number of it-
erations. Particularly, for K = 10, we can achieve
best performance after 3 to 4 iterations, gaining
roughly 1%.

Finally, it is also worth noting that the perfor-
mance does not always increase linearly with the
number of embeddings or vocabulary size. This sug-
gests that as we achieve better performance in K-

K

accuracy

1 5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

Top-K of CBOW
K-Embeddings

Figure 2: Word K-Embeddings and Top-K of CBOW accuracy

comparison

Type iter 1 iter 2 iter 3 iter 4 iter 5
Semantic 88.8 89.6 90.3 90.0 89.0
Syntactic 85.9 84.8 86.7 86.7 85.8

Combined 87.3 87.0 88.3 88.2 87.3

Table 3: Performance of K = 10 in five iterations

embeddings, we should also gain more compact
conceptual embeddings.

3.3 Word Expressivity Analysis
Expressivity of word groups for “mercury” and
“fan” are studied in Table 4. The first two rows
shows most related words of “mercury” and “fan”
without concepts annotation (baseline). The follow-
ing rows present our K-embeddings result. This ta-
ble illustrates the differences that arise in multiple
representations of a word, and shows semantic dis-
tinctions among these representations.

For example, different representations for the
word “mercury” indeed represent a spectrum of as-
pects for the word, ranging from related-cosmos, re-
lated chemical element, automobile, or even to mu-
sic. The same can be seen for “fan” — where we
find concepts related to fan as a follower/supporter,
fan as in machinery, or Fan as a common Chinese
surname. Indeed, we can find many different con-
ceptual readings of these words. These not only re-
flect different polysemous meanings, but also their
conceptual aspects in the real world. Observe that
most related words are grouped into distinct concept
groups, and thus yield strong semantic distinctions.
The result firmly suggests that context embeddings,
like word embeddings, can capture linguistic regu-
larities efficiently.

1265

Analogy Type Total CBOW K = 5 K = 10 K = 15 K = 20 K = 25 K = 30
capital-common-countries 506 85.18 100.00 100.00 100.00 100.00 100.00 100.00

capital-world 4,524 78.89 96.60 97.24 99.12 99.18 99.29 99.27
currency 866 20.01 36.72 31.18 40.65 41.22 42.84 44.80

city-in-state 2,467 44.75 90.76 89.26 95.42 97.16 97.28 97.61
family 506 85.38 96.25 99.01 97.23 98.42 97.83 99.21

total semantic evaluation 8,869 64.67 89.30 88.83 92.32 92.96 93.18 93.53
gram1-adjective-to-adverb 992 19.76 51.41 59.98 65.73 68.95 70.06 61.90

gram2-opposite 812 26.72 42.12 48.52 62.81 62.19 68.84 56.03
gram3-comparative 1,332 87.99 97.30 97.82 99.25 99.17 99.02 99.25

gram4-superlative 1,122 52.65 71.93 74.15 81.02 78.88 78.70 75.22
gram5-present-participle 1,056 64.96 87.31 91.57 93.47 92.52 96.78 94.03

gram6-nationality-adjective 1,599 90.87 93.62 94.81 93.87 94.68 95.37 94.93
gram7-past-tense 1,560 65.51 66.28 94.42 94.49 95.45 96.41 93.72

gram8-plural 1,332 77.40 93.92 95.42 97.90 96.55 95.80 96.92
gram9-plural-verbs 870 66.78 83.33 94.60 94.71 95.63 95.75 93.22

total syntactic evaluation 10,675 65.17 81.72 85.94 88.83 88.93 90.08 87.21
total combined evaluation 19,544 64.94 85.16 87.25 90.42 90.76 91.49 90.08

Table 2: K-embeddings performance

Word Most Similar Words

0
mercury cadmium, barium, centaur, jupiter, venus

fan fans, fanbase, fan-base, supporter, fandom

1

mercury1 vanadium1, iron1, sulfur1, polonium1

mercury3 tribune3, dragon3, curlew3, keith3, stanley3

mercury5 ammonia5, magnesium5, sulfur5, mercury9

mercury9 mercury5, mercury2, neptune9, titan9

1

fan1 inlet1, crinoids1, sect1, wedge1, beach1

fan4 supporter4, likes4, legend4, bust4, member4
fan5 fan9, fan0, fans5, fandom5, fanbase5, gamer5
fan8 xiang8, yong8, xin8, yang8, cui8, guo8

3

mercury1 polaris1, mercury3, mercury6, cadmium1

mercury4 chrysler4, sheedy4, mohammad4, gott4
mercury6 arsenic6, lithium6, oxygen6, methane6, dust6
mercury7 cadmium7, nickel7, pollutants7, impurities7
mercury8 rubidium8, xenon8, selenium8, cadmium8

3

fan2 yong2, ye2, ching2, hao2, yi2, chang2, guo2

fan4 member4, parody4, protg4, supporter4
fan6 fanbase6, buzz6, fans3, fandom6, video6

fan7 imprints7, gnatcatchers7, minuta7, flat7
fan8 impeller8, inlet8, spinner8, spring8, hot8

5

mercury2 titanium2, jupiter2, sapphire2, saturn2

mercury3 sodium3, helium3, oxygen3, hydrogen3

mercury6 blue6, leopards6, lotus6, unilever6, copper6
mercury7 arsenic7, sulfur7, radioactivity7, lithium7

mercury9 chlorine9, strontium9, ammonia9, arsenic9

5

fan2 buzz2, fanbase2, gamer2, loudest1, fans1
fan3 blower3, ducts3, cooler3, compressor3
fan5 zang5, huang5, yan5, dun5, zhang5, kao5

fan6 youngster6, participant6, mobster6
fan7 fanbase7, buzz7, youtube7, blogging7

fan8 supporter8, fandom8, enthusiast8, parody8

Table 4: Word Expressivity Analysis

4 Conclusion

In this paper, we have presented a technique for
adding contextual distinctions to word embeddings
with a second phase of embedding. This contextual
information gains power in distinguishing among
different aspects of words. Experimental results with
embedding of the English variant of Wikipedia (over
2 billion words) shows significant improvements in
both semantic- and syntactic- based word embed-
ding performance. The result also presents a wide
range of interesting concepts of words in expressiv-
ity analysis.

These results strongly support the idea of using
context embeddings to exploit context information
for problems in NLP. As we highlighted earlier,
context embeddings are underutilized, even though
word embeddings have been extensively exploited
in multiple applications.

Furthermore, the contextual approach can com-
plement existing sophisticated, linguistically-based
features, and can be combined with other learning
methods for embedding. These results are encour-
aging; they suggest that useful extensions of current
methods are possible with two-phase embeddings.

1266

References
Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. 2015.

Improving distributed representation of word sense via
wordnet gloss composition and context clustering. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers), pages 15–20, Bei-
jing, China, July. Association for Computational Lin-
guistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12:2493–2537, November.

Katrin Erk and Sebastian Padó. 2008. A structured
vector space model for word meaning in context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’08,
pages 897–906, Stroudsburg, PA, USA. Association
for Computational Linguistics.

J. Firth. 1957. A Synopsis of Linguistic Theory 1930-
1955. Studies in Linguistic Analysis, Philological.
Longman.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146–162.

Eric H. Huang, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Long Papers
- Volume 1, ACL ’12, pages 873–882, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL-08: HLT, pages 595–603. Associa-
tion for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT-2013). Association
for Computational Linguistics, May.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1059–1069, Doha, Qatar,
October. Association for Computational Linguistics.

Lin Qiu, Yong Cao, Zaiqing Nie, Yong Yu, and Yong Rui.
2014. Learning word representation considering prox-
imity and ambiguity.

Ridho Reinanda, Edgar Meij, and Maarten de Rijke.
2015. Mining, ranking and recommending entity as-
pects. In Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’15, pages 263–272,
New York, NY, USA. ACM.

Joseph Reisinger and Raymond J. Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics, HLT ’10,
pages 109–117, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING 2014, the 25th In-
ternational Conference on Computational Linguistics:
Technical Papers, pages 151–160, Dublin, Ireland, Au-
gust. Dublin City University and Association for Com-
putational Linguistics.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of the 48th Annual Meeting of the Association for
Computational Linguistics, pages 384–394. Associa-
tion for Computational Linguistics.

Thuy Vu and D. Stott Parker. 2015. Node embed-
dings in social network analysis. In Proceedings of
the 2015 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining 2015,
ASONAM ’15, pages 326–329, New York, NY, USA.
ACM.

Mo Yu, Tiejun Zhao, Daxiang Dong, Hao Tian, and Di-
anhai Yu. 2013. Compound embedding features for
semi-supervised learning. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 563–568. Association for
Computational Linguistics.

1267

Proceedings of NAACL-HLT 2016, pages 1268–1278,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Convolutional Neural Networks vs. Convolution Kernels:
Feature Engineering for Answer Sentence Reranking

Kateryna Tymoshenko† and Daniele Bonadiman† and Alessandro Moschitti
†DISI, University of Trento, 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 5825 Doha, Qatar
{kateryna.tymoshenko,d.bonadiman}@unitn.it

amoschitti@qf.org.qa

Abstract
In this paper, we study, compare and combine
two state-of-the-art approaches to automatic
feature engineering: Convolution Tree Ker-
nels (CTKs) and Convolutional Neural Net-
works (CNNs) for learning to rank answer
sentences in a Question Answering (QA) set-
ting. When dealing with QA, the key aspect is
to encode relational information between the
constituents of question and answer in learn-
ing algorithms. For this purpose, we propose
novel CNNs using relational information and
combined them with relational CTKs. The
results show that (i) both approaches achieve
the state of the art on a question answering
task, where CTKs produce higher accuracy
and (ii) combining such methods leads to un-
precedented high results.

1 Introduction
The increasing use of machine learning for the de-
sign of NLP applications pushes for fast methods for
feature engineering. In contrast, the latter typically
requires considerable effort especially when dealing
with highly semantic tasks such as QA. For example,
for an effective design of automated QA systems,
the question text needs to be put in relation with the
text passages retrieved from a document collection
to enable an accurate extraction of the correct an-
swers from passages. From a machine learning per-
spective, encoding the information above consists
in manually defining expressive rules and features
based on syntactic and semantic patterns.

Therefore, methods for automatizing feature en-
gineering are remarkably important also in the light
of fast prototyping of commercial applications. To

the best of our knowledge, two of the most effec-
tive methods for engineering features are: (i) kernel
methods, which naturally map feature vectors or di-
rectly objects in richer feature spaces; and more re-
cently (ii) approaches based on deep learning, which
have been shown to be very effective.

Regarding the former, in (Moschitti et al., 2007),
we firstly used CTKs in Support Vector Machines
(SVMs) to generate features from a question (Q) and
their candidate answer passages (AP). CTKs enable
SVMs to learn in the space of convolutional subtrees
of syntactic and semantic trees used for represent-
ing Q and AP. This automatically engineers syntac-
tic/semantic features. One important characteristic
we added in (Severyn and Moschitti, 2012) is the
use of relational links between Q and AP, which ba-
sically merged the two syntactic trees in a relational
graph (containing relational features).

Although based on different principles, also
CNNs can generate powerful features, e.g., see
(Kalchbrenner et al., 2014; Kim, 2014). CNNs
can effectively capture the compositional process of
mapping the meaning of individual words in a sen-
tence to a continuous representation of the sentence.
This way CNNs can efficiently learn to embed input
sentences into low-dimensional vector space, pre-
serving important syntactic and semantic aspects of
the input sentence. However, engineering features
spanning two pieces of text such as in QA is a more
complex task than classifying single sentences. In-
deed, only very recently, CNNs were proposed for
QA by Yu et al. (2014). Although, such network
achieved high accuracy, its design is still not enough
to model relational features.

1268

In this paper, we aim at comparing the ability of
CTKs and CNNs of generating features for QA. For
this purpose, we first explore CTKs applied to shal-
low linguistic structures for automatically learning
classification and ranking functions with SVMs.

At the same time, we assess a novel deep learn-
ing architecture for effectively modeling Q and AP
pairs generating relational features we initially mod-
eled in (Severyn and Moschitti, 2015; Severyn and
Moschitti, 2016). The main building blocks of
our approach are two sentence models based on
CNNs. These work in parallel, mapping questions
and answer sentences to fixed size vectors, which are
then used to learn the semantic similarity between
them. To compute question-answer similarity score
we adopt the approach used by Yu et al. (2014).
Our main novelty is the way we model relational
information: we inject overlapping words directly
into the word embeddings as additional dimensions.
The augmented word representation is then passed
through the layers of the convolutional feature ex-
tractors, which encode the relatedness between Q
and AP pairs in a more structured manner. More-
over, the embedding dimensions encoding overlap-
ping words are parameters of the network and are
tuned during training.

We experiment with two different QA bench-
marks for sentence reranking TREC13 (Wang et al.,
2007) and WikiQA (Yang et al., 2015). We compare
CTKs and CNNs and then we also combine them.
For this purpose, we design a new kernel that sum
together CTKs and different embeddings extracted
from different CNN layers. Our CTK-based mod-
els achieve the state of the art on TREC 13, obtain-
ing an MRR of 85.53 and an MAP of 75.18 largely
outperforming all the previous best results. On Wik-
iQA, our CNNs perform almost on par with tree ker-
nels, i.e., an MRR of 71.07 vs. 72.51 of CTK, which
again is the current state of the art on such data. The
combination between CTK and CNNs produces a
further boost, achieving an MRR of 75.52 and an
MAP of 73.99, confirming that the research line of
combining these two interesting machine learning
methods is very promising.

2 Related Work
Relational learning from entire pieces of text con-
cerns several natural language processing tasks, e.g.,

QA (Moschitti, 2008), Textual Entailment (Zanzotto
and Moschitti, 2006) and Paraphrase Identification
(Filice et al., 2015). Regarding QA, a referring work
for our research is the IBM Watson system (Fer-
rucci et al., 2010). This is an advanced QA pipeline
based on deep linguistic processing and semantic re-
sources.

Wang et al. (2007) used quasi-synchronous gram-
mar to model relations between a question and a can-
didate answer with syntactic transformations. (Heil-
man and Smith, 2010) applied Tree Edit Distance
(TED) for learning tree transformations in a Q/AP
pair. (Wang and Manning, 2010) designed a proba-
bilistic model to learn tree-edit operations on depen-
dency parse trees. (Yao et al., 2013) applied linear
chain CRFs with features derived from TED to auto-
matically learn associations between questions and
candidate answers. Yih et al. (2013a) applied en-
hanced lexical semantics to build a word-alignment
model, exploiting a number of large-scale external
semantic resources.

Although the above approaches are very valuable,
they required considerable effort to study, define and
implement features that could capture relational rep-
resentations. In contrast, we are interested in tech-
niques that try to automatize the feature engineer-
ing step. In this respect, our work (Moschitti et al.,
2007) is the first using CTKs applied to syntactic
and semantic structural representations of the Q/AP
pairs in a learning to rank algorithm based on SVMs.
After this, we proposed several important improve-
ment exploiting different type of relational links be-
tween Q and AP, i.e., (Severyn and Moschitti, 2012;
Severyn et al., 2013; Severyn and Moschitti, 2013;
Tymoshenko et al., 2014; Tymoshenko and Mos-
chitti, 2015). The main difference with our previ-
ous approaches is usage of better-preprocessing al-
gorithms and new structural representations, which
highly outperform them.

Recently, deep learning approaches have been
successfully applied to various sentence classifica-
tion tasks, e.g., (Kalchbrenner et al., 2014; Kim,
2014), and for automatically modeling text pairs,
e.g., (Lu and Li, 2013; Hu et al., 2014). Addition-
ally, a number of deep learning models have been
recently applied to question answering, e.g., Yih et
al. (2014) applied CNNs to open-domain QA; Bor-
des et al. (2014b) propose a neural embedding model

1269

Figure 1: Shallow chunk-based tree for the Q/AP pair in the running example.

combined with the knowledge base for open-domain
QA; Iyyer et al. (2014) applied recursive neural net-
works to factoid QA over paragraphs. (Miao et
al., 2015) proposed a neural variational inference
model and a Long-short Term Memory network for
the same task. Recently (Yin et al., 2015) pro-
posed a siamese convolutional network for match-
ing sentences that employ an attentive average pool-
ing mechanism, obtaining state-of-the-art results in
various tasks and datasets. The work closest to this
paper is (Yu et al., 2014) and (Severyn and Mos-
chitti, 2015). The former presented a CNN architec-
ture for answer sentence selection that uses a bigram
convolution and average pooling, whereas in the lat-
ter we used convolution with k-max pooling. How-
ever, these models only partially captures relational
information. In contrast, in this paper, we encode
relational information about words that are matched
betweem Q and AP.

3 Feature Engineering for QA with CTKs

Our approach to learning relations between two texts
is to first convert them into a richer structural rep-
resentation based on their syntactic and semantic
structures, and then apply CTKs. To make our ap-
proach more effective, we further enriched struc-
tures with relational semantics by linking the related
constituents with lexical and other semantic links.

3.1 Shallow Representation of Short Text Pairs
In our study, we employ a modified version of the
shallow structural representation of question and an-
swer pairs, CH, described in (Severyn et al., 2013;
Tymoshenko and Moschitti, 2015). We represent
a pair of short texts as two trees with lemmas at
leaf level and their part-of-speech (POS) tags at the
preterminal level. Preterminal POS-tags are grouped
into chunk nodes and the chunks are further grouped
into sentences. Figure 1 provides an example of this
structure.

We enrich the above representation with the in-

formation about question class and question fo-
cus. Questions are classified in terms of their ex-
pected answer type. (Severyn et al., 2013) employed
coarse-grained classes from (Li and Roth, 2002),
namely HUM (person), ENTY (an entity), DESC
(description), LOC (location), and NUM (number).
In this work, we split the NUM class into three sub-
categories, DATE, QUANTITY, CURRENCY and
train question classifiers as described in (Severyn et
al., 2013). Differently from before, we add the ques-
tion class node as the rightmost child of the root
node both to the question and the answer structures.

We detect question focus using a focus classifier,
FCLASS, trained as in (Severyn et al., 2013). How-
ever, in our previous model, we classified all words
over the chunks in the question and picked the one
with the highest FCLASS prediction score as a fo-
cus even if it is negative. In this work, if FCLASS
assigns negative scores to all the question chunks,
we consider the first question chunk, which is typ-
ically a question word, to be a focus. We mark the
focus chunk by prepending the REL-FOCUS tag to
its label.

In previous work, we have shown the importance
of encoding information about the relatedness be-
tween Q and AP into their structural representations.
Thus, we employ lexical and question class match,
described hereafter.

Lexical match. Lemmas that occur both in Q and
AP are marked by prepending the REL tag to the
labels of the corresponding preterminal nodes and
their parents.

Question class match. We detect named enti-
ties (NEs) in AP and mark the NEs of type com-
patible1 with the question class by prepending the
REL-FOCUS-QC label to the corresponding pre-
preterminals in the trees. The QC suffix in the labels

1Compatibility is checked using a predefined table,
namely Person, Organization→HUM, ENTY; Misc→ENTY;
Location→LOC; Date, Time, Number→DATE; Money,
Number→CURRENCY; Percentage, Number→QUANTITY

1270

is replaced by the question class in the given pair.
For example, in Figure 1, the Dumbledore lemma

occurs in both Q and AP, therefore the respective
POS and chunk nodes are marked with REL. The
named entities, Harris, Michael Gambon and Dum-
bledore have the type Person compatible with the
question class HUM, thus their respective chunk
nodes are marked as REL-FOCUS-HUM (overrid-
ing the previously inserted REL tag for the Dumble-
dore chunk).

3.2 Reranking with Tree Kernels

We aim at learning reranker that can decide which
Q/AP pair is more probably correct than others,
where correct Q/AP pairs are formed by an AP con-
taining a correct answer to Q along with a support-
ing justification. We adopt the following kernel for
reranking: PK(〈o1, o2〉, 〈o′1, o′2〉) = K(o1, o′1) +
K(o2, o′2) − K(o1, o′2) − K(o2, o′1). In our case,
oi = 〈Qi, APi〉 and o′j = 〈Q′j , AP ′j〉, where Q
and AP are the trees defined in the previous sec-
tion, K(oi, o′j) = TK(Qi, Q′j) + TK(APi, AP ′j)
and TK is a tree kernel function. Finally, we also
add (~V (o1)−~V (o2))·(~V (o′1)−~V (o′2)) to PK , where
~V (oi) is a feature vector representing Q/AP pairs.

4 Feature Engineering for QA with CNNs

The architecture of our convolutional neural net-
work for matching Q and AP pairs is presented in
Fig. 2. Its main components are: (i) sentence ma-
trices si ∈ Rd×|i| obtained by the concatenation of
the word vectors wj ∈ Rd (with d being the size
of the embeddings) of the corresponding words wj
from the input sentences (Q and AP) si; (ii) a con-
volutional sentence model f : Rd×|i| → Rm that
maps the sentence matrix of an input sentence si to
a fixed-size vector representations xsi of sizem; (iii)
a layer for computing the similarity between the ob-
tained intermediate vector representations of the in-
put sentences, using a similarity matrix M ∈ Rm×m

– an intermediate vector representation xs1 of a sen-
tence s1 is projected to a x̃s1 = xs1M, which is
then matched with xs2 (Bordes et al., 2014a), i.e.,
by computing a dot-product x̃s1xs2 , thus resulting
in a single similarity score xsim; (iv) a set of fully-
connected hidden layers that model the similarity
between sentences using their vector representations
produced by the sentence model (also integrating the

single similarity score from the previous layer); and
(v) a sigmoid layer that outputs probability scores
reflecting how well the Q-AP pairs match with each
other.

The choice of the sentence model plays a crucial
role as the resulting intermediate representations of
the input sentences will affect the successive step of
computing their similarity. Recently, convolutional
sentence models, where f(s) is represented by a se-
quence of convolutional-pooling feature maps, have
shown state-of-the-art results on many NLP tasks,
e.g., (Kalchbrenner et al., 2014; Kim, 2014). In this
paper, we opt for a convolutional operation followed
by a k-max pooling layer with k = 1 as proposed in
(Severyn and Moschitti, 2015).

Considering recent applications of deep learning
models to the problem of matching sentences, our
network is most similar to the models in (Hu et al.,
2014) applied for computing sentence similarity and
in (Yu et al., 2014) (answer sentence selection in
QA) with the following difference. To compute the
similarity between the vector representation of the
input sentences, our network uses two methods: (i)
computing the similarity score obtained using a sim-
ilarity matrix M (explored in (Yu et al., 2014)), and
(ii) directly modelling interactions between interme-
diate vector representations of the input sentences
via fully-connected hidden layers (used by (Hu et
al., 2014)). This approach, as proposed in (Sev-
eryn and Moschitti, 2015), results in a significant
improvement in the task of question answer selec-
tion over the two methods used separately. Differ-
ently from the above models we do not add addi-
tional features in the join layer.

4.1 Representation Layers

It should be noted that NNs non-linearly transform
the input at each layer. For instance, the output of
the convolutional and pooling operation f(si) is a
fixed-size representation of the input sentence si. In
the reminder of the paper, we will refer to these vec-
tor representations for the question and the answer
passage as the question embedding (QE) and the an-
swer embedding (AE), respectively. Similarly, the
output of the penultimate layer of the network (the
hidden layer whose output is fed to the final clas-
sification layer) is a compact representation of the
input Question and Answer pair, which we call Joint

1271

	

f(s1)	

f(s2)	

Question	

Answer	

Embedding	
Layer	

Sentence	Model	
(CNN+Pooling)	

Joint		
Representation	

Hidden	
Layer	

Sigmoid	
Layer	

Word	Emb.	

Rel	

Word	Emb.	

Rel	

xs1	

xs2	

xs1		(QE)	
QE	

Xsim.	 JE	
	
CNNscore	

M	

xs2		(AE)	
QE	

Max	pooling	

Convolution	

xsi	

Word	Embeddings	

Relational	Features	

Sentence	(si)	

Figure 2: CNN for computing the similarity between question and answer.

Embedding (JE).

4.2 Injecting Relational Information in CNNs

Sec. 3 has shown that establishing relational links
(REL nodes) between Q and A pairs is very impor-
tant for solving the QA task. Yih et al. (2013b) also
use latent word-alignment structure in their seman-
tic similarity model to compute similarity between
question and answer sentences. Yu et al. (2014)
achieve large improvement by combining the out-
put of their deep learning model with word count
features in a logistic regression model. Differently
from (Yu et al., 2014; Severyn and Moschitti, 2015)
we do not add additional features such as the word
count in the join layer. We allow our convolutional
neural network to capture the connections between
related words in a pair and we feed it with an ad-
ditional binary-like input about overlapping words
(Severyn and Moschitti, 2016).

In particular, in the input sentence, we associate
an additional word overlap indicator feature o ∈
{0, 1} with each word w, where 1 corresponds to
words that overlap in a given pair and 0 otherwise.
To decide if the words overlap, we perform string
matching. Basically this small feature vector plays
the role of REL tag added to the CTK structures.

Hence, we require an additional lookup table
layer for the word overlap features LTWo(·) with
parameters Wo ∈ Rdo×2, where do ∈ N is a hyper-

parameter of the model, which indicates the num-
ber of dimensions used for encoding the word over-
lap features. Thus, we augment word embeddings
with additional dimensions that encode the fact that
a given word in a pair is overlapping or semantically
similar and let the network learn its optimal repre-
sentation. Given a word wi, its final word embed-
ding wi ∈ Rd (where d = dw + do) is obtained by
concatenating the output of two lookup table opera-
tions LTW(wi) and LTWo(wi).

5 Experiments

In these experiments, we compare the impact in ac-
curacy of two main methods for automatic feature
engineering, i.e., CTKs and CNNs, for relational
learning, using two different answer sentence selec-
tion datasets, WikiQA and TREC13. We propose
several strategies to combine CNNs with CTKs and
we show that the two approaches are complementary
as their joint use significantly boosts both models.

5.1 Experimental Setup
We utilized two datasets for testing our models:
TREC13. This is the factoid open-domain TREC
QA corpus prepared by (Wang et al., 2007). The
training data was assembled from the 1,229 TREC8-
12 questions. The answers for the training questions
were automatically marked in sentences by apply-
ing regular expressions, therefore the dataset can be

1272

noisy. The test data contains 68 questions, whose an-
swers were manually annotated. We used 10 answer
passages for each question for training our classi-
fiers and all the answer passages available for each
question for testing.
WikiQA. TREC13 is a small dataset with an even
smaller test set, which makes the system evaluation
rather unstable, i.e., a small difference in parame-
ters and models can produce very different results.
Moreover, as pointed by (Yih et al., 2013b), it has
significant lexical overlap between questions and
answer candidates, therefore simple lexical match
models may likely outperform more elaborate meth-
ods if trained and tested on it. WikiQA dataset (Yang
et al., 2015) is a larger dataset, created for open
domain QA, which overcomes these problems. Its
questions were sampled from the Bing query logs
and candidate answers were extracted from the sum-
mary paragraphs of the associated Wikipedia pages.
The train, test, and development sets contain 2,118,
633 and 296 questions, respectively. There is no
correct answer sentence for 1,245 training, 170 de-
velopment and 390 test questions. Consistently
with (Yin et al., 2015), we remove the questions
without answers for our evaluations.
Preprocessing. We used the Illinois chunker (Pun-
yakanok and Roth, 2001), question class and fo-
cus classifiers trained as in (Severyn and Moschitti,
2013) and the Stanford CoreNLP (Manning et al.,
2014) toolkit for the needed preprocessing.
CTKs. We used SVM-light-TK2 to train our mod-
els. The toolkit enables the use of structural kernels
(Moschitti, 2006) in SVM-light (Joachims, 2002).
We applied (i) the partial tree kernel (PTK) with its
default parameters to all our structures and (ii) the
polynomial kernel of degree 3 on all feature vectors
we generate.
Metaclassifier. We used the scikit3 logistic re-
gression classifier implementation to train the meta-
classifier on the outputs of CTKs and CNNs.
CNNs. We pre-initialize the word embeddings by
running the word2vec tool (Mikolov et al., 2013)
on the English Wikipedia dump and the jacana cor-
pus as in (Severyn and Moschitti, 2015). We opt for
a skipgram model with window size 5 and filtering

2http://disi.unitn.it/moschitti/Tree-Kernel.
htm

3http://scikit-learn.org/stable/index.html

MRR MAP P@1
State of the art

CNNc (Yang et al., 2015) 66.52 65.20 n/a
ABCNN (Yin et al., 2015) 71.27 69.14 n/a
LSTMa,c (Miao et al., 2015) 70.41 68.55 n/a
NASMc (Miao et al., 2015) 70.69 68.86 n/a

Our Individual Models
CNNR 71.07 69.51 57.20
CHcoarse 71.63 70.45 56.79
CH 72.30 71.25 58.44
VAE+QE 68.29 67.24 55.56
VJE 67.07 65.76 52.26

Our Model Combinations
CH+VAE+QE 72.51 71.29 59.26
CH+VJE 73.18 71.56 60.49
∗CH+VAE+QE 75.88 74.17 64.61
∗CH+VJE 75.52 73.99 63.79
Meta: CH, VJE , CNNR 75.28 73.69 62.96
Meta: CH, VJE 75.08 73.64 62.55
Meta: CH+VJE , CNNR 73.94 72.25 61.73

Table 1: Performance on the WikiQA dataset

words with frequency less than 5. The dimension-
ality of the embeddings is set to 50. The input sen-
tences are mapped to fixed-sized vectors by comput-
ing the average of their word embeddings. We use a
single non-linear hidden layer (with hyperbolic tan-
gent activation, Tanh), whose size is equal to the size
of the previous layer. The network is trained using
SGD with shuffled mini-batches using the Adam up-
date rule (Kingma and Ba, 2014). The batch size is
set to 100 examples. The network is trained for a
fixed number of epochs (i.e., 3) for all the experi-
ments. We decided to avoid using early stopping, in
order to do not overfit the development set and have
a fair comparison with the CTKs models.
QA metrics. We used common QA metrics: Preci-
sion at rank 1 (P@1), i.e., the percentage of ques-
tions with a correct answer ranked at the first po-
sition, the Mean Reciprocal Rank (MRR) and the
Mean Average Precision (MAP).

5.2 Experiments on WikiQA

State of the art. Table 1 reports the results ob-
tained on the WikiQA test set by state-of-the-art sys-
tems (lines 1-4) and our models, when removing the
questions with no correct answers (this to be aligned
with previous work). More in detail:
CNNc is the Convolutional Neural Network with
word count,

1273

TRAIN50 DEV
MRR MAP P@1 MRR MAP P@1

CH 69.97 68.77 55.14 67.23 65.93 51.44
VAE+QE 68.70 67.18 54.32 68.14 66.46 54.73
VJE 70.43 68.67 57.61 68.90 67.14 55.56

Model Combinations
CH+VAE+QE 74.40 72.63 62.55 70.01 68.60 57.61
CH+VJE 73.53 71.69 60.49 70.10 68.55 58.44
Metaclassifiers:
CH, VJE , CNNR 74.01 72.31 62.14 n/a n/a n/a
CH, VJE 73.95 72.15 62.14 n/a n/a n/a
CH+VJE , CNNR 73.43 71.58 60.49 n/a n/a n/a

Table 2: Performance on the WikiQA using the development set or half of the training set for training

TRAIN TRAIN50
MRR MAP P@1 MRR MAP P@1

CH 74.87 74.17 63.49 71.31 70.45 57.94
VAE+QE 70.32 69.75 56.35 71.06 70.33 57.14
VJE 69.86 69.24 55.56 71.11 70.43 57.14
CH+VAE+QE 71.29 70.79 57.94 72.62 72.18 59.52
CH+VJE 71.36 70.81 57.94 71.96 71.55 59.52
∗CH+VAE+QE 76.66 75.50 66.67 75.23 74.54 64.29

Table 3: Performance on the WikiQA on the development set

ABCNN is the Attention-Based CNN,
LSTMa,c is the long short-term memory network
with attention and word count, and
NASMc is the neural answer selection model with
word count.
CNNR is the relational CNN described in Section 4.
CH4 is a tree kernel-based SVM reranker trained
on the shallow pos-chunk tree representations of
question and answer sentences (Sec. 3.1), where the
subscript coarse refers to the model with the coarse-
grained question classes as in (Tymoshenko and
Moschitti, 2015).
V is a polynomial SVM reranker, where the sub-
scripts AE, QE, JE indicate the use of the answer,
question or joint embeddings (see Sec. 4.1) as the
feature vector of SVM and + means that two em-
beddings were concatenated into a single vector.

The results show that our CNNR model performs
comparably to ABCNN (Yin et al., 2015), which
is the most recent and accurate NN model and to
CHcoarse. The performance drops when the embed-
dings AE, QE and JE are used in a polynomial

4Models marked by ∗ use an improved version of the prefer-
ence ranking framework we described in Section 3.2. It is im-
portant to show such results as they provide a referring baseline
for future research in this field.

SVM reranker. In contrast, CH (using our tree struc-
ture enriched with fine-grained categories) outper-
forms all the models, showing the importance of
syntactic relational information for the answer sen-
tence selection task.

5.2.1 Combining CNN with CTK on WikiQA

We experiment with two ways of combining CTK
with CNNR: (i) at the kernel level, i.e., summing
tree kernels with the polynomial kernel over differ-
ent embeddings, i.e., CH+V, and (ii) using the pre-
dictions of SVM and CNNR models (computed on
the development set) as features to train logistic re-
gression meta-classifiers (again only on the devel-
opment set). These are reported in the last three
lines of Table 1, where the name of the classifiers
participating with their outputs are illustrated as a
comma-separated list. The results are very interest-
ing as all kinds of combinations largely outperform
the state of the art, e.g., by around 3 points in terms
of MRR, 2 points in terms of MAP and 5 points
in terms of P@1 with respect to the strongest stan-
dalone system, CH. Directly using the predictions of
the CNNR as features in the meta-classifier does not
impact the overall performance. It should be noted
that the meta-classifier could only be trained on the

1274

development data to avoid predictions biased by the
training data.

5.2.2 Using less training data
Since we train the weights of CNNR on the train-

ing set of WikiQA, to obtain the embeddings mini-
mizing the loss function, we risk to have overfitted,
i.e., “biased”, JE,AE andQE on the questions and
answers of the training set. Therefore, we conducted
another set of experiments to study this case. We
randomly split the training set into two equal sub-
sets. We train CNNR on one of them and in the
other subset, (referred to as TRAIN50) we produce
the embeddings of questions and answers.

Table 2 reports the results on the WikiQA test
set which we obtained when training SVM on
TRAIN50 and on the development set, DEV. We
trained the meta-classifier on the predictions of the
standalone models on DEV. Consistently with the
previous results, we obtain the best performance
combining the CNNR embeddings with CTK. Even
when we train on the 50% of the training data only,
we still outperform the state of the art, and our
best model CH+VJE performs only around 2 points
lower in terms of MRR, MAP and P@1 than when
training on the full training set.

Finally, Table 3 reports the performance of our
models when tested on the development set and
demonstrates that the improvement obtained when
combining CTK and CNNR embeddings also holds
on it. Note, that we did not use the development set
for any parameter tuning and we train all the models
with the default parameters.

5.3 Experiments on TREC13 dataset
TREC13 corpus has been used for evaluation in a
number of works starting from 2007. Table 4 reports
our as well as some state-of-the-art system results
on TREC13. It should be noted that, to be consis-
tent with the previous work, we evaluated our mod-
els in the same setting as (Wang et al., 2007; Yih et
al., 2013a), i.e., we (i) remove the questions having
only correct or only incorrect answer sentence can-
didates and (ii) used the same evaluation script and
the gold judgment file as they used. As pointed out
by Footnote 7 in (Yih et al., 2014), the evaluation
script always considers 4 questions to be answered
incorrectly thus penalizing the overall system score.

We note that our models, i.e., CNNR, VJE ,

Models MRR MAP

State of the art
Wang et al. (2007) 68.52 60.29
Heilman and Smith (2010) 69.17 60.91
Wang and Manning (2010) 69.51 59.51
Yao et al. (2013) 74.77 63.07
Severyn and Moschitti (2013) 73.58 67.81
Yih et al. (2013a) 77.00 70.92
Yu et al. (2014) 78.64 71.13
Wang and Ittycheriah (2015) 77.40 70.63
Tymoshenko and Moschitti (2015) 82.29 73.34
Yang et al. (2015) 76.33 69.51
Miao et al. (2015) 81.17 73.39

Individual Models
CNNR 77.93 71.09
VAE+QE 79.32 73.37
VJE 77.24 71.34
CH 85.53 75.18

Model Combinations
CH+VJE 79.75 74.29
CH+VAE+QE 79.74 75.06
Meta: CH, VAE+QE , CNNR 81.67 75.77

Model Combinations using simpler CH
CHsmpl 78.66 71.18
CHsmpl+VAE+QE 80.19 75.01
CHsmpl+VJE 80.42 74.16

Table 4: Results on the TREC13, answer selection task.

VAE+QE , again align with the state of the art. In
contrast, our CTK using CH largely outperforms all
previous work, e.g., 7.6 points more than CNNR

in terms of MRR. Considering that the evaluation
of CH with a script that does not penalize systems
would show real MRR and MAP of 90.56 and 80.08,
respectively, there is little room for improvement
with combinations. Indeed, the table shows no im-
provement of model combinations over CH.

Therefore, we trained a simplified version of CH,
CHsmpl, which employs shallow chunk-based rep-
resentations without the question focus or question
class information, i.e., only using the basic rela-
tional information represented by the lexical match
REL tags. CHsmpl performs comparably to CNNR,
and the combination with embeddings produced by
CNNR, i.e., CHsmpl+VAE+QE , outperforms both
CHsmpl and CNNR.

6 Discussion

The main focus and novelty of this paper is compar-
ing and combining CTKs and CNETs. We showed
that the features they generate are complementary

1275

as their combination improve both models. For the
combinations, we used voting and our new method
of combining network layers embedded in a polyno-
mial kernels added to tree kernels.

We would like to stress that to the best of our
knowledge we are the first to merge CNNs and CTK
together. We showed that kernels based on differ-
ent embedding layers learned with our CNNs, when
used in SVMs, deliver the same accuracy of CNNs.
This enables an effective combination between TK
and CNNs at kernel level. Indeed, we experimented
with different kernel combinations built on top of
different CNN layers, improving the state of the art,
largely outperforming all previous systems exactly
using the same testing conditions. These results are
important for developing future research as they pro-
vide indications on features/methods and referring
baselines to compare with.

Finally, we generated modified structures and
used better parsers outperforming our initial result
in (Severyn and Moschitti, 2013) by more than 10
points.

6.1 Efficiency

An interesting question is the practical use of our
models, which require the discussion of their effi-
ciency. In this respect, our framework combines
CTKs and CNNs by generating a global kernel.
Thus, the time complexity during training is basi-
cally given by (i) training CNNs, (ii) extracting their
embeddings and (iii) use these embeddings during
the CTK training. The time for computing steps (i)
and (ii) is linear with respect to the number of ex-
amples as the architecture and the number of opti-
mization steps are fixed. In practice, the bottleneck
of training our CNN architecture is in the number of
weights.

Regarding Step (iii), since the embeddings just
feed a polynomial kernel, which is slightly more ef-
ficient than CTKs, the overall complexity is domi-
nated by the one of the CTK framework, i.e.,O(n2).
In practice, this is rather efficient, e.g., see the dis-
cussion in (Tymoshenko and Moschitti, 2015). The
testing complexity is reduced to the number of ker-
nel operations between the support vectors and the
test examples (the worst case is O(n2)), which are
also parallelizable.

7 Conclusions

This paper compares two state-of-the-art feature en-
gineering approaches, namely CTKs and CNNs, on
the very complex task of answer reranking in a QA
setting. In order to have a meaningful compari-
son, we have set the best configuration for CTK
by defining and implementing innovative linguistic
structures enriched with semantic information from
statistical classifiers (i.e., question and focus classi-
fiers). At the same time, we have developed power-
ful CNNs, which can embed relational information
in their representations.

We tested our models for answer passage rerank-
ing in QA on two benchmarks, WikiQA and
TREC13. Thus, they are directly comparable with
many systems from previous work. The results
show that our models outperform the state of the art
achieved by more complex networks.

In particular, CTKs outperform our CNNs but use
more information, e.g., on TREC 13, CTKs obtain
an MRR and MAP of 85.53 and 75.18 vs. 77.93
and 71.09 of CNNs. On WikiQA, CNNs combined
with tree kernels achieves an MRR of 75.88 and
an MAP of 74.17 largely outperforming the current
state of the art, i.e., MRR of 71.27 and MAP 69.14
of ABCNN by Yin et al. (2015).

It should be noted that CTK models use syntac-
tic parsing, two statistical classifiers for focus and
question classification and a named entity recog-
nizer whereas CNNs only use words and two addi-
tional unsupervised corpora.

In the future, we would like to embed CNN sim-
ilarity in CTKs. A straightforward methods for
achieving this is to use the Smoothed Partial Tree
Kernel by Croce et al. (2011). Our preliminary
experiments using word2vec were not successful.
However, CNNs may provide a more effective sim-
ilarity. Finally, it would be also very interesting to
exploit structural kernels in the network layers.

Acknowledgements

This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action) and by an IBM Fac-
ulty Award. Many thanks to the anonymous review-
ers for their valuable suggestions.

1276

References

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014a. Question answering with subgraph embed-
dings. In EMNLP.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014b. Open question answering with weakly super-
vised embedding models. In ECML.

Danilo Croce, Alessandro Moschitti, and Roberto Basili.
2011. Structured lexical similarity via convolution
kernels on dependency trees. In Proceedings of
EMNLP.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James
Fan, David Gondek, Aditya Kalyanpur, Adam Lally,
J. William Murdock, Eric Nyberg, John Prager, Nico
Schlaefer, and Chris Welty. 2010. Building watson:
An overview of the deepqa project. AI Magazine,
31(3).

Simone Filice, Giovanni Da San Martino, and Alessandro
Moschitti. 2015. Structural representations for learn-
ing relations between pairs of texts. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 1003–1013, Beijing, China,
July. Association for Computational Linguistics.

Michael Heilman and Noah A. Smith. 2010. Tree
edit models for recognizing textual entailments, para-
phrases, and answers to questions. In NAACL.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In NIPS.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neu-
ral network for factoid question answering over para-
graphs. In EMNLP.

Thorsten Joachims. 2002. Optimizing search engines us-
ing clickthrough data. In Proceedings of the Eighth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’02, pages
133–142, New York, NY, USA. ACM.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics, June.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. Doha, Qatar.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In COLING.

Zhengdong Lu and Hang Li. 2013. A deep architecture
for matching short texts. In NIPS.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Yishu Miao, Lei Yu, and Phil Blunsom. 2015. Neu-
ral variational inference for text processing. arXiv
preprint arXiv:1511.06038.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems
26, pages 3111–3119.

Alessandro Moschitti, Silvia Quarteroni, Roberto Basili,
and Suresh Manandhar. 2007. Exploiting syntactic
and shallow semantic kernels for question/answer clas-
sification. In ACL.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees. In
ECML, pages 318–329.

Alessandro Moschitti. 2008. Kernel Methods, Syn-
tax and Semantics for Relational Text Categorization.
In Proceeding of ACM 17th Conf. on Information
and Knowledge Management (CIKM’08), Napa Val-
ley, CA, USA.

V. Punyakanok and D. Roth. 2001. The use of classifiers
in sequential inference. In NIPS, pages 995–1001.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of an-
swer re-ranking. In SIGIR.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In EMNLP.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 373–
382. ACM.

Aliaksei Severyn and Alessandro Moschitti. 2016. Mod-
eling relational information in question-answer pairs
with convolutional neural networks. In Preprint
arXiv:1604.01178.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Learning adaptable patterns for pas-
sage reranking. CoNLL-2013, page 75.

Kateryna Tymoshenko and Alessandro Moschitti. 2015.
Assessing the impact of syntactic and semantic struc-
tures for answer passages reranking. In Proceedings

1277

of the 24th ACM International on Conference on In-
formation and Knowledge Management, pages 1451–
1460. ACM.

Kateryna Tymoshenko, Alessandro Moschitti, and Aliak-
sei Severyn. 2014. Encoding semantic resources in
syntactic structures for passage reranking. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 664–672, Gothenburg, Sweden, April. Associa-
tion for Computational Linguistics.

Zhiguo Wang and Abraham Ittycheriah. 2015. Faq-
based question answering via word alignment. arXiv
preprint arXiv:1507.02628.

Mengqiu Wang and Christopher D. Manning. 2010.
Probabilistic tree-edit models with structured latent
variables for textual entailment and question answer-
ing. In ACL.

Mengqiu Wang, Noah A Smith, and Teruko Mitamura.
2007. What is the jeopardy model? a quasi-
synchronous grammar for qa. In EMNLP-CoNLL.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain question
answering. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 2013–2018, Lisbon, Portugal, September. Asso-
ciation for Computational Linguistics.

Xuchen Yao, Benjamin Van Durme, Peter Clark, and
Chris Callison-Burch. 2013. Answer extraction as se-
quence tagging with tree edit distance. In NAACL.

Wen-tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013a. Question answering using
enhanced lexical semantic models. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1744–1753, Sofia, Bulgaria, August. Association for
Computational Linguistics.

Wen-Tau Yih, Ming-Wei Chang, Christopher Meek, and
Andrzej Pastusiak. 2013b. Question answering using
enhanced lexical semantic models. In ACL, August.

Wen-Tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In ACL.

Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen
Zhou. 2015. Abcnn: Attention-based convolutional
neural network for modeling sentence pairs. arXiv
preprint arXiv:1512.05193.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep Learning for Answer
Sentence Selection. In NIPS Deep Learning Work-
shop, December.

F. M. Zanzotto and A. Moschitti. 2006. Automatic
Learning of Textual Entailments with Cross-Pair Sim-
ilarities. In The Joint 21st International Conference

on Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics
(COLING-ACL), Sydney, Australia. Association for
Computational Linguistics.

1278

Proceedings of NAACL-HLT 2016, pages 1279–1289,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Semi-supervised Question Retrieval with Gated Convolutions

Tao Lei Hrishikesh Joshi Regina Barzilay Tommi Jaakkola
MIT CSAIL

{taolei, hjoshi, regina, tommi}@csail.mit.edu

Katerina Tymoshenko Alessandro Moschitti Lluı́s Màrquez
University of Trento Qatar Computing Research Institute, HBKU

tymoshenko@disi.unitn.it {amoschitti, lmarquez}@qf.org.qa

Abstract

Question answering forums are rapidly grow-
ing in size with no effective automated abil-
ity to refer to and reuse answers already avail-
able for previous posted questions. In this
paper, we develop a methodology for find-
ing semantically related questions. The task
is difficult since 1) key pieces of informa-
tion are often buried in extraneous details in
the question body and 2) available annota-
tions on similar questions are scarce and frag-
mented. We design a recurrent and convo-
lutional model (gated convolution) to effec-
tively map questions to their semantic repre-
sentations. The models are pre-trained within
an encoder-decoder framework (from body to
title) on the basis of the entire raw corpus,
and fine-tuned discriminatively from limited
annotations. Our evaluation demonstrates that
our model yields substantial gains over a stan-
dard IR baseline and various neural network
architectures (including CNNs, LSTMs and
GRUs).1

1 Introduction

Question answering (QA) forums such as Stack Ex-
change2 are rapidly expanding and already contain
millions of questions. The expanding scope and cov-
erage of these forums often leads to many dupli-
cate and interrelated questions, resulting in the same
questions being answered multiple times. By iden-
tifying similar questions, we can potentially reuse

1Our code and data are available at https://github.
com/taolei87/rcnn

2http://stackexchange.com/

Title: How can I boot Ubuntu from a USB?
Body: I bought a Compaq pc with Windows 8 a few
months ago and now I want to install Ubuntu but still
keep Windows 8. I tried Webi but when my pc restarts it
read ERROR 0x000007b. I know that Windows 8 has a
thing about not letting you have Ubuntu but I still want
to have both OS without actually losing all my data ...

Title: When I want to install Ubuntu on my laptop I’ll
have to erase all my data. “Alonge side windows” doesnt
appear
Body: I want to install Ubuntu from a Usb drive. It
says I have to erase all my data but I want to install it
along side Windows 8. The “Install alongside windows”
option doesn’t appear. What appear is, ...

Figure 1: A pair of similar questions.

existing answers, reducing response times and un-
necessary repeated work. Unfortunately in most fo-
rums, the process of identifying and referring to ex-
isting similar questions is done manually by forum
participants with limited, scattered success.

The task of automatically retrieving similar ques-
tions to a given user’s question has recently attracted
significant attention and has become a testbed for
various representation learning approaches (Zhou et
al., 2015; dos Santos et al., 2015). However, the task
has proven to be quite challenging – for instance, dos
Santos et al. (2015) report a 22.3% classification ac-
curacy, yielding a 4 percent gain over a simple word
matching baseline.

Several factors make the problem difficult. First,
submitted questions are often long and contain ex-
traneous information irrelevant to the main question
being asked. For instance, the first question in Fig-
ure 1 pertains to booting Ubuntu using a USB stick.
A large portion of the body contains tangential de-

1279

tails that are idiosyncratic to this user, such as ref-
erences to Compaq pc, Webi and the error message.
Not surprisingly, these features are not repeated in
the second question in Figure 1 about a closely re-
lated topic. The extraneous detail can easily confuse
simple word-matching algorithms. Indeed, for this
reason, some existing methods for question retrieval
restrict attention to the question title only. While ti-
tles (when available) can succinctly summarize the
intent, they also sometimes lack crucial detail avail-
able in the question body. For example, the title
of the second question does not refer to installation
from a USB drive. The second challenge arises from
the noisy annotations. Indeed, the pairs of questions
marked as similar by forum participants are largely
incomplete. Our manual inspection of a sample set
of questions from AskUbuntu3 shows that only 5%
of similar pairs have been annotated by the users,
with a precision of around 79%.

In this paper, we design a neural network model
and an associated training paradigm to address these
challenges. On a high level, our model is used as
an encoder to map the title, body, or the combina-
tion to a vector representation. The resulting “ques-
tion vector” representation is then compared to other
questions via cosine similarity. We introduce sev-
eral departures from typical architectures on a finer
level. In particular, we incorporate adaptive gating
in non-consecutive CNNs (Lei et al., 2015) in or-
der to focus temporal averaging in these models on
key pieces of the questions. Gating plays a similar
role in LSTMs (Hochreiter and Schmidhuber, 1997),
though LSTMs do not reach the same level of per-
formance in our setting. Moreover, we counter the
scattered annotations available from user-driven as-
sociations by training the model largely based on
the entire unannotated corpus. The encoder is cou-
pled with a decoder and trained to reproduce the ti-
tle from the noisy question body. The methodology
is reminiscent of recent encoder-decoder networks
in machine translation and document summariza-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014b; Rush et al., 2015).
The resulting encoder is subsequently fine-tuned
discriminatively on the basis of limited annotations
yielding an additional performance boost.

3http://askubuntu.com/

We evaluate our model on the AskUbuntu corpus
from Stack Exchange used in prior work (dos San-
tos et al., 2015). During training, we directly uti-
lize noisy pairs readily available in the forum, but
to have a realistic evaluation of the system perfor-
mance, we manually annotate 8K pairs of questions.
This clean data is used in two splits, one for de-
velopment and hyper parameter tuning and another
for testing. We evaluate our model and the base-
lines using standard information retrieval (IR) mea-
sures such as Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR) and Precision at n (P@n).
Our full model achieves a MRR of 75.6% and P@1
of 62.0%, yielding 8% absolute improvement over
a standard IR baseline, and 4% over standard neural
network architectures (including CNNs, LSTMs and
GRUs).

2 Related Work

Given the growing popularity of community QA fo-
rums, question retrieval has emerged as an important
area of research (Nakov et al., 2015; Nakov et al.,
2016). Previous work on question retrieval has mod-
eled this task using machine translation, topic mod-
eling and knowledge graph-based approaches (Jeon
et al., 2005; Li and Manandhar, 2011; Duan et al.,
2008; Zhou et al., 2013). More recent work relies
on representation learning to go beyond word-based
methods. For instance, Zhou et al. (2015) learn
word embeddings using category-based metadata in-
formation for questions. They define each question
as a distribution which generates each word (embed-
ding) independently, and subsequently use a Fisher
kernel to assess question similarities. Dos Santos
et al. (2015) propose an approach which combines
a convolutional neural network (CNN) and a bag-
of-words representation for comparing questions. In
contrast to (Zhou et al., 2015), our model treats each
question as a word sequence as opposed to a bag
of words, and we apply a recurrent convolutional
model as opposed to the traditional CNN model
used by dos Santos et al. (2015) to map questions
into meaning representations. Further, we propose
a training paradigm that utilizes the entire corpus of
unannotated questions in a semi-supervised manner.

Recent work on answer selection on community
QA forums, similar to our task of question retrieval,

1280

has also involved the use of neural network archi-
tectures (Severyn and Moschitti, 2015; Wang and
Nyberg, 2015; Shen et al., 2015; Feng et al., 2015;
Tan et al., 2015). Compared to our work, these ap-
proaches focus on improving various other aspects
of the model. For instance, Feng et al. (2015) ex-
plore different similarity measures beyond cosine
similarity, and Tan et al. (2015) adopt the neural at-
tention mechanism over RNNs to generate better an-
swer representations given the questions as context.

3 Question Retrieval Setup

We begin by introducing the basic discriminative
setting for retrieving similar questions. Let q be
a query question which generally consists of both
a title sentence and a body section. For efficiency
reasons, we do not compare q against all the other
queries in the data base. Instead, we retrieve first a
smaller candidate set of related questionsQ(q) using
a standard IR engine, and then we apply the more
sophisticated models only to this reduced set. Our
goal is to rank the candidate questions in Q(q) so
that all the similar questions to q are ranked above
the dissimilar ones. To do so, we define a similarity
score s(q, p; θ) with parameters θ, where the simi-
larity measures how closely candidate p ∈ Q(q) is
related to question q. The method of comparison can
make use of the title and body of each question.

The scoring function s(·, ·; θ) can be optimized on
the basis of annotated data D =

{
(qi, p+

i , Q
−
i)
}

,
where p+

i is a question similar to question qi and
Q−i is a negative set of questions deemed not simi-
lar to qi. During training, the correct pairs of similar
questions are obtained from available user-marked
pairs, while the negative set Q−i is drawn randomly
from the entire corpus with the idea that the likeli-
hood of a positive match is small given the size of
the corpus. The candidate set during training is just
Q(qi) = {p+

i } ∪ Q−i . During testing, the candidate
sets are retrieved by an IR engine and we evaluate
against explicit manual annotations.

In the purely discriminative setting, we use a max-
margin framework for learning (or fine-tuning) pa-
rameters θ. Specifically, in a context of a particu-
lar training example where qi is paired with p+

i , we

QCRI/MIT-CSAIL Annual Meeting – March 2014

‹#›

QCRI/MIT-CSAIL Annual Meeting – March 2015

‹#›
33

encoder encoder

question 1 question 2

pooling

cosine similarity

pooling

encoder

…

decoder

…

<s>

</s>

context (title/body) title

(a)	similarity	model:

(b)	pre-training:

encoder encoder

question 1 question 2

pooling

cosine similarity

pooling

encoder

…

decoder

…

<s>

</s>

context (title/body) title

(a)	similarity	model:

(b)	pre-training:

Figure 2: Illustration of our model.

minimize the max-margin loss L(θ) defined as

max
p∈Q(qi)

{
s(qi, p; θ)− s(qi, p+

i ; θ) + δ(p, p+
i)
}
,

where δ(·, ·) denotes a non-negative margin. We set
δ(p, p+

i) to be a small constant when p 6= p+
i and

0 otherwise. The parameters θ can be optimized
through sub-gradients ∂L/∂θ aggregated over small
batches of the training instances.

There are two key problems that remain. First,
we have to define and parameterize the scoring func-
tion s(q, p; θ). We design a recurrent neural network
model for this purpose and use it as an encoder to
map each question into its meaning representation.
The resulting similarity function s(q, p; θ) is just the
cosine similarity between the corresponding repre-
sentations, as shown in Figure 2 (a). The parame-
ters θ pertain to the neural network only. Second,
in order to offset the scarcity and limited coverage
of the training annotations, we pre-train the param-
eters θ on the basis of the much larger unannotated
corpus. The resulting parameters are subsequently
fine-tuned using the discriminative setup described
above.

4 Model

4.1 Non-consecutive Convolution
We describe here our encoder model, i.e., the
method for mapping the question title and body to

1281

a vector representation. Our approach is inspired
by temporal convolutional neural networks (LeCun
et al., 1998) and, in particular, its recent refine-
ment (Lei et al., 2015), tailored to capture longer-
range, non-consecutive patterns in a weighted man-
ner. Such models can be used to effectively sum-
marize occurrences of patterns in text and aggre-
gate them into a vector representation. However,
the summary produced is not selective since all pat-
tern occurrences are counted, weighted by how co-
hesive (non-consecutive) they are. In our problem,
the question body tends to be very long and full of
irrelevant words and fragments. Thus, we believe
that interpreting the question body requires a more
selective approach to pattern extraction.

Our model successively reads tokens in the ques-
tion title or body, denoted as {xi}li=1, and trans-
forms this sequence into a sequence of states
{hi}li=1. The resulting state sequence is subse-
quently aggregated into a single final vector repre-
sentation for each text as discussed below. Our ap-
proach builds on (Lei et al., 2015), thus we begin by
briefly outlining it. Let W1 and W2 denote filter ma-
trices (as parameters) for pattern size n = 2. Lei et
al. (2015) generate a sequence of states in response
to tokens according to

ct′,t = W1xt′ + W2xt

ct =
∑
t′<t

λt−t
′−1ct′,t

ht = tanh(ct + b)

where ct′,t represents a bigram pattern, ct accumu-
lates a range of patterns and λ ∈ [0, 1) is a con-
stant decay factor used to down-weight patterns with
longer spans. The operations can be cast in a “re-
current” manner and evaluated with dynamic pro-
gramming. The problem with the approach for our
purposes is, however, that the weighting factor λ is
the same (constant) for all, not triggered by the state
ht−1 or the observed token xt.

Adaptive Gated Decay We refine this model by
learning context dependent weights. For example,
if the current input token provides no relevant infor-
mation (e.g., symbols, functional words), the model
should ignore it by incorporating the token with a
vanishing weight. In contrast, strong semantic con-
tent words such as “ubuntu” or “windows” should be

included with much larger weights. To achieve this
effect we introduce neural gates similar to LSTMs
to specify when and how to average the observed
signals. The resulting architecture integrates recur-
rent networks with non-consecutive convolutional
models:

λt = σ(Wλxt + Uλht−1 + bλ)

c(1)
t = λt � c(1)

t−1 + (1− λt)� (W1xt)

c(2)
t = λt � c(2)

t−1 + (1− λt)� (c(1)
t−1 + W2xt)

· · ·
c(n)
t = λt � c(n)

t−1 + (1− λt)� (c(n−1)
t−1 + Wnxt)

ht = tanh(c(n)
t + b)

where σ(·) is the sigmoid function and� represents
the element-wise product. Here c(1)

t , · · · , c(n)
t are

accumulator vectors that store weighted averages of
1-gram to n-gram features. When the gate λt = 0
(vector) for all t, the model represents a traditional
CNN with filter width n. As λt > 0, however, c(n)

t

becomes the sum of an exponential number of terms,
enumerating all possible n-grams within x1, · · · ,xt
(seen by expanding the formulas). Note that the gate
λt(·) is parametrized and responds directly to the
previous state and the token in question. We refer
to this model as RCNN from here on.

Pooling In order to use the model as part of the
discriminative question retrieval framework outlined
earlier, we must condense the state sequence to a sin-
gle vector. There are two simple alternative pooling
strategies that we have explored – either averaging
over the states4 or simply taking the last one as the
meaning representation. In addition, we apply the
encoder to both the question title and body, and the
final representation is computed as the average of the
two resulting vectors.

Once the aggregation is specified, the parameters
of the gate and the filter matrices can be learned in a
purely discriminative fashion. Given that the avail-
able annotations are limited and user-guided, we in-
stead use the discriminative training only for fine
tuning an already trained model. The method of pre-
training the model on the basis of the entire corpus
of questions is discussed next.

4We also normalize state vectors before averaging, which
empirically gets better performance.

1282

4.2 Pre-training Using the Entire Corpus

The number of questions in the AskUbuntu corpus
far exceeds user annotations of pairs of similar ques-
tions. We can make use of this larger raw corpus in
two different ways. First, since models take word
embeddings as input we can tailor the embeddings
to the specific vocabulary and expressions in this
corpus. To this end, we run word2vec (Mikolov
et al., 2013) on the raw corpus in addition to the
Wikipedia dump. Second, and more importantly,
we use individual questions as training examples
for an auto-encoder constructed by pairing the en-
coder model (RCNN) with an corresponding de-
coder (of the same type). As illustrated in Fig-
ure 2 (b), the resulting encoder-decoder architecture
is akin to those used in machine translation (Kalch-
brenner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014b) and summarization (Rush et al.,
2015).

Our encoder-decoder pair represents a conditional
language model P (title|context), where the context
can be any of (a) the original title itself, (b) the ques-
tion body and (c) the title/body of a similar ques-
tion. All possible (title, context) pairs are used dur-
ing training to optimize the likelihood of the words
(and their order) in the titles. We use the question
title as the target for two reasons. The question body
contains more information than the title but also has
many irrelevant details. As a result, we can view the
title as a distilled summary of the noisy body, and
the encoder-decoder model is trained to act as a de-
noising auto-encoder. Moreover, training a decoder
for the title (rather than the body) is also much faster
since titles tend to be short (around 10 words).

The encoders pre-trained in this manner are sub-
sequently fine-tuned according to the discriminative
criterion described already in Section 3.

5 Alternative models

For comparison, we also train three alternative
benchmark encoders (LSTMs, GRUs and CNNs) for
mapping questions to vector representations. LSTM
and GRU-based encoders can be pre-trained analo-
gously to RCNNs, and fine-tuned discriminatively.
CNN encoders, on the other hand, are only trained
discriminatively. While plausible, neither alternative
reaches quite the same level of performance as our

pre-trained RCNN.

LSTMs LSTM cells (Hochreiter and Schmidhu-
ber, 1997) have been used to capture semantic in-
formation across a wide range of applications, in-
cluding machine translation and entailment recogni-
tion (Bahdanau et al., 2015; Bowman et al., 2015;
Rocktäschel et al., 2016). Their success can be at-
tributed to neural gates that adaptively read or dis-
card information to/from internal memory states.

Specifically, a LSTM network successively reads
the input token xt, internal state ct−1, as well as
the visible state ht−1, and generates the new states
ct,ht:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf)
ot = σ(Woxt + Uoht−1 + bo)
zt = tanh(Wzxt + Uzht−1 + bz)
ct = it � zt + ft � ct−1

ht = ot � tanh(ct)

where i, f and o are input, forget and output
gates, respectively. Given the visible state sequence
{hi}li=1, we can aggregate it to a single vector ex-
actly as with RCNNs. The LSTM encoder can be
pre-trained (and fine-tuned) in the similar way as
our RCNN model. For instance, Dai and Le (2015)
recently adopted pre-training for text classification
task.

GRUs A GRU is another comparable unit for se-
quence modeling (Cho et al., 2014a; Chung et al.,
2014). Similar to the LSTM unit, the GRU has two
neural gates that control the flow of information:

it = σ(Wixt + Uiht−1 + bi)
rt = σ(Wrxt + Urht−1 + br)
ct = tanh(Wxt + U(rt � ht−1) + b)
ht = it � ct + (1− it)� ht−1

where i and r are input and reset gate respectively.
Again, the GRUs can be trained in the same way.

CNNs Convolutional neural networks (LeCun et
al., 1998) have also been successfully applied to var-
ious NLP tasks (Kalchbrenner et al., 2014; Kim,
2014; Kim et al., 2015; Zhang et al., 2015; Gao
et al., 2014). As models, they are different from
LSTMs since the temporal convolution operation

1283

Corpus # of unique questions 167,765
Avg length of title 6.7
Avg length of body 59.7

Training
of unique questions 12,584
of user-marked pairs 16,391

Dev
of query questions 200
of annotated pairs 200×20
Avg # of positive pairs per query 5.8

Test
of query questions 200
of annotated pairs 200×20
Avg # of positive pairs per query 5.5

Table 1: Various statistics from our Training, Dev, and Test

sets derived from the Sept. 2014 Stack Exchange AskUbuntu

dataset.

and associated filters map local chunks (windows) of
the input into a feature representation. Concretely, if
we let n denote the filter width, and W1, · · · ,Wn

the corresponding filter matrices, then the convolu-
tion operation is applied to each window of n con-
secutive words as follows:

ct = W1xt−n+1 + W2xt−n+2 + · · ·+ Wnxt
ht = tanh(ct + b)

The sets of output state vectors {ht} produced in
this case are typically referred to as feature maps.
Since each vector in the feature map only pertains
to local information, the last vector is not sufficient
to capture the meaning of the entire sequence. In-
stead, we consider max-pooling or average-pooling
to obtain the aggregate representation for the entire
sequence.

6 Experimental Setup

Dataset We use the Stack Exchange AskUbuntu
dataset used in prior work (dos Santos et al., 2015).
This dataset contains 167,765 unique questions,
each consisting of a title and a body5, and a set of
user-marked similar question pairs. We provide var-
ious statistics from this dataset in Table 1.

Gold Standard for Evaluation User-marked sim-
ilar question pairs on QA sites are often known
to be incomplete. In order to evaluate this in our
dataset, we took a sample set of questions paired
with 20 candidate questions retrieved by a search en-
gine trained on the AskUbuntu data. The search en-
gine used is the well-known BM25 model (Robert-

5We truncate the body section at a maximum of 100 words.

son and Zaragoza, 2009). Our manual evaluation of
the candidates showed that only 5% of the similar
questions were marked by users, with a precision of
79%. Clearly, this low recall would not lead to a re-
alistic evaluation if we used user marks as our gold
standard. Instead, we make use of expert annota-
tions carried out on a subset of questions.

Training Set We use user-marked similar pairs as
positive pairs in training since the annotations have
high precision and do not require additional man-
ual annotations. This allows us to use a much larger
training set. We use random questions from the cor-
pus paired with each query question pi as negative
pairs in training. We randomly sample 20 questions
as negative examples for each pi during each epoch.

Development and Test Sets We re-constructed
the new dev and test sets consisting of the first 200
questions from the dev and test sets provided by dos
Santos et al. (2015). For each of the above ques-
tions, we retrieved the top 20 similar candidates us-
ing BM25 and manually annotated the resulting 8K
pairs as similar or non-similar.6

Baselines and Evaluation Metrics We evaluated
neural network models—including CNNs, LSTMs,
GRUs and RCNNs—by comparing them with the
following baselines:

• BM25, we used the BM25 similarity measure
provided by Apache Lucene.

• TF-IDF, we ranked questions using cosine
similarity based on a vector-based word repre-
sentation for each question.

• SVM, we trained a re-ranker using SVM-Light
(Joachims, 2002) with a linear kernel incor-
porating several similarity measures from the
DKPro similarity package (Bär et al., 2013).

We evaluated the models based on the following IR
metrics: Mean Average Precision (MAP), Mean Re-
ciprocal Rank (MRR), Precision at 1 (P@1), and
Precision at 5 (P@5).

6The annotation task was initially carried out by two expert
annotators, independently. The initial set was refined by com-
paring the annotations and asking a third judge to make a final
decision on disagreements. After a consensus on the annotation
guidelines was reached (producing a Cohen’s kappa of 0.73),
the overall annotation was carried out by only one expert.

1284

Method Pooling Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

BM25 - 52.0 66.0 51.9 42.1 56.0 68.0 53.8 42.5
TF-IDF - 54.1 68.2 55.6 45.1 53.2 67.1 53.8 39.7
SVM - 53.5 66.1 50.8 43.8 57.7 71.3 57.0 43.3
CNNs mean 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs mean 58.4 72.3 60.0 46.4 56.8 70.1 55.8 43.2
GRUs mean 59.1 74.0 62.6 47.3 57.1 71.4 57.3 43.6
RCNNs last 59.9 74.2 63.2 48.0 60.7 72.9 59.1 45.0
LSTMs + pre-train mean 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
GRUs + pre-train last 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs + pre-train last 61.3∗ 75.2 64.2 50.3∗ 62.3∗ 75.6∗ 62.0 47.1∗

Table 2: Comparative results of all methods on the question similarity task. Higher numbers are better. For neural network models,

we show the best average performance across 5 independent runs and the corresponding pooling strategy. Statistical significance

with p < 0.05 against other types of model is marked with ∗.

d |θ| n
LSTMs 240 423K -
GRUs 280 404K -
CNNs 667 401K 3
RCNNs 400 401K 2

Table 3: Configuration of neural models. d is the hidden dimen-

sion, |θ| is the number of parameters and n is the filter width.

Hyper-parameters We performed an extensive
hyper-parameter search to identify the best model
for the baselines and neural network models. For
the TF-IDF baseline, we tried n-gram feature order
n ∈ {1, 2, 3} with and without stop words pruning.
For the SVM baseline, we used the default SVM-
Light parameters whereas the dev data is only used
to increase the training set size when testing on the
test set. We also tried to give higher weight to dev
instances but this did not result in any improvement.

For all the neural network models, we used
Adam (Kingma and Ba, 2015) as the optimiza-
tion method with the default setting suggested by
the authors. We optimized other hyper-parameters
with the following range of values: learning rate
∈ {1e − 3, 3e − 4}, dropout (Hinton et al., 2012)
probability ∈ {0.1, 0.2, 0.3}, CNN feature width
∈ {2, 3, 4}. We also tuned the pooling strategies
and ensured each model has a comparable number of
parameters. The default configurations of LSTMs,
GRUs, CNNs and RCNNs are shown in Table 3. We
used MRR to identify the best training epoch and
the model configuration. For the same model con-
figuration, we report average performance across 5

independent runs.7

Word Vectors We ran word2vec (Mikolov et al.,
2013) to obtain 200-dimensional word embeddings
using all Stack Exchange data (excluding Stack-
Overflow) and a large Wikipedia corpus. The word
vectors are fixed to avoid over-fitting across all ex-
periments.

7 Results

Overall Performance Table 2 shows the perfor-
mance of the baselines and the neural encoder mod-
els on the question retrieval task. The results
show that our full model, RCNNs with pre-training,
achieves the best performance across all metrics on
both the dev and test sets. For instance, the full
model gets a P@1 of 62.0% on the test set, outper-
forming the word matching-based method BM25 by
over 8 percent points. Further, our RCNN model
also outperforms the other neural encoder mod-
els and the baselines across all metrics. This su-
perior performance indicates that the use of non-
consecutive filters and a varying decay is effective
in improving traditional neural network models.

Table 2 also demonstrates the performance gain
from pre-training the RCNN encoder. The RCNN
model when pre-trained on the entire corpus consis-
tently gets better results across all the metrics.

7For a fair comparison, we also pre-train 5 independent
models for each configuration and then fine tune these mod-
els. We use the same learning rate and dropout rate during pre-
training and fine-tuning.

1285

Method Dev Test
MAP MRR P@1 P@5 MAP MRR P@1 P@5

CNNs, max-pooling 57.8 69.9 56.6 47.7 59.6 73.1 59.6 45.4
CNNs, mean-pooling 58.5 71.1 58.4 46.4 57.6 71.4 57.6 43.2
LSTMs + pre-train, mean-pooling 58.3 71.5 59.3 47.4 55.5 67.0 51.1 43.4
LSTMs + pre-train, last state 57.6 71.0 58.1 47.3 57.6 69.8 55.2 43.7
GRUs + pre-train, mean-pooling 57.5 69.9 57.1 46.2 55.5 67.3 52.4 42.8
GRUs + pre-train, last state 59.3 72.2 59.8 48.3 59.3 71.3 57.2 44.3
RCNNs + pre-train, mean-pooling 59.3 73.6 61.7 48.6 58.9 72.3 57.3 45.3
RCNNs + pre-train, last state 61.3 75.2 64.2 50.3 62.3 75.6 62.0 47.1

Table 4: Choice of pooling strategies.

TF-IDF MAP MRR P@1
title only 54.3 66.8 52.7
title + body 53.2 67.1 53.8

RCNNs, mean-pooling MAP MRR P@1
title only 56.0 68.9 55.7
title + body 58.5 71.7 56.7

RCNNs, last state MAP MRR P@1
title only 58.2 70.7 56.6
title + body 60.7 72.9 59.1

Table 5: Comparision between model variants on the test set

when question bodies are used or not used.

Pooling Strategy We analyze the effect of various
pooling strategies for the neural network encoders.
As shown in Table 4, our RCNN model outperforms
other neural models regardless of the two pooling
strategies explored. We also observe that simply us-
ing the last hidden state as the final representation
achieves better results for the RCNN model.

Using Question Body Table 5 compares the per-
formance of the TF-IDF baseline and the RCNN
model when using question titles only or when using
question titles along with question bodies. TF-IDF’s
performance changes very little when the question
bodies are included (MRR and P@1 are slightly bet-
ter but MAP is slightly worse). However, we find
that the inclusion of the question bodies improves
the performance of the RCNN model, achieving a
1% to 3% improvement with both model variations.
The RCNN model’s greater improvement illustrates
the ability of the model to pick out components that
pertain most directly to the question being asked
from the long, descriptive question bodies.

Pre-training Note that, during pre-training, the
last hidden states generated by the neural encoder
are used by the decoder to reproduce the question ti-
tles. It would be interesting to see how such states

1 2 3 4 5 6 7 8 9 10
Epoch

20

35

50

65

80

95

P
P

L

RCNN
GRU
LSTM

50

55

60

65

70

75

M
R

R

Figure 3: Perplexity (dotted lines) on a heldout portion of the

corpus versus MRR on the dev set (solid lines) during pre-

training. Variances across 5 runs are shown as vertical bars.

capture the meaning of questions. To this end, we
evaluate MRR on the dev set using the last hidden
states of the question titles. We also test how the en-
coder captures information from the question bodies
to produce the distilled summary, i.e. titles. To do
so, we evaluate the perplexity of the trained encoder-
decoder model on a heldout set of the corpus, which
contains about 2000 questions.

As shown in Figure 3, the representations gener-
ated by the RCNN encoder perform quite well, re-
sulting in a perplexity of 25 and over 68% MRR
without the subsequent fine-tuning. Interestingly,
the LSTM and GRU networks obtain similar per-
plexity on the heldout set, but achieve much worse
MRR for similar question retrieval. For instance, the
GRU encoder obtains only 63% MRR, 5% worse
than the RCNN model’s MRR performance. As a
result, the LSTM and GRU encoder do not benefit
clearly from pre-training, as suggested in Table 2.

The inconsistent performance difference may be
explained by two hypotheses. One is that the per-
plexity is not suitable for measuring the similarity
of the encoded text, thus the power of the encoder
is not illustrated in terms of perplexity. Another hy-

1286

how ca
n i

add
guake

term
inal to th

e

sta
rt-

up

applic
atio

ns

(a) how can i add guake terminal to the start-up applications

bansh
ee

cra
sh

es
with `` an

unhandled

exce
ptio

n
was

th
ro

wn : ''

(b) banshee crashes with `` an unhandled exception was thrown : ''

i
get

th
e

erro
r

mess
age ``

re
quire

s

insta
lla

tio
n of

untru
ste

d

pack
ages

every
tim

e i
try to

update
afte

r

enterin
g my

pass
word ...

(c) i get the error message `` requires installation of untrusted packages every time i try to update after entering my password ...

i

re
ce

ntly

bought

sa
msu

ng
laptop

and i

facin
g

hard
tim

e to
boot

my
pen

driv
er so th

at i
ca

n
use

ubuntu ...

(d) i recently bought samsung laptop and i facing hard time to boot my pen driver so that i can use ubuntu ...

Figure 4: Visualizations of 1− λt of our model on several question pieces from the data set. λt is set to a scalar value (instead of

400-dimension vector) to make the visualization simple. The corresponding model is a simplified variant, which is about 4% worse

than our full model.

pothesis is that the LSTM and GRU encoder may
learn non-linear representations therefore their se-
mantic relatedness can not be directly accessed by
cosine similarity.

Adaptive Decay Finally, we analyze the gated
convolution of our model. Figure 5 demonstrates at
each word position t how much input information is
taken into the model by the adaptive weights 1−λt.
The average of weights in the vector decreases as t
increments, suggesting that the information encoded
into the state vector saturates when more input are
processed. On the other hand, the largest value in
the weight vector remains high throughout the input,
indicating that at least some information has been
stored in ht and ct.

We also conduct a case study on analyzing the
neural gate. Since directly inspecting the 400-
dimensional decay vector is difficult, we train a
model that uses a scalar decay instead. As shown in
Figure 4, the model learns to assign higher weights
to application names and quoted error messages,
which intuitively are important pieces of a question
in the AskUbuntu domain.

8 Conclusion

In this paper, we employ gated (non-consecutive)
convolutions to map questions to their semantic
representations, and demonstrate their effectiveness

0.87

0.95
max mean

0 20 40 60 80 99

t

0.1

0.2

Figure 5: The maximum and mean value of the 400-

dimentional weight vector 1−λt at each step (word position) t.

Values are averaged across all questions in the dev and test set.

on the task of question retrieval in community
QA forums. This architecture enables the model
to glean key pieces of information from lengthy,
detail-riddled user questions. Pre-training within an
encoder-decoder framework (from body to title) on
the basis of the entire raw corpus is integral to the
model’s success.

Acknowledgments

We thank Yu Zhang, Yoon Kim, Danqi Chen, the
MIT NLP group and the reviewers for their help-
ful comments. The work is developed in col-
laboration with the Arabic Language Technologies
(ALT) group at Qatar Computing Research Institute
(QCRI) within the IYAS project. Any opinions, find-
ings, conclusions, or recommendations expressed in
this paper are those of the authors, and do not neces-
sarily reflect the views of the funding organizations.

1287

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Daniel Bär, Torsten Zesch, and Iryna Gurevych. 2013.
Dkpro similarity: An open source framework for text
similarity. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics: Sys-
tem Demonstrations, pages 121–126, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Information
Processing Systems, pages 3061–3069.

Cicero dos Santos, Luciano Barbosa, Dasha Bogdanova,
and Bianca Zadrozny. 2015. Learning hybrid rep-
resentations to retrieve semantically equivalent ques-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
694–699, Beijing, China, July. Association for Com-
putational Linguistics.

Huizhong Duan, Yunbo Cao, Chin-Yew Lin, and Yong
Yu. 2008. Searching questions by identifying question
topic and question focus. In ACL, pages 156–164.

Minwei Feng, Bing Xiang, Michael R Glass, Lidan
Wang, and Bowen Zhou. 2015. Applying deep learn-
ing to answer selection: A study and an open task.
arXiv preprint arXiv:1508.01585.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong
He, Li Deng, and Yelong Shen. 2014. Modeling inter-
estingness with deep neural networks. In Proceedings

of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and answer
archives. In Proceedings of the 14th ACM interna-
tional conference on Information and knowledge man-
agement, pages 84–90. ACM.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. In ACM SIGKDD KDD.

Nal Kalchbrenner and Phil Blunsom. 2013. Recur-
rent continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP 2013), pages 1700–
1709.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52th Annual
Meeting of the Association for Computational Linguis-
tics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. Twenty-Ninth AAAI Conference on Artificial
Intelligence.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP
2014).

Diederik P Kingma and Jimmy Lei Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representation.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
November.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1565–1575, Lisbon, Portugal, September.
Association for Computational Linguistics.

Shuguang Li and Suresh Manandhar. 2011. Improv-
ing question recommendation by exploiting informa-
tion need. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1, pages 1425–
1434. Association for Computational Linguistics.

1288

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2015.
SemEval-2015 task 3: Answer selection in commu-
nity question answering. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Se-
mEval ’15.

Preslav Nakov, Lluı́s Màrquez, Walid Magdy, Alessan-
dro Moschitti, Jim Glass, and Bilal Randeree. 2016.
SemEval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation, SemEval ’16.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and beyond.
Now Publishers Inc.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In In-
ternational Conference on Learning Representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In SIGIR.

Yikang Shen, Wenge Rong, Nan Jiang, Baolin Peng, Jie
Tang, and Zhang Xiong. 2015. Word embedding
based correlation model for question/answer match-
ing. arXiv preprint arXiv:1511.04646.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer se-
lection. arXiv preprint arXiv:1511.04108.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In ACL, July.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian Zeng,
and Jun Zhao. 2013. Improving question retrieval
in community question answering using world knowl-
edge. In Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence, pages
2239–2245. AAAI Press.

Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu.
2015. Learning continuous word embedding with
metadata for question retrieval in community question
answering. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
250–259, Beijing, China, July. Association for Com-
putational Linguistics.

1289

Proceedings of NAACL-HLT 2016, pages 1290–1295,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

This is how we do it: Answer Reranking for Open-domain How Questions
with Paragraph Vectors and Minimal Feature Engineering

Dasha Bogdanova and Jennifer Foster
ADAPT Centre

School of Computing, Dublin City University
Dublin, Ireland

{dbogdanova,jfoster}@computing.dcu.ie

Abstract

We present a simple yet powerful approach
to non-factoid answer reranking whereby
question-answer pairs are represented by con-
catenated distributed representation vectors
and a multilayer perceptron is used to compute
the score for an answer. Despite its simplicity,
our approach achieves state-of-the-art perfor-
mance on a public dataset of How questions,
outperforming systems which employ sophis-
ticated feature sets. We attribute this good per-
formance to the use of paragraph instead of
word vector representations and to the use of
suitable data for training these representations.

1 Introduction

In contrast to factoid question answering (QA), non-
factoid QA is concerned with questions whose an-
swer is not easily expressed as an entity or list of en-
tities and can instead be quite complex – compare,
for example, the factoid question Who is the secre-
tary general of the UN? with the non-factoid manner
question How is the secretary general of the UN cho-
sen? A significant amount of research has been car-
ried out on factoid QA, with non-factoid questions
receiving less attention. This is changing, however,
with the popularity of community-based question
answering (CQA) sites such as Yahoo! Answers1,
Quora2 and the StackExchange3 family of forums.
The ability of users to vote for their favourite an-
swer makes these sites a valuable source of training
data for open-domain non-factoid QA systems.

1http://answers.yahoo.com
2http://quora.com
3http://stackexchange.com/

In this paper, we present a neural approach to
open-domain non-factoid QA, focusing on the sub-
task of answer reranking, i.e. given a list of can-
didate answers to a question, order the answers
according to their relevance to the question. We
test our approach on the Yahoo! Answers dataset
of manner or How questions introduced by Jansen
et al. (2014), who describe answer reranking ex-
periments on this dataset using a diverse range of
features incorporating syntax, lexical semantics and
discourse. In particular, they show how discourse in-
formation (obtained either via a discourse parser or
using shallow techniques based on discourse mark-
ers) can complement distributed lexical semantic in-
formation. Sharp et al. (2015) show how discourse
structure can be used to generate artificial question-
answer training pairs from documents, and test their
approach on the same dataset. The best performance
on this dataset – 33.01 P@1 and 53.96 MRR – is re-
ported by Fried et al. (2015) who improve on the
lexical semantic models of Jansen et al. (2014) by
exploiting indirect associations between words us-
ing higher-order models.

In contrast, our approach is very simple and re-
quires no feature engineering. Question-answer
pairs are represented by concatenated distributed
representation vectors and a multilayer perceptron is
used to compute the score for an answer (the proba-
bility of an answer being the best answer to the ques-
tion). Despite its simplicity, we achieve state-of-the-
art performance on this dataset – 37.17 P@1 and
56.82 MRR. We attribute this improved performance
to the use of paragraph vector representations (Le
and Mikolov, 2014) instead of averaging over word

1290

vectors, and to the use of suitable data for training
these representations.

2 Approach

2.1 Learning Algorithm

We use a simple feedforward neural network, i.e. a
multilayer perceptron, to predict the best answer. As
shown in Figure 1, the first layer of the network is
a projection layer that transforms question-answer
pairs into their vector representations. The vector
representation for a question-answer pair (q, a) is
a concatenation of the distributed representations q
and a for the question and the answer respectively.
Each representation is a real-valued vector of a fixed
dimensionality d, which is a parameter to be tuned.
The projection layer is followed by one or more hid-
den layers, the number of layers and units in each of
these layers are also parameters to be experimentally
tuned. We use the rectified linear (ReLU) activation
function. Finally, a softmax layer is used to compute
the output probability p, i.e. the probabilities p1 and
p2 of the negative (i.e. not best answer) and posi-
tive (i.e. best answer) classes respectively. For each
question, all its user-generated answers are ranked
according to their probability of being the best an-
swer, as predicted by the network.

Given a question-answer pair (q, a), the possible
values for the ground-truth label are 1 (best answer)
and 0 (not a best answer). The network is trained
by minimizing the L2-regularized cross-entropy loss
function between the ground-truth labels and the
network predictions on the training set. We use
stochastic gradient descent to minimize the loss over
the training set. The development set is used for
early stopping.

2.2 Document Representations

Our approach requires question-answer pairs to be
represented as a fixed-size vector. We experimen-
tally evaluate the Paragraph Vector model (PV) pro-
posed by Le and Mikolov (2014). The PV is an ex-
tension of the widely used continuous bag-of-words
(CBOW) and skip-gram word embedding models,
known as word2vec. However, in contrast to CBOW
and skip-gram models that only learn word embed-
dings, the PV is able to learn representations for
pieces of text of arbitrary length, e.g. sentences,

Figure 1: Neural network architecture used to predict answer

ranking.

paragraphs or documents. The PV includes (1)
the distributed memory (DM) model, that predicts
the next word using the concatenation of the previ-
ous words and the paragraph vector, that is shared
among all words in the same paragraph (or sen-
tence); (2) the distributed bag-of-words (DBOW)
model, that – similar to the skip-gram model – pre-
dicts words randomly sampled from the paragraph,
given the paragraph vector. We experiment with
both DM and DBOW models, as well as their combi-
nation. For comparison with recent work in answer
reranking (Jansen et al., 2014; Sharp et al., 2015),
we also evaluate the averaged word embedding vec-
tors obtained with the skip-gram model (Mikolov
et al., 2013) (henceforth referred to as the SkipAvg
model).

3 Experiments

3.1 Data

In order to be able to compare our work with pre-
vious research, we use the Yahoo! Answers dataset
that was first introduced by Jansen et al. (2014) and
was later used by Sharp et al. (2015) and Fried et
al. (2015). This dataset contains 10K How ques-
tions from Yahoo! Answers. Each question has at
least four user-generated answers, and the average
number of answers per question is nine. 50% of
the dataset is used for training, 25% for development
and 25% for testing. Further information about the
dataset can be found in Jansen et al. (2014).

1291

Our approach requires unlabelled data for unsu-
pervised pre-training of the word and paragraph vec-
tors. For these purposes we use the L6 Yahoo! An-
swers Comprehensive Questions and Answers cor-
pus obtained via Webscope.4 This dataset contains
about 4.5M questions from Yahoo! Answers along
with their user-generated answers, and was provided
as training data at the recent TREC LiveQA com-
petition (Agichtein et al., 2015), the goal of which
was to answer open-domain questions coming from
real users in real time.5 The Yahoo! Answers man-
ner question dataset prepared by Jansen et al. (2014)
and described in the previous paragraph, was ini-
tially sampled from this larger dataset. We want to
emphasize that the L6 dataset is only used for unsu-
pervised pretraining – no meta-information is used
in our experiments.

We also experiment with the English Gigaword
corpus,6 which contains data from several English
newswire sources. Jansen et al. (2014) used this cor-
pus to train word embeddings, which were then in-
cluded as features in their answer reranker.

3.2 Experimental Setup

Following Jansen et al. (2014) and Fried et al.
(2015), we implement two baselines: the baseline
that selects an answer randomly and the candidate
retrieval (CR) baseline. The CR baseline uses the
same scoring as in Jansen et al. (2014): the ques-
tions and the candidate answers are represented us-
ing tf-idf (Salton, 1991) over lemmas; the can-
didate answers are ranked according to their cosine
similarity to the respective question.

We use the gensim7 implementation of the DBOW
and DM paragraph vector models. The word em-
beddings for the SkipAvg model are obtained with
word2vec.8 The data was tokenized with the Stan-
ford tokenizer9 and then lowercased.

To evaluate our models, we use standard imple-

4http://webscope.sandbox.yahoo.com/
5https://sites.google.com/site/

trecliveqa2015/
6https://catalog.ldc.upenn.edu/

LDC2003T05
7https://radimrehurek.com/gensim/models/

doc2vec.html
8https://code.google.com/p/word2vec/
9http://nlp.stanford.edu/software/

tokenizer.shtml

Model dim P@1 MRR
Random Baseline - 15.06 37.13
CR Baseline - 24.83 48.82
SkipAvg Baseline 200 31.25 52.56
DBOW 100 38.95* 58.18*

DBOW 200 39.91* 58.68*

DBOW 300 39.47* 58.35*

DM 100 38.19* 57.01*

DM 200 38.35* 57.28*

DM 300 37.55* 56.67*

DBOW+DM 200 40.55*# 59.12*#

DBOW+SkipAvg 200 40.39*# 58.91*#

DBOW+DM+SkipAvg 200 40.63*# 59.14*#

Table 1: Development P@1 and MRR for different vectors

representations. * indicates that improvements over the base-

lines are statistically significant with p < 0.05. # indicates that

the improvement over the DBOW model with 200-dimensional

vectors is not statistically significant. All significance tests are

performed with one-tailed bootstrap resampling with 10,000 it-

erations.

mentations of the P@1 and mean reciprocal rank
(MRR) evaluation metrics. To evaluate whether the
difference between two models is statistically sig-
nificant, statistical significance testing is performed
using one-tailed bootstrap resampling with 10,000
iterations. Improvements are considered to be sta-
tistically significant at the 5% confidence level (p <
0.05).

3.3 Results

In Table 1, we report best development P@1 and
MRR of the multilayer perceptron trained on Ya-
hoo! Answers (Jansen et al., 2014) data. Early
stopping is used to maximize P@1 on the develop-
ment set. The distributed representations, including
the SkipAvg model, beat both random and candi-
date retrieval baselines by a large and statistically
significant margin. Likewise, the multilayer per-
ceptron with DBOW and DM representations sig-
nificantly outperform the SkipAvg representations.
Both paragraph vector representations initially pro-
posed by Le and Mikolov (2014) – DBOW and
DM – provide similarly high performance, how-
ever the DBOW model performs slightly better, with
the improvement over the DM model being sta-
tistically significant. Different dimensionalities of
the pretrained vectors provide similar results, with

1292

Model P@1 MRR
Random Baseline 15.74 37.40
CR Baseline 22.63 47.17
SkipAvg 30.25 51.59
Jansen et al. (2014) 30.49 51.89
Fried et al. (2015) 33.01 53.96
DBOW 37.02* 56.74*

DBOW+DM 37.06* 56.56*

DBOW+SkipAvg 35.85* 56.03*

DBOW+DM+SkipAvg 37.17* 56.82*

Table 2: Test P@1 and MRR. * indicates that improvements

over the baselines are statistically significant with p < 0.05.

200 outperforming the rest by a small margin. The
multilayer perceptron with combinations of differ-
ent distributed representations reach slightly higher
P@1 and MRR on the development set. However,
these improvements over the 200-dimension DBOW
model are not statistically significant.

Table 2 presents the results on the test set. We
only evaluate the 200-dimension DBOW model and
its combinations with other models, comparing these
to the baselines and the previous results on the
same dataset (we use the same train/dev/test split as
Jansen et al. (2014)). The DBOW outperforms the
baselines by a statistically significant margin. The
combination of the DBOW, DM and SkipAvg mod-
els provides slightly better results, but the improve-
ment over the DBOW is not statistically significant.

3.4 Analysis

Jansen et al. (2014) report that answer rerank-
ing benefits from lexical semantic models, and de-
scribe experiments using SkipAvg embeddings pre-
trained using the English Gigaword corpus. Here we
compare the performance of the reranker with dis-
tributed representations pretrained on a large “out-
of-domain” newswire corpus (Gigaword), versus a
smaller “in-domain” non-factoid QA one (L6 Ya-
hoo). Figure 2 shows the development P@1 and
MRR of the multilayer perceptron with DBOW
model on the Yahoo! Answers dataset pretrained on
30M random paragraphs from the English Gigaword
corpus versus the multilayer perceptron with DBOW
model pretrained on the Yahoo L6 corpus containing
about 8.5M paragraphs. We also evaluate the com-

Figure 2: Development P@1 and MRR of a DBOW model pre-

trained on Yahoo! Answers and Gigaword corpora.

bination of the two models. The results highlight
the importance of finding a suitable source of unla-
belled training data since vectors pretrained on rea-
sonably large amounts of Yahoo! Answers data are
more beneficial than using a much larger Gigaword
dataset.

Even our best model is still, however, far from be-
ing perfect, i.e. for about 60% of questions, the an-
swer selected as best by the author of the question is
not assigned the highest rank by our system. We be-
lieve that one of the reasons for that is that the choice
of the best answer purely relies on the question’s au-
thor and may be subjective (see Table 3). A possible
useful direction for future research is to incorporate
the user-level information into the neural reranking
model. This approach has been recently found ben-
eficial in the task of sentiment analysis (Tang et al.,
2015).

Another potential source of error lies in the user-
generated nature of the data. Yahoo! Answers con-
tains a large number of spelling and grammar mis-
takes (e.g. how do i thaw fozen [sic] chicken?), non-
standard spelling and punctuation (e.g. Booorrrri-
inng!!!!!). A common way to deal with this prob-
lem is normalization (Baldwin et al., 2015). To
determine whether this might be helpful, we nor-
malized the data following the strategy described
by Le Roux et al. (2012). We trained the DBOW
model with 200 dimensions and applied the MLP,
as described in Section 2. The best development
P@1 was only 33.95, with MRR 54.23 (versus 39.91
P@1 and 58.68 MRR without normalization). Even

1293

Question How should I wear my hair tomorrow?

Best answer Very good question...Lets see, I think you should wear it in pigtails.....

Other answers

Losen it.

Close your eyes, grab some scissors, and GO CRAZY!

I think you should scrunch it! It looks awesome. Just tip ur head over and put jell in ur hands and
like scrunch!

just brush it and go, it always works for me when i can’t figure out what to do with it.

pull it up in a high pony tail & small curls falling down!

make it into braids
Table 3: Example question from the Yahoo! Answers dataset

though our preliminary experiments show that ap-
plying lexical normalization results in significantly
lower performance, further study is needed. One di-
rection is in using character-level embeddings that
have been proven promising for user-generated con-
tent because of their ability to better handle spelling
variation (Kim et al., 2015).

4 Conclusions

We have conducted answer reranking experiments
for open-domain non-factoid QA and achieved state-
of-the-art performance on the Yahoo! Answers
manner question corpus using a very straightfor-
ward neural approach which involves represent-
ing question-answer pairs as paragraph vectors and
training a multilayer perceptron to order candidate
answers. Our experiments show that representing
the question-answer pair as a paragraph vector is
clearly superior to the use of averaged word vectors.
We have also shown that a smaller amount of unla-
belled data taken from a CQA site is more useful for
training representations than a larger newswire set.

In this paper, we use general purpose distributed
document representations provided by Paragraph
Vector models to represent question-answer pairs.
Then a machine learning algorithm is used to rank
the pairs. One possible direction for future research
is in learning distributed document representations
and the ranking simultaneously and applying more
sophisticated recurrent models such as long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) neural networks, that have been shown
to be effective in similar tasks (Wang and Nyberg,
2015; Zhou et al., 2015).

Acknowledgments

Thanks to Yvette Graham and the three anony-
mous reviewers for their helpful comments and sug-
gestions. This research is supported by the Sci-
ence Foundation Ireland (Grant 12/CE/I2267) as
part of ADAPT centre (www.adaptcentre.ie)
at Dublin City University. The ADAPT Centre for
Digital Content Technology is funded under the SFI
Research Centres Programme (Grant 13/RC/2106)
and is co-funded under the European Regional De-
velopment Fund.

References

Eugene Agichtein, David Carmel, Dan Pelleg, Yuval Pin-
ter, and Donna Harman. 2015. Overview of the TREC
2015 LiveQA Track. In Proceedings of The Twenty-
Fourth Text REtrieval Conference, TREC.

Timothy Baldwin, Young-Bum Kim, Marie Catherine
de Marneffe, Alan Ritter, Bo Han, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization and
named entity recognition. ACL-IJCNLP 2015, page
126.

Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai
Surdeanu, and Peter Clark. 2015. Higher-order lex-
ical semantic models for non-factoid answer rerank-
ing. Transactions of the Association for Computa-
tional Linguistics, 3:197–210.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014.
Discourse complements lexical semantics for non-
factoid answer reranking. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 977–986,

1294

Baltimore, Maryland, June. Association for Computa-
tional Linguistics.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. arXiv preprint arXiv:1508.06615, to appear
at AAAI 2016.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Pro-
ceedings of the 31th International Conference on Ma-
chine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pages 1188–1196.

Joseph Le Roux, Jennifer Foster, Joachim Wagner, Rasul
Samad Zadeh Kaljahi, and Anton Bryl. 2012. DCU-
Paris13 systems for the SANCL 2012 shared task.
Notes of the First Workshop on Syntactic Analysis of
Non-Canonical Language (SANCL).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR Workshop.

Gerard Salton. 1991. Developments in automatic text
retrieval. Science, 253(5023):974–980.

Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Pe-
ter Clark. 2015. Spinning straw into gold: Using
free text to train monolingual alignment models for
non-factoid question answering. In Proceedings of
the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 231–237, Denver,
Colorado, May–June. Association for Computational
Linguistics.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Learning se-
mantic representations of users and products for docu-
ment level sentiment classification. In Proceedings of
the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
1: Long Papers), pages 1014–1023, Beijing, China,
July. Association for Computational Linguistics.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in ques-
tion answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short Papers),
pages 707–712, Beijing, China, July. Association for
Computational Linguistics.

Xiaoqiang Zhou, Baotian Hu, Qingcai Chen, Buzhou
Tang, and Xiaolong Wang. 2015. Answer sequence
learning with neural networks for answer selection in
community question answering. In Proceedings of the
53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 2:

Short Papers), pages 713–718, Beijing, China, July.
Association for Computational Linguistics.

1295

Proceedings of NAACL-HLT 2016, pages 1296–1306,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Multilingual Language Processing From Bytes

Dan Gillick, Cliff Brunk, Oriol Vinyals, Amarnag Subramanya
Google Research

{dgillick, cliffbrunk, vinyals, asubram}@google.com

Abstract
We describe an LSTM-based model which
we call Byte-to-Span (BTS) that reads text
as bytes and outputs span annotations of the
form [start, length, label] where start posi-
tions, lengths, and labels are separate entries
in our vocabulary. Because we operate di-
rectly on unicode bytes rather than language-
specific words or characters, we can analyze
text in many languages with a single model.
Due to the small vocabulary size, these multi-
lingual models are very compact, but produce
results similar to or better than the state-of-
the-art in Part-of-Speech tagging and Named
Entity Recognition that use only the provided
training datasets (no external data sources).
Our models are learning “from scratch” in that
they do not rely on any elements of the stan-
dard pipeline in Natural Language Processing
(including tokenization), and thus can run in
standalone fashion on raw text.

1 Introduction

The long-term trajectory of research in Natural
Language Processing has seen the replacement of
rules and specific linguistic knowledge with ma-
chine learned components. Perhaps the most stan-
dardized way that knowledge is still injected into
largely statistical systems is through the processing
pipeline: Some set of basic language-specific tokens
are identified in a first step. Sequences of tokens
are segmented into sentences in a second step. The
resulting sentences are fed one at a time for syntac-
tic analysis: Part-of-Speech (POS) tagging and pars-
ing. Next, the predicted syntactic structure is typi-
cally used as features in semantic analysis, Named

Entity Recognition (NER), Semantic Role Labeling,
etc. While each step of the pipeline now relies more
on data and models than on hand-curated rules, the
pipeline structure itself encodes one particular un-
derstanding of how meaning attaches to raw strings.

One motivation for our work is to try removing
this structural dependence. Rather than rely on the
intermediate representations invented for specific
subtasks (for example, Penn Treebank tokenization),
we are allowing the model to learn whatever internal
structure is most conducive to producing the annota-
tions of interest. To this end, we describe a Recur-
rent Neural Network (RNN) model that reads raw in-
put string segments, one byte at a time, and produces
output span annotations corresponding to specific
byte regions in the input1. This is truly language
annotation from scratch (see Collobert et al. (2011)
and Zhang and LeCun (2015)).

Two key innovations facilitate this approach.
First, Long Short Term Memory (LSTM) models
(Hochreiter and Schmidhuber, 1997) allow us to re-
place the traditional independence assumptions in
text processing with structural constraints on mem-
ory. While we have long known that long-term de-
pendencies are important in language, we had no
mechanism other than conditional independence to
keep sparsity in check. The memory in an LSTM,
however, is not constrained by any explicit assump-
tions of independence. Rather, its ability to learn
patterns is limited only by the structure of the net-
work and the size of the memory (and of course the

1Our span annotation model can be applied to any sequence
labeling task; it is not immediately applicable to predicting
more complex structures like trees.

1296

GO S0

S0

L13 PER S26 L11 LOC

L13 PER S26 L11 LOC STOP

…

BTS

SPANS

[S0, L13, PER] [S26, L11, LOC]

SEGMENT

Óscar Romero was born in El Salvador.

0xc3 0x93 0x73

Ó s

…

0x63

c

Figure 1: A diagram showing the way the Byte-to-Span (BTS) model converts an input text segment to a sequence of span

annotations. The model reads the input segment one byte at a time (this can involve multibyte unicode characters), then a special

Generate Output (GO) symbol, then produces the argmax output of a softmax over all possible start positions, lengths, and labels

(as well as STOP, signifying no additional outputs). The prediction from the previous time step is fed as an input to the next time

step.

amount of training data).
Second, sequence-to-sequence models (Sutskever

et al., 2014), allow for flexible input/output dynam-
ics. Traditional models, including feedforward neu-
ral networks, read fixed-length inputs and generate
fixed-length outputs by following a fixed set of com-
putational steps. Instead, we can now read an entire
segment of text before producing an arbitrary num-
ber of outputs, allowing the model to learn a function
best suited to the task.

We leverage these two ideas with a basic strategy:
Decompose inputs and outputs into their component
pieces, then read and predict them as sequences.
Rather than read words, we are reading a sequence
of unicode bytes2; rather than producing a label for
each word, we are producing triples [start, length,
label], that correspond to the spans of interest, as a
sequence of three separate predictions (see Figure
1). This forces the model to learn how the compo-
nents of words and labels interact so all the structure
typically imposed by the NLP pipeline (as well as
the rules of unicode) are left to the LSTM to model.

Decomposed inputs and outputs have a few im-
portant benefits. First, they reduce the size of the

2We use the variable length UTF-8 encodings to keep the
vocabulary as small as possible.

vocabulary relative to word-level inputs, so the re-
sulting models are extremely compact (on the or-
der of a million parameters). Second, because uni-
code is essentially a universal language, we can train
models to analyze many languages at once. In fact,
by stacking LSTMs, we are able to learn represen-
tations that appear to generalize across languages,
improving performance significantly (without using
any additional parameters) over models trained on
a single language. This is the first account, to our
knowledge, of a multilingual model that achieves
good results across many languages, thus bypass-
ing all the language-specific engineering usually re-
quired to build models in different languages3. We
describe results similar to or better than the state-
of-the-art in Part-of-Speech tagging and Named En-
tity Recognition that use only the provided training
datasets (no external data sources).

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work; Section 3 describes
our model; Section 4 gives training details includ-
ing a new variety of dropout (Hinton et al., 2012);

3These multilingual models are able to handle code-mixed
text, an important practical problem that’s received relatively
little attention. However, we do not have any annotated data
that contains code switching, so we cannot report any results.

1297

Section 5 gives inference details; Section 6 presents
results on POS tagging and NER across many lan-
guages; Finally, we summarize our contributions in
section 7.

2 Related Work

One important feature of our work is the use of
byte inputs. Character-level inputs have been used
with some success for tasks like NER (Klein et al.,
2003), parallel text alignment (Church, 1993), and
authorship attribution (Peng et al., 2003) as an ef-
fective way to deal with n-gram sparsity while still
capturing some aspects of word choice and mor-
phology. Such approaches often combine char-
acter and word features and have been especially
useful for handling languages with large character
sets (Nakagawa, 2004). However, there is almost
no work that explicitly uses bytes – one exception
uses byte n-grams to identify source code author-
ship (Frantzeskou et al., 2006) – but there is noth-
ing, to the best of our knowledge, that exploits bytes
as a cross-lingual representation of language. Work
on multilingual parsing using Neural Networks that
share some subset of the parameters across lan-
guages (Duong et al., 2015) seems to benefit the
low-resource languages; however, we are sharing all
the parameters among all languages.

Recent work has shown that modeling the se-
quence of characters in each token with an LSTM
can more effectively handle rare and unknown words
than independent word embeddings (Ling et al.,
2015; Ballesteros et al., 2015). Similarly, language
modeling, especially for morphologically complex
languages, benefits from a Convolutional Neural
Network (CNN) over characters to generate word
embeddings (Kim et al., 2015). Rather than de-
compose words into characters, Rohan and Denero
(2015) encode rare words with Huffman codes, al-
lowing a neural translation model to learn something
about word subcomponents. In contrast to this line
of research, our work has no explicit notion of to-
kens and operates on bytes rather than characters.

Our work is philosophically similar to Col-
lobert et al.’s (2011) experiments with “almost from
scratch” language processing. They avoid task-
specific feature engineering, instead relying on a
multilayer feedforward (or convolutional) Neural

Network to combine word embeddings to produce
features useful for each task. In the Results sec-
tion, below, we compare NER performance on the
same dataset they used. The “almost” in the ti-
tle actually refers to the use of preprocessed (low-
ercased) tokens as input instead of raw sequences
of letters. Our byte-level models can be seen as a
realization of their comment: “A completely from
scratch approach would presumably not know any-
thing about words at all and would work from letters
only.” Recent work with convolutional neural net-
works that read character-level inputs (Zhang et al.,
2015) shows some interesting results on a variety of
classification tasks, but because their models need
very large training sets, they do not present compar-
isons to established baselines on standard tasks.

Finally, recent work on Automatic Speech Recog-
nition (ASR) uses a similar sequence-to-sequence
LSTM framework to produce letter sequences di-
rectly from acoustic frame sequences (Chan et al.,
2015; Bahdanau et al., 2015). Just as we are dis-
carding the usual intermediate representations used
for text processing, their models make no use of pho-
netic alignments, clustered triphones, or pronunci-
ation dictionaries. This line of work – discarding
intermediate representations in speech – was pio-
neered by Graves and Jaitly (2014) and earlier, by
Eyben et al. (2009).

3 Model

Our model is based on the sequence-to-sequence
model used for machine translation (Sutskever et al.,
2014), an adaptation of an LSTM that encodes a
variable length input as a fixed-length vector, then
decodes it into a variable number of outputs4.

Generally, the sequence-to-sequence LSTM is
trained to estimate the conditional probability
P (y1, ..., yT ′ |x1, ..., xT) where (x1, ..., xT) is an
input sequence and (y1, ..., yT ′) is the correspond-
ing output sequence whose length T ′ may dif-
fer from T . The encoding step computes a
fixed-dimensional representation v of the input
(x1, ..., xT) given by the hidden state of the LSTM

4Related translation work adds an attention mechanism
(Bahdanau et al., 2014), allowing the decoder to attend directly
to particularly relevant inputs. We tried adding the same mech-
anism to our model but saw no improvement in performance on
the NER task, though training converged in fewer steps.

1298

after reading the last input xT . The decoding step
computes the output probability P (y1, ..., yT ′) with
the standard LSTM formulation for language mod-
eling, except that the initial hidden state is set to v:

P (y1, ..., yT ′ |x1, ..., xT) =
T ′∏
t=1

P (yt|v, y1, ..., yt−1)

(1)
Sutskever et al. used a separate LSTM for the en-

coding and decoding tasks. While this separation
permits training the encoder and decoder LSTMs
separately, say for multitask learning or pre-training,
we found our results were no worse if we used a sin-
gle set of LSTM parameters for both encoder and
decoder.

3.1 Vocabulary

The primary difference between our model and the
translation model is our novel choice of vocabulary.
The set of inputs include all 256 possible bytes, a
special Generate Output (GO) symbol, and a spe-
cial DROP symbol used for regularization, which
we will discuss below. The set of outputs include
all possible span start positions (byte 0..k), all pos-
sible span lengths (0..k), all span labels (PER, LOC,
ORG, MISC for the NER task), as well as a special
STOP symbol. A complete span annotation includes
a start, a length, and a label, but as shown in Fig-
ure 1, the model is trained to produce this triple as
three separate outputs. This keeps the vocabulary
size small and in practice, gives better performance
(and faster convergence) than if we use the cross-
product space of the triples.

More precisely, the prediction at time t is condi-
tioned on the full input and all previous predictions
(via the chain rule). By splitting each span anno-
tation into a sequence [start, length, label], we are
making no independence assumption; instead we are
relying on the model to maintain a memory state that
captures the important dependencies.

Each output distribution P (yt|v, y1, ..., yt−1) is
given by a softmax over all possible items in the out-
put vocabulary, so at a given time step, the model is
free to predict any start, any length, or any label (in-
cluding STOP). In practice, because the training data
always has these complete triples in a fixed order,
we seldom see malformed or incomplete spans (the

decoder simply ignores such spans). During train-
ing, the true label yt−1 is fed as input to the model
at step t (see Figure 1), and during inference, the
argmax prediction is used instead. Note also that
the training procedure tries to maximize the proba-
bility in Equation 1 (summed over all the training
examples). While this does not quite match our task
objectives (F1 over labels, for example), it is a rea-
sonable proxy.

3.2 Independent segments

Ideally, we would like our input segments to cover
full documents so that our predictions are condi-
tioned on as much relevant information as possible.
However, this is impractical for a few reasons. From
a training perspective, a Recurrent Neural Network
is unrolled to resemble a deep feedforward network,
with each layer corresponding to a time step. It
is well-known that running backpropagation over a
very deep network is hard because it becomes in-
creasingly difficult to estimate the contribution of
each layer to the gradient, and further, RNNs have
trouble generalizing to different length inputs (Er-
han et al., 2009).

So instead of document-sized input segments,
we make a segment-independence assumption: We
choose some fixed length k and train the model on
segments of length k (any span annotation not com-
pletely contained in a segment is ignored). This has
the added benefit of limiting the range of the start
and length label components. It can also allow for
more efficient batched inference since each segment
is decoded independently. Finally, we can generate a
large number of training segments by sliding a win-
dow of size k one byte at a time through a document.
Note that the resulting training segments can begin
and end mid-word, and indeed, mid-character. For
both tasks described below, we set the segment size
k = 60.

3.3 Sequence ordering

Our model differs from the translation model in one
more important way. Sutskever et al. found that
feeding the input words in reverse order and gen-
erating the output words in forward order gave sig-
nificantly better translations, especially for long sen-
tences. In theory, the predictions are conditioned on
the entire input, but as a practical matter, the learn-

1299

ing problem is easier when relevant information is
ordered appropriately since long dependencies are
harder to learn than short ones.

Because the byte order is more meaningful in the
forward direction (the first byte of a multibyte char-
acter specifies the length, for example), we found
somewhat better performance with forward order
than reverse order (less than 1% absolute). But un-
like translation, where the outputs have a complex
order determined by the syntax of the language, our
span annotations are more like an unordered set. We
tried sorting them by end position in both forward
and backward order, and found a small improvement
(again, less than 1% absolute) using the backward
ordering (assuming the input is given in the forward
order). This result validates the translation ordering
experiments: the modeling problem is easier when
the sequence-to-sequence LSTM is used more like a
stack than a queue.

3.4 Model shape
We experimented with a few different architectures
and found no significant improvements in using
more than 320 units for the embedding dimension
and LSTM memory and 4 stacked LSTMs (see Table
4). This observation holds for both models trained
on a single language and models trained on many
languages. Because the vocabulary is so small, the
total number of parameters is dominated by the size
of the recurrent matrices. All the results reported
below use the same architecture (unless otherwise
noted) and thus have roughly 900k parameters.

4 Training

We trained our models with Stochastic Gradient De-
scent (SGD) on mini-batches of size 128, using an
initial learning rate of 0.3. For all other hyper-
parameter choices, including random initialization,
learning rate decay, and gradient clipping, we fol-
low Sutskever et al. (2014). Each model is trained
on a single CPU over a period of a few days, at
which point, development set results have stabilized.
Distributed training on GPUs would likely speed up
training to just a few hours.

4.1 Dropout and byte-dropout
Neural Network models are often trained using
dropout (Hinton et al., 2012), which tends to im-

prove generalization by limiting correlations among
hidden units. During training, dropout randomly ze-
roes some fraction of the elements in the embedding
layer and the model state just before the softmax
layer (Zaremba et al., 2014).

We were able to further improve generalization
with a technique we are calling byte-dropout: We
randomly replace some fraction of the input bytes in
each segment with a special DROP symbol (without
changing the corresponding span annotations). Intu-
itively, this results in a more robust model, perhaps
by forcing it to use longer-range dependencies rather
than memorizing particular local sequences.

It is worth noting that noise is often added at
training time to images in image classification and
speech in speech recognition where the added noise
does not fundamentally alter the input, but rather
blurs it. By using a byte representation of language,
we are now capable of achieving something like
blurring with text. Indeed, if we removed 20% of
the characters in a sentence, humans would be able
to infer words and meaning reasonably well.

5 Inference

We perform inference on a segment by (greedily)
computing the most likely output at each time step
and feeding it to the next time step. Experiments
with beam search show no meaningful improve-
ments (less than 0.2% absolute). Because we as-
sume that each segment is independent, we need to
choose how to break up the input into segments and
how to stitch together the results.

The simplest approach is to divide up the input
into segments with no overlapping bytes. Because
the model is trained to ignore incomplete spans, this
approach misses all spans that cross segment bound-
aries, which, depending on the choice of k, can be a
significant number. We avoid the missed-span prob-
lem by choosing segments that overlap such that
each span is likely to be fully contained by at least
one segment.

For our experiments, we create segments with a
fixed overlap (k/2 = 30). This means that with
the exception of the first segment in a document, the
model reads 60 bytes of input, but we only keep pre-
dictions about the last 30 bytes.

1300

6 Results

Here we describe experiments on two datasets that
include annotations across a variety of languages.
The multilingual datasets allow us to highlight the
advantages of using byte-level inputs: First, we can
train a single compact model that can handle many
languages at once. Second, we demonstrate some
cross-lingual abstraction that improves performance
of a single multilingual model over each single-
language model. In the experiments, we refer to
the LSTM setup described above as Byte-to-Span or
BTS.

Most state-of-the-art results in POS tagging and
NER leverage unlabeled data to improve a super-
vised baseline. For example, word clusters or word
embeddings estimated from a large corpus are of-
ten used to help deal with sparsity. Because our
LSTM models are reading bytes, it is not obvious
how to insert information like a word cluster iden-
tity. Recent results with sequence-to-sequence auto-
encoding (Dai and Le, 2015) seem promising in this
regard, but here we limit our experiments to use just
annotated data.

Each task specifies separate data for training, de-
velopment, and testing. We used the development
data for tuning the dropout and byte-dropout pa-
rameters (since these likely depend on the amount
of available training data), but did not tune the re-
maining hyperparameters. In total, our training set
for POS Tagging across 13 languages included 2.87
million tokens and our training set for NER across
4 languages included 0.88 million tokens. Recall,
though, that our training examples are 60-byte seg-
ments obtained by sliding a window through the
training data, shifting by 1 byte each time. This re-
sults in 25.3 million and 6.0 million training seg-
ments for the two tasks.

6.1 Part-of-Speech Tagging
Our part-of-speech tagging experiments use Version
1.1 of the Universal Dependency data5, a collection
of treebanks across many languages annotated with
a universal tagset (Petrov et al., 2011). The most
relevant recent work (Ling et al., 2015) uses differ-
ent datasets, with different finer-grained tagsets in
each language. Because we are primary interested

5http://universaldependencies.github.io/docs/

in multilingual models that can share language-
independent parameters, the universal tagset is im-
portant, and thus our results are not immediately
comparable. However, we provide baseline results
(for each language separately) using a Conditional
Random Field (Lafferty et al., 2001) with an exten-
sive collection of features with performance compa-
rable to the Stanford POS tagger (Manning, 2011).
For our experiments, we chose the 13 languages that
had at least 50k tokens of training data. We did not
subsample the training data, though the amount of
data varies widely across languages, but rather shuf-
fled all training examples together. These languages
represent a broad range of linguistic phenomena and
character sets so it was not obvious at the outset that
a single multilingual model would work.

Table 1 compares the baselines with (CRF+) and
without (CRF) externally trained cluster features
with our model trained on all languages (BTS) as
well as each language separately (BTS*). The single
BTS model improves on average over the CRF mod-
els trained using the same data, though clearly there
is some benefit in using external resources. Note
that BTS is particularly strong in Finnish, surpass-
ing even CRF+ by nearly 1.5% (absolute), probably
because the byte representation generalizes better to
agglutinative languages than word-based models, a
finding validated by Ling et al. (2015). In addi-
tion, the baseline CRF models, including the (com-
pressed) cluster tables, require about 50 MB per lan-
guage, while BTS is under 10 MB. BTS improves
on average over BTS*, suggesting that it is learning
some language-independent representation.

6.2 Named Entity Recognition

Our main motivation for showing POS tagging re-
sults was to demonstrate how effective a single BTS
model can be across a wide range of languages. The
NER task is a more interesting test case because,
as discussed in the introduction, it usually relies
on a pipeline of processing. We use the 2002 and
2003 ConLL shared task datasets6 for multilingual
NER because they contain data in 4 languages (En-
glish, German, Spanish, and Dutch) with consistent
annotations of named entities (PER, LOC, ORG,
and MISC). In addition, the shared task competition

6http://www.cnts.ua.ac.be/conll200{2,3}/ner

1301

Language CRF+ CRF BTS BTS*
Bulgarian 97.97 97.00 97.84 97.02
Czech 98.38 98.00 98.50 98.44
Danish 95.93 95.06 95.52 92.45
German 93.08 91.99 92.87 92.34
Greek 97.72 97.21 97.39 96.64
English 95.11 94.51 93.87 94.00
Spanish 96.08 95.03 95.80 95.26
Farsi 96.59 96.25 96.82 96.76
Finnish 94.34 92.82 95.48 96.05
French 96.00 95.93 95.75 95.17
Indonesian 92.84 92.71 92.85 91.03
Italian 97.70 97.61 97.56 97.40
Swedish 96.81 96.15 95.57 93.17
AVERAGE 96.04 95.41 95.85 95.06

Table 1: Part-of-speech tagging accuracy for two CRF base-

lines and 2 versions of BTS. CRF+ uses resources external to

the training data (word clusters) and CRF uses only the training

data. BTS (unlike CRF+ and CRF) is a single model trained

on all the languages together, while BTS* is a separate Byte-to-

Span model for each language.

produced strong baseline numbers for comparison.
However, most published results use extra informa-
tion beyond the provided training data which makes
fair comparison with our model more difficult.

The best competition results for English and Ger-
man (Florian et al., 2003) used a large gazetteer
and the output of two additional NER classifiers
trained on richer datasets. Since 2003, better results
have been reported using additional semi-supervised
techniques (Ando and Zhang, 2005) and more re-
cently, Passos et al. (2014) claimed the best En-
glish results (90.90% F1) using features derived
from word-embeddings. The 1st place submission
in 2002 (Carreras et al., 2002) comment that with-
out extra resources for Spanish, their results drop by
about 2% (absolute).

Perhaps the most relevant comparison is the over-
all 2nd place submission in 2003 (Klein et al., 2003).
They use only the provided data and report results
with character-based models which provide a useful
comparison point to our byte-based LSTM. The per-
formance of a character HMM alone is much worse
than their best result (83.2% vs 92.3% on the En-
glish development data), which includes a variety of
word and POS-tag features that describe the context

(as well as some post-processing rules). For English
(assuming just ASCII strings), the character HMM
uses the same inputs as BTS, but is hindered by
some combination of the independence assumption
and smaller capacity.

Collobert et al.’s (2011) convolutional model (dis-
cussed above) gives 81.47% F1 on the English test
set when trained on only the gold data. However, by
using carefully selected word-embeddings trained
on external data, they are able to increase F1 to
88.67%. Huang et al. (2015) improve on Collobert’s
results by using a bidirectional LSTM with a CRF
layer where the inputs are features describing the
words in each sentence. Either by virtue of the more
powerful model, or because of more expressive fea-
tures, they report 84.26% F1 on the same test set
and 90.10% when they add pretrained word embed-
ding features. Dos Santos et al. (2015) represent
each word by concatenating a pretrained word em-
bedding with a character-level embedding produced
by a convolutional neural network.

There is relatively little work on multilingual
NER, and most research is focused on building sys-
tems that are unsupervised in the sense that they use
resources like Wikipedia and Freebase rather than
manually annotated data. Nothman et al. (2013) use
Wikipedia anchor links and disambiguation pages
joined with Freebase types to create a huge amount
of somewhat noisy training data and are able to
achieve good results on many languages (with some
extra heuristics). These results are also included in
Table 2.

While BTS does not improve on the state-of-
the-art in English, its performance is better than
the best previous results that use only the provided
training data. BTS improves significantly on the
best known results in German, Spanish, and Dutch
even though these leverage external data. In addi-
tion, the BTS* models, trained separately on each
language, are worse than the single BTS model
(with the same number of parameters as each single-
language model) trained on all languages combined,
again suggesting that the model is learning some
language-independent representation of the task.

One interesting shortcoming of the BTS model is
that it is not obvious how to tune it to increase re-
call. In a standard classifier framework, we could
simply increase the prediction threshold to increase

1302

Model en de es nl
Passos 90.90 – – –
Ando 89.31 75.27 – –
Florian 88.76 72.41 – –
Carreras – – 81.39 77.05
dos Santos – – 82.21 –
Nothman 85.2 66.5 79.6 78.6
Klein 86.07 71.90 – –
Huang 84.26 – – –
Collobert 81.47 – – –
BTS 86.50 76.22 82.95 82.84
BTS* 84.57 72.08 81.83 78.08

Table 2: A comparison of NER systems. The results are F1

scores, where a correct span annotation exactly matches a gold

span annotation (start, length, and entity type must all be cor-

rect). Results of the systems described in the text are shown for

English, German, Spanish, and Dutch. BTS* shows the results

of the BTS model trained separately on each language while

BTS is a single model trained on all 4 languages together. The

top set of results leverage resources beyond the training data;

the middle set do not, and thus are most comparable to our re-

sults (bottom set).

precision and decrease the prediction threshold to in-
crease recall. However, because we only produce
annotations for spans (non-spans are not annotated),
we can adjust a threshold on total span probability
(the product of the start, length, and label probabili-
ties) to increase precision, but there is no clear way
to increase recall. The untuned model tends to pre-
fer precision over recall already, so some heuristic
for increasing recall might improve our overall F1
results.

6.3 Dropout and Stacked LSTMs

There are many modeling options and hyperparam-
eters that significantly impact the performance of
Neural Networks. Here we show the results of a
few experiments that were particularly relevant to
the performance obtained above.

First, Table 3 shows how dropout and byte-
dropout improve performance for both tasks. With-
out any kind of dropout, the training process starts to
overfit (development data perplexity starts increas-
ing) relatively quickly. For POS tagging, we set
dropout and byte-dropout to 0.2, while for NER, we
set both to 0.3. This significantly reduces the over-

fitting problem.

BTS Training POS Accuracy NER F1
Vanilla 94.78 74.75
+ Dropout 95.35 78.76
+ Byte-dropout 95.85 82.13

Table 3: BTS Part-of-speech tagging average accuracy across

all 13 evaluated languages and Named Entity Recognition aver-

age F1 across all 4 evaluated languages with various modifica-

tions to the vanilla training setup. Dropout is standard in Neural

Network model training because it often improves generaliza-

tion; Byte-dropout randomly replaces input bytes with a special

DROP marker.

Depth Width=320 Width=640
1 76.15 77.59
2 79.40 79.73
3 81.44 81.93
4 82.13 82.18

Table 4: Macro-averaged (across 4 languages) F1 for the NER

task using different model architectures.

Second, Table 4 shows how performance im-
proves as we increase the size of the model in two
ways: the number of units in the model’s state
(width) and the number of stacked LSTMs (depth).
Increasing the width of the model improves perfor-
mance less than increasing the depth, and once we
use 4 stacked LSTMs, the added benefit of a much
wider model has disappeared. This result suggests
that rather than learning to partition the space of in-
puts according to the source language, the model is
learning some lanugage-independent representation
at the deeper levels.

To validate our claim about language-independent
representation, Figure 2 shows the results of a tSNE
plot of the LSTM’s memory state when the output
is one of PER, LOC, ORG, MISC across the four
languages. While the label clusters are neatly sepa-
rated, the examples of each individual label do not
appear to be clustered by language. Thus rather than
partitioning each (label, language) combination, the
model is learning unified label representations that
are independent of the language.

7 Conclusions

We have described a model that uses a sequence-to-
sequence LSTM framework that reads a segment of

1303

40 30 20 10 0 10 20 30 40 50
40

30

20

10

0

10

20

30

40

50

LOC en

LOC de

LOC es

LOC nl

MISC en

MISC de

MISC es

MISC nl

ORG en

ORG de

ORG es

ORG nl

PER en

PER de

PER es

PER nl

Figure 2: A tSNE plot of the BTS model’s memory state just before the softmax layer produces one of the NER labels.

text one byte at a time and then produces span anno-
tations over the inputs. This work makes a number
of novel contributions:

First, we use the bytes in variable length unicode
encodings as inputs. This makes the model vocab-
ulary very small and also allows us to train a mul-
tilingual model that improves over single-language
models without using additional parameters. We in-
troduce byte-dropout, an analog to added noise in
speech or blurring in images, which significantly im-
proves generalization.

Second, the model produces span annotations,
where each is a sequence of three outputs: a start
position, a length, and a label. This decomposi-
tion keeps the output vocabulary small and marks a
significant departure from the typical Begin-Inside-
Outside (BIO) scheme used for labeling sequences.

Finally, the models are much more compact than
traditional word-based systems and they are stan-
dalone – no processing pipeline is needed. In par-
ticular, we do not need a tokenizer to segment text
in each of the input languages.

Acknowledgments

Many thanks to Fernando Pereira and Dan Ramage
for their insights about this project from the outset.
Thanks also to Cree Howard for creating Figure 1.

References

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. The Journal of Machine Learning
Research, 6:1817–1853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philemon Brakel, and Yoshua Bengio. 2015. End-
to-end attention-based large vocabulary speech recog-
nition. arXiv preprint arXiv:1508.04395.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by modeling
characters instead of words with lstms. arXiv preprint
arXiv:1508.00657.

Xavier Carreras, Lluı́s Màrques, and Lluı́s Padró. 2002.

1304

Named entity extraction using adaboost. In Proceed-
ings of CoNLL-2002, pages 167–170. Taipei, Taiwan.

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol
Vinyals. 2015. Listen, attend and spell. arXiv preprint
arXiv:1508.01211.

Rohan Chitnis and John DeNero. 2015. Variable-length
word encodings for neural translation models. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2088–
2093.

Kenneth Ward Church. 1993. Char align: a program for
aligning parallel texts at the character level. In Pro-
ceedings of the 31st annual meeting on Association for
Computational Linguistics, pages 1–8. Association for
Computational Linguistics.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. arXiv preprint arXiv:1511.01432.

Cıcero dos Santos, Victor Guimaraes, RJ Niterói, and Rio
de Janeiro. 2015. Boosting named entity recogni-
tion with neural character embeddings. In Proceed-
ings of NEWS 2015 The Fifth Named Entities Work-
shop, page 25.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser.
In 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume
2: Short Papers), pages 845–850.

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent. 2009. The
difficulty of training deep architectures and the effect
of unsupervised pre-training. In International Con-
ference on artificial intelligence and statistics, pages
153–160.

Florian Eyben, Martin Wöllmer, Björn Schuller, and Alex
Graves. 2009. From speech to letters-using a novel
neural network architecture for grapheme based asr.
In Automatic Speech Recognition & Understanding,
2009. ASRU 2009. IEEE Workshop on, pages 376–380.
IEEE.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong
Zhang. 2003. Named entity recognition through clas-
sifier combination. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL
2003-Volume 4, pages 168–171. Association for Com-
putational Linguistics.

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos
Gritzalis, and Sokratis Katsikas. 2006. Effective iden-
tification of source code authors using byte-level in-
formation. In Proceedings of the 28th international
conference on Software engineering, pages 893–896.
ACM.

Alex Graves and Navdeep Jaitly. 2014. Towards end-to-
end speech recognition with recurrent neural networks.
In Proceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1764–1772.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. arXiv preprint arXiv:1508.06615.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christo-
pher D Manning. 2003. Named entity recognition
with character-level models. In Proceedings of the
seventh conference on Natural language learning at
HLT-NAACL 2003-Volume 4, pages 180–183. Associ-
ation for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Christopher D Manning. 2011. Part-of-speech tagging
from 97% to 100%: is it time for some linguistics?
In Computational Linguistics and Intelligent Text Pro-
cessing, pages 171–189. Springer.

Tetsuji Nakagawa. 2004. Chinese and japanese word
segmentation using word-level and character-level in-
formation. In Proceedings of the 20th international
conference on Computational Linguistics, page 466.
Association for Computational Linguistics.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R Curran. 2013. Learning multilin-
gual named entity recognition from wikipedia. Artifi-
cial Intelligence, 194:151–175.

1305

Alexandre Passos, Vineet Kumar, and Andrew Mc-
Callum. 2014. Lexicon infused phrase embed-
dings for named entity resolution. arXiv preprint
arXiv:1404.5367.

Fuchun Peng, Dale Schuurmans, Shaojun Wang, and
Vlado Keselj. 2003. Language independent author-
ship attribution using character level language mod-
els. In Proceedings of the tenth conference on Eu-
ropean chapter of the Association for Computational
Linguistics-Volume 1, pages 267–274. Association for
Computational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. In Advances in Neural Information Process-
ing Systems, pages 649–657.

1306

Proceedings of NAACL-HLT 2016, pages 1307–1317,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Ten Pairs to Tag – Multilingual POS Tagging via Coarse Mapping between
Embeddings

Yuan Zhang, David Gaddy, Regina Barzilay, and Tommi Jaakkola
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{yuanzh, dgaddy, regina, tommi}@csail.mit.edu

Abstract

In the absence of annotations in the target lan-
guage, multilingual models typically draw on
extensive parallel resources. In this paper, we
demonstrate that accurate multilingual part-
of-speech (POS) tagging can be done with just
a few (e.g., ten) word translation pairs. We
use the translation pairs to establish a coarse
linear isometric (orthonormal) mapping be-
tween monolingual embeddings. This en-
ables the supervised source model expressed
in terms of embeddings to be used directly
on the target language. We further refine the
model in an unsupervised manner by initial-
izing and regularizing it to be close to the di-
rect transfer model. Averaged across six lan-
guages, our model yields a 37.5% absolute
improvement over the monolingual prototype-
driven method (Haghighi and Klein, 2006)
when using a comparable amount of super-
vision. Moreover, to highlight key linguistic
characteristics of the generated tags, we use
them to predict typological properties of lan-
guages, obtaining a 50% error reduction rela-
tive to the prototype model.1

1 Introduction

After two decades of study, the best performing mul-
tilingual methods can in some cases approach their
supervised monolingual analogues. To reach this
level of performance, however, multilingual meth-
ods typically make use of significant parallel re-
sources such as parallel translations or bilingual dic-

1Our code and data are available at https://github.
com/yuanzh/transfer_pos.

tionaries. These resources act as substitutes for ex-
plicit annotations available in the target language for
supervised methods. It is less clear what can be
done without extensive parallel resources. Indeed,
the motivation for our paper comes from trying to
understand how little parallel data is necessary for
effective multilingual transfer.

In this paper, we demonstrate that only ten word
translation pairs suffice for effective multilingual
transfer of part-of-speech (POS) tagging. To achieve
this we make use of and integrate two sources of
statistical signal. First, we enable transfer of infor-
mation from the source to target languages by es-
tablishing a coarse mapping between word embed-
dings in two languages on the basis of the few avail-
able translation pairs. The mapping is useful be-
cause of significant structural similarity of embed-
ding spaces across languages. Second, we lever-
age the potential of unsupervised monolingual mod-
els to capture language-specific syntactic properties.
The two sources of signals are largely complemen-
tary. Embeddings provide a coarse alignment be-
tween languages while unsupervised methods fine
tune the correspondences in service of the task at
hand. While unsupervised methods are fragile and
challenging to estimate in general, they can be help-
ful if initialized and regularized properly, which is
our focus.

In order to transfer annotations, we align mono-
lingual embeddings between languages. However, a
full fine-grained alignment is not possible with only
ten translation pairs due to differences between the
languages and variations across raw corpora from
which the embeddings are derived. Instead, we re-

1307

strict the initial coarse mapping to be linear and iso-
metric (orthonormal) so as to leave lengths and an-
gles between the word vectors invariant. One ad-
vantage is that this preserves cosine similarity be-
tween vectors, which is viewed as a proxy for syn-
tactic/semantic similarity (Mikolov et al., 2013a;
Pennington et al., 2014; Herbelot and Vecchi, 2015).
The resulting coarse alignment is then used to ini-
tialize and guide an unsupervised model over the tar-
get language.

Our unsupervised model is a feature-based hidden
Markov model (HMM) expressed in terms of word
embeddings. By establishing a common multilin-
gual embedding space, we can map the source HMM
estimated from supervised annotations directly to
the target. The resulting “direct transfer” model
should be further adjusted as languages differ, and
the initial alignment obtained based on embeddings
is imperfect. For this reason we cast the direct trans-
fer model as a regularizer for the target HMM, and
permit the HMM to further adjust the embedding
transformations and relations of embeddings to the
tags both globally (overall rotation and scaling) and
locally (introducing small corrections).

Our two phase approach is simple to implement,
performs well, and can be adapted to other NLP
tasks. We evaluate our approach on POS tagging
using the multilingual universal dependency tree-
banks (Nivre et al., 2016). Specifically, we use En-
glish as the source language and test on three Indo-
European languages (Danish, German and Spanish)
and three non-Indo-European-languages (Finnish,
Hungarian and Indonesian). Experimental results
show that our method consistently outperforms var-
ious baselines across languages. On average, our
full model achieves 8% absolute improvement over
the direct transfer counterpart. We also compare
against a prototype-driven tagger (Haghighi and
Klein, 2006) using 14 prototypes as supervision.
Our model significantly outperforms Haghighi and
Klein (2006)’s model by 37.5% (67.5% vs 30%).

We also introduce a novel task-based evaluation
of automatic POS taggers, where tagger predictions
are used to determine typological properties of the
target language. This evaluation highlights key lin-
guistic features of the generated tags. On this task,
our model achieves 80% accuracy, yielding 50% er-
ror reduction relative to the prototype model.

2 Related Work

Multilingual POS Tagging Prior work on mul-
tilingual POS tagging has mainly focused on the
tag projection method (Yarowsky et al., 2001; Wis-
niewski et al., 2014; Duong et al., 2013; Duong et
al., 2014; Täckström et al., 2013; Das and Petrov,
2011; Snyder et al., 2008; Naseem et al., 2009; Chen
et al., 2011). All these approaches assume access to
a large amount of parallel sentences to facilitate mul-
tilingual transfer. In our work, we focus on a more
challenging scenario, in which we do not assume ac-
cess to parallel sentences. Instead of projecting tag
information via word alignment, the transfer in our
model is driven by mapping multilingual embedding
spaces. Kim et al. (2015) also use latent word repre-
sentations for multilingual transfer. However, simi-
larly to prior work, this representation is learned us-
ing parallel data.

The feasibility of POS tagging transfer with-
out parallel data has been shown by Hana et al.
(2004). The transfer is performed between ty-
pologically similar languages, which enables the
model to directly transfer the transition probabil-
ities from source to the target. Moreover, emis-
sion probabilities are hand-engineered to capture
language-specific morphological properties. In con-
trast, our method does not require any language-
specific knowledge on the target side.

Multilingual Word Embeddings There is an ex-
pansive body of research on learning multilingual
word embeddings (Gouws et al., 2014; Faruqui and
Dyer, 2014; Lu et al., 2015; Lauly et al., 2014; Lu-
ong et al., 2015). Previous work has shown its effec-
tiveness across a wide range of multilingual transfer
tasks including tagging (Kim et al., 2015), syntac-
tic parsing (Xiao and Guo, 2014; Guo et al., 2015;
Durrett et al., 2012), and machine translation (Zou
et al., 2013; Mikolov et al., 2013b). However, these
approaches commonly require parallel sentences or
bilingual lexicon to learn multilingual embeddings.
Vulic and Moens (2015) have alleviated the require-
ments by inducing multilingual word embeddings
directly from a document-aligned corpus such as a
set of Wikipedia pages on the same theme but in
different languages. However, they still used about
ten thousands aligned documents as parallel super-
vision. Our work demonstrates that useful multi-

1308

lingual embeddings can be learned with a minimal
amount of parallel supervision.

3 Multilingual POS Tagger

Our method is designed to operate in the regime
where there are no parallel sentences or target an-
notations. We assume only a few, in our case ten,
word translation pairs. This small number of transla-
tion pairs together with the tags that they carry from
the source to the target do not provide sufficient in-
formation to train a reasonable supervised tagger,
even for very close languages where word transla-
tions would be mostly one-to-one and tags fully pre-
served in translation. Other cues are necessary.

The few translation pairs provide just enough in-
formation to obtain a coarse global alignment be-
tween the source and target language embeddings.
We limit the initial linear transformation between
embeddings to isometric (orthonormal) mappings so
as to preserve norms and angles (e.g., cosine simi-
larities) between words. Once the embeddings are
aligned, any source language model expressed in
terms of embeddings can be mapped to a target lan-
guage model. The approach is akin to direct trans-
fer commonly applied in parsing (McDonald et al.,
2011; Zeman and Resnik, 2008) though often with
more information. We use the term “direct trans-
fer” to mean the process where no further adjust-
ment is performed beyond the immediate mapping
via (coarsely) aligned embeddings.

Direct transfer is insufficient between languages
that are syntactically (even moderately) divergent.
Instead, we use the directly transferred model
to initialize and regularize an unsupervised tag-
ger. Specifically, we employ a feature-based
HMM (Berg-Kirkpatrick et al., 2010) tagger for both
the source and target languages with two impor-
tant modifications. The emission probabilities in the
source language HMM are expressed solely in terms
of word embeddings (cf. skip-gram models). Such
distributions can be directly transferred to the tar-
get domain. Our target language HMM is, however,
equipped with additional adjustable parameters that
can be learned in an unsupervised manner. These
include parameters for modifying the initial global
linear transformation between embeddings. Beyond
this linear transformation, we also add “correction

terms” to each tag-word pair that are in principle
sufficient to specify any HMM. Both of these ad-
ditional sets of parameters are regularized towards
keeping the initial direct transfer model. As a result,
our strongly governed unsupervised tagger can suc-
ceed where an unguided unsupervised tagger would
typically fail.

In the remainder of this section, we describe the
approach more formally, starting with the coarse
alignment between embeddings, followed by the su-
pervised feature-based HMM, and the unsupervised
target language HMM.

3.1 Isometric Alignment of Word Embeddings
Here we find a linear transformation from the target
language embeddings to the source language em-
beddings using the translation pairs. The result-
ing transformation permits us to directly apply any
source language model on the target language, i.e., it
enables direct transfer. To this end, let V s ∈ Rns×d

and V t ∈ Rnt×d be the word embeddings estimated
for the source and target languages, respectively,
with vocabulary sizes ns and nt. All the embeddings
are of dimension d. The submatrices of embeddings
pertaining to k anchor words (from translation pairs)
are denoted as Σs and Σt, where Σs,Σt ∈ Rk×d.

We find a linear transformation P ∈ Rd×d that
best aligns the embeddings of the translation pairs
in the sense of minimizing

||ΣtP −Σs||2 (1)

subject to the isometric (orthonormal) constraint
P TP = I . We use the steepest descent algo-
rithm (Abrudan et al., 2008) to solve this optimiza-
tion problem.2 Once P is available, we can map
all the target language embeddings V t to the source
language space with V tP . Note that since typically
in our setting k < d (e.g. k = 10) additional con-
straints such as isometry are required.

Motivation behind the Isometric Constraint We
impose isometry on the linear transformation so as
to preserve angles and lengths of the word vectors
after the transformation. A number of recent studies
have explored the use of cosine similarity of word

2Our implementation is based on the toolkit available
at http://legacy.spa.aalto.fi/sig-legacy/
unitary_optimization/.

1309

Rank of e2 in neighbors of e1

2 4 6 8 10

%
W

or
d

p
a
ir
s
(w

1
;w

2
)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 1: Cumulative fraction of word translation pairs among

top 1,000 most frequent words where the nearest neighbor of

a German word (vector) appears as the rth nearest neighbor

after translation, measured in terms of their monolingual word

embeddings.

vectors as a measure of semantic relations between
words. Thus, for example, if two words have high
cosine similarity in German (target), the correspond-
ing words in English (source) should also be simi-
lar. To validate our isometric constraint further, we
verify whether nearest neighbors are preserved in
monolingual embeddings after translation. To this
end, we take the top 1,000 most frequent words in
German and their translations into English and ask
whether nearest neighbors are preserved if measured
in terms of their monolingual embeddings. For each
word vector w1 and its nearest neighbor w2 in Ger-
man, let e1 and e2 be the corresponding English vec-
tors. We compute the rank of e2 in the ordered list
of nearest neighbors of e1. As Figure 1 shows, in
more than 50% of word pairs, e2 is among the top-2
neighbors of e1. In over 90% of the word pairs e2 is
among e1’s top-10 closest neighbors.

For the purposes of comparison (see Section 5),
we introduce also a linear transformation without
isometry. In other words, we find P that minimizes
||ΣtP − Σs||2 via the Moore–Penrose pseudoin-
verse (Moore, 1920; Penrose, 1955). Specifically,
let Σ+

t be the pseudoinverse of Σt. Then the solu-
tion takes the form P = Σ+

t Σs, and has the mini-
mum Frobenius norm among all possible solutions.

3.2 Supervised Source Language HMM
Here we briefly describe how we train a supervised
tagger on the source language. The resulting model,
together with aligned embeddings, specifies the di-
rect transfer model. It will also be used to initialize
and guide the unsupervised tagger on the target lan-

guage.
Our model has the same structure as the standard

HMM but we replace the transition and emission
probabilities with log-linear models (cf. feature-
based HMM by Berg-Kirkpatrick et al. (2010)). The
transition probabilities include all indicator features
and therefore impose no additional constraints. The
emission probabilities, in contrast, are expressed en-
tirely in terms of word embeddings vx as features.
More formally, the emission probability of word x
given tag y is given by

pθ(x|y) ∝ exp{vTxµy } (2)

Note that the parameters µy (one vector per tag)
can be viewed as tag embeddings. This supervised
tagging model is trained to maximize the joint log-
likelihood with l2-regularization over parameters.
We use the L-BFGS (Liu and Nocedal, 1989) algo-
rithm to optimize the parameters.

Once the HMM has been trained, we can specify
the direct transfer model. It has the same transition
probabilities but the emission probabilities are mod-
ified according to pdtθ (x|y) ∝ exp{vTxPµy } where
vx is now the monolingual target embedding, trans-
formed into the source space via vTxP . We apply the
Viterbi algorithm to predict the most likely POS tag
sequence.

3.3 Unsupervised Target Language HMM
Our unsupervised HMM for the target language
is strictly more expressive than the direct transfer
model so as to better tailor it to the target lan-
guage. Let vx again be the monolingual target em-
beddings estimated separately, prior to the HMMs.
We map these vectors to the source language em-
bedding space via vTxP as discussed earlier, where
P is already set and no longer considered a parame-
ter. The form of the emission probabilities

ptθ(x|y) ∝ exp{vTxPMµy + θx,y} (3)

includes two modifications to the direct transfer
model. First, we have introduced an additional
global linear transformationM to correct the initial
alignment represented by P . Second, we include
per-symbol parameters θx,y which, in principle, are
capable of specifying any emission distribution on
their own. The adjustable parameters in this model

1310

(denoted collectively θ) are M , {µy}, {θx,y}, and
the parameters pertaining to the transition probabil-
ities. If we setM = I , θx,y = 0 for all x and y, and
borrowµy and the transition parameters from the su-
pervised HMM, then we recover the direct transfer
model. Let θ0 denote this setting of the parameters.
In other words, the unsupervised HMM with initial
parameters θ0 is the direct transfer model.

Our approach include initializing θ = θ0 and later
regularizing θ to remain close to θ0. The motivation
behind this approach is two-fold. First, the initial
alignment between embeddings was obtained only
on the basis of the few available anchor words and
may therefore need to be adjusted. Note that the
linear transformation of embeddings now involves
scaling and is no longer necessarily isometric. Sec-
ond, the source and target languages differ and the
embeddings are not strictly related to each other
via any global linear transformation. We can inter-
pret parameters θx,y as local (per word) non-linear
deformations of the embedding vectors that spec-
ify the emission probabilities. We allow only small
non-linear corrections by regularizing θx,y to remain
close to zero, i.e., the values they have in θ0.

Our unsupervised HMM is estimated by maxi-
mizing the regularized log-likelihood

L(θ) =
n∑
i=1

logPθ(xi)− β

2
||θ − θ0||22 (4)

where xi is the ith target language sentence, Pθ(xi)
is the HMM with parameters θ, and n is the number
of sentences in the target text to be annotated. Since
all the parameters in the model are in a log-linear
form, we simply use the regularization parameter β.
Once estimated, we use the Viterbi algorithm to pre-
dict the most likely POS tag sequence.

Estimation Details We maximize L(θ) using the
Expectation-maximization (EM) algorithm. In the
E-step, we evaluate expected counts ey′,y for tag-
tag and ex,y for word-tag pairs, using the forward-
backward algorithm. The M-step searches for θ that
maximizes

l(θ) =
∑
y′,y

ey′,y log ptθ(y
′|y) +

∑
x,y

ex,y log ptθ(x|y)

− β

2
||θ − θ0||22 (5)

The maximization can be be done via L-BFGS
which involves computing the gradients of
log ptθ(y

′|y) and log ptθ(x|y) with respect to θ
at every iteration. Because the conditional probabil-
ities are expressed in a log-linear form, the gradients
take on typical forms such as

dl(θ)
dµy

=
∑
x

ex,y(vTxPM −
∑
x′
ptθ(x

′|y)vTx′PM)

− β(µy − µ0y)
dl(θ)
dM

=
∑
x,y

ex,y(P Tvxµ
T
y −

∑
x′
ptθ(x

′|y)P Tvx′µ
T
y)

− β(M − I) (6)

where µ0y are initial values for µy.

4 Experimental Setup

Dataset We evaluate our method on the latest
Version 1.2 of the Universal Dependencies Tree-
banks (Nivre et al., 2016; McDonald et al., 2013).
We use English as the source language and six other
languages as targets. Specifically, we choose three
Indo-European languages: Danish (da), German
(de), Spanish (es), and three non-Indo-European lan-
guages: Finnish (fi), Hungarian (hu), Indonesian
(id). All treebanks are annotated with the same uni-
versal POS tagset. In our work, we map proper
nouns to nouns and map symbol marks3 and inter-
jections to a catch-all tag X because it is hard and
unnecessary to disambiguate them in a low-resource
learning scenario. After mapping, our tagset in-
cludes the following 14 tags: noun, verb, auxiliary
verb, adjective, adverb, pronoun, determiner, adpo-
sition, numeral, conjunction, sentence conjunction,
particle, punctuation mark, and a catch-all tag X.
Note that this universal tagset contains two more
tags than the traditional universal tagset proposed
by Petrov et al. (2011): auxiliary verb and sentence
conjunction. We follow the standard split of the tree-
banks for every language. For each target language,
we use the sentences in the training set as unlabeled
data, and evaluate on the testing set.

Word Embeddings To induce monolingual word
embeddings, we use the processed Wikipedia text
dumps (Al-Rfou et al., 2013) for each language.

3Examples of symbol mark include “-”, “/” etc.

1311

Language English Danish German Spanish Finnish Hungarian Indonesian
Tokens (106) 1,888 44 687 399 66 89 41

Table 1: Number of tokens of the Wikipedia dumps used for inducing word embeddings.

While Wikipedia texts may contain parallel articles,
we show in Table 1 that the amount of text varies sig-
nificantly across languages. Smith et al. (2010) also
demonstrated that parallel information in Wikipedia
is very noisy. Therefore, direct translations are diffi-
cult to get from these texts. We use the word2vec
tool with the skip-gram learning scheme (Mikolov
et al., 2013a). In our experiments we use d = 20
for the dimension of word embeddings and w = 1
for the context window size of the skip-gram, which
yields the best overall performance for our model.
In our analysis, we also explore the impact of em-
bedding dimension and window size.

Word Translation Pairs For each target lan-
guage, we collect English translations for the top
ten most frequent words in the training corpus. Our
preliminary experiments show that this selection
method performs the best. The selected words are
typically from closed classes, such as punctuation
marks, determiners and prepositions. We find trans-
lations using Wiktionary.4

Model Variants Our model varies along two di-
mensions. On one dimension, we use two differ-
ent methods for inducing multilingual word embed-
dings: Pseudoinverse and Isometric alignment as
described in Section 3.1. On the other dimension,
we experiment with two different multilingual trans-
fer models. We use Direct Transfer to denote our
direct transfer model, and Transfer+EM for our
unsupervised model trained in the target language.

Baselines We also compare against the prototype-
driven method of Haghighi and Klein (2006).
Specifically, we use the publicly available imple-
mentation provided by the authors.5 Note that their
model requires at least one prototype for each POS
category. Therefore, we select 14 prototypes (the
most frequent word from each category) for the
baseline, while our method only uses ten translation
pairs.

4https://www.wiktionary.org/
5http://code.google.com/p/

prototype-sequence-toolkit/

Evaluation Unlike other unsupervised methods,
all models in our experiments can identify the label
for each POS tag because of knowledge from either
the source languages or prototypes. Therefore, we
directly report the token-level POS accuracy for all
experiments.

Other Details For all experiments, we use the fol-
lowing regularization weights: γ = 0.001 for su-
pervised models learned on the source language and
β = 0.01 for unsupervised models learned on the
target language. During training, we also normalize
the log-likelihood of labeled or unlabeled data by the
total number of tokens. As a result, the magnitude
of the objective value is independent of the corpus
size, hence we do not need to tune the regularization
weight for each target language. We run ten itera-
tions of the EM algorithm.

5 Results

In this section, we first show the main comparison
between the tagging performance of our model and
the baselines. In addition, we include an experiment
on typology prediction. In Section 5.2, we provide a
more detailed analysis of model properties.

5.1 Main Results

Table 2 summarizes the results of the prototype
baseline and different variations of our transfer
model. Averaged across languages, our model sig-
nificantly outperforms the prototype baseline by
about 37.5% (67.5% vs 30%), demonstrating the
effectiveness of multilingual transfer. Moreover,
Table 2 shows that our full model (Transfer+EM
with the isometric alignment mapping) consistently
achieves the best performance compared to other
model variations. Our model performs better on
Indo-European languages than on other languages
(72.9% vs. 62.1% on average), because Indo-
European languages are linguistically more similar
to the source language (English).

Impact of Training in the Target Language We
observe that training on unlabeled data in the tar-

1312

Method Indo-European Non-Indo-European

da de es Avg. fi hu id Avg.

Prototype Model 41.3 25.5 28.7 31.8 8.2 44.5 30.1 27.6

Pseudoinverse
Direct Transfer 56.7 49.4 68.4 58.2 54.3 60.1 57.7 57.4
Transfer+EM 64.4 65.8 74.9 68.4 57.5 65.3 62.7 61.8

Isometric Alignment
Direct Transfer 59.8 55.4 67.4 60.9 54.4 61.4 57.2 57.7
Transfer+EM 72.5 68.7 77.5 72.9 58.2 63.4 64.8 62.1

Table 2: Token-level POS tagging accuracy (%) for different variants of our transfer model. We always use English as the source

language. Target languages include Danish (da), German (de), Spanish (es), Finnish (fi), Hungarian (hu) and Indonesian (id).

We average the results separately for Indo-European and non-Indo-European languages. The first row shows performance of the

prototype-driven baseline (Haghighi and Klein, 2006). The rest shows results of our model when multilingual embeddings are

induced with the pseudoinverse or isometric alignment method. “Direct Transfer” and “Transfer+EM” indicates our direct transfer

model and our transfer model trained in the target language respectively.

get language (Transfer+EM model) consistently im-
proves over the direct transfer counterpart. As the
bottom part of Table 2 shows, running EM on unla-
beled data yields an average of 12% absolute gain
on Indo-European languages, while on non-Indo-
European languages the gain is only 4.4%.

Impact of the Isometric Alignment Constraint
As Table 2 shows, when we use Transfer+EM
models, the isometric alignment method yields a
4.5% improvement over the pseudoinverse method
(72.9% vs. 68.4%) on Indo-European languages.
However, the improvement margin drops to 0.3% on
non-Indo-European languages (62.1% vs. 61.8%).
We hypothesis that this discrepancy is due to the dif-
ference in the degree of ambiguities of the anchor
words across languages. For example, the anchor
words of Spanish have an average of 1.5 possible
translations to English, while for Indonesian the av-
erage ambiguity is 2.7. Therefore, the isometric as-
sumption holds better and the EM algorithm finds a
better local optimum for Indo-European languages
than for non-Indo-European languages. We also ob-
serve a similar pattern in the direct transfer scenario.

Prediction of Linguistic Typology To assess the
quality of automatically generated tags, we use them
to determine typological properties of the target lan-
guage. We predict values of the following five
typological properties for each language: subject-

Tagging Method Typology Accuracy
Prototype 60.0
Direct Transfer 66.7
Transfer + EM 80.0
Gold 93.3

Table 3: The accuracy (%) of typological properties prediction

using the outputs from different taggers. “Gold” indicates the

result using gold POS annotations.

verb, verb-object, adjective-noun, adposition-noun
and demonstrative-noun. More specifically, the goal
is to predict word ordering preferences such as
whether an adjective comes before a noun (as in En-
glish) or after a noun (as in Spanish). We collect
the true ordering preferences from “The World At-
las of Language Structure (WALS)” (Dryer et al.,
2005). To make predictions, we train a multiclass
support vector machine (SVM) classifier (Tsochan-
taridis et al., 2004) on a multilingual corpus using
bigrams and trigrams of POS tags as features. The
training data for SVM comes from a combination of
the Universal Dependencies Treebanks, CoNLL-X,
and CoNLL-07 datasets (Buchholz and Marsi, 2006;
Nilsson et al., 2007), excluding all sentences in the
target language. We train one classifier for each ty-
pological property, and make predictions for each
of the six target languages. For evaluation, we di-
rectly report the overall accuracy on all 30 test cases
(six languages combined with five typological prop-

1313

Translation Pairs or Prototypes
10 20 50 100 150 200 500 1000

Ac
cu

ra
cy

20

30

40

50

60

70

80

90

Direct Transfer
Transfer+EM
Prototype

Figure 2: Accuracy of our models and the prototype baseline

as a function of the amount of supervision, in German. x-axis

is the number of translation pairs or prototypes used as super-

vision. Our models use multilingual embeddings induced with

the isometric alignment method. The minimum number of pro-

totypes used by the prototype baseline is 14.

erties).
Table 3 shows the accuracy of predicting typo-

logical properties with different tagging models.
“Gold” corresponds to the result with gold POS an-
notations and is an upper bound of the prediction
accuracy. We observe that the typology prediction
accuracy correlates with the tagging quality. With
the output of our best model, we predict the correct
values for 80% of the typological properties. This
corresponds to a 50% error reduction relative to the
prototype model.

5.2 Analyses
Impact of the Amount of Supervision Fig-
ure 2 shows the accuracy of the Direct Transfer,
Transfer+EM models, and prototype baseline with
different amounts of supervision in German. Specif-
ically, the x-axis is the number of translation pairs
or prototypes used as supervision. The numbers
with ten pairs or prototypes are the same as that
in Table 2. We automatically extract more transla-
tion pairs using the Europarl parallel corpus (Koehn,
2005) and select pairs based on the word frequency
in the target language. For the prototype model, we
select the most frequent words as prototypes based
on annotations in the training data, and guarantee
that each POS category has at least one prototype.
Note that the minimum number of prototypes used
by the prototype model is 14.

One particularly interesting observation is that our

Dimension
10 20 50 100 200

Ac
cu
ra
cy

55

60

65

70
window=1
window=5

Figure 3: The average tagging accuracy (%) with different em-

bedding dimensions and context window sizes. The model is

Transfer+EM with the isometric alignment projection method.

model with ten pairs achieves an equivalent perfor-
mance as that of the prototype-driven method with
150 prototypes. Multilingual transfer compensates
for 15 times the amount of supervision. We also ob-
serve that the prototype-driven model outperforms
our model when large amount of annotations are
available. This can be explained by noise in the
translation and the limitation from the linear embed-
ding mapping process, which makes POS tags not
preserve well across languages.

When comparing between our models, Figure 2
shows that Transfer+EM consistently improves over
the Direct Transfer, while the gains are more pro-
found in the low-supervision scenario. This is not
surprising because with more translation pairs, we
are able to induce higher quality multilingual em-
beddings, which is more beneficial to the direct
transfer model.

Impact of Embedding Dimensions and Window
Size Figure 3 shows the average accuracy across
six target languages with different embedding di-
mensions and context window sizes. First, we ob-
serve that a small window size w = 1 consistently
outperforms window size w = 5, demonstrating that
smaller window sizes appear to produce word em-
beddings better for POS tagging. This observation
is in line with the finding by Lin et al. (2015). More-
over, we obtain the best performance with dimen-
sion d = 20 whenw = 1. On one hand, embeddings
with smaller dimension (e.g. d = 10) have too little
syntactic information for good POS tagging. On the
other hand, if the embedding space has larger dimen-

1314

Model da de es fi hu id Average
All features 72.5 68.7 77.5 58.2 63.4 64.8 67.5
- Indicator features 70.8 64.8 73.9 53.7 62.9 56.8 63.8
- Transformation matrix M 60.2 65.6 73.2 58.6 59.6 70.8 64.7

Table 4: The accuracy (%) of our best Transfer+EM model with different feature sets, removing either indicator features or

transformation matrix M at a time.

sion, the space will be more complex and mapping
embedding spaces will be more difficult given only
ten translation pairs. Therefore, we observe a perfor-
mance drop with either smaller or larger dimensions.

Ablation Analysis on Features In our
Transfer+EM model, we add indicator fea-
tures and transformation matrix M to enhance the
emission distribution (see Section 3.3). To analyze
their contribution, we remove these features in turn
and report the results in Table 4. Averaged over
all languages, adding indicator features improves
the accuracy by 3.7%, and adding a transformation
matrix increases the accuracy by 2.8%.

6 Conclusions

In this paper, we demonstrate that ten translation
pairs suffice for an effective multilingual transfer of
POS tagging. Experimental results show that our
model significantly outperforms the direct transfer
method and the prototype baseline. The effective-
ness of our approach suggests its potential applica-
tion to a broader range of NLP tasks that require
word-level multilingual transfer, such as multilin-
gual parsing and machine translation.

Acknowledgments

The authors acknowledge the support of the
U.S. Army Research Office under grant number
W911NF-10-1-0533, and the support of the MIT
EECS Super UROP program. We thank the MIT
NLP group and the NAACL reviewers for their com-
ments. Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of
the authors, and do not necessarily reflect the views
of the funding organizations.

References
Traian E. Abrudan, Jan Eriksson, and Visa Koivunen.

2008. Steepest descent algorithms for optimization

under unitary matrix constraint. IEEE Transaction on
Signal Processing, 56(3):1134–1147.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013.
Polyglot: Distributed word representations for multi-
lingual NLP. In Proceedings of the Seventeenth Con-
ference on Computational Natural Language Learn-
ing, pages 183–192, Sofia, Bulgaria. Association for
Computational Linguistics.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Painless unsu-
pervised learning with features. In Proceedings of the
2010 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 582–590. Association for Computational Lin-
guistics.

Sabine Buchholz and Erwin Marsi. 2006. Conll-X
shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computa-
tional Natural Language Learning, pages 149–164.
Association for Computational Linguistics.

Desai Chen, Chris Dyer, Shay B Cohen, and Noah A
Smith. 2011. Unsupervised bilingual POS tagging
with markov random fields. In Proceedings of the First
Workshop on Unsupervised Learning in NLP, pages
64–71. Association for Computational Linguistics.

Dipanjan Das and Slav Petrov. 2011. Unsupervised part-
of-speech tagging with bilingual graph-based projec-
tions. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics, pages
600–609. Association for Computational Linguistics.

Matthew S Dryer, David Gil, Bernard Comrie, Hagen
Jung, Claudia Schmidt, et al. 2005. The world atlas of
language structures.

Long Duong, Paul Cook, Steven Bird, and Pavel Pecina.
2013. Increasing the quality and quantity of source
language data for unsupervised cross-lingual POS tag-
ging. In Sixth International Joint Conference on Nat-
ural Language Processing, IJCNLP 2013, Nagoya,
Japan, October 14-18, 2013, pages 1243–1249.

Long Duong, Trevor Cohn, Karin Verspoor, Steven Bird,
and Paul Cook. 2014. What can we get from 1000
tokens? A case study of multilingual POS tagging
for resource-poor languages. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, pages 886–897.

1315

Greg Durrett, Adam Pauls, and Dan Klein. 2012. Syntac-
tic transfer using a bilingual lexicon. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1–11. Association
for Computational Linguistics.

Manaal Faruqui and Chris Dyer. 2014. Improving vector
space word representations using multilingual correla-
tion. In Proceedings of the 14th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics, pages 462–471.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. Bilbowa: Fast bilingual distributed repre-
sentations without word alignments. arXiv preprint
arXiv:1410.2455.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual dependency
parsing based on distributed representations. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1234–1244.

Aria Haghighi and Dan Klein. 2006. Prototype-driven
learning for sequence models. In Proceedings of the
2006 Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 320–327. Association for Computational Lin-
guistics.

Jiri Hana, Anna Feldman, and Chris Brew. 2004. A
resource-light approach to Russian morphology: Tag-
ging Russian using Czech resources. In EMNLP,
pages 222–229.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: mapping distributional to model-
theoretic semantic spaces. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 22–32. Association for Com-
putational Linguistics.

Young-Bum Kim, Benjamin Snyder, and Ruhi Sarikaya.
2015. Part-of-speech taggers for low-resource lan-
guages using CCA features. In Proceedings of the
Empiricial Methods in Natural Language Processing.
Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5,
pages 79–86.

Stanislas Lauly, Hugo Larochelle, Mitesh Khapra,
Balaraman Ravindran, Vikas C Raykar, and Amrita
Saha. 2014. An autoencoder approach to learning
bilingual word representations. In Advances in Neural
Information Processing Systems, pages 1853–1861.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori
Levin. 2015. Unsupervised POS induction with word
embeddings. arXiv preprint arXiv:1503.06760.

Dong C Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical programming, 45(1-3):503–528.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Deep multilingual correlation
for improved word embeddings. In Proceedings of the
2015 Conference of the North American Chapter of the
Association for Computational Linguistics.

Thang Luong, Hieu Pham, and Christopher D Manning.
2015. Bilingual word representations with monolin-
gual quality in mind. In Proceedings of the 1st Work-
shop on Vector Space Modeling for Natural Language
Processing, pages 151–159.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages
62–72. Association for Computational Linguistics.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Oscar
Täckström, et al. 2013. Universal dependency anno-
tation for multilingual parsing. In Proceedings of the
51st Annual Meeting of the Association for Computa-
tional Linguistics, pages 92–97. Association for Com-
putational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In Proceedings of Workshop at
ICLR.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Eliakim H. Moore. 1920. On the reciprocal of the gen-
eral algebraic matrix. Bulletin of the American Math-
ematical Society, 26(9):394–395.

Tahira Naseem, Benjamin Snyder, Jacob Eisenstein, and
Regina Barzilay. 2009. Multilingual part-of-speech
tagging: Two unsupervised approaches. Journal of Ar-
tificial Intelligence Research, 36:341–385.

Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In Proceedings of the CoNLL shared task session of
EMNLP-CoNLL, pages 915–932.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter,
Yoav Goldberg, Jan Hajič, Christopher Manning, Ryan
McDonald, Slav Petrov, Sampo Pyysalo, Natalia Sil-
veira, Reut Tsarfaty, and Daniel Zeman. 2016. Uni-
versal dependencies v1: A multilingual treebank col-
lection. In Proceedings of LREC.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the Empiricial Methods

1316

in Natural Language Processing, volume 12, pages
1532–1543.

Roger Penrose. 1955. A generalized inverse for matri-
ces. In Proceedings of the Cambridge Philosophical
Society, pages 406–413.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

Jason R Smith, Chris Quirk, and Kristina Toutanova.
2010. Extracting parallel sentences from comparable
corpora using document level alignment. In The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pages
403–411. Association for Computational Linguistics.

Benjamin Snyder, Tahira Naseem, Jacob Eisenstein, and
Regina Barzilay. 2008. Unsupervised multilingual
learning for POS tagging. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, pages 1041–1050. Association for Com-
putational Linguistics.

Oscar Täckström, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 1:1–12.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and structured
output spaces. In Proceedings of the twenty-first inter-
national conference on Machine learning, page 104.
ACM.

Ivan Vulic and Marie-Francine Moens. 2015. Bilingual
word embeddings from non-parallel document-aligned
data applied to bilingual lexicon induction. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics.

Guillaume Wisniewski, Nicolas Pécheux, Souhir
Gahbiche-Braham, and François Yvon. 2014. Cross-
lingual part-of-speech tagging through ambiguous
learning. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1779–1785.

Min Xiao and Yuhong Guo. 2014. Distributed word
representation learning for cross-lingual dependency
parsing. CoNLL-2014, page 119.

David Yarowsky, Grace Ngai, and Richard Wicentowski.
2001. Inducing multilingual text analysis tools via ro-
bust projection across aligned corpora. In Proceed-
ings of the first international conference on Human
language technology research. Association for Com-
putational Linguistics.

Daniel Zeman and Philip Resnik. 2008. Cross-language
parser adaptation between related languages. In IJC-
NLP, pages 35–42.

Will Y Zou, Richard Socher, Daniel M Cer, and Christo-
pher D Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceedings
of the Empiricial Methods in Natural Language Pro-
cessing, pages 1393–1398.

1317

Proceedings of NAACL-HLT 2016, pages 1318–1328,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Part-of-Speech Tagging for Historical English

Yi Yang and Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

Atlanta, GA 30308
{yiyang+jacobe}@gatech.edu

Abstract

As more historical texts are digitized, there
is interest in applying natural language pro-
cessing tools to these archives. However, the
performance of these tools is often unsatisfac-
tory, due to language change and genre dif-
ferences. Spelling normalization heuristics are
the dominant solution for dealing with histori-
cal texts, but this approach fails to account for
changes in usage and vocabulary. In this em-
pirical paper, we assess the capability of do-
main adaptation techniques to cope with his-
torical texts, focusing on the classic bench-
mark task of part-of-speech tagging. We eval-
uate several domain adaptation methods on
the task of tagging Early Modern English and
Modern British English texts in the Penn Cor-
pora of Historical English. We demonstrate
that the Feature Embedding method for unsu-
pervised domain adaptation outperforms word
embeddings and Brown clusters, showing the
importance of embedding the entire feature
space, rather than just individual words. Fea-
ture Embeddings also give better performance
than spelling normalization, but the combina-
tion of the two methods is better still, yielding
a 5% raw improvement in tagging accuracy on
Early Modern English texts.

1 Introduction

There is growing interest in applying natural lan-
guage processing (NLP) techniques to historical
texts (Piotrowski, 2012), with applications in infor-
mation retrieval (Dougherty, 2010; Jurish, 2011),
linguistics (Baron et al., 2009; Rayson et al., 2007),
and the digital humanities (Hendrickx et al., 2011;

Original: and drewe vnto hym all ryottours & wylde dys-
posed persones
Normalization: and drew unto him all ryottours & wild
disposed persons

Figure 1: An example sentence from Early Modern English

and its VARD normalization.

Muralidharan and Hearst, 2013; Pettersson and
Nivre, 2011). However, these texts differ from con-
temporary training corpora in a number of linguistic
respects, including the lexicon (Giusti et al., 2007),
morphology (Borin and Forsberg, 2008), and syn-
tax (Eumeridou et al., 2004). This imposes signif-
icant challenges for modern NLP tools: for exam-
ple, the accuracy of the CLAWS part-of-speech Tag-
ger (Garside and Smith, 1997) drops from 97% on
the British National Corpus to 82% on Early Mod-
ern English texts (Rayson et al., 2007). There are
two main approaches that could improve the accu-
racy of NLP systems on historical texts: normaliza-
tion and domain adaptation.

Normalization Spelling normalization (also
called canonicalization) involves mapping histor-
ical spellings to their canonical forms in modern
languages, thus bridging the gap between contem-
porary training corpora and target historical texts.
Figure 1 shows one historical sentence and its
normalization by VARD (Baron and Rayson, 2008).
Rayson et al. (2007) report an increase of about
3% accuracy on adaptation of POS tagging from
Modern English texts to Early Modern English texts
if the target texts were automatically normalized
by the VARD system. However, normalization
is not always a well-defined problem (Eisenstein,

1318

2013), and it does not address the full range of
linguistic changes over time, such as unknown
words, morphological differences, and changes
in the meanings of words (Kulkarni et al., 2015).
In the example above, the word ‘ryottours’ is not
successfully normalized to ‘rioters’; the syntax is
comprehensible to contemporary English speakers,
but usages such as ‘wild disposed’ and ‘drew unto’
are sufficiently unusual as to pose problems for
NLP systems trained on contemporary texts.

Domain adaptation A more generic machine
learning approach is to apply unsupervised domain
adaptation techniques, which transform the repre-
sentations of the training and target texts to be more
similar, typically using feature co-occurrence statis-
tics (Blitzer et al., 2006; Ben-David et al., 2010).
It is natural to think of historical texts as a dis-
tinct domain from contemporary training corpora,
and Yang and Eisenstein (2014, 2015) show that
the accuracy of historical Portuguese POS tagging
can be significantly improved by domain adaption.
However, we are unaware of prior work that em-
pirically evaluates the efficacy of this approach on
Early Modern English texts. Furthermore, histor-
ical texts are often associated with multiple meta-
data attributes (e.g., author, genre, and epoch), each
of which may influence the text’s linguistic prop-
erties. Multi-domain adaptation (Mansour et al.,
2009) and multi-attribute domain adaptation (Joshi
et al., 2013; Yang and Eisenstein, 2015) can poten-
tially exploit these metadata attributes to obtain fur-
ther improvements.

This paper presents the first comprehensive em-
pirical comparison of effectiveness of these ap-
proaches for part-of-speech tagging on historical
texts. We focus on the two historical treebanks of
the Penn Corpora of Historical English — the Penn
Parsed Corpus of Modern British English (Kroch et
al., 2010, PPCMBE) and the Penn-Helsinki Parsed
Corpus of Early Modern English (Kroch et al., 2004,
PPCEME). These datasets enable a range of analy-
ses, which isolate the key issues in dealing with his-
torical corpora:

• In one set of analyses, we focus on the
PPCMBE and the PPCEME corpora, training
on more recent texts and testing on earlier texts.

This isolates the impact of language change on
tagging performance.

• In another set of analyses, we train on the Penn
Treebank (Marcus et al., 1993, PTB), and test
on the historical corpora, using the tag map-
pings from Moon and Baldridge (2007). We
apply the well-known Stanford CoreNLP tag-
ger to this task (Manning et al., 2014), thus
replicating the most typical situation for users
of existing language technology.

• We show that FEMA, a domain adaptation algo-
rithm that is specifically designed for sequence
labeling problems (Yang and Eisenstein, 2015),
achieves an increase of nearly 4% in tagging
accuracy when adapting from the PTB to the
PPCEME.

• We compare the impact of normalization with
domain adaptation, and demonstrate that they
are largely complementary.

• Error analysis shows that the improvements ob-
tained by domain adaptation are largely due to
better handling of out-of-vocabulary (OOV) to-
kens. Many of the most frequent errors on
in-vocabulary (IV) tokens are caused by mis-
matches in the tagsets or annotation guidelines,
and may be difficult to address without labeled
data in the target domain.

2 Data

The Penn Corpora of Historical English consist of
the Penn-Helsinki Parsed Corpus of Middle English,
second edition (Kroch et al., 2010, PPCME2), the
Penn-Helsinki Parsed Corpus of Early Modern En-
glish (Kroch et al., 2004, PPCEME), and the Penn
Parsed Corpus of Modern British English (Kroch
and Taylor, 2000, PPCMBE). The corpora are an-
notated with part-of-speech tags and syntactic pars-
ing trees in an annotation style similar to that of the
Penn Treebank. In this work, we focus on POS tag-
ging the PPCMBE and the PPCEME.1

1Middle English is outside the scope of this paper, because
it is sufficiently unintelligible to modern English speakers that
texts such as Canterbury Tales are published in translation. In
tagging Middle English texts, Moon and Baldridge (2007) apply
bitext projection techniques from multilingual learning, rather
than domain adaptation.

1319

Period # Sentence # Token

1840-1914 17,770 322,255
1770-1839 23,462 427,424
1700-1769 16,083 343,024

Total 57,315 1,092,703

Table 1: Statistics of the Penn Parsed Corpus of Modern British

English (PPCMBE), by time period.

Period # Sentence # Token

1640-1710 29,181 614,315
1570-1639 39,799 706,587
1500-1569 31,416 640,255

Total 100,396 1,961,157

Table 2: Statistics of the Penn Parsed Corpus of Early Modern

English (PPCEME), by time period.

The Penn Parsed Corpus of Modern British En-
glish The PPCMBE is a syntactically annotated
corpus of text, containing roughly one million word
tokens from documents written in the period 1700-
1914. It is divided into three 70-year time periods
according to the composition date of the works. Ta-
ble 1 shows the statistics of the corpus by time pe-
riod.2 In contrast to the PTB, the PPCMBE contains
text from a variety of genres, such as Bible, Drama,
Fiction, and Letters.

The Penn-Helsinki Parsed Corpus of Early Mod-
ern English The PPCEME is a collection of text
samples from the Helsinki Corpus (Rissanen et al.,
1993), as well as two supplements mainly consisting
of text material by the same authors and from the
same editions as the material in the Helsinki Cor-
pus. The corpus contains nearly two million words
from texts in the period from 1500 until 1710, and it
is divided into three 70-year time periods similar to
the PPCMBE corpus. The statistics of the corpus by
time period is summarized in Table 2. The PPCEME
consists of text from the same eighteen genres as the
PPCMBE.

Penn Treebank Release 3 The Penn Tree-
bank (Marcus et al., 1993) is the de facto stan-
dard syntactically annotated corpus for English,

2All the statistics in this section include punctuation, but ex-
clude extra-linguistic material such as page numbers or token
ID numbers.

which is used to train software such as Stanford
CoreNLP (Manning et al., 2014). When using this
dataset for supervised training, we follow Toutanova
et al. (2003) and use WSJ sections 0-18 for training,
and sections 19-21 for tuning. When applying un-
supervised domain adaptation, we use all WSJ sec-
tions, together with texts from the PPCMBE and the
PPCEME.

Tagsets The Penn Corpora of Historical English
(PCHE) use a tagset that differs from the Penn Tree-
bank, mainly in the direction of greater specificity.
Auxiliary verbs ‘do’, ‘have’, and ‘be’ all have their
own tags, as do words like ‘one’ and ‘else’, due to
their changing syntactic function over time. Over-
all, there are 83 tags in the PPCEME, and 81 in the
PPCMBE, as compared with 45 in the PTB. Further-
more, the tags in the PCHE tagset are allowed to
join constituent morphemes in compounds, yielding
complex tags such as PRO+N (e.g., ‘himself’) and
ADJ+NS (e.g., ‘gentlemen’).

To measure the tagging accuracy of PTB-trained
taggers on the historical texts, we follow Moon and
Baldridge (2007), who define a set of deterministic
mappings from the PCHE tags to the PTB tagset.
For simplicity, we first convert each complex tag to
the simple form by only considering the first simple
tag component (e.g., PRO+N to PRO and ADJ+NS
to ADJ). This has little effect on the tagging per-
formance, as the complex tags cover only slightly
more than 1% of the tokens in the PCHE treebanks.
Among the 83 tags, 74 mappings to the correspond-
ing PTB tags are obtained from Moon and Baldridge
(2007). We did our best to convert the other tags ac-
cording to the tag description. The complete list of
mappings is published in Appendix A.

3 Unsupervised Domain Adaptation

In typical usage scenarios, the user wants to tag
some historical text but has no labeled data in the
target domain (e.g., Muralidharan and Hearst, 2013).
This best fits the paradigm of unsupervised domain
adaptation, when labeled data from the source do-
main (e.g., the PTB) is combined with unlabeled
data from the target domain. Representational dif-
ferences between source and target domains can be
a major source of errors in domain adaptation (Ben-

1320

David et al., 2010), and so several representation
learning approaches have been proposed.

The most straightforward approach is to replace
lexical features with word representations, such as
Brown clusters (Brown et al., 1992; Lin et al., 2012)
or word embeddings (Turian et al., 2010), such as
word2vec (Mikolov et al., 2013). Lexical features
can then be replaced or augmented with the result-
ing word representations. This can assist in domain
adaptation by linking out-of-vocabulary words to in-
vocabulary words with similar distributional proper-
ties.

Word representations are suitable for adapting
lexical features, but a more general solution is to
adapt the entire feature representation. One such
method is Structural Correspondence Learn-
ing (Blitzer et al., 2006, SCL). In SCL, we create ar-
tificial binary classification problems for thousands
of cross-domain “pivot” features, and then use the
weights from the resulting classifiers to project the
instances into a new dense representation. We also
consider a recently-published approach called Fea-
ture Embedding (FEMA), which achieves the state-
of-the-art results on several POS tagging adaptation
tasks (Yang and Eisenstein, 2015). The intuition
of FEMA is similar to SCL and other prior work:
it relies on co-occurrence statistics to link features
across domains. Specifically, FEMA exploits the ten-
dency of many NLP tasks to divide features into
templates, and induces feature embeddings by us-
ing the features in each template to predict the active
features in all other templates — just as the skipgram
model learns word embeddings to predict neighbor-
ing words. The resulting embeddings can be substi-
tuted for the “one-hot” representation of each fea-
ture template, resulting in a dense, low-dimensional
representation of each instance.

A further advantage of FEMA is that it can per-
form multi-attribute domain adaptation, enabling it
to exploit the many metadata attributes (e.g., year,
genre, and author) that are often associated with his-
torical texts. This is done by accounting for the
specific impact of each domain attribute on the fea-
ture predictors, and then building a domain-neutral
representation from the common substructure that is
shared across all domain attributes. In the experi-
ments that follow, we use genre and epoch as domain
attributes.

4 Experiments

We evaluate these unsupervised domain adaptation
approaches on part-of-speech tagging for historical
English (the PPCMBE and the PPCEME), in two
settings: (1) temporal adaptation within each indi-
vidual corpus, where we train POS taggers on the
most modern data in the corpus and test on increas-
ingly distant datasets; (2) adaptation of English POS
tagging from modern news text to historical texts.
The first setting focuses on temporal differences, and
eliminates other factors that may impair tagging per-
formance, such as different annotation schemes and
text genres. The second setting is the standard and
well-studied evaluation scenario for POS tagging,
where we train on the Wall Street Journal (WSJ) text
from the PTB and test on historical texts. In addi-
tion, we evaluate the effectiveness of the VARD nor-
malization tool (Baron and Rayson, 2008) for im-
proving POS tagging performance on the PPCEME
corpus.

4.1 Experimental Settings

The datasets used in the experiments are described
in § 2. All the hyperparameters are tuned on devel-
opment data in the source domain. In the case where
there is no specific development dataset (adaptation
within the historical corpora), we randomly sample
10% sentences from the training datasets for hyper-
parameter tuning.

4.1.1 Baseline systems
We include two baseline systems for POS tag-

ging: a classification-based support vector machine
(SVM) tagger and a bidirectional maximum en-
tropy Markov model (MEMM) tagger. Specif-
ically, we use the L2-regularized L2-loss SVM
implementation in the scikit-learn package (Pe-
dregosa et al., 2011) and L2-regularized bidirec-
tional MEMM implementation provided by Stanford
CoreNLP (Toutanova et al., 2003; Manning et al.,
2014).

Following Yang and Eisenstein (2015), we apply
the feature templates defined by Ratnaparkhi (1996)
to extract the basic features for all taggers. There are
three broad types of templates: five lexical feature
templates, eight affix feature templates, and three or-
thographic feature templates.

1321

Task
baseline

SCL Brown word2vec
FEMA

SVM
MEMM
(Stanford)

single
embedding

attribute embeddings
(error reduction)

Modern British English (training from 1840-1914)
→ 1770-1839 96.30 96.57 96.42 96.45 96.44 96.80 96.84 (15%)
→ 1700-1769 94.57 94.83 95.07 95.15 94.85 95.65 95.75 (22%)
AVERAGE 95.43 95.70 95.74 95.80 95.64 96.23 96.30 (19%)

Early Modern English (training from 1640-1710)
→ 1570-1639 93.62 93.98 94.23 94.36 94.18 95.01 95.20 (25%)
→ 1500-1569 87.59 87.47 89.39 89.73 89.30 91.40 91.63 (33%)
AVERAGE 90.61 90.73 91.81 92.05 91.74 93.20 93.41 (30%)

Table 3: Accuracy results for temporal adaptation in the PPCMBE and the PPCEME of historical English. Percentage error

reduction is shown for the best-performing method, FEMA-attribute.

4.1.2 Domain adaptation systems
We consider the unsupervised domain adaptation

methods described in § 3: structural correspondence
learning (SCL), Brown clustering, word2vec,3 and
FEMA, which we train in both the single embedding
mode (FEMA-single), where metadata attributes
are ignored, and in multi-attribute mode (FEMA-
attribute), where metadata attributes are used. The
domain adaptation models are trained on the union
of the (unlabeled) source and target datasets. This
ensures that there are no out-of-vocabulary items for
the word or feature embeddings.

Following Yang and Eisenstein (2015), we do not
learn feature embeddings for the three orthographic
feature templates: as each orthographic feature tem-
plate represents only a binary value, it is unneces-
sary to replace it with a much longer numerical vec-
tor. The learned representations are then concate-
nated with the basic surface features to form the aug-
mented representations. For computational reasons,
the domain adaptation systems are all based on the
SVM tagger, as pilot studies showed that Viterbi tag-
ging offers minimal improvements.

4.1.3 Parameter tuning
We choose the SVM regularization parameter by

sweeping the range {0.1, 0.3, 0.5, 0.8, 1.0}. Fol-
lowing Blitzer et al. (2006), we consider pivot fea-
tures that appear more than 50 times in all the do-
mains for SCL. We empirically fix the number of
singular vectors of the projection matrix K to 25,

3https://code.google.com/p/word2vec/

and also employ feature normalization and rescal-
ing, as these settings yield best performance in prior
work. The number of Brown clusters is chosen
from the range {50, 100, 200, 400}. For FEMA and
word2vec, we choose embedding sizes from the
range {50, 100, 200, 300} and fix the numbers of
negative samples to 15. The window size for train-
ing word embeddings is set as 5. Finally, we adopt
the same regularization penalty for all the attribute-
specific embeddings of FEMA, which is selected
from the range {0.01, 0.1, 1.0, 10.0}. All parame-
ters were tuned on development data in the source
domain. We train the Stanford MEMM tagger using
the default configuration file.

4.2 Temporal Adaptation

In the temporal adaptation setting, we work within
each corpus, training on the most recent section,
and evaluating on the two earlier sections. For
PPCMBE, the source domain is the period from
1840 to 1914; for PPCEME, the source domain is
the period from 1640 to 1710. All earlier texts are
treated as target domains. We transform the tags
to the PTB tagset for evaluation, so that results can
be compared with the next experiment, in which the
PTB is used for supervision.

Settings We randomly sample 10% sentences
from the training data as the development data for
optimizing hyperparameters, and then retrain the
models on the full training data using the best pa-
rameters. For FEMA, we consider domain attributes

1322

for 70-year temporal periods and genres, resulting in
a total of 21 attributes for each corpus. The numbers
of pivot features used in SCL are 4400 and 5048 for
the PPCMBE and the PPCEME respectively. The
best number of Brown clusters is 200, and the best
embedding sizes are 200 and 100 for word2vec and
FEMA.

Results As shown in Table 3, accuracies are
significantly improved by domain adaptation, es-
pecially for the PPCEME. English spelling had
become mostly uniform and stable since around
1700 (Baron et al., 2009), which may explain why
improvements on the PPCMBE are relatively mod-
est, especially in the 1770-1839 epoch. Among
the two baseline systems, MEMM performs slightly
better than SVM, showing a small benefit to struc-
tured prediction. Among the domain adaptation al-
gorithms, FEMA clearly outperforms SCL, Brown
clustering and word2vec, with an averaged increase
of about 0.5% and 1.5% accuracies on the PPCMBE
and the PPCEME test sets respectively. The meta-
data attribute information boosts performance by a
small but consistent margin, 0.1-0.2% on average.

4.3 Adaptation from the Penn Treebank
Newspaper text is the primary data source for
training modern NLP systems. For example,
most “off-the-shelf” English POS taggers (e.g., the
Stanford Tagger (Toutanova et al., 2003), SVM-
Tool (Giménez and Marquez, 2004), and CRFTag-
ger (Phan, 2006)) are trained on the WSJ por-
tion of the Penn Treebank, which is composed of
professionally-written news text from 1989. This
motivates this evaluation scenario, in which we train
the tagger on the Penn Treebank WSJ data and ap-
ply it to historical English texts, using all sentences
of the PPCMBE and PPCEME for testing.

Settings The feature representations are trained on
the union of the PTB and the PPCEME. The domain
attributes for FEMA are set to include the three cor-
pora themselves (PTB, PPCMBE, and PPCEME),
and the genre attributes in the historical corpora.
Note that all sentences in the Penn Treebank WSJ
data belong to the same genre (news). For SCL,
we use the same threshold of 50 occurrences for
pivot features, and include 8089 features that pass
this threshold. PTB WSJ sections 19-21 are used for

parameter tuning: we find that the best number of
Brown clusters is 200, and the optimum embedding
sizes are 200 and 100 for word2vec and FEMA.

Spelling normalization Spelling variants lead to a
high percentage of out-of-vocabulary (OOV) tokens
in historical texts, which poses problems for POS
tagging. We normalize the PPCEME sentences us-
ing VARD (Baron and Rayson, 2008), a widely used
spelling normalization tool that has been proven to
improve performance on POS tagging (Rayson et
al., 2007) and syntactic parsing (Schneider et al.,
2014). VARD is designed specifically for Early
Modern English spelling variation, and additional
labeled data and training are required for other
forms of spelling variation, which we do not con-
sider here. Following Schneider et al. (2014), we
utilize VARD’s auto-normalization function with a
50% normalization threshold, achieving a balance
between precision and recall. At this threshold, a
total of 12% (236298/1961157) of the tokens in the
PPCEME are normalized.4

Results As shown in Table 4, this task is consid-
erably more difficult, with even the best systems
achieving accuracies that are nearly 15% worse than
in-domain training. Nonetheless, domain adapta-
tion can help: FEMA improves performance by 1.3%
on the PPCMBE data, and by 3.8% on the unnor-
malized PPCEME data. Spelling normalization also
helps, improving the baseline systems by more than
2.5%. The combination of spelling normalization
and domain adaptation gives an overall improve-
ment in accuracy from 74.2% to 79.1%. The relative
error reduction is lower than in the temporal adap-
tation setting: only 19% at best, versus 30% error
reduction in temporal adaptation. This is because
there are now at least two sources of error — lan-
guage change and tagset mismatch — and unsuper-
vised domain adaptation cannot address mismatches
in the tag set.

5 Analysis

As expected, the Early Modern English dataset
(PPCEME) is considerably more challenging than
the Modern British English dataset (PPCMBE): the

4We only consider 1 : 1 mappings, and ignore 328 normal-
izations corresponding to 1 : n mappings.

1323

Target Normalized
baseline

SCL Brown word2vec
FEMA

SVM
MEMM
(Stanford)

single
embedding

attribute embeddings
(error reduction)

PPCMBE No 81.12 81.35 81.66 81.65 81.75 82.34 82.46 (7%)
PPCEME No 74.15 74.34 75.89 76.04 75.85 77.77 77.92 (15%)
PPCEME Yes 76.73 76.87 77.61 77.65 77.76 78.85 79.05 (19%∗)

Table 4: Accuracy results for adapting from the PTB to the PPCMBE and the PPCEME of historical English. ∗Error reduction for

the normalized PPCEME is computed against the unnormalized SVM accuracy, showing total error reduction.

baseline accuracy is 7% worse on the PPCEME than
the PPCMBE. However, the PPCEME is also more
amenable to domain adaptation, with FEMA offering
considerably larger improvements. One reason is
that the PPCEME has many more out-of-vocabulary
(OOV) tokens: 23%, versus 9.2% in the PPCMBE.
Both domain adaptation and normalization help to
address this specific issue, and they yield further im-
provements when used in combination. This section
offers further insights on the sources of errors and
possibilities for improvement on the PPCEME data.

5.1 Feature Ablation

Table 5 presents the results of feature ablation ex-
periments for the non-adapted SVM tagger. Word
context features are important for obtaining good
accuracies on both IV and OOV tokens. Affix fea-
tures, particularly suffix features, are crucial for the
OOV tokens. The orthographic features are shown
to be nearly irrelevant, as long as affix features are
present. Overall, the high percentage of OOV to-
kens can be a major source of errors, as the tag-
ging accuracy on OOV tokens is below 50% in our
best baseline system. Note that these results are
for a classification-based tagger; while the Viterbi-
based MEMM tagger performs only marginally bet-
ter overall (∼ 0.2% improvement), it is possible that
its error distribution might be different due to the ad-
vantages of structured prediction.

5.2 Error Analysis

The accuracy on out-of-vocabulary (OOV) tokens
is generally low, and spelling variation is a major
source of OOV tokens. For instance, ‘ye’ and ‘thy’,
the older forms of ‘the’ and ‘your’, are often incor-
rectly tagged as NN and JJ in the PPCEME. In gen-
eral, the per-tag accuracies are roughly correlated

Feature set IV OOV All

All features 81.68 48.96 74.15

– word context 79.69 38.62 70.23

– prefix 81.61 46.11 73.43
– suffix 81.36 38.13 71.40
– affix 81.22 34.40 70.44

– orthographic 81.68 48.92 74.14

Table 5: Tagging accuracies of adaptation of our baseline SVM

tagger from the PTB to the PPCEME in ablation experiments.

with the percentages of OOV tokens. Some excep-
tions including VB, NNP and NNS, where the affix
features can be very useful for tagging OOV tokens.

That said, the cross-domain accuracy on in-
vocabulary (IV) tokens is also low, at roughly 80%
when adapting from the PTB to the PPCEME. A
major source of error here is the mismatch in an-
notation schemes between the two datasets, which is
only partially addressed by a deterministic tag map-
ping. Table 6 presents the SVM accuracy per tag,
and the most common error correspondingly. Most
of the errors shown in the table are owing to different
annotations of the same token in the two corpora.

One major cause of errors is in misalignments of
punctuations and their POS tags. For example, in
the PPCEME, 16.6% of commas are labeled as .
(sentence-final punctuation), and 12.3% periods are
labeled as , (sentence-internal punctuation); these
punctuations are less ambiguous in the PTB. The
historical corpora lack special tags for colons and
ellipses, which are present in the PTB. In contrast
to the PTB, there is no distinction between opening
quotation mark and closing quotation mark in the
PPCEME. Moon and Baldridge (2007) avoid these
difficulties by mapping all the punctuation tokens

1324

Tag % of OOV Accuracy Most common error

IN 6.93 82.79 to/TO
NN 48.39 64.74 Lord/NNP
DT 3.45 94.62 that/IN
PRP 13.57 78.80 other/JJ
, 0.41 87.86 ./.
JJ 32.20 48.60 all/DT
CC 1.98 91.29 for/IN
RB 26.22 65.74 such/JJ
. 0.56 54.43 ,/,
VB 34.69 75.06 have/VBP
NNP 58.91 88.31 god/NN
NNS 59.12 73.88 Lords/NNPS
VBD 25.87 81.93 quoth/NN
VBN 37.75 63.09 said/VBD
PRP$ 13.57 85.49 thy/JJ

Table 6: Accuracy (recall) rates per tag with the SVM model,

for the 15 most common tags. For each gold category, the most

common error word and predicted tag are shown.

to a single tag. We did not follow their setting be-
cause it would lead to a significant change of test
data. However, it should be noted that these “er-
rors” are not particularly meaningful for linguistic
analysis, and could easily be addressed by heuristic
post-processing.

The tagging performance is also impaired by the
different annotations of many common words. For
example, in the PTB, more than 99.9% of token ‘to’
are labeled as TO, but in the PCHE this word can also
be labeled as IN, distinguishing the infinitive marker
from the preposition. The words ‘all’, ‘any’ and ‘ev-
ery’ are annotated as quantifiers in the PCHE; this
tag is mapped to JJ, but these specific words are
all labeled as DT in the PTB. A simple remapping
from Q to DT leads to an increase of 0.78% base-
line accuracy; it is possible that other changes to the
tag mappings of Moon and Baldridge (2007) might
yield further improvements, but a more systematic
approach would be outside the bounds of unsuper-
vised domain adaptation.

5.3 Improvements from Normalization

As shown above, the tagging accuracy decreases
from 81.7% on IV tokens to 49.0% on OOV tokens.
Spelling normalization helps to increase the accu-
racy by transforming OOV tokens to IV tokens. Af-
ter normalization, the OOV rate for the PPCEME

System IV OOV All

SVM 81.68 48.96 74.15

SCL 82.01 55.45 75.89
Brown 81.81 56.76 76.04
word2vec 81.79 56.00 75.85
FEMA-single 82.30 62.63 77.77
FEMA-attribute 82.34 63.16 77.92

Table 7: Tagging accuracies of domain adaptation models from

the PTB to the PPCEME.

falls from 23.0% to 13.5%, corresponding to a re-
duction of 41.5% OOV tokens. Normalization is not
perfectly accurate, and the tagging performance for
IV tokens drops slightly to 81.2% on IV tokens. But
due to the dramatic decrease in the number of OOV
tokens, normalization improves the overall accuracy
by more than 2.5%. We also observe performance
drops on tagging OOV tokens after normalization
(49.0% to 48.1%), which suggests that the remain-
ing unnormalized OOV tokens are the tough cases
for both normalization and POS tagging.

5.4 Improvements from Domain Adaptation

As presented in Table 7, the tagging accuracies are
increased on both IV and OOV tokens with the do-
main adaptation methods. Compared against the
baseline tagger, FEMA-attribute achieves an abso-
lute improvement of 14% in accuracy on OOV to-
kens. SCL performs slightly better than Brown clus-
tering and word2vec on IV tokens, but worse on
OOV tokens. By incorporating metadata attributes,
FEMA-attribute performs better than FEMA-single
on OOV tokens, though the accuracies on IV to-
kens are similar. Interestingly, the venerable method
of Brown clustering (slightly) outperforms both
word2vec and SCL.

We further study the relationship between do-
main adaptation and spelling normalization by look-
ing into the errors corrected by both approaches.
Domain adaptation yields larger improvements than
spelling normalization on both IV and OOV tokens,
although as noted above, the approaches are some-
what complementary. The results show that among
the 60,928 error tokens corrected by VARD, 60% are
also corrected by FEMA-attribute, while the remain-
ing 40% would be left uncorrected by the domain

1325

adaptation technique. Conversely, among the errors
corrected by FEMA-attribute, 38% are also corrected
by VARD, while the remaining 62% would be left
uncorrected. The overlap of reduced errors is be-
cause both approaches exploit similar sources of in-
formation, including affixes and local word contexts.

6 Related Work

Domain adaptation Early work on domain adap-
tation focuses on supervised setting, in which some
amount of labeled instances are available in the
target domain (Jiang and Zhai, 2007; Daumé III,
2007; Finkel and Manning, 2009). Unsupervised
domain adaptation is more challenging but attrac-
tive in many applications, and several representation
learning methods have been proposed for address-
ing this problem. Structural Correspondence Learn-
ing (Blitzer et al., 2006, SCL) and marginalized
denoising autoencoders (Chen et al., 2012, mDA)
seek cross-domain representations that are useful
to predict a subset of features in the original in-
stances, called pivot features. Schnabel and Schütze
(2014) directly induce distributional representations
for POS tagging based on local left and right neigh-
bors of the token. More recent work trains cross-
domain representations with neural networks, with
additional objectives such as minimizing errors in
the source domain and maximizing domain confu-
sion loss (Ganin and Lempitsky, 2015; Tzeng et al.,
2015). We show the Feature Embedding model,
which is specifically designed for NLP problems
with feature templates (Yang and Eisenstein, 2015),
achieves strong performance on historical adapta-
tion tasks.

Historical texts Historical texts differ from mod-
ern texts in spellings, syntax and semantics, pos-
ing significant challenges for standard NLP systems,
which are usually trained with modern news text.
Numerous resources have been created for over-
coming the difficulties, including syntactically an-
notated corpora (Kroch et al., 2004; Kroch et al.,
2010; Galves and Faria, 2010) and spelling normal-
ization tools (Giusti et al., 2007; Baron and Rayson,
2008). Most previous work focuses on normaliza-
tion, which can significantly increase tagging ac-
curacy on historical English (Rayson et al., 2007)
and German (Scheible et al., 2011). Similar im-

provements have been obtained for syntactic pars-
ing (Schneider et al., 2014). Domain adaptation of-
fers an alternative approach which is more generic
— for example, it can be applied to any corpus with-
out requiring the design of a set of normalization
rules. As shown above, when normalization is pos-
sible, it can be combined with domain adaptation to
yield better performance than that obtained by either
approach alone.

7 Conclusion

Syntactic analysis is a key first step towards pro-
cessing historical texts, but it is confounded by
changes in spelling and usage over time. We empir-
ically evaluate several unsupervised domain adapta-
tion approaches for POS tagging of historical En-
glish texts. We find that domain adaptation meth-
ods significantly improve the tagger performance on
two historical English treebanks, with relative error
reductions of 30% in the temporal adaptation set-
ting. FEMA outperforms other domain adaptation
approaches, showing the importance of adapting the
entire feature vector, rather than simply using word
embeddings. Normalization and domain adaptation
combine to yield even better performance, with a to-
tal of 5% raw accuracy improvement over a baseline
classifier in the most difficult setting. Error anal-
ysis reveals that tagset mismatch is the most com-
mon source of errors for in-vocabulary words. We
hope that our work encourages further research on
domain adaptation for historical texts and provides
useful baselines in these efforts.

Acknowledgments This research was supported
by National Science Foundation award 1349837,
and by the National Institutes of Health under award
number R01GM112697-01. We thank the reviewers
for their helpful feedback.

References
Alistair Baron and Paul Rayson. 2008. Vard2: A tool for

dealing with spelling variation in historical corpora. In
Postgraduate conference in corpus linguistics.

Alistair Baron, Paul Rayson, and Dawn Archer. 2009.
Word frequency and key word statistics in corpus lin-
guistics. Anglistik, 20(1):41–67.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman

1326

Vaughan. 2010. A theory of learning from different
domains. Machine learning, 79(1-2):151–175.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of Empirical Meth-
ods for Natural Language Processing (EMNLP), pages
120–128.

Lars Borin and Markus Forsberg. 2008. Something old,
something new: A computational morphological de-
scription of old swedish. In LREC 2008 workshop on
language technology for cultural heritage data (LaT-
eCH 2008), pages 9–16.

Peter F Brown, Peter V Desouza, Robert L Mercer, Vin-
cent J Della Pietra, and Jenifer C Lai. 1992. Class-
based n-gram models of natural language. Computa-
tional linguistics, 18(4):467–479.

Minmin Chen, Z. Xu, Killian Weinberger, and Fei Sha.
2012. Marginalized denoising autoencoders for do-
main adaptation. In Proceedings of the International
Conference on Machine Learning (ICML).

Hal Daumé III. 2007. Frustratingly easy domain adapta-
tion. In Proceedings of the Association for Computa-
tional Linguistics (ACL), Prague.

William C Dougherty. 2010. The Google Books Project:
will it make libraries obsolete? The Journal of Aca-
demic Librarianship, 36(1):86–89.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL), pages 359–369, Atlanta, GA.

Eugenia Eumeridou, Blaise Nkwenti-Azeh, and John
McNaught. 2004. An analysis of verb subcategoriza-
tion frames in three special language corpora with a
view towards automatic term recognition. Computers
and the Humanities, 38(1):37–60.

Jenny R. Finkel and Christopher Manning. 2009. Hier-
archical bayesian domain adaptation. In Proceedings
of the North American Chapter of the Association for
Computational Linguistics (NAACL), pages 602–610,
Boulder, CO.

Charlotte Galves and Pablo Faria. 2010. Tycho
Brahe Parsed Corpus of Historical Portuguese.
http://www.tycho.iel.unicamp.br/

˜tycho/corpus/en/index.html.
Yaroslav Ganin and Victor Lempitsky. 2015. Unsuper-

vised domain adaptation by backpropagation. In Pro-
ceedings of the International Conference on Machine
Learning (ICML).

Roger Garside and Nicholas Smith. 1997. A hybrid
grammatical tagger: Claws4. Corpus annotation: Lin-
guistic information from computer text corpora, pages
102–121.

Jesús Giménez and Lluis Marquez. 2004. SVMTool: A
general POS tagger generator based on support vector
machines. In Proceedings of the Language Resources
and Evaluation Conference.

Rafael Giusti, A Candido, Marcelo Muniz, Lı́via Cucatto,
and Sandra Aluı́sio. 2007. Automatic detection of
spelling variation in historical corpus. In Proceedings
of the Corpus Linguistics Conference (CL).

Iris Hendrickx, Michel Généreux, and Rita Marquilhas.
2011. Automatic pragmatic text segmentation of his-
torical letters. In Language Technology for Cultural
Heritage, pages 135–153. Springer.

Jing Jiang and ChengXiang Zhai. 2007. Instance weight-
ing for domain adaptation in nlp. In Proceedings of
the Association for Computational Linguistics (ACL),
Prague.

Mahesh Joshi, Mark Dredze, William W. Cohen, and Car-
olyn P. Rosé. 2013. What’s in a domain? multi-
domain learning for multi-attribute data. In Proceed-
ings of the North American Chapter of the Association
for Computational Linguistics (NAACL), pages 685–
690, Atlanta, GA.

Bryan Jurish. 2011. Finite-state canonicalization tech-
niques for historical German. Ph.D. thesis, Univer-
sitätsbibliothek.

Anthony Kroch and Ann Taylor. 2000. Penn-
Helsinki Parsed Corpus of Middle English, sec-
ond edition. http://www.ling.upenn.
edu/hist-corpora/PPCME2-RELEASE-3/
index.html.

Anthony Kroch, Beatrice Santorini, and Ariel
Diertani. 2004. Penn-Helsinki Parsed Cor-
pus of Early Modern English. http:
//www.ling.upenn.edu/hist-corpora/
PPCEME-RELEASE-2/index.html.

Anthony Kroch, Beatrice Santorini, and Ariel Dier-
tani. 2010. The Penn Parsed Corpus of Modern
British English. http://www.ling.upenn.
edu/hist-corpora/PPCMBE-RELEASE-1/
index.html.

Vivek Kulkarni, Rami Al-Rfou, Bryan Perozzi, and
Steven Skiena. 2015. Statistically significant detec-
tion of linguistic change. In Proceedings of Interna-
tional Conference on World Wide Web (WWW), pages
625–635.

Yuri Lin, Jean-Baptiste Michel, Erez Lieberman Aiden,
Jon Orwant, Will Brockman, and Slav Petrov. 2012.
Syntactic annotations for the google books ngram cor-
pus. In Proceedings of the ACL 2012 system demon-
strations, pages 169–174.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.

1327

2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. 2009. Domain adaptation with multiple
sources. In Neural Information Processing Systems
(NIPS), pages 1041–1048.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Neural Information Processing Systems (NIPS), pages
3111–3119, Lake Tahoe.

Taesun Moon and Jason Baldridge. 2007. Part-of-speech
tagging for middle english through alignment and pro-
jection of parallel diachronic texts. In Proceedings of
Empirical Methods for Natural Language Processing
(EMNLP), pages 390–399.

Aditi Muralidharan and Marti A Hearst. 2013. Support-
ing exploratory text analysis in literature study. Liter-
ary and linguistic computing, 28(2):283–295.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Eva Pettersson and Joakim Nivre. 2011. Automatic verb
extraction from historical swedish texts. In Proceed-
ings of the 5th ACL-HLT Workshop on Language Tech-
nology for Cultural Heritage, Social Sciences, and Hu-
manities, pages 87–95.

Xuan-Hieu Phan. 2006. CRFTagger: CRF English POS
Tagger. http://crftagger.sourceforge.
net.

Michael Piotrowski. 2012. Natural language processing
for historical texts. Synthesis Lectures on Human Lan-
guage Technologies, 5(2):1–157.

Adwait Ratnaparkhi. 1996. A maximum entropy
model for part-of-speech tagging. In Proceedings of
Empirical Methods for Natural Language Processing
(EMNLP), pages 133–142.

Paul Rayson, Dawn Archer, Alistair Baron, Jonathan
Culpeper, and Nicholas Smith. 2007. Tagging the
bard: Evaluating the accuracy of a modern pos tagger
on early modern english corpora. In Corpus Linguis-
tics Conference.

Matti Rissanen, Merja Kytö, and Minna Palander-Collin.
1993. Early English in the computer age: Explo-
rations through the Helsinki Corpus. Number 11. Wal-
ter de Gruyter.

Silke Scheible, Richard J Whitt, Martin Durrell, and Paul
Bennett. 2011. Evaluating an ’off-the-shelf’ POS-
tagger on early modern German text. In Proceedings
of the 5th ACL-HLT workshop on language technology
for cultural heritage, social sciences, and humanities,
pages 19–23.

Tobias Schnabel and Hinrich Schütze. 2014. Flors: Fast
and simple domain adaptation for part-of-speech tag-
ging. Transactions of the Association of Computa-
tional Linguistics, 2:51–62.

Gerold Schneider, Hans Martin Lehmann, and Peter
Schneider. 2014. Parsing early and late modern en-
glish corpora. Literary and Linguistic Computing.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL).

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word Representation: A Simple and General Method
for Semi-Supervised Learning. In Proceedings of
the Association for Computational Linguistics (ACL),
pages 384–394, Uppsala, Sweden.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate
Saenko. 2015. Simultaneous deep transfer across do-
mains and tasks. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), pages
4068–4076.

Yi Yang and Jacob Eisenstein. 2014. Fast easy unsuper-
vised domain adaptation with marginalized structured
dropout. In Proceedings of the Association for Com-
putational Linguistics (ACL), Baltimore, MD.

Yi Yang and Jacob Eisenstein. 2015. Unsupervised
multi-domain adaptation with feature embeddings. In
Proceedings of the North American Chapter of the
Association for Computational Linguistics (NAACL),
Denver, CO.

1328

Proceedings of NAACL-HLT 2016, pages 1329–1339,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Statistical Modeling of Creole Genesis

Yugo Murawaki
Graduate School of Informatics, Kyoto University

Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
murawaki@i.kyoto-u.ac.jp

Abstract
Creole languages do not fit into the tradi-
tional tree model of evolutionary history be-
cause multiple languages are involved in their
formation. In this paper, we present several
statistical models to explore the nature of cre-
ole genesis. After reviewing quantitative stud-
ies on creole genesis, we first tackle the ques-
tion of whether creoles are typologically dis-
tinct from non-creoles. By formalizing this
question as a binary classification problem, we
demonstrate that a linear classifier fails to sep-
arate creoles from non-creoles although the
two groups have substantially different distri-
butions in the feature space. We then model
a creole language as a mixture of source lan-
guages plus a special restructurer. We find a
pervasive influence of the restructurer in cre-
ole genesis and some statistical universals in
it, paving the way for more elaborate statisti-
cal models.

1 Introduction

While most linguistic applications of computational
phylogeny rely on lexical data (Gray and Atkinson,
2003; Bouckaert et al., 2012), there is a growing
trend to make use of typological data (Tsunoda et
al., 1995; Dunn et al., 2005; Teh et al., 2008; Longo-
bardi and Guardiano, 2009; Murawaki, 2015). One
advantage of typological features over lexical traits
(cognates) is that they allow us to compare an ar-
bitrary pair of languages even if they do not share
enough cognates. For this reason, they have the
potential of uncovering external relations involving
language isolates and tiny language families such as
Ainu, Basque, and Japanese.

However, our understanding of typological
changes is far from satisfactory in at least two re-
spects. First, typological changes are less intuitive
than the birth and death of a lexical trait. Mod-
eling word-order change with a single transition
matrix (Maurits and Griffiths, 2014), for example,
appears to be an oversimplification because some
complex mechanisms must be hidden behind the
changes (Murawaki, 2015).

The second point, the main focus of this paper, is
that it is not clear whether typological data fit into
the traditional tree model for a group of languages,
which has long been used as the default choice to
summarize evolutionary history (Schleicher, 1853).
To be precise, regardless of whether typological fea-
tures are involved, linguists have viewed the tree
model with suspicion. A central problem of the tree
model is its assumption that after a branching event,
two resultant languages evolve completely indepen-
dently. However, linguists have noted that horizon-
tal contact is a constitutive part of evolutionary his-
tory. Various models for contact phenomena have
been proposed to address this problem, including
the wave theory (Schmidt, 1872) and the gravity
model (Trudgill, 1974). As for linguistic typology,
areal linguistics has worked on the diffusion of typo-
logical features across languages within a geograph-
ical area (Campbell, 2006).

In this paper, we study creole languages as an ex-
treme case of non-tree-like evolution (Wardhaugh
and Fuller, 2015). A creole is developed as a re-
sult of intense contact between multiple languages:
typically one socioculturally dominant language (su-
perstrate) and several low-prestige languages (sub-

1329

strates). Superstrates are also known as lexifiers be-
cause the lexicon of a creole is largely derived from
its superstrate. In spite of this, the grammar of a cre-
ole is drastically different from that of its lexifier. It
is often said that creole grammars are simpler than
non-creole ones although it is not easy to measure
grammatical simplicity.

Creoles are not irrelevant to historical linguistics
because some have speculated about the plausibil-
ity of creole status for Middle English (Bailey and
Maroldt, 1977) and (pre-)Old Japanese (Kawamoto,
1974; Akiba-Reynolds, 1984; Kawamoto, 1990)
while they have been criticized harshly by others.

This controversy can only be settled by fully
understanding creole genesis, or the question of
how creoles emerge, which also remains unre-
solved (Wardhaugh and Fuller, 2015). One theory
called the gradualist hypothesis suggests their staged
development from pidgin languages. A pidgin arises
when speakers of different languages with no com-
mon language try to have a makeshift conversation,
which results in a drastic simplification of grammar
called pidgin formation. A pidgin is then acquired
by children as their first language and is transformed
into a fully functional language. This process of
grammatical elaboration is known as creole forma-
tion.

We follow Bakker, Daval-Markussen and col-
leagues in taking data-driven approaches to this
problem (Bakker et al., 2011; Daval-Markussen and
Bakker, 2012; Daval-Markussen, 2013). They ar-
gue that creoles are typologically distinct from non-
creoles. They compare four theories of creole gene-
sis:

1. Superstratist. The lexifier plays a major role in
creole genesis.

2. Substratist. Substrates do, instead of the lexi-
fier.

3. Feature pool. Both the lexifier and substrates,
but nothing else, provide a feature pool from
which each feature value of a creole is selected.

4. Universalist. Innate ability of humans to cre-
ate language is emphasized. The hypothetical
linguistic universals for creole formation are
called restructuring universals.

 !"#

 $%&
 '!(

)%*

 +!* &,(
 ")-

 ./,
 0/-

 #1(
 2!3

 "1.

 3!4

 "!# 5!*

0678
069:

0;<=

0>?<
08@9

AB9C

A8>9
48:D

AB>9

A@ E

0F7G

0HF8
0@>B
0B87

0 :I

48HH
AI=E
A;@<

08=8

0BE>

4:9D

4G=: 4HJ8
4CK6

08<
0I8B

0 8=

0@>@
0B8@

AJ=E

A>9C
0BC@

0G<9

 &%, 3!3

 "/#
4J<=

LMLN

Figure 1: NeighborNet graph of creoles (c), lexifiers
(L), substrates (S) and other non-creole languages
(X). A language type (c/L/S/X) is followed by a
three-letter language code. The bottom-up cluster-
ing (i.e., basically tree-building) method produced a
cluster of creoles on the right. We reproduced Fig-
ure 5 of Daval-Markussen and Bakker (2012) using
their online supplementary materials.

To test these explanations, they apply Neighbor-
Net (Bryant and Moulton, 2004), a bottom-up,
distance-based clustering method developed in the
field of computational biology. By demonstrating
that, as in Figure 1, creoles form a cluster distin-
guishable from lexifiers, substrates and other non-
creole languages, they argue for the universalist po-
sition and for creole distinctiveness.

However, we find both theoretical and method-
ological problems in their discussion. Theoreti-
cally, the synchronic question of creole distinctive-
ness is confused with the diachronic question of
creole genesis. If creoles are distinct from non-
creoles, then something specific to creoles (e.g., re-
structuring universals) would play a role, but not
vice versa. It is logically possible that even with
restructuring universals, creoles are indistinguish-
able from (a subgroup of) non-creoles. Methodolog-
ically speaking, NeighborNet does not straightfor-
wardly explain fundamentally non-tree-like evolu-
tion because it does assume tree-like evolution even
though it represents conflicting signals with reticu-
lations.

We begin by addressing the question of creole
(non-)distinctiveness. Whether one is distinct from
another is straightforwardly formalized as a binary
classification problem. We show that an SVM clas-
sifier fails to separate creoles from non-creoles. Fol-

1330

Figure 2: Schematic comparison of two approaches
to creole genesis.

lowing a practice in population genetics, we visu-
alize the data using principal component analysis
(PCA). The result suggests that although creoles
have a substantially different distribution from non-
creoles, they nevertheless overlap.

Next, we propose to model creole genesis with
mixture models. In this approach, a creole is
stochastically generated by mixing its lexifier, sub-
strate(s) plus a special restructurer. Conceptually,
this is the opposite of the tree model, as illustrated
in Figure 2. Specifically, we present two Bayesian
models. The first one considers one mixing pro-
portion per creole, and the other decomposes the
proportions into per-feature and per-creole factors.
Our experimental results suggest that the restruc-
turer dominates creole genesis, dismissing the su-
perstratist, substratist and feature pool theories. We
also find some statistical universals in the restruc-
turer although we refrain from identifying them as
restructuring universals. In this way, we represent a
first step toward understanding the complex process
of creole genesis through statistical models.

2 Related Work

2.1 Population Genetics

Like Bakker, Daval-Markussen and col-
leagues (Bakker et al., 2011; Daval-Markussen
and Bakker, 2012; Daval-Markussen, 2013), we
borrow ideas from computational biology. For rea-
sons unknown to us, they chose clustering models
that basically assume tree-like evolution (Saitou and
Nei, 1987; Bryant and Moulton, 2004). However,
creole genesis is more comparable to models that
explicitly take into account genetic admixture (i.e.,
contact phenomena). See Jones et al. (2015), for
example, to take a look at standard practices in

population genetics.
Population genetic analysis of genotype data (bi-

nary sequences comparable to sets of linguistic fea-
tures) can be grouped into two types: population-
level and individual-level analysis. Populations,
such as Sardinian, Yoruba and Japanese, are pre-
defined sets of individuals. Population-level analysis
utilizes genetic variation within a population (Patter-
son et al., 2012). From a modeling point of view,
languages are more comparable to individuals. Al-
though a language is spoken by a population, no lin-
guistic data available are comparable to a set of in-
dividuals.

Individual-level analysis, where population labels
are used only for the purpose of visualization, is of-
ten done using PCA and admixture analysis. PCA is
used for dimensionality reduction: by selecting the
first two principal components, high-dimensional
sequences are projected onto an informative two-
dimensional diagram (Patterson et al., 2006).

Admixture analysis (Pritchard et al., 2000;
Alexander et al., 2009) closely resembles topic
models, most notably Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), in NLP. It assumes that
each individual is a mixture of K ancestral compo-
nents (i.e., topics). One difference is that while each
LDA topic is associated with a single word distribu-
tion (K distributions in total), each SNP (i.e., feature
type) has its own distribution (K × J distributions
in total for sequences with length J).

2.2 Linguistic Typology and Non-tree-like
Evolution

Like lexical data, typological features are usually an-
alyzed with a tree model, but Reesink et al. (2009)
are a notable exception. They applied admixture
analysis to Australian and Papuan languages, for
which tree-building techniques had not been suc-
cessful. They related inferred ancestral components
to putative prehistoric dispersals and contacts.

Independently of biologically-inspired studies,
Daumé III (2009) incorporated linguistic areas into
a phylogenetic tree. In his Bayesian generative
model, each feature of a language has a latent vari-
able which determines whether it is derived from an
areal cluster or the tree. Thus his model can be seen
as a mixture model.

1331

(a) Both. (b) Creoles. (c) Non-creoles.

Figure 3: PCA of creoles (red squares) and non-creoles (green circles) with explained variance in the labels
of the axes. (a) Scatterplot of both types of languages. (b) Kernel density estimates (KDEs) of creoles. (c)
KDEs of non-creoles.

3 Data and Preprocessing

We used the online edition1 of the Atlas of Pidgin
and Creole Language Structures (APiCS) (Michaelis
et al., 2013), a database of pidgin and creole lan-
guages. It was larger than the datasets of Bakker et
al. (2011). As of 2015, it contained 76 languages
(104 varieties). It was essentially a pidgin-and-
creole version of the online edition2 of the World At-
las of Language Structures (WALS) (Haspelmath et
al., 2005), but it contained sociolinguistic features,
phonological inventories and example texts in addi-
tion to typological features.

As APiCS did not mark creoles, we used the so-
ciolinguistic feature “Ongoing creolization of pid-
gins” as a criterion to select creoles. Specifically,
we filtered out languages whose feature value was
neither “Not applicable (because the language is not
a pidgin)” nor “Widespread.”

In APiCS, 48 out of 130 typological features were
mapped to WALS features. We used these features
to combine creoles from APiCS with non-creoles
from WALS. Since the WALS database was sparse,
we selected languages for which at least 30% of the
features were present. As a result, we obtained 64
creoles and 541 non-creoles.

We imputed missing data using the R package
missMDA (Josse et al., 2012). It handled miss-
ing values using multiple correspondence analy-

1http://apics-online.info/
2http://wals.info/

sis (MCA). Specifically, we used the imputeMCA
function to predict missing feature values.

When investigating creole distinctiveness, we
used binary representations of features. Using a one-
of-K encoding scheme, we transformed 48 categor-
ical features into 220 binary features.

Our mixture models require each creole to be as-
sociated with a lexifier and substrate(s). Unfortu-
nately, APiCS described these languages in an ob-
scure way (and many of them are indeed not fully
resolved). We had no choice but to manually select
several modern languages as proxies for them. For
simplicity, we chose only one substrate per creole,
but it is not difficult to extend our model for multiple
substrates. We are aware that these are oversimplifi-
cation, but we believe they would be adequate for a
proof-of-concept demonstration.

4 Creole Non-distinctiveness

4.1 Binary Classification

To determine whether creoles are distinct from non-
creoles, we apply a linear SVM classifier to the ty-
pological data. Here, linearity is assumed for two
reasons. First, since the supposed distinctiveness
is explained by restructuring universals, there is no
way for creoles to have an XOR-like distribution.
Second, Daval-Markussen (2013) claims that as few
as three features are sufficient to distinguish creoles
from non-creoles. If this is correct, it is expected
that given 48 categorical features, even a simple lin-

1332

System
C NC

Reference C 54 10
NC 7 534

Table 1: Confusion matrix of binary classification.
C stands for creoles and NC for non-creoles.

ear classifier can work nearly perfectly.
The classifier is trained to classify whether a given

language, represented by binarized features, is a cre-
ole (+1) or non-creole (−1). We use 5-fold cross
validation with grid search to tune hyperparameters.

In our experiments, the accuracy, recall, preci-
sion and F1-measure were 97.2%, 88.5%, 84.4%
and 86.4%, respectively. Table 1 shows the con-
fusion matrix. We can see that the classifier failed
to separate creoles from non-creoles. Although the
classifier worked well, borderline cases remained.

4.2 PCA

For exploratory analysis and visualization, we ap-
plied PCA to creoles and non-creoles, again repre-
sented by binarized features. Figure 3 depicts the
scatterplot of the first two principal components. We
can see that creoles were characterized by quite a
different distribution from that of non-creoles. The
creoles were concentrated on the lower center while
most non-creoles belonged to one of two clusters in
the middle. However, the distribution of creoles did
overlap with that of non-creoles.

Having a closer look at the diagram, we found
that Negerhollands (Dutch), Cape Verdean Creole
of Brava (Portuguese) and Vincentian Creole (En-
glish) were among the most “typical” creoles (lex-
ifiers in parentheses). Tok Pisin (English) and Bis-
lama (English) were at the periphery of the cluster.
The outliers on the upper left included Korlai (Por-
tuguese) while Kikongo-Kituba (Bantu) lay on the
upper right.

On the other hand, “creole-like” non-creoles in-
cluded Chontal Maya (a Mayan language of Mex-
ico), Mussau (an Oceanic language of Papua New
Guinea),3 Catalan and other European languages.
The non-creole cluster on the middle left consisted
of Japanese, Kannada, Maltese and others. An-

3Interestingly, Mussau is noted for contact-induced
changes (Brownie, 2012).

other non-creole cluster on the middle right included
Swahili, Hawaiian and Khmer. The creoleless upper
central area was occupied by Lalo (Sino-Tibetan),
Maninka (Western) (Mande in West Africa), Salt-
Yui (Trans-New Guinea) among others.

5 Mixture Models for Creole Genesis

5.1 Basic Idea

Forsaking the quest for synchronic distinctiveness,
we take a more direct approach to the diachronic
question of creole genesis. Since multiple languages
are involved in creole genesis, it is reasonable to
apply a mixture model. We assume that a creole
is stochastically generated by mixing three sources:
(1) a lexifier, (2) a substrate and (3) a global restruc-
turer. Under this assumption, the main question is
with what proportions these sources are mixed.

An unusual property of our model as a mixture
model is that not only outcomes (creoles) but most
sources (lexifiers and substrates) are observed. We
only need to infer the restructurer. Thus another
question is what the restructurer looks like.

Note that our model is constructed such that it
does not commit to a particular theory of creole gen-
esis. If the superstratist theory is correct, then lex-
ifiers would dominate the inferred mixing propor-
tions. The same is true of the substratist theory. Sim-
ilarly, the feature pool theory entails that the restruc-
turer only occupies negligible portions. Also note
that even if the restructurer plays a significant role, it
does not necessarily imply the universalist position.
The restructurer is a set of catch-all feature distri-
butions for those which are explained neither by the
lexifier nor by the substrate (that is why we avoid
calling it restructuring universals). In order for it to
be linguistic universals, it must show some consis-
tent patterns in its distributions.

5.2 MONO Model

Our idea is materialized in two Bayesian genera-
tive models. The first one, called MONO, is similar
to the STRUCTURE algorithm of admixture analy-
sis (Pritchard et al., 2000).4

4As seen in Section 2.1, MONO is more similar to STRUC-
TURE than to LDA in that each feature type has its own distri-
butions. The difference is that while STRUCTURE infers all K
global components, MONO always has one global component

1333

Every language in the model is represented by
a sequence of categorical features. The number of
possible values varies among feature types. For fea-
ture j of creole i, the latent assignment variable zi,j

determines from which source the feature is derived,
a lexifier (L), a substrate (S) or the restructurer (R).
Each creole i is associated a priori with a lexifier
and a substrate. Let yi,j,L and yi,j,S be the values of
feature j of creole i’s lexifier and substrate, respec-
tively. If the source is the lexifier (or substrate), the
creole simply copies yi,j,L (or yi,j,S). For the sake of
uniformity, we can think of a lexifier (or substrate)
as a set of feature distributions each of which con-
centrates all probability mass on its observed value
(i.e., the δ function). The remaining source, the re-
structurer, is a set of categorical feature distributions
each of which is drawn from a Dirichlet prior.

The assignment variable zi,j is generated from θi,
which in turn is generated from a Dirichlet prior.
θi = (θi,L, θi,S, θi,R) is the parameter of a categor-
ical distribution which specifies the mixing propor-
tion of the three sources for creole i.5

More concretely, the generative story of MONO is
as follows:

1. For each feature type j ∈ {1, · · · , J} of the
restructurer:

(a) draw a distribution from a symmetric
Dirichlet distribution ϕj ∼ Dir(βj)

2. For each creole i ∈ {1, · · · , N}:

(a) draw a mixing proportion from a symmet-
ric Dirichlet distribution θi ∼ Dir(αi)

(b) then for each feature type j ∈ {1, · · · , J}:
i. draw a topic assignment zi,j ∼

Categorical(θi)
ii. draw a feature value

xi,j ∼


δ(yi,j,L) if zi,j = L
δ(yi,j,S) if zi,j = S
Categorical(ϕj) if zi,j = R

As usual, we marginalize out ϕj and θi us-
ing conjugacy of Dirichlet and categorical distribu-
tions (Griffiths and Steyvers, 2004). We use Gibbs
and two local, observed components.

5By letting another categorical distribution subdivide θi,S,
we can incorporate multiple substrates into the model.

sampling to infer zi,j , whose probability conditioned
on the rest is proportional to

(
αi + c

−(i,j)
i,L

)
I(xi,j = yi,j,L) if zi,j = L(

αi + c
−(i,j)
i,S

)
I(xi,j = yi,j,S) if zi,j = S(

αi + c
−(i,j)
i,R

) βj+c
−(i,j)
R,j,xi,j

Bj+c
−(i,j)
R,j,∗

if zi,j = R

(1)

where I is an indicator function, Bj =
∑

βj , c
−(i,j)
i,k

is the number of assignments for creole i, except
zi,j , whose values are k, and c

−(i,j)
R,j,l is the number

of observed features for feature type j, except xi,j ,
that is derived from the restructurer and has l as its
value. Intuitively, the first term gives priority to the
source from which many other features of creole i
are derived. The second term concerns how likely
the source generates the feature value. For the lexi-
fier or the substrate, it is 1 only if the source shares
the same feature value with the creole; otherwise 0.
To tune hyperparameters αi and βj , we set a vague
gamma prior Gamma(1, 1) and sample these pa-
rameters using slice sampling (Neal, 2003).

5.3 FACT Model
It is said that some features are more easily bor-
rowed than others (Matras, 2011). For creoles, some
seems to reflect substrate influence on phonology
while reduced inflections might be attributed to the
restructurer. Inspired by these observations, we ex-
tend the MONO model such that some feature types
can have strong connections to particular sources.
We call this extended model FACT.

To do this, we decomposes the mixing propor-
tions into per-feature and per-creole factors. We ap-
ply additive operations to these factors in log-space
in a way similar to the Sparse Additive Generative
model (Eisenstein et al., 2011). As a result of this
extension, every feature j of creole i has its own
mixing proportion, θi,j = (θi,j,L, θi,j,S, θi,j,R):

θi,j,k =
exp(mj,k + ni,k)∑
k exp(mj,k + ni,k)

, (2)

where mj,k is a factor specific to feature type j and
ni,k is the one specific to creole i. To penalize ex-
treme values, we put Laplacian priors on mj,k and
ni,k, with mean 0 and scale γ.

To sum up, the generative story of FACT is as fol-
lows:

1334

Sources
Model L S R
MONO 16.6% 9.3% 74.1%

FACT

Combined 17.6% 6.0% 76.4%
Per-feature 22.5% 6.8% 70.8%
Per-creole 25.0% 20.4% 54.6%

Table 2: Summary of mixing proportions. The arith-
metic mean of 50 samples after 5,000 iterations,
with an interval of 100 iterations.

1. For each feature type j ∈ {1, · · · , J}:

(a) draw ϕj ∼ Dir(βj)
(b) for each source k ∈ {L, S, R}:

i. draw mj,k ∼ Laplace(0, γ)

2. For each creole i ∈ {1, · · · , N}:

(a) for each source k ∈ {L, S, R}:
i. draw ni,k ∼ Laplace(0, γ)

(b) then for each feature j ∈ {1, · · · , J}:
i. normalize mj,k and ni,k to obtain θi,j

(Equation (2))
ii. draw a topic assignment zi,j ∼

Categorical(θi,j)
iii. draw xi,j as in MONO

ϕj is integrated out as before, but the conjugacy no
longer holds for θi,j .

For inference, a modification is needed to infer
zi,j : the first term αi + c

−(i,j)
i,k of Equation (1) is re-

placed with θi,j,k. mj,k and ni,k are sampled using
the Metropolis algorithm, with a Gaussian proposal
distribution centered at the previous value. Hyper-
parameter γ is set to 10.

5.4 Results

Table 2 summarizes mixing proportions. For
MONO and FACT (combined), we use a fraction
of assignment variables pointing to a particular
souce. Per-feature and per-creole factors are con-
verted into probabilities as follows: per-feature pro-
portions ϕ̃j = (ϕ̃j,L, ϕ̃j,S, ϕ̃j,R), where ϕ̃j,k =

exp(mj,k)∑
k exp(mj,k) . Similarly, per-creole proportions θ̃i =

(θ̃j,L, θ̃j,S, θ̃j,R), where θ̃i,k = exp(ni,k)∑
k exp(ni,k) .

We can see that the overwhelming majority of
features were derived from the restructurer both in

Figure 4: Mixing proportions of MONO pro-
jected onto a simplex. Each point denotes a cre-
ole. It is the parameter of the posterior predic-
tive distribution of an assignment variable: θ̃i =
(αi+ci,L

Z ,
αi+ci,S

Z ,
αi+ci,R

Z), where the normalizer
Z =

∑
k αi + ci,k. One sample after 10,000 iter-

ations.

MONO and FACT (combined). The restructurer was
followed by lexifiers, and substrates were the least
influential.6 These results can be interpreted as
counter-evidence to the superstratist, substratist and
feature pool theories.

MONO and FACT (combined) exhibited similar
patterns. When the mixing proportions are decom-
posed into per-feature and per-creole factors, per-
creole factors exhibited less uneven distributions
than per-feature factors. This implies heterogeneous
behavior of features in creole genesis. Table 3 lists
top-5 feature types for each source.

Figure 4 plots creoles on a simplex of mixing pro-
portions in MONO. Creoles scattered across the sim-
plex but leaned toward the restructurer. This implies
that a lexifier cannot be mixed with substrates with-
out interference from the restructurer.

Compared with MONO, FACT tended to push
points to the edges of the simplex. This can be con-
firmed in Figure 5. In particular, Figure 5(c) is di-
rectly comparable to Figure 4. It is possible that
halfway points in MONO were artifacts of its limited
expressive power.

Table 4 lists the top-10 feature type-value pairs
that were derived from the restructurer. In other
words, we stochastically removed the influence of
the lexifiers and substrates from creole data. These
features can be regarded as (statistical) universals

6The substrates would probably occupy a larger portion if
multiple substrates are incorporated in future work.

1335

Source Ratio Feature type

Lexifier

100.0% Order of Adposition and Noun Phrase
100.0% Order of Relative Clause and Noun

99.9% Applicative Constructions
99.5% The Prohibitive
98.2% Alignment of Case Marking of Full Noun Phrases

Substrate

84.9% Order of Genitive and Noun
56.6% Tone
54.9% Order of Subject, Object and Verb
26.5% Pronominal and Adnominal Demonstratives
24.0% Relativization on Subjects

Restructurer

100.0% Intensifiers and Reflexive Pronouns
100.0% Numeral Classifiers
100.0% Suppletion According to Tense and Aspect
100.0% Expression of Pronominal Subjects
100.0% Polar Questions

Table 3: Top-5 feature types for each source according to per-feature factors of FACT. The arithmetic mean
of 50 samples after 5,000 iterations, with an interval of 100 iterations.

(a) Combined. (b) Per-feature factors. (c) Per-creole factors.

Figure 5: Mixing proportions of FACT projected onto a simplex. One sample after 10,000 iterations. (a)
J ×N points for combined mixing proportions θi,j . (b) J points for per-feature factors ϕ̃j as in Table 2. (c)
N points for per-creole factors θ̃i.

although our model leaves the possibility that they
were not restructuring universals. To answer this
question, we need to break down the restructurer by
types of linguistic universals.

Among the 10 feature type-value pairs, only four
apply to Japanese (Negative Indefinite Pronouns and
Predicate Negation, Intensifiers and Reflexive Pro-
nouns, Alignment of Case Marking of Pronouns,
and Order of Numeral and Noun). For reference,
English has seven. Combined with the PCA analysis
in Section 4.2, this suggests that Japanese is a very
non-creole-like language. However, we are unsure if
the possibility of creole status for (pre-)Old Japanese
is completely rejected. This question might be an-

swered if we figure out how long it takes to make
creole-like traits disappeared.

It is often said that creoles have SVO word order.
According to APiCS, the number of creoles with
SVO order was 61 (exclusive) and 71 (exclusive plus
shared) in the 76 language dataset. However, this
feature value only gained the ratio of 67.3%. This is
mainly because SVO is the word order of most lex-
ifiers, but it can also be attributed to data represen-
tation: since WALS did not allow multi-valued fea-
tures (e.g., SVO and SOV), some creoles with multi-
ple word orders were mapped to a separate category
“No dominant order,” underestimating the influence
of SVO.

1336

Ratio Feature type Feature value
91.2% Numeral Classifiers Absent
74.3% Gender Distinctions in Independent Personal Pronouns No gender distinctions
72.3% Negative Indefinite Pronouns and Predicate Negation Predicate negation also present
70.5% Occurrence of Nominal Plurality All nouns, always optional
69.7% Intensifiers and Reflexive Pronouns Identical
68.4% Distributive Numerals No distributive numerals
67.2% Expression of Pronominal Subjects Obligatory pronouns in subject position
66.9% Politeness Distinctions in Pronouns No politeness distinction
66.6% Alignment of Case Marking of Pronouns Nominative - accusative (standard)
66.3% Order of Numeral and Noun Numeral-Noun

Table 4: Top-10 features derived from the restructurer in FACT. The ratio of the feature type-value pair (j, l)
is defined as |{(i |xi,j = l, zi,j = R}| /N . The arithmetic mean of 50 samples after 5,000 iterations, with
an interval of 100 iterations.

5.5 Discussion

The main contribution of our work is the introduc-
tion of mixture models to creole studies. This is,
however, only the first step toward understanding
the complex process of creole genesis by means of
statistical modeling. Better data are needed with
respect to proxies for substrates, missing values,
multi-valued features among others.

With better data, more elaborate models could un-
cover the detailed process of creole genesis. Our
models mix several sources in one step, but we may
want to model the staged development of pidgin for-
mation and creole formation. As a result of contin-
ued influence from its superstrate, a creole might un-
dergo decreolization. It is argued that pidgins them-
selves have several development stages, from each
of which creoles can emerge (Mühlhäusler, 1997).
Hopefully, these hypotheses could be tested with
statistical models.

Our finding that the restructurer plays a dominant
role in creole genesis has a negative implication for
tree-based inference of language relationships. If
most features of a language come from nowhere, we
are unable to trace its origin back into the deep past.
In the meanwhile, it has been argued that creole gen-
esis only occurred in modern and early-modern, ex-
ceptional circumstances and cannot be responsible
for most historical changes. Thus identifying the so-
cial conditions under which creoles arise (Tria et al.,
2015) is another research direction to be explored.

6 Conclusion

In this paper, we present several statistical mod-
els of linguistic typology to answer questions con-
cerning creole genesis. First, we formalized creole
(non-)distinctiveness as a binary classification prob-
lem. Second, we propose to model creole genesis
with mixture models, which makes more sense than
tree-building techniques.

Recent studies on linguistic applications of com-
putational phylogeny have been heavily influenced
from computational biology. They often depend
on ready-to-use software packages developed in
that field. We observe that, as a result, linguistic
phenomena that lack exact counterparts in biology
tend to be left untouched. In this paper, we have
hopefully demonstrated that computational linguists
could fill the gap.

Acknowledgment

This work was partly supported by JSPS KAKENHI
Grant Number 26730122.

References

Katsue Akiba-Reynolds. 1984. Internal reconstruction
in pre-Japanese syntax. In Jacek Fisiak, editor, Histor-
ical Syntax, pages 1–23. Walter de Gruyter.

David H. Alexander, John Novembre, and Kenneth
Lange. 2009. Fast model-based estimation of an-
cestry in unrelated individuals. Genome Research,
19(9):1655–1664.

1337

Charles J. Bailey and Karl Maroldt. 1977. The French
lineage of English. In Jürgen M. Meisel, editor,
Langues en contact – Pidgins – Creoles, pages 21–53.
Narr.

Peter Bakker, Aymeric Daval-Markussen, Mikael Park-
vall, and Ingo Plag. 2011. Creoles are typologically
distinct from non-creoles. Journal of Pidgin and Cre-
ole Languages, 26(1):5–42.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022.

Remco Bouckaert, Philippe Lemey, Michael Dunn, Si-
mon J. Greenhill, Alexander V. Alekseyenko, Alexei J.
Drummond, Russell D. Gray, Marc A. Suchard, and
Quentin D. Atkinson. 2012. Mapping the origins and
expansion of the Indo-European language family. Sci-
ence, 337(6097):957–960.

John Brownie. 2012. Multilingualism and identity on
Mussau. International Journal of the Sociology of
Language, 2012(214).

David Bryant and Vincent Moulton. 2004. Neighbor-
Net: An agglomerative method for the construction of
phylogenetic networks. Molecular Biology and Evo-
lution, 21(2):255–265.

Lyle Campbell. 2006. Areal linguistics. In Encyclopedia
of Language and Linguistics, Second Edition, pages
454–460. Elsevier.

Hal Daumé III. 2009. Non-parametric Bayesian areal
linguistics. In HLT-NAACL, pages 593–601.

Aymeric Daval-Markussen and Peter Bakker. 2012. Ex-
plorations in creole research with phylogenetic tools.
In Proc. of LINGVIS & UNCLH, pages 89–97.

Aymeric Daval-Markussen. 2013. First steps towards
a typological profile of creoles. Acta Linguistica
Hafniensia, 45(2):274–295.

Michael Dunn, Angela Terrill, Ger Reesink, Robert A.
Foley, and Stephen C. Levinson. 2005. Structural
phylogenetics and the reconstruction of ancient lan-
guage history. Science, 309(5743):2072–2075.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011.
Sparse additive generative models of text. In Proc. of
ICML, pages 1041–1048.

Russell D. Gray and Quentin D. Atkinson. 2003.
Language-tree divergence times support the Ana-
tolian theory of Indo-European origin. Nature,
426(6965):435–439.

Thomas L. Griffiths and Mark Steyvers. 2004. Finding
scientific topics. PNAS, 101:5228–5235.

Martin Haspelmath, Matthew Dryer, David Gil, and
Bernard Comrie, editors. 2005. The World Atlas of
Language Structures. Oxford University Press.

Eppie R. Jones, Gloria Gonzalez-Fortes, Sarah Con-
nell, Veronika Siska, Anders Eriksson, Rui Mar-
tiniano, Russell L. McLaughlin, Marcos Gallego

Llorente, Lara M. Cassidy, Cristina Gamba, Ten-
giz Meshveliani, Ofer Bar-Yosef, Werner Muller,
Anna Belfer-Cohen, Zinovi Matskevich, Nino Jakeli,
Thomas F. G. Higham, Mathias Currat, David Lord-
kipanidze, Michael Hofreiter, Andrea Manica, Ron
Pinhasi, and Daniel G. Bradley. 2015. Upper
Palaeolithic genomes reveal deep roots of modern
Eurasians. Nature Communications, 6.

Julie Josse, Marie Chavent, Benot Liquet, and François
Husson. 2012. Handling missing values with regular-
ized iterative multiple correspondence analysis. Jour-
nal of Classification, 29(1):91–116.

Takao Kawamoto. 1974. Agreements and disagreements
in morphology between Japanese and Austronesian
(chiefly Melanesian) languages. The Japanese Jour-
nal of Ethnology, 39(2):113–129. (in Japanese).

Takao Kawamoto. 1990. Pijin kureōru-ka to Nihongo no
keisei [Pidginization-creolization and the formation of
Japanese]. In Osamu Sakiyama, editor, Nihongo no
Keisei [Formation of Japanese], pages 130–168. San-
seido. (in Japanese).

Giuseppe Longobardi and Cristina Guardiano. 2009. Ev-
idence for syntax as a signal of historical relatedness.
Lingua, 119(11):1679–1706.

Yaron Matras. 2011. Universals of structural borrow-
ing. In Peter Siemund, editor, Linguistic Universals
and Language Variation, pages 204–233. Walter de
Gruyter.

Luke Maurits and Thomas L. Griffiths. 2014. Tracing the
roots of syntax with Bayesian phylogenetics. PNAS,
111(37):13576–13581.

Susanne Maria Michaelis, Philippe Maurer, Martin
Haspelmath, and Magnus Huber, editors. 2013.
APiCS Online. Max Planck Institute for Evolutionary
Anthropology.

Peter Mühlhäusler. 1997. Pidgin and Creole Linguistics:
Expanded and revised Edition. University of West-
minster Press.

Yugo Murawaki. 2015. Continuous space representa-
tions of linguistic typology and their application to
phylogenetic inference. In Proc. of NAACL-HLT,
pages 324–334.

Radford M. Neal. 2003. Slice sampling. Annals of
Statistics, 31(3):705–767.

Nick Patterson, Alkes L. Price, and David Reich. 2006.
Population structure and eigenanalysis. PLoS Genet-
ics, 2(12):e190, 12.

Nick Patterson, Priya Moorjani, Yontao Luo, Swapan
Mallick, Nadin Rohland, Yiping Zhan, Teri Gen-
schoreck, Teresa Webster, and David Reich. 2012.
Ancient admixture in human history. Genetics,
192(3):1065–1093.

1338

Jonathan K. Pritchard, Matthew Stephens, and Peter Don-
nelly. 2000. Inference of population structure using
multilocus genotype data. Genetics, 155(2):945–959.

Ger Reesink, Ruth Singer, and Michael Dunn. 2009. Ex-
plaining the linguistic diversity of Sahul using popula-
tion models. PLoS Biology, 7(11).

Naruya Saitou and Masatoshi Nei. 1987. The neighbor-
joining method: A new method for reconstructing phy-
logenetic trees. Molecular Biology and Evolution,
4(4):406–425.

August Schleicher. 1853. Die ersten Spaltungen des in-
dogermanischen Urvolkes. Allgemeine Monatsschrift
für Wissenschaft und Literatur, 3:786–787. (in Ger-
man).

Johannes Schmidt. 1872. Die Ver-
wandtschaftsverhältnisse der indogermanischen
Sprachen. Hermann Böhlau. (in German).

Yee Whye Teh, Hal Daumé III, and Daniel Roy. 2008.
Bayesian agglomerative clustering with coalescents.
In NIPS, pages 1473–1480.

Francesca Tria, Vito D.P. Servedio, Salikoko S.
Mufwene, and Vittorio Loreto. 2015. Modeling
the emergence of contact languages. PLoS ONE,
10(4):e0120771, 04.

Peter Trudgill. 1974. Linguistic change and diffusion:
Description and explanation in sociolinguistic dialect
geography. Language in Society, 3:215–246.

Tasaku Tsunoda, Sumie Ueda, and Yoshiaki Itoh. 1995.
Adpositions in word-order typology. Linguistics,
33(4):741–762.

Ronald Wardhaugh and Janet M. Fuller. 2015. An Intro-
duction to Sociolinguistics, 7th Edition. John Wiley &
Sons.

1339

Proceedings of NAACL-HLT 2016, pages 1340–1345,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Shallow Parsing Pipeline for Hindi-English Code-Mixed Social Media Text

Arnav Sharma and Sakshi Gupta and Raveesh Motlani and Piyush Bansal
and Manish Shrivastava and Radhika Mamidi and Dipti M. Sharma

Kohli Center on Intelligent Systems (KCIS)
International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

Gachibowli, Hyderabad, Telangana 500032
{arnav.s, sakshi.gupta, raveesh.motlani, piyush.bansal}@research.iiit.ac.in

{m.shrivastava, radhika, dipti}@iiit.ac.in

Abstract

In this study, the problem of shallow pars-
ing of Hindi-English code-mixed social me-
dia text (CSMT) has been addressed. We
have annotated the data, developed a language
identifier, a normalizer, a part-of-speech tag-
ger and a shallow parser. To the best of our
knowledge, we are the first to attempt shallow
parsing on CSMT. The pipeline developed has
been made available to the research commu-
nity with the goal of enabling better text anal-
ysis of Hindi English CSMT. The pipeline is
accessible at 1.

1 Introduction

Multilingual speakers tend to exhibit code-mixing
and code-switching in their use of language on so-
cial media platforms. Code-Mixing is the embed-
ding of linguistic units such as phrases, words or
morphemes of one language into an utterance of an-
other language whereas code-switching refers to the
co-occurrence of speech extracts belonging to two
different grammatical systems (Gumperz., 1982).
Here we use code-mixing to refer to both the sce-
narios.

Hindi-English bilingual speakers produce huge
amounts of CSMT. Vyas et al. (2014) noted that
the complexity in analyzing CSMT stems from non-
adherence to a formal grammar, spelling variations,
lack of annotated data, inherent conversational na-
ture of the text and of course, code-mixing. There-
fore, there is a need to create datasets and Natural

1http://bit.ly/csmt-parser-api

Language Processing (NLP) tools for CSMT as tra-
ditional tools are ill-equipped for it. Taking a step
in this direction, we describe the shallow parsing
pipeline built during this study.

2 Background

Bali et al. (2014) gathered data from Facebook
generated by English-Hindi bilingual users which
on analysis, showed a significant amount of code-
mixing. Barman et al. (2014) investigated lan-
guage identification at word level on Bengali-Hindi-
English CSMT. They annotated a corpus with more
than 180,000 tokens and achieved an accuracy of
95.76% using statistical models with monolingual
dictionaries.

Solorio and Liu (2008) experimented with POS
tagging for English-Spanish Code-Switched dis-
course by using pre-existing taggers for both lan-
guages and achieved an accuracy of 93.48%. How-
ever, the data used was manually transcribed and
thus lacked the problems added by CSMT. Vyas et
al. (2014) formalized the problem, reported chal-
lenges in processing Hindi-English CSMT and per-
formed initial experiments on POS tagging. Their
POS tagger accuracy fell by 14% to 65% without
using gold language labels and normalization. Thus,
language identification and normalization are criti-
cal for POS tagging (Vyas et al., 2014), which in
turn is critical further down the pipeline for shallow
parsing as evident in Table 5.

Jamatia et al. (2015) also built a POS tag-
ger for Hindi-English CSMT using Random Forests
on 2,583 utterances with gold language labels and
achieved an accuracy of 79.8%. In the monolin-

1340

Lang. Sentences
English 141 (16.43%)
Hindi 111 (12.94%)

Code-mixed 606 (70.63%)
Total 858

Table 1: Data distribution at sentence level.

Lang. All Sentences Only CM Sentences

Hindi 6318 (57.05%) 5352 (63.34%)
English 3015 (27.22%) 1886 (22.32%)

Rest 1742 (15.73%) 1212 (14.34%)
Total 11075 8450

Table 2: Data distribution at token level.

gual social media text context, Gimpel et al. (2011)
built a POS tagger for English tweets and achieved
an accuracy of 89.95% on 1,827 annotated tweets.
Owoputi et al. (2013) further improved this POS
tagger, increasing the accuracy to 93%.

3 Data Preparation

CSMT was obtained from social media posts from
the data shared for Subtask 1 of FIRE-2014 Shared
Task on Transliterated Search. The existing annota-
tion on the FIRE dataset was removed, posts were
broken down into sentences and 858 of those sen-
tences were randomly selected for manual annota-
tion.

Table 1 and Table 2 show the distribution of the
dataset at sentence and token level respectively. The
language of 63.33% of the tokens in code-mixed
sentences is Hindi. Based on the distribution, it is
reasonable to assume that Hindi is the matrix lan-
guage (Azuma, 1993; Myers-Scotton, 1997) in most
of the code-mixed sentences.

3.1 Dataset examples

1. hy... try fr sm gov job jiske forms niklte h...
Gloss: Hey... try for some government job
which forms give out...
Translation: Hey... try for some government
job which gives out forms...

2. To tum divya bharti mandir marriage kendra
ko donate karna
Gloss: So you divya bharti temple marriage
center to donate do

Translation: So you donate to divya bharti
temple marriage center

The dataset is comprised of sentences similar
to example 1 and 2. Example 1 shows code-
switching as the language switches from En-
glish to Hindi whereas example 2 shows code-
mixing as some English words are embedded
in a Hindi utterance. Spelling variations (sm
- some, gov - government), ambiguous
words (To - So in Hindi or To in English)
and non-adherence to a formal grammar (out
of place ellipsis - ..., no or misplaced punc-
tuation) are some of the challenges evident in
analyzing the examples above.

3.2 Annotation
Annotation was done on the following four layers:

1. Language Identification: Every word was
given a tag out of three ’en’, ’hi’ and ’rest’
to mark its language. Words that a bilingual
speaker could identify as belonging to either
Hindi or English were marked as ‘hi’ or ‘en’.
The label ‘rest’ was given to symbols, emoti-
cons, punctuation, named entities, acronyms,
foreign words and words with sub-lexical code-
mixing like chapattis (Gloss: chapatti -
bread) which is a Hindi word (chapatti) follow-
ing English morphology (plural marker -s).

2. Normalization: Words with language tag ‘hi’
in Roman script were labeled with their stan-
dard form in the native script of Hindi, De-
vanagari. Similarly, words with language tag
‘en’ were labeled with their standard spelling.
Words with language tag ‘rest’ were kept as
they are. This acted as testing data for our Nor-
malization module.

3. Parts-of-Speech (POS): Universal POS tagset
(Petrov et al., 2011) was used to label the POS
of each word as this tagset is applicable to both
English and Hindi words. Sub-lexical code-
mixed words were annotated based on their
context, since POS is a function of a word in
a given context. For example, an English verb
used as a noun in Hindi context is labeled as a
noun.

1341

Figure 1: Schematic Diagram of the Pipeline

4. Chunking: A chunk tag comprises of chunk la-
bel and chunk boundary. The chunk label tagset
is a coarser version of AnnCorra tagset (Bharati
et al., 2006). Unlike AnnCorra, only one tag is
used for all verb chunks in our tagset. Chunk
boundary is marked using BI notation where
‘B-’ prefix indicates beginning of a chunk and
‘I-’ prefix indicates that the word is inside a
chunk.

This whole dataset was annotated by eight Hindi-
English bilingual speakers. Two other annota-
tors reviewed and cleaned it. To measure inter-
annotator agreement, another annotator read the
guidelines and annotated 25 sentences (334 tokens)
from scratch. The inter-annotator agreement calcu-
lated using Cohen’s κ (Cohen, 1960) came out to be
0.97, 0.83 and 0.89 for language identification, POS
tagging and shallow parsing respectively.

4 Shallow Parsing Pipeline

Shallow parsing is the task of identifying and
segmenting text into syntactically correlated word
groups (Abney, 1992; Harris, 1957). Shallow pars-
ing is a viable alternative to full parsing as shown by
(Li and Roth, 2001). Our shallow parsing pipeline is
composed of four main modules, as shown in Figure
1. These modules, in the order of their usage, are
Language Identification, Normalization, POS Tag-
ger and Shallow Parser.

Our pipeline takes a raw utterance in Roman
script as input on which each module runs sequen-
tially. Twokenizer2 (Owoputi et al., 2013) which

2http://www.ark.cs.cmu.edu/TweetNLP/

Features Accuracy
BNC 61.26
+LEXNORM 71.43
+HINDI DICT 77.50
+NGRAM 93.18
+AFFIXES 93.98

Table 3: Feature Ablation for Language Identifier

performs well on Hindi-English CSMT (Jamatia et
al., 2015) was used to tokenize the utterance into
words. The Language Identification module assigns
each token a language label. Based on the language
label assigned, the Normalizer runs the Hindi nor-
malizer or the English/Rest normalizer. The POS
tagger uses the output of the normalizer to assign
each word a POS tag. Finally, the Shallow Parser
assigns a chunk label with boundary.

The functionality and performance of each mod-
ule is described in greater detail in the following
subsections.

4.1 Language Identification

While language identification at the document level
is a well-established task (McNamee, 2005), iden-
tifying language in social media posts has certain
challenges associated to it. Spelling errors, phonetic
typing, use of transliterated alphabets and abbrevi-
ations combined with code-mixing make this prob-
lem interesting. Similar to (Barman et al., 2014), we
performed two experiments treating language iden-
tification as a three class (‘hi’, ‘en’, ‘rest’) classi-
fication problem. The feature set comprised of -
BNC: normalized frequency of the word in British
National Corpus (BNC)3. LEXNORM: binary fea-
ture indicating presence of the word in the lexical
normalization dataset released by Han et al. (2011).
HINDI DICT: binary feature indicating presence
of the word in a dictionary of 30,823 transliterated
Hindi words as released by Gupta (2012). NGRAM:
word n-grams. AFFIXES: prefixes and suffixes of
the word.

Using these features and introducing a context-
window of n-words, we trained a linear SVM. In
another experiment we modeled language identifica-
tion as a sequence labeling task, where we employed
CRF into usage. The idea behind this was that

3http://www.natcorp.ox.ac.uk/

1342

code-mixed text has some inherent structure which
is largely dictated by the matrix language of the text.
The latter approach using CRF had a greater accu-
racy, which validated our hypothesis. The results of
this module are shown in Table 3.

4.2 Normalization

Once the language identification task was complete,
there was a need to convert the noisy non-standard
tokens (such as Hindi words inconsistently written
in many ways using the Roman script) in the text
into standard words. To fix this, a normalization
module that performs language-specific transforma-
tions, yielding the correct spelling for a given word
was built. Two language specific normalizers, one
for Hindi and other for English/Rest, had two sub-
normalizers each, as described below. Both sub-
normalizers generated normalized candidates which
were then ranked, as explained later in this subsec-
tion.

1. Noisy Channel Framework: A generative
model was trained to produce noisy (unnor-
malized) tokens from a given normalized word.
Using the model’s confidence score and the
probability of the normalized word in the
background corpus, n-best normalizations were
chosen. First, we obtained character align-
ments between noisy Hindi words in Ro-
man script (Hr) to normalized Hindi words-
format(Hw) using GIZA++ (Och and Ney,
2003) on 30,823 Hindi word pairs of the form
(Hw - Hr) (Gupta et al., 2012). Next, a CRF
classifier was trained over these alignments, en-
abling it to convert a character sequence from
Roman to Devanagari using learnt letter trans-
formations. Using this model, noisy Hr words
were created for Hw words obtained from a dic-
tionary of 1,17,789 Hindi words (Biemann et
al., 2007). Finally, using the formula below,
we computed the most probableHw for a given
Hr.

Hw = argmaxHwi
p(Hwi |Hr)

= argmaxHwi
p(Hr|Hwi)p(Hwi)

where p(Hwi) is the probability of wordHwi in
the background corpus.

Features Accuracy
Baseline 69.27
+LANG 70.44
+NORM 72.61
+TPOS 73.18
+HPOS, -TPOS 73.55
+COMBINED 75.07

Table 4: Feature Ablation for POS Tagger

2. SILPA Spell Checker: This subnormalizer
uses SILPA libindic spell-checker4 to compute
the top 10 normalized words for a given input
word.

The candidates obtained from these two systems
are ranked on the basis of the observed precision of
the systems. The top-k candidates from each system
are selected if they have a confidence score greater
than an empirically observed Λ. A similar approach
was used for English text normalization, using the
English normalization pairs from (Han et al., 2012)
and (Liu et al., 2012) for the noisy channel frame-
work, and Aspell5 as the spell-checker. Words with
language tag ’rest’ were left unprocessed. The ac-
curacy for the Hindi Normalizer was 78.25%, and
for the English Normalizer was 69.98%. The over-
all accuracy of this module is 74.48%; P@n (Preci-
sion@n) for n=3 is 77.51% and for n=5 is 81.76%.

4.3 Part-Of-Speech Tagging

Part-of-Speech (POS) tagging provides basic level
of syntactic analysis for a given word or sentence.
It was modeled as a sequence labeling task using
CRF. The feature set comprised of - Baseline: Word
based features - affixes, context and the word itself.
LANG: Language label of the token. NORM: Nor-
malized lexical features. TPOS: Output of Twitter
POS tagger (Owoputi et al., 2013). HPOS: Output
of IIIT’s Hindi POS tagger6. COMBINED: HPOS
for Hindi words and TPOS for English and Rest.
The results of POS Tagger are shown in Table 4.

4https://github.com/libindic/
spellchecker

5http://aspell.net/
6http://ltrc.iiit.ac.in/showfile.php?

filename=downloads/shallow_parser.php

1343

Features L B C
POS Tag 88.01 78.75 76.64
+POS Context [W5] 87.92 81.36 78.09
+POS LEX 88.18 81.46 78.58
+NORMLEX 88.25 82.17 78.73

Table 5: Feature Ablation for Shallow Parser

P1 P2 E
LI 93.98 93.98 NA
Norm 70.32 74.48 4.16
POS 68.25 75.07 6.82

SP
L 75.73 88.25 12.52
B 74.96 82.17 7.21
C 61.95 78.73 16.78

Table 6: Pipeline accuracy and error propagation. LI = Lan-

guage Identification, Norm = Normalizer, POS = POS Tagger,

SP = Shallow Parser, L = Label, B = Boundary, C = Combined,

P1 = Actual Pipeline, P2 = Gold Pipeline, E = Error Propagation

4.4 Shallow Parsing
A chunk comprises of two aspects - the chunk
boundary and the chunk label. Shallow Parsing was
modeled as three separate sequence labeling prob-
lems: Label, Boundary and Combined, for each
of which a CRF model was trained. The feature set
comprised of - POS: POS tag of the word. POS
Context: POS tags in the context window of length
5, i.e., the two previous tags, current tag and next
two tags. POS LEX: A special feature made up of
concatenation of POS and LEX. NORMLEX: The
word in its normalized form. The results of this
module are shown in Table 5.

5 Pipeline Results

The best performing model was selected from each
module and was used in the pipeline. Table 6 tabu-
lates the step by step accuracy of the pipeline calcu-
lated using 10 fold cross-validation.

6 Conclusion and Future Work

In this study, we have developed a system for Hindi-
English CSMT data that can identify the language of
the words, normalize them to their standard forms,
assign them their POS tag and segment them into
chunks. We have released the system.

In the future, we intend to continue creating more
annotated code-mixed social media data. We would

also like to improve upon the challenging problem
of normalization of monolingual social Hindi sen-
tences. Also, we would further extend our pipeline
and build a full parser which has aplenty applica-
tions in NLP.

References
Steven P Abney. 1992. Parsing by chunks. Springer.
Shoji Azuma. 1993. The frame-content hypothesis in

speech production: Evidence from intrasentential code
switching. Linguistics, 31(6):1071–1094.

Kalika Bali, Jatin Sharma, Monojit Choudhury, and Yo-
garshi Vyas. 2014. i am borrowing ya mixing ? an
analysis of english-hindi code mixing in facebook. In
Proceedings of the First Workshop on Computational
Approaches to Code Switching, pages 116–126, Doha,
Qatar, October. Association for Computational Lin-
guistics.

Utsab Barman, Amitava Das, Joachim Wagner, and Jen-
nifer Foster. 2014. Code mixing: A challenge for lan-
guage identification in the language of social media.
EMNLP 2014, page 13.

Akshar Bharati, Rajeev Sangal, Dipti Misra Sharma, and
Lakshmi Bai. 2006. Anncorra: Annotating corpora
guidelines for pos and chunk annotation for indian lan-
guages. LTRC-TR31.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The leipzig corpora
collection-monolingual corpora of standard size. Pro-
ceedings of Corpus Linguistic.

Jacob Cohen. 1960. A coefficient of agreement for nom-
inal scales. Educational and Psychological Measure-
ment, 134:3746.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein, Michael
Heilman, Dani Yogatama, Jeffrey Flanigan, and
Noah A Smith. 2011. Part-of-speech tagging for twit-
ter: Annotation, features, and experiments. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies: short papers-Volume 2, pages 42–47.
Association for Computational Linguistics.

John J. Gumperz. 1982. Discourse Strategies. Oxford
University Press.

Kanika Gupta, Monojit Choudhury, and Kalika Bali.
2012. Mining hindi-english transliteration pairs from
online hindi lyrics. In LREC, pages 2459–2465.

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a# twitter.
In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Lan-

1344

guage Technologies-Volume 1, pages 368–378. Asso-
ciation for Computational Linguistics.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Auto-
matically constructing a normalisation dictionary for
microblogs. In Proceedings of the 2012 joint confer-
ence on empirical methods in natural language pro-
cessing and computational natural language learning,
pages 421–432. Association for Computational Lin-
guistics.

Zellig S Harris. 1957. Co-occurrence and transformation
in linguistic structure. Language, pages 283–340.

Anupam Jamatia, Björn Gambäck, and Amitava Das.
2015. Part-of-speech tagging for code-mixed english-
hindi twitter and facebook chat messages. Proceed-
ings of Recent Advances in Natural Language Process-
ing, page 239.

Xin Li and Dan Roth. 2001. Exploring evidence for shal-
low parsing. In Proceedings of the 2001 workshop on
Computational Natural Language Learning-Volume 7,
page 6. Association for Computational Linguistics.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A broad-
coverage normalization system for social media lan-
guage. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long
Papers-Volume 1, pages 1035–1044. Association for
Computational Linguistics.

Paul McNamee. 2005. Language identification: a solved
problem suitable for undergraduate instruction. Jour-
nal of Computing Sciences in Colleges, 20(3):94–101.

Carol Myers-Scotton. 1997. Duelling languages: Gram-
matical structure in codeswitching. Oxford University
Press.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin
Gimpel, Nathan Schneider, and Noah A Smith. 2013.
Improved part-of-speech tagging for online conversa-
tional text with word clusters. Association for Com-
putational Linguistics.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

Thamar Solorio and Yang Liu. 2008. Part-of-speech tag-
ging for english-spanish code-switched text. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1051–1060. As-
sociation for Computational Linguistics.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika
Bali, and Monojit Choudhury. 2014. Pos tagging
of english-hindi code-mixed social media content. In
Proceedings of the First Workshop on Codeswitching,
EMNLP.

1345

Proceedings of NAACL-HLT 2016, pages 1346–1356,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders

Simon Šuster
University of Groningen

Netherlands
s.suster@rug.nl

Ivan Titov
University of Amsterdam

Netherlands
titov@uva.nl

Gertjan van Noord
University of Groningen

Netherlands
g.j.m.van.noord@rug.nl

Abstract

We present an approach to learning multi-sense
word embeddings relying both on monolingual
and bilingual information. Our model consists
of an encoder, which uses monolingual and
bilingual context (i.e. a parallel sentence) to
choose a sense for a given word, and a decoder
which predicts context words based on the cho-
sen sense. The two components are estimated
jointly. We observe that the word representa-
tions induced from bilingual data outperform
the monolingual counterparts across a range
of evaluation tasks, even though crosslingual
information is not available at test time.

1 Introduction

Approaches to learning word embeddings (i.e. real-
valued vectors) relying on word context have received
much attention in recent years, and the induced rep-
resentations have been shown to capture syntactic
and semantic properties of words. They have been
evaluated intrinsically (Mikolov et al., 2013a; Baroni
et al., 2014; Levy and Goldberg, 2014) and have also
been used in concrete NLP applications to deal with
word sparsity and improve generalization (Turian et
al., 2010; Collobert et al., 2011; Bansal et al., 2014;
Passos et al., 2014). While most work to date has
focused on developing embedding models which rep-
resent a word with a single vector, some researchers
have attempted to capture polysemy explicitly and
have encoded properties of each word with multi-
ple vectors (Huang et al., 2012; Tian et al., 2014;
Neelakantan et al., 2014; Chen et al., 2014; Li and
Jurafsky, 2015).

In parallel to this work on multi-sense word em-
beddings, another line of research has investigated in-
tegrating multilingual data, with largely two distinct
goals in mind. The first goal has been to obtain repre-
sentations for several languages in the same semantic
space, which then enables the transfer of a model
(e.g., a syntactic parser) trained on annotated training
data in one language to another language lacking this
annotation (Klementiev et al., 2012; Hermann and
Blunsom, 2014; Gouws et al., 2014; Chandar A P
et al., 2014). Secondly, information from another
language can also be leveraged to yield better first-
language embeddings (Guo et al., 2014). Our paper
falls in the latter, much less explored category. We ad-
here to the view of multilingual learning as a means
of language grounding (Faruqui and Dyer, 2014b;
Zou et al., 2013; Titov and Klementiev, 2012; Snyder
and Barzilay, 2010; Naseem et al., 2009). Intuitively,
polysemy in one language can be at least partially
resolved by looking at the translation of the word and
its context in another language (Kaji, 2003; Ng et
al., 2003; Diab and Resnik, 2002; Ide, 2000; Dagan
and Itai, 1994; Brown et al., 1991). Better sense as-
signment can then lead to better sense-specific word
embeddings.

We propose a model that uses second-language
embeddings as a supervisory signal in learning multi-
sense representations in the first language. This su-
pervision is easy to obtain for many language pairs
as numerous parallel corpora exist nowadays. Our
model, which can be seen as an autoencoder with a
discrete hidden layer encoding word senses, lever-
ages bilingual data in its encoding part, while the de-
coder predicts the surrounding words relying on the

1346

Encoder
p(s|xi, Ci, C

′
i, θ)

the next turn-off on the right

à droite à la bifurcation suivante

sense(xi: turn-off): ”road”, ”feeling”... (hidden)

Decoder
p(xj |xi, s, θ)

right

sense prediction

context-word
prediction

Figure 1: Model schema: the sense encoder with bilingual

signal and the context-word predictor are learned jointly.

predicted senses. We strive to remain flexible as to
the form of parallel data used in training and support
both the use of word- and sentence-level alignments.

Our findings are:

• The second-language signal effectively im-
proves the quality of multi-sense embeddings as
seen on a variety of intrinsic tasks for English,
with the results superior to that of the baseline
Skip-Gram model, even though the crosslingual
information is not available at test time.

• This finding is robust across several settings,
such as varying dimensionality, vocabulary size
and amount of data.

• In the extrinsic POS-tagging task, the second-
language signal also offers improvements over
monolingually-trained multi-sense embeddings,
however, the standard Skip-Gram embeddings
turn out to be the most robust in this task.

We make the implementation of all the models as
well as the evaluation scripts available at http://
github.com/rug-compling/bimu.

2 Word Embeddings with Discrete
Autoencoders

Our method borrows its general structure from neu-
ral autoencoders (Rumelhart et al., 1986; Bengio et

al., 2013). Autoencoders are trained to reproduce
their input by first mapping their input to a (lower
dimensional) hidden layer and then predicting an ap-
proximation of the input relying on this hidden layer.
In our case, the hidden layer is not a real-valued vec-
tor, but is a categorical variable encoding the sense
of a word. Discrete-state autoencoders have been
successful in several natural language processing ap-
plications, including POS tagging and word align-
ment (Ammar et al., 2014), semantic role induction
(Titov and Khoddam, 2015) and relation discovery
(Marcheggiani and Titov, 2016).

More formally, our model consists of two com-
ponents: an encoding part which assigns a sense to
a pivot word, and a reconstruction (decoding) part
recovering context words based on the pivot word
and its sense. As predictions are probabilistic (‘soft’),
the reconstruction step involves summation over all
potential word senses. The goal is to find embedding
parameters which minimize the error in recovering
context words based on the pivot word and the sense
assignment. Parameters of both encoding and recon-
struction are jointly optimized. Intuitively, a good
sense assignment should make the reconstruction step
as easy as possible. The encoder uses not only words
in the first-language sentence to choose the sense but
also, at training time, is conditioning its decisions
on the words in the second-language sentence. We
hypothesize that the injection of crosslingual informa-
tion will guide learning towards inducing more infor-
mative sense-specific word representations. Conse-
quently, using this information at training time would
benefit the model even though crosslingual informa-
tion is not available to the encoder at test time.

We specify the encoding part as a log-linear model:

p(s|xi, Ci, C
′
i, θ) ∝ exp

(
ϕ⊤

i,s(
1− λ

|Ci|
∑
j∈Ci

γj+

λ

|C ′
i|

∑
k∈C′

i

γ′k)
)
. (1)

To choose the sense s ∈ S for a word xi, we use
the bag of context words Ci from the first language
l, as well as the bag of context words C ′

i from the
second language l′.1 The context Ci is defined as a

1We have also considered a formulation which included a
sense-specific bias bxi,s ∈ R to capture relative frequency of
latent senses but it did not seem to affect performance.

1347

multiset Ci = {xi−n, . . . , xi−1, xi+1, . . . , xi+n}, in-
cluding words around the pivot word in the window
of size n to each side. We set n to 5 in all our exper-
iments. The crosslingual context C ′

i is discussed in
§ 3, where we either rely on word alignments or use
the entire second-language sentence as the context.
We distinguish between sense-specific embeddings,
denoted by ϕ ∈ Rd, and generic sense-agnostic ones,
denoted {γ, γ′} ∈ Rd for first and second language,
respectively. The number of sense-specific embed-
dings is the same for all words. We use θ to denote
all these embedding parameters. They are learned
jointly, with the exception of the pre-trained second-
language embeddings.

The hyperparameter λ ∈ R, 0 ≤ λ ≤ 1 weights
the contribution of each language. Setting λ = 0
would drop the second-language component and use
only the first language. Our formulation allows the
addition of new languages easily, provided that the
second-language embeddings live in the same seman-
tic space.

The reconstruction part predicts a context word xj

given the pivot xi and the current estimate of its s:

p(xj |xi, s, θ) =
exp(ϕ⊤

i,sγj)∑
k∈|V| exp(ϕ⊤

i,sγk)
, (2)

where |V| is the vocabulary size. This is effectively
a Skip-Gram model (Mikolov et al., 2013a) extended
to rely on senses.

2.1 Learning and regularization
As sense assignments are not observed during train-
ing, the learning objective includes marginalization
over word senses and thus can be written as:∑

i

∑
j∈Cxi

log
∑
s∈S

p(xj |xi, s, θ)p(s|xi, Ci, C
′
i, θ),

in which index i goes over all pivot words in the first
language, j over all context words to predict at each
i, and s marginalizes over all possible senses of the
word xi. In practice, we avoid the costly computation
of the normalization factor in the softmax computa-
tion of Eq. (2) and use negative sampling (Mikolov
et al., 2013b) instead of log p(xj |xi, s, θ):

log σ(ϕ⊤
i,sγj) +

∑
x∈N

log σ(−ϕ⊤
i,sγx), (3)

where σ is the sigmoid non-linearity function and γx

is a word embedding from the sample of negative
(noisy) words N . Optimizing the autoencoding ob-
jective is broadly similar to the learning algorithm
defined for multi-sense embedding induction in some
of the previous work (Neelakantan et al., 2014; Li
and Jurafsky, 2015). Note though that this previous
work has considered only monolingual context.

We use a minibatch training regime and seek to op-
timize the objective function L(B, θ) for each mini-
batch B. We found that optimizing this objective
directly often resulted in inducing very flat poste-
rior distributions. We therefore use a form of poste-
rior regularization (Ganchev et al., 2010) where we
can encode our prior expectations that the posteri-
ors should be sharp. The regularized objective for a
minibatch is defined as

L(B, θ) + λH

∑
i∈B

H(qi), (4)

where H is the entropy function and qi are
the posterior distributions from the encoder
(p(s|xi, Ci, C

′
i, θ)). This modified objective can also

be motivated from a variational approximation per-
spective, see Marcheggiani and Titov (2016) for de-
tails. By varying the parameter λH ∈ R, it is easy
to control the amount of entropy regularization. For
λH > 0, the objective is optimized with flatter pos-
teriors, while λH < 0 infers more peaky posteriors.
When λH → −∞, the probability mass needs to be
concentrated on a single sense, resulting in an algo-
rithm similar to hard EM. In practice, we found that
using hard-update training2, which is closely related
to the λH → −∞ setting, led to best performance.

2.2 Obtaining word representations

At test time, we construct the word representations
by averaging all sense embeddings for a word xi and
weighting them with the sense expectations (Li and
Jurafsky, 2015)3:

ωi =
∑
s∈S

p(s|xi, Ci)ϕi,s. (5)

2I.e. updating only that embedding ϕi,s∗ for which
s∗ = arg maxs p(s|xi, Ci, C

′
i, θ).

3Although our training objective has sparsity-inducing prop-
erties, the posteriors at test time are not entirely peaked, which
makes weighting beneficial.

1348

Unlike in training, the sense prediction step here
does not use the crosslingual context C ′

i since it is not
available in the evaluation tasks. In this work, instead
of marginalizing out the unobservable crosslingual
context, we simply ignore it in computation.

Sometimes, even the first-language context is miss-
ing, as is the situation in many word similarity
tasks. In that case, we just use the uniform average,
1/|S|

∑
s∈S ϕi,s.

3 Word affiliation from alignments

In defining the crosslingual signal we draw on a
heuristic inspired by Devlin et al. (2014). The second-
language context words are taken to be the multiset
of words around and including the pivot affiliated to
xi:

C ′
i = {x′ai−m, ..., x′ai

, ..., x′ai+m}, (6)

where x′ai
is the word affiliated to xi and the parame-

ter m regulates the context window size. By choosing
m = 0, only the affiliated word is used as l′ context,
and by choosing m = ∞, the l′ context is the entire
sentence (≈uniform alignment). To obtain the index
ai, we use the following:
1) If xi aligns to exactly one second-language word,

ai is the index of the word it aligns to.
2) If xi aligns to multiple words, ai is the index

of the aligned word in the middle (and rounding
down when necessary).

3) If xi is unaligned, C ′
i is empty, therefore no l′

context is used.
We use the cdec aligner (Dyer et al., 2010) to word-
align the parallel corpora.

4 Parameters and Set-up

4.1 Learning parameters

We use the AdaGrad optimizer (Duchi et al., 2011)
with initial learning rate set to 0.1. We set the mini-
batch size to 1000, the number of negative samples
to 1, the sampling factor to 0.001 and the window
size parameter m to 5. All the embeddings are 50-
dimensional (unless specified otherwise) and initial-
ized by sampling from the uniform distribution be-
tween [−0.05, 0.05]. We include in the vocabulary
all words occurring in the corpus at least 20 times.
We set the number of senses per word to 3 (see further
discussion in § 6.4 and § 7). All other parameters with

their default values can be examined in the source
code available online.

4.2 Bilingual data

In a large body of work on multilingual word repre-
sentations, Europarl (Koehn, 2005) is the preferred
source of parallel data. However, the domain of Eu-
roparl is rather constrained, whereas we would like
to obtain word representations of more general lan-
guage, also to carry out an effective evaluation on
semantic similarity datasets where domains are usu-
ally broader. We therefore use the following paral-
lel corpora: News Commentary (Bojar et al., 2013)
(NC), Yandex-1M4 (RU-EN), CzEng 1.0 (Bojar et
al., 2012) (CZ-EN) from which we exclude the EU
legislation texts, and GigaFrEn (Callison-Burch et al.,
2009) (FR-EN). The sizes of the corpora are reported
in Table 1. The word representations trained on the
NC corpora are evaluated only intrinsically due to
the small sizes.

Corpus Language Words Sent.

NC Fr, Ru, Cz, De, Es 3-4 M .1-.2 M
RU-EN Ru 24 M 1 M
CZ-EN Cz 126 M 10 M
FR-EN Fr 670 M 23 M

Table 1: Parallel corpora used in this paper. The word sizes

reported are based on the English part of the corpus. Each

language pair in NC has a different English part, hence the

varying number of sentences per target language.

5 Evaluation Tasks

We evaluate the quality of our word representations
on a number of tasks, both intrinsic and extrinsic.

5.1 Word similarity

We are interested here in how well the semantic simi-
larity ratings obtained from embedding comparisons
correlate to human ratings. For this purpose, we use
a variety of similarity benchmarks for English and
report the Spearman ρ correlation scores between the
human ratings and the cosine ratings obtained from
our word representations. The SCWS benchmark
(Huang et al., 2012) is probably the most suitable

4https://translate.yandex.ru/corpus

1349

similarity dataset for evaluating multi-sense embed-
dings, since it allows us to perform the sense predic-
tion step based on the sentential context provided for
each word in the pair.

The other benchmarks we use provide the ratings
for the word pairs without context. WS-353 contains
353 human-rated word pairs (Finkelstein et al., 2001),
while Agirre et al. (2009) separate this benchmark
for similarity (WS-SIM) and relatedness (WS-REL).
The RG-65 (Rubenstein and Goodenough, 1965) and
the MC-30 (Miller and Charles, 1991) benchmarks
contain nouns only. The MTurk-287 (Radinsky et
al., 2011) and MTurk-771 (Halawi et al., 2012) in-
clude word pairs whose similarity was crowdsourced
from AMT. Similarly, MEN (Bruni et al., 2012) is an
AMT-annotated dataset of 3000 word pairs. The YP-
130 (Yang and Powers, 2006) and Verb-143 (Baker
et al., 2014) measure verb similarity. Rare-Word
(Luong et al., 2013) contains 2034 rare-word pairs.
Finally, SimLex-999 (Hill et al., 2014b) is intended
to measure pure similarity as opposed to relatedness.
For these benchmarks, we prepare the word repre-
sentations by taking a uniform average of all sense
embeddings per word. The evaluation is carried out
using the tool described in Faruqui and Dyer (2014a).
Due to space constraints, we report the results by
averaging over all benchmarks (Similarity), and in-
clude the individual results in the online repository.

5.2 Supersense similarity

We also evaluate on a task measuring the similarity
between the embeddings—in our case uniformly av-
eraged in the case of multi-sense embeddings—and
a matrix of supersense features extracted from the
English SemCor, using the Qvec tool (Tsvetkov et
al., 2015). We choose this method because it has
been shown to output scores that correlate well with
extrinsic tasks, e.g. text classification and sentiment
analysis. We believe that this, in combination with
word similarity tasks from the previous section, can
give a reliable picture of the generic quality of word
embeddings studied in this work.

5.3 POS tagging

As our downstream evaluation task, we use the
learned word representations to initialize the embed-
ding layer of a neural network tagging model. We use
the same convolutional architecture as Li and Juraf-

sky (2015): an input layer taking a concatenation of
neighboring embeddings as input, three hidden layers
with a rectified linear unit activation function and a
softmax output layer. We train for 10 epochs using
one sentence as a batch. Other hyperparameters can
be examined in the source code. The multi-sense
word embeddings are inferred from the sentential
context (weighted average), as for the evaluation on
the SCWS dataset. We use the standard splits of the
Wall Street Journal portion of the Penn Treebank:
0–18 for training, 19–21 for development and 22–24
for testing.

6 Results

We compare three embeddings models, Skip-Gram
(SG), Multi-sense (MU) and Bilingual Multi-sense
(BIMU), using our own implementation for each of
them. The first two can be seen as simpler variants of
the BIMU model: in SG we omit the encoder entirely,
and in MU we omit the second-language (l′) part of
the encoder in Eq. (1). We train the SG and the MU

models on the English part of the parallel corpora.
Those parameters common to all methods are kept
fixed during experiments. The values λ and m for
controlling the second-language signal in BIMU are
set on the POS-tagging development set (cf. § 6.3).

The results on the SCWS benchmark (Table 2)
show consistent improvements of the BIMU model
over SG and MU across all parallel corpora, except
on the small CZ-EN (NC) corpus. We have also mea-
sured the 95% confidence intervals of the difference
between the correlation coefficients of BIMU and
SG, following the method described in Zou (2007).
According to these values, BIMU significantly out-
performs SG on RU-EN, and on French, Russian and
Spanish NC corpora.5

Next, ignoring any language-specific factors, we
would expect to observe a trend according to which
the larger the corpus, the higher the correlation score.
However, this is not what we find. Among the largest
corpora, i.e. RU-EN, CZ-EN and FR-EN, the models
trained on RU-EN perform surprisingly well, practi-
cally on par with the 23-times larger FR-EN corpus.
Similarly, the quality of the embeddings trained on
CZ-EN is generally lower than when trained on the

5I.e. counting those results in which the CI of the difference
does not include 0.

1350

Task Corpus SG MU BIMU BIMU-SG

SC
W

S
RU-EN 54.8 57.3 59.5 4.79.8

0.9

CZ-EN 51.2 54.0 55.3 4.18.8
−0.6

FR-EN 58.8 60.4 60.5 1.75.9
−2.6

FR-EN (NC) 47.2 52.4 54.3 7.112.0
2.2

RU-EN (NC) 47.3 54.0 54.0 6.712.8
0.6

CZ-EN (NC) 47.7 52.1 51.9 4.210.3
−2.0

DE-EN (NC) 48.5 52.9 54.0 5.511.6
−0.6

ES-EN (NC) 47.2 53.2 54.5 7.313.3
1.1

Si
m

ila
ri

ty

RU-EN 37.8 41.2 46.3
CZ-EN 39.5 36.9 41.9
FR-EN 46.3 42.0 43.5

FR-EN (NC) 17.9 26.0 27.6
RU-EN (NC) 19.3 27.3 28.4
CZ-EN (NC) 15.8 26.6 25.4
DE-EN (NC) 20.7 28.4 30.8
ES-EN (NC) 19.9 27.2 31.2

Q
ve

c RU-EN 55.8 56.0 56.5
CZ-EN 56.6 56.5 55.9
FR-EN 57.5 57.1 57.6

PO
S RU-EN 93.5 93.2 93.3

CZ-EN 94.0 93.7 94.0
FR-EN 94.1 93.8 94.0

Table 2: Results, per-row best in bold. SG and MU are trained

on the English part of the parallel corpora. In BIMU-SG, we report

the difference between BIMU and SG, together with the 95% CI

of that difference. The Similarity scores are averaged over 12

benchmarks described in § 5.1. For POS tagging, we report the

accuracy.

10 times smaller RU-EN corpus. One explanation
for this might be different text composition of the
corpora, with RU-EN matching the domain of the
evaluation task better than the larger two corpora.
Also, FR-EN is known to be noisy, containing web-
crawled sentences that are not parallel or not natural
language (Denkowski et al., 2012). Furthermore,
language-dependent effects might be playing a role:
for example, there are signs of Czech being the least
helpful language among those studied. But while
there is evidence for that in all intrinsic tasks, the
situation in POS tagging does not confirm this specu-
lation.

We relate our models to previously reported SCWS
scores from the literature using 300-dimensional
models in Table 3. Even though we train on a much
smaller corpus than the previous works,6 the BIMU

6For example, Li and Jurafsky (2015) use the concatenation
of Gigaword and Wikipedia with more than 5B words.

Model (300-dim.) SCWS

SG 65.0
MU 66.7
BIMU 69.0
Chen et al. (2014) 68.4
Neelakantan et al. (2014) 69.3
Li and Jurafsky (2015) 69.7

Table 3: Comparison to other works (reprinted), for the vocab-

ulary of top-6000 words. Our models are trained on RU-EN, a

much smaller corpus than those used in previous work.

model achieves a very competitive correlation score.
The results on similarity benchmarks and qvec

largely confirm those on SCWS, despite the lack
of sentential context which would allow to weight
the contribution of different senses more accurately
for the multi-sense models. Why, then, does simply
averaging the MU and BIMU embeddings lead to
better results than when using the SG embeddings?
We hypothesize that the single-sense model tends to
over-represent the dominant sense with its generic,
one-vector-per-word representation, whereas the uni-
formly averaged embeddings yielded by the multi-
sense models better encode the range of potential
senses. Similar observations have been made in the
context of selectional preference modeling of polyse-
mous verbs (Greenberg et al., 2015).

In POS tagging, the relationship between MU and
BIMU models is similar as discussed above. Overall,
however, neither of the multi-sense models outper-
forms the SG embeddings. The neural network tagger
may be able to implicitly perform disambiguation on
top of single-sense SG embeddings, similarly to what
has been argued in Li and Jurafsky (2015). The tag-
ging accuracies obtained with MU on CZ-EN and
FR-EN are similar to the one obtained by Li and
Jurafsky with their multi-sense model (93.8), while
the accuracy of SG is more competitive in our case
(around 94.0 compared to 92.5), although they use a
larger corpus for training the word representations.

In all tasks, the addition of the bilingual compo-
nent during training increases the accuracy of the
encoder for most corpora, even though the bilingual
information is not available during evaluation.

6.1 The amount of (parallel) data

Fig. 2a displays how the semantic similarity as mea-
sured on SCWS evolves as a function of increasingly

1351

●

●

●

●
● ●

●

● ●
●

55

56

57

58

59

60

61

10 20 30 40 50 60 70 80 90 100
% of FR−EN (670M)

C
or

re
la

tio
n

● BIMU
MU
SG

(a)

●

●

●

●

●

●

●

●

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

50 100 200 300
Dimensionality

C
or

re
la

tio
n

● BIMU MU SG

6k full

(b)

Figure 2: (a) Effect of amount of data used in learning on the SCWS correlation scores. (b) Effect of embedding dimensionality on

the models trained on RU-EN and evaluated on SCWS with either full vocabulary or the top-6000 words.

larger sub-samples from FR-EN, our largest parallel
corpus. The BIMU embeddings show relatively sta-
ble improvements over MU and especially over SG

embeddings. The same performance as that of SG at
100% is achieved by MU and BIMU sooner, using
only around 40/50% of the corpus.

6.2 The dimensionality and frequent words
It is argued in Li and Jurafsky (2015) that often just in-
creasing the dimensionality of the SG model suffices
to obtain better results than that of their multi-sense
model. We look at the effect of dimensionality on
semantic similarity in fig. 2b, and see that simply in-
creasing the dimensionality of the SG model (to any
of 100, 200 or 300 dimensions) is not sufficient to out-
perform the MU or BIMU models. When constrain-
ing the vocabulary to 6,000 most frequent words,
the representations obtain higher quality. We can
see that the models, especially SG, benefit slightly
more from the increased dimensionality when look-
ing at these most frequent words. This is according
to expectations—frequent words need more represen-
tational capacity due to their complex semantic and
syntactic behavior (Atkins and Rundell, 2008).

6.3 The role of bilingual signal
The degree of contribution of the second language l′

during learning is affected by two parameters, λ for
the trade-off between the importance of first and sec-
ond language in the sense prediction part (encoder)
and the value of m for the size of the window around
the second-language word affiliated to the pivot. Fig.
3a suggests that the context from the second language

is useful in sense prediction, and that it should be
weighted relatively heavily (around 0.7 and 0.8, de-
pending on the language).

Regarding the role of the context-window size in
sense disambiguation, the WSD literature has re-
ported both smaller (more local) and larger (more
topical) monolingual contexts to be useful, see e.g.
Ide and Véronis (1998) for an overview. In fig. 3b we
find that considering a very narrow context in the sec-
ond language—the affiliated word only or a m = 1
window around it—performs the best, and that there
is little gain in using a broader window. This is un-
derstandable since the l′ representation participating
in the sense selection is simply an average over all
generic embeddings in the window, which means that
the averaged representation probably becomes noisy
for large m, i.e. more irrelevant words are included
in the window. However, the negative effect on the
accuracy is still relatively small, up to around −0.1
for the models using French and Russian as the sec-
ond languages, and −0.25 for Czech when setting
m = ∞. The infinite window size setting, corre-
sponding to the sentence-only alignment, performs
well also on SCWS, improving on the monolingual
multi-sense baseline on all corpora (Table 4).

Model RU-EN CZ-EN FR-EN

MU 63.29 59.12 64.19
BIMU, m = ∞ 65.61 62.07 64.36

Table 4: Comparison of SCWS correlation scores of BIMU

trained with infinite l′ window to the MU baseline (vocabulary

of top-6000 words).

1352

● ●

●
● ●

●

●
● ●

92.9

93.1

93.3

93.5

93.7

93.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

A
cc

ur
ac

y

● CZ−EN
FR−EN
RU−EN

(a)

●

●

●

●
●

●

−0.3

−0.2

−0.1

0.0

0 1 2 3 4 ∞
Window size in l'

D
ev

ia
tio

n
in

 a
cc

ur
ac

y

● CZ−EN
FR−EN
RU−EN

(b)

Figure 3: Controlling the bilingual signal. (a) Effect of varying the parameter λ for controlling the importance of second-language

context (0.1-least important, 0.9-most important). (b) Effect of second-language window size m on the accuracy. In both (a) and (b)

the reported accuracies are measured on the POS-tagging development set.

6.4 The number of senses

In our work, the number of senses k is a model pa-
rameter, which we keep fixed to 3 throughout the
empirical study. We comment here briefly on other
choices of k ∈ {2, 4, 5}. We have found k = 2 to
be a good choice on the RU-EN and FR-EN corpora
(but not on CZ-EN), with an around 0.2-point im-
provement over k = 3 on SCWS and in POS tagging.
With the larger values of k, the performance tends to
degrade. For example, on RU-EN, the k = 5 score on
SCWS is about 0.6 point below our default setting.

7 Additional Related Work

Multi-sense models. One line of research has dealt
with sense induction as a separate, clustering problem
that is followed by an embedding learning compo-
nent (Huang et al., 2012; Reisinger and Mooney,
2010). In another, the sense assignment and the em-
beddings are trained jointly (Neelakantan et al., 2014;
Tian et al., 2014; Li and Jurafsky, 2015; Bartunov
et al., 2015). Neelakantan et al. (2014) propose an
extension of Skip-Gram (Mikolov et al., 2013a) by in-
troducing sense-specific parameters together with the
k-means-inspired ‘centroid’ vectors that keep track
of the contexts in which word senses have occurred.
They explore two model variants, one in which the
number of senses is the same for all words, and an-
other in which a threshold value determines the num-
ber of senses for each word. The results comparing
the two variants are inconclusive, with the advantage
of the dynamic variant being virtually nonexistent.

In our work, we use the static approach. Whenever
there is evidence for less senses than the number of
available sense vectors, this is unlikely to be a seri-
ous issue as the learning would concentrate on some
of the senses, and these would then be the preferred
predictions also at test time. Li and Jurafsky (2015)
build upon the work of Neelakantan et al. with a
more principled method for introducing new senses
using the Chinese Restaurant Processes (CRP). Our
experiments confirm the findings of Neelakantan et
al. that multi-sense embeddings improve Skip-gram
embeddings on intrinsic tasks, as well as those of Li
and Jurafsky, who find that multi-sense embeddings
offer little benefit to the neural network learner on
extrinsic tasks. Our discrete-autoencoding method
when viewed without the bilingual part in the encoder
has a lot in common with their methods.

Multilingual models. The research on using multi-
lingual information in the learning of multi-sense em-
bedding models is scarce. Guo et al. (2014) perform a
sense induction step based on clustering translations
prior to learning word embeddings. Once the trans-
lations are clustered, they are mapped to a source
corpus using WSD heuristics, after which a recur-
rent neural network is trained to obtain sense-specific
representations. Unlike in our work, the sense induc-
tion and embedding learning components are entirely
separated, without a possibility for one to influence
another. In a similar vein, Bansal et al. (2012) use
bilingual corpora to perform soft word clustering, ex-
tending the previous work on the monolingual case of

1353

Lin and Wu (2009). Single-sense representations in
the multilingual context have been studied more ex-
tensively (Lu et al., 2015; Faruqui and Dyer, 2014b;
Hill et al., 2014a; Zhang et al., 2014; Faruqui and
Dyer, 2013; Zou et al., 2013), with a goal of bringing
the representations in the same semantic space. A
related line of work concerns the crosslingual setting,
where one tries to leverage training data in one lan-
guage to build models for typically lower-resource
languages (Hermann and Blunsom, 2014; Gouws et
al., 2014; Chandar A P et al., 2014; Soyer et al., 2014;
Klementiev et al., 2012; Täckström et al., 2012).

The recent works of Kawakami and Dyer (2015)
and Nalisnick and Ravi (2015) are also of interest.
The latter work on the infinite Skip-Gram model in
which the embedding dimensionality is stochastic is
relevant since it demonstrates that their embeddings
exploit different dimensions to encode different word
meanings. Just like us, Kawakami and Dyer (2015)
use bilingual supervision, but in a more complex
LSTM network that is trained to predict word trans-
lations. Although they do not represent different
word senses separately, their method produces repre-
sentations that depend on the context. In our work,
the second-language signal is introduced only in the
sense prediction component and is flexible—it can
be defined in various ways and can be obtained from
sentence-only alignments as a special case.

8 Conclusion

We have presented a method for learning multi-sense
embeddings that performs sense estimation and con-
text prediction jointly. Both mono- and bilingual in-
formation is used in the sense prediction during train-
ing. We have explored the model performance on a
variety of tasks, showing that the bilingual signal im-
proves the sense predictor, even though the crosslin-
gual information is not available at test time. In this
way, we are able to obtain word representations that
are of better quality than the monolingually-trained
multi-sense representations, and that outperform the
Skip-Gram embeddings on intrinsic tasks. We have
analyzed the model performance under several con-
ditions, namely varying dimensionality, vocabulary
size, amount of data, and size of the second-language
context. For the latter parameter, we find that bilin-
gual information is useful even when using the entire

sentence as context, suggesting that sentence-only
alignment might be sufficient in certain situations.

Acknowledgments

We would like to thank Jiwei Li for providing his
tagger implementation, and Robert Grimm, Diego
Marcheggiani and the anonymous reviewers for use-
ful comments. The computational work was carried
out on Peregrine HPC cluster of the University of
Groningen. The second author was supported by
NWO Vidi grant 016.153.327.

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kraval-

ova, Marius Paşca, and Aitor Soroa. 2009. A study
on similarity and relatedness using distributional and
WordNet-based approaches. In NAACL-HLT.

Waleed Ammar, Chris Dyer, and Noah A. Smith. 2014.
Conditional random field autoencoders for unsuper-
vised structured prediction. In NIPS.

Sue B. T. Atkins and Michael Rundell. 2008. The Oxford
guide to practical lexicography. Oxford University
Press.

Simon Baker, Roi Reichart, and Anna Korhonen. 2014.
An unsupervised model for instance level subcatego-
rization acquisition. In EMNLP.

Mohit Bansal, John Denero, and Dekang Lin. 2012. Unsu-
pervised translation sense clustering. In NAACL-HLT.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In ACL.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014. Don’t count, predict! a systematic comparison of
context-counting vs. context-predicting semantic vec-
tors. In ACL.

Sergey Bartunov, Dmitry Kondrashkin, Anton Osokin,
and Dmitry Vetrov. 2015. Breaking sticks and am-
biguities with adaptive skip-gram. arXiv preprint
arXiv:1502.07257.

Yoshua Bengio, Aaron Courville, and Pierre Vincent.
2013. Representation learning: A review and new per-
spectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(8):1798–1828.

Ondřej Bojar, Zdeněk Žabokrtský, Ondřej Dušek, Pe-
tra Galuščáková, Martin Majliš, David Mareček, Jiřı́
Maršı́k, Michal Novák, Martin Popel, and Aleš Tam-
chyna. 2012. The Joy of Parallelism with CzEng 1.0.
In LREC.

Ondřej Bojar, Christian Buck, Chris Callison-Burch,
Christian Federmann, Barry Haddow, Philipp Koehn,
Christof Monz, Matt Post, Radu Soricut, and Lucia

1354

Specia. 2013. Findings of the 2013 Workshop on
Statistical Machine Translation. In WMT.

Peter F Brown, Stephen A Della Pietra, Vincent J Della
Pietra, and Robert L Mercer. 1991. Word-sense disam-
biguation using statistical methods. In ACL.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in techni-
color. In ACL.

Chris Callison-Burch, Philipp Koehn, Christof Monz, and
Josh Schroeder. 2009. Findings of the 2009 Workshop
on Statistical Machine Translation. In WMT.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh M. Khapra, Balaraman Ravindran, Vikas C.
Raykar, and Amrita Saha. 2014. An autoencoder ap-
proach to learning bilingual word representations. In
NIPS.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014. A
unified model for word sense representation and disam-
biguation. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. The
Journal of Machine Learning Research, 12:2493–2537.

Ido Dagan and Alon Itai. 1994. Word sense disam-
biguation using a second language monolingual corpus.
Computational Linguistics, 20(4):563–596.

Michael Denkowski, Greg Hanneman, and Alon Lavie.
2012. The CMU-Avenue French-English Translation
System. In WMT.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and robust neural network joint models for statisti-
cal machine translation. In ACL.

Mona Diab and Philip Resnik. 2002. An unsupervised
method for word sense tagging using parallel corpora.
In ACL.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. The Journal of Machine Learn-
ing Research, 12:2121–2159.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Setiawan,
Vladimir Eidelman, and Philip Resnik. 2010. cdec: A
decoder, alignment, and learning framework for finite-
state and context-free translation models. In ACL.

Manaal Faruqui and Chris Dyer. 2013. An information
theoretic approach to bilingual word clustering. In
ACL.

Manaal Faruqui and Chris Dyer. 2014a. Community eval-
uation and exchange of word vectors at wordvectors.org.
In ACL System Demonstrations.

Manaal Faruqui and Chris Dyer. 2014b. Improving vector
space word representations using multilingual correla-
tion. In EACL.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud
Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2001. Placing search in context: The concept revisited.
In WWW.

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and
Ben Taskar. 2010. Posterior regularization for struc-
tured latent variable models. The Journal of Machine
Learning Research, 11:2001–2049.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2014. BilBOWA: Fast Bilingual Distributed Repre-
sentations without Word Alignments. arXiv preprint
arXiv:1410.2455.

Clayton Greenberg, Asad Sayeed, and Vera Demberg.
2015. Improving unsupervised vector-space thematic
fit evaluation via role-filler prototype clustering. In
NAACL.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu.
2014. Learning sense-specific word embeddings by
exploiting bilingual resources. In COLING.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and
Yehuda Koren. 2012. Large-scale learning of word
relatedness with constraints. In KDD.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed semantics.
In ACL.

Felix Hill, Kyunghyun Cho, Sébastien Jean, Coline Devin,
and Yoshua Bengio. 2014a. Embedding word simi-
larity with neural machine translation. arXiv preprint
arXiv:1412.6448.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014b.
Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. arXiv preprint
arXiv:1408.3456.

Eric H. Huang, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In ACL.

Nancy Ide and Jean Véronis. 1998. Introduction to the
special issue on word sense disambiguation: the state
of the art. Computational linguistics, 24(1):2–40.

Nancy Ide. 2000. Cross-lingual sense determination: Can
it work? Computers and the Humanities, 34(1-2):223–
234.

Hiroyuki Kaji. 2003. Word sense acquisition from bilin-
gual comparable corpora. In NAACL-HLT.

Kazuya Kawakami and Chris Dyer. 2015. Learning to rep-
resent words in context with multilingual supervision.
arXiv preprint arXiv:1511.04623.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai.
2012. Inducing crosslingual distributed representations
of words. In COLING.

Philipp Koehn. 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In MT summit, volume 5.

1355

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
CoNLL.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding? In
EMNLP.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for
discriminative learning. In ACL-IJCNLP of AFNLP.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Deep multilingual correlation
for improved word embeddings. In NAACL.

Minh-Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In CoNLL.

Diego Marcheggiani and Ivan Titov. 2016. Discrete-state
variational autoencoders for joint discovery and factor-
ization of relations. Transactions of the Association for
Computational Linguistics, 4.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. In ICLR Workshop Papers.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In
NIPS.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes, 6(1):1–28.

Eric Nalisnick and Sachin Ravi. 2015. Infinite
dimensional word embeddings. arXiv preprint
arXiv:1511.05392.

Tahira Naseem, Benjamin Snyder, Jacob Eisenstein, and
Regina Barzilay. 2009. Multilingual part-of-speech
tagging: Two unsupervised approaches. Journal of
Artificial Intelligence Research, 36:1–45.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per word
in vector space. In EMNLP.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003.
Exploiting parallel texts for word sense disambiguation:
An empirical study. In ACL.

Alexandre Passos, Vineet Kumar, and Andrew McCallum.
2014. Lexicon infused phrase embeddings for named
entity resolution. In CoNLL.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich,
and Shaul Markovitch. 2011. A word at a time: com-
puting word relatedness using temporal semantic anal-
ysis. In WWW.

Joseph Reisinger and J. Raymond Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
NAACL-HLT.

Herbert Rubenstein and John B Goodenough. 1965. Con-
textual correlates of synonymy. Communications of the
ACM, 8(10):627–633.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning internal representations by
error propagation. In David E. Rumelhart, James L.
McClelland, and PDP Research Group, editors, Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, Vol. 1. MIT Press.

Benjamin Snyder and Regina Barzilay. 2010. Climbing
the Tower of Babel: Unsupervised Multilingual Learn-
ing. In ICML.

Hubert Soyer, Pontus Stenetorp, and Akiko Aizawa. 2014.
Leveraging monolingual data for crosslingual composi-
tional word representations. CoRR, abs/1412.6334.

Oscar Täckström, Ryan McDonald, and Jakob Uszkoreit.
2012. Cross-lingual word clusters for direct transfer of
linguistic structure. In NAACL-HLT.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In COLING.

Ivan Titov and Ehsan Khoddam. 2015. Unsupervised
induction of semantic roles within a reconstruction-
error minimization framework. In NAACL.

Ivan Titov and Alexandre Klementiev. 2012. Crosslingual
induction of semantic roles. In ACL.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume
Lample, and Chris Dyer. 2015. Evaluation of word vec-
tor representations by subspace alignment. In EMNLP.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In ACL.

Dongqiang Yang and David M. W. Powers. 2006. Verb
similarity on the taxonomy of wordnet. In GWC.

Jiajun Zhang, Shujie Liu, Mu Li, Ming Zhou, and
Chengqing Zong. 2014. Bilingually-constrained
phrase embeddings for machine translation. In ACL.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In EMNLP.

Guang Yong Zou. 2007. Toward using confidence inter-
vals to compare correlations. Psychological methods,
12(4).

1356

Proceedings of NAACL-HLT 2016, pages 1357–1366,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Polyglot Neural Language Models:
A Case Study in Cross-Lingual Phonetic Representation Learning

Yulia Tsvetkov Sunayana Sitaram Manaal Faruqui Guillaume Lample
Patrick Littell David Mortensen Alan W Black Lori Levin Chris Dyer

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

{ytsvetko,ssitaram,mfaruqui,glample,plittell,dmortens,awb,lsl,cdyer}@cs.cmu.edu

Abstract

We introduce polyglot language models, re-
current neural network models trained to pre-
dict symbol sequences in many different lan-
guages using shared representations of sym-
bols and conditioning on typological infor-
mation about the language to be predicted.
We apply these to the problem of modeling
phone sequences—a domain in which univer-
sal symbol inventories and cross-linguistically
shared feature representations are a natural
fit. Intrinsic evaluation on held-out perplexity,
qualitative analysis of the learned representa-
tions, and extrinsic evaluation in two down-
stream applications that make use of phonetic
features show (i) that polyglot models bet-
ter generalize to held-out data than compara-
ble monolingual models and (ii) that polyglot
phonetic feature representations are of higher
quality than those learned monolingually.

1 Introduction

Nearly all existing language model (LM) architec-
tures are designed to model one language at a time.
This is unsurprising considering the historical im-
portance of count-based models in which every sur-
face form of a word is a separately modeled entity
(English cat and Spanish gato would not likely ben-
efit from sharing counts). However, recent mod-
els that use distributed representations—in partic-
ular models that share representations across lan-
guages (Hermann and Blunsom, 2014; Faruqui and
Dyer, 2014; Huang et al., 2015; Lu et al., 2015, inter
alia)—suggest universal models applicable to mul-
tiple languages are a possibility. This paper takes a

step in this direction.

We introduce polyglot language models: neural
network language models that are trained on and ap-
plied to any number of languages. Our goals with
these models are the following. First, to facilitate
data and parameter sharing, providing more training
resources to languages, which is especially valuable
in low-resource settings. Second, models trained on
diverse languages with diverse linguistic properties
will better be able to learn naturalistic representa-
tions that are less likely to “overfit” to a single lin-
guistic outlier. Finally, polyglot models offer con-
venience in a multilingual world: a single model re-
places dozens of different models.

Exploration of polyglot language models at the
sentence level—the traditional domain of language
modeling—requires dealing with a massive event
space (i.e., the union of words across many lan-
guages). To work in a more tractable domain, we
evaluate our model on phone-based language mod-
eling, the modeling sequences of sounds, rather than
words. We choose this domain since a common
assumption of many theories of phonology is that
all spoken languages construct words from a finite
inventory of phonetic symbols (represented conve-
niently as the elements of the the International Pho-
netic Alphabet; IPA) which are distinguished by
language-universal features (e.g., place and manner
of articulation, voicing status, etc.). Although our
focus is on sound sequences, our solution can be
ported to the semantic/syntactic problem as resulting
from adaptation to constraints on semantic/syntactic
structure.

This paper makes two primary contributions: in

1357

modeling and in applications. In §2, we intro-
duce a novel polyglot neural language model (NLM)
architecture. Despite being trained on multiple
languages, the multilingual model is more effec-
tive (9.5% lower perplexity) than individual mod-
els, and substantially more effective than naive base-
lines (over 25% lower perplexity). Our most effec-
tive polyglot architecture conditions not only on the
identity of the language being predicted in each se-
quence, but also on a vector representation of its
phono-typological properties. In addition to learn-
ing representations of phones as part of the poly-
glot language modeling objective, the model incor-
porates features about linguistic typology to im-
prove generalization performance (§3). Our sec-
ond primary contribution is to show that down-
stream applications are improved by using polyglot-
learned phone representations. We focus on two
tasks: predicting adapted word forms in models of
cross-lingual lexical borrowing and speech synthe-
sis (§4). Our experimental results (§5) show that
in borrowing, we improve over the current state-
of-the-art, and in speech synthesis, our features are
more effective than manually-designed phonetic fea-
tures. Finally, we analyze the phonological content
of learned representations, finding that our polyglot
models discover standard phonological categories
such as length and nasalization, and that these are
grouped correctly across languages with different
phonetic inventories and contrastive features.

2 Model

In this section, we first describe in §2.1 the under-
lying framework of our model—RNNLM—a stan-
dard recurrent neural network based language model
(Mikolov et al., 2010; Sundermeyer et al., 2012).
Then, in §2.2, we define a Polyglot LM—a modi-
fication of RNNLM to incorporate language infor-
mation, both learned and hand-crafted.

Problem definition. In the phonological LM,
phones (sounds) are the basic units. Mapping
from words to phones is defined in pronunciation
dictionaries. For example, “cats” [kæts] is a se-
quence of four phones. Given a prefix of phones
φ1, φ2, . . . , φt−1, the task of the LM is to estimate
the conditional probability of the next phone p(φt |
φ1, φ2, . . . , φt−1).

2.1 RNNLM

In NLMs, a vocabulary V (here, a set of phones
composing all word types in the language) is repre-
sented as a matrix of parameters X ∈ Rd×|V |, with
|V | phone types represented as d-dimensional vec-
tors. X is often denoted as lookup table. Phones in
the input sequence are first converted to phone vec-
tors, where φi is represented by xi by multiplying
the phone indicator (one-hot vector of length |V |)
and the lookup table.

At each time step t, most recent phone prefix vec-
tor1 xt and hidden state ht−1 are transformed to
compute a new hidden representation:

ht = f(xt,ht−1),

where f is a non-linear transformation. In the orig-
inal RNNLMs (Mikolov et al., 2010), the transfor-
mation is such that:

ht = tanh(Whxxt + Whh
ht−1 + bh).

To overcome the notorious problem in recurrent
neural networks of vanishing gradients (Bengio et
al., 1994), following Sundermeyer et al. (2012),
in recurrent layer we use long short-term mem-
ory (LSTM) units (Hochreiter and Schmidhuber,
1997):2

ht = LSTM(xt,ht−1).

Given the hidden sequence ht, the output se-
quence is then computed as follows:

p(φt = i | φ1, . . . , φt−1) =
softmax(Woutht + bout)i,

where softmax(xi) = exi∑
j e

xj ensures a valid proba-

bility distribution over output phones.

1We are reading at each time step the most recent n-gram
context rather than—as is more common in RNNLMs—a sin-
gle phone context. Empirically, this works better for phone se-
quences, and we hypothesize that this lets the learner rely on
direct connections for local phenomena (which are abundant
in phonology) and minimally use the recurrent state to model
longer-range effects.

2For brevity, we omit the equations describing the LSTM
cells; they can be found in (Graves, 2013, eq. 7–11).

1358

2.2 Polyglot LM
We now describe our modifications to RNNLM to
account for multilinguality. The architecture is de-
picted in figure 1. Our task is to estimate the
conditional probability of the next phone given the
preceding phones and the language (`): p(φt |
φ1, . . . , φt−1, `).

In a multilingual NLM, we define a vocabulary
V ∗ to be the union of vocabularies of all training
languages, assuming that all language vocabularies
are mapped to a shared representation (here, IPA).
In addition, we maintain V` with a special symbol
for each language (e.g., φenglish, φarabic). Language
symbol vectors are parameters in the new lookup ta-
ble X` ∈ Rd×|#langs| (e.g., xenglish, xarabic). The
inputs to the Polyglot LM are the phone vectors xt,
the language character vector x`, and the typolog-
ical feature vector constructed externally t`. The
typological feature vector will be discussed in the
following section.

The input layer is passed to the hidden local-
context layer:

ct = Wcxxt + Wclang
xlang + bc.

The local-context vector is then passed to the hidden
LSTM global-context layer, similarly to the previ-
ously described RNNLM:

gt = LSTM(ct,gt−1).

In the next step, the global-context vector gt is
“factored” by the typology of the training language,
to integrate manually-defined language features. To
obtain this, we first project the (potentially high-
dimensional) t` into a low-dimensional vector, and
apply non-linearity. Then, we multiply the gt and
the projected language layer, to obtain a global-
context-language matrix:

f` = tanh(W`t` + b`),

G`
t = gt ⊗ f>` .

Finally, we vectorize the resulting matrix into a
column vector and compute the output sequence as
follows:

p(φt = i | φ1, . . . , φt−1, `) =

softmax(Woutvec(G`
t) + bout)i.

Wℓ

ten

Wg Wout

LSTMWc

g(t)

c(t)

xk

xӕ

xt

xen

s

g(t-1)

G (t)

x(t)

f(ℓ)

ℓ

Figure 1: Architecture of the Polyglot LM.

Model training. Parameters of the models are the
lookup tables X and X`, weight matrices Wi, and
bias vectors bi. Parameter optimization is per-
formed using stochastic updates to minimize the cat-
egorical cross-entropy loss (which is equivalent to
minimizing perplexity and maximizing likelihood):
H(φ, φ̂) = −Σiφ̂i log φi, where φ is predicted and
φ̂ is the gold label.

3 Typological features

Typological information is fed to the model via
vectors of 190 binary typological features, all of
which are phonological (related to sound structure)
in their nature. These feature vectors are derived
from data from the WALS (Dryer and Haspelmath,
2013), PHOIBLE (Moran et al., 2014), and Ethno-
logue (Lewis et al., 2015) typological databases via
extensive post-processing and analysis.3 The fea-
tures primarily concern properties of sound invento-
ries (i.e., the set of phones or phonemes occurring in
a language) and are mostly of one of four types:

1. Single segment represented in an inventory;

3This data resource, which provides standardized
phono-typological information for 2,273 languages,
is available at https://github.com/dmort27/
uriel-phonology/tarball/0.1. It is a subset of the
URIEL database, a comprehensive database of typological
features encoding syntactic and morphological (as well as
phonological) properties of languages. It is available at
http://cs.cmu.edu/~dmortens/uriel.html.

1359

e.g., does language `’s sound inventory include
/g/, a voiced velar stop?

2. Class of segments represented in an inven-
tory; e.g., does language `’s sound inventory
include voiced fricatives like /z/ and /v/?

3. Minimal contrast represented in an inven-
tory; e.g., does language `’s sound inventory
include two sounds that differ only in voicing,
such as /t/ and /d/?

4. Number of sounds representative of a class
that are present in an inventory; e.g., does
language `’s sound inventory include exactly
five vowels?

The motivation and criteria for coding each indi-
vidual feature required extensive linguistic knowl-
edge and analysis. Consider the case of tense vowels
like /i/ and /u/ in “beet” and “boot” in contrast with
lax vowels like /I/ and /U/ in “bit” and “book.” Only
through linguistic analysis does it become evident
that (1) all languages have tense vowels—a feature
based on the presence of tense vowels is uninforma-
tive and that (2) a significant minority of languages
make a distinction between tense and lax vowels—a
feature based on whether languages display a mini-
mal difference of this kind would be more useful.

4 Applications of Phonetic Vectors

Learned continuous word representations—word
vectors—are an important by-product of neural
LMs, and these are used as features in numerous
NLP applications, including chunking (Turian et al.,
2010), part-of-speech tagging (Ling et al., 2015), de-
pendency parsing (Lazaridou et al., 2013; Bansal et
al., 2014; Dyer et al., 2015; Watanabe and Sumita,
2015), named entity recognition (Guo et al., 2014),
and sentiment analysis (Socher et al., 2013; Wang
et al., 2015). We evaluate phone vectors learned
by Polyglot LMs in two downstream applications
that rely on phonology: modeling lexical borrowing
(§4.1) and speech synthesis (§4.2).

4.1 Lexical borrowing
Lexical borrowing is the adoption of words from
another language, that inevitably happens when
speakers of different languages communicate for
a long period of time (Thomason and Kauf-
man, 2001). Borrowed words—also called loan-

words—constitute 10–70% of most language lexi-
cons (Haspelmath, 2009); these are content words
of foreign origin that are adapted in the language
and are not perceived as foreign by language speak-
ers. Computational modeling of cross-lingual trans-
formations of loanwords is effective for inferring
lexical correspondences across languages with lim-
ited parallel data, benefiting applications such as
machine translation (Tsvetkov and Dyer, 2015;
Tsvetkov and Dyer, 2016).

In the process of their nativization in a for-
eign language, loanwords undergo primar-
ily phonological adaptation, namely inser-
tion/deletion/substitution of phones to adapt to the
phonotactic constraints of the recipient language. If
a foreign phone is not present in the recipient lan-
guage, it is usually replaced with its closest native
equivalent—we thus hypothesize that cross-lingual
phonological features learned by the Polyglot LM
can be useful in models of borrowing to quantify
cross-lingual similarities of sounds.

To test this hypothesis, we augment the hand-
engineered models proposed by Tsvetkov and Dyer
(2016) with features from phone vectors learned
by our model. Inputs to the borrowing framework
are loanwords (in Swahili, Romanian, Maltese), and
outputs are their corresponding “donor” words in the
donor language (Arabic, French, Italian, resp.). The
framework is implemented as a cascade of finite-
state transducers with insertion/deletion/substitution
operations on sounds, weighted by high-level con-
ceptual linguistic constraints that are learned in a
supervised manner. Given a loanword, the sys-
tem produces a candidate donor word with lower
ranked violations than other candidates, using the
shortest path algorithm. In the original borrow-
ing model, insertion/deletion/substitution operations
are unweighted. In this work, we integrate tran-
sition weights in the phone substitution transduc-
ers, which are cosine distances between phone vec-
tors learned by our model. Our intuition is that
similar sounds appear in similar contexts, even if
they are not present in the same language (e.g., /sQ/
in Arabic is adapted to /s/ in Swahili). Thus, if
our model effectively captures cross-lingual signals,
similar sounds should have smaller distances in the
vector space, which can improve the shortest path
results. Figure 2 illustrates our modifications to the

1360

original framework.

0

0.3

0.8

weights from phonetic features

0

Figure 2: Distances between phone vectors learned by the

Polyglot LM are integrated as substitution weights in the lexical

borrowing transducers. An English word cat [kæt] is adapted to

its Russian counterpart кот [kot]. The transducer has also an er-

roneous path to кит [kit] ‘whale’. In the original system, both

paths are weighted with the same feature IDENT-IO-V, firing

on vowel substitution. Our modification allows the borrowing

model to identify more plausible paths by weighting substitu-

tion operations.

4.2 Speech synthesis
Speech synthesis is the process of converting text
into speech. It has various applications, such as
screen readers for the visually impaired and hands-
free voice based systems. Text-to-speech (TTS) sys-
tems are also used as part of speech-to-speech trans-
lation systems and spoken dialog systems, such as
personal digital assistants. Natural and intelligible
TTS systems exist for a number of languages in the
world today. However, building TTS systems re-
mains prohibitive for many languages due to the lack
of linguistic resources and data.

The language-specific resources that are tradition-
ally used for building TTS systems in a new lan-
guage are: (1) audio recordings with transcripts; (2)
pronunciation lexicon or letter to sound rules; and
(3) a phone set definition. Standard TTS systems to-
day use phone sets designed by experts. Typically,
these phone sets also contain phonetic features for
each phoneme, which are used as features in models
of the spectrum and prosody. The phonetic features
available in standard TTS systems are multidimen-
sional vectors indicating various properties of each
phoneme, such as whether it is a vowel or consonant,
vowel length and height, place of articulation of a
consonant, etc. Constructing these features by hand
can be labor intensive, and coming up with such fea-
tures automatically may be useful in low-resource
scenarios.

In this work, we replace manually engineered
phonetic features with phone vectors, which are then

used by classification and regression trees for mod-
eling the spectrum. Each phoneme in our phone set
is assigned an automatically constructed phone vec-
tor, and each member of the phone vector is treated
as a phoneme-level feature which is used in place of
the manually engineered phonetic features. While
prior work has explored TTS augmented with acous-
tic features (Watts et al., 2015), to the best of our
knowledge, we are the first to replace manually en-
gineered phonetic features in TTS systems with au-
tomatically constructed phone vectors.

5 Experiments

Our experimental evaluation of our proposed poly-
glot models consists of two parts: (i) an intrinsic
evaluation where phone sequences are modeled with
independent models and (ii) an extrinsic evaluation
of the learned phonetic representations. Before dis-
cussing these results, we provide details of the data
resources we used.

5.1 Resources and experimental setup

Resources. We experiment with the following lan-
guages: Arabic (AR), French (FR), Hindi (HI), Ital-
ian (IT), Maltese (MT), Romanian (RO), Swahili
(SW), Tamil (TA), and Telugu (TE). In our language
modeling experiments, two main sources of data are
pronunciation dictionaries and typological features
described in §3. The dictionaries for AR, FR, HI,
TA, and TE are taken from in-house speech recog-
nition/synthesis systems. For remaining languages,
the dictionaries are automatically constructed using
the Omniglot grapheme-to-IPA conversion rules.4

We use two types of pronunciation dictionaries:
(1) AR, FR, HI, IT, MT, RO, and SW dictionaries used
in experiments with lexical borrowing; and (2) EN,
HI, TA, and TE dictionaries used in experiments with
speech synthesis. The former are mapped to IPA,
with the resulting phone vocabulary size—the num-
ber of distinct phones across IPA dictionaries—of
127 phones. The latter are encoded using the Uni-
Tran universal transliteration resource (Qian et al.,
2010), with a vocabulary of 79 phone types.

From the (word-type) pronunciation dictionaries,
we remove 15% of the words for development, and
a further 10% for testing; the rest of the data is

4http://omniglot.com/writing/

1361

AR FR HI IT MT RO SW

train 1,868/18,485 238/1,851 193/1,536 988/901 114/1,152 387/4,661 659/7,239
dev 366/3,627 47/363 38/302 19/176 22/226 76/916 130/1,422
test 208/2,057 27/207 22/173 11/100 13/128 43/524 73/806

Table 1: Train/dev/test counts for IPA pronunciation dictionaries for words (phone sequences) and phone tokens, in thousands:

#thousands of sequences/# thousands of tokens.

EN HI TA TE

train 101/867 191/1,523 74/780 71/690
dev 20/169 37/300 14/152 14/135
test 11/97 21/171 8/87 8/77

Table 2: Train/dev/test statistics for UniTran pronunciation dic-

tionaries for words (phone sequences) and phone tokens, in

thousands: #thousands of sequences/# thousands of tokens.

used to train the models. In tables 1 and 2 we
list—for both types of pronunciation dictionaries—
train/dev/test data statistics for words (phone se-
quences) and phone tokens. We concatenate each
phone sequence with beginning and end symbols
(<s>, </s>).

Hyperparameters. We used the following net-
work architecture: 100-dimensional phone vectors,
with hidden local-context and LSTM layers of size
100, and hidden language layer of size 20. All
language models were trained using the left con-
text of 3 phones (4-gram LMs). Across all lan-
guage modeling experiments, parameter optimiza-
tion was performed on the dev set using the Adam
algorithm (Kingma and Ba, 2014) with mini-batches
of size 100 to train the models for 5 epochs.

5.2 Intrinsic perplexity evaluation

Perplexity is the standard evaluation measure for
language models, which has been shown to corre-
late strongly with error rates in downstream appli-
cations (Klakow and Peters, 2002). We evaluated
perplexities across several architectures, and several
monolingual and multilingual setups. We kept the
same hyper-parameters across all setups, as detailed
in §5. Perplexities of LMs trained on the two types
of pronunciation dictionaries were evaluated sepa-
rately; table 3 summarizes perplexities of the models
trained on IPA dictionaries, and table 4 summarizes
perplexities of the UniTran LMs.

In columns, we compare three model architec-
tures: baseline denotes the standard RNNLM archi-

tecture described in §2.1; +lang denotes the Poly-
glot LM architecture described in §2.2 with input
language vector but without typological features and
language layer; finally, +typology denotes the full
Polyglot LM architecture. This setup lets us sepa-
rately evaluate the contribution of modified architec-
ture and the contribution of auxiliary set of features
introduced via the language layer.

Test languages are IT in table 3, and HI in table 4.
The rows correspond to different sets of training lan-
guages for the models: monolingual is for training
and testing on the same language; +similar denotes
training on three typologically similar languages: IT,
FR, RO in table 3, and HI, TA, TE in table 4; +dissim-
ilar denotes training on four languages, three similar
and one typologically dissimilar language, to eval-
uate robustness of multilingual systems to diverse
types of data. The final sets of training languages
are IT, FR, RO, HI in table 3, and HI, TA, TE, EN in
table 4.

Perplexity (↓)
training set baseline +lang +typology

monolingual 4.36 – –
+similar 5.73 4.93 4.24 (↓ 26.0%)
+dissimilar 5.88 4.98 4.41 (↓ 25.0%)

Table 3: Perplexity experiments with IT as test language. Train-

ing languages: monolingual: IT; +similar: IT, FR, RO; +dissim-

ilar: IT, FR, RO, HI.

Perplexity (↓)
training set baseline +lang +typology

monolingual 3.70 – –
+similar 4.14 3.78 3.35 (↓ 19.1%)
+dissimilar 4.29 3.82 3.42 (↓ 20.3%)

Table 4: Perplexity experiments with HI as test language.

Training languages: monolingual: HI; +similar: HI, TA, TE;

+dissimilar: HI, TA, TE, EN.

We see several patterns of results. First, polyglot
models require, unsurprisingly, information about

1362

what language they are predicting to obtain good
modeling performance. Second, typological in-
formation is more valuable than letting the model
learn representations of the language along with the
characters. Finally, typology-augmented polyglot
models outperform their monolingual baseline, pro-
viding evidence in support of the hypothesis that
cross-lingual evidence is useful not only for learning
cross-lingual representations and models, but mono-
lingual ones as well.

5.3 Lexical borrowing experiments

We fully reproduced lexical borrowing models de-
scribed in (Tsvetkov and Dyer, 2016) for three lan-
guage pairs: AR–SW, FR–RO, and IT–MT. Train and
test corpora are donor–loanword pairs in the lan-
guage pairs. Corpora statistics are given in table 5
(note that these are extremely small data sets; thus
small numbers of highly informative features a nec-
essary for good generalization). We use the repro-
duced systems as the baselines, and compare these
to the corresponding systems augmented with phone
vectors, as described in §4.1.

AR–SW FR–RO IT–MT

train 417 282 425
test 73 50 75

Table 5: Number of training and test pairs the the borrowing

datasets.

Integrated vectors were obtained from a single
polyglot model with typology, trained on all lan-
guages with IPA dictionaries. For comparison with
the results in table 3, perplexity of the model on
the IT dataset (used for evaluation is §5.2) is 4.16,
even lower than in the model trained on four lan-
guages. To retrain the high-level conceptual lin-
guistic features learned by the borrowing models,
we initialized the augmented systems with feature
weights learned by the baselines, and retrained. Fi-
nal weights were established using cross-validation.
Then, we evaluated the accuracy of the augmented
borrowing systems on the held-out test data.

Accuracies are shown in table 6. We observe im-
provements of up to 5% in accuracies of FR–RO

and IT–MT pairs. Effectiveness of the same polyglot
model trained on multiple languages and integrated
in different downstream systems supports our as-

sumption that the model remains stable and effective
with addition of languages. Our model is less effec-
tive for the AR–SW language pair. We speculate that
the results are worse, because this is a pair of (ty-
pologically) more distant languages; consequently,
the phonological adaptation processes that happen in
loanword assimilation are more complex than mere
substitutions of similar phones that we are targeting
via the integration of phone vectors.

Accuracy (↑)
AR–SW FR–RO IT–MT

baseline 48.4 75.6 83.3
+multilingual 46.9 80.6 87.1

Table 6: Accuracies of the baseline models of lexical borrow-

ing and the models augmented with phone vectors. In all the

experiments, we use vectors from a single Polyglot LM model

trained on AR, SW, FR, RO, IT, MT.

5.4 Speech synthesis experiments

A popular objective metric for measuring the qual-
ity of synthetic speech is the Mel Cepstral Distortion
(MCD) (Hu and Loizou, 2008). The MCD metric
calculates an L2 norm of the Mel Frequency Cep-
stral Coefficients (MFCCs) of natural speech from
a held out test set, and synthetic speech generated
from the same test set. Since this is a distance met-
ric, a lower value of MCD suggests better synthesis.
The MCD is a database-specific metric, but experi-
ments by Kominek et al. (Kominek et al., 2008) have
shown that a decrease in MCD of 0.08 is perceptu-
ally significant, and a decrease of 0.12 is equivalent
to doubling the size of the TTS database. In our ex-
periments, we use MCD to measure the relative im-
provement obtained by our techniques.

We conducted experiments on the IIIT-H Hindi
voice database (Prahallad et al., 2012), a 2 hour
single speaker database recorded by a professional
male speaker. We used the same front end (UniTran)
to build all the Hindi TTS systems, with the only dif-
ference between the systems being the presence or
absence of phonetic features and our vectors. For all
our voice-based experiments, we built CLUSTER-
GEN Statistical Parametric Synthesis voices (Black,
2006) using the Festvox voice building tools (Black
and Lenzo, 2003) and the Festival speech synthesis
engine (Black and Taylor, 1997).

1363

The baseline TTS system was built using no pho-
netic features. We also built a TTS system with stan-
dard hand-crafted phonetic features. Table 7 shows
the MCD for the HI baseline, the standard TTS with
hand-crafted features, and augmented TTS systems
built using monolingual and multilingual phone vec-
tors constructed with Polyglot LMs.

MCD (↓)
baseline 4.58
+monolingual 4.40
+multilingual 4.39
+hand-crafted 4.41

Table 7: MCD for the HI TTS systems. Polyglot LM training

languages: monolingual: HI; +multilingual: HI, TA, TE, EN.

Our multilingual vectors outperform the baseline,
with a significant decrease of 0.19 in MCD. Cru-
cially, TTS systems augmented with the Polyglot
LM phone vectors outperform also the standard TTS
with hand-crafted features. We found that using
both feature sets added no value, suggesting that
learned phone vectors are capturing information that
is equivalent to the hand-engineered vectors.

5.5 Qualitative analysis of vectors
Phone vectors learned by Polyglot LMs are mere se-
quences of real numbers. An interesting question
is whether these vectors capture linguistic (phono-
logical) qualities of phones they are encoding. To
analyze to what extent our vectors capture linguis-
tic properties of phones, we use the QVEC—a tool
to quantify and interpret linguistic content of vec-
tor space models (Tsvetkov et al., 2015). The tool
aligns dimensions in a matrix of learned distributed
representations with dimensions of a hand-crafted
linguistic matrix. Alignments are induced via cor-
relating columns in the distributed and the linguistic
matrices. To analyze the content of the distributed
matrix, annotations from the linguistic matrix are
projected via the maximally-correlated alignments.

We constructed a phonological matrix in which
5,059 rows are IPA phones and 21 columns are
boolean indicators of universal phonological prop-
erties, e.g. consonant, voiced, labial.5 We the pro-
jected annotations from the linguistic matrix and

5This matrix is described in Littell et al. (2016) and is avail-
able at https://github.com/dmort27/panphon/.

manually examined aligned dimensions in the phone
vectors from §5.3 (trained on six languages). In the
maximally-correlated columns—corresponding to
linguistic features long, consonant, nasalized—we
examined phones with highest coefficients. These
were: [5:, U:, i:, O:, E:] for long; [v, ñ,

>
dZ, d, f, j,

>
ts, N] for consonant; and [Õ, Ẽ, Ã, œ̃] for nasalized.
Clearly, the learned representation discover standard
phonological features. Moreover, these top-ranked
sounds are not grouped by a single language, e.g.,
/
>
dZ/ is present in Arabic but not in French, and /ñ, N/

are present in French but not in Arabic. From this
analysis, we conclude that (1) the model discovers
linguistically meaningful phonetic features; (2) the
model induces meaningful related groupings across
languages.

6 Related Work

Multilingual language models. Interpolation of
monolingual LMs is an alternative to obtain a mul-
tilingual model (Harbeck et al., 1997; Weng et
al., 1997). However, interpolated models still re-
quire a trained model per language, and do not
allow parameter sharing at training time. Bilin-
gual language models trained on concatenated cor-
pora were explored mainly in speech recognition
(Ward et al., 1998; Wang et al., 2002; Fügen et
al., 2003). Adaptations have been proposed to ap-
ply language models in bilingual settings in machine
translation (Niehues et al., 2011) and code switching
(Adel et al., 2013). These approaches, however, re-
quire adaptation to every pair of languages, and an
adapted model cannot be applied to more than two
languages.

Independently, Ammar et al. (2016) used a dif-
ferent polyglot architecture for multilingual depen-
dency parsing. This work has also confirmed the
utility of polyglot architectures in leveraging mul-
tilinguality.

Multimodal neural language models. Multi-
modal language modeling is integrating image/video
modalities in text LMs. Our work is inspired by the
neural multimodal LMs (Kiros and Salakhutdinov,
2013; Kiros et al., 2015), which defined language
models conditional on visual contexts, although we
use a different language model architecture (recur-
rent vs. log-bilinear) and a different approach to gat-

1364

ing modality.

7 Conclusion

We presented a novel multilingual language model
architecture. The model obtains substantial gains
in perplexity, and improves downstream text and
speech applications. Although we focus on phonol-
ogy, our approach is general, and can be applied
in problems that integrate divergent modalities, e.g.,
topic modeling, and multilingual tagging and pars-
ing.

Acknowledgments

This work was supported by the National Science
Foundation through award IIS-1526745 and in part
by the Defense Advanced Research Projects Agency
(DARPA) Information Innovation Office (I2O). Pro-
gram: Low Resource Languages for Emergent In-
cidents (LORELEI). Issued by DARPA/I2O under
Contract No. HR0011-15-C-0114.

References

Heike Adel, Ngoc Thang Vu, and Tanja Schultz. 2013.
Combination of recurrent neural networks and factored
language models for code-switching language model-
ing. In Proc. ACL, pages 206–211.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah A. Smith. 2016. Many lan-
guages, one parser. CoRR, abs/1602.01595.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In Proc. ACL.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166.

Alan W Black and Kevin A Lenzo. 2003. Building syn-
thetic voices. http://festvox.org/bsv/.

Alan W Black and Paul Taylor. 1997. The Festi-
val speech synthesis system: system documentation.
Technical report, Human Communication Research
Centre, University of Edinburgh.

Alan W Black. 2006. CLUSTERGEN: a statistical para-
metric synthesizer using trajectory modeling. In Proc.
Interspeech.

Matthew S. Dryer and Martin Haspelmath, editors. 2013.
WALS Online. Max Planck Institute for Evolutionary
Anthropology. http://wals.info/.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-based
dependency parsing with stack long short-term mem-
ory. In Proc. ACL.

Manaal Faruqui and Chris Dyer. 2014. Improving vector
space word representations using multilingual correla-
tion. In Proc. EACL.

Christian Fügen, Sebastian Stuker, Hagen Soltau, Florian
Metze, and Tanja Schultz. 2003. Efficient handling of
multilingual language models. In Proc. ASRU, pages
441–446.

Alex Graves. 2013. Generating sequences with recurrent
neural networks. CoRR, abs/1308.0850.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu.
2014. Revisiting embedding features for simple semi-
supervised learning. In Proc. EMNLP.

Stefan Harbeck, Elmar Nöth, and Heinrich Niemann.
1997. Multilingual speech recognition. In Proc. 2nd
SQEL Workshop on Multi-Lingual Information Re-
trieval Dialogs, pages 9–15.

Martin Haspelmath. 2009. Lexical borrowing: concepts
and issues. Loanwords in the World’s Languages: a
comparative handbook, pages 35–54.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilin-
gual Models for Compositional Distributional Seman-
tics. In Proc. ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Yi Hu and Philipos C Loizou. 2008. Evaluation of objec-
tive quality measures for speech enhancement. Audio,
Speech, & Language Processing, 16(1):229–238.

Kejun Huang, Matt Gardner, Evangelos Papalexakis,
Christos Faloutsos, Nikos Sidiropoulos, Tom Mitchell,
Partha P. Talukdar, and Xiao Fu. 2015. Translation
invariant word embeddings. In Proc. EMNLP, pages
1084–1088.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ryan Kiros and Ruslan Salakhutdinov. 2013. Multi-
modal neural language models. In Proc. NIPS Deep
Learning Workshop.

Ryan Kiros, Ruslan Salakhutdinov, and Richard Zemel.
2015. Unifying visual-semantic embeddings with
multimodal neural language models. TACL.

Dietrich Klakow and Jochen Peters. 2002. Testing the
correlation of word error rate and perplexity. Speech
Communication, 38(1):19–28.

John Kominek, Tanja Schultz, and Alan W Black. 2008.
Synthesizer voice quality of new languages calibrated
with mean Mel Cepstral Distortion. In Proc. SLTU,
pages 63–68.

1365

Angeliki Lazaridou, Eva Maria Vecchi, and Marco Ba-
roni. 2013. Fish transporters and miracle homes:
How compositional distributional semantics can help
NP parsing. In Proc. EMNLP.

M Paul Lewis, Gary F Simons, and Charles D Fennig.
2015. Ethnologue: Languages of the world. Texas:
SIL International. http://www.ethnologue.
com.

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W Black,
and Isabel Trancoso. 2015. Finding function in form:
Compositional character models for open vocabulary
word representation. In Proc. NAACL.

Patrick Littell, David Mortensen, Kartik Goyal, Chris
Dyer, and Lori Levin. 2016. Bridge-language capi-
talization inference in Western Iranian: Sorani, Kur-
manji, Zazaki, and Tajik. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC’16).

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Deep multilingual correlation
for improved word embeddings. In Proc. NAACL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In Proc. Inter-
speech, pages 1045–1048.

Steven Moran, Daniel McCloy, and Richard Wright, ed-
itors. 2014. PHOIBLE Online. Max Planck In-
stitute for Evolutionary Anthropology. http://
phoible.org/.

Jan Niehues, Teresa Herrmann, Stephan Vogel, and Alex
Waibel. 2011. Wider context by using bilingual lan-
guage models in machine translation. In Proc. WMT,
pages 198–206.

Kishore Prahallad, E. Naresh Kumar, Venkatesh Keri,
S. Rajendran, and Alan W Black. 2012. The IIIT-H
Indic speech databases. In Proc. Interspeech.

Ting Qian, Kristy Hollingshead, Su-youn Yoon, Kyoung-
young Kim, Richard Sproat, and Malta LREC. 2010.
A Python toolkit for universal transliteration. In Proc.
LREC.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng, and Christo-
pher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc.
EMNLP.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In Proc. Interspeech.

Sarah Grey Thomason and Terrence Kaufman. 2001.
Language contact. Edinburgh University Press Edin-
burgh.

Yulia Tsvetkov and Chris Dyer. 2015. Lexicon stratifica-
tion for translating out-of-vocabulary words. In Proc.
ACL, pages 125–131.

Yulia Tsvetkov and Chris Dyer. 2016. Cross-lingual
bridges with models of lexical borrowing. JAIR,
55:63–93.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evalua-
tion of word vector representations by subspace align-
ment. In Proc. EMNLP. https://github.com/
ytsvetko/qvec.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method for
semi-supervised learning. In Proc. ACL.

Zhirong Wang, Umut Topkara, Tanja Schultz, and Alex
Waibel. 2002. Towards universal speech recognition.
In Proc. ICMI, page 247.

Xin Wang, Yuanchao Liu, Chengjie Sun, Baoxun Wang,
and Xiaolong Wang. 2015. Predicting polarities
of tweets by composing word embeddings with long
short-term memory. In Proc. ACL, pages 1343–1353.

Todd Ward, Salim Roukos, Chalapathy Neti, Jerome
Gros, Mark Epstein, and Satya Dharanipragada. 1998.
Towards speech understanding across multiple lan-
guages. In Proc. ICSLP.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proc. ACL.

Oliver Watts, Zhizheng Wu, and Simon King. 2015.
Sentence-level control vectors for deep neural network
speech synthesis. In Proc. Interspeech.

Fuliang Weng, Harry Bratt, Leonardo Neumeyer, and An-
dreas Stolcke. 1997. A study of multilingual speech
recognition. In Proc. EUROSPEECH, pages 359–362.

1366

Proceedings of NAACL-HLT 2016, pages 1367–1377,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning Distributed Representations of Sentences from Unlabelled Data

Felix Hill
Computer Laboratory

University of Cambridge
felix.hill@cl.cam.ac.uk

Kyunghyun Cho
Courant Institute of

Mathematical Sciences
& Centre for Data Science

New York University
kyunghyun.cho@nyu.edu

Anna Korhonen
Department of Theoretical

& Applied Linguistics
University of Cambridge

alk23@cam.ac.uk

Abstract

Unsupervised methods for learning distributed
representations of words are ubiquitous in to-
day’s NLP research, but far less is known
about the best ways to learn distributed phrase
or sentence representations from unlabelled
data. This paper is a systematic comparison
of models that learn such representations. We
find that the optimal approach depends crit-
ically on the intended application. Deeper,
more complex models are preferable for rep-
resentations to be used in supervised systems,
but shallow log-bilinear models work best
for building representation spaces that can
be decoded with simple spatial distance met-
rics. We also propose two new unsupervised
representation-learning objectives designed to
optimise the trade-off between training time,
domain portability and performance.

1 Introduction

Distributed representations - dense real-valued vec-
tors that encode the semantics of linguistic units -
are ubiquitous in today’s NLP research. For single-
words or word-like entities, there are established
ways to acquire such representations from naturally
occurring (unlabelled) training data based on com-
paratively task-agnostic objectives (such as predict-
ing adjacent words). These methods are well under-
stood empirically (Baroni et al., 2014b) and theoret-
ically (Levy and Goldberg, 2014). The best word
representation spaces reflect consistently-observed
aspects of human conceptual organisation (Hill et
al., 2015b), and can be added as features to improve

the performance of numerous language processing
systems (Collobert et al., 2011).

By contrast, there is comparatively little consen-
sus on the best ways to learn distributed represen-
tations of phrases or sentences.1 With the advent
of deeper language processing techniques, it is rel-
atively common for models to represent phrases or
sentences as continuous-valued vectors. Examples
include machine translation (Sutskever et al., 2014),
image captioning (Mao et al., 2015) and dialogue
systems (Serban et al., 2015). While it has been
observed informally that the internal sentence rep-
resentations of such models can reflect semantic in-
tuitions (Cho et al., 2014), it is not known which ar-
chitectures or objectives yield the ‘best’ or most use-
ful representations. Resolving this question could
ultimately have a significant impact on language
processing systems. Indeed, it is phrases and sen-
tences, rather than individual words, that encode the
human-like general world knowledge (or ‘common
sense’) (Norman, 1972) that is a critical missing part
of most current language understanding systems.

We address this issue with a systematic compari-
son of cutting-edge methods for learning distributed
representations of sentences. We focus on meth-
ods that do not require labelled data gathered for
the purpose of training models, since such meth-
ods are more cost-effective and applicable across
languages and domains. We also propose two new
phrase or sentence representation learning objec-
tives - Sequential Denoising Autoencoders (SDAEs)

1See the contrasting conclusions in (Mitchell and Lapata,
2008; Clark and Pulman, 2007; Baroni et al., 2014a; Milajevs
et al., 2014) among others.

1367

and FastSent, a sentence-level log-bilinear bag-of-
words model. We compare all methods on two types
of task - supervised and unsupervised evaluations
- reflecting different ways in which representations
are ultimately to be used. In the former setting, a
classifier or regression model is applied to represen-
tations and trained with task-specific labelled data,
while in the latter, representation spaces are directly
queried using cosine distance.

We observe notable differences in approaches de-
pending on the nature of the evaluation metric. In
particular, deeper or more complex models (which
require greater time and resources to train) gener-
ally perform best in the supervised setting, whereas
shallow log-bilinear models work best on unsuper-
vised benchmarks. Specifically, SkipThought Vec-
tors (Kiros et al., 2015) perform best on the ma-
jority of supervised evaluations, but SDAEs are the
top performer on paraphrase identification. In con-
trast, on the (unsupervised) SICK sentence relat-
edness benchmark, FastSent, a simple, log-bilinear
variant of the SkipThought objective, performs bet-
ter than all other models. Interestingly, the method
that exhibits strongest performance across both su-
pervised and unsupervised benchmarks is a bag-of-
words model trained to compose word embeddings
using dictionary definitions (Hill et al., 2015a).
Taken together, these findings constitute valuable
guidelines for the application of phrasal or senten-
tial representation-learning to language understand-
ing systems.

2 Distributed Sentence Representations

To constrain the analysis, we compare neural lan-
guage models that compute sentence representations
from unlabelled, naturally-ocurring data, as with
the predominant methods for word representations.2

Likewise, we do not focus on ‘bottom up’ models
where phrase or sentence representations are built
from fixed mathe proposed bymatical operations on
word vectors (although we do consider a canoni-
cal case - see CBOW below); these were already
compared by Milajevs et al. (2014). Most space is
devoted to our novel approaches, and we refer the

2This excludes innovative supervised sentence-level archi-
tectures including (Socher et al., 2011; Kalchbrenner et al.,
2014) and many others.

reader to the original papers for more details of ex-
isting models.

2.1 Existing Models Trained on Text

SkipThought Vectors For consecutive sentences
Si−1, Si, Si+1 in some document, the SkipThought
model (Kiros et al., 2015) is trained to predict target
sentences Si−1 and Si+1 given source sentence Si.
As with all sequence-to-sequence models, in train-
ing the source sentence is ‘encoded’ by a Recurrent
Neural Network (RNN) (with Gated Recurrent uU-
nits (Cho et al., 2014)) and then ‘decoded’ into the
two target sentences in turn. Importantly, because
RNNs employ a single set of update weights at each
time-step, both the encoder and decoder are sensitive
to the order of words in the source sentence.

For each position in a target sentence St, the
decoder computes a softmax distribution over the
model’s vocabulary. The cost of a training exam-
ple is the sum of the negative log-likelihood of each
correct word in the target sentences Si−1 and Si+1.
This cost is backpropagated to train the encoder (and
decoder), which, when trained, can map sequences
of words to a single vector.

ParagraphVector Le and Mikolov (2014) proposed
two log-bilinear models of sentence representation.
The DBOW model learns a vector s for every sen-
tence S in the training corpus which, together with
word embeddings vw, define a softmax distribution
optimised to predict words w ∈ S given S. The
vw are shared across all sentences in the corpus.
In the DM model, k-grams of consecutive words
{wi . . . wi+k ∈ S} are selected and s is combined
with {vwi . . . vwi+k

} to make a softmax prediction
(parameterised by additional weights) of wi+k+1.

We used the Gensim implementation,3 treating
each sentence in the training data as a ‘paragraph’ as
suggested by the authors. During training, both DM
and DBOW models store representations for every
sentence (as well as word) in the training corpus.
Even on large servers it was therefore only possi-
ble to train models with representation size 200, and
DM models whose combination operation was av-
eraging (rather than concatenation). Unlike other
models considered in this section, for both Para-
graphVector architectures an inference step is re-

3https://radimrehurek.com/gensim/

1368

quired after training to estimate sentence representa-
tions s for arbitrary sentences based on the vw. This
additional computation is reflected in the higher en-
coding time in Table 1 (TE).

Bottom-Up Methods We train CBOW and Skip-
Gram word embeddings (Mikolov et al., 2013b) on
the same text corpus as the SkipThought and Para-
graphVector models, and compose by elementwise
addition as per Mitchell and Lapata (2010).4

We also compare to C-PHRASE (Pham et al.,
2015), an approach that exploits a (supervised)
parser to infer distributed semantic representations
based on a syntactic parse of sentences. C-PHRASE
achieves state-of-the-art results for distributed repre-
sentations on several evaluations used in this study.5

Non-Distributed Baseline We implement a TFIDF
BOW model in which the representation of sentence
S encodes the count in S of a set of feature-words
weighted by their tfidf inC, the corpus. The feature-
words are the 200,000 most common words in C.

2.2 Models Trained on Structured Resources

The following models rely on (freely-available) data
that has more structure than raw text.

DictRep Hill et al. (2015a) trained neural language
models to map dictionary definitions to pre-trained
word embeddings of the words defined by those def-
initions. They experimented with BOW and RNN
(with LSTM) encoding architectures and variants
in which the input word embeddings were either
learned or pre-trained (+embs.) to match the tar-
get word embeddings. We implement their models
using the available code and training data.6

CaptionRep Using the same overall architecture,
we trained (BOW and RNN) models to map cap-
tions in the COCO dataset (Chen et al., 2015) to pre-
trained vector representations of images. The image
representations were encoded by a deep convolu-
tional network (Szegedy et al., 2014) trained on the

4We also tried multiplication but this gave very poor results.
5Since code for C-PHRASE is not publicly-available we

use the available pre-trained model (http://clic.cimec.
unitn.it/composes/cphrase-vectors.html). Note this
model is trained on 3× more text than others in this study.

6https://www.cl.cam.ac.uk/˜fh295/. Definitions
from the training data matching those in the WordNet STS 2014
evaluation (used in this study) were excluded.

ILSVRC 2014 object recognition task (Russakovsky
et al., 2014). Multi-modal distributed representa-
tions can be encoded by feeding test sentences for-
ward through the trained model.

NMT We consider the sentence representations
learned by neural MT models. These models
have identical architecture to SkipThought, but are
trained on sentence-aligned translated texts. We
used a standard architecture (Cho et al., 2014) on
all available En-Fr and En-De data from the 2015
Workshop on Statistical MT (WMT).7

2.3 Novel Text-Based Models

We introduce two new approaches designed to ad-
dress certain limitations with the existing models.

Sequential (Denoising) Autoencoders The
SkipThought objective requires training text with
a coherent inter-sentence narrative, making it
problematic to port to domains such as social media
or artificial language generated from symbolic
knowledge. To avoid this restriction, we experiment
with a representation-learning objective based
on denoising autoencoders (DAEs). In a DAE,
high-dimensional input data is corrupted according
to some noise function, and the model is trained
to recover the original data from the corrupted
version. As a result of this process, DAEs learn to
represent the data in terms of features that explain
its important factors of variation (Vincent et al.,
2008). Transforming data into DAE representations
(as a ‘pre-training’ or initialisation step) gives more
robust (supervised) classification performance in
deep feedforward networks (Vincent et al., 2010).

The original DAEs were feedforward nets applied
to (image) data of fixed size. Here, we adapt the ap-
proach to variable-length sentences by means of a
noise function N(S|po, px), determined by free pa-
rameters po, px ∈ [0, 1]. First, for each word w in
S, N deletes w with (independent) probability po.
Then, for each non-overlapping bigram wiwi+1 in
S, N swaps wi and wi+1 with probability px. We
then train the same LSTM-based encoder-decoder
architecture as NMT, but with the denoising objec-
tive to predict (as target) the original source sentence
S given a corrupted versionN(S|po, px) (as source).

7www.statmt.org/wmt15/translation-task.html

1369

The trained model can then encode novel word se-
quences into distributed representations. We call
this model the Sequential Denoising Autoencoder
(SDAE). Note that, unlike SkipThought, SDAEs can
be trained on sets of sentences in arbitrary order.

We label the case with no noise (i.e. po = px = 0
and N ≡ id) SAE. This setting matches the method
applied to text classification tasks by Dai and Le
(2015). The ‘word dropout’ effect when po ≥ 0 has
also been used as a regulariser for deep nets in su-
pervised language tasks (Iyyer et al., 2015), and for
large px the objective is similar to word-level ‘de-
bagging’ (Sutskever et al., 2011). For the SDAE, we
tuned po, px on the validation set (see Section 3.2).8

We also tried a variant (+embs) in which words are
represented by (fixed) pre-trained embeddings.

FastSent The performance of SkipThought vectors
shows that rich sentence semantics can be inferred
from the content of adjacent sentences. The model
could be said to exploit a type of sentence-level
Distributional Hypothesis (Harris, 1954; Polajnar
et al., 2015). Nevertheless, like many deep neu-
ral language models, SkipThought is very slow to
train (see Table 1). FastSent is a simple additive
(log-bilinear) sentence model designed to exploit the
same signal, but at much lower computational ex-
pense. Given a BOW representation of some sen-
tence in context, the model simply predicts adjacent
sentences (also represented as BOW) .

More formally, FastSent learns a source uw and
target vw embedding for each word in the model vo-
cabulary. For a training example Si−1, Si, Si+1 of
consecutive sentences, Si is represented as the sum
of its source embeddings si =

∑
w∈Si

uw. The cost
of the example is then simply:∑

w∈Si−1∪Si+1

φ(si, vw) (1)

where φ(v1, v2) is the softmax function.
We also experiment with a variant (+AE) in which

the encoded (source) representation must predict its
own words as target in addition to those of adjacent
sentences. Thus in FastSent+AE, (1) becomes∑

w∈Si−1∪Si∪Si+1

φ(si, vw). (2)

8We searched po, px ∈ {0.1, 0.2, 0.3} and observed best
results with po = px = 0.1.

O
S

R W
O

SD W
D

T
R

T
E

S(D)AE 3 2400 100 72* 640
ParagraphVec 100 100 4 1130
CBOW 500 500 2 145
SkipThought 3 3 4800 620 336* 890
FastSent 3 100 100 2 140
DictRep 3 3 500 256 24* 470
CaptionRep 3 3 500 256 24* 470
NMT 3 3 2400 512 72* 720

Table 1: Properties of models compared in this study
OS: requires training corpus of sentences in order. R: requires
structured resource for training. WO: encoder sensitive to word
order. SD: dimension of sentence representation. WD: dimen-
sion of word representation. TR: approximate training time
(hours) on the dataset in this paper. * indicates trained on GPU.
TE: approximate time (s) taken to encode 0.5m sentences.

At test time the trained model (very quickly) en-
codes unseen word sequences into distributed rep-
resentations with s =

∑
w∈S uw.

2.4 Training and Model Selection

Unless stated above, all models were trained on
the Toronto Books Corpus,9 which has the inter-
sentential coherence required for SkipThought and
FastSent. The corpus consists of 70m ordered sen-
tences from over 7,000 books.

Specifications of the models are shown in Ta-
ble 1. The log-bilinear models (SkipGram, CBOW,
ParagraphVec and FastSent) were trained for one
epoch on one CPU core. The representation di-
mension d for these models was found after tun-
ing d ∈ {100, 200, 300, 400, 500} on the validation
set.10 All other models were trained on one GPU.
The S(D)AE models were trained for one epoch
(≈ 8 days). The SkipThought model was trained
for two weeks, covering just under one epoch.11 For
CaptionRep and DictRep, performance was mon-
itored on held-out training data and training was
stopped after 24 hours after a plateau in cost. The
NMT models were trained for 72 hours.

9http://www.cs.toronto.edu/˜mbweb/
10For ParagraphVec only d ∈ {100, 200} was possible due

to the high memory footprint.
11Downloaded from https://github.com/ryankiros/

skip-thoughts

1370

Dataset Sentence 1 Sentence 2 /5
News Mexico wishes to guarantee citizens’ safety. Mexico wishes to avoid more violence. 4

Forum The problem is simpler than that. The problem is simple. 3.8
STS WordNet A social set or clique of friends. An unofficial association of people or groups. 3.6

2014 Twitter Taking Aim #Stopgunviolence #Congress #NRA Obama, Gun Policy and the N.R.A. 1.6
Images A woman riding a brown horse. A young girl riding a brown horse. 4.4

Headlines Iranians Vote in Presidential Election. Keita Wins Mali Presidential Election. 0.4
SICK (test+train) A lone biker is jumping in the air. A man is jumping into a full pool. 1.7

Table 2: Example sentence pairs and ‘similarity’ ratings from the unsupervised evaluations used in this study.

3 Evaluating Sentence Representations

In previous work, distributed representations of lan-
guage were evaluated either by measuring the effect
of adding representations as features in some clas-
sification task - supervised evaluation (Collobert et
al., 2011; Mikolov et al., 2013a; Kiros et al., 2015)
- or by comparing with human relatedness judge-
ments - unspervised evaluation (Hill et al., 2015a;
Baroni et al., 2014b; Levy et al., 2015). The for-
mer setting reflects a scenario in which representa-
tions are used to inject general knowledge (some-
times considered as pre-training) into a supervised
model. The latter pertains to applications in which
the sentence representation space is used for direct
comparisons, lookup or retrieval. Here, we apply
and compare both evaluation paradigms.

3.1 Supervised Evaluations
Representations are applied to 6 sentence classi-
fication tasks: paraphrase identification (MSRP)
(Dolan et al., 2004), movie review sentiment
(MR) (Pang and Lee, 2005), product reviews
(CR) (Hu and Liu, 2004), subjectivity classifica-
tion (SUBJ) (Pang and Lee, 2004), opinion polar-
ity (MPQA) (Wiebe et al., 2005) and question type
classification (TREC) (Voorhees, 2002). We follow
the procedure (and code) of Kiros et al. (2015): a
logistic regression classifier is trained on top of sen-
tence representations, with 10-fold cross-validation
used when a train-test split is not pre-defined.

3.2 Unsupervised Evaluations
We also measure how well representation spaces re-
flect human intuitions of the semantic sentence relat-
edness, by computing the cosine distance between
vectors for the two sentences in each test pair, and
correlating these distances with gold-standard hu-
man judgements. The SICK dataset (Marelli et al.,

2014) consists of 10,000 pairs of sentences and re-
latedness judgements. The STS 2014 dataset (Agirre
et al., 2014) consists of 3,750 pairs and ratings from
six linguistic domains. Example ratings are shown
in Table 2. All available pairs are used for test-
ing apart from the 500 SICK ‘trial’ pairs, which are
held-out for tuning hyperparameters (representation
size of log-bilinear models, and noise parameters in
SDAE). The optimal settings on this task are then
applied to both supervised and unsupervised evalua-
tions.

4 Results

Performance of the models on the supervised eval-
uations (grouped according to the data required
by their objective) is shown in Table 3. Overall,
SkipThought vectors perform best on three of the
six evaluations, the BOW DictRep model with pre-
trained word embeddings performs best on two, and
the SDAE on one. SDAEs perform notably well on
the paraphrasing task, going beyond SkipThought
by three percentage points and approaching state-
of-the-art performance of models designed specifi-
cally for the task (Ji and Eisenstein, 2013). SDAE
is also consistently better than SAE, which aligns
with other findings that adding noise to AEs pro-
duces richer representations (Vincent et al., 2008).

Results on the unsupervised evaluations are
shown in Table 4. The same DictRep model per-
forms best on four of the six STS categories (and
overall) and is joint-top performer on SICK. Of
the models trained on raw text, simply adding
CBOW word vectors works best on STS. The best
performing raw text model on SICK is FastSent,
which achieves almost identical performance to C-
PHRASE’s state-of-the-art performance for a dis-
tributed model (Pham et al., 2015). Further, it uses
less than a third of the training text and does not

1371

Data Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC
SAE 74.3 / 81.7 62.6 68.0 86.1 76.8 80.2
SAE+embs. 70.6 / 77.9 73.2 75.3 89.8 86.2 80.4

Unordered SDAE 76.4 / 83.4 67.6 74.0 89.3 81.3 77.6
Sentences SDAE+embs. 73.7 / 80.7 74.6 78.0 90.8 86.9 78.4

(Toronto Books: ParagraphVec DBOW 72.9 / 81.1 60.2 66.9 76.3 70.7 59.4
70m sents, ParagraphVec DM 73.6 / 81.9 61.5 68.6 76.4 78.1 55.8

0.9B words) Skipgram 69.3 / 77.2 73.6 77.3 89.2 85.0 82.2
CBOW 67.6 / 76.1 73.6 7730 89.1 85.0 82.2
Unigram TFIDF 73.6 / 81.7 73.7 79.2 90.3 82.4 85.0

Ordered SkipThought 73.0 / 82.0 76.5 80.1 93.6 87.1 92.2
Sentences FastSent 72.2 / 80.3 70.8 78.4 88.7 80.6 76.8

(Toronto Books) FastSent+AE 71.2 / 79.1 71.8 76.7 88.8 81.5 80.4
NMT En to Fr 69.1 / 77.1 64.7 70.1 84.9 81.5 82.8

Other NMT En to De 65.2 / 73.3 61.0 67.6 78.2 72.9 81.6
structured CaptionRep BOW 73.6 / 81.9 61.9 69.3 77.4 70.8 72.2

data CaptionRep RNN 72.6 / 81.1 55.0 64.9 64.9 71.0 62.4
resource DictRep BOW 73.7 / 81.6 71.3 75.6 86.6 82.5 73.8

DictRep BOW+embs. 68.4 / 76.8 76.7 78.7 90.7 87.2 81.0
DictRep RNN 73.2 / 81.6 67.8 72.7 81.4 82.5 75.8
DictRep RNN+embs. 66.8 / 76.0 72.5 73.5 85.6 85.7 72.0

2.8B words CPHRASE 72.2 / 79.6 75.7 78.8 91.1 86.2 78.8

Table 3: Performance of sentence representation models on supervised evaluations (Section 3.1). Bold numbers indicate best
performance in class. Underlined indicates best overall.

require access to (supervised) syntactic representa-
tions for training. Together, the results of FastSent
on the unsupervised evaluations and SkipThought
on the supervised benchmarks provide strong sup-
port for the sentence-level distributional hypothe-
sis: the context in which a sentence occurs provides
valuable information about its semantics.

Across both unsupervised and supervised evalua-
tions, the BOW DictRep with pre-trained word em-
beddings exhibits by some margin the most con-
sistent performance. Ths robust performance sug-
gests that DictRep representations may be particu-
larly valuable when the ultimate application is non-
specific or unknown, and confirms that dictionary
definitions (where available) can be a powerful re-
source for representation learning.

5 Discussion

Many additional conclusions can be drawn from the
results in Tables 3 and 4.

Different objectives yield different representa-
tions It may seem obvious, but the results confirm
that different learning methods are preferable for
different intended applications (and this variation

appears greater than for word representations). For
instance, it is perhaps unsurprising that SkipThought
performs best on TREC because the labels in this
dataset are determined by the language immediately
following the represented question (i.e. the an-
swer) (Voorhees, 2002). Paraphrase detection, on
the other hand, may be better served by a model
that focused entirely on the content within a sen-
tence, such as SDAEs. Similar variation can be
observed in the unsupervised evaluations. For in-
stance, the (multimodal) representations produced
by the CaptionRep model do not perform particu-
larly well apart from on the Image category of STS
where they beat all other models, demonstrating a
clear effect of the well-studied modality differences
in representation learning (Bruni et al., 2014).

The nearest neighbours in Table 5 give a more
concrete sense of the representation spaces. One
notable difference is between (AE-style) models
whose semantics come from within-sentence rela-
tionships (CBOW, SDAE, DictRep, ParagraphVec)
and SkipThought/FastSent, which exploit the con-
text around sentences. In the former case, nearby
sentences often have a high proportion of words in
common, whereas for the latter it is the general con-

1372

STS 2014 SICK
Model News Forum WordNet Twitter Images Headlines All Test + Train

SAE 17/.16 .12/.12 .30/.23 .28/.22 .49/.46 .13/.11 .12/.13 .32/.31
SAE+embs. .52/.54 .22/.23 .60/.55 .60/.60 . 64/.64 .41/.41 .42/.43 .47/.49
SDAE .07/.04 .11/.13 .33/.24 .44/.42 .44/.38 .36/.36 .17/.15 .46/.46
SDAE+embs. .51/.54 .29/.29 .56/.50 .57/.58 .59/.59 .43/.44 .37/.38 .46/.46
ParagraphVec DBOW .31/.34 .32/.32 .53/.5 .43/.46 .46/.44 .39/.41 .42/.43 .42/.46
ParagraphVec DM .42/.46 .33/.34 .51/.48 .54/.57 .32/.30 .46/.47 .44/.44 .44/.46
Skipgram .56/.59 .42/.42 .73/.70 .71/.74 .65/.67 .55/.58 .62/.63 .60/.69
CBOW .57/.61 .43/.44 .72/.69 .71/.75 .71/.73 .55/.59 .64/.65 .60/.69
Unigram TFIDF .48/.48 .40/.38 .60/.59 .63/.65 72/.74 .49/.49 .58/.57 .52/.58
SkipThought .44/.45 .14/.15 .39/.34 .42/.43 .55/.60 .43/.44 .27/.29 .57/.60
FastSent .58/.59 .41/.36 .74/.70 .63/.66 .74/.78 .57/.59 .63/.64 .61/.72
FastSent+AE .56/ .59 .41/.40 .69/.64 .70/.74 .63/.65 .58/.60 .62/.62 .60/.65
NMT En to Fr .35/.32 .18/.18 .47/.43 .55/.53 .44/.45 .43/.43 .43/.42 .47/.49
NMT En to De .47/.43 .26/.25 .34/.31 .49/.45 .44/.43 .38/.37 .40/.38 .46/46
CaptionRep BOW .26/.26 .29/.22 .50/.35 .37/.31 .78/.81 .39/.36 .46/.42 .56/.65
CaptionRep RNN .05/.05 .13/.09 .40/.33 .36/.30 .76/.82 .30/.28 .39/.36 .53/.62
DictRep BOW .62/.67 .42/.40 .81/.81 .62/.66 .66/.68 .53/.58 .62/.65 .57/.66
DictRep BOW+embs. .65/.72 .49/.47 .85/.86 .67/.72 .71/.74 .57/.61 .67/.70 .61/.70
DictRep RNN .40/.46 .26/.23 .78/.78 .42/.42 .56/.56 .38/.40 .49/.50 .49/.56
DictRep RNN+embs. .51/.60 .29/.27 .80/.81 .44/.47 .65/.70 .42/.46 .54/.57 .49/.59
CPHRASE .69/.71 .43/.41 .76/.73 .60/.65 .75/.79 .60/.65 .65/.67 .60/.72

Table 4: Performance of sentence representation models (Spearman/Pearson correlations) on unsupervised (relatedness) evalua-
tions (Section 3.2). Models are grouped according to training data as indicated in Table 3.

cepts and/or function of the sentence that is sim-
ilar, and word overlap is often minimal. Indeed,
this may be a more important trait of FastSent than
the marginal improvement on the SICK task. Read-
ers can compare the CBOW and FastSent spaces at
http://45.55.60.98/.

Differences between supervised and unsuper-
vised performance Many of the best performing
models on the supervised evaluations do not per-
form well in the unsupervised setting. In the
SkipThought, S(D)AE and NMT models, the cost is
computed based on a non-linear decoding of the in-
ternal sentence representations, so, as also observed
by (Almahairi et al., 2015), the informative geome-
try of the representation space may not be reflected
in a simple cosine distance. The log-bilinear models
generally perform better in this unsupervised setting.

Knowledge transfer shows some promise It is no-
table that, with a few exceptions, the models with

pre-trained word embeddings (+embs) outperform
those with learned embeddings on both supervised
and unsupervised evaluations. In the case of the Dic-
tRep models, whose training data is otherwise lim-
ited to dictionary definitions, this effect can be con-
sidered as a rudimentary form of knowledge trans-
fer. The DictRep+embs model benefits both from
the dictionary data and the enhanced lexical seman-
tics acquired from a massive text corpus to build
overall higher-quality sentence representations.

Differences in resource requirements As shown in
Table 1, different models require different resources
to train and use. This can limit their possible appli-
cations. For instance, while it was easy to make an
online demo for fast querying of near neighbours in
the CBOW and FastSent spaces, it was not practical
for other models owing to memory footprint, encod-
ing time and representation dimension.

The role of word order is unclear The aver-
age scores of models that are sensitive to word
order (76.3) and of those that are not (76.6) are
approximately the same across supervised evalua-

1373

Query If he had a weapon, he could maybe take out An annoying buzz started to ring in my ears, becoming
their last imp, and then beat up Errol and Vanessa. louder and louder as my vision began to swim.

CBOW
Then Rob and I would duke it out, and every Louder.
once in a while, he would actually beat me.

Skip If he could ram them from behind, send them saling over A weighty pressure landed on my lungs and my vision blurred
Thought the far side of the levee, he had a chance of stopping them. at the edges, threatening my consciousness altogether.

FastSent
Isak’s close enough to pick off any one of them, The noise grew louder, the quaking increased as the
maybe all of them, if he had his rifle and a mind to. sidewalk beneath my feet began to tremble even more.

SDAE
He’d even killed some of the most dangerous criminals I smile because I’m familiar with the knock,
in the galaxy, but none of those men had gotten to him like Vitktis. pausing to take a deep breath before dashing down the stairs.

DictRep Kevin put a gun to the man’s head, but even though Then gradually I began to hear a ringing in my ears.
(FF+embs.) he cried, he couldn’t tell Kevin anything more.
Paragraph I take a deep breath and open the doors. They listened as the motorcycle-like roar
Vector (DM) of an engine got louder and louder then stopped.

Table 5: Sample nearest neighbour queries selected from a randomly sampled 0.5m sentences of the Toronto Books Corpus.

Supervised (combined α = 0.90) Unsupervised (combined α = 0.93)
MSRP MR CR SUBJ MPAQ TREC News Forum WordNet Twitter Images Headlines All STS SICK
0.94 (6) 0.85 (1) 0.86 (4) 0.85 (1) 0.86 (3) 0.89 (5) 0.92 (4) 0.92 (3) 0.92 (4) 0.93 (6) 0.95 (8) 0.92 (2) 0.91 (1) 0.93 (7)

Table 6: Internal consistency (Chronbach’s α) among evaluations when individual benchmarks are left out of the (supervised or unsuper-
vised) cohorts. Consistency rank within cohort is in parentheses (1 = most consistent with other evaluations).

tions. Across the unsupervised evaluations, how-
ever, BOW models score 0.55 on average compared
with 0.42 for RNN-based (order sensitive) models.
This seems at odds with the widely held view that
word order plays an important role in determining
the meaning of English sentences. One possibility
is that order-critical sentences that cannot be dis-
ambiguated by a robust conceptual semantics (that
could be encoded in distributed lexical representa-
tions) are in fact relatively rare. However, it is also
plausible that current available evaluations do not
adequately reflect order-dependent aspects of mean-
ing (see below). This latter conjecture is supported
by the comparatively strong performance of TFIDF
BOW vectors, in which the effective lexical seman-
tics are limited to simple relative frequencies.

The evaluations have limitations The internal con-
sistency (Chronbach’s α) of all evaluations consid-
ered together is 0.81 (just above ‘acceptable’).12

Table 6 shows that consistency is far higher (‘ex-
cellent’) when considering the supervised or unsu-
pervised tasks as independent cohorts. This indi-
cates that, with respect to common characteristics of
sentence representations, the supervised and unsu-
pervised benchmarks do indeed prioritise different
properties. It is also interesting that, by this met-

12wikipedia.org/wiki/Cronbach’s_alpha

ric, the properties measured by MSRP and image-
caption relatedness are the furthest removed from
other evaluations in their respective cohorts.

While these consistency scores are a promising
sign, they could also be symptomatic of a set of eval-
uations that are all limited in the same way. The
inter-rater agreement is only reported for one of the
8 evaluations considered (MPQA, 0.72 (Wiebe et al.,
2005)), and for MR, SUBJ and TREC, each item is
only rated by one or two annotators to maximise
coverage. Table 2 illustrates why this may be an
issue for the unsupervised evaluations; the notion
of sentential ’relatedness’ seems very subjective. It
should be emphasised, however, that the tasks con-
sidered in this study are all frequently used for eval-
uation, and, to our knowledge, there are no existing
benchmarks that overcome these limitations.

6 Conclusion

Advances in deep learning algorithms, software and
hardware mean that many architectures and objec-
tives for learning distributed sentence representa-
tions from unlabelled data are now available to NLP
researchers. We have presented the first (to our
knowledge) systematic comparison of these meth-
ods. We showed notable variation in the perfor-
mance of approaches across a range of evaluations.
Among other conclusions, we found that the op-

1374

timal approach depends critically on whether rep-
resentations will be applied in supervised or unsu-
pervised settings - in the latter case, fast, shallow
BOW models can still achieve the best performance.
Further, we proposed two new objectives, FastSent
and Sequential Denoising Autoencoders, which per-
form particularly well on specific tasks (MSRP and
SICK sentence relatedness respectively).13 If the ap-
plication is unknown, however, the best all round
choice may be DictRep: learning a mapping of pre-
trained word embeddings from the word-phrase sig-
nal in dictionary definitions. While we have focused
on models using naturally-occurring training data,
in future work we will also consider supervised ar-
chitectures (including convolutional, recursive and
character-level models), potentially training them on
multiple supervised tasks as an alternative way to
induce the ’general knowledge’ needed to give lan-
guage technology the elusive human touch.

Acknowledgments

This work was supported by a Google Faculty
Award to AK and FH and a Google European Doc-
toral Fellowship to FH. Thanks also to Marek Rei,
Tamara Polajnar, Laural Rimell, Jamie Ryan Kiros
and Piotr Bojanowski for helpful comments.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Rada Mihalcea, German Rigau, and Janyce Wiebe.
2014. Semeval-2014 task 10: Multilingual seman-
tic textual similarity. In Proceedings of the 8th Inter-
national Workshop on Semantic Evaluation (SemEval
2014), pages 81–91.

Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and
Aaron Courville. 2015. Learning distributed repre-
sentations from reviews for collaborative filtering. In
Proceedings of the 9th ACM Conference on Recom-
mender Systems, pages 147–154. ACM.

Marco Baroni, Raffaela Bernardi, and Roberto Zampar-
elli. 2014a. Frege in space: A program of compo-
sitional distributional semantics. Linguistic Issues in
Language Technology, 9.

13We make all code for training and evaluating these new
models publicly available, together with pre-trained models and
an online demo of the FastSent sentence space.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski.
2014b. Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
volume 1, pages 238–247.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res. (JAIR), 49:1–47.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using rnn encoder-decoder for statisti-
cal machine translation. In Proceedings of EMNLP.

Stephen Clark and Stephen Pulman. 2007. Combining
symbolic and distributional models of meaning. In
AAAI Spring Symposium: Quantum Interaction, pages
52–55.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Information
Processing Systems, pages 3061–3069.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the 20th international conference on
Computational Linguistics, page 350. Association for
Computational Linguistics.

Zellig S Harris. 1954. Distributional structure. Word.
Felix Hill, Kyunghyun Cho, Anna Korhonen, and Yoshua

Bengio. 2015a. Learning to understand phrases by
embedding the dictionary. Transactions of the Associ-
ation for Computational Linguistics.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015b.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 168–177.
ACM.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.

1375

Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics.

Yangfeng Ji and Jacob Eisenstein. 2013. Discriminative
improvements to distributional sentence similarity. In
EMNLP, pages 891–896.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of EMNLP.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in Neural Information Processing Systems,
pages 3276–3284.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of ICML.

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems,
pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211–225.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan
Yulle. 2015. Deep captioning with multimodal recur-
rent neural networks (m-rnn). In Proceedings of ICLR.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A sick cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of LREC, pages 216–223. Citeseer.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh
Sadrzadeh, and Matthew Purver. 2014. Evaluating
neural word representations in tensor-based composi-
tional settings. In Proceedings of EMNLP.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In ACL, pages 236–
244.

Jeff Mitchell and Mirella Lapata. 2010. Composition in
distributional models of semantics. Cognitive science,
34(8):1388–1429.

Donald A Norman. 1972. Memory, knowledge, and the
answering of questions.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
annual meeting on Association for Computational Lin-
guistics, page 271. Association for Computational Lin-
guistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics, pages 115–124. Association for
Computational Linguistics.

Nghia The Pham, Germán Kruszewski, Angeliki Lazari-
dou, and Marco Baroni. 2015. Jointly optimizing
word representations for lexical and sentential tasks
with the c-phrase model. In Proceedings of ALC.

Tamara Polajnar, Laura Rimell, and Stephen Clark. 2015.
An exploration of discourse-based sentence spaces
for compositional distributional semantics. In Work-
shop on Linking Models of Lexical, Sentential and
Discourse-level Semantics (LSDSem), page 1.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.
2014. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
pages 1–42.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2015. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. arXiv preprint
arXiv:1507.04808.

Richard Socher, Jeffrey Pennington, Eric H Huang, An-
drew Y Ng, and Christopher D Manning. 2011. Semi-
supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 151–161. Association for Computational
Linguistics.

Ilya Sutskever, James Martens, and Geoffrey E Hinton.
2011. Generating text with recurrent neural networks.
In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing systems,
pages 3104–3112.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.
2014. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842.

1376

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. 2008. Extracting and com-
posing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on
Machine learning, pages 1096–1103. ACM.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, and Pierre-Antoine Manzagol. 2010. Stacked
denoising autoencoders: Learning useful representa-
tions in a deep network with a local denoising cri-
terion. The Journal of Machine Learning Research,
11:3371–3408.

Ellen M Voorhees. 2002. Overview of the trec 2001
question answering track. NIST special publication,
pages 42–51.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. 2005.
Annotating expressions of opinions and emotions in
language. Language resources and evaluation, 39(2-
3):165–210.

1377

Proceedings of NAACL-HLT 2016, pages 1378–1383,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Retrofitting Sense-Specific Word Vectors Using Parallel Text

Allyson Ettinger1, Philip Resnik1,3, Marine Carpuat2,3
1Linguistics, 2Computer Science, 3Institute for Advanced Computer Studies

University of Maryland, College Park, MD
{aetting, resnik}@umd.edu, marine@cs.umd.edu

Abstract

Jauhar et al. (2015) recently proposed to
learn sense-specific word representations by
“retrofitting” standard distributional word rep-
resentations to an existing ontology. We ob-
serve that this approach does not require an
ontology, and can be generalized to any graph
defining word senses and relations between
them. We create such a graph using transla-
tions learned from parallel corpora. On a set of
lexical semantic tasks, representations learned
using parallel text perform roughly as well as
those derived from WordNet, and combining
the two representation types significantly im-
proves performance.

1 Introduction

Vector space models (VSMs) provide a powerful
tool for representing word meanings and modeling
the relations between them. While these models
have demonstrated impressive success in capturing
some aspects of word meaning (Landauer and Du-
mais, 1997; Turney et al., 2010; Mikolov et al.,
2013; Baroni et al., 2014; Levy et al., 2014), they
generally fail to capture the fact that single word
forms often have multiple meanings. This can lead
to counterintuitive results—for example, it should be
possible for the nearest word to rock to be stone in
everyday usage, punk in discussions of music, and
crack (cocaine) in discussions about drugs.

In a recent paper, Jauhar et al. (2015) introduce
a method for “retrofitting” generic word vectors to
create sense-specific vectors using the WordNet se-
mantic lexicon (Miller, 1995). From WordNet, they

create a graph structure comprising two classes of
relations: form-based relations between each word
form and its respective senses, and meaning-based
relations between word senses with similar mean-
ings. This graph structure is then used to transform a
traditional VSM into an enriched VSM, where each
point in the space represents a word sense, rather
than a word form. This approach is appealing as, un-
like with prior sense-aware representations, senses
are defined categories in a semantic lexicon, rather
than clusters induced from raw text (Reisinger and
Mooney, 2010; Huang et al., 2012; Neelakantan et
al., 2015; Tian et al., 2014), and the method does
not require performing word sense disambiguation
(Guo et al., 2014).

In this paper, we observe that the crucial mean-
ing relationships in the Jauhar et al. retrofitting
process—the word sense graph—can be inferred
based on another widely available resource: bilin-
gual parallel text. This observation is grounded in
a well-established tradition of using cross-language
correspondences as a form of sense annotation (Gale
et al., 1992; Diab and Resnik, 2002; Ng et al., 2003;
Carpuat and Wu, 2007; Lefever and Hoste, 2010,
and others). Using parallel text to define sense dis-
tinctions sidesteps the persistent difficulty of identi-
fying a single correct sense partitioning based on hu-
man intuition, and avoids large investments in man-
ual curation or annotation.

We use parallel text and word alignment to in-
fer both word sense identities and inter-sense rela-
tions required for the sense graph, and apply the
approach of Jauhar et al. to retrofit existing word
vector representations and create a sense-based vec-

1378

tor space, using bilingual correspondences to define
word senses. When evaluated on semantic judgment
tasks, the vector spaces derived from this graph per-
form comparably to and sometimes better than the
WordNet-based space of Jauhar et al., indicating that
parallel text is a viable alternative to WordNet for
defining graph structure. Combining the output of
parallel-data-based and WordNet-based retrofitted
VSMs consistently improves performance, suggest-
ing that the different sense graph methods make
complementary contributions to this sense-specific
retrofitting process.

2 Model

Retrofitting. The technique introduced by Jauhar
et al. (2015) is based on what we will call a sense
graph, which we formulate as follows. Nodes in
the sense graph comprise the words wi in a vocabu-
lary W together with the senses sij for those words.
Labeled, undirected edges include word-sense edges
〈wi, si,j〉, which connect each word to all of its pos-
sible senses, and sense-sense edges 〈sij , si′j′〉 la-
beled with a meaning relationship r that holds be-
tween the two senses.

Jauhar et al. use WordNet to define their sense
graph. Synsets in the WordNet ontology define the
sense nodes, a word-sense edge exists between any
word and every synset to which it belongs, and
WordNet’s synset-to-synset relations of synonymy,
hypernymy, and hyponymy define the sense-sense
edges. Figure 1 illustrates a fragment of a WordNet-
based sense graph, suppressing edge labels.

Adopting Jauhar et al.’s notation, the original vec-
tor space to be retrofitted is defined by the original
word-form vectors ûi for each wi ∈W , and the goal
is to infer a set V of sense-specific vectors vij cor-
responding to each sense sij . Jauhar et al. use the
sense graph to define a Markov network with vari-
ables for all word vectors and sense vectors, within
which each word’s vector ûi is connected to all of
its sense vectors vij , and the variables for sense vec-
tors vij and vi′j′ are connected iff the corresponding
senses are connected in the sense graph.

Retrofitting then consists in optimizing the fol-
lowing objective, where α is a sense-agnostic
weight, and βr are relation-specific weights for

types of relations between senses:

C(V) = arg min
V

∑
i−ij

α‖ûi − vij‖2

+
∑

ij−i′j′
βr‖vij − vi′j′‖2 (1)

The objective encourages similarity between a
word’s vector and its senses’ vectors (first term), as
well as similarity between the vectors for senses that
are related in the sense graph (second term).

Defining a sense graph from parallel text. Our
key observation is that, although Jauhar et al. (2015)
assume their sense graph to be an ontology, this
graph can be based on any inventory of word-sense
and sense-sense relationships. In particular, given
a parallel corpus, we can follow the tradition of
translation-as-sense-annotation: the senses of an En-
glish word type can be defined by different possible
translations of that word in another language.

Operationalizing this observation is straightfor-
ward, given a word-aligned parallel corpus. If En-
glish word form ei is aligned with Chinese word
form cj , then ei(cj) is a sense of ei in the sense
graph, and there is a word-sense edge 〈ei, ei(cj)〉.
Edges signifying a meaning relation are drawn be-
tween sense nodes if those senses are defined by the
same translation word. For instance, English senses
swear(发誓) and vow(发誓) both arise via align-
ment to 发誓 (fashi), so a sense-sense edge will be
drawn between these two sense nodes. See Figure 2
for illustration.

3 Evaluation

Tasks. We evaluate on both the synonym selection
and word similarity rating tasks used by Jauhar et al.
Synonym selection nicely demonstrates the advan-
tages afforded by sense partitioning: if we believe
that spin means “make up a story”, then we are not
likely to perform well on a question in which the
correct synonym is twirl. Word similarity rating, on
the other hand, is a classic test of the extent to which
vector representations simulate human intuitions of
word relations in general.

For synonym selection, we follow Jauhar et al. in
testing with ESL-50 (Turney, 2001), RD-300 (Jar-
masz and Szpakowicz, 2004), and TOEFL-80 (Lan-
dauer and Dumais, 1997), using maxSim for multi-

1379

Figure 1: Illustration of WordNet-based sense graph. Figure 2: Illustration of parallel-text-based sense graph.

sense models (Jauhar et al., 2015, eq. 9) to select the
most similar word.1 For similarity rating, we again
mirror Jauhar et al., testing with WS-353 (Finkel-
stein et al., 2001), RG-65 (Rubenstein and Good-
enough, 1965), MC-30 (Miller and Charles, 1991),
and the designated test subset (1000 items) of MEN-
3k (Bruni et al., 2014), using avgSim (Jauhar et al.,
2015, eq. 8) as the similarity rating, and evaluating
model ratings against human similarity ratings via
Spearman’s rank correlation coefficient (ρ).2

Initial word representations. We use the
word2vec (Mikolov et al., 2013) skip-gram archi-
tecture to train 80-dimensional word vectors (in
keeping with Jauhar et al.), based on evidence that
this model shows consistently strong performance
on a wide array of tasks (Baroni et al., 2014; Levy
et al., 2015). Training is on ukWaC (Ferraresi et al.,
2008), a diverse 2B-word web corpus.3

Sense-graph construction from parallel text. To
construct the sense graph per Section 2, we use

1Because it is not clear how multi-word phrases should best
be treated (and this is not a question being investigated here),
we filter out any questions containing multi-word phrases for
any of the relevant items (probe or possible response), and any
questions for which any of the relevant items is completely out
of vocabulary (no vectors available) for any of the evaluated
models. This leaves 48 items in ESL, 87 items in RD, and 77
items in TOEFL.

2The designated development set of MEN-3k (2000 items)
was used for tuning.

3To alleviate sparsity we lemmatized the ukWaC corpus.
Runs without lemmatization produced weaker results.

∼5.8M lines of segmented Chinese-English paral-
lel text from the DARPA BOLT project and the
Broadcast Conversation subset of the segmented
Chinese-English parallel data in the OntoNotes cor-
pus (Weischedel et al., 2013).4 We perform word
alignment with the Berkeley aligner (Liang et al.,
2006). We filter out noisy alignments using the G-
test statistic (Dunning, 1993), with a threshold se-
lected during tuning on a development set.

We set α (see Equation 1) to 1.0. Each sense-
sense edge 〈ei(cj), ei′(cj)〉 has individual weight
0 < βr ≤ 1, computed by obtaining the G-test
statistic for the alignment of ei with cj and for
the alignment of ei′ with cj , running these values
through a logistic function, and averaging. Param-
eters for these computations, as well as the G-test
statistic threshold below which we filtered out noisy
alignments, were selected during tuning on the de-
velopment set.

Note that we have not currently incorporated spe-
cial treatment for alignments of a single word to a
multi-word phrase. This does create the possibil-
ity of noisy or uninformative sense annotations (e.g.,
sense annotations corresponding to parts of aligned
Chinese phrases) when such alignments are not fil-
tered out by the G-test thresholding.

Experimental conditions. We evaluate the fol-
lowing experimental conditions: Skip-gram (SG)
uses the un-retrofitted word2vec vectors, Word-

4English was lemmatized post-alignment via lookup in the
XTAG morphological database (XTAG Research Group, 2001).

1380

Net (WN) retrofits using the WordNet-based sense
graph, and Parallel Data (PD) retrofits using the
sense graph built from parallel text. We also com-
bine the two retrofitting approaches (PD-WN). For
synonym selection, we compute maxSim over all
sense pairs for WN and PD separately, and select
the sense pair with the overall maximum cosine sim-
ilarity across the two. For similarity rating, we
explore two PD-WN combination approaches: for
each word pair, we take the avgSim from each sep-
arate model, and then we (a) take the average of the
values given by the two models (avg), or (b) take the
maximum value between the two models (max).

4 Results

Table 1 shows that combining our new method
with Jauhar et al.’s WN retrofitting performs best
on synonym selection across all datasets, and both
retrofitted models consistently outperform the no-
retrofitting model (SG). Error analysis on RD-87,
the only set on which WN substantially outperforms
PD, suggests that PD’s errors are driven by the large
number of lower frequency items that characterize
this dataset. Given that WordNet is a hand-curated
lexicon while the parallel data mirrors actual us-
age, it is not surprising that the latter suffers when
it comes to low frequency items.

Error analysis also indicates that PD performs
particularly well on the synonym task precisely
when one would expect: when the probe and the
correct answer have an alignment to the same Chi-
nese word form, so that the corresponding sense vec-
tors are extremely close in vector space. Occasion-
ally, PD yields “the wrong answer for the right rea-
son”, choosing an option for which there is indeed a
correct alignment that matches an alignment of the
probe word. For instance, though the probe passage
is intended to have the answer hallway, PD chooses
ticket because both passage and ticket have a sense
defined by alignment to the Chinese word机票 (jip-
iao), meaning “air ticket”. Though this is a less fre-
quent sense of passage, it is a reasonable one.

Results on the similarity rating task (presented in
Table 2) are less clearly interpretable, top perfor-
mance being divided between the PD model and the
combined models—with the exception of WS-353.
We note that WS-353 is a test set for which human

Synonym Selection SYMM (%)
ESL-48 RD-87 TOEFL-77

SG 58.3 58.6 71.4
WN 66.7 74.7 81.8
PD 68.8 62.1 80.5

PD-WN 70.8 79.3 84.4
Table 1: Synonym selection task results: accuracy

Word similarity: avgSim SYMM (ρ)
WS-353 RG-65 MC-30 MEN-1k

SG .708 .729 .722 .763
WN .610 .725 .750 .739
PD .636 .777 .715 .769

PD-WN (avg) .666 .777 .742 .773
PD-WN (max) .630 .731 .758 .756

Table 2: Similarity rating task results

raters were explicitly told to rate relatedness, rather
than similarity, while the retrofitting process is in-
tended to encourage similarity per se. If we exclude
this set from consideration, we can observe that SG
is outperformed by at least one sense-specific model
in all cases.5

Note that as expected, the amount of training data
has an impact on the quality of the alignments and of
the sense graph. Retrofitting sense-specific embed-
dings using only 300k sentence pairs, which repre-
sent about 5% of the total training data, does not give
clear benefit over word-form embeddings.

5 Conclusions and future work

Building on Jauhar et al. (2015), we have presented
an alternative means of deriving information about
senses and sense relations to build sense-specific
vector space representations of words, making use
of parallel text rather than a manually constructed
ontology. We show that this is a viable alterna-
tive, producing representations that perform on par
with those retrofitted to sense graphs based on Word-
Net.6

5We also explored using maxSim for similarity ratings, on
the intuition that when human annotators give similarity judg-
ments, they are likely to judge based on senses of the given
words that are biased toward the words with which they are
paired. However, top performance is similarly scattered when
using maxSim for similarity scores and fails to improve over the
SG baseline for two of the datasets.

6Sample sense-specific vectors and code for generat-
ing a sense graph from parallel data can be accessed at
http://ling.umd.edu/~aetting/retropd.html.

1381

Based on these results, it would be interesting
to evaluate further refinements of the sense graph:
alignment-based senses could be clustered, or fur-
ther filtered to reduce the impact of alignment noise;
new edges could be added using other multilingual
resources. Finally, it will be important to evaluate
the effectiveness of the retrofitted word embeddings
on extrinsic tasks that require disambiguating word
meaning in context.

Acknowledgments

The authors would like to thank Sujay Kumar Jauhar
for sharing software and data and for helpful dis-
cussion. Thanks also to Manaal Faruqui and Pe-
ter Turney for help in acquiring evaluation datasets,
to Amittai Axelrod for his assistance with data, and
to the anonymous reviewers for valuable comments
and suggestions. This work was supported in part
by an NSF Graduate Research Fellowship under
Grant No. DGE 1322106. Any opinions, findings,
and conclusions or recommendations expressed are
those of the authors and do not necessarily reflect the
views of the NSF.

References
Marco Baroni, Georgiana Dinu, and Germán Kruszewski.

2014. Don’t count, predict! A systematic compari-
son of context-counting vs. context-predicting seman-
tic vectors. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
volume 1, pages 238–247.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Arti-
ficial Intelligence Research, 49:1–47.

Marine Carpuat and Dekai Wu. 2007. Improving statisti-
cal machine translation using word sense disambigua-
tion. In EMNLP-CoNLL, volume 7, pages 61–72.

Mona Diab and Philip Resnik. 2002. An unsupervised
method for word sense tagging using parallel corpora.
In Proceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, pages 255–262.

Ted Dunning. 1993. Accurate methods for the statistics
of surprise and coincidence. Computational linguis-
tics, 19(1):61–74.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWaC, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google, pages 47–54.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th international
conference on World Wide Web, pages 406–414.

William A Gale, Kenneth W Church, and David
Yarowsky. 1992. A method for disambiguating word
senses in a large corpus. Computers and the Humani-
ties, 26(5-6):415–439.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embeddings
by exploiting bilingual resources. In Proceedings of
COLING, pages 497–507.

Eric H Huang, Richard Socher, Christopher D Manning,
and Andrew Y Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers-
Volume 1, pages 873–882.

Mario Jarmasz and Stan Szpakowicz. 2004. Roget’s
thesaurus and semantic similarity. Recent Advances
in Natural Language Processing III: Selected Papers
from RANLP, 2003:111.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL, pages 683–693.

Thomas K Landauer and Susan T Dumais. 1997. A so-
lution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological review, 104(2):211.

Els Lefever and Veronique Hoste. 2010. Semeval-2010
task 3: Cross-lingual word sense disambiguation. In
Proceedings of the 5th International Workshop on Se-
mantic Evaluation, pages 15–20.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In Proceedings of the Confer-
ence on Natural Language Learning (CoNLLL), pages
171–180.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associa-
tion for Computational Linguistics, 3:211–225.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the main con-
ference on Human Language Technology Conference
of the North American Chapter of the Association of
Computational Linguistics, pages 104–111.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

1382

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
Cognitive Processes, 6(1):1–28.

George A Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM, 38(11):39–41.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2015. Effi-
cient non-parametric estimation of multiple embed-
dings per word in vector space. arXiv preprint
arXiv:1504.06654.

Hwee Tou Ng, Bin Wang, and Yee Seng Chan. 2003. Ex-
ploiting parallel texts for word sense disambiguation:
An empirical study. In Proceedings of the 41st An-
nual Meeting on Association for Computational Lin-
guistics, pages 455–462.

Joseph Reisinger and Raymond J Mooney. 2010. Multi-
prototype vector-space models of word meaning. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 109–
117.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communications
of the ACM, 8(10):627–633.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In Proceedings of COLING, pages 151–160.

Peter D Turney, Patrick Pantel, et al. 2010. From fre-
quency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1):141–
188.

Peter Turney. 2001. Mining the web for synonyms: PMI-
IR versus LSA on TOEFL. In Proceedings of the 12th
European Conference on Machine Learning.

Ralph Weischedel, Martha Palmer, Mitchell Marcus, Ed-
uard Hovy, Sameer Pradhan, Lance Ramshaw, Nian-
wen Xue, Ann Taylor, Jeff Kaufman, Michelle Fran-
chini, et al. 2013. Ontonotes release 5.0 ldc2013t19.
Linguistic Data Consortium, Philadelphia, PA.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for English. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

1383

Proceedings of NAACL-HLT 2016, pages 1384–1394,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

End-to-End Argumentation Mining in Student Essays

Isaac Persing and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{persingq,vince}@hlt.utdallas.edu

Abstract

Understanding the argumentative structure of
a persuasive essay involves addressing two
challenging tasks: identifying the components
of the essay’s argument and identifying the
relations that occur between them. We ex-
amine the under-investigated task of end-to-
end argument mining in persuasive student es-
says, where we (1) present the first results
on end-to-end argument mining in student es-
says using a pipeline approach; (2) address
error propagation inherent in the pipeline ap-
proach by performing joint inference over the
outputs of the tasks in an Integer Linear Pro-
gramming (ILP) framework; and (3) propose a
novel objective function that enables F-score
to be maximized directly by an ILP solver.
We evaluate our joint-inference approach with
our novel objective function on a publicly-
available corpus of 90 essays, where it yields
an 18.5% relative error reduction in F-score
over the pipeline system.

1 Introduction

There has been a surge of interest in argumenta-
tion mining in recent years. Argumentation mining
typically involves addressing two subtasks: (1) ar-
gument component identification (ACI), which con-
sists of identifying the locations and types of the
components that make up the arguments (i.e., Ma-
jor Claims, Claims, and Premises), and (2) relation
identification (RI), which involves identifying the
type of relation that holds between two argument
components (i.e., Support, Attack, None). As a first
step towards mining arguments in persuasive essays,

Stab and Gurevych (S&G) annotated a corpus of 90
student essays with argument components and their
relations (Stab and Gurevych, 2014a). To illustrate,
consider the following excerpt from one essay:

From this point of view, I firmly believe that
(1) we should attach more importance to co-
operation during primary education. First of
all, (2) through cooperation, children can learn
about interpersonal skills which are significant
in the future life of all students. (3) What we
acquired from team work is not only how to
achieve the same goal with others but more
importantly, how to get along with others.

In this example, premise (3) supports claim (2),
which in turn supports major claim (1).

Using their annotated corpus, S&G presented ini-
tial results on simplified versions of the ACI and RI
tasks (Stab and Gurevych, 2014b). Specifically, they
applied their learned ACI classifier to classify only
gold argument components (i.e., text spans corre-
sponding to a Major Claim, Claim, or Premise in
the gold standard) or sentences that contain no gold
argument components (as non-argumentative). Sim-
ilarly, they applied their learned RI classifier to clas-
sify only the relation between two gold argument
components. In other words, they simplified both
tasks by avoiding the challenging task of identify-
ing the locations of argument components. Conse-
quently, their approach cannot be applied in a realis-
tic setting where the input is an unannotated essay.

Motivated by this weakness, we examine in this
paper argument mining in persuasive student essays
in a considerably more challenging setting than that
of S&G: the end-to-end setting. In other words, we

1384

perform argument mining on raw, unannotated es-
says. Our work makes three contributions. First,
we present the first results on end-to-end argument
mining in student essays using a pipeline approach,
where the ACI task is performed prior to the RI task.
Second, to avoid the error propagation problem in-
herent in the pipeline approach, we perform joint in-
ference over the outputs of the ACI and RI classi-
fiers in an Integer Linear Programming (ILP) frame-
work (Roth and Yih, 2004), where we design con-
straints to enforce global consistency. Finally, we
argue that the typical objective function used exten-
sively in ILP programs for NLP tasks is not ideal for
tasks whose primary evaluation metric is F-score,
and subsequently propose a novel objective function
that enables F-score to be maximized directly in an
ILP framework. We believe that the impact of our
work goes beyond argument mining, as our F-score
optimizing objective function is general enough to
be applied to any ILP-based joint inference tasks.

2 Related Work

Recall that identifying argumentative discourse
structures consists of (1) identifying the locations
and types of the argument components, and (2) iden-
tifying how they are related to each other. Below we
divide related works into five broad categories based
on which of these subtasks they addressed.

Argument location identification. Works in this
category aimed to classify whether a sentence con-
tains an argument or not (Florou et al., 2013; Moens
et al., 2007; Song et al., 2014; Swanson et al., 2015).
The usefulness of existing works is somewhat lim-
ited by the task’s coarseness: it won’t tell us which
portion of a potentially long sentence contains the
argument, for instance, but it can serve as a poten-
tially useful first step in argument mining.

Argument component typing. Works in this cat-
egory focused on determining the type of an argu-
ment. The vast majority of previous works per-
form argument component typing at the sentence
level. For instance, Rooney et al. (2012) classi-
fied sentences into premises, conclusions, premise-
conclusions, and non-argumentative components;
Teufel (1999) classified each sentence into one of
seven rhetorical classes (e.g., claim, result, pur-
pose); Burstein et al. (2003), Ong et al. (2014), and

Falakmasir et al. (2014) assigned argumentative la-
bels (e.g., claim, thesis, conclusion) to an essay’s
sentences; Levy et al. (2014) detected sentences
that support or attack an article’s topic; Lippi and
Torroni (2015; 2016) detected sentences containing
claims; and Rinott et al. (2015) detected sentences
containing evidence for a given claim. Sentence-
level argument component typing has limitations,
however. For example, it can identify sentences con-
taining claims, but it cannot tell how many claims a
sentence has or where in the sentence they are.
Argument location identification and typing.
Some works focused on the more difficult task of
clause-level argument component typing (Park and
Cardie, 2014; Goudas et al., 2015; Sardianos et
al., 2015), training a Conditional Random Field to
jointly identify and type argument components.
Argument component typing and relation identi-
fication. Given the difficulty of clause-level argu-
ment component location identification, recent argu-
ment mining works that attempted argument compo-
nent typing and relation identification are not end-to-
end. Specifically, they simplified the task by assum-
ing as input gold argument components (Stab and
Gurevych, 2014b; Peldszus and Stede, 2015).
End-to-end argument mining. To our knowl-
edge, only Palau and Moens (2009) addressed all
the argument mining subtasks. They employed a
hand-crafted context-free grammar (CFG) to gener-
ate (i.e., extract and type) argument components at
the clause level and identify the relations between
them. A CFG approach is less appealing in the
essay domain because (1) constructing a CFG is a
time- and labor-intensive task, (2) which would be
more difficult in the less-rigidly structured essay do-
main, which contains fewer rhetorical markers indi-
cating component types (e.g. words like “reject”, or
“dismiss” which indicate a legal document’s conclu-
sion); and (3) about 20% of essay arguments’ struc-
tures are non-projective (i.e., when mapped to the
ordered text, their argument trees have edges that
cross), and thus cannot be captured by CFGs.

3 Corpus

Our corpus consists of 90 persuasive essays col-
lected and annotated by S&G. Some relevant statis-
tics are shown in Table 1. Each essay is an average

1385

Essays: 90 Paragraphs: 417 Sentences: 1,673
Major Claims: 90 Claims: 429 Premises: 1,033
Support Relations: 1,312 Attack Relations: 161

Table 1: Corpus statistics.

of 4.6 paragraphs (18.6 sentences) in length and is
written in response to a topic such as “should high
school make music lessons compulsory?” or “com-
petition or co-operation-which is better?”.

The corpus annotations describe the essays’ argu-
ment structure, including the locations and types of
the components that make up the arguments, and the
types of relations that hold between them. The three
annotated argument component types include: Ma-
jor Claims, which express the author’s stance with
respect to the essay’s topic, Claims, which are con-
troversial statements that should not be accepted by
readers without additional support, and Premises,
which are reasons authors give to persuade read-
ers about the truth of another argument component
statement. The two relation types include: Support,
which indicates that one argument component sup-
ports another, and Attack, which indicates that one
argument component attacks another.

4 Pipeline-Based Argument Mining

Next, we describe our end-to-end pipeline argument
mining system, which will serve as our baseline. In
this system, ACI is performed prior to RI.

4.1 Argument Component Identification
We employ a two-step approach to the ACI task,
where we first heuristically extract argument com-
ponent candidates (ACCs) from an essay, and then
classify each ACC as either a premise, claim, major
claim, or non-argumentative, as described below.

4.1.1 Extracting ACCs
We extract ACCs by constructing a set of low pre-
cision, high recall heuristics for identifying the lo-
cations in each sentence where an argument com-
ponent’s boundaries might occur. The majority of
these rules depend primarily on a syntactic parse
tree we automatically generated for all sentences in
the corpus using the Stanford CoreNLP (Manning et
al., 2014) system. Since argument components are a
clause-level annotation and therefore a large major-
ity of annotated argument components are substrings

(a) Potential left boundary locations

Rule
1 Exactly where the S node begins.
2 After an initial explicit connective, or if the con-

nective is immediately followed by a comma, af-
ter the comma.

3 After nth comma that is an immediate child of
the S node.

4 After nth comma.

(b) Potential right boundary locations

Rule
5 Exactly where the S node ends, or if S ends in

a punctuation, immediately before the punctua-
tion.

6 If the S node ends in a (possibly nested) SBAR
node, immediately before the nth shallowest
SBAR.1

7 If the S node ends in a (possibly nested) PP node,
immediately before the nth shallowest PP.

Table 2: Rules for extracting ACC boundary locations.

of a simple declarative clause (an S node in the parse
tree), we begin by identifying each S node in a sen-
tence’s tree.

Given an S clause, we collect a list of left and right
boundaries where an argument component may be-
gin or end. The rules we used to find these bound-
aries are summarized in Table 2. We then construct
ACCs by combining each left boundary with each
right boundary that occurs after it. As a result, we
are able to find exact (boundaries exactly match) and
approximate (over half of tokens shared) matches for
92.1% and 98.4% respectively of all ACs.

4.1.2 Training the ACI Classifier
We train a classifier for ACI using MALLET’s (Mc-
Callum, 2002) implementation of maximum en-
tropy classification. We create a training instance
from each ACC extracted above. If the ACC’s
left and right endpoints exactly match an annotated
argument component’s, the corresponding training
instance’s class label is the same as that of the
component. Otherwise, its class label is “non-

1An additional point that requires explanation is that the last
two right boundary rules mention “possibly nested” nodes. In
boundary rule 7, for example, this means that the S node might
end in a PP node, which itself has a PP node as its last child,
and so on. We generate a separate right boundary immediately
before each of these PP nodes.

1386

argumentative”. Each training instance is repre-
sented using S&G’s structural, lexical, syntactic, in-
dicator, and contextual features for solving the same
problem. Briefly, the structural features describe an
ACC and its covering sentence’s length, punctua-
tions, and location in the essay. Lexical features de-
scribe the 1−3 grams of the ACC and its covering
sentence. Syntactic features are extracted from the
ACC’s covering sentence’s parse tree and include
things such as production rules. Indicator features
describe any explicit connectives that immediately
precede the ACC. Contextual features describe the
contents of the sentences preceding and following
the ACC primarily in ways similar to how the struc-
tural features describe the covering sentence.

4.2 Relation Identification

We consider RI between pairs of argument compo-
nents to be a five class classification problem. Given
a pair of ACCs A1 and A2 where A1 occurs before
A2 in the essay, either they are unrelated, A1 sup-
ports A2, A2 supports A1, A1 attacks A2, or A2 at-
tacksA1. Below we describe how we train and apply
our classifier for RI.

We learn our RI classifier using MALLET’s im-
plementation of maximum entropy classification.
Each training instance, which we call a training re-
lation candidate (RC), consists of a pair of ACCs
and one of the above five labels. By default, the in-
stance’s label is “no relation” unless each ACC has
the exact boundaries of a gold standard argument
component and one of the remaining four relations
holds between the two gold argument components.

We create training RCs as follows. We construct
RCs corresponding to true relations out of all pairs
of argument components in a training essay having
a gold relation. As the number of potential RCs far
exceeds the number of gold relations in an essay, we
undersample the “no relation” class in the following
way. Given a pair of argument components A and B
between which there is a gold relation, we defineAp
to be the closest previous ACC in the essay as gen-
erated in Section 4.1.1 such that Ap’s text doesn’t
overlap with A. We also define As as the closest
succeeding ACC after A such that As and A do not
overlap. We defineBp andBs similarly with respect
toB. From these ACCs, we generate the the four in-
stances (Ap, B), (As, B), (A,Bp), and (A,Bs), all

of which have the “no relation” label, as long as the
pairs’ text sequences do not overlap. We believe the
resulting “no relation” training instances are infor-
mative since each one is “close” to a gold relation.
We represent each instance using S&G’s structural,
lexical, syntactic, and indicator features for solving
the same problem. Briefly, RC structural features
describe many of the same things about each ACC
as did the ACC structural features, though they also
describe the difference between the ACCs (e.g. the
difference in punctuation counts). Lexical features
consist primarily of the unigrams appearing in each
ACC and word pairs, where each word from one
ACC is paired with each word from the other. Syn-
tactic and indicator features encode the same infor-
mation about each ACC as the ACC syntactic and
indicator features did.

We now apply the classifier to test essay RCs,
which are created as follows. Given that this is a
pipelined argument mining system, in order to en-
sure that the RI system’s output is consistent with
that of the ACI system, we generate test RCs from
all possible pairs of ACCs that the ACI system pre-
dicted are real components (i.e. it labeled them
something other than “non-argumentative”).

5 Joint Inference for Argument Mining

5.1 Motivation

There are two major problems with the pipeline ap-
proach described in the previous section. First, many
essay-level within-task constraints are not enforced.
For instance, the ACI task has the constraint that
each essay has exactly one major claim, and the RI
task has the constraint that each claim has no more
than one parent. This problem arises because our
ACI and RI classifiers, like those of S&G, classify
each ACI and RI test instance independently of other
test instances. We propose to enforce such essay-
level within-task constraints in an ILP framework,
employing ILP to perform joint inference over the
outputs of our ACI and RI classifiers so that the re-
sulting classifications satisfy these constraints.2

2Note that while we partition documents into folds in
our cross-validation experiments, S&G partition instances into
folds. Hence, S&G’s evaluation setting prevents them from en-
forcing essay-level constraints in addition to being unrealistic
in practice.

1387

The second problem with the pipeline approach
is that errors made early on in the pipeline propa-
gate. For instance, assume that a Support relation
exists between two argument components in a test
essay. If the pipeline system fails to (heuristically)
extract one or both of these argument components,
or if it successfully extracts them but misclassifies
one or both of them as non-argumentative, then the
pipeline system will not be able to identify the rela-
tionship between them because no test RCs will be
created from them. The above problem arises be-
cause the RI classifier assumes the most probable
output of the ACI classifier for each ACC as input.
Hence, one possible solution to this problem is to
make use of the n-best outputs of the ACI classifier
for each argument component type, as this increases
the robustness of the pipeline to errors made by the
ACI classifier.

We obtain the n-best ACI outputs and employ
them as follows. Recall that the ACI system uses
a maximum entropy classifier, and therefore its out-
put for each ACC is a list of probabilities indicat-
ing how likely it is that the ACC belongs to each
of the four classes (premise, claim, major claim, or
non-argumentative). This means that it is possible
to rank all the ACCs in a text by these probabilities.
We use this idea to identify (1) the 3 most likely
premise ACCs from each sentence, (2) the 5 most
likely claim ACCs from each paragraph, and (3) the
5 most likely major claim ACCs from each essay.3

Given these most likely ACC lists, we combine pairs
of ACCs into test RCs for the RI classifier in the
following way. As long as the ACCs do not over-
lap, we pair (1) each likely premise ACC with every
other likely ACC of any type occurring in the same
paragraph, and (2) each likely claim ACC with each
likely major claim ACC. We then present these test
RCs to the RI classifier normally, making no other
changes to how the pipeline system works.

Employing n-best ACI outputs, however, intro-
duces another problem: the output of the RI classi-
fier may no longer be consistent with that of the ACI
classifier because the RI classifier may posit a rela-

3We select more premise than claim ACCs (3 per sentence
vs 5 per paragraph) because the corpus contains over twice as
many premises as claims. We select major claim ACCs only
from the first and last paragraph because major claims never
occur in middle paragraphs.

tionship between two ACCs that the ACI classifier
labeled non-argumentative. To enforce this cross-
task consistency constraint, we also propose to em-
ploy ILP. The rest of this section details our ILP-
based joint inference approach for argument mining,
which addresses both of the aforementioned prob-
lems with the pipeline approach.

5.2 Basic ILP Approach
We perform joint inference over the outputs of the
ACI and RI classifiers by designing and enforc-
ing within-task and cross-task constraints in the ILP
framework. Specifically, we create one ILP program
for each test essay, as described below.

Let Xni, Xpi, Xci, and Xmi be binary indi-
cator variables representing whether the ILP solver
believes ACC i has type none, premise, claim, and
major claim, respectively. Let Cni, Cpi, Cci, and
Cmi be the probabilities that ACC i has type none,
premise, claim, and major claim, respectively, as
dictated by the ACI maximum entropy classifier’s
output.4 Let a be the count of ACCs.

Let Y ni,j , Y si,j , Y ai,j , Y rsi,j , and Y rai,j be
binary indicator variables representing whether the
ILP solver believes ACCs i and j have no relation, i
is supported by j, i is attacked by j, j is supported
by i, and j is attacked by i, respectively, where (i, j)
appears in the set of RCs B that we presented to the
RI system as modified in Section 5.1. We assume all
other ACC pairs have no relation. Let Dni,j , Dsi,j ,
Dai,j , Drsi,j , and Drai,j be the probabilities that
component candidates i and j have no relation, i is
supported by j, i is attacked by j, j is supported by
i, and j is attacked by i, respectively, as dictated by
the modified RI classifier described in Section 5.1.4

Given these definitions and probabilities, our ILP
program’s default goal is to find an assignment
of these variables X and Y in order to maximize
P (X) + P (Y), where:

P (X) =
1
a

a∑
i=1

log(CniXni + CpiXpi

+CciXci + CmiXmi)

(1)

4We additionally reserve .001 probability mass to distribute
evenly among Cni, Cpi, Cci, and Cmi (or Dni,j , Dsi,j ,
Dai,j , Drsi,j , and Drai,j) to prevent math errors involving
taking the log of 0 which might otherwise occur in the formulas
below.

1388

P (Y) =
1
|B|

∑
(i,j)∈B

log(Dni,jY ni,j +Dsi,jY si,j

+Dai,jY ai,j +Drsi,jY rsi,j +Drai,jY rai,j)

(2)

subject to the integrity constraints that: (3) an ACC
is either not an argument component or it has ex-
actly one of the real argument component types, (4)
a pair of component candidates (i, j) must have ex-
actly one of the five relation types, and (5) if there is
a relation between ACCs i and j, i and j must each
be real components.5

Xni +Xpi +Xci +Xmi = 1 (3)

Y ni,j + Y si,j + Y ai,j + Y rsi,j + Y rai,j = 1 (4)

(Xpi +Xci +Xmi) + (Xpj +Xcj +Xmj)
−2(Y si,j + Y ai,j + Y rsi,j + Y rai,j) ≥ 0

(5)

In the objective function, a and |B| serve to bal-
ance the contribution of the two tasks, preventing
one from dominating the other.

5.3 Enforcing Consistency Constraints
So far we have described integrity constraints, but
recall that our goal is to enforce consistency by im-
posing within-task and cross-task constraints, which
force the ILP solutions to more closely resemble
real essay argument structures. Our consistency con-
straints fall into four categories.

Our constraints on major claims are that: (6) there
is exactly one major claim in each essay, (7) major
claims always occur in the first or last paragraph,
and (8) major claims have no parents.

a∑
i=1

Xmi = 1 (6)

Xmi = 0 | i /∈ first or last paragraph (7)

Y si,j +Xmj ≤ 1 , Y ai,j +Xmj ≤ 1
Y rsi,j +Xmi ≤ 1 , Y rai,j +Xmi ≤ 1

(8)

Our constraints on premises are that: (9) a
premise has at least one parent, and (10) a premise is
related only to components in the same paragraph.

5Note that because of previous integrity constraints, the first
term in constraint 5 is 1 only if we predict that i is a real com-
ponent, the second term is 1 only if we predict that j is a real
component, and the third term is −2 only if we predict that
there is a relationship between them. Otherwise, each term is 0.
Thus term 3 prevents us from predicting a relationship between
i and j unless the first and second terms cancel it out through
predicting that i and j are real components.

∑
{i|(i,j)∈B}

(Y si,j + Y ai,j)

+
∑

{k|(j,k)∈B}
(Y rsj,k + Y raj,k)−Xpj ≥ 0

(9)

for i < j, i /∈ Par(j) : Xpj − Y ni,j ≤ 0
for k > j, k /∈ Par(j) : Xpj − Y nj,k ≤ 0

(10)

where i < j and j < k mean ACC i appears before
j, and j appears before k, and Par(j) is the set of
ACCs in j’s covering paragraph.

Our constraints on claims state that: (11) a claim
has no more than one parent6, and (12) if a claim has
a parent, that parent must be a major claim.(∣∣∣{i|(i, j) ∈ B}∣∣∣+ ∣∣∣{k|(j, k) ∈ B}∣∣∣)Xcj

+
∑

{i|(i,j)∈B}
(Y si,j + Y ai,j)

+
∑

{k|(j,k)∈B}
(Y rsj,k + Y raj,k)

≤
∣∣∣{i|(i, j) ∈ B}∣∣∣+ ∣∣∣{k|(j, k) ∈ B}∣∣∣+ 1

(11)

for j < k, Xmk −Xcj − Y rsj,k − Y raj,k ≥ −1
for j > i, Xmi −Xcj − Y si,j − Y ai,j ≥ −1

(12)

The last category, which comprises constraints
that do not fit well into any other category, are: (13)
the boundaries of actual components never overlap,
(14) each paragraph must have at least one claim or
major claim, and (15) each sentence may have at
most two argument components.7

for i overlaps j , Xni +Xnj ≥ 1 (13)

∀ paragraphs P :
∑
i∈P

Xci +Xmi ≥ 1 (14)

∀ sentences S :
∑
i∈S

Xpi +Xci +Xmi ≤ 2 (15)

We solve each ILP program using Gurobi.8

6The coefficient of Xcj is equal to the number of terms in
the two summations on the left hand side of the equation. The
intention is that component j’s claim status should have equal
weight with the relations it might potentially participate in, so
it is possible for j to participate as a child in a relation with all
other available components unless it is a claim, in which case it
can participate in at most one relation as a child.

7Unlike the other constraints, the last two constraints are
only mostly true: 5% of paragraphs have no claims or major
claims, and 1.2% of sentences have 3 or more components.

8http://www.gurobi.com

1389

5.4 F-score Maximizing Objective Function

The objective function we employ in the previous
subsection attempts to maximize the average prob-
ability of correct assignment of variables over the
ACI and RI problems. This kind of objective func-
tion, which aims to maximize classification accu-
racy, was originally introduced by Roth and Yih
(2004) in their seminal ILP paper, and has since then
been extensively applied to NLP tasks. However, it
is arguably not an ideal objective function for our
task, where F-score rather than classification accu-
racy is used as the evaluation metric.

In this section, we introduce a novel method for
constructing an ILP objective function that directly
maximizes the average F-score over the two prob-
lems. Recall that F-score can be simplified to:

F =
2TP

2TP + FP + FN
(16)

where TP, FP, and FN are the counts of true pos-
itives, false positives, and false negatives respec-
tively. Unfortunately, we cannot use this equation
for F-score in an ILP objective function for two rea-
sons. First, this equation involves division, which
cannot be handled using ILP since ILP can only han-
dle linear combinations of variables. Second, TP, FP,
and FN need to be computed using gold annotations,
which we don’t have in a test document. We propose
to instead maximize F by maximizing the following:

G = α2TPe − (1− α)(FPe + FNe) (17)

where TPe, FPe, and FNe, are estimated values for
TP , FP , and FN respectively, and α attempts to
balance the importance of maximizing the numera-
tor vs minimizing the denominator.9 We ignore the
2TP term in the denominator because minimizing it
would directly reduce the numerator.

To maximize average F-score, we can therefore
attempt to maximize the function Gc+Gr

2 , where Gc
and Gr are the values of G in equation 17 as calcu-
lated using the estimated values from the ACI and
RI problem respectively.

The question that still remains is, how can we es-
timate values for TP , FP , and FN mentioned in

9We tune α on the development set, allowing it to take any
value from 0.7, 0.8, or 0.9, as this range tended to perform well
in early experiments.

Equation 17? Our key idea is inspired by the E-step
of the Expectation-Maximization algorithm (Demp-
ster et al., 1977): while we cannot compute the ac-
tual TP , FP , and FN due to the lack of gold anno-
tations, we can compute their expected values using
the probabilities returned by the ACI and RI classi-
fiers. Using the notation introduced in Section 5.2,
the expected TP , FP , and FN values for the ACI
task can be computed as follows:

TPe =
∑
i,g

CgiXgi (18)

FPe =
∑
i,g

(1− Cgi)Xgi (19)

FNe =
∑
i,g

(
Xgi

∑
h6=g

Chi

)
+
∑

i

Xni(1−Cni) (20)

where g and h can be any argumentative class from
the ACI problem (i.e. premise (p), claim (c), or ma-
jor claim (m)). The formulas we use to calculate
TPe, FPe, and FNe for the RI problem are identi-
cal except C is replaced with D, X is replaced with
Y , and g and h can be any class from the RI problem
other than no-relation.

6 Evaluation

6.1 Experimental Setup
Corpus. As mentioned before, we use as our cor-
pus the 90 essays annotated with argumentative dis-
course structures by S&G. All of our experiments
are conducted via five-fold cross-validation on this
corpus. In each fold experiment, we reserve 60% of
the essays for training, 20% for development (select-
ing features and tuning α), and 20% for testing.
Evaluation metrics. To calculate F-score on each
task using Equation 16, we need to explain what
constitutes a true positive, false positive, or false
negative on each task. Given that j is a true argu-
ment component and i is an ACC, the formulas for
the ACI task are:

TP =
∣∣∣{j ∣∣ ∃i |gl(j) = pl(i) ∧ i .= j}

∣∣∣ (21)

FP =
∣∣∣{i∣∣ pl(i) 6= n∧@j | gl(j) = pl(i)∧i .= j}

∣∣∣ (22)

FN =
∣∣∣{j ∣∣ @i |gl(j) = pl(i) ∧ i .= j}

∣∣∣ (23)

where gl(j) is the gold standard label of j, pl(i) is
the predicted label of i, n is the non-argumentative
class, and i .= j means i is a match for j. i and j
are considered an exact match if they have exactly

1390

ACI RI Avg
System MC-F C-F P-F P R F S-F A-F P R F F

Approx BASE 11.1 26.9 51.9 64.0 33.6 44.0 6.1 0.8 5.7 6.2 5.8 24.9
OUR 22.2 42.6 66.0 56.6 57.9 57.2 21.3 1.1 16.8 28.0 20.4 38.8

Exact BASE 7.4 24.2 43.2 50.4 29.6 37.3 4.4 0.8 4.1 4.7 4.3 20.8
OUR 16.9 37.4 53.4 47.5 46.7 47.1 13.6 0.0 12.7 15.4 12.9 30.0

Table 3: Five-fold cross-validation average percentages for argument component identification (ACI) and relation identification

(RI) for OUR system and the pipeline-based BASEline system. Column abbreviations are Major Claim F-score (MC-F), Claim

F-score (C-F), Premise F-score (P-F), Precision (P), Recall (R), F-score (F), Support F-score (S-F), and Attack F-score (A-F).

the same boundaries, whereas they are considered
an approximate match if they share over half their
tokens.

We perform most of our analysis on approximate
match results rather than exact match results as it
can be difficult even for human annotators to iden-
tify exactly the same boundaries for an argument
component.10 We use the same formulas for calcu-
lating these numbers for the RI problem except that
j and i represent a true relation and an RC respec-
tively, two relations approximately (exactly) match
if both their source and target ACCs approximately
(exactly) match, and n is the no-relation class.

6.2 Results and Discussion

Approximate and exact match results of the pipeline
approach (BASE) and the joint approach (OUR) are
shown in Table 3. As we can see, using approximate
matching, OUR system achieves highly significant11

improvements over the pipelined baseline system by
a variety of measures.12 The most important of these
improvements is shown in the last column, where
our system outperforms the baseline by 13.9% ab-

10Approximate match has been used in evaluating opinion
mining systems (e.g., Choi et al. (2006), Yang and Cardie
(2013)), where researchers have also reported difficulties in
having human annotators identify exactly the same boundaries
for an opinion expression and its sources and targets. They have
adopted an even more relaxed notion of approximate match:
they consider two text spans an approximate match if they share
at least one overlapping token.

11Boldfaced results in Table 3 are highly significant (p <
0.002, paired t-test) compared to the baseline.

12All the results in Tables 3 and 4 are averaged across five
folds, so it is not true that Favg =

2PavgRavg

Pavg+Ravg
. Our F-score

averaging method is preferable to calculating F-scores using the
above formula because the formula can be exploited to give arti-
ficially inflated F-scores by alternating between high precision,
low recall, and low precision, high recall labelings on different
folds.

solute F-score (a relative error reduction of 18.5%).
This is the most important result because it most di-
rectly measures our performance in pursuit of our
ultimate goal, to maximize the average F-score over
both the ACI and RI problems. The highly signif-
icant improvements in other measures, particularly
the improvements of 13.2% and 14.6% in ACI and
RI F-score respectively, follow as a consequence of
this maximization. Using exact matching, the differ-
ences in scores between OUR system and BASE’s
are smaller and highly significant with respect to a
smaller number of measures. In particular, under
Exact matching OUR system’s performances on the
RI-P and RI-R metrics are significant (p < 0.02),
while under Approx matching, they are highly sig-
nificant (p < 0.002).

6.3 Ablation Results
To analyze the performance gains yielded by each
improvement to our system, we show ablation re-
sults in Table 4. Each row of the table shows the re-
sults of one ablation experiment on the test set. That
is, we obtain them by removing exactly one feature
set or improvement type from our system.

The Baseline feature sets we remove include
those for the ACI task (Cb) from Section 4.1.2 and
those for the RI task (Rb) from Section 4.2.13 The
ILP improvement sets we remove are the Default
ILP (Id) system14 from Section 5.2, the Major claim
(Im), Premise (Ip), Claim (Ic), and Other (Io) con-
straints from Section 5.3 Equations 6−8, 9−10,

13When we remove a baseline feature set, we represent each
instance to the corresponding classifier using no features. As
a result, the classifier’s predictions are based solely on the fre-
quency of the classes seen during training.

14Note that removing the default ILP system (Id) necessitates
simultaneously removing all other ILP-related improvements.
Thus, a system without it is equivalent to BASE, but with RCs
generated as described in Section 5.1.

1391

Mod ACI RI Avg
P R F P R F F

ALL 54.9 58.8 56.7 16.7 26.4 20.4 38.6
Cb 44.0 38.5 40.9 14.2 14.8 14.4 27.7
Rb 57.9 58.7 58.2 16.6 24.0 18.2 38.2
Id 64.0 33.6 44.0 6.6 21.8 10.1 27.0
Im 44.6 46.7 45.6 14.7 27.8 19.2 32.4
Ip 51.5 58.4 54.7 13.2 26.1 17.3 36.0
Ic 49.0 51.5 50.2 14.2 27.9 18.8 34.5
Io 40.5 65.9 50.1 7.0 29.2 11.2 30.7
If 61.1 40.4 48.5 22.3 15.7 18.2 33.4

Table 4: Ablation results. How OUR system performs on
one development set as measured by percent Precision,
Recall, and F-score if each improvement or feature set is
removed.

11−12, and 13−15 respectively, and the F-score
maximizing objective function from Section 5.4.

Broadly, we see from the last column that all of
our improvement sets are beneficial (usually signifi-
cantly15) to the system, as performance drops with
their removal. Notice also that whenever remov-
ing an ILP improvement set harms average F-score,
it also simultaneously harms ACI and RI F-scores,
usually significantly. This holds true even when the
improvement set deals primarily only with one task
(e.g. Io for the ACI task), suggesting that our system
is benefiting from joint inference over both tasks.

6.4 Error Analysis and Future Work

Table 3 shows that OUR system has more trouble
with the RI task than the ACI task. A closer inspec-
tion of OUR system’s RI predictions reveals that its
low precision is mostly due to predicted relation-
ships wherein one of the participating ACCs is not
a true argument component. Since false positives in
the ACI task have an outsized impact on RI preci-
sion, it may be worthwhile to investigate ILP objec-
tive functions that more harshly penalize false posi-
tive ACCs.

The RI task’s poor recall has two primary causes.
The first is false negatives in the ACI task. It is im-
possible for an RI system to correctly identify a re-
lationship between two ACs if the ACI system fails
to identify either one of them as an AC. We be-
lieve ACI recall, and by extension, RI recall, can be

15Boldfaced results are significantly lower than ALL, the
system with all improvements left intact, with p < 0.05.

improved by exploiting the following observations.
First, we noticed that many argument components
OUR system fails to identify, regardless of their
type, contain words that are semantically similar to
words in the essay’s topic (e.g., if the topic men-
tions “school”, argument components might men-
tion “students”). Hence, one way to improve ACI
recall, and by extension, RI recall, would be to cre-
ate ACI features using a semantic similarity mea-
sure such as the Wikipedia Link-based similarity
measure (Milne and Witten, 2008). Second, major
claims are involved in 32% of all relationships, but
OUR system did an especially poor job at identify-
ing them due to their scarcity. Since we noticed that
major claims tend to include strong stancetaking lan-
guage (e.g., words like “should”, “must”, and “be-
lieve”), it may be possible to improve major claim
identification by constructing an arguing language
lexicon as in Somasundaran and Wiebe (2010), then
encoding the presence of any of these arguing words
as ACC features.

The second major cause of OUR system’s poor
RI recall is its failure to identify relationships be-
tween two correctly extracted ACs. We noticed
many of the missed relationships involve ACs that
mention some of the same entities. Thus, a coref-
erence resolver could help us build features that de-
scribe whether two ACCs are talking about the same
entities.

7 Conclusion

We presented the first results on end-to-end argu-
ment mining in persuasive student essays using a
pipeline approach, improved this baseline approach
by designing and employing global consistency con-
straints to perform joint inference over the outputs of
the tasks in an ILP framework and proposed a novel
objective function that enables F-score to be max-
imized directly by an ILP solver. In an evaluation
on Stab and Gurevych’s corpus of 90 essays, our ap-
proach yields an 18.5% relative error reduction in
F-score over the pipeline system.

Acknowledgments

We thank the three anonymous reviewers for their
detailed comments. This work was supported in part
by NSF Grants IIS-1147644 and IIS-1219142.

1392

References

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the WRITE stuff: Automatic identification of
discourse structure in student essays. IEEE Intelligent
Systems, 18(1):32–39.

Yejin Choi, Eric Breck, and Claire Cardie. 2006. Joint
extraction of entities and relations for opinion recog-
nition. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing,
pages 431–439.

Arthur P. Dempster, Nan M. Laird, and Donald B. Ru-
bin. 1977. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39:1–38.

Mohammad Hassan Falakmasir, Kevin D. Ashley, Chris-
tian D. Schunn, and Diane J. Litman. 2014. Identify-
ing thesis and conclusion statements in student essays
to scaffold peer review. In Intelligent Tutoring Sys-
tems, pages 254–259. Springer International Publish-
ing.

Eirini Florou, Stasinos Konstantopoulos, Antonis Kouk-
ourikos, and Pythagoras Karampiperis. 2013. Argu-
ment extraction for supporting public policy formu-
lation. In Proceedings of the 7th Workshop on Lan-
guage Technology for Cultural Heritage, Social Sci-
ences, and Humanities, pages 49–54.

Theodosios Goudas, Christos Louizos, Georgios Petasis,
and Vangelis Karkaletsis. 2015. Argument extraction
from news, blogs, and the social web. International
Journal on Artificial Intelligence Tools, 24(5).

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aha-
roni, and Noam Slonim. 2014. Context depen-
dent claim detection. In Proceedings of the 25th In-
ternational Conference on Computational Linguistics,
pages 1489–1500.

Marco Lippi and Paolo Torroni. 2015. Context-
independent claim detection for argument mining. In
Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence, pages 185–191.

Marco Lippi and Paolo Torroni. 2016. Argument mining
from speech: Detecting claims in political debates. In
Proceedings of the 30th AAAI Conference on Artificial
Intelligence.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 55–60.

Andrew Kachites McCallum. 2002. MALLET: A Ma-
chine Learning for Language Toolkit. http://
mallet.cs.umass.edu.

David Milne and Ian Witten. 2008. An effective, low-
cost measure of semantic relatedness obtained from
Wikipedia links. In Proceedings of AAAI Workshop
on Wikipedia and Artificial Intelligence: an Evolving
Synergy, pages 25–30.

Marie-Francine Moens, Erik Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detection
of arguments in legal texts. In Proceedings of the 11th
International Conference on Artificial Intelligence and
Law, pages 225–230.

Nathan Ong, Diane Litman, and Alexandra Brusilovsky.
2014. Ontology-based argument mining and auto-
matic essay scoring. In Proceedings of the First Work-
shop on Argumentation Mining, pages 24–28.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: The detection, classifi-
cation and structure of arguments in text. In Proceed-
ings of the 12th International Conference on Artificial
Intelligence and Law, pages 98–107.

Joonsuk Park and Claire Cardie. 2014. Identifying ap-
propriate support for propositions in online user com-
ments. In Proceedings of the First Workshop on Argu-
mentation Mining, pages 29–38.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in mst-style discourse parsing for argumenta-
tion mining. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 938–948.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam Slonim.
2015. Show me your evidence - an automatic method
for context dependent evidence detection. In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 440–450.

Niall Rooney, Hui Wang, and Fiona Browne. 2012. Ap-
plying kernel methods to argumentation mining. In
Proceedings of the 21st International Florida Artifi-
cial Intelligence Research Society Conference.

Dan Roth and Wen-tau Yih. 2004. A linear program-
ming formulation for global inference in natural lan-
guage tasks. In Proceedings of the Eighth Conference
on Computational Natural Language Learning, pages
1–8.

Christos Sardianos, Ioannis Manousos Katakis, Georgios
Petasis, and Vangelis Karkaletsis. 2015. Argument
extraction from news. In Proceedings of the Second
Workshop on Argumentation Mining, pages 56–66.

Swapna Somasundaran and Janyce Wiebe. 2010. Recog-
nizing stances in ideological on-line debates. In Pro-
ceedings of the NAACL HLT 2010 Workshop on Com-
putational Approaches to Analysis and Generation of
Emotion in Text, pages 116–124.

Yi Song, Michael Heilman, Beata Beigman Klebanov,
and Paul Deane. 2014. Applying argumentation

1393

schemes for essay scoring. In Proceedings of the First
Workshop on Argumentation Mining, pages 69–78.

Christian Stab and Iryna Gurevych. 2014a. Annotating
argument components and relations in persuasive es-
says. In Proceedings of the 25th International Confer-
ence on Computational Linguistics, pages 1501–1510.

Christian Stab and Iryna Gurevych. 2014b. Identify-
ing argumentative discourse structures in persuasive
essays. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 46–56.

Reid Swanson, Brian Ecker, and Marilyn Walker. 2015.
Argument mining: Extracting arguments from online
dialogue. In Proceedings of the 16th Annual Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 217–226.

Simone Teufel. 1999. Argumentative Zoning: Informa-
tion Extraction from Scientific Text. Ph.D. thesis, Uni-
versity of Edinburgh.

Bishan Yang and Claire Cardie. 2013. Joint inference
for fine-grained opinion extraction. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
1640–1649.

1394

Proceedings of NAACL-HLT 2016, pages 1395–1404,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Cross-Domain Mining of Argumentative Text through Distant Supervision

Khalid Al-Khatib Henning Wachsmuth Matthias Hagen Jonas Köhler Benno Stein
Faculty of Media, Bauhaus-Universität Weimar, Germany

<firstname>.<lastname>@uni-weimar.de

Abstract

Argumentation mining is considered as a key
technology for future search engines and au-
tomated decision making. In such applica-
tions, argumentative text segments have to be
mined from large and diverse document col-
lections. However, most existing argumenta-
tion mining approaches tackle the classifica-
tion of argumentativeness only for a few man-
ually annotated documents from narrow do-
mains and registers. This limits their practi-
cal applicability. We hence propose a distant
supervision approach that acquires argumen-
tative text segments automatically from online
debate portals. Experiments across domains
and registers show that training on such a cor-
pus improves the effectiveness and robustness
of mining argumentative text. We freely pro-
vide the underlying corpus for research.

1 Introduction

Argumentation mining attracts much attention re-
cently: it is an important building block of applica-
tions like automated decision making (Bench-Capon
et al., 2009) or pro-and-con search engines (Cabrio
and Villata, 2012c). In such applications, argumen-
tation mining usually consists of solving three tasks
for each document: (1) Identifying all argumenta-
tive text segments in the document, (2) classifying
the type of each segment, and (3) classifying rela-
tions between the segments.

In this paper we focus on the first task taking on
the retrieval perspective of a search engine: Given a
large-scale collection of documents (e.g., the web)
and a query on some topic, return all argumenta-

tive text segments relevant to the topic. Among oth-
ers, a classifier is needed for this task that can dis-
tinguish argumentative from non-argumentative seg-
ments. Since we cannot presuppose a specific do-
main or register within a general retrieval scenario,
the classifier needs to robustly deal with documents
from diverse domains and registers. In this regard
the following two key issues arise.

First, existing approaches to classifying argu-
mentativeness usually focus on specific text do-
mains (e.g., education) and registers (e.g., student
essays). Therefore, many used features capture not
only local linguistic properties of a text segment, but
also global document properties (e.g., that a segment
is part of the introduction). Such kinds of features
tend to be effective only within a certain domain or
a particular register while often failing for others.

Second, all major existing approaches follow a su-
pervised learning scheme based on manual annota-
tion of argumentative text segments. However, the
annotation of arguments is particularly intricate and
thus expensive due to the complex linguistic struc-
ture and the partly subjective interpretation of ar-
gumentativeness. Different types of argumentative
and non-argumentative segments may come in any
order, segment boundaries are not always unam-
biguous, and parts of an argument may be implicit.
Studies reveal that annotators need multiple train-
ing sessions to identify and classify argumentative
segments with moderate inter-annotator agreement,
and crowdsourcing-based annotation does not help
notably (Habernal et al., 2014). I.e., a high-quality
manual annotation will not scale to large numbers of
documents from diverse domains and registers.

1395

We propose a solution to the outlined issues. In
particular, we follow the idea of distant supervision
to construct a large-scale corpus of text segments
from diverse domains and registers annotated with
respect to argumentativeness. Distant supervision is
a well-known idea for training robust statistical clas-
sifiers. Here, we exploit online debate portals that
(1) contain argumentative and non-argumentative
text segments for several controversial topics, and
that (2) are organized in a semi-structured form, al-
lowing to derive annotations from it.

In several experiments we compare classifiers
trained on the constructed corpus to those trained
on existing corpora for argumentation mining. We
classify argumentativeness using a rich set of lexical,
syntax, and indicator feature types. Our results sug-
gest that the new corpus is the most robust resource
for classifying argumentative text segments across
domains and registers. In addition, we observe that
n-grams seem to be most domain-dependent, while
syntax features turn out to be more robust.

The contribution of this paper is three-fold: First,
through distant supervision we acquire a large cor-
pus with 28,689 argumentative text segments from
the online debate portal idebate.org. The corpus
covers 14 separate domains with strongly varying
feature distributions. It will be made freely avail-
able to other researchers.1 Second, we obtain a ro-
bust classifier for argumentativeness, providing ev-
idence that distant supervision does not only save
money and time, but also benefits the effectiveness
of cross-domain and cross-register argumentation
mining. Third, we evaluate—for the first time—
the robustness of several features in classifying ar-
gumentativeness across domains and registers.

Altogether, the paper serves as a starting point for
bringing argumentation mining to practice. We ex-
pect that a robust identification of arguments will be
a core module of future search engines, as it allows
to provide rationales for retrieved documents. To
this end, the search engines also need to identify the
most relevant arguments for a given topic. The pa-
per concludes with ideas on how to assess argument
relevance with resources that are obtained through
applying our proposed distant supervision technique
to other datasets.

1http://www.uni-weimar.de/medien/webis/corpora

2 Related Work

Argumentation mining is still in an early stage of in-
vestigation, although several promising approaches
have been proposed in the last years. Our survey of
the argumentation mining literature especially cov-
ers three respects: (1) favored domains and regis-
ters, (2) techniques for annotation acquisition, and
(3) the exploitation of debate portals. We combine
these research lines in our approach to tackle argu-
mentativeness classification across domains.

The existing argumentation mining approaches
achieve classification accuracies ranging from 73%
and 86% (Stab and Gurevych, 2014b; Levy et al.,
2014; Palau and Moens, 2009) but they deal with
texts from one register or one narrow domain only.
For instance, Palau and Moens (2009) address the
legal domain, Cabrio and Villata (2012b) as well as
Boltužić and Šnajder (2014) investigate online de-
bates and discussions, Aharoni et al. (2014) examine
Wikipedia articles, Villalba and Saint-Dizier (2012)
as well as Wachsmuth et al. (2014a) work on product
reviews, Stab and Gurevych (2014a) focus on per-
suasive essays, and Peldszus (2014) on microtext. In
(Wachsmuth et al., 2015), we studied the generality
of sentiment-related argumentative structures across
domains. In contrast, here we aim at effectiveness in
cross-domain argumentation mining, which is useful
for practical applications such as argument retrieval
from diverse web-scale document collections.

All mining approaches above proceed as follows.
Starting point is a complex and often expensive man-
ual annotation of argumentative text segments in a
collection of documents, including the segments’
roles (e.g., premise or conclusion) and their relations
(e.g., support or attack). Then, the classification of
argumentativeness, roles, and relations is achieved
via supervised machine learning using different lin-
guistic and statistical features. Our approach avoids
manual annotation. Instead, we apply distant super-
vision to automatically acquire annotations.

Distant supervision is a technique to automati-
cally harvest annotations from data that has been
compiled and structured intentionally by a user com-
munity on the web. Most approaches employing dis-
tant supervision so far address the problems of rela-
tion extraction (Mintz et al., 2009; Hoffmann et al.,
2011) or event extraction (Reschke et al., 2014). A

1396

Assumptions

WWW
Labeled

target dataset

Unlabeled
target dataset

Arg. Non-arg.

Arg. Non-arg.
Argumentativeness classes

Mapping functionsDebate portal

Webis-Debate-16

Argumentativeness
classifier

(1) (2) (3)

Figure 1. Overview of our distant supervision approach: The mapping functions transform the debate portal content
into an annotated corpus for argumentativeness. This corpus is then used to train an argumentativeness classifier.

few others target at sentiment analysis (Marchetti-
Bowick and Chambers, 2012) and emotion detec-
tion (Purver and Battersby, 2012). In case of the
latter, annotations are derived from strong textual in-
dicators like emoticons. In this paper, we exploit
metadata from the debate platform idebate.org for
mapping texts from the platform to argumentative
and non-argumentative classes.

The idea of relying on idebate.org for argument
annotation acquisition is in line with related research
of Cabrio and Villata (2012c) and Gottipati et al.
(2013). In these papers, however, the debate por-
tal is used to infer text-level knowledge only (e.g.,
stances in debates), but not to generate a complete
annotated dataset for argumentativeness.

The work that is most related to ours is the pro-
posal of a method to exploit debate portals for semi-
supervised argumentation mining by Habernal and
Gurevych (2015). In particular, the authors use word
embedding techniques for projecting the texts from
debate portals into an annotated argument space, re-
lying on the argument model of Toulmin (1958). On
this basis they identify argumentative text segments
and their roles. A clear difference to our approach
is that Habernal and Gurevych (2015) consider all
content of debate portals as argumentative. As a
consequence, their approach concentrates mainly on
exploiting the debate portals for improving the clas-
sification of segment roles, with minor impact on ar-
gumentativeness. Moreover, while being compara-
bly effective, our approach aims for simplicity. The
reason is that we apply distant supervision to derive
a robust resource from the metadata of debate por-
tals only. Thus, we allow for a rich feature space
without requiring to use advanced machine learning
methods. Finally, Habernal and Gurevych (2015)
evaluate their approach only on one dataset from

the educational domain, whereas we explicitly aim
at robustness across domains. Accordingly, we con-
duct several experiments on different available cor-
pora (including theirs).

3 Mining Argumentative Text through
Distant Supervision

We propose an approach based on the distant super-
vision paradigm. Our goal is to obtain a classifier
that can robustly mine argumentative texts across
domains. More precisely, we focus on the task of
classifying each segment of a text as being argumen-
tative or not. We assume the text to be separated into
segments already.

Our approach consists of three high-level building
blocks: (1) Mapping functions that allows an auto-
matic acquisition of argumentativeness annotations
from debate portals. (2) A corpus with argumen-
tative and non-argumentative text segments created
using the functions. (3) A classifier that can distin-
guish the two classes of text segments. All building
blocks are detailed in the following. Figure 1 depicts
an overview of the approach.

3.1 Argumentativeness Mapping Functions
The basic idea of distant supervision is to gener-
ate annotations by automatically mapping unlabeled
source data to a set of predefined class labels. This
requires resources that are related to the given task
as well as effective heuristic labeling functions. Typ-
ical resources comprise large amounts of data, of-
ten in form of user-generated content with semi-
structured or structured metadata. Ideally, the re-
source’s metadata substantially eases the mapping to
the predefined labels.

In the context of argumentation mining, online de-
bate portals serve as a rich source of argumentative

1397

Class Metadata Text

– Stance This house believes single-sex schools are good for education.

Non-Argumentative Introduction Single-sex schools are schools that only admit those of one specific gender,
believing that the educational environment fostered by a single gender is more
conducive to learning than a co-educational school. Studies conducted have
shown that boys gain more academically from studying in co-education
schools, but that girls find segregated schools more conducive to achievement.

Argumentative Points for Boys and girls are an unwelcome distraction to each other.
Argumentative Point Boys and girls distract each other from their education, especially in

adolescence as their sexual and emotional sides develop.
Argumentative Counterpoint Any negative effects of co-educational schools have been explained away by

studies as the result of other factors, such as classroom size and cultural
differences [1].
[1] Bronski, M., ’Single-sex Schools’. Znet, 25 October 2002.

Argumentative Points against Children need to be exposed to the opposite sex in preparation for later life.
Argumentative Point The formative years of children are the best time to expose them to the

company of the other gender, in order that they may learn each others’
behaviour.

Argumentative Counterpoint Children will gain exposure to the opposite sex when they reach adult life;
whilst they are young, they should be around those who they feel most
comfortable with.

Table 1. Excerpt of a sample discussion from idebate.org: the stance, the introduction, and some points for and against
the stance. Except for parts shown in grey, all listed text segments are mapped to the listed classes.

texts on diverse topics. These portals are typically
managed by user communities. Textual content can
be added via a structured interface that already spec-
ifies metadata (e.g., what constitutes a topic or an
argument). Thus, mapping text segments from de-
bate portals to classes for argumentation mining is a
promising instance of distant supervision.

In particular, we rely on idebate.org. This debate
portal has an established community of experienced
debaters and volunteers who take care of editing and
monitoring semi-structured discussions on various
controversial topics, subsumed under 14 high-level
themes. A discussion (called “house” in the por-
tal’s terminology) starts with a one-sentence stance
on the respective topic, followed by a more verbose
introduction to the topic. Afterwards, points for and
against the stance are opposed, both given as a list
of arguments. Each argument in turn comes along
with points (the argument itself) and counterpoints
(counterarguments). Table 1 shows an example.

We downloaded all available discussions from
idebate.org. For each discussion, the stance on the
topic, the introduction, and the points are extracted
from the URL of the web page of the respective dis-
cussion. Based on the structure exemplified in Ta-

ble 1, we stipulate on the following assumptions to
automatically map components from the debate por-
tal to annotated argumentativeness instances.
[Component]: Introduction

– [Assumption]: The introduction explains the
topic and gives important background informa-
tion in a non-argumentative way.

– [Mapping]: Each sentence in the introduction
is an instance of the non-argumentative class.

[Component]: Points for & Points against
– [Assumption]: Each point from these lists rep-

resents an argument for or against the stance on
the topic of discussion.

– [Mapping]: Each point is an instance of the ar-
gumentative class.

[Component]: Point & Counterpoint
– [Assumption]: The main objective of a point

(counterpoint) is to justify (attack) the point in
the points-for or points-against list it refers to.
We assume that the intention of such a point is
to provide reasons for / against an argument.

– [Mapping]: Each sentence in a point / counter-
point is an instance of the argumentative class.

1398

Argum. Non-argum.
Domain Documents segments segments

Politics 56 3102 635
Education 40 2057 376
Free speech 31 1435 346
International 113 6190 1324
Religion 8 336 96
Philosophy 10 545 122
Science 3 184 24
Culture 35 1765 307
Environment 11 602 128
Health 35 1985 349
Law 44 2197 440
Society 17 1031 199
Economy 23 1260 288
Sport 19 1191 175

Webis-Debate-16 445 23880 4809

Table 2. Number of documents, argumentative segments,
and non-argumentative segments in each domain of our
Webis-Debate-16 corpus. Domains correspond to themes
from idebate.org.

To optimize the mapping quality, we manually an-
alyzed 50 discussions and then derived three tailored
cleansing rules from them: (1) We remove all liter-
ature references from the argumentative instances.
(2) We delete all special brackets and symbols from
the argumentative instances. (3) We delete some
keywords from the non-argumentative instances that
are used by the community to organize a discussion
(e.g., “this house” or “this debate”).

3.2 The Webis-Debate-16 Corpus
As a result of applying the defined mapping func-
tions, we obtained a large argumentation mining
corpus, called Webis-Debate-16. The corpus con-
tains 28,689 text segments from the 14 themes
of idebate.org (23,880 argumentative, 4809 non-
argumentative). Each theme is assumed to represent
one domain. Table 2 lists the distribution of docu-
ments over the domains in the corpus. Regarding the
number of annotated text segments, Webis-Debate-
16 is the largest dataset published so far for argu-
mentation mining. While our review corpus from
(Wachsmuth et al., 2014b) is even larger, its anno-
tations are restricted to sentiment-related argumen-
tation. Table 3 compares Webis-Debate-16 to other
real argumentation mining corpora, namely, the Es-
says corpus (Stab and Gurevych, 2014a), the Web

Argum. Non-argum.
Corpus Documents segments segments

Essays 90 1552 327
Web discourse 340 1882 2074
ECHR 47 1067 1449
Araucaria 641 1931 1010

Webis-Debate-16 445 23880 4809

Table 3. Statistics of our Webis-Debate-16 corpus com-
pared to four existing argumentation mining corpora.
ECHR is a legal domain corpus that is not publicly avail-
able. More details on the others are given in Section 4.

discourse corpus (Habernal and Gurevych, 2015),
the European Court of Human Rights (ECHR) cor-
pus (Palau and Moens, 2009), and the Araucaria cor-
pus (Reed and Rowe, 2004). The Webis-Debate-16
corpus will be made freely available online.2

3.3 A Classifier for Argumentativeness
A wide range of statistical and linguistic features
has been suggested for argumentation mining and
related tasks such as discourse parsing. We em-
ploy supervised machine learning to train an argu-
mentativeness classifier based on the features em-
ployed by Stab and Gurevych (2014a), Palau and
Moens (2009), and Habernal and Gurevych (2015)
that cover the following:
Token n-grams: Unigrams, bigrams, and trigrams
as Boolean features. In general, n-grams are the
most powerful feature type in many related text clas-
sification problems (e.g., sentiment analysis).
Discourse markers: Features that represent the ex-
istence of words such as “because”, which are fre-
quently used in argumentative texts.
Syntax: This feature category contains the number
of sub-clauses and production rules.

• Number of sub-clauses: Counter for the num-
ber of SBAR tags in the constituency parse
tree of a text segment, referring to subordinate
clauses in the Penn treebank syntactic tagset.

• Production rules: Boolean features capturing
the specific production rules extracted from the
constituency parse tree.

Part of speech: Features that capture information
related to the parts of speech in a text segment:

2http://www.uni-weimar.de/medien/webis/corpora

1399

• Verbs: A boolean feature capturing whether a
segment contains a verb. Verbs such as “be-
lieve” strongly indicate of argumentative text.

• Adverbs: A boolean feature capturing whether
a segment contains an adverb. Many adverbs
such as “personally” can play a role in identi-
fying argumentative text.

• Modals: A boolean feature capturing whether
a segment contains a modal verb. Modal verbs
such as “should” can be important for argumen-
tativeness.

• Verb tense: Boolean features capturing whether
a segment contains a past or present tense verb.

• First person pronouns: Pronouns such as “I”
and “myself” can be good indicators of claims,
a major component of argumentative texts.

Using these features, we train a binary statistical
classifier for argumentativeness. Given a set of text
segments, the classifier decides for each text seg-
ment whether it is argumentative or not.

4 Evaluation

We now report on several in-domain and cross-
domain experiments with the classification of ar-
gumentativeness. The goals are (1) to demonstrate
the effectiveness and robustness of training on the
Webis-Debate-16 corpus for cross-domain classifi-
cation, and (2) to analyze the effectiveness of the
proposed features across domains and registers.

4.1 Experimental Setup
To evaluate the effect of using the Webis-Debate-16
corpus for training, appropriate argumentation cor-
pora are needed for comparison. We consider an
available corpus as appropriate if (1) the corpus is
annotated in a way that allows the distinction of ar-
gumentative from non-argumentative text segments,
and if (2) the corpus comes with clear annotation
guidelines and reported inter-annotator agreement.
In addition, we aim at corpora that differ in terms
of the covered domains and registers to provide an
adequate cross-domain setting. While the Araucaria
corpus does not meet the second requirement (Reed
and Rowe, 2004), two recently published corpora
fulfill both; we refer to them as the Essays corpus
and the Web discourse corpus.

Essays: The Argument Annotated Essays corpus
of Stab and Gurevych (2014a) consists of 90 man-
ually annotated persuasive student essays from the
education domain. Argumentative text segments are
assigned with their type (major claim, claim, or
premise). Following Stab and Gurevych (2014b),
we consider all sentences that do not have an annota-
tion as being non-argumentative, and the annotated
segments as argumentative.

Web discourse: The Argument Annotated User-
generated Web Discourse corpus of Habernal and
Gurevych (2015) consists of 340 documents from
six different topics and four registers. The anno-
tation of arguments is conducted based on the ar-
gument model of Toulmin (1958) using five types
(claim, premise, backing, rebuttal, and refutation).
Again, we consider all annotated text segments as
being argumentative and sentences without annota-
tion as being non-argumentative.

Only in case of the Essays corpus, the authors al-
ready provide a split into a training and a test set
(72 essays for training and 18 for testing). For both
the Web discourse corpus and our corpus, we ran-
domly split the document set into 80% for training
and 20% for testing. As a result, the training set
of the Web discourse corpus consists of 272 docu-
ments, and its test set of 68 documents, while the
training and test sets of our corpus consist of 356
and 89 documents, respectively.

We train classifiers for each of the above feature
types and for the full feature set on the training set
of each corpus using the default configuration of the
naive Bayes implementation of Weka (Hall et al.,
2009). Since all corpora are imbalanced in terms of
the number of argumentative and non-argumentative
text segments, we perform undersampling for all
training sets—an effective technique for largely im-
balanced datasets (Japkowicz and Stephen, 2002).
All feature values are computed based on the out-
put of the StanfordNLP library (Manning and Klein,
2003). For the different classifiers, we measure the
resulting classification performance on all three test
sets in terms of accuracy and F1-score.

4.2 In-Domain Results
Table 4 shows the results of the in-domain experi-
ments. For the full feature set, the achieved F1-score

1400

Essays Web discourse Webis-Debate-16

Feature type Accuracy F1-score Accuracy F1-score Accuracy F1-score

N-grams 0.640 0.698 0.815 0.816 0.905 0.908
Syntax 0.599 0.664 0.874 0.874 0.855 0.664
Discourse markers 0.390 0.438 0.584 0.444 0.236 0.180
Part of speech 0.625 0.684 0.541 0.543 0.659 0.702

Full feature set 0.668 0.722 0.877 0.878 0.918 0.922

Table 4. The results of all in-domain experiments on the three corpora for each feature type and the full feature set.

of 0.922 and the accuracy of 0.918 on the Webis-
Debate-16 corpus are high compared to those on the
Essays and Web discourse corpus. This might be a
result of guidelines suggested by the debate portal
community, which make the corpus quite homoge-
neous in terms of style.

Using the full feature set leads to the best results
on all three corpora. N-grams denote the most effec-
tive single feature type on the Essays copus and on
the Webis-Debate-16 corpus, while the syntax fea-
tures outperform the n-grams on the Web discourse
corpus. On the Essays and on the Webis-Debate-16
corpus, the syntax features are sometimes better and
sometimes worse than the part of speech features.
The discourse markers are the least effective single
feature type, largely failing on all test sets, especially
in terms of F1-score.

Note that a comparison to the exact values re-
ported by Stab and Gurevych (2014b) for the Es-
says corpus and by Habernal and Gurevych (2015)
for the Web discourse corpus is not be meaning-
ful due to their experimental set-ups with different
class sets. However, their reported results for the
non-argumentative class are comparable to the per-
formance we achieved: Stab and Gurevych (2014b)
achieve an F1-score of 0.275 with lexical features
and 0.426 with syntax features on the Essays corpus,
while Habernal and Gurevych (2015) obtain an F1-
score of 0.718 with lexical features and 0.671 with
syntax features on the Web discourse corpus.

4.3 Cross-Domain Results
Table 5 shows the results of the cross-domain ex-
periments. For comparison, we again show the in-
domain results in grey color.

As usual, the obtained cross-domain effective-
ness values are lower than the in-domain values in
most cases and the full feature set usually outper-

forms feature subsets. One notable exception are
the results for the part of speech features on the Es-
says corpus. The cross-domain effectiveness trained
on the Webis-Debate-16 corpus is about six points
higher than the in-domain effectiveness in terms of
F1-score and four points in terms of accuracy. For
testing on the Web discourse corpus, training on
the Webis-Debate-16 corpus using the full features
gives the best cross-domain performance. For test-
ing on the Webis-Debate-16 corpus, training on the
Web discourse corpus using the n-gram feature type
achieves the best cross-domain performance.

Overall, the best corpus for cross-domain classifi-
cation in our evaluation is clearly the Webis-Debate-
16 corpus. Training on Webis-Debate-16 leads to the
best cross-domain results for the full feature set and
three out of four of the single feature types (n-grams,
syntax, and part of speech). Only for the discourse
markers, the Web discourse corpus performs better
in the cross-domain scenario.

Finally, we observe that the n-grams feature type
turns out to be the most domain-dependent in our
evaluation. In contrast, both the syntax and the part
of speech features appear quite robust across do-
mains. The performance of the discourse markers
greatly depends on how frequent they are used in
the target domain and register.

Although combining the Webis-Debate-16 corpus
to the training datasets of the Essays or the Web dis-
course corpus increased the performance compared
to training only on Webis-Debate-16, it did not out-
perform the in-domain performance for both cor-
pora. For conciseness, we therefore omit to report
the results of our respective experiments here.

4.4 Discussion of our Approach to Robustness
As expected, our experiments reveal the domain de-
pendence of feature distributions in classifying argu-

1401

Test on Essays Test on Web discourse Test on Webis-Debate-16

Feature type Training corpus Accuracy F1-score Accuracy F1-score Accuracy F1-score

Majority baseline – 0.867 0.806 0.572 0.417 0.832 0.757

N-grams Essays 0.640 0.698 0.485 0.488 0.512 0.571
Web discourse 0.196 0.159 0.815 0.816 0.854 0.867
Webis-Debate-16 0.528 0.601 0.719 0.718 0.902 0.908

Syntax Essays 0.599 0.664 0.494 0.497 0.481 0.541
Web discourse 0.163 0.095 0.874 0.874 0.767 0.795
Webis-Debate-16 0.573 0.642 0.719 0.717 0.855 0.867

Discourse markers Essays 0.390 0.438 0.584 0.444 0.236 0.179
Web discourse 0.415 0.468 0.584 0.444 0.237 0.181
Webis-Debate-16 0.387 0.434 0.584 0.444 0.236 0.180

Part of speech Essays 0.625 0.684 0.490 0.484 0.560 0.616
Web discourse 0.446 0.521 0.541 0.543 0.445 0.507
Webis-Debate-16 0.686 0.724 0.538 0.533 0.659 0.702

Full feature set Essays 0.668 0.722 0.524 0.524 0.483 0.541
Web discourse 0.181 0.128 0.877 0.878 0.844 0.859
Webis-Debate-16 0.617 0.678 0.726 0.725 0.918 0.922

Table 5. The results of all cross-domain experiments on the three corpora for each feature type and the full feature set.

mentativeness. This finding emphasizes the impor-
tance of explicitly dealing with domain robustness in
argumentation mining whenever more than one do-
main (in terms of a topic, register, or similar) is of
interest. To achieve robustness, we have proposed
a simple but effective approach that applies distant
supervision to create a corpus for classifying argu-
mentativeness. Our results are promising: Classifi-
cation clearly improves across domains when being
trained on our Webis-Debate-16 corpus instead of
other available argumentation mining corpora.

The obtained results suggest that our approach
can be effectively leveraged to achieve domain ro-
bustness. One reason is probably the larger size and
domain coverage of our Webis-Debate-16 corpus
compared to the other tested corpora. This makes
our corpus and the underlying distant supervision
idea a valuable resource for research on argumen-
tation. More noise reduction might even further in-
crease the performance of training on the corpus.

In its current form, our corpus contains annota-
tions for distinguishing argumentative from non ar-
gumentative text only. While more fine-grained an-
notations of argumentative texts, such as premise
vs. claim, are important for argumentation mining,
they cannot be obtained directly from the metadata
of idebate.org. Still, the positions of segments in
some parts of the debate portal (e.g, point and coun-

terpoint) often indicate whether they are claims or
premises. We plan to investigate the exploitation of
such information for future versions of the corpus.

So far, we have shown how to create an annotated
corpus classifying argumentativeness exploiting one
specific debate portal via distant supervision. In
principle, our approach is rather general and, thus,
could also be applied to other argumentation re-
sources and tasks. Indeed, idebate.org is only one
of many web resources with lots of argumentative
texts and argumentation-relevant metadata. Aside
from debate portals, one such resource is given by
Wikipedia talk pages. Very recently, Wikipedia in-
troduced markups within these article discussions,
such as support or oppose. While still being in an
early stage, this metadata seems promising to de-
rive argumentative relations from it. We plan to use
our distant supervision approach for classifying ar-
gumentative relations on such resources. This can
then be an important next step to enable the assess-
ment of argument relevance—a core building block
of an argument retrieval system.

4.5 From Argumentativeness to Relevance
As motivated in the introduction, a retrieval system
for arguments not only requires the identification
and classification of argumentative text segments.
A successful future search engine taking argument

1402

features into account additionally needs a way of
ranking arguments according to their relevance. In
this regard, we propose a “PageRank for arguments”
based on the link network of support and attack re-
lations between arguments.

In particular, given robust algorithms to identify
arguments and their relations across web pages (e.g.,
via distant supervision), we could build an argu-
ment graph for the web. Related research has al-
ready used the argumentation framework of Dung
(1995) to find accepted arguments based on such a
graph on a much smaller scale (Cabrio and Villata,
2012a). However, the size of the web would allow
for recursive analysis of the graph with statistical ap-
proaches like the famous PageRank algorithm (Page
et al., 1999), enabling an assessment of argument
relevance. Several research questions arise from this
idea (e.g., how to balance support and attack within
the analysis) but argument relevance forms a very
important future research direction.

5 Conclusion

Most existing approaches tackle argumentation min-
ing in a supervised manner trained on manually an-
notated documents from a specific domain. Such
approaches neither tend to be effective on docu-
ments from other domains, nor do they scale to ap-
plications that deal with huge document collections,
such as search engines. In this paper, we investi-
gate how to achieve robust performance for argu-
mentation mining across domains, focusing on the
classification of the argumentativeness of text seg-
ments. In particular, we approach the data side of
this problem, namely, we apply distant supervision
to automatically create a large annotated corpus with
argumentative and non-argumentative text segments
from several domains, exploiting metadata from the
online debate portal idebate.org.

Based on the created corpus and on common
manually annotated corpora, we conduct several in-
domain and cross-domain argumentativeness exper-
iments. Our results clearly indicate that training
on the created Webis-Debate-16 corpus yield the
most robust cross-domain classifier. Thereby, our
approach serves as a starting point for bringing ar-
gumentation mining to practical applications like
search engines. The corpus as well as an implemen-

tation of the approach will be made freely available.
Besides a robust identification of argumentative seg-
ments, search engines will also need to decide which
arguments are the most relevant to a given query— a
very promising future research direction in the field
of argumentation mining.

References

Ehud Aharoni, Anatoly Polnarov, Tamar Lavee, Daniel
Hershcovich, Ran Levy, Ruty Rinott, Dan Gutfreund,
and Noam Slonim. 2014. A Benchmark Dataset for
Automatic Detection of Claims and Evidence in the
Context of Controversial Topics. In Proceedings of
the First Workshop on Argumentation Mining, pages
64–68.

Trevor Bench-Capon, Katie Atkinson, and Peter McBur-
ney. 2009. Altruism and Agents: An Argumentation
Based Approach to Designing Agent Decision Mech-
anisms. In Proceedings of The 8th International Con-
ference on Autonomous Agents and Multiagent Sys-
tems - Volume 2, AAMAS 2009, pages 1073–1080.

Filip Boltužić and Jan Šnajder. 2014. Back up your
Stance: Recognizing Arguments in Online Discus-
sions. In Proceedings of the First Workshop on Ar-
gumentation Mining, pages 49–58.

Elena Cabrio and Serena Villata. 2012a. Combining Tex-
tual Entailment and Argumentation Theory for Sup-
porting Online Debates Interactions. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers, pages 208–
212.

Elena Cabrio and Serena Villata. 2012b. Generating Ab-
stract Arguments: A Natural Language Approach. In
Proceedings of the 2012 Conference on Computational
Models of Argument, COMMA 2012, pages 454–461.

Elena Cabrio and Serena Villata. 2012c. Natural
Language Arguments: A Combined Approach. In
20th European Conference on Artificial Intelligence,
ECAI 2012, pages 205–210.

Phan Minh Dung. 1995. On the Acceptability of Ar-
guments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games.
Artificial Intelligence, 77(2):321–357.

Swapna Gottipati, Minghui Qiu, Yanchuan Sim, Jing
Jiang, and Noah A. Smith. 2013. Learning Topics
and Positions from Debatepedia. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2013, pages 1858–
1868.

Ivan Habernal and Iryna Gurevych. 2015. Exploiting
Debate Portals for Semi-Supervised Argumentation

1403

Mining in User-Generated Web Discourse. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2127–
2137.

Ivan Habernal, Judith Eckle-Kohler, and Iryna Gurevych.
2014. Argumentation Mining on the Web from Infor-
mation Seeking Perspective. In Frontiers and Con-
nections between Argumentation Theory and Natural
Language Processing, pages 26–39.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The WEKA Data Mining Software: An Update.
SIGKDD Explorations, 11(1):10–18.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S. Weld. 2011. Knowledge-
based Weak Supervision for Information Extraction of
Overlapping Relations. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, HLT 2011, pages 541–550.

Nathalie Japkowicz and Shaju Stephen. 2002. The Class
Imbalance Problem: A Systematic Study. Intell. Data
Anal., 6(5):429–449.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud Aha-
roni, and Noam Slonim. 2014. Context Depen-
dent Claim Detection. In Proceedings of the 25th In-
ternational Conference on Computational Linguistics,
COLING 2014, pages 1489–1500.

Christopher Manning and Dan Klein. 2003. Opti-
mization, Maxent Models, and Conditional Estimation
Without Magic. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics on Human Lan-
guage Technology: Tutorials - Volume 5, pages 8–8.

Micol Marchetti-Bowick and Nathanael Chambers.
2012. Learning for Microblogs with Distant Supervi-
sion: Political Forecasting with Twitter. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2012, pages 603–612.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant Supervision for Relation Extrac-
tion Without Labeled Data. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 2, ACL 2009,
pages 1003–1011.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1999. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-
66, Stanford InfoLab.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation Mining: The Detection, Clas-

sification and Structure of Arguments in Text. In Pro-
ceedings of the 12th International Conference on Ar-
tificial Intelligence and Law, ICAIL 2009, pages 98–
107.

Andreas Peldszus. 2014. Towards Segment-based
Recognition of Argumentation Structure in Short
Texts. In Proceedings of the First Workshop on Ar-
gumentation Mining, pages 88–97.

Matthew Purver and Stuart Battersby. 2012. Experi-
menting with Distant Supervision for Emotion Clas-
sification. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, EACL 2012, pages 482–491.

Chris Reed and Glenn Rowe. 2004. Araucaria: Software
for Argument Analysis, Diagramming and Represen-
tation. International Journal on Artificial Intelligence
Tools, 13.

Kevin Reschke, Martin Jankowiak, Mihai Surdeanu,
Christopher D. Manning, and Dan Jurafsky. 2014.
Event extraction using distant supervision. In Pro-
ceedings of the 9th edition of the Language Resources
and Evaluation Conference, LREC 2014.

Christian Stab and Iryna Gurevych. 2014a. Anno-
tating Argument Components and Relations in Per-
suasive Essays. In Proceedings of the the 25th In-
ternational Conference on Computational Linguistics,
COLING 2014, pages 1501–1510.

Christian Stab and Iryna Gurevych. 2014b. Identifying
Argumentative Discourse Structures in Persuasive Es-
says. In Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, pages 46–56.

Stephen E. Toulmin. 1958. The Uses of Argument. Cam-
bridge University Press.

Maria Paz Garcia Villalba and Patrick Saint-Dizier. 2012.
Some Facets of Argument Mining for Opinion Analy-
sis. In Proceedings of the 2012 Conference on Com-
putational Models of Argument, COMMA 2012, pages
23–34.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
and Gregor Engels. 2014a. Modeling Review Argu-
mentation for Robust Sentiment Analysis. In Proceed-
ings of the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 553–564.

Henning Wachsmuth, Martin Trenkmann, Benno Stein,
Gregor Engels, and Tsvetomira Palakarska. 2014b. A
Review Corpus for Argumentation Analysis. In Pro-
ceedings of the 15th International Conference on Intel-
ligent Text Processing and Computational Linguistics,
pages 115–127.

Henning Wachsmuth, Johannes Kiesel, and Benno Stein.
2015. Sentiment Flow – A General Model of Web Re-
view Argumentation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 601–611, Lisbon, Portugal.

1404

Proceedings of NAACL-HLT 2016, pages 1405–1413,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

A Study of the Impact of Persuasive Argumentation in Political Debates

Amparo Elizabeth Cano-Basave and Yulan He
Aston University, UK

a.cano-basave@aston.ac.uk,y.he@cantab.net

Abstract

Persuasive communication is the process of
shaping, reinforcing and changing others’ re-
sponses. In political debates, speakers ex-
press their views towards the debated topics
by choosing both the content of their discourse
and the argumentation process. In this work
we study the use of semantic frames for mod-
elling argumentation in speakers’ discourse.
We investigate the impact of a speaker’s argu-
mentation style and their effect in influencing
an audience in supporting their candidature.
We model the influence index of each candi-
date based on their relative standings in the
polls released prior to the debate and present
a system which ranks speakers in terms of
their relative influence using a combination
of content and persuasive argumentation fea-
tures. Our results show that although con-
tent alone is predictive of a speaker’s influ-
ence rank, persuasive argumentation also af-
fects such indices.

1 Introduction

In recent years, researchers have studied politi-
cal texts detecting ideological positions (Sim et
al., 2013; Hasan and Ng, 2013), predicting vot-
ing patterns (Thomas et al., 2006; Gerrish and
Blei, 2011) and characterising power based on lin-
guistic features (Prabhakaran et al., 2013). While
there is a vast amount of theoretical research on the
rhetoric of politicians, only recently there has been
a growing interest in understanding the argumenta-
tion processes involved in political communication
by means of computational linguistics (Hasan and
Ng, 2013; Boltužić and Šnajder, 2014).

During a debate, a speaker tries to convince the
audience of a particular point of view. This nor-
mally involves an argumentation process, where the
structuring of ideas is built upon logical connections
between claims and premises, and a persuasive com-
munication style. In this paper, we study the impact
of persuasive argumentation in political debates on
candidates’ power/influence ranking. As opposed
to previous approaches, we propose to characterise
political debates based on persuasive argumentation
modelled through semantic frames.

Previous work (Rosenberg and Hirschberg, 2009)
has analysed political speech transcripts identify-
ing prosodic and lexical-syntactic cues which cor-
relate with political personalities. Prabhakaran et
al. (2013) proposed interactions within political de-
bates as predictors of a candidate’s relative power
or influence rank in polls. More recently they also
found topic-shifting to be a good indicator of candi-
date’s relative rankings in polls (Prabhakaran et al.,
2014). Argumentation in debates has been studied
from the perspective of automatic argument extrac-
tion (Cabrio and Villata, 2012) and stance classifi-
cation (Hasan and Ng, 2013). However, to the best
of our knowledge, argumentation has not been ex-
plored as a influence rank indicator. Moreover the
study of persuasion in the NLP community has been
so far limited.

The novelty of our work is the proposal of a
method to automatically extract persuasive argu-
mentation features from political debates by means
of the use of semantic frames as pivoting features.
We have trained a rank Support Vector Machine
(SVM) model based on content and persuasive ar-

1405

gumentation features in order to rank debate speak-
ers. Our experimental results on the 20 debates for
the Republican primary election show that certain
types of persuasive argumentation features such as
Premise and Support Relation appear to be better
predictors of a speaker’s influence rank compared
to basic content features such as unigrams. When
combining with content-related features, most per-
suasive argumentation features give superior perfor-
mance compared to the baselines.

2 Persuasive Argumentation

Argumentation has been defined as a verbal and so-
cial activity of reason which aims to increase the ac-
ceptability of a controversial standpoint by putting
forward a set of connected propositions intending to
justify or refute a standpoint before a rational judge
(van Eemeren et al., 1996). Different argumenta-
tion theories propose various schemes for describ-
ing the underlying structure of an argument (Toul-
min., 1958; Walton et al., 2008; Freemen, 2011;
Peldszus and Stede, 2013). All these theories gen-
erally agree in that an argument can be structured
by means of two argument components and two ar-
gumentative relations. The argument components
include claims and premises. A claim is a central
component of an argument and is characterised as
being a controversial statement to be judged as true
or false. Moreover a claim cannot be accepted by an
audience without additional support. Such support
is provided in the form of premises underpinning the
validity of the claim. The following sentence illus-
trates an example1 of an argument highlighting the
claim and premises:
‘‘People aren’t investing in America because
this president has made America a less attractive
place for investing and hiring than other places
in the world.” (Former Governor Mitt Romney)

While argumentation focuses on the rational sup-
port structured to justify or refute a standpoint, per-
suasion focuses on language cues aiming at shaping,
reinforcing and changing a response. In persuasive
communication such response ranges from percep-
tions, beliefs, attitudes and behaviours.

1This is extracted from our Debate corpus transcripts. Bold
letters represent the argument and italics the premises.

Persuasive language is characterised by the use
of emotive lexicons (e.g., atrocious, dreadful, sen-
sational, highly effective) where the speaker tries to
engage with the audience’s emotions (Macagno and
Walton, 2014). Often words with emotive meanings
can present values and assumptions as uncontrover-
sial, acting therefore as potentially manipulative in-
struments of argumentation (Macagno, 2010). Other
characteristics of persuasive language include the
use of alliteration, which is a stylistic device charac-
terised by the repetition of first consonants in series
of words. This artistic constraint enables the speaker
to sway the audience by feeling an urgency towards
a rhetorical situation by intensifying any attitude be-
ing signified (Bitzer, 1968; Lanham, 1991). The use
of a repeating sounds engages auditory senses lead-
ing to the evoking of emotions that engage the audi-
ence.

The following is an example of persuasive
language2:

“I’m convinced that part of the divide that
we’re experiencing in the United States, which
is unprecedented, it’s unnatural, and it’s un-
American, is because we’re divided economically,
too few jobs, too few opportunities” (Former Gov-
ernor Huntsman).

To the best of our knowledge however, the study
of the relation of persuasion and argumentation
in political debates is limited. One of the main
challenges is the lack of annotated corpora which
include both argument annotations and persuasive
messages annotations. While there has recently been
released a corpus of persuasive essays (Stab and
Gurevych, 2014) containing annotations for both
class-level argument components and argument rela-
tions, there is yet none annotated corpora for persua-
sive arguments in political debates. In order to study
whether persuasive cues and persuasive argumenta-
tion can be used as predictors of speakers’ influence
ranking on a debate, we propose to bridge between
existing persuasive and political corpora through se-
mantic frame features. The following section intro-
duces the proposed strategy to port annotation be-
tween two corpora.

2Representing emotive language in italic bold and allitera-
tion in bold underscored.

1406

3 Extracting Persuasive Argumentation
Features from Political Debates

In order to study whether persuasive argumenta-
tion can be used as predictors of speakers’ influence
ranking on a debate, we propose to use the persua-
sive essays corpus compiled by Stab and Gurevych
(2014) to study persuasive argumentation in political
debates through the use of semantic frames.

3.1 Persuasive Essays (PE) Corpus
A persuasive essay is an essay written with the aim
of convincing a reader on adopting a way of thinking
regarding a stance taken on a topic. Unlike speech
where an audience can be persuaded by means of
social features or speech style, essays only rely on
the written word depending therefore solely on the
writer’s persuasive style.

The Persuasive Essays (PE) corpus consists of 90
essays comprising 1,673 sentences. It contains an-
notations for both class-level argument components
and argument relations. The class-level annotations
include: 1) major claims; 2) claims; 3) premises and
4) the argumentative relations being either “support”
or “attack”. Argumentative relations are directed re-
lations between source and target components (e.g.,
between premises, claims and major claims). The
PE argument annotations follows the scheme de-
scribed in Table 1.

Claim Controversial Statement which is either true or
false, and which should not be accepted or other-
wise without additional support

Premise Justifies the validity of a claim
ForStance Indicates that an argument supports a claim
AgainstStance Indicates that an argument refutes a claim
SupportRel. Indicates which supporting premises belong to a

claim
AttackRel. Indicates which refuting premises belong to a claim

Table 1: Persuasive essays argument annotation scheme.

3.2 Presidential Political Debates (PD) Corpus
Presidential political debates enable candidates to
expose and discuss their stances on policy issues
contrasting them with other candidates’ stances.
During a debate, speakers unveil their discourse
style as well as the premises supporting their claims.
For our experiments, we collected the manual tran-
scripts of debates for the Republican party presiden-
tial primary election from The American Presidency

Project3. This political debates corpus (PD) consists
of 20 debates which took place between May 2011
and February 2012. A total of 10 candidates partici-
pated in these debates with an average participation
of 6.7 candidates per debate. This corpus comprises
30-40 hours of interaction time and an average of
20,466.6 words per debate.

These debates follow a common structure in
which a moderator directly addresses questions to
the candidates where disruptions to answers are
common due to interruptions from other candidates.
In this corpus, each debate transcript lists the speak-
ers including moderator and candidates and ques-
tions asked during the debate. Each transcript also
clearly delimits turns between speakers and moder-
ators as well as mark-up occurrences of the audi-
ence’s reactions such as booing and laughter.

3.3 Semantic Frames

We propose to make use of the persuasion essays
corpus annotations to understand persuasive argu-
mentation in political debates by means of the use
of semantic frames. A semantic frame is a descrip-
tion of context in which a word sense is used. We
make use of FrameNet (Baker et al., 1998), which
consist of over 1000 patterns used in English (e.g.,
Leadership, Causality, Awareness, and Hostile en-
counter). In this work we extract such patterns using
SEMAFOR (Das et al., 2010).

Consider the sentence in Table 2 in which two
semantic frames are detected. Each parsed seman-
tic frame consists of {Frame, SemanticRole, label}
providing a higher level characterisation of a text,
highlighting the semantics of the discourse used in
this text. If such semantic frames appear to be
some of the most prominent features for a certain
persuasive argumentation annotation scheme (e.g.,
“Claim”), then we can extract persuasive argumen-
tation features from the unlabelled Political Debates
corpus using semantic frames as pivoting features.

In this work we propose to port annotations be-
tween the Persuasive Essays (PE) and Political De-
bates (PD) corpora by means of the use of semantic
frames as pivoting features.

To represent the PE corpus, let A = {a1, .., an}
3http://www.presidency.ucsb.edu/debates.

php

1407

Sentence: What we need in this country is to use this issue
as a national security tool.

FRAME SEMANTIC ROLE LABEL

Political locales Target national security
Point of dispute Target this issue

Table 2: Semantic frames parsed for a sentence extracted from

the debates dataset.

be the set of annotation schemes described in Ta-
ble 1 and let Ta = {t1, .., tn} be the collection of
sentences annotated with argument scheme a. To
represent the PD corpus, let’s UD = {u1, .., un} be
the set of speakers taking part on a debate D. Let
SuD = {s1, .., sn} be the set of sentences generated
by speaker u on debate D.

Taking the PE corpus as a reference corpus, we
propose to generate a vector representation of each
annotation scheme in A for each speaker in each
debate of corpus PD by following the steps below:
i) Based on tf-idf we extract the most representative
semantic frames for each annotation scheme a in PE
as the vector SFa; ii) We compute the weighted rep-
resentation of each annotation scheme a in the PD
corpus as the vector fud,a for each speaker u on each
debate d as follows: a) First we compute the bag
of semantic frames SF ud from speaker u in debate d
based on the speaker’s content on the debate; then
b) For each annotation scheme a we weight vector
fud,a based on the normalised frequency of each se-
mantic frame element in SF ud appearing in SFa.

3.4 Semantic Frames and Argument Types

The statistics of the extracted semantic frames from
PE for each argument type are presented in Table 3.

Arg. Type Sentences Semantic Frames (SF)

Claim 519 404
Premise 1,033 518
ForStance 365 369
AgainstStance 64 173
SupportRel. 1,312 535
AttackRel. 161 275

Table 3: Number of semantic frames extracted from PE.

Such semantic frames provide a vector represen-
tation characterising each persuasive argumentation
scheme described in Table 1. Table 4 presents a sam-
ple of the top semantic frames representing each ar-

Arg. Type Top 5 Semantic Frames

Claim Reason, Stage of Progress, Eval-
uative Comparison, Competition,
Cause to Change

Premise Removing, Inclusion, Killing, Cogni-
tive Connection, Causation

ForStance Cause to Make Progress, Collaboration,
Purpose, Kinship, Expensiveness

AgainstStance Intentionally Act, Importance, Capability,
Leadership, Usefulness

SupportRel. Dead or Alive, Institutions, State Continue,
Taking Sides, Reliance

AttackRel. Usefulness, Likelihood, Desiring, Impor-
tance, Intentionally Act

Table 4: Top 5 semantic frames for each argument type of PE.

gumentation type.
Using the vector representation of each annota-

tion scheme generated from PE, we computed the
persuasive argumentation features for the PD corpus.
Table 5 presents a sentence sample for each argu-
ment type identified in the PD corpus along with the
semantic frames characterising the sentence.

4 Influence Ranking in Political Debates

We study a speaker’s influence on an audience based
on his/her persuasiveness language and argumenta-
tion styles during a political debate. To measure
how influential a speaker is on an audience, we
make use of the influence index (Prabhakaran et al.,
2013), which is calculated based on a speakers rela-
tive standing on poll released prior to the debate.

Poll scores describe the influence a speaker has
to favourably change the electorate position towards
his/her campaign. Given a debate D and the set
of speakers UD we retrieve the poll results released
prior to the debate and use the percentage of elec-
torate supporting each candidate. If for a given de-
bate there are multiple polls then the index is com-
puted taking the mean of poll scores. Therefore the
influence index P of speaker u ∈ UD is:

P (u) =
1

|polls(D)|
|polls(D)|∑

i=1

pi (1)

where pi is the poll percentage assign to speaker u
in poll i in the reference polls.

1408

Arg. Type Sentence Semantic Frames

Claim If we can turn Syria and Lebanon away from Iran, we finally
have the capacity to get Iran to pull back.

Cause Change, Manipulation, Capability

Premise Because they put that money in, the president gave the compa-
nies to the UAW, they were part of the reason the companies
were in trouble.

Causation, Predicament, Leadership

ForStance And the reason is because that’s how our founding fathers saw
this country set up.

Reason, Kinship, Perception Experience

AgainstStance I was concerned that if we didn’t do something, there were some
pretty high risks that not just Wall Street banks, but all banks
would collapse.

Emotion Directed, Intentionally Affect, Daring

SupportRel. I went to Washington, testifying in favor of a federal amend-
ment to define marriage as a relationship between man and a
woman.

Taking Sides, Cognitive Connection, Evidence

AttackRel. But you can’t stand and say you give me everything I want or
I’ll vote no.

Desiring, Posture, Capability

Table 5: Example sentence for each argument type and its corresponding semantic frames identified from PD. Note that there is no

annotation in PD. The argument types here are assigned manually for easy reference.

4.1 Features

We characterise each speaker in each debate based
on the content and emotion cues he/she generated.
Specifically we analyse each candidate in three di-
mensions: i) what they said (content features);
ii) the persuasiveness of the language they used in-
cluding persuasive argumentation features and emo-
tive language; iii) and external emotions evoked dur-
ing the debates. We described each set of features
below.

4.1.1 Content Features
We use a set of features which characterise con-

tent of a candidate’s participation on a debate (Prab-
hakaran et al., 2013). These include: 1) Unigrams
(UG), which represents lexical patterns by counting
frequencies of word occurrences; 2) Question De-
viation (QD), difference between observed percent-
age of questions asked to a candidate and the fair
share percentage of questions in the debate; 3) Word
Deviation (WD), difference between observed per-
centage of words spoken by a candidate and the fair
share percentage of words in the debate; 4) Men-
tion Percentage (MP), a candidate mention counts
normalised based on all candidates’ mentions in a
debate.

4.1.2 Persuasiveness Features
We represent three types of persuativeness fea-

tures as follows:

1) Persuasive Argumentation Features. Follow-
ing the method described in the previous section, we
extract the semantic frame feature vector represent-
ing each annotation scheme (fud,a) for each speaker
on each debate. These vectors provide information
of different argumentation dimensions. We have ex-
tracted a total of 710 semantic frames in PD.

2) Alliteration. After removing stopwords, we
computed alliteration as repetitions of part of a word
or a full word within a sentence.

3) Emotive Language. To characterise the use of
emotive language, we generated a list of emotion-
related semantic frames (e.g., emotion directed,
emotions by stimulus, emotions by possibility)4,
then for each speaker u in each debate d, we
generated an emotion-frame vector weighted by
tf-idf.

Once the features for each speaker have been gen-
erated, we followed a supervised learning approach
for ranking speakers of a debate based on their influ-
ence Index, which can be used to denote how well a
speakers participation on a debate has impacted the
audience endorsement of his/her campaign.

4.1.3 External Emotion Cues
Previous work (Strapparava et al., 2010) has

shown that an audiences’ social signal reactions to
an idea, such as booing or cheering, are good pre-

4FrameNet’s frame index, http://tinyurl.com/
q2ytth9

1409

dictors of hot-spots where persuasion attempts suc-
ceeded or at least such attempts were recognised
by the audience. In this work, rather than recog-
nising such persuasion hot-spots, we explore these
audiences’ reaction cues (e.g applause) as poten-
tial predictors of a candidate success on a politi-
cal debate, we refer to such cues as external emo-
tion cues. For each speaker in a debate, we com-
puted the number of i) applauses (APL); ii) booings
(BOO); iii) laughs (LAU); and iv) crosstalks (CRO)
he/she received during his/her participation on a de-
bate. These counts were normalised based on the
total number of each emotion appeared on the de-
bate.

With these features, we train a supervised learning
classifier for ranking speakers of the debates based
on their influence indices described in the following
section.

4.2 Influence Ranking Approach

In ranking, a training set consists of an ordered data
set. Let “A is preferred to B” be denoted as “ A �
B”. Let D denote a debate with a set of speakers
UD = {u1, u2, ..un} and influence indexes P (ui)
for 1 < i < n. We specify a training set for ranking
as R = {(ui, γi), .., (un, γn)} where γi is the rank-
ing of ui based on its P (ui) so γi < γj if ui � uj .

We want to find a ranking function F which out-
puts a score for each instance from which a global
ordering of data is constructed. So the target func-
tion F (ui) outputs a score such that F (ui) > F (uj)
for any ui � uj . In this work we use the Ranking
SVM (Joachims, 2006) to estimate the ranking func-
tion F .

5 Experimental Setup

For our experiments we used the Persuasive Essays
(PE) and Political Debates (PD) corpora introduced
in previous sections. While the PEwas used as a ref-
erence corpus, all our experiments were performed
on the PD corpus.

All features are computed for the aggregation of
a candidate’s content in a debate. For content and
alliteration features, we first removed stopwords.
In particular, for computing unigram features we
also stemmed words using a Porter stemmer (Porter,
1997).

To compute persuasive argumentation features we
used the collection of semantic frame features for
the reference corpus PE.

5.1 Evaluation

In this work, the ranking task evaluation for each
debate consists on comparing the generated ranked
list of candidates, using the influence ranking ap-
proach introduced above, against a reference ranked
list. Such a reference ranked list corresponds to our
gold standard of ranked list of candidates generated
based on the polled scores for that debate.

Following a 5-fold cross validation, we report re-
sults applying four commonly used evaluation met-
rics for ranking tasks, nDCG, nDCG-3, Kendall’s
Tau and Spearman correlations. The discounted cu-
mulative gain metric (nDCG) penalises inversions
happening at the top n elements5 of a ranked list
more than those inversions happening at the bot-
tom. While the nDCG metric penalises certain ele-
ments in the list, Kendall’s tau and Spearman’s rank
correlations penalises inversions equally across the
ranked list.

6 Results and Discussion

6.1 Correlation Analysis

We performed a correlation analysis for the con-
tent and persuasive emotion numeric features6. We
computed the Pearson’s product correlation between
each feature with the candidate’s influence index
P (u) derived from the polls. The computed corre-
lations for these features are presented in Figure 1.
Darker bars indicate statistical significance correla-
tion at p < 0.001; lighter dark bars at p < 0.05; and
light bars not statistically significant.

These results show that for the content features,
both question deviation (QD) and word deviation
(WD) correlate moderately with the influence index;
while the mention percentage (MP) feature corre-
lates highly with the influence index (p < 0.05). For
the emotion cues, we obtained statistically signifi-
cant (p < 0.05) moderate correlations between the
applause (APL), laugh (LAU), crosstalk (CRO) and

5nDCG-3 therefore assigns a higher penalisation for inver-
sions happening at the top three elements of a ranked list.

6Note that we can perform such correlation analysis only
with the numeric features but not with vector features.

1410

QD MP WD APL BOO LAU CRO

Pe
ar

so
n

C
or

re
la

tio
n

0.
0

0.
2

0.
4

0.
6

0.
8

0.630

0.710

0.540

0.417

0.197

0.426
0.456

Figure 1: Pearson correlation for content and emotion cues fea-

tures. Correlation windows: Negligible (0-0.19); Weak (0.2-

0.39); Moderate (0.4-0.69); High (>0.69).

the influence index; while the correlation between
the booing (BOO) cue and the influence index was
not statistically significant. These results indicate
that speakers with higher influence index spoke for
longer periods of time, in line with existing empiri-
cal findings in sociological studies (Ng and Bradac,
1993; Reid and Ng., 2000; Prabhakaran et al., 2013),
and were asked a higher number of questions. This
analysis also indicates that speakers with higher in-
fluence index generated more crosstalk, in line with
previous empirical sociological findings (Ng et al.,
1995); received more applauses and made the audi-
ence laugh more often.

6.2 Influence Ranking Results

Following the results of the correlation analysis,
we conducted experiments using those content and
emotion cue features presenting statistically signif-
icant correlations with the influence index. Apart
from these features, we also consider the persuasive
argumentation features and a combination of fea-
tures from both content and persuasion categories.
Results for the prediction of influence ranking using
these features are presented in Table 6.

For the content features, using the simple uni-
grams gives the best results. The mention percent-
age (MP) feature also attains competitive perfor-
mance. A combination of word deviation, question
deviation and mention percentage (WD+RD+MP)
however degrades the performance. This is in con-
trast to the results reported in (Prabhakaran et al.,

2013) (denoted as [PR13] in Table 6), where the uni-
gram feature gives much worse results and their best
results were obtained using WD+RD+MP. One pos-
sible reason is that for the unigram feature used in
our experiments, we have performed pre-processing
by removing stop words and stemming.

For external emotion cues, although some emo-
tion cues appeared to be significantly correlated with
the influence index in our analysis, they did not out-
perform the unigram baseline. We suspect that this
might be due to the fact that depending on the loca-
tion of a debate, certain candidates may bring bigger
crowds into the debate’s venue, therefore emotion
cues can be a deliberate biased way of support. Con-
sequently emotion cues happening within the debate
venue may not reflect the emotions induced to the
audiences that followed the broadcast of the debate.

When analysing the persuasion features, alliter-
ation and emotive language features give better re-
sults compared to external emotion cues. But they
did not outperform the unigram baseline either.

We find that persuasive argumentation features
alone provide improvement upon the unigram base-
line. In particular, in terms of nDCG and nDCG-37,
the premise and support relation types provide the
best results for this feature category. In terms of Tau
and Spearman8 correlations, the attack relation type
provides the best results. When focusing only on
persuasive argumentation features, these results sug-
gest that speakers with higher influence index tend
to use well supported arguments (i.e. present more
premisses supporting their claims) and/or tend to at-
tack more other candidates by presenting premises
refuting a claim.

When combining features, we found that the top
100 persuasive argumentation features ranked by
tfidf together with word deviations and mention per-
centages significantly improve upon the baselines
for particular argumentation cases including Claim,
Premise, ForStance, and SupportRel.

The overall best performing features for predict-
ing influence ranking in terms of nDCG, Tau and
Spearman was consistently obtained with the com-

7Since nDCG and nDCG-3 penalises inversions at the top of
the list, good results in these metrics mean predicting accurately
the top of the ranked list.

8These metrics provide a general evaluation of the accuracy
of the full ranked list.

1411

bined feature for the Premise type.
Our results improve upon those recently obtained

in (Prabhakaran et al., 2014) in both nDCG and Tau
where topic shift patterns have been added for influ-
ence ranking (denoted as [PR14] in Table 6).

These results suggest the relevance of “what they
said”, the “ persuasiveness style of their arguments”
and the relative importance given by others by
means of mentions are good predictors of influence
ranking in political debates. In particular when com-
bining the lexical content of candidates’ discourse
with their persuasive argumentation style, our re-
sults indicate that candidates with higher influence
ranking tend to present more premises while clearly
stating their stance (i.e. supporting a claim) on a
particular topic.

7 Conclusions and Future Work

In this paper, we have studied the impact of argu-
mentation in speaker’s discourse and their effect in
influencing an audience on supporting their candi-
dature. In particular, we have conducted the study
in the domain of political debates. In order to ex-
tract persuasive argumentation features from polit-
ical debates, we have proposed a novel method to
port annotations from a persuasive essay corpus us-
ing semantic frames as pivot features.

Our experimental results on the 20 debates for the
Republican primary election show that when com-
bined with word deviations and mention percent-
ages,most persuasive argumentation features give
superior performance compared to the baselines.
Particularly with the Premise and SupportRel types
appear to be better predictors of a speaker’s influ-
ence rank. In future work, we will aim to improve
the accuracy of the extracted persuasive argumenta-
tion features by exploring other methods for identi-
fying persuasive argumentations from text.

Acknowledgments

This work was supported by the EU-FP7 project
SENSE4US (grant no. 611242)

References

C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The
Berkeley FrameNet project. In Proceedings of the

Feature nDCG nDCG3 Tau Spearman

Content Features

UN 0.964 0.924 0.597 0.723
MP 0.962 0.915 0.597 0.712
WD+QD+MP 0.957 0.905 0.571 0.689

UN[PR13] 0.860 0.733 0.250 -
WD+QD+MP[PR13] 0.961 0.921 0.470 -
WD+QD+MP+TopicShift
[PR14]

0.970 0.937 0.600 -

External Emotion Cues

Applause 0.886 0.746 0.373 0.481
Laughter 0.870 0.721 0.335 0.423
Crosstalk 0.836 0.641 0.314 0.416

Persuasion Features

Alliteration 0.929 0.856 0.379 0.494

Emo Lan-
guage

0.928 0.846 0.478 0.588

Persuasive Argumentation

Claim 0.957 0.902 0.559 0.691
Premise 0.968 0.927 0.600 0.731
ForStance 0.959 0.906 0.557 0.690
AgainstStance 0.951 0.897 0.512 0.643
SupportRel. 0.967 0.921 0.600 0.728
AttackRel. 0.964 0.910 0.632 0.739

Combined Features

Persuasive Argumentation + WD + MP

Claim 0.965 0.922 0.613 0.734
Premise 0.973 0.931 0.639 0.766
ForStance 0.965 0.924 0.590 0.724
AgainstStance 0.953 0.894 0.524 0.669
SupportRel. 0.971 0.929 0.619 0.753
AttackRel. 0.963 0.920 0.582 0.726

Table 6: Influence ranking results for baselines, persuasion and

combined features. Statistically Significant at p < 0.05.

17th International Conference on Computational Lin-
guistics (COLING), pages 86–90.

Lloyd Bitzer. 1968. The Rhetorical Situation. Philoso-
phy and Rhetoric.

Filip Boltužić and Jan Šnajder. 2014. Back up your
stance: Recognizing arguments in online discussions.
In Proceedings of the 1st Workshop on Argumentation
Mining, pages 49–58.

Elena Cabrio and Serena Villata. 2012. Natural language
arguments: A combined approach. In Proceedings

1412

of the European Conference on Artificial Intelligence
(ECAI), pages 205–210.

D. Das, N. Schneider, D. Chen, and N. A. Smith. 2010.
Semafor 1.0: A probabilistic frame-semantic parser.
Technical report, Carnegie Mellon University Techni-
cal Report CMU-LTI-10-001.

James B. Freemen. 2011. Argument Structure: Repre-
sentation and Theory, volume 18. Springer.

Sean Gerrish and David Blei. 2011. Predicting legisla-
tive roll calls from text. In In Lise Getoor and Tobias
Scheffer, editors, Proceedings of the 28th International
Conference on Machine Learning (ICML), pages 489–
496.

Kazi Saidul Hasan and Vincent Ng. 2013. Stance classi-
fication of ideological debates: Data, models, features,
and constraints. In Proceedings of the Sixth Interna-
tional Joint Conference on Natural Language Process-
ing (IJCNLP), pages 1348–1356.

T. Joachims. 2006. Training linear SMMs in linear time.
In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), pages = 217–226.

Richard Lanham. 1991. A Handlist of Rhetorical Terms.
Los Angeles: University of California Press.

F. Macagno and D. Walton. 2014. Emotive Language in
Argumentation. Cambridge Press.

Fabrizio Macagno. 2010. The argumentative uses of
emotive language. Revista Iberoamericana de Argu-
mentacion, pages 1–33.

S. H. Ng and J. J. Bradac. 1993. Power in language: Ver-
bal communication and social influence. Sage Publi-
cations, Inc.

S. H. Ng, M Brooke, and M. Dunne. 1995. Interruption
and influence in discussion groups. Journal of Lan-
guage and Social Psychology, 14(4):369–381.

Andreas Peldszus and Manfred Stede. 2013. From ar-
gument diagrams to argumentation mining in texts: A
survey. International Journal of Cognitive Informatics
and Natural Intelligence (IJCINI), 7(1):1–31.

M. F. Porter. 1997. Readings in information retrieval.
chapter An Algorithm for Suffix Stripping, pages 313–
316.

Vinodkumar Prabhakaran, Ajita John, and D. Dorée
Seligmann. 2013. Who had the upper hand? rank-
ing participants of interactions based on their relative
power. In Proceedings of the 6th International Joint
Conference on Natural Language Processing (IJC-
NLP), pages 365–373.

Vinodkumar Prabhakaran, Ashima Arora, and Owen.
Rambow. 2014. Staying on topic: An indicator of
power in political debates. In Proceedings of the con-
ference on Empirical Methods for Natural Language
Processing (EMNLP).

S. A. Reid and S. H. Ng. 2000. Conversation as a re-
source for in influence: evidence for prototypical ar-
guments and social identification processes. European
Journal of Social Psych., (30):83–100.

Andrew Rosenberg and Julia Hirschberg. 2009.
Charisma perception from text and speech. Speech
Communication, 51(7):640–655.

Yanchuan Sim, Brice D. L. Acree, Justin H. Gross, and
Noah A. Smith. 2013. Measuring ideological propor-
tions in political speeches. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 91–101.

Carlo Strapparava, Marco Guerini, and Oliviero Stock.
2010. Predicting persuasiveness in political dis-
courses. In Proceedings of the 7th International
Conference on Language Resources and Evaluation
(LREC).

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 327–335.

Stephen E. Toulmin. 1958. The uses of Argument. Cam-
bridge University Press.

van Eemeren et al. 1996. Fundamentals Of Argumenta-
tion Theory: A Handbook Of Historical Backgrounds
And Contemporary Developments. Hillsdale, NJ, Eng-
land: Lawrence Erlbaum Associates, Inc, PsycINFO,
EBSCOhost.

Douglas Walton, Chris Reed, and FabrizioMacagno.
2008. Argumentation Schemes. Cambridge University
Press.

1413

Proceedings of NAACL-HLT 2016, pages 1414–1423,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Lexical Coherence Graph Modeling Using Word Embeddings

Mohsen Mesgar and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH

Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

(mohsen.mesgar|michael.strube)@h-its.org

Abstract

Coherence is established by semantic connec-
tions between sentences of a text which can
be modeled by lexical relations. In this pa-
per, we introduce the lexical coherence graph
(LCG), a new graph-based model to represent
lexical relations among sentences. The fre-
quency of subgraphs (coherence patterns) of
this graph captures the connectivity style of
sentence nodes in this graph. The coherence
of a text is encoded by a vector of these fre-
quencies. We evaluate the LCG model on the
readability ranking task. The results of the ex-
periments show that the LCG model obtains
higher accuracy than state-of-the-art coher-
ence models. Using larger subgraphs yields
higher accuracy, because they capture more
structural information. However, larger sub-
graphs can be sparse. We adapt Kneser-Ney
smoothing to smooth subgraphs’ frequencies.
Smoothing improves performance.

1 Introduction

The concept of coherence is based on cohesive se-
mantic relations connecting elements of a text. Co-
hesive relations are expressed through grammar and
the vocabulary of a language. The former is referred
to as grammatical coherence, the latter as lexical
coherence (Halliday and Hasan, 1976). Grammat-
ical coherence encompasses coreference, substitu-
tion, ellipsis, etc. Lexical coherence comprises se-
mantic connections among words of a text.

In this paper we measure text coherence by mod-
eling lexical coherence. Lexical relations spec-
ify cohesive relations over the sentences of a text.

These lexical relations can be any kind of seman-
tic relation: repetition, synonymy, hyperonymy,
meronymy, etc. These lexical items may or may not
have the same reference (Halliday and Hasan, 1976).

Why does the little boy wriggle all the
time? Girls don’t.

In this example the lexical items boy and girls
are semantically related. Although they do not re-
fer to the same entity, they still connect these two
sentences.

There is coherence between any pair of lexi-
cal items that stand to each other in some lexico-
semantic relation (Halliday and Hasan, 1976). For
textual purposes it is not required to determine the
type of the relation. It is only necessary to recog-
nize semantically related lexical items, and these re-
lations can be learned by cooccurring lexical items.

One can use world knowledge resources to deter-
mine semantic relations. This way is expensive in
terms of determining the best resource, e.g. Word-
Net vs. Freebase. WordNet lacks broad coverage in
particular with proper names, Freebase is restricted
to nominal concepts and entities.

Recent improvements in embedding representa-
tions of words let us efficiently compute semantic
relations among lexical items in the vector space.
These models use a vector of numbers to encode the
meaning of words. We use these vectors to check the
existence of any kind of semantic relations between
two words.

In the following example the sentences are con-
nected because of the semantic relation between
king and queen which can be induced by word em-

1414

bedding models (Mikolov et al., 2013; Pennington
et al., 2014).

. . . The king was in his counting-house,
counting out his money,
The queen was in the parlour, eating bread
and honey.

We model lexical coherence between sentences
by a lexical coherence graph (LCG). We consider
subgraphs of this graph coherence patterns and use
their frequency as features representing the connec-
tivity of the graph and, hence, the coherence of a text
(Mesgar and Strube, 2015).

An important task for evaluating a coherence
model is readability assessment. The goal of this
task is to rate texts based on their readability. The
more coherent a text, the faster to read and easier
to understand it is. Other coherence models (Barzi-
lay and Lapata, 2008; Guinaudeau and Strube, 2013;
Mesgar and Strube, 2014) are also evaluated on this
task. Pitler and Nenkova (2008) use the entity grid
(Barzilay and Lapata, 2008) to capture the coher-
ence of a text for readability assessment. Mesgar and
Strube (2015) extend the entity graph (Guinaudeau
and Strube, 2013) as coherence model to measure
the readability of texts. They encode coherence as a
vector of frequencies of subgraphs of the graph rep-
resentation of a text. We build upon their method
and represent the connectivity of sentences in our
LCG model by a vector of frequencies of subgraphs.

Although using the frequency of subgraphs of the
lexical coherence graph encodes coherence features
well, the subgraph frequency method, in general,
is suffering from a sparsity problem when the sub-
graphs get larger. Large subgraphs capture more
structural information, but they occur only rarely.
We resolve this sparsity issue by adapting Kneser-
Ney smoothing (Heafield et al., 2013) to smooth
subgraph counts (Section 3). We estimate the prob-
ability of unseen subgraphs, i.e. coherence patterns.
This prediction lets us measure the coherence of a
text even when its corresponding graph representa-
tion contains a subgraph which does not occur in the
training data. If the unseen coherence pattern is sim-
ilar to seen ones, smoothing gives it closer proba-
bility to seen coherence patterns in comparison to
dissimilar unseen ones. This is due to the base prob-
ability factor in Kneser-Ney smoothing.

We evaluate our LCG model on the two readabil-
ity datasets provided by Pitler and Nenkova (2008)
and De Clercq et al. (2014), respectively (Section
4). The results (Section 5) indicate that the LCG
model outperforms state-of-the-art systems. By ap-
plying Kneser-Ney smoothing we solve the sparsity
problem. Smoothing allows us to exploit the high
informativity of large subgraphs which leads to new
state-of-the-art results in readability assessment.

2 Related Work

The entity grid model (Barzilay and Lapata, 2008)
is based on entity transitions over sentences. It uses
a two dimensional matrix to represent transitions
of entities among adjacent sentences. The entity
grid is applied to readability assessment by Pitler
and Nenkova (2008). The entity graph (Guinaudeau
and Strube, 2013) is a graph-based, mainly unsuper-
vised interpretation of the entity grid. This model
represents the distribution of entities over sentences
in a text with a bipartite graph. Connections be-
tween sentences are obtained by information on en-
tites shared by sentences. Guinaudeau and Strube
(2013) perform a one-mode projection on sentence
nodes and use the average out-degree of the one-
mode projection graph to quantify the coherence
of the given text. Mesgar and Strube (2015) rep-
resent the connectivity of the one-mode projection
graph by a vector whose elements are the frequen-
cies of subgraphs in projection graphs. This encod-
ing works much better than the entity graph for the
readability task on the P&N dataset and even out-
performs Pitler and Nenkova (2008) by a large mar-
gin. Zhang et al. (2015) state that the entity graph
model is limited, because it only captures mentions
which refer to the same entity (the entity graph uses
a very restricted version of coreference resolution to
determine entities). Zhang et al. (2015) use world
knowledge YAGO (Hoffart et al., 2013), WikiPedia
(Denoyer and Gallinari, 2006) and FreeBase (Bol-
lacker et al., 2008) to capture the semantic related-
ness between entities even if they do not refer to the
same entity. Main issues with using world knowl-
edge are: the choice knowledge sources, selection of
knowledge from the source, coverage, and language-
dependence.

Word embedding approaches like word2vec and

1415

GloVe (Mikolov et al., 2013; Pennington et al.,
2014) show that the semantic connection between
words can be captured by word vectors which are
obtained by applying a neural network. The ability
to train on very large data sets allows the model to
learn complex relationships between words.

3 Method

We introduce a new graph representation of seman-
tic connections over lexical items in texts. After-
wards we compute the frequency of all subgraphs,
i.e. coherence patterns. The intuition is that sub-
graphs capture how sentence nodes are connected
and, respectively, encode text coherence.

3.1 Graph Model
We model semantic relations between sentences by
a graphG = <V,E> where V is the set of sentence
nodes and E is the set of edges between sentence
nodes. Two nodes of G are adjacent if there is a se-
mantic connection between the corresponding sen-
tences. Two sentences are semantically connected if
there is at least one strong semantic relation between
the words of these sentences. We model seman-
tic relations between words by their corresponding
word embeddings (Pennington et al., 2014). Given
word vectors va for word a of sentence A and vb for
word b of sentence B, the cosine similarity value,
cos(va, vb), between the two word vectors is a mea-
sure of semantic connectivity of the two words. The
range of cos(va, vb) is between [−1,+1]. One in-
terpretation of cosine is the normalized correlation
coefficient, which states how well the two words
are semantically correlated (Manning and Schütze,
1999). The absolute value of cosine, |cos(va, vb)|,
encodes how strongly the two words are connected.

The connection between sentences is obtained
from connections between their words (Figure 1).
Assume sentenceA precedes sentenceB, each word
b of sentence B is connected with word a∗ of A,
where

a∗ = argmax
a∈A

cos(b, a)

Then from all connections between the words of
sentences A and B, the connection with the maxi-
mum weight among the words of B is selected to
connect these two sentences (Figure 2).

w1 w2 w3 w4 w5

Figure 1: Sentence A with three words {w1, w2, w3} and sen-

tence B with two words {w4, w5}. w4 is highly related to w2

and w5 is highly related to w3.

w1 w2 w3 w4 w5

(a)

A B

(b)
Figure 2: The word relation with the maximum weight (a) rep-

resents the connections between sentences (b).

The output of this phase is a graph whose edge
weights model the strength of connections between
sentences. The edges in this graph are directed to
model the order of sentences.

Word embeddings relate each word in sentence
A with each word in sentence B. Since the result-
ing graph is very dense, we filter out edges whose
weights are below a threshold1.

3.2 Coherence Features

Mesgar and Strube (2015) propose that the connec-
tion style of an entity graph can be captured by the
frequency of all k-node subgraphs in this graph.
Larger2 subgraphs3 can capture more information
about the structure of graphs and are more informa-
tive coherence patterns than smaller ones. We exper-
iment with k ∈ {3, 4, 5, 6}. Text coherence is repre-

1We set this threshold to 0.9 to connect only sentences with
high confidence.

2The size of a subgraph is the number of its nodes.
3We compute induced subgraphs (Mesgar and Strube,

2015). However, we use the term subgraph for brevity.

1416

sented by a vector whose elements are the frequency
of subgraphs (coherence patterns) with k-node.

3.3 Smoothing
Although increasing the size k of subgraphs captures
more structural information about the connections of
sentence nodes, a main risk with large subgraphs
is sparsity. Given a sentence graph, many large
subgraph types do not occur in this graph. Small
subgraph types occur frequently in most sentence
graphs in the dataset, but these subgraphs do not cap-
ture enough information about the connectivity style
of the graphs.

Inspired by Kneser-Ney smoothing in language
models (Heafield et al., 2013), each feature vector of
a sentence graph can be smoothed. Smoothing deals
with the problem of zero counts in the feature vec-
tor. It also lets the model having feature values for
unseen subgraphs (like OOV in language modeling)
which may be seen in the testing phase.

Kneser-Ney smoothing uses a discount factor to
discount the raw count of each event (subgraph) and
distributes the total discount to all event (subgraph)
probabilities by means of a base probability.

The estimated frequency of subgraph sg in a given
sentence graph is computed as follows:

KN(sg) =
max{count(sg)− α, 0}

Z
+
M · α
Z

Pb(sg),

where α is the discount factor and M is the number
of times that discount factor is applied. Z is a nor-
malization factor to ensure that the distribution sums
to one and is obtained as follows:

Z =
∑
sg∈A

count(sg),

whereA is the set of all subgraphs with k-nodes and
function count(·) computes the number of instances
of subgraph sg in the given sentence graph.
Pb(sg) in Kneser-Ney smoothing is the base prob-

ability of subgraph sg among all k-node subgraphs
(A). The base probability can be computed based
on hierarchical (parent-child) relations in subgraphs.
k-node subgraph sgi is a parent of (k+1)-node sub-
graph sgj , if sgi is a subgraph of sgj . Figure 3
shows the parent-child relation between subgraphs
via a weighted tree. The root of this tree is a null

graph4. The weight of a parent-child relation con-
necting the parent subgraph sgi and child subgraph
sgj is shown by wij and computed as follows:

wij =
count(sgi, sgj)∑

sgl∈A count(sgi, sgl)
,

where A is all subgraphs with k-node and k equals
the number of nodes of sgj . Interpretation of weight
wij is the normalized count of sgi in sgj with respect
to all outgoing edges from sgi.

The base probability of each subgraph sgj is the
inner product of the Kneser-Ney probabilities of
sgj’s parents by the weights of the corresponding
relations:

Pb(sgj) = P ·W, (1)

where P is the vector of probabilities of all parents
of sgj and W is the vector of all corresponding edge
weights connecting the parents of sgj to sgj .

Since the root node of this tree is the null sub-
graph, and it is a subgraph of all possible sentence
graphs, its base probability is one. Because the edge
weights are in the range [0, 1] the sum of the proba-
bilities of all subgraphs with k-node is always equal
to one.

Proof. Assume I and J are the set of all k-node
and (k+1)-node subgraphs. We also assume that I
has n subgraphs and

∑n
i=1 p(sgi) = 1. Considering

these assumptions we prove that

m∑
j=1

p(sgj) = 1,

where m is the number of subgraphs in J .
We start from the left and compute the value of

m∑
j=1

p(sgj).

Based on the definition of base probability, the value
of p(sgj) is computed based on its parents in I ,

p(sgj) =
n∑
i=1

wijp(sgi),

where wij is the weight of the parent-child relation
between sgi and sgj . Now we have:

4A null graph is a graph with no nodes.

1417

Figure 3: parent child relation.

m∑
j=1

p(sgj) =
m∑
j=1

n∑
i=1

wijp(sgi).

If we exchange the place of the sums and re-write
the equation, we have:

m∑
j=1

p(sgj) =
n∑
i=1

m∑
j=1

wijp(sgi).

In this equation p(sgi) is independent of j (index of
the inner sum), so it can be moved out of the inner
sum:

m∑
j=1

p(sgj) =
n∑
i=1

p(sgi)
m∑
j=1

wij

The inner sum equals 1.

m∑
j=1

p(sgj) =
n∑
i=1

p(sgi).

Based on our assumption the right side of the equa-
tion is 1 and

m∑
j=1

p(sgj) = 1.

So we proved that the sum of the base probability of
all k-node subgraphs is 1. �

This way, Kneser-Ney smoothing distributes the
total discount value by considering the weights of
parent-child relations among the subgraphs. The re-
sult of applying smoothing is an estimation of the
frequency of each subgraph in the sentence graph.

4 Experiments

4.1 Evaluation Task

We evaluate our coherence model on the task of
ranking texts by their readability. The intuition is
that more coherent texts are easier to read.

Datasets. We run our experiments on two datasets
annotated with readability information provided by
human annotators: P&N (Pitler and Nenkova, 2008)
and De Clercq (De Clercq et al., 2014).

The dataset P&N contains 27 articles randomly
selected from the Wall Street Journal corpus5. The
average number of sentences is about 10 words. Ev-
ery article is associated with a human score between
[0.0, 5.0] indicating the readability score of that arti-
cle. We create pairs of documents, if the difference
between their readability scores is greater than 0.5.
If the first document in a pair has the higher score,
we label this pair with +1, otherwise with −1. The
resulting number of text pairs in this dataset is 209.

The dataset De Clercq consists of 105 articles
from different genres: administrative (17 articles),
journalistic (43 articles), manuals (14 articles) and
miscellaneous (31 articles). The average number of
sentences is about 12. This dataset was annotated by
De Clercq et al. (2014) by asking human judges to
compare two texts based on their readability. They
use five labels:

5Pitler and Nenkova (2008)’s dataset contains 30 articles.
They remove one. We assume this is wsj-0382 which does
not exist in the Penn Treebank. We furthermore remove wsj-
-2090which does not exist in the final release of the Penn Dis-
course Treebank. We also remove wsj-1398 which is a poem
and, hence, not very informative for readability assessment.

1418

LME: left text is much easier,

LSE: left text is somewhat easier,

ED: both texts are equally difficult,

RSE: right text is somewhat easier,

RME: right text is much easier.

We map these labels to three class labels:

+1: for text pairs where the left text is easier to
read (LME or LSE),

0: for text pairs where both texts are equally dif-
ficult to read (ED),

−1: for text pairs where the right text is easier to
read (RSE or RME).

Properties of this dataset are shown in Table 1.

Genre No. of articles No. of text pairs
Administrative 17 272
Journalistic 43 1806
Manuals 14 182
Miscellaneous 31 931
Table 1: Properties of the different genres in the De Clercq

dataset.

4.2 Experimental Settings

Word Embeddings and Classification. In order
to reduce the effect of very frequent words, stop
words are filtered by using the SMART English
stop word list (Salton, 1971). We use a pretrained
model of GloVe for word embeddings. This model is
trained on Common Crawl with 840B tokens, 2.2M
vocabulary. We represent each word by a vector with
length 300 (Pennington et al., 2014). For handling
out-of-vocabulary words, we assign a random vector
to each word and memorize it for its next occurrence
(Kusner et al., 2015). The classification task is done
by the SVM implementation in WEKA (SMO) with
the linear kernel function. All settings are set to the
default values. The evaluation is computed by 10-
fold cross validation.

Graph Processing and Smoothing. In order to
compare the performance of LCG with the entity
graph model, we follow Mesgar and Strube (2015)
and use the gSpan method (Yan and Han, 2002) to
compute all common subgraphs on each dataset and
their frequencies. Note that gSpan does not count

all possible k-node subgraphs, whereas for apply-
ing Kneser-Ney smoothing it is necessary to count
all possible k-node subgraphs, because the proba-
bility should be distributed among all possible sub-
graphs. This also helps to estimate the probability of
unseen patterns. We use a random sampling method
(Shervashidze et al., 2009) to obtain the frequency
of subgraphs in a sentence graph. In this regard, we
take 10, 000 samples of the given sentence graph by
randomly selecting k nodes of the graph to count
the occurrence of k-node subgraphs in this graph.
We compute the base probability for at most k = 6.
We find the best value for d in a greedy manner.
First, we initialize d with 0.001. In each iteration
we compute the performance. Then we multiply the
discount factor by 10. We iterate as long as the dis-
count factor is less than 1000. We report the best
performance.

5 Results

In order to compare our method with related work,
we run our model on the P&N dataset. Table 2 re-
ports the accuracy of LCG with different values for k
in k-node subgraphs. This corresponds to coherence
patterns spanning different numbers of sentences.

System Accuracy
ZeroR 50.24%
EGrid 83.25%
k-node EGraph EGraph+PRN LCG
3-node 79.43% 80.38%** 78.95%
4-node 89.00% 89.95% 89.47%
5-node 96.17%** 95.69%** 97.13%

Table 2: P&N dataset.

We start in Table 2 with a majority class baseline
(ZeroR). EGrid is our reimplementation of Pitler and
Nenkova (2008) which we use as non-trivial base-
line. The column EGraph is the entity graph model
of Mesgar and Strube (2015). In EGraph+PRN we
extend this model by a pronoun resolution system,
so that entities mentioned by pronouns also enter
the graph. We apply the Stanford coreference res-
olution system (Lee et al., 2013). Using the full
coreference resolution system, however, decreases
performance, hence we only use resolved pronouns.
The enriched model with resolved pronouns works
slightly better for 3-node and 4-node subgraphs,

1419

and slightly worse for 5-node subgraphs than the
EGraph. The lexical coherence graph model, LCG,
performs slightly worse than EGraph on 3-node sub-
graphs. This could be because the graphs in LCG
have more edges than the graphs in EGraph. When
graphs are denser 3-node subgraphs occur in ev-
ery graph, hence their frequency is less discrimina-
tive. As shown in Table 2 larger subgraphs (4-node
and 5-node) capture more information and improve
upon EGraph and for 5-node subgraphs even upon
EGraph+PRN. LCG significantly (p value = 0.01)
works better than EGraph+PRN and EGraph using
5-node subgraphs. The difference between LCG and
EGraph+PRN and EGraph using 4-node subgraphs
is not significant.

Table 3 shows the performance of different mod-
els on the De Clercq dataset.

System Accuracy
ZeroR 42.312%
k-node EGraph+PRN LCG
3-node 42.31% 42.31%
4-node 48.07% 49.12%**
5-node 65.77% 76.27%**

Table 3: De Clercq dataset.

Again, we use a majority baseline (ZeroR) to put
our results in context. While the performance of
both methods almost does not beat the baseline for
3-node subgraphs, 4-node-subgraphs work already
better, and 5-node subgraphs yield reasonable per-
formance on this dataset. Although EGraph+PRN
and LCG reach almost the same performance for
4-node, the difference between them is statistically
significant (p value = 0.01). With 5-node sub-
graphs, LCG outperforms EGraph+PRN subgraphs
by a large margin and gets a very reasonable perfor-
mance on this dataset.

The general performance on the De Clercq dataset
is lower than the performance on the the P&N
dataset. This can have two reasons: first, the ranking
task on the De Clercq dataset is three-label classifi-
cation which is more difficult than the binary clas-
sification task on the P&N dataset. Second, texts in
the De Clercq dataset are from different genres and
coherence patterns may vary across genres. Hence,
we take a closer look on the performance on the dif-
ferent genres.

5-node EGraph+PRN LCG
Administrative 69.49% 71.69%
Journalistic 65.01% 82.12%
Manuals 54.95% 61.54%
Misc. 70.68% 76.69%

Table 4: Accuracy of EGraph+PRN and LCG on different gen-

res in the De Clercq dataset.

Table 4 shows the performance for EGraph+PRN
and LCG using 5-node subgraphs on the different
genres in the De Clercq dataset. The performance of
LCG is higher than EGraph+PRN on all genres. Un-
like EGraph+PRN, LCG gets the best performance
on journalistic articles. The lowest performance of
both models is obtained on manuals. On administra-
tive articles, performance of LCG is slightly better
than EGraph+PRN. On miscellaneous articles LCG
performs better than EGraph+PRN.

While large subgraphs are very informative for
coherence modeling, extracting large subgraphs
(k > 4) in relatively small datasets leads to a data
sparsity problem, as there are very many possible
subgraphs to be represented in a high dimensional
vector space. Hence, many possible subgraphs have
low or even zero counts. The problem for such a
vector is that each graph is only similar to itself and
not to any other graph. Hence, we observe a drop in
performance when the model deals with large sub-
graphs (6-node subgraphs, LCG1 for P&N in Table
5). We solve this problem by smoothing.

In order to apply Kneser-Ney smoothing we use
a sampling method to create all possible (connected
and disconnected) k-node subgraphs (for LCG1 and
LCG1* we use connected and disconnected sub-
graphs, for LCG only connected ones).

Table 5 shows the performance of LCG1 when it
is applied to ever larger subgraphs. As can be seen
in Table 5, the performance on the P&N dataset sud-
denly drops for 6-node subgraphs. This is could be
caused by the sparsity problem.

When we apply Kneser-Ney smoothing as de-
scribed in Section 3 the results for all tested values of
k are superior for LCG1* when compared to LCG1
(Table 5).

Kneser-Ney smoothing improves the performance
of the system even with 3-node subgraphs by a
large margin. Smoothing reduces the power of fre-

1420

P&N De Clercq
k-node LCG1 LCG1* LCG1 LCG1*
3-node 84.52% 89.00% 42.31% 49.60%
4-node 95.69% 96.17% 65.10% 66.23%
5-node 97.61% 98.08% 79.33% 79.85%
6-node 93.26% 95.69% 76.67% 78.03%

Table 5: Applying smoothing method yields to higher accuracy

for larger subgraphs.

quency and makes the frequency distribution of sub-
graphs more even. Smoothing reduces the values
through all subgraphs by considering parent-child
relations between subgraphs to relate similar sub-
graphs. That is the advantage of the Kneser-Ney
method in comparison to the other smoothing meth-
ods like Laplace-Smoothing.

For the P&N dataset we achieve the best results
to date. Pitler and Nenkova (2008) reported 83.25%
accuracy, Mesgar and Strube (2015) 89.95%. When
smoothing 5-node subgraphs we are able to report
98.08%. This, however, indicates that this dataset
may not be the best one to report performance on.
Hence, we now check whether smoothing also im-
proves the performance on the more difficult De
Clercq dataset.

On this dataset, we basically observe the same
trends. Both settings result in better performance
than LCG (see Table 3).

Note that none of the parameters in this work is
tuned on the datasets. One may get better perfor-
mance by tuning the parameters. The results con-
firm the intuition that the lexical coherence graph
LCG captures coherence and models lexical coher-
ence appropriately.

Applying smoothing on graphs of EGraph+PRN
model increases the performance of this model. But
this improvement is not as high as the improvement
on the LCG graph.

Coherence Patterns. In this part we check the
Pearson correlation coefficient between LCG1 and
human judgements of a few frequent subgraphs on
the P&N dataset. In order to be consistent with Mes-
gar and Strube (2015), we use the exhaustive value
of subgraph frequencies, i.e. LCG1 for our work.

For the 3-node subgraphs only one subgraph (Fig-
ure 4) in the LCG1 representation is significantly

(and positively) correlated (p-value< 0.05) with hu-
man scores. For the 4-node subgraphs, we find six
subgraphs which are significantly correlated with
readability. Only one is positively correlated, while
four are negatively correlated. Interestingly, both
positively correlated 3-node and 4-node subgraphs
have been determined as positively and significantly
correlated by Mesgar and Strube (2015) as well.
Both also capture a similar coherence pattern, indi-
cating that our method is linguistically sound.

Pattern ρ p-value

3-node 0.43 0.024

4-node -0.45 0.018

+0.39 0.047

-0.43 0.024

-0.59 0.001

-0.55 0.003

-0.55 0.003

Figure 4: Pearson correlation between 3-node and 4-node sub-

graphs and readability scores in the P&N dataset.

6 Conclusions and Future Work

In this paper we propose a new graph based co-
herence model, the lexical coherence graph, LCG.
We view coherence as semantic connectedness be-
tween words which we model by word embeddings.
We take only the strongest connection between sen-
tences to create a graph with connected sentences.
Then we extract large subgraphs capturing coher-
ence patterns, which show similarity to patterns de-
scribed in text linguistics (Daneš, 1974).

1421

While the entity grid works only on sequences of
up to three adjacent sentences, we are able to model
relationships of up to six non-adjacent sentences.
We solve the sparsity problem of large subgraphs by
adapting Kneser-Ney smoothing to graphs. Smooth-
ing prevents LCG from losing performance with
large subgraphs and leads to superior performance
on the Pitler and Nenkova (2008) dataset and to a
first reasonable state-of-the-art on the De Clercq et
al. (2014) dataset.

In future work we want to apply LCG to essay
scoring as well. Also, we see that our adaption of
Kneser-Ney smoothing to graphs may be useful for
research in subgraph mining in general.

Acknowledgments

This work has been funded by the Klaus Tschira
Foundation, Heidelberg, Germany. The first author
has been supported by a HITS Ph.D. scholarship.
We would like to thank Orphée De Clercq who pro-
vided the De Clercq dataset. We also appreciate An-
dreas Spitz’ comments on graph processing.

References
Regina Barzilay and Mirella Lapata. 2008. Modeling

local coherence: An entity-based approach. Computa-
tional Linguistics, 34(1):1–34.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management
of Data, Vancouver, B.C., Canada, 10–12 June 2008,
pages 1247–1250.

František Daneš. 1974. Functional sentence perspec-
tive and the organization of the text. In F. Daneš, edi-
tor, Papers on Functional Sentence Perspective, pages
106–128. Prague: Academia.

Orphée De Clercq, Véronique Hoste, Bart Desmet, Philip
Van Oosten, Martine De Cock, and Lieve Macken.
2014. Using the crowd for readability prediction. Nat-
ural Language Engineering, 20(3):293–325.

Ludovic Denoyer and Patrick Gallinari. 2006. The
Wikipedia XML corpus. ACM SIGIR Forum,
40(1):64–69.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Sofia,
Bulgaria, 4–9 August 2013, pages 93–103.

M. A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion
in English. London, U.K.: Longman.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), Sofia,
Bulgaria, 4–9 August 2013, pages 690–696.

Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich,
and Gerhard Weikum. 2013. YAGO2: A spa-
tially and temporally enhanced knowledge based from
Wikipedia. Artificial Intelligence, 194:28–61.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q.
Weinberger. 2015. From word embeddings to doc-
ument distances. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, Lille, France,
6–11 July 2015, pages 918–927.

Heeyoung Lee, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Christopher D. Manning and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge, Mass.

Mohsen Mesgar and Michael Strube. 2014. Normalized
entity graph for computing local coherence. In Pro-
ceedings of TextGraphs-9: Graph-based Methods for
Natural Language Processing, Workshop at EMNLP
2014, Doha, Qatar, 29 October 2014, pages 1–5.

Mohsen Mesgar and Michael Strube. 2015. Graph-based
coherence modeling for assessing readability. In Pro-
ceedings of STARSEM 2015: The Fourth Joint Confer-
ence on Lexical and Computational Semantics, Den-
ver, Col., 4–5 June 2015, pages 309–318.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their composi-
tionality. In Proceedings of Advances in Neural Infor-
mation Processing Systems 26. Lake Tahoe, Nev., 5–8
December 2013, pages 3111–3119.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
Doha, Qatar, 25–29 October 2014, pages 1532–1543.

Emily Pitler and Ani Nenkova. 2008. Revisiting
readability: A unified framework for predicting text
quality. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Process-
ing, Waikiki, Honolulu, Hawaii, 25–27 October 2008,
pages 186–195.

1422

Gerard Salton. 1971. The SMART Retrieval System –
Experiments in Automatic Document Processing. En-
glewood Cliffs, N.J.: Prentice Hall.

Nino Shervashidze, Tobias Petri, Kurt Mehlhorn,
Karsten M. Borgwardt, and SVN Vishwanathan.
2009. Efficient graphlet kernels for large graph com-
parison. In International Conference on Artificial In-
telligence and Statistics, Clearwater Beach, Florida,
16–18 April 2009, pages 488–495.

Xifeng Yan and Jiawei Han. 2002. gSpan: Graph-based
substructure pattern mining. In Proceedings of the
International Conference on Data Mining, Maebashi
City, Japan, 9–12 December 2002, pages 721–724.

Muyu Zhang, Vanessa Wei Feng, Bing Qin, Graeme
Hirst, Ting Liu, and Jingwen Huang. 2015. Encod-
ing world knowledge in the evaluation of local coher-
ence. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Denver, Col., 31 May – 5 June 2015, pages 1087–
1096.

1423

Proceedings of NAACL-HLT 2016, pages 1424–1430,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Using Context to Predict the Purpose of Argumentative Writing Revisions

Fan Zhang
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA, 15260

zhangfan@cs.pitt.edu

Diane Litman
Department of Computer Science and LRDC

University of Pittsburgh
Pittsburgh, PA, 15260

litman@cs.pitt.edu

Abstract

While there is increasing interest in automat-
ically recognizing the argumentative structure
of a text, recognizing the argumentative pur-
pose of revisions to such texts has been less
explored. Furthermore, existing revision clas-
sification approaches typically ignore contex-
tual information. We propose two approaches
for utilizing contextual information when pre-
dicting argumentative revision purposes: de-
veloping contextual features for use in the
classification paradigm of prior work, and
transforming the classification problem to a
sequence labeling task. Experimental results
using two corpora of student essays demon-
strate the utility of contextual information for
predicting argumentative revision purposes.

1 Introduction

Incorporating natural language processing into sys-
tems that provide writing assistance beyond gram-
mar is an area of increasing research and commer-
cial interest (e.g., (Writelab, 2015; Roscoe et al.,
2015)). As one example, the automatic recognition
of the purpose of each of an author’s revisions allows
writing assistance systems to provide better rewrit-
ing suggestions. In this paper, we propose context-
based methods to improve the automatic identifica-
tion of revision purposes in student argumentative
writing. Argumentation plays an important role in
analyzing many types of writing such as persuasive
essays (Stab et al., 2014), scientific papers (Teufel,
2000) and law documents (Palau and Moens, 2009).
In student papers, identifying revision purposes with

respect to argument structure has been used to pre-
dict the grade improvement in the paper after revi-
sion (Zhang and Litman, 2015).

Existing works on the analysis of writing revi-
sions (Adler et al., 2011; Bronner and Monz, 2012;
Daxenberger and Gurevych, 2013; Zhang and Lit-
man, 2015) typically compare two versions of a text
to extract revisions, then classify the purpose of each
revision in isolation. That is, while limited con-
textual features such as revision location have been
utilized in prior work, such features are computed
from the revision being classified but typically not
its neighbors. In addition, ordinary classifiers rather
than structured prediction models are typically used.
To increase the role of context during prediction, in
this paper we 1) introduce new contextual features
(e.g., the impact of a revision on local text cohesion),
and 2) transform revision purpose classification to
a sequential labeling task to capture dependencies
among revisions (as in Table 1). An experimental
evaluation demonstrates the utility of our approach.

2 Related Work

There are multiple works on the classification of
revisions (Adler et al., 2011; Javanmardi et al.,
2011; Bronner and Monz, 2012; Daxenberger and
Gurevych, 2013; Zhang and Litman, 2015). While
different classification tasks were explored, similar
approaches were taken by extracting features (lo-
cation, text, meta-data, language) from the revised
text to train a classification model (SVM, Random
Forest, etc.) on the annotated data. One problem
with prior works is that the contextual features used
were typically shallow (location), while we cap-

1424

Draft 1 Draft 2
[1] Writer Richard Louv tells us to focus more
on nature through his rhetorical questions, par-
allelism, and pathos. [2] Louvs rhetorical ques-
tions as us whether we value technology or na-
ture over the other.

[1] Writer Richard Louv emphasises this ex-
panding chasm between people and nature and
tries to convince people to go back to nature
through his parallelism and pathos.

[First Revision: 1->1,Type: Claim, Modify], [Second Revision: 2->null,Type: Warrant, Delete]

Table 1: Example dependency between Claim and Warrant revisions. Sentence 1 acts as the Claim (argument structure) of Draft 1

and sentence 2 acts as the Warrant for the Claim. Sentence 1 in Draft 1 is modified to sentence 1 (also acts as the Claim) of Draft 2.

Sentence 2 in Draft 1 is deleted in Draft 2. The first revision is a Claim revision as it modifies the Claim of the paper by removing

“rhetorical questions.” This leads to the second Warrant revision, which deletes the Warrant for “rhetorical questions.”

ture additional contextual information as text cohe-
sion/coherence changes and revision dependencies.

As our task focuses on identifying the argumen-
tative purpose of writing revisions, work in argu-
ment mining is also relevant. In fact, many fea-
tures for predicting argument structure (e.g., loca-
tion, discourse connectives, punctuation) (Burstein
and Marcu, 2003; Moens et al., 2007; Palau and
Moens, 2009; Feng and Hirst, 2011) are also used
in revision classification. In addition, Lawrence et
al. (2014) use changes in topic to detect argumen-
tation, which leads us to hypothesize that different
types of argumentative revisions will have different
impacts on text cohesion and coherence. Guo et al.
(2011) and Park et al. (2015) both utilize Condi-
tional Random Fields (CRFs) for identifying argu-
mentative structures. While we focus on the differ-
ent task of identifying revisions to argumentation,
we similarly hypothesize that dependencies exist be-
tween revisions and thus utilize CRFs in our task.
While our task is similar to argument mining, a key
difference is that the revisions do not always appear
near each other. For example, a 5-paragraph long
essay might have only two or three revisions located
at different paragraphs. Thus, the types of previous
revisions cannot always be used as the contextual
information. Moreover, the type of the revision is
not necessarily the argument type of its revised sen-
tence. For example, a revision on the evidence argu-
ment can be just a correction of spelling mistakes.

3 Data Description

Revision purposes. To label our data, we adapt
the schema defined in (Zhang and Litman, 2015)
as it can be reliably annotated and is argument-

Category # in A # in B
Total 1267 1044
Claims/Ideas 111 76
Warrant/Reasoning/Backing 390 327
Evidence 110 34
General Content 356 216
Surface 300 391

Table 2: Distribution of revisions in Corpus A, B.

oriented. Sentences across paper drafts are aligned
manually based on semantic similarity and re-
vision purpose categories are labeled on aligned
sentences. The schema includes four categories
(Claims/Ideas, Warrant/Reasoning/Backing, Rebut-
tal/Reservation and Evidence) based on Toulmin’s
argumentation model (Toulmin, 2003), a General
Content category for revisions that do not directly
change the support/rebuttal of the claim (e.g. ad-
dition of introductory materials, conclusions, etc.),
and three categories (Conventions, Clarity and Or-
ganization) based on the Surface categorizations in
(Faigley and Witte, 1981). As we focus on argu-
mentative changes, we merge all the Surface sub-
categories into one Surface category. As Zhang and
Litman (2015) reported that both Rebuttals and mul-
tiple labels for a single revision were rare, we merge
Rebuttal and Warrant into one Warrant category1

and allow only a single (primary) label per revision.
Corpora. Our experiments use two corpora con-

sisting of Drafts 1 and 2 of papers written by high
school students taking AP-English courses; papers
were revised after receiving and generating peer
feedback. Corpus A was collected in our earlier pa-

1We also believe that differentiating Warrant and Rebuttal
revisions requires sentiment analysis.

1425

per (Zhang and Litman, 2015), although the origi-
nal annotations were modified as described above. It
contains 47 paper draft pairs about placing contem-
poraries in Dante’s Inferno. Corpus B was collected
in the same manor as A with agreement Kappa 0.69.
It contains 63 paper draft pairs explaining the rhetor-
ical strategies used by the speaker/author of a previ-
ously read lecture/essay. Both corpora were double
coded and gold standard labels were created upon
agreement of two annotators. Two example anno-
tated revisions from Corpus B are shown in Table 1,
while the distribution of annotated revision purposes
for both corpora are shown in Table 2.

4 Utilizing Context

4.1 Adding contextual features

Our previous work (Zhang and Litman, 2015) used
three types of features primarily from prior work
(Adler et al., 2011; Bronner and Monz, 2012; Dax-
enberger and Gurevych, 2013) for argumentative re-
vision classification. Location features encode the
location of the sentence in the paragraph and the lo-
cation of the sentence’s paragraph in the essay. Tex-
tual features encode revision operation, sentence
length, edit distance between aligned sentences and
the difference in sentence length and punctuation
numbers. Language features encode part of speech
(POS) unigrams and difference in POS tag counts.

We implement this feature set as the baseline as
our tasks are similar, then propose two new types
of contextual features. The first type (Ext) extends
prior work by extracting the baseline features from
not only the aligned sentence pair representing the
revision in question, but also for the sentence pairs
before and after the revision. The second type (Coh)
measures the cohesion and coherence changes in a
2-sentence block around the revision2.

Utilizing the cohesion and coherence difference.
Inspired by (Lee et al., 2015; Vaughan and McDon-
ald, 1986), we hypothesize that different revisions
can have different impacts on the cohesion and co-
herence of the essay. We propose to extract fea-
tures for both impact on cohesion (lexical) and im-
pact on coherence (semantic). Inspired by (Hearst,
1997), sequences of blocks are created for sentences

2In this paper we consider the most adjacent sentence only.

Figure 1: Example of cohesion blocks. A window of size 2 is

created for both Draft 1 and Draft 2. Sequence of blocks were

created by moving the window at the step of 1 (sentence).

Figure 2: Example of revision sequence transformation. Each

square corresponds to a sentence in the essay, the number of the

square represents the index of the sentence in the essay. Dark

squares are sentences that are changed. In the example, the 2nd

sentence of Draft 1 is modified, the 3rd sentence is deleted and

a new sentence is added in Draft 2.

in both Draft 1 and Draft 2 as demonstrated in Fig-
ure 1. Two types of features are extracted. The
first type describes the cohesion and coherence be-
tween the revised sentence and its adjacent sen-
tences. The similarity (lexical/semantic) between
the revised sentence block and the sentence block
before (Sim(Block Up,Block Up Self)) and af-
ter (Sim(Block Down,Block Down Self)) are
calculated as the cohesion/coherence scores Coh Up
and Coh Down. The features are extracted sep-
arately for Draft 1 and Draft 2 sentences3. The
second type describes the impact of sentence mod-
ification on cohesion and coherence4. Features
Change Up and Change Down are extracted as the
division of the cohesion/coherence scores of two
drafts (Coh Up(Draft2)

Coh Up(Draft1) , Coh Down(Draft2)
Coh Down(Draft1)).

A bag-of-word representation is generated for

3For the added and deleted sentences, features of the empty
sentence in the other draft are set to 0.

4The feature values of sentence additions/deletions are 0.

1426

SVM CRFs
Base(B) B+Ext B+Coh All B B+Ext B+Coh All

A P 0.666 0.689 0.673 0.684 0.682 0.703∗ 0.686 0.701∗
R 0.620 0.632 0.630 0.630 0.633 0.642∗ 0.635 0.642∗
F 0.615 0.630 0.619 0.626 0.632 0.644∗ 0.633 0.643∗

B P 0.530 0.543 0.559 ∗ 0.553∗ 0.598∗ 0.615 ∗ 0.639∗ 0.655∗
R 0.516 0.525 0.534 0.532 0.518 0.524 0.532 0.532
F 0.502 0.510 0.524 ∗ 0.520∗ 0.550∗ 0.559∗ 0.573∗ 0.584∗

Table 3: The average of 10-fold (student) cross-validation results on Corpora A and B. Unweighted precision (P), Unweighted

recall (R) and Unweighted F-measure (F) are reported. Results of CRFs on paragraph-level segments are reported (there is no

significant difference between essay level and paragraph level). ∗ indicates significantly better than the baseline, Bold indicates

significantly better than all other results (Paired T-test, p < 0.05).

each sentence block after stop-word filtering and
stemming. Jaccard similarity is used for the calcu-
lation of lexical similarity between sentence blocks.
Word embedding vectors (Mikolov et al., 2013) are
used for the calculation of semantic similarity. A
vector is calculated for each sentence block by sum-
ming up the embedding vectors of words that are
not stop-words5. Afterwards the similarity is cal-
culated as the cosine similarity between the block
vectors. This approach has been taken by multiple
groups in the SemEval-2015 semantic similarity task
(SemEval-2015 Task 1)(Xu et al., 2015).

4.2 Transforming to sequence labeling

To capture dependencies among predicted revisions,
we transform the revisions to a consecutive sequence
and label it with Conditional Random Fields (CRFs)
as demonstrated in Figure 2. For both drafts, sen-
tences are sorted according to their order of occur-
rence in the essay. Aligned sentences are put into
the same row and each aligned pair of sentences is
treated as a unit of revision. The “cross-aligned”
pairs of sentences6 (which does not often occur)
are broken into deleted and added sentences (i.e,
the cross-aligned sentences in Draft 1 are treated
as deleted and the sentences in Draft 2 are treated
as added.). After generating the sequence, each re-
vision unit in the sequence is assigned the revision
purpose label according to the annotations, with un-
changed sentence pairs labeled as Nochange.

5We also tried the average of embedding vectors but ob-
served no significant difference between the two approaches.

6Sentences in Draft 1 switched their positions in Draft 2,
the cross-aligned sentences cannot be both in the same row and
following their order of occurrence at the same time.

We conducted labeling on both essay-level and
paragraph-level sequences. The essay-level treats
the whole essay as a sequence segment while the
paragraph-level treats each paragraph as a segment.
After labeling, the label of each changed sentence
pair is marked as the purpose of the revision7.

5 Experiments and Results

Our prior work (Zhang and Litman, 2014) proposed
an approach for the alignment of sentences. The ap-
proach achieves 92% accuracy on both corpora. In
this paper we focus on the prediction task and as-
sume we have gold-standard sentence alignments8.
The first four columns of Table 3 show the perfor-
mance of baseline features with and without our
new contextual features using an SVM prediction
model9. The last four columns show the perfor-
mance of CRFs10. All experiments are conducted
using 10-fold (student) cross-validation with 300
features selected using learning gain ratio11.

For the SVM approach, we observe that the
Coh features yield a significant improvement over
the baseline features in Corpus B, and a non-
significant improvement in Corpus A. This indicates
that changes in text cohesion and coherence can in-

7Revisions on cross-aligned pairs are marked as Surface.
8Similar to settings in (Daxenberger and Gurevych, 2013)
9We compared three models used in discourse analysis and

revision classification (C4.5 Decision Tree, SVM and Random
Forests) (Burstein et al., 2003; Bronner and Monz, 2012; Stab
and Gurevych, 2014) and SVM yielded the best performance.

10SVM model implemented with Weka (Hall et al., 2009) and
CRF model implemented with CRFSuite (Okazaki, 2007)

11We tested with parameters 100, 200, 300, 500 on a devel-
opment dataset disjoint from Corpora A and B and chose 300
which yielded the best performance.

1427

0

20

40

60

80

100
Distribution of errors

SVM CRFs

Figure 3: The number of classification errors on Corpus A, “Warrant-General” represents classifying Warrant as General.

deed improve the prediction of argumentative revi-
sion types. The Ext feature set - which computes
features for not only the revision but also its im-
mediately adjacent sentences - also yields a slight
(although not significant) improvement. However,
adding the two feature sets together does not fur-
ther improve the performance using the SVM model.
The CRF approach almost always yields the best
results for both corpora, with all such CRF results
better than all other results. This indicates that de-
pendencies exist among argumentative revisions that
cannot be identified with traditional classification
approaches.

6 Error Analysis

To have a better understanding of how the sequence
labeling approach improves the classification perfor-
mance, we counted the errors of the cross-validation
results on Corpus A (where the revisions are more
evenly distributed). Figure 3 demonstrates the com-
parison of errors made by SVM and CRFs12.

We notice that the CRF approach makes less er-
rors than the SVM approach in recognizing Claim
changes (General-Claim, Evidence-Claim, Warrant-
Claim, Surface-Claim). This matches our intuition
that there exists dependency between revisions on
supporting materials and revisions on Claim. We
also observe that same problems exist in both ap-
proaches. The biggest difficulty is the differentia-
tion between General and Warrant revisions, which
counts 37.6% of the SVM errors and 40.1% of CRFs
errors. It is also common that Claim and Evidence

12Both use models with all the features.

revisions are classified as Warrant revisions. Ap-
proaches need to be designed for such cases to fur-
ther improve the classification performance.

7 Conclusion

In this paper we proposed different methods for uti-
lizing contextual information when predicting the
argumentative purpose of revisions in student writ-
ing. Adding features that captured changes in text
cohesion and coherence, as well as using sequence
modeling to capture revision dependencies, both sig-
nificantly improved predictive performance in an ex-
perimental evaluation.

In the future, we plan to investigate whether per-
formance can be further improved when more sen-
tences in the context are included. Also, we plan
to investigate whether revision dependencies exist in
other types of corpora such as Wikipedia revisions.
While the corpora used in this study cannot be pub-
lished because of the lack of required IRB, we are
starting a user study project (Zhang et al., 2016) on
the application of our proposed techniques and will
publish the data collected from this project.

Acknowledgments

We would like to thank our annotators, especially
Jiaoyang Li, who contributed significantly to the
building of our corpus. We also want to thank
the members of the SWoRD and ITSPOKE groups
for their helpful feedback and all the anonymous
reviewers for their suggestions. This research is
funded by the Learning Research and Development
Center of the University of Pittsburgh.

1428

References
B. Thomas Adler, Luca De Alfaro, Santiago M. Mola-

Velasco, Paolo Rosso, and Andrew G. West. 2011.
Wikipedia vandalism detection: Combining natural
language, metadata, and reputation features. In Pro-
ceedings of the 12th International Conference on
Computational Linguistics and Intelligent Text Pro-
cessing - Volume Part II, CICLing’11, pages 277–288,
Berlin, Heidelberg. Springer-Verlag.

Amit Bronner and Christof Monz. 2012. User edits
classification using document revision histories. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, pages 356–366. Association for Computational
Linguistics.

Jill Burstein and Daniel Marcu. 2003. A machine learn-
ing approach for identification thesis and conclusion
statements in student essays. Computers and the Hu-
manities, 37(4):455–467.

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the write stuff: Automatic identification of
discourse structure in student essays. Intelligent Sys-
tems, IEEE, 18(1):32–39.

Johannes Daxenberger and Iryna Gurevych. 2013. Auto-
matically classifying edit categories in Wikipedia re-
visions. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 578–589, Seattle, Washington, USA, October.
Association for Computational Linguistics.

Lester Faigley and Stephen Witte. 1981. Analyzing revi-
sion. College composition and communication, pages
400–414.

Vanessa Wei Feng and Graeme Hirst. 2011. Classify-
ing arguments by scheme. In Proceedings of the 49th
Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 987–996. Association for Computational Lin-
guistics.

Yufan Guo, Anna Korhonen, and Thierry Poibeau. 2011.
A weakly-supervised approach to argumentative zon-
ing of scientific documents. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 273–283. Association for
Computational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H Witten. 2009.
The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18.

Marti A Hearst. 1997. Texttiling: Segmenting text into
multi-paragraph subtopic passages. Computational
linguistics, 23(1):33–64.

Sara Javanmardi, David W McDonald, and Cristina V
Lopes. 2011. Vandalism detection in wikipedia: a

high-performing, feature-rich model and its reduction
through lasso. In Proceedings of the 7th International
Symposium on Wikis and Open Collaboration, pages
82–90. ACM.

John Lawrence, Chris Reed, Colin Allen, Simon McAl-
ister, and Andrew Ravenscroft. 2014. Mining ar-
guments from 19th century philosophical texts using
topic based modelling. In Proceedings of the First
Workshop on Argumentation Mining, pages 79–87,
Baltimore, Maryland, June. Association for Compu-
tational Linguistics.

John Lee, Chak Yan Yeung, Amir Zeldes, Marc
Reznicek, Anke Lüdeling, and Jonathan Webster.
2015. Cityu corpus of essay drafts of english language
learners: a corpus of textual revision in second lan-
guage writing. Language Resources and Evaluation,
pages 1–25.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Marie-Francine Moens, Erik Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic detection
of arguments in legal texts. In Proceedings of the 11th
international conference on Artificial intelligence and
law, pages 225–230. ACM.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs).

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: the detection, classifi-
cation and structure of arguments in text. In Proceed-
ings of the 12th international conference on artificial
intelligence and law, pages 98–107. ACM.

Joonsuk Park, Arzoo Katiyar, and Bishan Yang. 2015.
Conditional random fields for identifying appropriate
types of support for propositions in online user com-
ments. In Proceedings of the 2nd Workshop on Ar-
gumentation Mining, pages 39–44, Denver, CO, June.
Association for Computational Linguistics.

Rod D Roscoe, Erica L Snow, Laura K Allen, and
Danielle S McNamara. 2015. Automated detection
of essay revising patterns: applications for intelligent
feedback in a writing tutor. Technology, Instruction,
Cognition, and Learning.

Christian Stab and Iryna Gurevych. 2014. Identifying ar-
gumentative discourse structures in persuasive essays.
In EMNLP, pages 46–56.

Christian Stab, Christian Kirschner, Judith Eckle-Kohler,
and Iryna Gurevych. 2014. Argumentation mining in
persuasive essays and scientific articles from the dis-
course structure perspective. Frontiers and Connec-
tions between Argumentation Theory and Natural Lan-
guage Processing, Bertinoro, Italy.

1429

Simone Teufel. 2000. Argumentative zoning: Informa-
tion extraction from scientific text. Ph.D. thesis, Cite-
seer.

Stephen E Toulmin. 2003. The uses of argument. Cam-
bridge University Press.

Marie M Vaughan and David D McDonald. 1986. A
model of revision in natural language generation. In
Proceedings of the 24th annual meeting on Associa-
tion for Computational Linguistics, pages 90–96. As-
sociation for Computational Linguistics.

Writelab. 2015. WriteLab. http://home.writelab.com.
[Online; accessed 10-03-2015].

Wei Xu, Chris Callison-Burch, and William B Dolan.
2015. Semeval-2015 task 1: Paraphrase and seman-
tic similarity in twitter (pit). In Proceedings of the 9th
International Workshop on Semantic Evaluation (Se-
mEval).

Fan Zhang and Diane Litman. 2014. Sentence-level
rewriting detection. In Proceedings of the Ninth Work-
shop on Innovative Use of NLP for Building Educa-
tional Applications, pages 149–154, Baltimore, Mary-
land, June. Association for Computational Linguistics.

Fan Zhang and Diane Litman. 2015. Annotation and
classification of argumentative writing revisions. In
Proceedings of the Tenth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
133–143, Denver, Colorado, June. Association for
Computational Linguistics.

Fan Zhang, Rebecca Hwa, Diane Litman, and Huma
Hashemi. 2016. Argrewrite: A web-based revision
assistant for argumentative writings. In Proceedings
of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Demonstrations, San Diego, California, June. Associ-
ation for Computational Linguistics.

1430

Proceedings of NAACL-HLT 2016, pages 1431–1441,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Automatic Generation and Scoring of Positive Interpretations
from Negated Statements

Eduardo Blanco and Zahra Sarabi
Human Intelligence and Language Technologies Lab

University of North Texas
Denton, TX, 76203

eduardo.blanco@unt.edu, zahrasarabi@my.unt.edu

Abstract

This paper presents a methodology to extract
positive interpretations from negated state-
ments. First, we automatically generate plau-
sible interpretations using well-known gram-
mar rules and manipulating semantic roles.
Second, we score plausible alternatives ac-
cording to their likelihood. Manual annota-
tions show that the positive interpretations are
intuitive to humans, and experimental results
show that the scoring task can be automated.

1 Introduction

Negation is an intricate phenomenon present in all
human languages (Hoeksema, 2000), and studied
from a theoretical perspective since Aristotle. Ac-
quiring and understanding negation is more chal-
lenging than language in general: children acquire
negation after learning to communicate (Nordmeyer
and Frank, 2013), and adults take longer to pro-
cess negative sentences than positive ones (Clark
and Chase, 1972). In any given language, humans
communicate in positive terms most of the time, and
use negation to express something unusual or an ex-
ception (Horn, 1989).

In classical logic, negation is a simple unary op-
erator that reverses the truth value of a proposi-
tion. In natural language, negation is always marked
(Horn and Wansing, 2015) and it is used to re-
verse polarity, i.e., turning something affirmative
into negative, or something negative into affirma-
tive. Albeit most sentences are affirmative, negation
is rather ubiquitous (Morante and Sporleder, 2012):
In scientific papers, 13.76% of statements contain a
negation (Szarvas et al., 2008); in product reviews,
19% (Councill et al., 2010); and in a selection of

Conan Doyle stories, 22.23% (Morante and Daele-
mans, 2012). In health records, 12.3% of concepts
are tagged as negated (Elkin et al., 2005); and in
OntoNotes (Hovy et al., 2006), 10.15% of state-
ments contain a verb negated with not, n’t or never.

From a theoretical perspective, it is accepted that
negation conveys positive meaning (Rooth, 1992;
Huddleston and Pullum, 2002). For example, when
reading (1) John doesn’t eat meat, humans intu-
itively understand that (1a) John eats something
other than meat, and (1b) Some people eat meat, but
not John. Extracting positive interpretations from
negated statements automatically is not straightfor-
ward: a negated statement may convey one or more
positive interpretations, and not all positive interpre-
tations are equally likely. For example, from (2)
They didn’t order the right parts, it is very likely that
(2a) They ordered the wrong parts, but (2b) Some-
body ordered the right parts, but not they is unlikely.

This paper presents a methodology to automati-
cally extract and score positive interpretations from
negated statements, as intuitively done by humans
when reading text. A key feature of the work pre-
sented here is that it is not tied to any existing ap-
proach to extract meaning from text—we generate
positive interpretations in plain text, and these pos-
itive interpretations can be semantically represented
with any existing approach. The main contributions
are: (1) procedure to automatically generate plausi-
ble positive interpretations from negated statements,
(2) annotations scoring plausible positive interpre-
tations,1 and (3) experiments detailing results with
several combinations of features, as well as gold-
standard and predicted linguistic information.

1Available at http://hilt.cse.unt.edu/

1431

2 Background and Definitions

Negation is well-understood in grammars, the valid
ways to form a negation are well-documented
(Quirk et al., 2000; van der Wouden, 1997). Nega-
tion can be expressed by verbs (e.g., avoid doing any
look-up), nouns (e.g., the absence of any phonic se-
quence), adjectives (e.g., it is pointless to argue with
a fool), adverbs (e.g., I never tried Persian food be-
fore), prepositions (e.g., you can always exchange it
without a problem), determiners (e.g., the new law
has no direct implications to international shipping),
pronouns (e.g., nobody will keep election promises).

Huddleston and Pullum (2002) distinguish four
negation types:

• Verbal if the marker of negation is grammati-
cally associated with a verb, e.g., I did not see
anything, non-verbal if it is associated with a
dependent of the verb, e.g., I saw nothing.
• Synthetic if the negation mark has a func-

tion besides marking a negation, e.g.,
[Nobody]AGENT liked it, analytic otherwise,
e.g., Not many people liked it.
• Clausal if the negation yields a negative clause,

e.g., The terms aren’t negotiable, subclausal
otherwise, e.g., The terms are non-negotiable.
• Ordinary if the negation indicates that some-

thing is not the case, e.g., That car does not
drive smooth, metalinguistic if it does not dis-
pute the truth but rather reformulates a state-
ment, e.g., That TV is not small, it is tiny.

In this paper, we target verbal, analytic, clausal
and both ordinary and metalinguistic negation.

2.1 Positive Interpretations.

In philosophy and linguistics, it is generally
accepted that negation conveys positive mean-
ings (Horn, 1989). These positive meanings range
from implicatures, i.e., what is suggested in an ut-
terance even though neither expressed nor strictly
implied (Blackburn, 2008), to entailments. Other
terms used in the literature include implied mean-
ings (Mitkov, 2005), implied alternatives (Rooth,
1985) and semantically similars (Agirre et al.,
2013). We do not strictly fit into any of this terminol-
ogy, we reveal positive interpretations as intuitively
done by humans when reading text.

2.2 Scope and Focus.

From a theoretical perspective, it is accepted that
negation has scope and focus, and that the focus—
not just the scope—yields positive interpretations
(Horn, 1989; Rooth, 1992; Taglicht, 1984). Scope
is “the part of the meaning that is negated” and fo-
cus “the part of the scope that is most prominently or
explicitly negated” (Huddleston and Pullum, 2002).

Consider the following statement in the context
of the recent refuge crisis: (3) Mr. Haile was
not looking for heaven in Europe. By definition,
scope refers to “all elements whose individual falsity
would make the negated statement strictly true”, and
focus is “the element of the scope that is intended to
be interpreted as false to make the overall negative
true” (Huddleston and Pullum, 2002). The falsity of
any of the truth conditions below makes statement
(3) true, thus the scope of the negation is (3a–3d):

3a. Somebody was looking for something some-
where. [verb looking]

3b. Mr. Haile was looking for something some-
where. [AGENT of looking, Mr. Haile]

3c. Somebody was looking for heaven some-
where. [THEME of looking, heaven]

3d. Somebody was looking for something in Eu-
rope. [LOCATION of looking, in Europe]

Determining the focus is almost always more
challenging than the scope. The challenge lies on
determining which of the truth conditions (3a–3d)
is intended to be interpreted as false to make the
negated statement true: all of them qualify, but some
are more likely. A natural reading of statement (3)
suggests that Mr. Haile was looking for something (a
regular life, a job, etc.) in Europe, but not heaven.
Determining that the focus is heaven, i.e., that ev-
erything in statement (3) is actually positive except
the THEME of looking, is the key to reveal the in-
tended positive interpretation. It is worth noting
that other foci yield unlikely interpretations, e.g.,
Somebody was looking for heaven in Europe, but not
Mr. Haile (3b, AGENT), Mr. Haile was looking for
heaven somewhere, but not in Europe (3d, LOCA-
TION). Note that (1) scope on its own does not yield
positive interpretations, and (2) some negated state-
ments convey several likely positive interpretations,
e.g., statement (1) in Section 5, Table 3.

1432

3 Previous Work

Within computational linguistics, approaches to pro-
cess negation are shallow, or target scope and focus
detection. Popular semantic representations such as
semantic roles (Palmer et al., 2005; Baker et al.,
1998) or AMR (Banarescu et al., 2013) do not reveal
the positive interpretations we target in this paper.
Shallow approaches are usually application-specific.
In sentiment and opinion analysis, negation has been
reduced to marking as negated all words between a
negation cue and the first punctuation mark (Pang et
al., 2002), or within a five-word window of a nega-
tion cue (Hu and Liu, 2004). The examples through-
out this paper show that these techniques are insuffi-
cient to reveal implicit positive interpretations.

3.1 Scope Annotation and Detection
Scope of negation detection has received a lot of
attention, mostly using two corpora: BioScope in
the medical domain (Szarvas et al., 2008) and CD-
SCO (Morante and Daelemans, 2012). BioScope
annotates negation cues and linguistic scopes exclu-
sively in biomedical texts. CD-SCO annotates nega-
tion cues, scopes, and negated events or properties
in selected Conan Doyle stories.

There have been several supervised proposals to
detect the scope of negation using BioScope and
CD-SCO (Özgür and Radev, 2009; Øvrelid et al.,
2010). Automatic approaches are mature (Abu-
Jbara and Radev, 2012): F-scores are 0.96 for nega-
tion cue detection, and 0.89 for negation cue and
scope detection (Velldal et al., 2012; Li et al., 2010).
Outside BioScope and CD-SCO, Reitan et al. (2015)
present a negation scope detector for tweets, and
show that it improves sentiment analysis. As shown
in Section 2, scope detection is insufficient to reveal
positive interpretations from negated statements.

3.2 Focus Annotation and Detection
While focus of negation has been studied for
decades in philosophy and linguistics (Section 2),
corpora and automated tools are scarce. Blanco and
Moldovan (2011) annotate focus of negation in the
3,993 negations marked with ARGM-NEG semantic
role in PropBank (Palmer et al., 2005). Their an-
notations, PB-FOC, were used in the *SEM-2012
Shared Task (Morante and Blanco, 2012). Their
guidelines require annotators to choose as focus the

semantic role that “is most prominently negated” or
the verb. If several roles may be the focus, they
prioritize “the one that yields the most meaningful
implicit [positive] information”, but do not specify
what most meaningful means. Consider again state-
ment (1) John doesn’t eat meat. Their approach
would determine that the focus is the THEME of eat,
meat, because it arguably yields the “most meaning-
ful implicit [positive] information” (using our termi-
nology, positive interpretation): John eats something
other than meat. By design, they ignore other valid
positive interpretations, e.g., Some people eat meat,
but not John. In this paper, we improve upon their
work: instead of extracting the “most meaningful”
positive interpretation from a negated statement, we
generate several positive interpretations and score
them according to their likelihood.

Anand and Martell (2012) present a complimen-
tary approach to annotate focus of negation. They
refine PB-FOC and argue that positive interpre-
tations arising from scalar implicatures and neg-
raising predicates should be separated from those
arising from focus detection. According to their an-
notations, 27.4% of negations with a focus annotated
in PB-FOC do not actually have a focus. Blanco
and Moldovan (2012) introduce the concept of fine-
grained foci and refine the annotations in PB-FOC
by annotating foci at the token level, and Matsuyoshi
et al. (2014) annotate focus of negation in Japanese.
In this paper, we are not concerned about annotat-
ing focus of negation per se, but about extracting
positive interpretations from negated statements as
intuitively understood by humans.

Automatic systems to detect the focus of nega-
tion (and reveal up to one positive interpretation)
in English texts are trained using PB-FOC. Blanco
and Moldovan (2011) obtain an accuracy of 65.5
using supervised machine learning and features de-
rived from gold-standard linguistic information, and
Blanco and Moldovan (2014) report an F-measure
of 64.1. Rosenberg and Bergler (2012) report an F-
measure of 58.4 using 4 linguistically sound heuris-
tics and predicted linguistic information, and Zou
et al. (2014) an F-measure of 65.62 using contex-
tual discourse information. Unlike the work pre-
sented here, none of these systems attempts to ex-
tract and rank several positive interpretations from
one negated statement.

1433

Neg. statement In 1995, Murdoch bought [the rest of Star TV]ARG1 that [he]ARG0 did [not]ARGM-NEG [own]verb

Positive
counterpart

after Step 1 In 1995, Murdoch bought the rest of Star TV that he did own
after Step 2 In 1995, Murdoch bought the rest of Star TV that he owned
after Step 3 In 1995, Murdoch bought the rest of Star TV that he owned (no change)

Plausible
positive
interpretations

from ARG0 In 1995, Murdoch bought the rest of Star TV that [somebody] owned, but not he
from ARG1 In 1995, Murdoch bought [something] that he owned, but not the rest of Star TV
from verb In 1995, Murdoch bought the rest of Star TV that he [some verb], but not owned

Table 1: Negated statement, and automatically generated positive counterpart and plausible positive interpretations.

4 Corpus Creation

Our goal is to create a corpus of negated statements
and their positive interpretations as intuitively un-
derstood by humans. We put a strong emphasis on
automation. First, given a negated statement, we
automatically generate plausible positive interpreta-
tions following a battery of linguistically motivated
deterministic rules (Section 4.1). Second, we collect
manual annotation to score the plausible positive in-
terpretations according to their likelihood (Section
4.2). We then use these manually obtained scores to
learn models that automatically score positive inter-
pretations (Section 6).

We decided to work on top of OntoNotes (Hovy
et al., 2006) instead of plain text or other corpora
for several reasons. First, OntoNotes includes gold
linguistic annotations such as part-of-speech tags,
parse trees and semantic roles. Second, state-of-
the-art role labelers trained with Propbank achieve
F-measures of 0.835 (Lewis et al., 2015), and we
use semantic roles to generate positive interpreta-
tions. Third, unlike BioScope, CD-SCO and PB-
FOC (Section 2), OntoNotes includes sentences
from several genres, e.g., newswire, broadcast news
and conversations, magazines, the web.

4.1 Generating Positive Interpretations

OntoNotes2 is a large corpus containing 63,918 sen-
tences. Annotating all positive interpretations from
all negations is outside of the scope of this paper.
Instead, we target selected representative negations.
Selecting Negated Statements. We first selected all
verbs negated with ARGM-NEG semantic role and
obtained 6,617 verbal negations. After examining
the negated verbs, it became clear that negation is
not uniformly distributed across verbs in OntoNotes,

2We use the CoNLL-2011 Shared Task distribution (Pradhan
et al., 2011), http://conll.cemantix.org/2011/

it roughly follows Zipf’s law. In order to allevi-
ate the annotation effort while accounting for all
negated verbs in OntoNotes, we randomly selected
up to 5 negations for each verb. The number of
negated statements selected is 600.
Converting Negated Statements into Their Posi-
tive Counterparts. We apply 3 steps inspired after
the grammatical rules to form negation detailed by
Huddleston and Pullum (2002, Ch. 9):

1. Remove the negation mark by removing the to-
kens within ARGM-NEG semantic role.

2. Remove auxiliaries, expand contractions, and
fix third-person singular and past tense. For ex-
ample (before: after), doesn’t go: goes, didn’t
go: went, won’t go: will go, We use a standard
list of irregular verbs,3 and grammar rules to
convert to third-person singular and past tense
based on orthographic patterns.

3. Rewrite negatively-oriented polarity-sensitive
items. For example (before: after), any-
one: someone, any longer: still, yet: al-
ready. at all: somewhat. We use the cor-
respondences between negatively-oriented and
positively-oriented polarity-sensitive items by
Huddleston and Pullum (2002, pp. 831).

Generating Positive Interpretations. Once the
positive counterpart is obtained, we generate posi-
tive interpretations by rewriting each semantic role
or the (originally negated) verb. Among others,
we use the following rewriting rules: ARG0–ARG4:
someone / some people / something, ARGM-TMP:
at some point of time, ARGM-LOC: somewhere,
ARGM-MNR: in some manner, ARGM-CAU: because
of something and ARGM-PRP: to do something. Ad-
ditionally, if the semantic role starts with a prepo-
sition, we also include it, e.g., gave [to John]ARG2 :

3https://en.wikipedia.org/wiki/English_
irregular_verbs

1434

gave to someone, but not John. This methodol-
ogy generated 1,888 positive interpretations from
the 600 selected negations (average: 3.15).

Table 1 exemplifies the 3 steps to transform a
negated statement into its positive counterpart, and
the positive interpretations generated. Additional
examples are provided in Table 3.

We acknowledge that some of the positive inter-
pretations we generate automatically are not as spe-
cific or intuitive as carefully crafted, manually gen-
erated interpretations could be. For example, from
[John]ARG0 does[n’t]ARGM-NEG [know]verb [the de-
tails about how they met]ARG1 , the proposed method-
ology would generate, among others, John knows
about something, but not about the details of how
they met. A better interpretations that we do not gen-
erate is John knows something about how they met,
but not the details. We argue that generating inter-
pretations automatically is the only option in order
to incorporate this work into an NLP pipeline, and
reserve for future work generating positive interpre-
tations beyond rewriting semantic roles.

4.2 Ranking Positive Interpretations

Once positive interpretations were automatically
generated, we asked annotators to rank them. An-
notators were presented with one negated statement
and one positive interpretation at a time, and were
asked Given the negated statement above, do you
think the statement [positive interpretation] below
is true? They only had access to the text in the
original negated statement, the positive interpreta-
tion, and the previous and next sentences as context.
We did not display semantic role information for the
original negated statement, its positive counterpart
or the semantic role from which the positive inter-
pretation was generated. As we shall see (Section
5.1), context often helps scoring interpretations.

Annotators were required to answer with a score
from 0 to 5, were 0 means absolutely disagree and
5 means absolutely agree. We did not provide de-
scriptions for intermediate scores or used additional
categorical labels. This simple guidelines were suf-
ficient to reliably score plausible positive interpreta-
tions automatically generated.

Sem. role # % sent Mean SD
ARG0 392 65.17% 4.07 1.03
ARG1 520 86.00% 4.55 0.98
ARG2 95 15.83% 4.40 1.31
ARG3 2 0.33% 4.50 0.50
ARG4 5 0.83% 5.00 0.00
ARGM-ADV 101 15.67% 2.41 1.72
ARGM-CAU 13 2.17% 2.46 1.91
ARGM-DIR 11 1.83% 2.00 2.30
ARGM-EXT 12 2.00% 3.75 1.53
ARGM-LOC 21 3.33% 3.76 1.69
ARGM-MNR 37 6.00% 4.54 1.03
ARGM-PRP 7 1.16% 4.43 0.71
ARGM-TMP 81 12.50% 3.99 1.52
Verb 600 100.00% 2.17 1.41
All 1,888 100.00% 3.52 1.63

Table 2: Basic corpus analysis. For each semantic role, we

show the number of positive interpretations generated (#), the

percentage of sentences for which a positive interpretation is

generated (% sent), and the mean and standard deviation (SD)

of the annotated scores.

5 Corpus Analysis

On average, we generated 3.15 positive interpreta-
tions per negation (standard deviation: 0.82), and
74% of negations have at least one interpretation
scored 4 or higher. Basic counts and statistics for
the annotations are provided in Table 2. Over-
all, we annotated 1,888 positive interpretations gen-
erated from 600 sentences, or equivalently, from
600 verbs negated with ARGM-NEG semantic role
in OntoNotes. Overall mean score is 3.52 (out of
5) and overall standard deviation, 1.63. The 25th
percentile is 2.0, the 50th percentile is 4.0 and the
75th percentile is 5.0. These numbers show that
most positive interpretations automatically gener-
ated are deemed likely by annotators, and over 25%
are scored with a 5 (out of 5).

In general, positive interpretations generated from
numbered roles (ARG0–ARG4) are scored higher
than the ones generated from modifiers (ARGM-
ADV, ARGM-CAU, ARGM-DIR, etc.). Also, positive
interpretations generated from infrequent roles are
generally ranked higher, e.g., ARG4 and ARG3 vs.
ARG0, ARGM-PRP and ARGM-MNR vs. ARGM-ADV.
Annotation Quality. In order to ensure annotation
quality, we calculated inter-annotator Pearson cor-
relation. Kappa and other agreement measures de-

1435

Negated statement, context if relevant to determining scores, and all positive interpretations Score

1

Context, previous statement: That change will obviously impact third and fourth quarter earnings for the
industry in general, he added.
Negated statement: [He]ARG0 did[n’t]ARGM-NEG [forecast]verb [Phillips’ results]ARG1.
Context, next statement: But security analysts say Phillips will be among the companies hard-hit by weak
chemical prices and will probably post a drop in third-quarter earnings.
- Interpretation 1.1 [ARG0]: Somebody forecasted Phillips’ results, but not he. 5
- Interpretation 1.2 [ARG1]: He forecasted something, but not Phillips’ results. 5

2 Negated statement: In 1995, Murdoch bought [the rest of Star TV]ARG1 [he]ARG0 did [not]ARGM-NEG [own]verb.
- Interpretation 2.1 (ARG0): In 1995, Murdoch bought the rest of Star TV somebody owned, but not he. 5
- Interpretation 2.2 (ARG1): In 1995, Murdoch bought something he owned, but not the rest of Star TV. 0

3 Negated statement: [You]ARG0 [can]ARGM-MOD[not]ARGM-NEG [run]verb [a country with 23 million people]ARG1

[with revenues of 16 billion to 20 billion dollars]ARGM-MNR.
- Interpretation 3.1 (ARG0): Somebody can run a country with 23 million people with revenues of 16
billion to 20 billion dollars, but not You.

1

- Interpretation 3.21 (ARG1): You can run something with revenues of 16 billion to 20 billion dollars,
but not a country with 23 million people.

5

- Interpretation 3.3 (ARGM-MNR): You can run a country with 23 million people in some manner, but
not with with revenues of 16 billion to 20 billion dollars.

5

4 Negated statement: Do [not]ARGM-NEG [utter]verb [a word]ARG1 .
- Interpretation 4.1 (ARG1): Utter something, but not a word. 0

Table 3: Annotation examples. We show all positive interpretations automatically generated and their scores (out of 5).

signed for categorical labels are not well-suited for
our annotation task, since not all disagreements be-
tween numeric scores are the same, e.g., 4 vs. 5
should be counted as relatively high agreement, and
1 vs. 5 should be counted as high disagreement.
Overall Pearson correlation is 0.761.

5.1 Annotation Examples

Table 3 presents annotation examples. We show the
original negated statement including semantic role
annotations from OntoNotes (square brackets), all
positive interpretations automatically generated, and
their scores. We also include context (previous and
next sentence) if it helps determining scores.

Example (1) shows that context sometimes is vital
to scoring plausible positive interpretations. Given
He didn’t forecast Phillips’ results in isolation, it is
uncertain if he forecasted anything at all, or whether
somebody forecasted Phillips’ results. However, the
previous statement makes certain (5/5) the interpre-
tation generated from ARG1: he forecasted earnings
for the industry in general. Similarly, the next state-
ment makes very likely (5/5) the interpretation gen-
erated from ARG0: other people (security analysts)
made forecasts about Phillips. In this example, 2

positive interpretations are generated from one nega-
tion, and they are assigned the highest score (5/5).

The positive interpretations generated from exam-
ple (2) can be annotated without context. Somebody
other than Murdoch had to own the rest of Star TV
that he bought in 1995 (score 5/5), and people can-
not buy what they already own (score 0/5).

Example (3) presents a positive interpretation
generated from ARG0 that is scored low (1/5); re-
call that the mean score for interpretations gener-
ated from ARG0 is 4.07 and the standard deviation
1.03 (Table 2). In this negated statement, the indef-
inite you refers to an unspecified person, thus it is
not the case that somebody can run a country with
23 million people with revenues of 16 billion to 20
billion dollars (Interpretation 3.1, score 1/5). Inter-
pretations 3.2 and 3.3, however, are scored high: an-
notators correctly understood that given the negated
statement, it is the case that You can run something
with revenues of 16 billion to 20 billion dollars, but
not a country with 23 million people (you can run a
country with less people with that revenue), and You
can run a country with 23 million people in some
manner, but not with revenues of 16 billion to 20 bil-
lion dollar (you could run it with more revenue).

1436

Finally, example (4) presents a short statement
from which only one positive interpretations is gen-
erated. Annotators were asked whether given Do not
utter a word, they think Utter something, but not a
word is true. They correctly annotated that this posi-
tive interpretations is invalid (score 0/5). Indeed, the
negated statement in example (4) can only be inter-
preted as an order to not utter anything.

6 Learning to Score Positive
Interpretations

We follow a standard supervised machine learning
approach. The 1,888 positive interpretations along
with their scores become instances, and we divide
them into training (80%) and test splits (20%) mak-
ing sure that all interpretations generated from a sen-
tence are assigned to either the training or test splits.
Note that splitting instances randomly would not be
sound: training with some interpretations generated
from a negated statement, and testing with the rest
of interpretations generated from the same statement
would be an unfair evaluation.

We trained a Support Vector Machine (SVM)
for regression with RBF kernel using scikit-
learn (Pedregosa et al., 2011), which in turn uses
LIBSVM (Chang and Lin, 2011). The feature set
and SVM parameters (C and γ) were tuned using
10-fold cross-validation with the training set, and re-
sults were calculated using the test set.

6.1 Feature Selection

We tried features derived exclusively from the
negated statement from which the positive inter-
pretation was generated, more specifically, we ex-
tract features from the negated verb or semantic
role (sem role) used to generate the positive inter-
pretation, from both of them (verb-sem role) and
from the verb-argument structure of verb (verbarg-
struct), i.e., all semantic roles of verb.

Verb features are straightforward and account for
the verb word form and part-of-speech tag.

Sem role features include the label of the seman-
tic role from which the positive interpretation was
generated (sem role label), its length (number of to-
kens), and the word form and part-of-speech tag of
its head. Additionally, we add standard features in
semantic role labeling (Gildea and Jurafsky, 2002):

the syntactic nodes (NP, PP, etc.) of the semantic
role and its parent in the parse tree, as well as the
left and right siblings, if any.

Verb-sem role features are also standard in role
labeling. We include a flag indicating whether the
verb occurs before or after the semantic role in the
negated statement (not in the positive counterpart),
syntactic node of the lowest common ancestor be-
tween verb and sem role, and the syntactic path.

Finally, verbarg-struct features encode character-
istics of the verb-argument structure to which verb
and sem role belong to. Namely, we added flags in-
dicating semantic role presence, and features indi-
cating the first and last semantic roles in order of ap-
pearance in the negated statement. We also included
the syntactic nodes of semantic roles and their heads.

We exemplify all features with Interpretation 3.1
generated from Statement 3 in Table 3:

• Verb features: verb wf=run, verb pos=VBP.
• Sem role features: label=ARG0, num tokens=1,

head wf=You, head pos=PRP, synt node=NP,
synt node parent=S, synt node left=NONE,
synt node right=VP
• Verb-sem role features: direction=after, low-

est ancestor=S, synt path=VP+VP+S-NP
• Verbarg-struct features: ARG0=1, ARGM-

MOD=1, ARG1=1, ARGM-MNR=1, first=ARG0,
last=ARGM-MNR, ARG1 head=country,
ARG1 pos=NN, etc.

7 Experimental Results

We report results obtained with several combina-
tions of features in Table 5. We detail results ob-
tained with features extracted from gold-standard
and predicted linguistic annotations (part-of-speech
tags, parse trees, semantic roles, etc.) as annotated
in the gold and auto files from the CoNLL-2011
Shared Task release of OntoNotes (Pradhan et al.,
2011). All models are trained with gold-standard
linguistic annotations, and tested with either gold-
standard or predicted linguistic annotations.
Testing with gold-standard linguistic annota-
tions. Using only the label of the semantic role
from which the positive interpretation was gener-
ated (sem role label), yields a Pearson correlation
of 0.603. Using Verb features is virtually useless
(Pearson correlation: -0.025), this is due to the

1437

Source Feature description
Verb Word form and part-of-speech tag of verb

sem role
Semantic role label of sem role, sem role label
Number of tokens in sem role
Word form and part-of-speech tag of head of sem role
Syntactic node of sem role, its parent and left and right siblings in the parse tree

verb-sem role
Whether verb occurs before or after than sem role in the negated statement
Syntactic node of lowest common ancestor of verb and sem role
Syntactic paths from verb to sem role

verbarg-struct
Flags indicating whether verb has each possible semantic role
Semantic role labels of the first and last roles of verb
Syntactic nodes and heads of each semantic role attaching to verb

Table 4: Features used to score positive interpretations from negated statements. Features are extracted from the negated verb

or semantic role (sem role) from which the positive interpretation was generated, from both of them (verb-sem role), or from the

verb-argument structure of verb (verbarg-struct), i.e., from all semantic roles of verb.

Gold Predicted
sem role label feature 0.603 0.642
verb features -0.025 -0.022
verb + sem role features 0.630 0.648
verb + sem role + verb-sem role features 0.627 0.638
verb + sem role + verb-sem role + verbarg-struct features 0.642 0.650

Table 5: Pearson correlations in the test set using gold-standard and predicted linguistic annotations (part-of-speech tags, parse

trees and semantic roles). Results are provided using sem role label as only feature, and using several features incrementally.

Number of test instances with gold-standard linguistic annotations is 378, and with predicted annotations, 268.

fact that our corpus includes at most 5 instances
for each negated verb in OntoNotes (Section 4).
Adding sem role features yields a correlation of
0.630, and incorporating verb-sem role features is
useless (Pearson: 0.627). Considering all features,
however, yields the highest correlation, 0.642.

Testing with predicted linguistic annotations. We
assigned 20% of instances to the test split, totalling
378 instances (Section 6). However, some of these
instances cannot be obtained using predicted role la-
bels: a missing or incorrect semantic role will un-
equivocally lead to positive interpretations that are
not in our corpus and thus evaluation is not straight-
forward. Results presented with predicted linguistic
annotations are calculated using only the 268 (out of
378) positive interpretations that are generated from
predicted semantic roles and are also generated (and
thus annotated in our corpus) from gold-standard
linguistic annotations.

Results using only sem role label feature (0.642)
are better or very similar than using any combina-
tion of features (0.638–0.650) except Verb features
alone, which perform poorly as explained earlier.

These results should be taken with a grain of salt:
the number of test instances is much lower (268 vs.
378). Additionally, these 268 test instances corre-
spond to positive interpretations generated from se-
mantic roles that were predicted correctly automat-
ically. Role labels are predicted better for shorter
sentences without complicated syntactic structure;
positive interpretations for this kind sentences are
also easier to score, e.g., Statement 4 in Table 3.

8 Conclusions

Humans intuitively understand negated statements
in positive terms when reading text. This pa-
per presents an automated methodology to generate
plausible positive interpretations from verbal nega-
tion, and score them based on their likelihood. We
use simple grammar rules and manipulate semantic
roles to generate positive interpretations. Experi-
mental results show that these interpretations can be
scored automatically using standard supervised ma-
chine learning techniques.

An annotation effort shows that most positive
interpretations automatically generated are likely

1438

(scores ≥4), thus the amount of positive meaning
revealed by the methodology presented here is sub-
stantial (on average, 3.15 interpretations are gener-
ated per negation). We believe that more annotations
and a learning algorithm that scores jointly all posi-
tive interpretations generated from each negation (as
opposed to individually) would yield better results.

References

Amjad Abu-Jbara and Dragomir Radev. 2012. Umichi-
gan: A conditional random field model for resolving
the scope of negation. In Proceedings of the First Joint
Conference on Lexical and Computational Semantics-
Volume 1: Proceedings of the main conference and
the shared task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation,
pages 328–334. Association for Computational Lin-
guistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), Volume 1: Proceedings of the Main Confer-
ence and the Shared Task: Semantic Textual Similarity,
pages 32–43, Atlanta, Georgia, USA, June. Associa-
tion for Computational Linguistics.

Pranav Anand and Craig Martell. 2012. Annotating
the focus of negation in terms of questions under dis-
cussion. In Proceedings of the Workshop on Extra-
Propositional Aspects of Meaning in Computational
Linguistics, ExProM ’12, pages 65–69, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proceed-
ings of the 17th international conference on Computa-
tional Linguistics, Montreal, Canada.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Simon Blackburn. 2008. The Oxford Dictionary of Phi-
losophy. Oxford University Press.

Eduardo Blanco and Dan Moldovan. 2011. Semantic
representation of negation using focus detection. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 581–589, Portland, Ore-

gon, USA, June. Association for Computational Lin-
guistics.

Eduardo Blanco and Dan Moldovan. 2012. Fine-
grained focus for pinpointing positive implicit mean-
ing from negated statements. In Proceedings of the
2012 Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 456–465, Montréal,
Canada, June. Association for Computational Linguis-
tics.

Eduardo Blanco and Dan Moldovan. 2014. Retriev-
ing implicit positive meaning from negated statements.
Natural Language Engineering, 20:501–535, 10.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27, May.

H. H. Clark and W. G. Chase. 1972. On the process of
comparing sentences against pictures. Cognitive Psy-
chology, 3(3):472–517, July.

Isaac Councill, Ryan McDonald, and Leonid Velikovich.
2010. What’s great and what’s not: learning to clas-
sify the scope of negation for improved sentiment anal-
ysis. In Proceedings of the Workshop on Negation and
Speculation in Natural Language Processing, pages
51–59, Uppsala, Sweden, July. University of Antwerp.

Peter L. Elkin, Steven H. Brown, Brent A. Bauer, Casey
S. Husser, William Carruth, Larry R. Bergstrom, and
Dietlind L. Wahner-Roedler. 2005. A controlled trial
of automated classification of negation from clinical
notes. BMC Medical Informatics and Decision Mak-
ing, 5(13).

Daniel Gildea and Daniel Jurafsky. 2002. Auto-
matic labeling of semantic roles. Comput. Linguist.,
28(3):245–288, September.

Jack Hoeksema. 2000. Negative polarity items: trigger-
ing, scope,and c-command. In L. Horn and Y. Kato,
editors, Negation and polarity, chapter 4, pages 115–
146. Oxford University Press, Oxford.

Laurence R. Horn and Heinrich Wansing. 2015. Nega-
tion. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Summer 2015 edition.

Laurence R. Horn. 1989. A natural history of negation.
Chicago University Press, Chicago.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
the 90% Solution. In NAACL ’06: Proceedings of
the Human Language Technology Conference of the
NAACL, Companion Volume: Short Papers on XX,
pages 57–60, Morristown, NJ, USA. Association for
Computational Linguistics.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD ’04: Proceedings
of the tenth ACM SIGKDD international conference

1439

on Knowledge discovery and data mining, pages 168–
177, New York, NY, USA. ACM.

Rodney D. Huddleston and Geoffrey K. Pullum. 2002.
The Cambridge Grammar of the English Language.
Cambridge University Press, April.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint a* ccg parsing and semantic role labelling. In
Empirical Methods in Natural Language Processing.

Junhui Li, Guodong Zhou, Hongling Wang, and Qiaom-
ing Zhu. 2010. Learning the Scope of Negation via
Shallow Semantic Parsing. In Proceedings of the 23rd
International Conference on Computational Linguis-
tics (Coling 2010), pages 671–679, Beijing, China,
August. Coling 2010 Organizing Committee.

Suguru Matsuyoshi, Ryo Otsuki, and Fumiyo Fukumoto.
2014. Annotating the focus of negation in japanese
text. In Nicoletta Calzolari, Khalid Choukri, Thierry
Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Ninth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’14), pages 1743–1750, Reykjavik, Ice-
land, May. European Language Resources Association
(ELRA). ACL Anthology Identifier: L14-1606.

Ruslan Mitkov. 2005. The Oxford handbook of compu-
tational linguistics. Oxford University Press.

Roser Morante and Eduardo Blanco. 2012. *SEM 2012
Shared Task: Resolving the Scope and Focus of Nega-
tion. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics (*SEM 2012),
pages 265–274, Montréal, Canada, June.

Roser Morante and Walter Daelemans. 2012.
Conandoyle-neg: Annotation of negation in conan
doyle stories. In Proceedings of the Eighth Interna-
tional Conference on Language Resources and Evalu-
ation, Istanbul.

Roser Morante and Caroline Sporleder. 2012. Modal-
ity and negation: An introduction to the special issue.
Comput. Linguist., 38(2):223–260, June.

Ann E Nordmeyer and Michael C Frank. 2013. Measur-
ing the comprehension of negation in 2-to 4-year-old
children. Proceedings of the 35th Annual Conference
of the Cognitive Science Society. Austin, TX: Cognitive
Science Society.

Lilja Øvrelid, Erik Velldal, and Stephan Oepen. 2010.
Syntactic Scope Resolution in Uncertainty Analysis.
In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010), pages
1379–1387, Beijing, China, August. Coling 2010 Or-
ganizing Committee.

Arzucan Özgür and Dragomir R. Radev. 2009. Detect-
ing Speculations and their Scopes in Scientific Text.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages

1398–1407, Singapore, August. Association for Com-
putational Linguistics.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using ma-
chine learning techniques. In Proceedings of the 2002
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 79–86. Association for Com-
putational Linguistics, July.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen Xue.
2011. Conll-2011 shared task: Modeling unrestricted
coreference in ontonotes. In Proceedings of the Fif-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 1–27, Portland,
Oregon, USA, June. Association for Computational
Linguistics.

Randolph Quirk, Sidney Greenbaum, and Geoffrey
Leech. 2000. A comprehensive grammar of the En-
glish language. Longman, London.

Johan Reitan, Jørgen Faret, Björn Gambäck, and Lars
Bungum. 2015. Negation scope detection for twitter
sentiment analysis. In Proceedings of the 6th Work-
shop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis, pages 99–108,
Lisboa, Portugal, September. Association for Compu-
tational Linguistics.

Mats Rooth. 1985. Association with focus. Ph.D. the-
sis, Dept. of Linguistics, University of Massachusetts,
Amherst.

Mats Rooth. 1992. A theory of focus interpretation. Nat-
ural language semantics, 1(1):75–116.

Sabine Rosenberg and Sabine Bergler. 2012. Ucon-
cordia: Clac negation focus detection at *sem 2012.
In *SEM 2012: The First Joint Conference on Lexi-
cal and Computational Semantics – Volume 1: Pro-
ceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation (SemEval 2012),
pages 294–300, Montréal, Canada, 7-8 June. Associa-
tion for Computational Linguistics.

György Szarvas, Veronika Vincze, Richárd Farkas, and
János Csirik. 2008. The BioScope corpus: annotation

1440

for negation, uncertainty and their scopein biomedical
texts. In Proceedings of BioNLP 2008, pages 38–45,
Columbus, Ohio, USA. ACL.

Josef Taglicht. 1984. Message and emphasis: On fo-
cus and scope in English, volume 15. Addison-Wesley
Longman Limited.

Ton van der Wouden. 1997. Negative contexts: colloca-
tion, polarity, and multiple negation. Routledge, Lon-
don.

Erik Velldal, Lilja Ovrelid, Jonathon Read, and Stephan
Oepen. 2012. Speculation and negation: Rules,
rankers, and the role of syntax. Comput. Linguist.,
38(2):369–410, June.

Bowei Zou, Guodong Zhou, and Qiaoming Zhu. 2014.
Negation focus identification with contextual dis-
course information. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 522–530,
Baltimore, Maryland, June. Association for Computa-
tional Linguistics.

1441

Proceedings of NAACL-HLT 2016, pages 1442–1451,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning Natural Language Inference with LSTM

Shuohang Wang
School of Information Systems

Singapore Management University
shwang.2014@phdis.smu.edu.sg

Jing Jiang
School of Information Systems

Singapore Management University
jingjiang@smu.edu.sg

Abstract

Natural language inference (NLI) is a funda-
mentally important task in natural language
processing that has many applications. The
recently released Stanford Natural Language
Inference (SNLI) corpus has made it possi-
ble to develop and evaluate learning-centered
methods such as deep neural networks for nat-
ural language inference (NLI). In this paper,
we propose a special long short-term mem-
ory (LSTM) architecture for NLI. Our model
builds on top of a recently proposed neural at-
tention model for NLI but is based on a sig-
nificantly different idea. Instead of deriving
sentence embeddings for the premise and the
hypothesis to be used for classification, our so-
lution uses a match-LSTM to perform word-
by-word matching of the hypothesis with the
premise. This LSTM is able to place more
emphasis on important word-level matching
results. In particular, we observe that this
LSTM remembers important mismatches that
are critical for predicting the contradiction or
the neutral relationship label. On the SNLI
corpus, our model achieves an accuracy of
86.1%, outperforming the state of the art.

1 Introduction

Natural language inference (NLI) is the problem of
determining whether from a premise sentence P one
can infer another hypothesis sentence H (MacCart-
ney, 2009). NLI is a fundamentally important prob-
lem that has applications in many tasks including
question answering, semantic search and automatic
text summarization. There has been much inter-
est in NLI in the past decade, especially surround-

ing the PASCAL Recognizing Textual Entailment
(RTE) Challenge (Dagan et al., 2005). Existing so-
lutions to NLI range from shallow approaches based
on lexical similarities (Glickman et al., 2005) to ad-
vanced methods that consider syntax (Mehdad et al.,
2009), perform explicit sentence alignment (Mac-
Cartney et al., 2008) or use formal logic (Clark and
Harrison, 2009).

Recently, Bowman et al. (2015) released the Stan-
ford Natural Language Inference (SNLI) corpus for
the purpose of encouraging more learning-centered
approaches to NLI. This corpus contains around
570K sentence pairs with three labels: entailment,
contradiction and neutral. The size of the corpus
makes it now feasible to train deep neural network
models, which typically require a large amount of
training data. Bowman et al. (2015) tested a straight-
forward architecture of deep neural networks for
NLI. In their architecture, the premise and the hy-
pothesis are each represented by a sentence embed-
ding vector. The two vectors are then fed into a
multi-layer neural network to train a classifier. Bow-
man et al. (2015) achieved an accuracy of 77.6%
when long short-term memory (LSTM) networks
were used to obtain the sentence embeddings.

A more recent work by Rocktäschel et al. (2016)
improved the performance by applying a neural at-
tention model. While their basic architecture is
still based on sentence embeddings for the premise
and the hypothesis, a key difference is that the em-
bedding of the premise takes into consideration the
alignment between the premise and the hypothesis.
This so-called attention-weighted representation of
the premise was shown to help push the accuracy to

1442

83.5% on the SNLI corpus.
A limitation of the aforementioned two models is

that they reduce both the premise and the hypoth-
esis to a single embedding vector before matching
them; i.e., in the end, they use two embedding vec-
tors to perform sentence-level matching. However,
not all word or phrase-level matching results are
equally important. For example, the matching be-
tween stop words in the two sentences is not likely
to contribute much to the final prediction. Also, for
a hypothesis to contradict a premise, a single word
or phrase-level mismatch (e.g., a mismatch of the
subjects of the two sentences) may be sufficient and
other matching results are less important, but this in-
tuition is hard to be captured if we directly match
two sentence embeddings.

In this paper, we propose a new LSTM-based ar-
chitecture for learning natural language inference.
Different from previous models, our prediction is
not based on whole sentence embeddings of the
premise and the hypothesis. Instead, we use an
LSTM to perform word-by-word matching of the
hypothesis with the premise. Our LSTM sequen-
tially processes the hypothesis, and at each posi-
tion, it tries to match the current word in the hy-
pothesis with an attention-weighted representation
of the premise. Matching results that are critical
for the final prediction will be “remembered” by the
LSTM while less important matching results will be
“forgotten.” We refer to this architecture a match-
LSTM, or mLSTM for short.

Experiments show that our mLSTM model
achieves an accuracy of 86.1% on the SNLI cor-
pus, outperforming the state of the art. Furthermore,
through further analyses of the learned parameters,
we show that the mLSTM architecture can indeed
pick up the more important word-level matching re-
sults that need to be remembered for the final pre-
diction. In particular, we observe that good word-
level matching results are generally “forgotten” but
important mismatches, which often indicate a con-
tradiction or a neutral relationship, tend to be “re-
membered.”

2 Model

In this section, we first review LSTM. We
then review the word-by-word attention model by

Rocktäschel et al. (2016), which is their best per-
forming model. Finally we present our mLSTM ar-
chitecture for natural language inference.

2.1 Background

LSTM: Let us first briefly review LSTM (Hochre-
iter and Schmidhuber, 1997). LSTM is a special
form of recurrent neural networks (RNNs), which
process sequence data. LSTM uses a few gate vec-
tors at each position to control the passing of in-
formation along the sequence and thus improves
the modeling of long-range dependencies. While
there are different variations of LSTMs, here we
present the one adopted by Rocktäschel et al. (2016).
Specifically, let us use X = (x1,x2, . . . ,xN) to de-
note an input sequence, where xk ∈ Rl (1 ≤ k ≤
N). At each position k, there is a set of internal vec-
tors, including an input gate ik, a forget gate fk, an
output gate ok and a memory cell ck. All these vec-
tors are used together to generate a d-dimensional
hidden state hk as follows:

ik = σ(Wixk + Vihk−1 + bi),
fk = σ(Wfxk + Vfhk−1 + bf),
ok = σ(Woxk + Vohk−1 + bo),
ck = fk � ck−1 + ik � tanh(Wcxk + Vchk−1 + bc),
hk = ok � tanh(ck), (1)

where σ is the sigmoid function, � is the element-
wise multiplication of two vectors, and all W* ∈
Rd×l,V* ∈ Rd×d and b* ∈ Rd are weight matrices
and vectors to be learned.
Neural Attention Model: For the natural lan-
guage inference task, we have two sentences Xs =
(xs

1,x
s
2, . . . ,x

s
M) and Xt = (xt

1,x
t
2, . . . ,x

t
N),

where Xs is the premise and Xt is the hypothesis.
Here each x is an embedding vector of the corre-
sponding word. The goal is to predict a label y that
indicates the relationship between Xs and Xt. In this
paper, we assume y is one of entailment, contradic-
tion and neutral.

Rocktäschel et al. (2016) first used two LSTMs
to process the premise and the hypothesis, respec-
tively, but initialized the second LSTM (for the hy-
pothesis) with the last cell state of the first LSTM
(for the premise). Let us use hs

j and ht
k to denote

the resulting hidden states corresponding to xs
j and

1443

xt
k, respectively. The main idea of the word-by-word

attention model by Rocktäschel et al. (2016) is to in-
troduce a series of attention-weighted combinations
of the hidden states of the premise, where each com-
bination is for a particular word in the hypothesis.
Let us use ak to denote such an attention vector for
word xt

k in the hypothesis. Specifically, ak is de-
fined as follows1:

ak =
M∑

j=1

αkjhs
j , (2)

where αkj is an attention weight that encodes the
degree to which xt

k in the hypothesis is aligned with
xs
j in the premise. The attention weight αkj is gen-

erated in the following way:

αkj =
exp(ekj)∑
j′ exp(ekj′)

, (3)

where

ekj = we · tanh(Wshs
j + Wtht

k + Waha
k−1). (4)

Here · is the dot-product between two vectors, the
vector we ∈ Rd and all matrices W* ∈ Rd×d con-
tain weights to be learned, and ha

k−1 is another hid-
den state which we will explain below.

The attention-weighted premise ak essentially
tries to model the relevant parts in the premise with
respect to xt

k, i.e., the kth word in the hypothe-
sis. Rocktäschel et al. (2016) further built an RNN
model over {ak}Nk=1 by defining the following hid-
den states:

ha
k = ak + tanh(Vaha

k−1), (5)

where Va ∈ Rd×d is a weight matrix to be learned.
We can see that the last ha

N aggregates all the pre-
vious ak and can be seen as an attention-weighted
representation of the whole premise. Rocktäschel et
al. (2016) then used this ha

N , which represents the
1We present the word-by-word attention model by

Rocktäschel et al. (2016) in a different way but the underlying
model is the same. Our ha

k is their rt, our Hs (all of hs
j) is their

Y, our ht
k is their ht, and our αk is their αt. Our presentation

is close to the one by Bahdanau et al. (2015), with our attention
vectors a corresponding to the context vectors c in their paper.

whole premise, together with ht
N , which can be ap-

proximately regarded as an aggregated representa-
tion of the hypothesis2, to predict the label y.

2.2 Our Model

Although the neural attention model by Rocktäschel
et al. (2016) achieved better results than Bowman
et al. (2015), we see two limitations. First, the
model still uses a single vector representation of the
premise, namely ha

N , to match the entire hypothe-
sis. We speculate that if we instead use each of the
attention-weighted representations of the premise
for matching, i.e., use ak at position k to match
the hidden state ht

k of the hypothesis while we
go through the hypothesis, we could achieve better
matching results. This can be done using an RNN
which at each position takes in both ak and ht

k as its
input and determines how well the overall matching
of the two sentences is up to the current position. In
the end the RNN will produce a single vector repre-
senting the matching of the two entire sentences.

The second limitation is that the model by
Rocktäschel et al. (2016) does not explicitly allow
us to place more emphasis on the more important
matching results between the premise and the hy-
pothesis and down-weight the less critical ones. For
example, matching of stop words is presumably less
important than matching of content words. Also,
some matching results may be particularly critical
for making the final prediction and thus should be
remembered. For example, consider the premise
“A dog jumping for a Frisbee in the snow.” and
the hypothesis “A cat washes his face and whiskers
with his front paw.” When we sequentially pro-
cess the hypothesis, once we see that the subject
of the hypothesis cat does not match the subject of
the premise dog, we have a high probability to be-
lieve that there is a contradiction. So this mismatch
should be remembered.

Based on the two observations above, we propose
to use an LSTM to sequentially match the two sen-
tences. At each position the LSTM takes in both ak
and ht

k as its input. Figure 1 gives an overview of
our model in contrast to the model by Rocktäschel

2Strictly speaking, in the model by Rocktäschel et al. (2016),
ht

N encodes both the premise and the hypothesis because the
two sentences are chained. But ht

N places a higher emphasis on
the hypothesis given the nature of RNNs.

1444

Figure 1: The top figure depicts the model by Rocktäschel et al.

(2016) and the bottom figure depicts our model. Here Hs rep-

resents all the hidden states hs
j . Note that in the top model each

ha
k represents a weighted version of the premise only, while

in our model, each hm
k represents the matching between the

premise and the hypothesis up to position k.

et al. (2016).
Specifically, our model works as follows. First,

similar to Rocktäschel et al. (2016), we process the
premise and the hypothesis using two LSTMs, but
we do not feed the last cell state of the premise to
the LSTM of the hypothesis. This is because we do
not need the LSTM for the hypothesis to encode any
knowledge about the premise but we will match the
premise with the hypothesis using the hidden states
of the two LSTMs. Again, we use hs

j and ht
k to

represent these hidden states.
Next, we generate the attention vectors ak simi-

larly to Eqn (2). However, Eqn (4) will be replaced
by the following equation:

ekj = we · tanh(Wshs
j + Wtht

k + Wmhm
k−1). (6)

The only difference here is that we use a hidden state
hm instead of ha, and the way we define hm is very
different from the definition of ha.

Our hm
k is the hidden state at position k generated

from our mLSTM. This LSTM models the match-
ing between the premise and the hypothesis. Im-
portant matching results will be “remembered” by
the LSTM while non-essential ones will be “forgot-

ten.” We use the concatenation of ak, which is the
attention-weighted version of the premise for the kth

word in the hypothesis, and ht
k, the hidden state for

the kth word itself, as input to the mLSTM.
Specifically, let us define

mk =
[
ak

ht
k

]
. (7)

We then build the mLSTM as follows:

im
k = σ(Wmimk + Vmihm

k−1 + bmi),

fm
k = σ(Wmfmk + Vmfhm

k−1 + bmf),
om

k = σ(Wmomk + Vmohm
k−1 + bmo),

cm
k = fm

k � cm
k−1 + im

k � tanh(Wmcmk + Vmchm
k−1

+bmc),
hm

k = om
k � tanh(cm

k). (8)

With this mLSTM, finally we use only hm
N , the last

hidden state, to predict the label y.

2.3 Implementation Details

Besides the difference of the LSTM architecture, we
also introduce a few other changes from the model
by Rocktäschel et al. (2016). First, we insert a spe-
cial word NULL to the premise, and we allow words
in the hypothesis to be aligned with this NULL. This
is inspired by common practice in machine transla-
tion. Specifically, we introduce a vector hs

0, which
is fixed to be a vector of 0s of dimension d. This hs

0

represents NULL and is used with other hs
j to derive

the attention vectors {ak}Nk=1.
Second, we use word embeddings trained from

GloVe (Pennington et al., 2014) instead of word2vec
vectors. The main reason is that GloVe covers more
words in the SNLI corpus than word2vec3.

Third, for words which do not have pre-trained
word embeddings, we take the average of the em-
beddings of all the words (in GloVe) surrounding the
unseen word within a window size of 9 (4 on the left
and 4 on the right) as an approximation of the em-
bedding of this unseen word. Then we do not update
any word embedding when learning our model. Al-
though this is a very crude approximation, it reduces

3The SNLI corpus contains 37K unique tokens. Around
12.1K of them cannot be found in word2vec but only around
4.1K of them cannot be found in GloVe.

1445

the number of parameters we need to update, and as
it turns out, we can still achieve better performance
than Rocktäschel et al. (2016).

3 Experiments

3.1 Experiment Settings

Data: We use the SNLI corpus to test the effective-
ness of our model. The original data set contains
570,152 sentence pairs, each labeled with one of the
following relationships: entailment, contradiction,
neutral and –, where – indicates a lack of consensus
from the human annotators. We discard the sentence
pairs labeled with – and keep the remaining ones for
our experiments. In the end, we have 549,367 pairs
for training, 9,842 pairs for development and 9,824
pairs for testing. This follows the same data partition
used by Bowman et al. (2015) in their experiments.
We perform three-class classification and use accu-
racy as our evaluation metric.
Parameters: We use the Adam method (Kingma
and Ba, 2014) with hyperparameters β1 set to 0.9
and β2 set to 0.999 for optimization. The initial
learning rate is set to be 0.001 with a decay ratio
of 0.95 for each iteration. The batch size is set to
be 30. We experiment with d = 150 and d = 300
where d is the dimension of all the hidden states.
Methods for comparison: We mainly want to
compare our model with the word-by-word atten-
tion model by Rocktäschel et al. (2016) because
this model achieved the state-of-the-art performance
on the SNLI corpus. To ensure fair comparison,
besides comparing with the accuracy reported by
Rocktäschel et al. (2016), we also re-implemented
their model and report the performance of our im-
plementation. We also consider a few variations of
our model. Specifically, the following models are
implemented and tested in our experiments:
• Word-by-word attention (d = 150): This is

our implementation of the word-by-word at-
tention model by Rocktäschel et al. (2016),
where we set the dimension of the hidden states
to 150. The differences between our imple-
mentation and the original implementation by
Rocktäschel et al. (2016) are the following: (1)
We also add a NULL token to the premise for
matching. (2) We do not feed the last cell state
of the LSTM for the premise to the LSTM for

the hypothesis, to keep it consistent with the
implementation of our model. (3) For word
representation, we also use the GloVe word
embeddings and we do not update the word
embeddings. For unseen words, we adopt the
same strategy as described in Section 2.3.
• mLSTM (d = 150): This is our mLSTM model

with d set to 150.
• mLSTM with bi-LSTM sentence modeling

(d = 150): This is the same as the model
above except that when we derive the hidden
states hs

j and ht
k of the two sentences, we use

bi-LSTMs (Graves, 2012) instead of LSTMs.
We implement this model to see whether bi-
LSTMs allow us to better align the sentences.
• mLSTM (d = 300): This is our mLSTM model

with d set to 300.
• mLSTM with word embedding (d = 300): This

is the same as the model above except that we
directly use the word embedding vectors xs

j and
xt
k instead of the hidden states hs

j and ht
k in our

model. In this case, each attention vector ak is
a weighted sum of {xs

j}Mj=1. We experiment
with this setting because we hypothesize that
the effectiveness of our model is largely related
to the mLSTM architecture rather than the use
of LSTMs to process the original sentences.

3.2 Main Results

Table 1 compares the performance of the various
models we tested together with some previously re-
ported results.

We have the following observations: (1) First of
all, we can see that when we set d to 300, our model
achieves an accuracy of 86.1% on the test data,
which to the best of our knowledge is the highest on
this data set. (2) If we compare our mLSTM model
with our implementation of the word-by-word atten-
tion model by Rocktäschel et al. (2016) under the
same setting with d = 150, we can see that our per-
formance on the test data (85.7%) is higher than that
of their model (82.6%). We also tested statistical
significance and found the improvement to be statis-
tically significant at the 0.001 level. (3) The perfor-
mance of mLSTM with bi-LSTM sentence modeling
compared with the model with standard LSTM sen-
tence modeling when d is set to 150 shows that us-
ing bi-LSTM to process the original sentences helps

1446

Model d |θ|W+M |θ|M Train Dev Test

LSTM [Bowman et al. (2015)] 100 10M 221K 84.4 - 77.6
Classifier [Bowman et al. (2015)] - - - 99.7 - 78.2

LSTM shared [Rocktäschel et al. (2016)] 159 3.9M 252K 84.4 83.0 81.4
Word-by-word attention [Rocktäschel et al. (2016)] 100 3.9M 252K 85.3 83.7 83.5

Word-by-word attention (our implementation) 150 340K 340K 85.5 83.3 82.6
mLSTM 150 544K 544K 91.0 86.2 85.7
mLSTM with bi-LSTM sentence modeling 150 1.4M 1.4M 91.3 86.6 86.0
mLSTM 300 1.9M 1.9M 92.0 86.9 86.1
mLSTM with word embedding 300 1.3M 1.3M 88.6 85.4 85.3

Table 1: Experiment results in terms of accuracy. d is the dimension of the hidden states. |θ|W+M is the total number of parameters

and |θ|M is the number of parameters excluding the word embeddings. Note that the five models in the last section were implemented

by us while the other results were taken directly from previous papers. Note also that for the five models in the last section, we do

not update word embeddings so |θ|W+M is the same as |θ|M. The three columns on the right are the accuracies of the trained models

on the training data, the development data and the test data, respectively.

ground truth
prediction N E C

N 2628 286 255
E 340 3005 159
C 250 77 2823

Table 2: The confusion matrix of the results by mLSTM with

d = 300. N, E and C correspond to neutral, entailment and

contradiction, respectively.

(86.0% vs. 85.7% on the test data), but the dif-
ference is small and the complexity of bi-LSTM is
much higher than LSTM. Therefore when we in-
creased d to 300 we did not experiment with bi-
LSTM sentence modeling. (4) Interestingly, when
we experimented with the mLSTM model using
the pre-trained word embeddings instead of LSTM-
generated hidden states as initial representations of
the premise and the hypothesis, we were able to
achieve an accuracy of 85.3% on the test data, which
is still better than previously reported state of the art.
This suggests that the mLSTM architecture coupled
with the attention model works well, regardless of
whether or not we use LSTM to process the original
sentences.

Because the NLI task is a three-way classifica-
tion problem, to better understand the errors, we also
show the confusion matrix of the results obtained by
our mLSTM model with d = 300 in Table 2. We
can see that there is more confusion between neu-
tral and entailment and between neutral and contra-

diction than between entailment and contradiction.
This shows that neutral is relatively hard to capture.

3.3 Further Analyses

To obtain a better understanding of how our pro-
posed model actually performs the matching be-
tween a premise and a hypothesis, we further con-
duct the following analyses. First, we look at the
learned word-by-word alignment weights αkj to
check whether the soft alignment makes sense. This
is the same as what was done by Rocktäschel et al.
(2016). We then look at the values of the various
gate vectors of the mLSTM. By looking at these val-
ues, we aim to check (1) whether the model is able
to differentiate between more important and less im-
portant word-level matching results, and (2) whether
the model forgets certain matching results and re-
members certain other ones.

To conduct the analyses, we choose three ex-
amples and display the various learned parameter
values. These three sentence pairs share the same
premise but have different hypotheses and different
relationship labels. They are given in Table 3. The
values of the alignment weights and the gate vectors
are plotted in Figure 2.

Besides using the three examples, we will also
give some overall statistics of the parameter values
to confirm our observations with the three examples.

1447

ID sentence label
Premise A dog jumping for a Frisbee in the snow.

Example 1 An animal is outside in the cold weather, playing with a plastic toy. entailment
Hypothesis Example 2 A cat washed his face and whiskers with his front paw. contradiction

Example 3 A pet is enjoying a game of fetch with his owner. neutral
Table 3: Three examples of sentence pairs with different relationship labels. The second hypothesis is a contradiction because it

mentions a completely different event. The third hypothesis is neutral to the premise because the phrase “with his owner” cannot

be inferred from the premise.

Figure 2: The alignment weights and the gate vectors of the three examples.

Word Alignment

First, let us look at the top-most plots of Fig-
ure 2. These plots show the alignment weights αkj

between the hypothesis and the premise, where a
darker color corresponds to a larger value of αkj .
Recall that αkj is the degree to which the kth word

1448

in the hypothesis is aligned with the jth word in the
premise. Also recall that the weights αkj are con-
figured such that for the same k all the αkj add up
to 1. This means the weights in the same row in
these plots add up to 1. From the three plots we can
see that the alignment weights generally make sense.
For example, in Example 1, “animal” is strongly
aligned with “dog” and “toy” aligned with “Frisbee.”
The phrase “cold weather” is aligned with “snow.”
In Example 3, we also see that “pet” is strongly
aligned with “dog” and “game” aligned with “Fris-
bee.”

In Example 2, “cat” is strongly aligned with “dog”
and “washes” is aligned with “jumping.” It may ap-
pear that these matching results are wrong. How-
ever, “dog” is likely the best match for “cat” among
all the words in the premise, and as we will show
later, this match between “cat” and “dog” is actu-
ally a strong indication of a contradiction between
the two sentences. The same explanation applies to
the match between “washes” and “jumping.”

We also observe that some words are aligned
with the NULL token we inserted. For example,
the word “is” in the hypothesis in Example 1 does
not correspond to any word in the premise and is
therefore aligned with NULL. The words “face” and
“whiskers” in Example 2 and “owner” in Example 3
are also aligned with NULL. Intuitively, if some im-
portant content words in the hypothesis are aligned
with NULL, it is more likely that the relationship la-
bel is either contradiction or neutral.

Values of Gate Vectors
Next, let us look at the values of the learned gate

vectors of our mLSTM for the three examples. We
show these values under the setting where d is set to
150. Each row of these plots corresponds to one of
the 150 dimensions. Again, a darker color indicates
a higher value.

An input gate controls whether the input at the
current position should be used in deriving the final
hidden state of the current position. From the three
plots of the input gates, we can observe that gener-
ally for stop words such as prepositions and articles
the input gates have lower values, suggesting that the
matching of these words is less important. On the
other hand, content words such as nouns and verbs
tend to have higher values of the input gates, which

also makes sense because these words are generally
more important for determining the final relation-
ship label.

To further verify the observation above, we com-
pute the average input gate values for stop words
and the other content words. We find that the former
has an average value of 0.287 with a standard devia-
tion of 0.084 while the latter has an average value of
0.347 with a standard deviation of 0.116. This shows
that indeed generally stop words have lower input
gate values. Interestingly, we also find that some
stop words may have higher input gate values if they
are critical for the classification task. For example,
the negation word “not” has an average input gate
value of 0.444 with a standard deviation of 0.104.

Overall, the values of the input gates confirm that
the mLSTM helps differentiate the more important
word-level matching results from the less important
ones.

Next, let us look at the forget gates. Recall that
a forget gate controls the importance of the previ-
ous cell state in deriving the final hidden state of the
current position. Higher values of a forget gate indi-
cate that we need to remember the previous cell state
and pass it on whereas lower values indicate that we
should probably forget the previous cell. From the
three plots of the forget gates, we can see that overall
the colors are the lightest for Example 1, which is an
entailment. This suggests that when the hypothesis
is an entailment of the premise, the mLSTM tends
to forget the previous matching results. On the other
hand, for Example 2 and Example 3, which are con-
tradiction and neutral, we see generally darker col-
ors. In particular, in Example 2, we can see that the
colors are consistently dark starting from the word
“his” in the hypothesis until the end. We believe the
explanation is that after the mLSTM processes the
first three words of the hypothesis, “A cat washes,” it
sees that the matching between “cat” and “dog” and
between “washes” and “jumping” is a strong indica-
tion of a contradiction, and therefore these matching
results need to be remembered until the end of the
mLSTM for the final prediction.

We have also checked the forget gates of the other
sentence pairs in the test data by computing the av-
erage forget gate values and the standard deviations
for entailment, neutral and contradiction, respec-
tively. We find that the values are 0.446±0.123,

1449

0.507±0.148 and 0.536±0.170, respectively. For
contradiction and neutral, the forget gates start to
have higher values from certain positions of the hy-
potheses.

Based on the observations above, we hypothesize
that the way the mLSTM works is as follows. It re-
members important mismatches, which are useful
for predicting the contradiction or the neutral re-
lationship, and forgets good matching results. At
the end of the mLSTM, if no important mismatch
is remembered, the final classifier will likely pre-
dict entailment by default. Otherwise, depending on
the kind of mismatch remembered, the classifier will
predict either contradiction or neutral.

For the output gates, we are not able to draw any
important conclusion except that the output gates
seem to be positively correlated with the input gates
but they tend to be darker than the input gates.

4 Related Work

There has been much work on natural language in-
ference. Shallow methods rely mostly on lexical
similarities but are shown to be robust. For example,
Bowman et al. (2015) experimented with a lexical-
ized classifier-based method, which only uses lexi-
cal information and achieves an accuracy of 78.2%
on the SNLI corpus. More advanced methods use
syntactic structures of the sentences to help match-
ing them. For example, Mehdad et al. (2009) ap-
plied syntactic-semantic tree kernels for recogniz-
ing textual entailment. Because inference is es-
sentially a logic problem, methods based on for-
mal logic (Clark and Harrison, 2009) or natural
logic (MacCartney, 2009) have also been proposed.
A comprehensive review on existing work can be
found in the book by Dagan et al. (2013).

The work most relevant to ours is the recently
proposed neural attention model-based method by
Rocktäschel et al. (2016), which we have detailed
in previous sections. Neural attention models have
recently been applied to some natural language pro-
cessing tasks including machine translation (Bah-
danau et al., 2015), abstractive summarization (Rush
et al., 2015) and question answering (Hermann et
al., 2015). Rocktäschel et al. (2016) showed that
the neural attention model could help derive a bet-
ter representation of the premise to be used to match

the hypothesis, whereas in our work we also use it to
derive representations of the premise that are used to
sequentially match the words in the hypothesis.

The SNLI corpus is new and so far it has
only been used in a few studies. Besides the
work by Bowman et al. (2015) themselves and by
Rocktäschel et al. (2016), there are two other studies
which used the SNLI corpus. Vendrov et al. (2015)
used a Skip-Thought model proposed by Kiros et al.
(2015) to the NLI task and reported an accuracy of
81.5% on the test data. Mou et al. (2015) used tree-
based CNN encoders to obtain sentence embeddings
and achieved an accuracy of 82.1%.

5 Conclusions and Future Work

In this paper, we proposed a special LSTM ar-
chitecture for the task of natural language infer-
ence. Based on a recent work by Rocktäschel et al.
(2016), we first used neural attention models to de-
rive attention-weighted vector representations of the
premise. We then designed a match-LSTM that pro-
cesses the hypothesis word by word while trying to
match the hypothesis with the premise. The last hid-
den state of this mLSTM can be used for predicting
the relationship between the premise and the hypoth-
esis. Experiments on the SNLI corpus showed that
the mLSTM model outperformed the state-of-the-art
performance reported so far on this data set. More-
over, closer analyses on the gate vectors revealed
that our mLSTM indeed remembers and passes on
important matching results, which are typically mis-
matches that indicate a contradiction or a neutral re-
lationship between the premise and the hypothesis.

With the large number of parameters to learn, an
inevitable limitation of our model is that a large
training data set is needed to learn good model pa-
rameters. Indeed some preliminary experiments ap-
plying our mLSTM to the SICK corpus (Marelli
et al., 2014), a smaller textual entailment bench-
mark data set, did not give very good results. We
believe that this is because our model learns ev-
erything from scratch except using the pre-trained
word embeddings. A future direction would be to
incorporate other resources such as the paraphrase
database (Ganitkevitch et al., 2013) into the learn-
ing process so that such prior knowledge can be uti-
lized.

1450

References
Dzmitry Bahdanau, HyungHyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated cor-
pus for learning natural language inference. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing.

Peter Clark and Phil Harrison. 2009. An inference-based
approach to recognizing entailment. In Proceedings of
the Text Analysis Conference.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL Recognising Textual Entailment
Challenge. In Proceedings of the PASCAL Challenges
Workshop on Recognizing Textual Entailment.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for
Computational Linguistics.

Oren Glickman, Ido Dagan, and Moshe Koppel. 2005.
Web based probabilistic textual entailment. In Pro-
ceedings of the PASCAL Challenges Workshop on Rec-
ognizing Textual Entailment.

Alex Graves. 2012. Supervised sequence labelling with
recurrent neural networks, volume 385. Springer.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735–
1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Proceedings of
the International Conference on Learning Represen-
tations.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Ad-
vances in Neural Information Processing Systems.

Bill MacCartney, Michel Galley, and Christopher D Man-
ning. 2008. A phrase-based alignment model for nat-
ural language inference. In Proceedings of the Confer-

ence on Empirical Methods in Natural Language Pro-
cessing.

Bill MacCartney. 2009. Natural Language Inference.
Ph.D. thesis, Stanford University.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of composi-
tional distributional semantic models. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation.

Yashar Mehdad, Alessandro Moschitti1, and Fabio Mas-
siomo Zanzotto. 2009. SemKer: Syntactic/semantic
kernels for recognizing textual entailment. In Pro-
ceedings of the Text Analysis Conference.

Lili Mou, Men Rui, Ge Li, Yan Xu, Lu Zhang, Rui Yan,
and Zhi Jin. 2015. Recognizing entailment and con-
tradiction by tree-based convolution. arXiv preprint
arXiv:1512.08422.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz Her-
mann, Tomáš Kočiskỳ, and Phil Blunsom. 2016. Rea-
soning about entailment with neural attention. In Pro-
ceedings of the International Conference on Learning
Representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Ur-
tasun. 2015. Order-embeddings of images and lan-
guage. arXiv preprint arXiv:1511.06361.

1451

Proceedings of NAACL-HLT 2016, pages 1452–1462,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Activity Modeling in Email

Ashequl Qadir
School of Computing

University of Utah
Salt Lake City, UT 84112, USA

asheq@cs.utah.edu

Michael Gamon
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
mgamon@microsoft.com

Patrick Pantel
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
ppantel@microsoft.com

Ahmed Hassan Awadallah
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
ahmed.awadallah@microsoft.com

Abstract

We introduce a latent activity model for work-
place emails, positing that communication at
work is purposeful and organized by activities.
We pose the problem as probabilistic infer-
ence in graphical models that jointly capture
the interplay between latent activities and the
email contexts they govern, such as the recipi-
ents, subject and body. The model parameters
are learned using maximum likelihood estima-
tion with an expectation maximization algo-
rithm. We present three variants of the model
that incorporate the recipients, co-occurrence
of the recipients, and email body and subject.
We demonstrate the model’s effectiveness in
an email recipient recommendation task and
show that it outperforms a state-of-the-art gen-
erative model. Additionally, we show that the
activity model can be used to identify email
senders who engage in similar activities, re-
sulting in further improvements in recipient
recommendation.

1 Introduction

Activities are a prominent characteristic of a work-
place, typically governed by people’s job roles and
work responsibilities. Examples of workplace activ-
ities can include organizing a conference, purchas-
ing equipment, managing candidate interviews, etc.
Activities can be viewed as a collaborative work
practice involving a set of people each playing a
different role in the activity (Dredze et al., 2006).

Although emails are an integral part of workplace
communication, current email clients offer little sup-
port for the activity oriented use of email (Khous-
sainov and Kushmerick, 2005). Discussions can get
split across long email threads and communications
about all activities can get intermixed, making activ-
ity management difficult (Balakrishnan et al., 2010).

In this work, we model activities as latent proba-
bility distributions personalized to the email sender.
We present three variants of the activity model, in-
corporating: (1) email recipients, (2) email recip-
ient pairs which account for co-occurrence of the
email recipients, and (3) email body and subject to-
kens along with email recipient pairs. Additionally,
we experiment with lexical (bag of words), syntac-
tic (nouns and verb phrases), and semantic (things of
interest in an email) representations of the body and
subject tokens of an email. The parameters of the
generative model are learned using an expectation
maximization (EM) algorithm.

For evaluation, we formulate a real world task set-
ting for email recipient recommendation, where we
assume that all but the last recipient of an email has
been entered by the sender, and we test the effective-
ness of our activity model in recommending the last
recipient. Such a system has practical applications,
such as reminding an email sender about a poten-
tially forgotten recipient or recommending the next
recipient as the sender enters each recipient.

The main contributions of our research are:

• We introduce a latent activity model for emails

1452

where the email contexts are governed by
workplace activities;

• We present probabilistic modeling that incor-
porates co-occurring recipients with lexical,
syntactic and semantic contexts of an email;

• We identify senders engaging in similar activ-
ities using the activity model, and show im-
provements in recipient recommendation.

2 Related Work

Prior research related to our work can be divided into
the following three major areas presented below.

2.1 Activity in Emails

Prior research has treated emails as a communica-
tion tool for workplace activities (Moran, 2005) or
a task management resource (Bellotti et al., 2003).
Kushmerick and Lau (2005) formalized e-commerce
activities as finite-state automata, where transitions
among states represent messages sent between par-
ticipants. Dredze et al. (2006) used user generated
activity labels and classified emails into activities us-
ing overlapping participants and content similarity.
Minkov et al. (2008) modeled user created folders
and TO-DO items as activities, and created a hetero-
geneous graph to perform activity-centric search.

Shen et al. (2006) predicted tasks associated with
an incoming email by leveraging email sender, re-
cipients and distinct subject words. They found
the body words to not provide additional prediction
value. Although they used similar information as we
do, they used a combination of generative and dis-
criminative models toward task classification, and
did not do recipient recommendation. Our activity
model designs are closer to the model introduced by
Dredze and Wallach (2008), who presented a Dirich-
let process mixture model combined with author and
thread information. Our designs differ as we use co-
occurring recipients in the generative process, and
use various linguistic representations of content.

2.2 Generative models for Emails

Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is a frequently used generative topic model. Assum-
ing a Dirichlet prior, LDA models learn probability
distributions of words as latent topics in a corpus.
In emails, LDA models have been used for learn-

ing summary keywords (Dredze et al., 2008), ana-
lyzing how topics change over time (Wang and Mc-
Callum, 2006), understanding entity relations (Bala-
subramanyan and Cohen, 2011), analyzing commu-
nication networks (Nguyen et al., 2013), for author-
ship attribution (Seroussi et al., 2012), and discover-
ing topics associated with authors (McCallum et al.,
2005).

Other generative models have also been used for
analyzing email communication behavior (Navaroli
et al., 2012), identifying links between an email
sender and a recipient to detect potential anoma-
lous communication (Huang and Zeng, 2006), and
resolving personal names in emails (Elsayed et
al., 2008). Representing workplace activities of
the emails with probabilistic inference in graphical
models where observed information is personalized
to the email senders is what sets our work apart
from previous research in computational models for
emails.

2.3 Email Recipient Recommendation

For recommending email recipients, interactions
among email participants and content similarity are
the signals that have been explored most. Car-
valho and Cohen (2007) leveraged content similar-
ity by creating tf-idf centroid vectors and determin-
ing k-nearest neighbors of a target email. Pal et al.
(2007) presented a discriminative author recipient
topic model that uses transfer learning. Desai and
Dash (2014) used reverse chronologically arranged
implicit groups determined from sent emails. Sofer-
shtein and Cohen (2015) created a ranking function
combining temporal and textual features.

Among the generative modeling based ap-
proaches, Pal and McCallum (2006) learned prob-
ability distributions of recipients, and words in body
and subject to predict recipients in email cc lists.
Dredze et al. (2008) evaluated the impact of sum-
mary keywords generated using LDA, for email re-
cipient prediction. More recently, Graus et al. (2014)
predicted email recipients by estimating sender and
recipient likelihood using a communication graph,
email likelihood using content words, and evaluated
performance on the Avocado email corpus. In our
work, we use latent activity distributions, and iden-
tify senders who engage in similar activities. We
compare our recipient prediction results against the

1453

generative model of Graus et al. (2014).

3 Problem Setting and Data

3.1 Activity Modeling in Emails

Our motivation for activity modeling in email stems
from the assumption that in the workplace, people
primarily use emails as a communication tool for
their ongoing activities, and an email’s recipient list,
content, and other context are governed by a given
activity. For example, an employee attending a con-
ference may write emails to the conference organiz-
ers regarding registration or scheduling, or emails
to a hotel for booking confirmation. The commu-
nication may span multiple emails, involving many
parties, but all under the same activity.

We model the activities as a latent probabilistic
variable over the email recipients and content, per-
sonalized to the email sender. Let D be the set of all
emails in a corpus containing N emails, generated
by S = {si | 1 ≤ i ≤ SD} senders, and sent to
R = {ri | 1 ≤ i ≤ RD} recipients. Let B = {bi |
1 ≤ i ≤ BD}, and T = {ti | 1 ≤ i ≤ TD} rep-
resent the body and subject vocabulary of the emails
respectively. LetK be the number of latent activities
for each sender. We model the activities as probabil-
ity distributions over email components S,R,B and
T .

3.2 Corpus Description and Data Sets

For our experiments, we use the Avocado email cor-
pus, available from the LDC catalog.1 The corpus
contains emails from a defunct IT company referred
to as “Avocado”. For learning the activity model, we
extract emails from 7/1/2000 – 5/1/2001 to create a
training data set, and from 5/1/2001 – 6/30/2001 for
development/tuning. In this work, we did not con-
sider threaded conversations, only retained the first
email in a thread and discarded the rest.

As additional filtering steps, we only kept emails
written by the Avocado employees, allowing us to
confine the scope of the activities within the com-
pany. To control sparsity and noise, for each email,
we enforced a a minimum of two recipients, and a
maximum of ten recipients.2 In a practical system,

1https://catalog.ldc.upenn.edu/LDC2015T03
2When an email has many recipients, it is often indicative of

general announcements or system generated emails, which are

Number of Train Train + Dev
Total emails 18,593 22,283
Unique senders 120 129
Unique recipients 3,157 3,658
Unique body words 31,386 36,005
Unique subject words 6,969 7,724
Emails per sender 154.94 172.74
Emails per recipient 5.89 6.09

Table 1: Data set statistics.

we consider it reasonable that a model only acti-
vates after some history of email is sent by a user.
We therefore removed emails by the senders hav-
ing fewer than 25 emails in the training data. From
email bodies and subjects, we removed stopwords,
and words appearing fewer than 5 times or more than
100 times.3 When a recipient’s same email alias was
present multiple times, we took it only once, as well
as removed a sender’s email alias from the recipi-
ents list if it was present there. In this work, we
focused on recipients from only the “TO” field, and
did not include recipients from the “CC” or “BCC”
field. Table 1 presents statistics of the data sets.

4 Activity Models

Our key assumption in modeling the activities in
email is that different components of an email con-
tain specific types of information that can help to
characterize the activities that drive user behavior.
In our generative process of the activity model, for
an email d ∈ D, a sender s ∈ S is first gener-
ated from a multinomial distribution with probabil-
ity vector σ, then an activity a is generated from
a sender personalized multinomial distribution with
probability vector θs. Let Rd ⊆ R, Bd ⊆ B and
Td ⊆ T be the set4 of recipients, body and subject
tokens of d respectively. The generation of the email
contexts (recipients and body/subject tokens) varies
based on the specific design of each variant of our
model. In a first simplistic model, we assume that
recipient r ∈ Rd, body token b ∈ Bd and subject
token t ∈ Td for an email can be generated from
the multinomial distributions with probability vec-
tors λs,a, φs,a, and τs,a respectively, that are condi-
tioned s and a. Point estimates for σ can be directly

less directly relevant to an employee’s activities. Some emails
in the Avocado dataset have more than 500 recipients.

3A heuristic we used to remove words that are too general.
4Multiset for body and subject tokens.

1454

calculated from a training corpus, whereas θ, λ, φ,
and τ are the unknown parameters of the model.

4.1 Model 1: Rec

In our first model Rec, we assume that the latent
activities can be learned as a probability distribution
over the recipients alone. The generative process is:

Model 1: Rec
For each email document d ∈ D

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Rd|

recipient r ~ Multinomial(λs,a)

Figure 1 presents the plate diagram of the model.
The joint probability of theRecmodel is the product
of the conditional distributions:

P (s, a, r|σ, θ, λ) = P (s|σ)P (a|s, θ)
∏
r∈Rd

P (r|s, a, λ)

The probability of a sender s, an activity a given
s, and a recipient r given s and a are defined below5:

P (s = ŝ) =
SD∏
i=1

σ
I[i=ŝ]
i , s.t.

∑
i

σi = 1

P (a = â|s = ŝ) =
K∏
i=1

θ
I[i=â]
ŝ,i , s.t. ∀s

∑
i

θs,i = 1

P (r = r̂|s = ŝ, a = â) =
RD∏
i=1

λ
I[i=r̂]
ŝ,â,i ,

s.t. ∀s,a
∑
i

λs,a,i = 1

Inference: Let dn be the nth email, where dn =
{sn, Rnd}. We apply Bayes’ rule to find the posterior
distribution over the activities Pn(a|d), which is di-
rectly proportional to the joint distribution Pn(a, d).
We can exactly compute this distribution by evaluat-
ing the joint distribution for every value of a and the
observed document dn.

Learning: Point estimates for σ can be directly
obtained from the training corpus. We estimate the

5I is an indicator variable

parameters θ and λ by maximizing the (log) proba-
bility of observing D. We write the log(D) as:

logP (D) =
N∑
n=1

∑
a

Pn(a|s,Rd) logPn(a, s,Rd)

We use the Expectation-Maximization (EM) al-
gorithm to set the parameters. Starting with a ran-
dom initialization of the parameters (with Gaussian
noise), EM iterates between the E-step in which
Pn(a|s,Rd) is computed for each email with fixed
parameter values computed in the previous M-step,
and the M-step in which the parameters are updated
with fixed Pn(a|s,Rd) values computed in the E-
step. The parameter updates are obtained by taking
the derivative of log P (D) with respect to each pa-
rameter, and setting the resultant to 0, providing us
with the following parameter updates:

θsn,i =
∑N

n=1

∑
a P

n(a|d)I[i = a]∑N
n=1

∑
a P

n(a|d)

λsn,a,i =
∑N

n=1

∑
a P

n(a|d)∑r∈R I[i = r]

|Rnd |
∑N

n=1

∑
a P

n(a|d)
We run EM until the change in logP (D) is less

than our convergence threshold 10−5.

4.2 Model 2: CoRec
Using co-occurring recipients in generative mod-
els for emails has been rarely explored in previ-
ous work. Pal and McCallum (2006) modeled co-
recipient information as a probability distribution of
recipients conditioned on the other recipients, and
noted that this information improved their email cc
prediction performance. In our CoRec model, we
model co-recipients as pairs of recipients generated
from a probability distribution conditioned on the
sender and the activity. Let L = {(ri, rj) | 1 ≤ i ≤
RD, 1 ≤ j ≤ RD} having LD pairs of recipients in
the corpus. For an email d, Ld ⊆ L is the set of re-
cipient pairs in d. The CoRec model first generates
a sender s from the probability distribution σ, then
an activity a from a distribution over latent activi-
ties θs personalized to s, and finally recipient pairs
rp ∈ Ld from a distribution over recipient pairs ωs,a
conditioned on s and a. The generative process is
summarized below:

1455

Figure 1: Activity model plate diagrams.

Model 2: CoRec
For each email document d

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Ld|

recipient pair rp ~ Multinomial(ωs,a)

The joint probability of the CoRec model is:

P (s, a, rp|σ, θ, ω) = P (s|σ)P (a|s, θ)∏
rp∈Ld

P (rp|s, a, ω)

This adds over the Rec model the probability of a
recipient pair rp given s and a, defined below:

P (rp = r̂p|s = ŝ, a = â) =
LD∏
i=1

ω
I[i=r̂p]
ŝ,â,i ,

s.t. ∀s,a
∑
i

ωs,a,i = 1

The EM algorithm is applied in the same way as
in the Rec model. During the M-step, update for θ
remains the same. The update for ω is given below:

ωsn,a,i =

∑N
n=1

∑
a P

n(a|d)∑rp∈L I[i = rp]

|Lnd |
∑N

n=1

∑
a P

n(a|d)
4.3 Model 3: CoRecBT
Finally, in the CoRecBT model, we further incor-
porate body and subject of emails. The generative
process of the model is:

Model 3: CoRecBT
For each email document d

sender s ~ Multinomial(σ)
activity a ~ Multinomial(θs)
For 1 . . . |Ld|

recipient pair rp ~ Multinomial(ωs,a)
For 1 . . . |Bd|

body token b ~ Multinomial(φs,a)
For 1 . . . |Td|

subject token t ~ Multinomial(τs,a)

The joint probability of the CoRecBT model:

P (s, a, rp, b, t|σ, θ, ω, φ, τ) = P (s|σ)P (a|s, θ)∏
rp∈Ld

P (rp|s, a, ω)
∏
b∈Bd

P (b|s, a, φ)

∏
t∈Td

P (t|s, a, τ)

where the probability of a body token b and subject
token t given s and a defined as:

P (b = b̂|s = ŝ, a = â) =
B∏
i=1

φ
I[i=b̂]
ŝ,â,i

P (t = t̂|s = ŝ, a = â) =
T∏
i=1

τ
I[i=t̂]
ŝ,â,i ,

s.t. ∀s,a
∑
i

φs,a,i = 1,∀s,a
∑
i

τs,a,i = 1

During the M-step of the EM algorithm, updates
for θ and ω remain the same as the CoRec model.
The updates for φ and τ are given below:

1456

φsn,a,i =
∑N

n=1

∑
a P

n(a|d)∑b∈B I[i = b]

|Bn
d |
∑N

n=1

∑
a P

n(a|d)

τsn,a,i =
∑N

n=1

∑
a P

n(a|d)∑t∈T I[i = t]

|Tnd |
∑N

n=1

∑
a P

n(a|d)
4.4 Subject and Body Token Representations
Previous work in modeling email content mostly ex-
plored bag of words (e.g., (Graus et al., 2014)) or
tf-idf vectors (e.g., (Carvalho and Cohen, 2007)) as
the content representation of an email. For model-
ing activities in emails, we experiment with different
linguistic representations of the email content. They
are:

• Lexical: as the lexical representation, we use
the bag of words (BOW) from email body and
subject, after Penn Tree Bank (PTB) style tok-
enization.

• Syntactic: using heuristics on the output of a
PTB constituent parser (Quirk et al., 2012), we
identify Nouns (N) and Verb Phrases (VP) in
email body and subject.

• Semantic: we identify phrases in emails that
represent topics, concept and entities discussed
in the emails. We refer to them as Thing of In-
terest (TOI). To extract these key phrases, we
use Web search queries as a source of informa-
tion. Using queries as a dictionary of possi-
ble key phrases is useful but has limited cov-
erage since many topics/concepts are discussed
in emails but absent or not widely available in
Web search queries. Instead of using queries
directly, we use them to construct a training
set of key phrases and their content and we
train a discriminative model to identify the key
phrases. We treat each query as a key phrase
and the surrounding text from Web results as
context. We use a sample of hundreds of thou-
sands of search queries from the usage logs of
a commercial Web search engine. Only queries
tagged as English and from the United States
locale were retained to remove geographic or
linguistic variations. Queries were kept only if

they have been submitted by at least 100 dif-
ferent users in one month. For each query, the
text from the Web page that is most relevant to
the query and that contains the exact query text
is collected as the context for the query. Rel-
evance is estimated by the percentage of time
the page has received a long dwell time click
(greater than 30 seconds) for the query. If no
relevant pages exist, the query is ignored. To
generate negative examples, random n-grams
were extracted from web pages. We experi-
mented with a large number of features includ-
ing: first word of the phrase, last word of the
phrase, n-gram features (n=1 to 3), the word
right before/after the phrase, the part-of-speech
tag of the first word in the phrase, the part-of-
speech tag of the last word in the phrase, n-
gram features (n ranges from 1 to 3) over the se-
quence of part-of-speech tags representing the
phrase and the part-of-speech tags of the word
right before/after the phrase, phrase length,
how many times it appeared in the body/title,
and the relative location of the first occurrence
of the phrase in the body. We trained a logis-
tic regression classifier using these features and
the data described above. The trained classifier
is then applied to our email data to identify the
Thing of Interest (TOI) phrases.

4.5 Discussion
Full Bayesian Treatment: In the above mod-
els, we learn point estimates for the parameters
(σ, θ, ω, φ, τ). One can take a Bayesian approach
and treat these parameters as variables (for in-
stance, with Dirichlet prior distributions), and per-
form Bayesian inference. However, exact inference
will become intractable and we would need to re-
sort to methods such as variational inference or sam-
pling. We found this extension unnecessary, as we
had a sufficient amount of training data to estimate
all parameters reliably. In addition, our approach
enabled us to learn (and perform inference in) the
model with large amounts of data with reasonable
computing time.

5 Recipient Recommendation

To evaluate the effectiveness of our activity model,
we formulate a recipient recommendation task.

1457

Task Definition: For a test email document d
containing the list of recipients Rd, a modified list
of recipients R∗d is created by removing the last re-
cipient r∗ ∈ Rd. Given d withR∗d, the task objective
is to recommend r∗ as the next recipient for d.

5.1 Our Methods
To recommend a recipient for a test email document
dwritten by sender sd, we first create a candidate re-
cipient list by combining recipients who received an
email from sd, and recipients who co-occurred with
an observed recipient r ∈ R∗d in the training corpus.
Sender sd and any r ∈ R∗d are excluded from the
candidate list. Next, we determine the probability
distribution of the activities in d using:

P (a|d) =
P (s, a, d|σ, θ, ω, φ, τ)∑
a P (s, a, d|σ, θ, ω, φ, τ)

Each candidate recipient r∗ is then ranked by a
score using two different methods defined below.
The ranked list is used as our final recommended
recipients. The two scoring methods are:

Reg Method: In the Reg method, we score using
the chain rule6:

P (r∗|d) ∝
∑
a

P (a|d)
∏
r∈Rd

P (r∗, r|s, a)

We smooth the above function using the following
linear interpolation:

P (r∗, r|a, s) = α1 × P (r∗, r|a, s) + (1− α1)×
(α2 × P (r∗, r) + (1− α2)× P (rrare))

Here, P (rrare) is the lowest probability of any re-
cipient in the training data. We calculate αi with a
sigmoid logistic function, allowing us to determine
when to rely more on the learned probabilities:

αi =
1

1 + e−k(x−x0)

For α1, x is the pointwise mutual information
(PMI) between s and r in training data, with steep-
ness parameter k = 50. For α2, x is the frequency of
r in training data, with k = .5. Sigmoid’s midpoint

6Scoring function for the Rec model uses P (r∗|s, a)

x0 is the first quartile (Q1) of the PMI and recipi-
ent frequency distributions respectively. The above
values for k have been determined from the shape of
the sigmoid curves in the training data.

Sim Method: In the Sim method, we explore
the idea that the activity model can be used to iden-
tify other senders with similar activities as sd, who
we refer to as similar senders, S∗d . To identify the
similar senders, we evaluate senders who maximize
the log likelihood of the test document d by calcu-
lating logP (s, d) for all s ∈ S, and identify the top
5 with the highest scores to add to S∗d . The observed
sender sd is not included in S∗d . We then calculate
Ps(r∗|d) for each s ∈ S∗d using the Reg method,
along with a weight ws:

ws =
logP (s, d)∑
s∈S∗d logP (s, d)

The final scoring function for the Sim method is:

P (r∗|d) = αPsd
(r∗|d) + (1− α)

∑
s∈S∗d

wsPs(r∗|d)

Here, α is determined with the frequency of sd in
training data, using the sigmoid function with k =
0.5 and x0 as the Q1 of the frequency distribution.

5.2 Baseline Systems
As simple baseline systems to compare with our
methods, we use 1) a random recipient baseline; 2)
ranked recipients by P (r = r∗); and 3) ranked re-
cipients by P (r = r∗|s = sd), where the proba-
bilities are calculated from the training data. We
evaluate two additional generative baselines using 4)
P (r = r∗|R∗d), and 5) P (r = r∗|s = sd, R

∗
d) by

applying Bayes’ theorem, and assuming conditional
independence among r ∈ R∗d. For these methods,
we used similar interpolation smoothing as before.

We additionally implemented the generative
model presented by Graus et al. (2014) for recipient
recommendation, which for test email d uses:

P (r∗|sd, d) ∝ P (d|r∗, sd)× P (sd|r∗)× P (r∗)

Graus estimatedP (d|r∗, sd) byP (b|r∗, sd) where
b is an observed term in the email. The eval-
uation task was different from ours as they pre-
dicted all recipients of an email. In our evalua-

1458

Method Precision@1 Precision@2 Precision@5 Precision@10 MRR
Baselines

(1) Random 0 0 0 .10 .0025
(2) P (r = r∗) 2.81 4.58 7.49 17.32 .0736
(3) P (r = r∗|s = sd) 4.47 9.72 24.18 34.69 .1455
(4) P (r = r∗|R∗d) 17.26 25.59 39.42 53.93 .2857
(5) P (r = r∗|s = sd, R∗d) 16.80 25.01 42.02 56.16 .2871

Graus Methods (Graus et al., 2014)
(6) GrausB (BOW) 2.96 4.84 8.01 17.94 .0769
(7) GrausB (VP-TOI) 4.63 9.00 18.25 28.86 .1257
(8) GrausR 18.88 27.2 41.97 54.39 .3005

Activity Models (Reg Scoring)
(9) Rec 12.27 19.81 30.53 44.46 .2224

(10) CoRec 21.63 29.07 41.45 52.16 .3167
(11) CoRecBT (BOW) 19.97 27.87 40.77 52.16 .3037
(12) CoRecBT (NP-VP-TOI) 20.64 28.29 40.93 51.79 .3081
(13) CoRecBT (VP-TOI) 20.59 29.17 41.39 51.95 .3104

Activity Models (Sim Scoring)
(14) CoRecBT (NP-VP-TOI) 22.01 30.47 44.36 56.01 .3306
(15) CoRecBT (VP-TOI) 22.26 33.63 44.57 57.05 .3336

Table 2: Recipient recommendation results (BOW = bag-of-words, NP = noun phrase, VP= verb phrase, TOI = thing of interest).

Bold indicates statistical significance over all non-shaded results using t-test (p=0.05).

tion task, we recommend the last recipient, allow-
ing us to use the already observed recipients R∗d for
estimating P (d|r∗, sd). Consequently, we present
3 additional baselines adopting Graus’ method:
6) GrausB(BOW) method uses body words, 7)
GrausB(V P − TOI) uses the verb phrases and
things of interest, and finally 8) GrausR method
uses R∗d for estimating P (d|r∗, sd). GrausR is
equivalent to how we calculate our fifth baseline,
P (r = r∗|s = sd, R

∗
d), with the only difference of

the smoothing function.

6 Experimental Results

6.1 Experimental Setup

To evaluate recipient recommendation, we create a
test data set by extracting emails from 7/1/2001 –
8/31/2001 from the Avocado data set. First we train
our activity model with the training data and de-
termine the optimum number of activities for each
method by evaluating recipient recommendation on
the development data. The number of activities per
model is shown in Table 3. We then combine train-
ing and tuning data to create a new training data
set in order to minimize the time difference between
training and test emails. From the test data, we re-
moved emails that had a sender or recipient never
appearing in the training data. Although this lim-

its the scope of the recipient recommendation evalu-
ation task, predicting a recipient for a sender who
never appeared in the training data is beyond our
current modeling scope and practical settings. The
final test set contains 1923 emails with 14.91 emails
per sender.

Model K
Rec 10
CoRec 3
CoRecBT (BOW) 20
CoRecBT (NP-VP-TOI) 7
CoRecBT (VP-TOI) 4

Table 3: No. of activities used for recipient recommendation.

With the ranked lists of recipients generated by
each method, we calculate precision@X (X= 1, 2,
5, 10), and MRR (Mean Reciprocal Rank). Preci-
sion@X is defined as percentage of emails having
the actual recipient in the top X ranked recipients.

6.2 Recipient Recommendation Results
Table 2 presents the recipient recommendation re-
sults for different methods. The first 5 rows show
that the generative baselines from row (4) and (5)
performed much better than the simple baselines
(row (1)–(3)), yielding up to .2871 MRR. Compar-
atively, the GrausB(BOW) baseline in row (6) that
uses body words, did not perform well, which is con-
sistent with the finding by Shen et al. (2006) about

1459

Figure 2: Word clouds of activity tokens.

body words not providing additional value in their
task classification work. However, the GrausB(VP–
TOI) in row (7) shows that using body terms more
selectively has the potential for improving perfor-
mance. Comparatively, the use of observed recipi-
ents (GrausR in row (8)) substantially improved rec-
ommendation results, yielding the highest MRR,
precision@1, and precision@2 scores, while the
generative baseline in row (5) retained the highest
precision@5 and precision@10 scores.

Next, rows (9) to (13) show results for the activ-
ity models that use the Reg scoring. First, the Rec
model outperformed the simple baselines from rows
(1) to (3) as well as the GrausB methods from rows
(6) and (7), but did not perform better than the gen-
erative baselines from rows (4) and (5) or GrausR.
All the CoRec models performed better at recom-
mending a recipient at top of the ranked lists with
higher precision@1 and precision@2 scores, which
are more practically useful for recommendation pur-
poses, and also resulted in higher MRR scores.

Finally, the rows (14) and (15) show the results
with the Sim scoring, and we observe a substan-
tial improvement across the board, with verb phrase
and thing of interest as the body context yielding
our best results. This model achieved 3.31% addi-
tional improvements in MRR, and 3.38% additional
improvements in precision@1 over the best baseline
results. This demonstrates that the learned activity
model can be used to identify senders who are likely
to engage in similar activities, improving recipient
recommendation performance further.

Figure 2 shows examples of activity tokens from
the emails of a sender in our training corpus, using
word clouds. This is meant to serve as a case anal-
ysis, but it is not straightforward to interpret word
clouds. When inspecting, we found that the names

of potential customers (Nokia, Siemens, SAP) in the
first example are prominent in some of the emails
of the sender in the raw data. The recipients in
these emails form a small cluster of people who are
mainly involved in discussions around a particular
event (Mobile Business Forum) where these compa-
nies are amongst the sponsors.

The second example, from the same sender,
shows a coherent set of recipients. But in this case,
the model seemed to have conflated multiple topics
(such as the Palm VII device and support issues).
We suspect that the cause for this confusion lies in
the strong and coherent cluster of recipients which
forces divergent topics to coalesce. While the com-
bined signals of co-recipients and topic words im-
prove the overall activity model, in some of the indi-
vidual cases it leads to one signal improperly domi-
nating the other.

7 Conclusion and Future Work

We presented a latent activity model for workplace
emails where the activities are modeled as proba-
bility distributions over email recipients and other
contexts, personalized to the email sender. Our
model incorporates co-occurring recipients as part
of the generative process, and can be used to iden-
tify senders who participate in similar activities, re-
sulting in improved performance in email recipient
recommendation. Our experiments suggest that syn-
tactic and semantic knowledge such as verb phrases
and thing of interests in emails can model the activi-
ties much better than bag-of-words, as demonstrated
by the recipient recommendation results. Learning
topics and sub-activities under workplace activities
is a promising research direction which we will ex-
plore in future work.

1460

References

Aruna D Balakrishnan, Tara Matthews, and Thomas P
Moran. 2010. Fitting an activity-centric system into
an ecology of workplace tools. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 787–790. ACM.

Ramnath Balasubramanyan and William W Cohen.
2011. Block-lda: Jointly modeling entity-annotated
text and entity-entity links. In SDM, volume 11, pages
450–461. SIAM.

Victoria Bellotti, Nicolas Ducheneaut, Mark Howard,
and Ian Smith. 2003. Taking email to task: the design
and evaluation of a task management centered email
tool. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 345–352.
ACM.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993–1022.

Vitor R Carvalho and William Cohen. 2007. Recom-
mending recipients in the enron email corpus. Ma-
chine Learning.

Amish Desai and Subrat Kumar Dash. 2014. Email
recipient prediction using reverse chronologically ar-
ranged implicit groups. In Contemporary Comput-
ing (IC3), 2014 Seventh International Conference on,
pages 461–466. IEEE.

Mark Dredze and Hanna Wallach. 2008. User models for
email activity management. In Proceedings of the 5th
International Workshop on Ubiquitous User Modeling
(UbiqUM’08), Gran Canaria, Spain, January. online
proceedings forthcoming.

Mark Dredze, Tessa Lau, and Nicholas Kushmerick.
2006. Automatically classifying emails into activities.
In Proceedings of the 11th International Conference
on Intelligent User Interfaces, IUI ’06, pages 70–77,
New York, NY, USA. ACM.

Mark Dredze, Hanna M Wallach, Danny Puller, and Fer-
nando Pereira. 2008. Generating summary keywords
for emails using topics. In Proceedings of the 13th in-
ternational conference on Intelligent user interfaces,
pages 199–206. ACM.

Tamer Elsayed, Douglas W Oard, and Galileo Namata.
2008. Resolving personal names in email using con-
text expansion. In ACL, pages 941–949.

David Graus, David van Dijk, Manos Tsagkias, Wouter
Weerkamp, and Maarten de Rijke. 2014. Recip-
ient recommendation in enterprises using communi-
cation graphs and email content. In Proceedings of
the 37th international ACM SIGIR conference on Re-
search & development in information retrieval, pages
1079–1082. ACM.

Zan Huang and Daniel Dajun Zeng. 2006. A link predic-
tion approach to anomalous email detection. In SMC,
pages 1131–1136.

Rinat Khoussainov and Nicholas Kushmerick. 2005.
Email task management: An iterative relational learn-
ing approach. In CEAS.

Nicholas Kushmerick and Tessa Lau. 2005. Automated
email activity management: an unsupervised learning
approach. In Proceedings of the 10th international
conference on Intelligent user interfaces, pages 67–74.
ACM.

Andrew McCallum, Andres Corrada-Emmanuel, and
Xuerui Wang. 2005. Topic and role discovery in so-
cial networks. Computer Science Department Faculty
Publication Series, page 3.

Einat Minkov, Ramnath Balasubramanyan, and
William W Cohen. 2008. Activity-centred search in
email. In CEAS. Citeseer.

Thomas P Moran. 2005. Unified activity management:
Explicitly representing activity in work-support sys-
tems. In Proceedings of the European Conference
on Computer-Supported Cooperative Work (ECSCW
2005), Workshop on Activity: From Theoretical to a
Computational Construct. Citeseer.

Nicholas Navaroli, Christopher DuBois, and Padhraic
Smyth. 2012. Statistical models for exploring individ-
ual email communication behavior. In ACML, pages
317–332.

Muon Nguyen, Thanh Ho, and Phuc Do. 2013. Social
networks analysis based on topic modeling. In Com-
puting and Communication Technologies, Research,
Innovation, and Vision for the Future (RIVF), 2013
IEEE RIVF International Conference on, pages 119–
122. IEEE.

Chris Pal and Andrew McCallum. 2006. Cc prediction
with graphical models. In CEAS.

Chris Pal, Xuerui Wang, and Andrew McCallum. 2007.
Transfer learning for enhancing information flow in
organizations and social networks. Technical report,
DTIC Document.

Chris Quirk, Pallavi Choudhury, Jianfeng Gao, Hisami
Suzuki, Kristina Toutanova, Michael Gamon, Wen-tau
Yih, Lucy Vanderwende, and Colin Cherry. 2012. Msr
splat, a language analysis toolkit. In Proceedings of
the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies: Demonstration Session,
pages 21–24. Association for Computational Linguis-
tics.

Yanir Seroussi, Fabian Bohnert, and Ingrid Zukerman.
2012. Authorship attribution with author-aware topic
models. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics:

1461

Short Papers-Volume 2, pages 264–269. Association
for Computational Linguistics.

Jianqiang Shen, Lida Li, Thomas G Dietterich, and
Jonathan L Herlocker. 2006. A hybrid learning sys-
tem for recognizing user tasks from desktop activities
and email messages. In Proceedings of the 11th in-
ternational conference on Intelligent user interfaces,
pages 86–92. ACM.

Zvi Sofershtein and Sara Cohen. 2015. Predicting email
recipients. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining 2015, ASONAM ’15,
pages 761–764, New York, NY, USA. ACM.

Xuerui Wang and Andrew McCallum. 2006. Topics over
time: a non-markov continuous-time model of topi-
cal trends. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 424–433. ACM.

1462

Proceedings of NAACL-HLT 2016, pages 1463–1472,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Clustering Paraphrases by Word Sense

Anne Cocos and Chris Callison-Burch
Computer and Information Science Department, University of Pennsylvania

Abstract

Automatically generated databases of English
paraphrases have the drawback that they re-
turn a single list of paraphrases for an input
word or phrase. This means that all senses of
polysemous words are grouped together, un-
like WordNet which partitions different senses
into separate synsets. We present a new
method for clustering paraphrases by word
sense, and apply it to the Paraphrase Database
(PPDB). We investigate the performance of hi-
erarchical and spectral clustering algorithms,
and systematically explore different ways of
defining the similarity matrix that they use as
input. Our method produces sense clusters
that are qualitatively and quantitatively good,
and that represent a substantial improvement
to the PPDB resource.

1 Introduction

Many natural language processing tasks rely on the
ability to identify words and phrases with equiva-
lent meaning but different wording. These alterna-
tive ways of expressing the same information are
called paraphrases. Several research efforts have
produced automatically generated databases of En-
glish paraphrases, including DIRT (Lin and Pantel,
2001), the Microsoft Research Paraphrase Phrase
Tables (Dolan et al., 2004), and the Paraphrase
Database (Ganitkevitch et al., 2013; Pavlick et al.,
2015a). A primary benefit of these automatically
generated resources is their enormous scale, which
provides superior coverage compared to manually
compiled resources like WordNet (Miller, 1995).
But automatically generated paraphrase resources
currently have the drawback that they group all
senses of polysemous words together, and do not
partition paraphrases into groups like WordNet does

bug
(n)

 insect beetle
cockroach mosquito

pest
c1

 glitch error
malfunction fault
mistake failure

c2

microbe virus
parasite bacterium

c3

tracker
microphone wire
 informer snitch

c4

Figure 1: Our goal is to partition paraphrases of an
input word like bug into clusters representing its dis-
tinct senses.

with its synsets. Thus a search for paraphrases
of the noun bug would yield a single list of para-
phrases that includes insect, glitch, beetle, error, mi-
crobe, wire, cockroach, malfunction, microphone,
mosquito, virus, tracker, pest, informer, snitch, para-
site, bacterium, fault, mistake, failure and many oth-
ers. The goal of this work is to group these para-
phrases into clusters that denote the distinct senses
of the input word or phrase, as shown in Figure 1.

We develop a method for clustering the para-
phrases from the Paraphrase Database (PPDB).
PPDB contains over 100 million paraphrases gen-
erated using the bilingual pivoting method (Ban-
nard and Callison-Burch, 2005), which posits that
two English words are potential paraphrases of each
other if they share one or more foreign translations.
We apply two clustering algorithms, Hierarchical
Graph Factorization Clustering (Yu et al., 2005;
Sun and Korhonen, 2011) and Self-Tuning Spec-
tral Clustering (Ng et al., 2001; Zelnik-Manor and
Perona, 2004), and systematically explore different
ways of defining the similarity matrix that they use
as input. We exploit a variety of features from PPDB
to cluster its paraphrases by sense, including its im-

1463

beetle

insect

snitch

informer

mosquito

microphone

virus

failure
mistake

fault

malfunctionglitch

error

bacterium

cockroach

pest

parasite microbe

tracker
wire

bug (n)

Figure 2: SEMCLUST connects all paraphrases that
share foreign alignments, and cuts edges below a
dynamically-tuned cutoff weight (dotted lines). The
resulting connected components are its clusters.

plicit graph structure, aligned foreign words, para-
phrase scores, predicted entailment relations, and
monolingual distributional similarity scores.

Our goal is to determine which algorithm and
features are the most effective for clustering para-
phrases by sense. We address three research ques-
tions:

• Which similarity metric is best for sense clus-
tering? We systematically compare different
ways of defining matrices that specify the sim-
ilarity between pairs of paraphrases.

• Are better clusters produced by comparing
second-order paraphrases? We use PPDB’s
graph structure to decide whether mosquito and
pest belong to the same sense cluster by com-
paring lists of paraphrases for the two words.

• Can entailment relations inform sense cluster-
ing? We exploit knowledge like beetle is-an in-
sect, and that there is no entailment between
malfunction and microbe.

Our method produces sense clusters that are qualita-
tively and quantitatively good, and that represent a
substantial improvement to the PPDB resource.

2 Related Work

The paraphrases in PPDB are already partitioned
by syntactic type, following the work of Callison-
Burch (2008). He showed that applying syntac-
tic constraints during paraphrase extraction via the

pivot method improves paraphrase quality. This
means that paraphrases of the noun bug are sepa-
rated from paraphrases of the verb bug, which con-
sist of verbs like bother, trouble, annoy, disturb, and
others. However, organizing paraphrases this way
still leaves the issue of mixed senses within a single
part of speech. This lack of sense distinction makes
it difficult to decide when a paraphrase in PPDB
would be an appropriate substitute for a word in a
given sentence. Some researchers resort to crowd-
sourcing to determine when a PPDB substitution is
valid (Pavlick et al., 2015c).

Our sense clustering work is closely related to the
task of word sense induction (WSI), which aims to
discover all senses of a target word from large cor-
pora. One family of common approaches to WSI
aims to discover the senses of a word by clustering
the monolingual contexts in which it appears (Nav-
igli, 2009). Another uncovers a word’s senses by
clustering its foreign alignments from parallel cor-
pora (Diab, 2003). A more recent family of ap-
proaches to WSI represents a word as a feature vec-
tor of its substitutable words, i.e. paraphrases (Mela-
mud et al., 2015; Yatbaz et al., 2012). In this paper
we take inspiration from each of these families of
approaches, and we explore them when measuring
word similarity in sense clustering.

The work most closely related to ours is that of
Apidianaki et al. (2014), who used a simple graph-
based approach to cluster pivot paraphrases on the
basis of contextual similarity and shared foreign
alignments. Their method represents paraphrases as
nodes in a graph and connects each pair of words
sharing one or more foreign alignments with an edge
weighted by contextual similarity. Concretely, for
paraphrase set P , it constructs a graph G = (V,E)
where vertices V = {pi ∈ P} are words in the
paraphrase set and edges connect words that share
foreign word alignments in a bilingual parallel cor-
pus. The edges of the graph are weighted based on
their contextual similarity (computed over a mono-
lingual corpus). In order to partition the graph into
clusters, edges in the initial graph G with contex-
tual similarity below a threshold T ′ are deleted. The
connected components in the resulting graph G′ are
taken as the sense clusters. The threshold is dynami-
cally tuned using an iterative procedure (Apidianaki
and He, 2010).

1464

As evaluated against reference clusters derived
from SEMEVAL 2007 Lexical Substitution gold
data (McCarthy and Navigli, 2007), their method,
which we call SEMCLUST, outperformed simple
most-frequent-sense, one-sense-per-paraphrase, and
random baselines. Apidianaki et al. (2014)’s work
corroborated the existence of sense distinctions in
the paraphrase sets, and highlighted the need for fur-
ther work to organize them by sense. In this paper,
we improve on their method using more advanced
clustering algorithms, and by systematically explor-
ing a wider range of similarity measures.

3 Graph Clustering Algorithms

To partition paraphrases by sense, we use two ad-
vanced graph clustering methods rather than using
Apidianaki et al. (2014)’s edge deletion approach.
Both of them allow us to experiment with a variety
of similarity metrics.

3.1 Hierarchical Graph Factorization
Clustering

The Hierarchical Graph Factorization Clustering
(HGFC) method was developed by Yu et al. (2006)
to probabilistically partition data into hierarchical
clusters that gradually merge finer-grained clusters
into coarser ones. Sun and Korhonen (2011) ap-
plied HGFC to the task of clustering verbs into
Levin (1993)-style classes. Sun and Korhonen ex-
tended the basic HGFC algorithm to automatically
discover the latent tree structure in their clustering
solution and incorporate prior knowledge about se-
mantic relationships between words. They showed
that HGFC far outperformed agglomerative cluster-
ing methods on their verb data set. We adopt Sun
and Korhonen’s implementation of HGFC for our
experiments.

HGFC takes as input a nonnegative, symmet-
ric adjacency matrix W = {wij} where rows and
columns represent paraphrases pi ∈ P , and en-
tries wij denote the similarity between paraphrases
simD(pi, pj). The algorithm works by factorizing
W into a bipartite graph, where the nodes on one
side represent paraphrases, and nodes on the other
represent senses. The output of HGFC is a set of
clusterings of increasingly coarse granularity, which
we can also represent with a tree structure. The algo-

rithm automatically determines the number of clus-
ters at each level. For our task, this has the benefit
that a user can choose the cluster granularity most
appropriate for the downstream task (as illustrated
in Figure 5). Another benefit of HGFC is that it
probabilistically assigns each paraphrase to a clus-
ter at each level of the hierarchy. If some pi has high
probability in multiple clusters, we can assign pi to
all of them (Figure 3c).

3.2 Spectral Clustering

The second clustering algorithm that we use is Self-
Tuning Spectral Clustering (Zelnik-Manor and Per-
ona, 2004). Like HGFC, spectral clustering takes
an adjacency matrix W as input, but the similari-
ties end there. Whereas HGFC produces a hierar-
chical clustering, spectral clustering produces a flat
clustering with k clusters, with k specified at run-
time. The Zelnik-Manor and Perona (2004)’s self-
tuning method is based on Ng et al. (2001)’s spectral
clustering algorithm, which computes a normalized
Laplacian matrix L from the input W , and executes
K-means on the largest k eigenvectors of L. Intu-
itively, the largest k eigenvectors of L should align
with the k senses in our paraphrase set.

4 Similarity Measures

Each of our clustering algorithms take as input an
adjacency matrix W where the entries wij corre-
spond to some measure of similarity between words
i and j. For the paraphrases in Figure 1, W is a
20x20 matrix that specifies the similarity of every
pair of paraphrases like microbe and bacterium or
microbe and malfunction. We systematically inves-
tigated four types of similarity scores to populateW .

4.1 Paraphrase Scores

Bannard and Callison-Burch (2005) defined a para-
phrase probability in order to quantify the goodness
of a pair of paraphrases, based on the underlying
translation probabilities used by the bilingual piv-
oting method. More recently, (Pavlick et al., 2015a)
used supervised logistic regression to combine a va-
riety of scores so that they align with human judge-
ments of paraphrase quality. PPDB 2.0 provides this
score for each pair of words in the database. The
PPDB 2.0 score is a nonnegative real number that

1465

beetle

insect

snitch

informer

mosquito

microphone

virus

failure
mistake

fault

malfunction
glitch

error

bacterium

cockroach

pest

parasite

microbe

tracker

wire

(a) Undirected graph for query word
bug. Wider lines signify stronger
similarity.

in
se

ct
b
e
e
tl

e
m

o
sq

u
it

o
co

ck
ro

a
ch

p
e
st

p
a
ra

si
te

m
ic

ro
b
e

v
ir

u
s

b
a
ct

e
ri

u
m

g
lit

ch
e
rr

o
r

m
a
lf
u
n
ct

io
n

fa
u
lt

m
is

ta
ke

fa
ilu

re
m

ic
ro

p
h
o
n
e

w
ir

e
tr

a
ck

e
r

in
fo

rm
e
r

sn
it

ch

insect
beetle

mosquito
cockroach

pest
parasite
microbe

virus
bacterium

glitch
error

malfunction
fault

mistake
failure

microphone
wire

tracker
informer

snitch

(b) The corresponding adjacency matrix W .
Darker cells signify stronger similarity.

insect

mosquito
cockroach

beetle
parasite
microbe

bacterium
virus

glitch
error

failure
fault

mistake
malfunction
microphone

wire
tracker

informer
snitch

pest

insect, mosquito, pest
cockroach
beetle
parasite
microbe, bacterium
virus
glitch
error, failure, fault, mistake
malfunction
microphone, wire
wire, tracker, informer, snitch

(c) The bipartite graph induced by the
first iteration of HGFC. Note wire is
assigned to two clusters.

Figure 3: The graph, corresponding adjacency matrix W , and bipartite graph created by the first iteration of
HGFC for query word bug (n)

can be used directly as a similarity measure:

wij =

{
PPDB2.0Score(i, j) (i, j) ∈ PPDB
0 otherwise

PPDB 2.0 does not provide a score for a word with
itself, so we set PPDB2.0Score(i, i) to be the max-
imum PPDB2.0Score(i, j) such that i and j have
the same stem.

4.2 Second-Order Paraphrase Scores

Work by Rapp (2003) and Melamud et al. (2015)
showed that comparing words on the basis of their
shared paraphrases is effective for WSI. We define
two novel similarity metrics that calculate the simi-
larity of words i and j by comparing their second-
order paraphrases. Instead of comparing microbe
and bacterium directly with their PPDB 2.0 score,
we look up all of the paraphrases of microbe and all
of the paraphrases of bacterium, and compare those
two lists.

Specifically, we form notional word-paraphrase
feature vectors vpi and vpj where the features cor-
respond to words with which each is connected in
PPDB, and the value of the kth element of vpi equals
PPDB2.0Score(i, k). We can then calculate the
cosine similarity or Jensen-Shannon divergence be-
tween vectors:

simPPDB.cos(i, j) = cos(vpi , v
p
j)

Figure 4: Comparing second-order paraphrases for
malfunction and fault based on word-paraphrase
vectors. The value of vector element vij is
PPDB2.0Score(i, j).

simPPDB.js(i, j) = 1− JS(vpi , v
p
j)

where JS(vpi , v
p
j) is calculated assuming that the

paraphrase probability distribution for word i is
given by its normalized word-paraphrase vector vpi .

4.3 Similarity of Foreign Word Alignments

When an English word is aligned to several foreign
words, sometimes those different translations indi-
cate a different word sense (Yao et al., 2012). Using
this intuition, Gale et al. (1992) trained an English
WSD system on a bilingual corpus, using the dif-
ferent French translations as labels for the English
word senses. For instance, given the English word
duty, the French translation droit was a proxy for its
tax sense and devoir for its obligation sense.

PPDB is derived from bilingual coropra. We re-
cover the aligned foreign words and their associated
translation probabilities that underly each PPDB en-
try. For each English word in our dataset, we get

1466

each foreign word that it aligns to in the Spanish and
Chinese bilingual parallel corpora used by Ganitke-
vitch and Callison-Burch (2014). We use this to de-
fine a novel foreign word alignment similarity met-
ric, simTRANS(i, j) for two English paraphrases i
and j. This is calculated as the cosine similarity of
the word-alignment vectors vai and vaj where each
feature in va is a foreign word to which i or j aligns,
and the value of entry vaif is the translation probabil-
ity p(f |i).

simTRANS(i, j) = cos(vai , v
a
j)

4.4 Monolingual Distributional Similarity
Lastly, we populate the adjacency with a distri-
butional similarity measure based on WORD2VEC

(Mikolov et al., 2013). Each paraphrase i in our data
set is represented as a 300-dimensional WORD2VEC

embedding vwi trained on part of the Google News
dataset. Phrasal paraphrases that did not have an en-
try in the WORD2VEC dataset are represented as the
mean of their individual word vectors. We use the
cosine similarity between WORD2VEC embeddings
as our measure of distributional similarity.

simDISTRIB(i, j) = cos(vwi , v
w
j)

5 Determining the Number of Senses

The optimal number of clusters for a set of para-
phrases will vary depending on how many senses
there ought to be for an input word like bug. It
is generally recognized that optimal sense granu-
larity depends on the application (Palmer et al.,
2001). WordNet has notoriously fine-grained
senses, whereas most word sense disambiguation
systems achieve better performance when using
coarse-grained sense inventories (Navigli, 2009).
Depending on the task, the sense clustering for query
word coach in Figure 5b with k = 5 clusters may be
preferable to the alternative with k = 3 clusters. An
ideal algorithm for our task would enable clustering
at varying levels of granularity to support different
downstream NLP applications.

Both of our clustering algorithms can produce
sense clusters at varying granularities. For HGFC
this requires choosing which level of the resulting
tree structure to take as a clustering solution, and for
spectral clustering we must specify the number of

clusters prior to execution.1 To determine the op-
timal number of clusters, we use the mean Silhou-
ette Coefficient (Rousseeuw, 1987) which balances
optimal inter-cluster tightness and intra-cluster dis-
tance. The Silhouette Coefficient is calculated for
each paraphrase pi as

s(pi) =
b(pi)− a(pi)

max{a(pi), b(pi)}
where a(pi) is pi’s average intra-cluster distance
(average distance from pi to each other pj in the
same cluster), and b(pi) is pi’s lowest average inter-
cluster distance (distance from pi to the nearest ex-
ternal cluster centroid). For each clustering algo-
rithm, we choose as the ’solution’ the clustering
which produces the highest mean Silhouette Coef-
ficient. The Silhouette Coefficient calculation takes
as input a matrix of pairwise distances, so we simply
use 1 −W where the adjacency matrix W is calcu-
lated using one of the similarity methods we defined.

6 Incorporating Entailment Relations

Pavlick et al. (2015b) added a set of automatically
predicted semantic entailment relations for each en-
try in PPDB 2.0. The entailment types that they in-
clude are Equivalent, Forward Entailment, Reverse
Entailment, Exclusive, and Independent. While a
negative entailment relationship (Exclusive or Inde-
pendent) does not preclude words from belonging to
the same sense of some query word, a positive en-
tailment relationship (Equivalent, Forward/Reverse
Entailment) does give a strong indication that the
words belong to the same sense.

We seek a straightforward way to determine
whether entailment relations provide information
that is useful to the final clustering algorithm. Both
of our algorithms take an adjacency matrix W as
input, so we add entailment information by simply

1For spectral clustering there has been significant study into
methods for automatically determining the optimal number of
clusters, including analysis of eigenvalues of the graph Lapla-
cian, and finding the rotation of the Laplacian that brings it clos-
est to block-diagonal (Zelnik-Manor and Perona, 2004). We ex-
perimented with these and other cluster analysis methods such
as the Dunn Index (Dunn, 1973) in our work, but found that us-
ing the simple Silhouette Coefficient produced clusterings that
were competitive with the more intensive methods, in far less
time.

1467

autobus
bus
carriage
railcar
car
stagecoach
stage
trainer, instructor
teacher, tutor
manager
handler
omnibus

(a) HGFC clustering result

c1: trainer, tutor, instructor, teacher, manager, handler
c2: stagecoach, stage
c3: omnibus, bus, autobus, car, carriage, railcar

k=3

c1: trainer, tutor, instructor, teacher
c2: stagecoach, stage
c3: omnibus, bus, autobus
c4: car, carriage, railcar
c5: manager, handler

k=5

(b) Spectral clustering results

Figure 5: HGFC and Spectral Clustering results for
coach (n). Our silhouette optimization sets k = 3.

multiplying each pairwise entry by its entailment
probability. Specifically, we set

wij =

{
(1− pind(i, j))simD(i, j) (i, j) ∈ PPDB
0 otherwise

where pind(i, j) gives the PPDB 2.0 probability that
there is an Independent entailment relationship be-
tween words i and j. Intuitively, this should increase
the similarity of words that are very likely to be en-
tailing like fault and failure, and decrease the simi-
larity of non-entailing words like cockroach and mi-
crophone.

7 Experimental Setup

We follow the experimental setup of Apidianaki et
al. (2014). We focus our evaluation on a set of query
words drawn from the LexSub test data (McCarthy
and Navigli, 2007), plus 16 additional handpicked
polysemous words.

7.1 Gold Standard Clusters
One challenge in creating our clustering methodol-
ogy is that there is no reliable PPDB-sized standard
against which to assess our results. WordNet synsets
provide a well-vetted basis for comparison, but only
allow us to evaluate our method on the 38% of our
PPDB dataset that overlaps it. We therefore evaluate
performance on two test sets.

WordNet+ Our first test set is designed to assess
how well our solution clusters align with WordNet
synsets. We chose 185 polysemous words from the
SEMEVAL 2007 dataset and an additional 16 hand-
picked polysemous words. For each we formed
a paraphrase set that was the intersection of their
PPDB 2.0 XXXL paraphrases with their WordNet
synsets, and their immediate hyponyms and hyper-
nyms. Each reference cluster consisted of a Word-
Net synset, plus the hypernyms and hyponyms of
words in that synset. On average there are 7.2 refer-
ence clusters per paraphrase set.

CrowdClusters Because the coverage of Word-
Net is small compared to PPDB, and because Word-
Net synsets are very fine-grained, we wanted to cre-
ate a dataset that would test the performance of our
clustering algorithm against large, noisy paraphrase
sets and coarse clusters. For this purpose we ran-
domly selected 80 query words from the SEMEVAL
2007 dataset and created paraphrase sets from their
unfiltered PPDB2.0 XXL entries. We then itera-
tively organized each paraphrase set into reference
senses with the help of crowd workers on Amazon
Mechanical Turk. On average there are 4.0 reference
clusters per paraphrase set. A full description of our
method is included in the supplemental materials.

7.2 Evaluation Metrics
We evaluate our method using two standard metrics:
the paired F-Score and V-Measure. Both were used
in the 2010 SemEval Word Sense Induction Task
(Manandhar et al., 2010) and by Apidianaki et al.
(2014). We give our results in terms of weighted av-
erage performance on these metrics, where the score
for each individual paraphrase set is weighted by the
number of reference clusters for that query word.

Paired F-Score frames the clustering problem as
a classification task (Manandhar et al., 2010). It gen-

1468

erates the set of all word pairs belonging to the same
reference cluster, F (S), and the set of all word pairs
belonging to the same automatically-generated clus-
ter, F (K). Precision, recall, and F-score can then
be calculated in the usual way, i.e. P = F (K)∩F (S)

F (K) ,

R = F (K)∩F (S)
F (S) , and F = 2·P ·R

P+R .

V-Measure assesses the quality of a clustering so-
lution against reference clusters in terms of clus-
tering homogeneity and completeness (Rosenberg
and Hirschberg, 2007). Homogeneity describes the
extent to which each cluster is composed of para-
phrases belonging to the same reference cluster, and
completeness refers to the extent to which points in
a reference cluster are assigned to a single cluster.
Both are defined in terms of conditional entropy. V-
Measure is the harmonic mean of homogeneity h
and completeness c; V-Measure = 2·h·c

h+c .

7.3 Baselines

We evaluate the performance of HGFC on each
dataset against the following baselines:

Most Frequent Sense (MFS) assigns all para-
phrases pi ∈ P to a single cluster. By definition,
the completeness of the MFS clustering is 1.

One Cluster per Paraphrase (1C1PAR) assigns
each paraphrase pi ∈ P to its own cluster. By defi-
nition, the homogeneity of 1C1PAR clustering is 1.

Random (RAND) For each query term’s para-
phrase set, we generate five random clusterings of
k = 5 clusters. We then take F-Score and V-
Measure as the average of each metric calculated
over the five random clusterings.

SEMCLUST We implement the SEMCLUST
algorithm (Apidianaki et al., 2014) as a state-of-
the-art baseline. Since PPDB contains only pairs
of words that share a foreign word alignment, in
our implementation we connect paraphrase words
with an edge if the pair appears in PPDB. We
adopt the WORD2VEC distributional similarity score
simDISTRIB for our edge weights.

8 Experimental Results

Figure 6 shows the performance of the two advanced
clustering algorithms against the baselines. Our

MFS 1c1par RAND SEMCLUST HGFC* Spectral*
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
co

re
s

0.02

0.69

0.37

0.14

0.46 0.45

0.29

0.15 0.14

0.33 0.33
0.36

Clustering Method Performance vs WordNet+

V-Measure

FScore

(a) Clustering method performance against WordNet+

MFS 1c1par RAND SEMCLUST HGFC* Spectral*
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
co

re
s

0.02

0.57

0.29

0.22

0.47 0.480.47

0.06

0.18

0.50 0.50 0.51

Clustering Method Performance vs CrowdClusters

V-Measure

FScore

(b) Clustering method performance against CrowdClusters

Figure 6: Hierarchical Graph Factorization Cluster-
ing and Spectral Clustering both significantly out-
perform all baselines except 1C1PAR V-Measure.

best configurations2 for HGFC and Spectral out-
performed all baselines except 1C1PAR V-Measure,
which his biased toward solutions with many small
clusters (Manandhar et al., 2010), and performed
only marginally better than SEMCLUST in terms
of F-Score alone. The dominance of 1C1PAR V-
Measure is greater for the WordNet+ dataset which
has smaller reference clusters than CrowdClusters.
Qualitatively, we find that methods that strike a bal-
ance between high F-Score and high V-Measure
tend to produce the ’best’ clusters by human judge-
ment. If we consider the average of F-Score and V-
Measure as a comprehensive performance measure,
our methods outperform all baselines.

2Our top-scoring Spectral method, Spectral*, uses entail-
ments, PPDB2.0Score similarities, and simDISTRIB to
choose k. Our best HGFC method, HGFC*, uses entailments,
simDISTRIB similarities, and PPDB2.0Score to choose k.

1469

Avg #
Method F-Score V-Measure Clusters
PPDB2.0Score 0.410 0.437 5.960
simDISTRIB 0.376 0.440 5.707
simPPDB.cos 0.389 0.428 7.204
simPPDB.JS 0.385 0.425 7.143
simTRANS 0.358 0.375 6.247
SEMCLUST 0.417 0.180 2.279
Reference 1.0 1.0 5.611

Table 1: Average performance and number of clus-
ters produced by our different similarity methods.

On our dataset, the state-of-the-art SEMCLUST
baseline tended to lump many senses of the query
word together, and produced scores lower than in
the original work. We attribute this to the fact that
the original work extracted paraphrases from Eu-
roParl, which is much smaller than PPDB, and thus
created adjacency matrices W which were sparser
than those produced by our method. Directly ap-
plied, SEMCLUST works well on small data sets,
but does not scale well to the larger, noisier PPDB
data. More advanced graph-based clustering meth-
ods produce better sense clusters for PPDB.

The first question we sought to address with this
work was which similarity metric is the best for
sense clustering. Table 1 reports the average F-
Score and V-Measure across 40 test configurations
for each similarity calculation method.3 On aver-
age across test sets and clustering algorithms, the
paraphrase similarity score (PPDB2.0Score) per-
forms better than monolingual distributional similar-
ity (simDISTRIB) in terms of F-Score, but the re-
sults are reversed for V-Measure. This is also shown
in the best HGFC and Spectral configurations, where
the two similarity scores are swapped between them.

Next, we investigated whether comparing second-
order paraphrases would produce better clusters than
simply using PPDB2.0Score directly. Table 1 also
compares the two methods that we had for comput-
ing the similarity of second order paraphrases – co-
sine similarity (simPPDB.cos) and Jensen-Shannon
divergence (simPPDB.JS). On average across test
sets and clustering algorithms, using the direct para-
phrase score gives stronger V-Measure and F-score
than the second-order methods. It also produces

3Our Supplementary Materials file provides the full set of
results for all 200 configurations that we tested.

coarser clusters than the second-order PPDB simi-
larity methods.

Finally, we investigated whether incorporating
automatically predicted entailment relations would
improve cluster quality, and we found that it did.
All other things being equal, adding entailment in-
formation increases F-Score by .014 and V-Measure
by .020 on average (Figure 7). Adding entailment
information had the greatest improvement to HGFC
methods with simDISTRIB similarities, where it
improved F-Score by an average of .03 and V-
Measure by an average of .05.

9 Discussion and Future Work

We have presented a novel method for clustering
paraphrases in PPDB by sense. When evaluated
against WordNet synsets, the sense clusters pro-
duced by the Spectral Clustering algorithm give a
64% relative improvement in F-Score over the clos-
est baseline, and those produced by the HGFC al-
gorithm give a 50% improvement in F-Score. We
systematically analyzed a variety of similarity met-
rics as input to HGFC and Spectral Clustering, and
showed that incorporating predicted entailment re-
lations from PPDB boosts the performance of sense
clustering.

Our sense clustering provides a significant im-
provement to the PPDB resource that may improve
its applicability to downstream NLP tasks. One pos-
sible application of sense-clustered PPDB entries is
the lexical substitution task, which seeks to iden-
tify appropriate word substitutions. Given a target
word in context, it would be reasonable to suggest
substitutes from the target word’s PPDB sense clus-
ter most closely related to the target context. There
are many possible ways to choose the best clus-
ter for a given context, ranging from simply choos-
ing the cluster whose members have highest aver-
age pointwise mutual information with the context,
to a more complex approach based on training clus-
ter representations using a pseudo-word approach as
in Melamud et al. (2015). We leave this application
for future work.

10 Software and Data Release

With publication of this paper we are releasing
paraphrase clusters for all PPDB 2.0 XXL entries,

1470

0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

∆ in Metric

0

5

10

15

20

25

30

35

E
x
p
e
ri

m
e
n
ta

l
S
e
tt

in
g
 C

o
u
n
t Mean F-Score ∆=0.014

Mean V-Measure ∆=0.020

F-Score

V-Measure

Figure 7: Histogram of metric change by adding en-
tailment information across all experiments.

clustering code, and an interface for crowdsourcing
paraphrase clusters using Amazon Mechanical Turk.

11 Supplementary Material

Our Supplementary Material provides additional de-
tail on our similarity metric calculation, clustering
algorithm implementation, and CrowdCluster refer-
ence cluster data development. We also provide full
evaluation results across the entire range of our ex-
periments, a selection of sense clusters output by our
methods, and example content of our WordNet+ and
CrowdCluster paraphrase sets.

Acknowledgments

This research was supported by the Allen Institute
for Artificial Intelligence (AI2), the Human Lan-
guage Technology Center of Excellence, and by
gifts from the Alfred P. Sloan Foundation, Google,
and Facebook. This material is based in part on
research sponsored by the NSF grant under IIS-
1249516 and DARPA under number FA8750-13-2-
0017 (the DEFT program). The U.S. Government
is authorized to reproduce and distribute reprints for
Governmental purposes. The views and conclusions
contained in this publication are those of the authors
and should not be interpreted as representing official
policies or endorsements of DARPA and the U.S.
Government.

We would like to thank Marianna Apidianaki and
Alex Harelick for sharing code used in this research,
and Ellie Pavlick for her substantive input. We
are grateful to our anonymous reviewers for their

thoughtful and constructive comments.

References
Marianna Apidianaki and Yifan He. 2010. An algorithm

for cross-lingual sense clustering tested in a MT eval-
uation setting. In Proceedings of the 7th International
Workshop on Spoken Language Translation (IWSLT-
10).

Marianna Apidianaki, Emilia Verzeni, and Diana Mc-
Carthy. 2014. Semantic clustering of pivot para-
phrases. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC 2014).

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Proceed-
ings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL 05).

Chris Callison-Burch. 2008. Syntactic constraints on
paraphrases extracted from parallel corpora. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 196–205,
Honolulu, Hawaii, October. Association for Computa-
tional Linguistics.

Mona Talat Diab. 2003. Word sense disambiguation
within a multilingual framework. Ph.D. thesis, Uni-
versity of Maryland.

William Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the International Conference of Com-
putational Linguistics (COLING 2004).

Joseph C Dunn. 1973. A fuzzy relative of the iso-
data process and its use in detecting compact well-
separated clusters.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1992. Using bilingual materials to develop
word sense disambiguation methods. In Proceedings
of the Fourth International Conference on Theoretical
and Methodological Issues in Machine Translation.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014), Reykjavik, Ice-
land, pages 4276–4283.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT 2013.

Beth Levin. 1993. English verb classes and alternations:
A preliminary investigation. University of Chicago
press.

Dekang Lin and Patrick Pantel. 2001. Discovery of infer-
ence rules for question answering. Natural Language
Engineering.

1471

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dligach,
and Sameer Pradhan. 2010. SemEval-2010 Task 14:
Word sense induction & disambiguation. In Proceed-
ings of the Fifth International Workshop on Semantic
Evaluations (SemEval-2010).

Diana McCarthy and Roberto Navigli. 2007. Semeval-
2007 task 10: English lexical substitution task. In Pro-
ceedings of the Fourth International Workshop on Se-
mantic Evaluations (SemEval-2007).

Oren Melamud, Ido Dagan, and Jacob Goldberger. 2015.
Modeling word meaning in context with substitute
vectors. In Human Language Technologies: The 2015
Annual Conference of the North American Chapter of
the ACL.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Proceedings of NIPS.

George A Miller. 1995. WordNet: a lexical database for
English. Communications of the ACM, 38(11):39–41.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Computing Surveys.

Andrew Ng, Michael Jordan, and Y. Weiss. 2001. On
spectral clustering: Analysis and an algorithm. Ad-
vances in Neural Information Processing Systems.

Martha Palmer, Hoa Trang Dang, and Christiane Fell-
baum. 2001. Making fine-grained and coarse-grained
sense distinctions, both manually and automatically.
Natural Language Engineering.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015a. PPDB 2.0: Better paraphrase ranking,
fine-grained entailment relations, word embeddings,
and style classification. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics (ACL 2015).

Ellie Pavlick, Johannes Bos, Malvina Nissim, Charley
Beller, and and Chris Callison-Burch Benjamin
Van Durme. 2015b. Adding semantics to data-driven
paraphrasing. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2015).

Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi, Chris
Callison-Burch, Mark Drezde, and Benjamin Van
Durme. 2015c. FrameNet+: Fast paraphrastic tripling
of FrameNet. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics (ACL 2015), Beijing, China, July. Association for
Computational Linguistics.

Reinhard Rapp. 2003. Word sense discovery based on
sense descriptor dissimilarity. In Proceedings of the
Ninth Machine Translation Summit, pages 315–322.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external clus-
ter evaluation measure. In EMNLP-CoNLL, volume 7,
pages 410–420.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analy-
sis. Journal of computational and applied mathemat-
ics, 20:53–65.

Lin Sun and Anna Korhonen. 2011. Hierarchical verb
clustering using graph factorization. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pages 1023–1033. Association
for Computational Linguistics.

Xuchen Yao, Benjamin Van Durme, and Chris Callison-
Burch. 2012. Expectations of word sense in parallel
corpora. In The 2012 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 621–625, Montréal, Canada, June. As-
sociation for Computational Linguistics.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic rep-
resentations of word context. In Proceedings of the
2012 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, pages 940–951. Association for
Computational Linguistics.

Kai Yu, Shipeng Yu, and Volker Tresp. 2005. Soft clus-
tering on graphs. In Advances in neural information
processing systems, pages 1553–1560.

Lihi Zelnik-Manor and Pietro Perona. 2004. Self-tuning
spectral clustering. In Advances in neural information
processing systems, pages 1601–1608.

1472

Proceedings of NAACL-HLT 2016, pages 1473–1479,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Unsupervised Learning of Prototypical Fillers
for Implicit Semantic Role Labeling

Niko Schenk and Christian Chiarcos
Applied Computational Linguistics Lab

Goethe University Frankfurt am Main, Germany
{n.schenk,chiarcos}@em.uni-frankfurt.de

Abstract

Gold annotations for supervised implicit se-
mantic role labeling are extremely sparse and
costly. As a lightweight alternative, this paper
describes an approach based on unsupervised
parsing which can do without iSRL-specific
training data: We induce prototypical roles
from large amounts of explicit SRL annota-
tions paired with their distributed word repre-
sentations. An evaluation shows competitive
performance with supervised methods on the
SemEval 2010 data, and our method can eas-
ily be applied to predicates (or languages) for
which no training annotations are available.

1 Introduction

Semantic role labeling (SRL) (Gildea and Jurafsky,
2002) has become a well-established and highly im-
portant NLP component which directly benefits var-
ious downstream applications, such as text summa-
rization (Trandabăţ, 2011), recognizing textual en-
tailment (Sammons et al., 2012) or QA systems
(Shen and Lapata, 2007; Moreda et al., 2011). Its
goal is to detect verbal or nominal predicates, to-
gether with their associated arguments and semantic
roles, either by PropBank/Nombank (Palmer et al.,
2005; Meyers et al., 2004) or FrameNet (Baker et
al., 1998) analysis. In its traditional form, however,
SRL is restricted to the local syntactic context of the
predicate as in the following example from Ruppen-
hofer et al. (2010):

[GOAL/NIIn the centre of this room] there
was an upright beam, [THEMEwhich] had been
placed [TIMEat some period] as a support for

the old worm-eaten baulk of timber which
spanned the roof.

In a FrameNet-style analysis of the sentence,
the predicate place evokes the PLACING frame,
with two frame elements (roles) overtly expressed
(THEME and TIME) but with one role – GOAL – be-
yond the embedded relative clause and thus beyond
the scope of the SRL parser. Such implicit roles, or
null instantiations (NIs) (Fillmore, 1986; Ruppen-
hofer, 2005) are much harder to detect automatically,
as they require to broaden the analysis to the sur-
rounding discourse, commonly also to preceding (or
following) sentences.

State-of-the-art approaches to implicit SRL
(iSRL) are supervised and need a groundwork of
hand-annotated training data – which is costly, ex-
tremely sparse, limited to only a handful of predi-
cates, and requires careful feature engineering (Ger-
ber and Chai, 2012; Silberer and Frank, 2012; Li et
al., 2015). A first attempt has been made to combine
the scarce resources available (Feizabadi and Padó,
2015), but given the great diversity of predicate-
specific roles and enormous complexity of the task,
the main issues remain (Chen et al., 2010).

A promising exploratory effort recently made by
Gorinski et al. (2013) aims to overcome the anno-
tation bottleneck by using distributional methods to
infer evidence for elements filling null instantiated
roles. The authors do not rely on gold annotations
but instead learn distributional properties of fillers
induced from a large corpus.

Our Contribution: We propose an extension of the
distributional idea for unsupervised iSRL to loosen
the need for annotated training data. Specifically, we

1473

propose to induce predicate and role-specific proto-
typical fillers from large amounts of SRL annotated
texts in order to resolve null instantiations as (se-
mantically and syntactically) similar elements found
in the context. Parts of our approach have been suc-
cessfully applied in traditional SRL (Hermann et al.,
2014), but not yet to implicit roles. Our work dif-
fers from Gorinski et al. (2013) in that we extend
discrete context vectors to SRL-guided embeddings
and experiment with a variety of different configu-
rations. We intend not to set a new benchmark beat-
ing the current state-of-the-art for supervised iSRL,
but rather provide a simple and alternative strategy
which does not rely on manually annotated gold
data. Still, we demonstrate that our method is highly
competitive with supervised methods on one out of
two standard evaluation sets and that it can easily be
extended to other predicates for which no implicit
gold annotations are available.

2 Method

2.1 Prototypical Fillers

We use large amounts of explicit SRL annotations to
compute predicate-specific protofillers (prototypical
fillers) for each frame element (role) individually:

#»v protofiller =
1
N

N∑
i=0

E(wi) (1)

where N is the total number of tokens filling a par-
ticular role andE(·) is an embedding function which
maps a word wi to its distributed representation, i.e.,
a precomputed vector of d dimensions. Note that
only those words contribute to the protofiller of a
frame element which occur in this role.

2.2 Identifying Null Instantiations

Our approach generalizes over labeled filler in-
stances of the frame (PLACING in the example) as
found in corpus data, e.g., placed on the middle pic-
ture, planted on the top of the church, hung over
the river, laid on the table, etc. We exploit their
syntactic (here: prepositional) and semantic prop-
erties (inanimate, spacial NPs) in order to capture
a composed meaning and thus to approximate the
correct implicit role in the centre of this room. We
measure similarity between a trained protofiller #»v p

and a candidate constituent #»v c by cosine similar-
ity cos(θ) =

#»v p· #»v c

‖ #»v p‖‖ #»v c‖ and predict a candidate as
null instantiation which maximizes the inner prod-
uct with the protofiller. As candidate constituents
for an implicit argument we initially consider all ter-
minal and non-terminal nodes in a context window
of the predicate, ruling out those categories which
never occur as implicit arguments, which do contain
the target predicate and/or which are already overt
arguments. The result set comprises mainly nouns,
verbs and PPs. Candidate constituents in our evalua-
tion data are available from their respective (manual)
syntax annotation, but could easily be extracted us-
ing automated phrase-structure parsers. The candi-
date vectors for arbitrary length n-grams are derived
in the same way (by means of Equation 1).

2.3 Training Resources & Tools

In accordance with domain-specific evaluation data,
we chose to learn protofillers on two distinct cor-
pora: The Corpus of Late Modern English Texts,
CLMET (Smet, 2005) (≈35M tokens, 18th–20th
century novels) and a subset of the English Giga-
word corpus (Graff and Cieri, 2003) (≈500M to-
kens of Newswire texts). We label the first one with
SEMAFOR1 (Das et al., 2014), a FrameNet-style se-
mantic parser. We employ MATE2 (Björkelund et
al., 2009) to obtain a PropBank/NomBank analysis
for each sentence in Gigaword.

CLMET Gigaword

explicit roles 21.9M 264.0M
predicate instances 9.5M 122.5M
roles per predicate 2.3 2.2
predicates per sentence 7.6 4.2

Table 1: Statistics on the number of explicit fillers used for

training protofillers.

Table 1 highlights general statistics on the number
of predicates collected from both corpora. Two ob-
servations are worth noting: While on average the
number of explicitly realized roles/frame elements
per predicate/frame in both data sets is similar, we
find more predicate instances in CLMET than in Gi-
gaword. This is due to the FrameNet lexicon and
its more fine-grained modeling of lexical units, as

1http://www.cs.cmu.edu/˜ark/SEMAFOR/
2https://code.google.com/p/mate-tools/

1474

opposed to PropBank. Also note that FrameNet
currently specifies 9.7 frame elements per lexical
frame3 which – despite the fact that this number also
comprises non-core arguments – is much larger than
what can explicitly be labeled by the SRL systems.

Regarding the distributional component, we ex-
perimented with a variety of distributed word repre-
sentations: We chose out of the box vectors; Col-
lobert et al. (2011), dependency-based word embed-
dings (Levy and Goldberg, 2014) and the pre-trained
Google News vectors from word2vec4 (Mikolov et
al., 2013). Using the same tool, we also trained cus-
tom embeddings (bag-of-words and skip-gram) with
50 dimensions on our two corpora.

3 Evaluation

In order to assess the usefulness of our approach, a
quantitative evaluation has been conducted on two
iSRL test sets which have become a de facto stan-
dard in this domain: a collection of fiction novels
from the SemEval 2010 Shared Task with manual
annotations of null instantiations (Ruppenhofer et
al., 2010), and Gerber and Chai (2010)’s augmented
NomBank data set. Table 2 shows some general
statistics on the number of implicit roles and can-
didate phrases involved in our experiments. As to
have a comparison with the supervised approaches
referred to in this study, we also provide the size of
the training data.

SemEval NomBank

predicate instances
in training set 1,370 816
in test set 1,703 437

implicit arguments
in training set 245 650
in test set 259 246

of candidate phrases
per predicate instance 27.6 52.2

proportion of single tokens 63.4% 47.9%
proportion of phrases 36.6% 52.1%

∅ length of candidate phrase
(in tokens) 5.8 7.1

Table 2: Statistics on implicit arguments and candidate phrases

from the test sections of the two evaluation sets.

3https://framenet.icsi.berkeley.edu/
fndrupal/current_status, accessed March 2016.

4https://code.google.com/p/word2vec/

3.1 SemEval Data
In Table 4, we report the classification scores for
the (NI-only) null instantiation linking task on the
SemEval data, given the parsed candidate phrases
and the gold information about the missing frame
element.5 For space reasons, we only include the re-
sults of our best-performing configuration, obtained
from protofillers trained on the late modern English
texts and Collobert et al. (2011) embeddings (C&W)
with the search space for candidate NIs limited to the
current and previous sentence. As a reference, we
compare our results to the two best models (M1 and
M1′) by Silberer and Frank (2012), the vector-based
resolver (VEC) by Gorinski et al. (2013) – which is
most similar to ours – and, finally, their ensemble
combination of four semantically informed resolvers
by majority vote (4X).

P R F1

Silberer and Frank (2012) M1 30.8 25.1 27.7
Silberer and Frank (2012) M1′ 35.6 20.1 25.7
Gorinski et al. (2013) VEC 21.0 18.0 19.0
Gorinski et al. (2013) 4X 26.0 24.0 25.0
This paper: C&W embeddings 27.2 25.7 26.4

Table 4: NI linking performance on the SemEval test data.

The figures in Table 4 suggest that our approach
clearly outperforms the vector-based method by
Gorinski et al. (2013) and is best in terms of over-
all recognition rate (recall) among all systems. One
potential reason for that might be that, in contrast
to the VEC resolver, we do not compute mere con-
text vectors but do rely on the valuable annotations
obtained from explicit SRL structures. Also, we do
not restrict our analysis to head words only, as we
have seen that syntactic information from function
words is crucial for the resolution of null instantiated
roles, too. Moreover, our distributional protofiller
method is highly competitive with state-of-the-art
performance by Silberer and Frank (2012), yet does
not yield better results in terms of F1 score. Note
however that, in contrast to their approach, ours is
largely unsupervised and does neither rely on gold
coreference chains, nor do we need to train on im-

5 This avoids error propagation from NI detection and allows
us to directly compare our results to previous approaches on the
same task. Note that Laparra and Rigau (2012) do only report
their accuracies for the full pipeline.

1475

B Gerber & Chai Laparra & Rigau Proto C&W Proto W2Vcbow

predicates: F1 P R F1 P R F1 P R F1 P R F1

sale 36.2 47.2 41.7 44.2 41.2 39.4 40.3 61.0 29.6 39.8 60.8 26.8 37.2
price 15.4 36.0 32.6 34.2 53.3 53.3 53.3 14.7 25.8 18.7 21.8 36.6 27.3
investor 9.8 36.8 40.0 38.4 43.0 39.5 41.2 22.5 48.3 30.7 24.1 57.2 33.9
bid 32.3 23.8 19.2 21.3 52.9 51.0 52.0 30.4 31.5 30.9 40.0 41.5 40.7
plan 38.5 78.6 55.0 64.7 40.7 40.7 40.7 41.1 43.2 42.1 44.3 51.0 47.4
cost 34.8 61.1 64.7 62.9 56.1 50.2 53.0 32.5 19.1 24.0 49.9 29.3 36.9
loss 52.6 83.3 83.3 83.3 68.4 63.5 65.8 54.8 73.1 62.6 54.7 63.8 58.9
loan 18.2 42.9 33.3 37.5 25.0 20.0 22.2 33.9 49.0 40.1 33.2 44.2 37.9
investment 0.0 40.0 25.0 30.8 47.6 35.7 40.8 29.1 21.8 24.9 39.2 34.3 36.6
fund 0.0 14.3 16.7 15.4 66.7 33.3 44.4 100.0 33.3 50.0 75.0 25.0 37.5

Overall 26.5 44.5 40.4 42.3 47.9 43.8 45.8 30.2 35.2 32.5 33.5 39.2 36.1

Table 3: Classification scores for implicit argument labeling on the NomBank test section. Baseline B from Gerber & Chai (2010):

uses previous occurrence of same predicate. Gerber & Chai (2010): supervised logistic regression classifier trained on implicit

fillers. Laparra & Rigau (2013): algorithm based on coherence relationship between predicates and fillers. Our best-performing

protofillers are obtained by Collobert et al. (2011) embeddings (Proto C&W) and custom trained vectors (Proto W2Vcbow) using

Gigaword SRL annotations.

plicit semantic roles in a supervised setting. An
error analysis of our method reveals that it is par-
ticularly effective for NIs encountered in the same
sentence as the target predicate (44.4% accuracy),
which seems plausible given the contextual setup in
which protofillers are derived.

3.2 NomBank Data

Compared to the SemEval data, Gerber and Chai
(2010)’s augmented NomBank resource covers only
ten nominal predicates, which allows us to nicely vi-
sualize the distributional profile based on their pro-
totypical fillers. For each predicate, we simply con-
catenate all per role computed protofillers and apply
multidimensional scaling to project the so obtained
vectors onto two dimensions (cf. Figure 1).

We observe that the predicate grouping is now
based on the prototypical fillers that they co-occur
with: In the Wall Street Journal texts, loss, loan and
investment are similar because their proto-agents
(A0 fillers) who lose, lend and invest resp. are se-
mantically shared (i.e. companies, banks). Simi-
larly, bid, cost and fund are related in that the tar-
gets or commodities (A2) are all money-financed.
Finally, the predicates sale and plan are to be ex-
pected as outliers as they are less homogeneous in
their prototypical argument structure.

We have empirically evaluated our protofiller

sale

price

investor

bid

plan

cost

loss

loan

investment

fund

−0.4

−0.2

0.0

0.2

−0.2 0.0 0.2

x

y

Figure 1: Clustered projection of the ten nominal predicates

from Gerber and Chai (2010) in protofiller space.

method also on this data set: Table 3 reports the
classification scores for implicit argument resolution
compared to the state-of-the-art (Laparra and Rigau,
2013). We restrict the search for implicit arguments
to certain predicate-specific parts-of-speech, since
some syntactic constituents (e.g., SBAR) never oc-
cur as implicit arguments. For choosing the final
implicit arguments for each individual predicate in-
stance, we follow the same deterministic strategy
as described in Gerber and Chai (2010), which in-
formally states that, if a certain role is not overtly
expressed (within a chain of mentions of the same
predicate in previous sentences), it is an implicit

1476

candidate. POS lists and cosine similarity thresholds
which trigger an actual prediction have been opti-
mized on the development set. The context window
for candidate NIs is optimal for the current and pre-
vious two sentences in our setting, which explains
why the the number of candidate constituents is ap-
proximately twice as large for the NomBank predi-
cates (cf. Table 2).

Our best-performing protofillers are again ob-
tained by Collobert et al. (2011) embeddings sub-
stituting explicit SRL annotations in the Gigaword
corpus, and with custom-trained embeddings using
the continuous bag-of-words model. Overall, our re-
sults significantly exceed the highly informed base-
line but cannot beat the state-of-the art on this test
set. For some predicates, the protofillers seem to
generalize better (higher recall), and in particular for
the low-frequency predicates (fund), precision can
be increased. Also, we found that the dependency-
based word embeddings do perform slightly worse
(not shown), compared to our optimal two con-
figurations. This might be due to the fact that
the inherent properties of dependency-based con-
texts mostly focus on relations between semanti-
cally valuable nouns, ignoring (“skipping”) func-
tional words and categories.6 The same pertains
to the pre-computed Google News vectors which
come with a frequency cutoff excluding stop words,
again a constraint which is harmful for the correct
identification of implicit roles. Furthermore, skip-
gram embeddings perform significantly worse than
the embeddings derived by the continuous bag-of-
words implementation (relative decrease in F1 by
more than 30%). Finally, we observed that infer-
ring implicit roles for nominal predicates is much
more challenging because our collected fillers ex-
hibit a much greater variation. For example, the
protoagents of loan can roughly be divided into two
categories, institutions and countries. This in turn
introduces noise and has a negative effect on the
quality of the singleton protofillers which by vector
average capture neither of the two groups perfectly.
Promising alternatives could operate on (topic-like)
protofiller clusters which we leave for future work.

6This is also nicely illustrated in Levy and Goldberg (2014).

4 Summary & Conclusion

We have described a lightweight approach for the
resolution of implicit semantic roles which does
not rely on manual gold annotations. For each
predicate-specific role, our method generalizes over
explicit SRL-guided annotations incorporating pre-
trained word embeddings. This allows us to capture
their idiosyncratic properties and use the so-inferred
protofillers to find null instantiated roles by means
of distributional similarity.

Our method has proven to be generally useful, in
particular on the SemEval data, where it is compet-
itive with supervised systems. Its greatest benefit
stems from its simplicity and from that fact that it
allows to induce null-instantiated roles for arbitrary
predicates. As it is applicable even if no iSRL train-
ing data is available, it represents a promising tech-
nique to address iSRL data scarcity issues.

In our experiment, we employed PropBank/Nom-
Bank-style (i)SRL annotations, and our general de-
sign clearly benefits from using small-scale inven-
tories of semantic roles. It should be noted though,
that our approach is not restricted to any particular
SRL tagset, but can be equally applied to other role
inventories with similar degrees of consistence and
size. Beyond SRL annotations in a strict sense, this
might even extend to syntactic dependency annota-
tions that are occasionally taken as a substitute for
semantic roles proper. In particular, we see poten-
tial in combining our experiments with on-going ef-
forts to cross-lingual projection, adaptation and har-
monization of syntax annotations along the lines of
Sukhareva and Chiarcos (2014, 2016) and related
approaches based on frameworks such as the Uni-
versal Dependencies (Nivre, 2015, UD).7 If success-
ful, an adaptation using grammatical relations rather
than semantic roles represents a promising possibil-
ity to create iSRL annotation and iSRL annotation
tools for other languages, as Universal Dependen-
cies are becoming increasingly available for major
and low-resourced languages and can be projected
to others.

The protofillers involved in this study
are available at: http://acoli.cs.
uni-frankfurt.de/resources.

7http://universaldependencies.github.io

1477

Acknowledgments

The authors would like to thank Joyce Chai and
Hendrik De Smet for providing us access to
their resources and corpora. We are grateful to
Egoitz Laparra for sending us their evaluation script
and also thank the anonymous reviewers for their
valuable feedback and insightful comments.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Pro-
ceedings of the 36th Annual Meeting of the Asso-
ciation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguistics
(ACL-COLIG 1998), pages 86–90, Montreal, Quebec,
Canada.

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual Semantic Role Labeling. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009):
Shared Task, pages 43–48, Boulder, Colorado, June.

Desai Chen, Nathan Schneider, Dipanjan Das, and
Noah A. Smith. 2010. SEMAFOR: Frame Argument
Resolution with Log-linear Models. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion (SemEval-2010), pages 264–267, Los Angeles.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural Language Processing (Almost) from Scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Dipanjan Das, Desai Chen, André F. T. Martins, Nathan
Schneider, and Noah A. Smith. 2014. Frame-semantic
Parsing. Computational Linguistics, 40(1):9–56.

Parvin S. Feizabadi and Sebastian Padó. 2015. Combin-
ing Seemingly Incompatible Corpora for Implicit Se-
mantic Role Labeling. In Proceedings of the 4th Joint
Conference on Lexical and Computational Semantics
(*SEM 2015), pages 40–50, Denver, CO.

Charles J. Fillmore. 1986. Pragmatically Controlled
Zero Anaphora. In Proceedings of Berkeley Linguis-
tics Society, pages 95–107, Berkeley, CA.

Matthew Gerber and Joyce Chai. 2010. Beyond Nom-
Bank: A Study of Implicit Arguments for Nominal
Predicates. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics
(ACL-2010), pages 1583–1592, Uppsala, Sweden.

Matthew Gerber and Joyce Chai. 2012. Semantic Role
Labeling of Implicit Arguments for Nominal Predi-
cates. Computational Linguistics, 38(4):755–798.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic La-
beling of Semantic Roles. Computational Linguistics,
28(3):245–288.

Philip Gorinski, Josef Ruppenhofer, and Caroline
Sporleder. 2013. Towards Weakly Supervised Resolu-
tion of Null Instantiations. In Proceedings of the 10th
International Conference on Computational Semantics
(IWCS 2013), pages 119–130, Potsdam, Germany.

David Graff and Christopher Cieri. 2003. English Gi-
gaword. Linguistic Data Consortium, Philadelphia,
LDC2003T05. Web Download.

Karl Moritz Hermann, Dipanjan Das, Jason Weston, and
Kuzman Ganchev. 2014. Semantic Frame Identifi-
cation with Distributed Word Representations. In Pro-
ceedings of the 52th Annual Meeting of the Association
for Computational Linguistics (ACL-2014), Baltimore,
Maryland.

Egoitz Laparra and German Rigau. 2012. Exploiting
Explicit Annotations and Semantic Types for Implicit
Argument Resolution. In Proceedings of the 6th Inter-
national Conference on Semantic Computing (ICSC-
2012), pages 75–78.

Egoitz Laparra and German Rigau. 2013. ImpAr: A De-
terministic Algorithm for Implicit Semantic Role La-
belling. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (ACL-
2013), pages 1180–1189, Sofia, Bulgaria.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (ACL-2014), pages 302–308, Baltimore,
MD.

Ru Li, Juan Wu, Zhiqiang Wang, and Qinghua Chai.
2015. Implicit Role Linking on Chinese Discourse:
Exploiting Explicit Roles and Frame-to-Frame Rela-
tions. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (ACL-IJCNLP 2015), pages 1263–
1271, Beijing, China.

Adam Meyers, Ruth Reeves, Catherine Macleod, Rachel
Szekely, Veronika Zielinska, Brian Young, and Ralph
Grishman. 2004. The NomBank Project: An In-
terim Report. In Proceedings of the HLT-NAACL 2004
Workshop on Frontiers in Corpus Annotation, pages
24–31, Boston, Massachusetts.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Represen-
tations in Vector Space. CoRR, abs/1301.3781.

Paloma Moreda, Hector Llorens, Estela Saquete, and
Manuel Palomar. 2011. Combining Semantic Infor-
mation in Question Answering Systems. Journal of
Information Processing and Management, 47(6):870–
885.

1478

Joakim Nivre. 2015. Towards a Universal Gram-
mar for Natural Language Processing. In Proceed-
ings of the 16th International Conference on Com-
putational Linguistics and Intelligent Text Processing
(CICLing-2015), pages 3–16, Cairo, Egypt. LNCS
9041, Springer.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Josef Ruppenhofer, Caroline Sporleder, Roser Morante,
Collin Baker, and Martha Palmer. 2010. SemEval-
2010 Task 10: Linking Events and Their Participants
in Discourse. In Proceedings of the 5th International
Workshop on Semantic Evaluation (SemEval-2010),
pages 45–50, Los Angeles, CA.

Josef Ruppenhofer. 2005. Regularities in Null Instantia-
tion. Ms, University of Colorado.

Mark Sammons, V.G.Vinod Vydiswaran, and Dan Roth.
2012. Recognizing Textual Entailment. In Daniel M.
Bikel and Imed Zitouni, editors, Multilingual Natu-
ral Language Applications: From Theory to Practice,
chapter 6, pages 209–258. IBM Press.

Dan Shen and Mirella Lapata. 2007. Using Seman-
tic Roles to Improve Question Answering. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL
2007), pages 12–21, Prague, Czech Republic.

Carina Silberer and Anette Frank. 2012. Casting Implicit
Role Linking as an Anaphora Resolution Task. In Pro-
ceedings of the First Joint Conference on Lexical and
Computational Semantics (*SEM-2012), pages 1–10,
Montreal, Quebec, Canada.

Hendrik De Smet. 2005. A Corpus of Late Modern En-
glish Texts. International Computer Archive of Mod-
ern and Medieval English (ICAME), 29:69–82.

Maria Sukhareva and Christian Chiarcos. 2014. Di-
achronic Proximity vs. Data Sparsity in Cross-lingual
Parser Projection. A Case Study on Germanic. In
COLING-2014 Workshop on Applying NLP Tools to
Similar Languages, Varieties and Dialects (VarDial-
2014), Dublin, Ireland.

Maria Sukhareva and Christian Chiarcos. 2016. Com-
bining Ontologies and Neural Networks for Analyzing
Historical Language Varieties. A Case Study in Mid-
dle Low German. In Proceedings of the 10th Interna-
tional Conference on Language Resources and Evalu-
ation (LREC-2016), Portorož, Slovenia.

Diana Trandabăţ. 2011. Using Semantic Roles to Im-
prove Summaries. In Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation
(ENLG-2011), pages 164–169, Nancy, France.

1479

Proceedings of NAACL-HLT 2016, pages 1480–1489,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Hierarchical Attention Networks for Document Classification

Zichao Yang1, Diyi Yang1, Chris Dyer1, Xiaodong He2, Alex Smola1, Eduard Hovy1

1Carnegie Mellon University, 2Microsoft Research, Redmond
{zichaoy, diyiy, cdyer, hovy}@cs.cmu.edu
xiaohe@microsoft.com alex@smola.org

Abstract

We propose a hierarchical attention network
for document classification. Our model has
two distinctive characteristics: (i) it has a hier-
archical structure that mirrors the hierarchical
structure of documents; (ii) it has two levels
of attention mechanisms applied at the word-
and sentence-level, enabling it to attend dif-
ferentially to more and less important con-
tent when constructing the document repre-
sentation. Experiments conducted on six large
scale text classification tasks demonstrate that
the proposed architecture outperform previous
methods by a substantial margin. Visualiza-
tion of the attention layers illustrates that the
model selects qualitatively informative words
and sentences.

1 Introduction

Text classification is one of the fundamental task in
Natural Language Processing. The goal is to as-
sign labels to text. It has broad applications includ-
ing topic labeling (Wang and Manning, 2012), senti-
ment classification (Maas et al., 2011; Pang and Lee,
2008), and spam detection (Sahami et al., 1998).
Traditional approaches of text classification repre-
sent documents with sparse lexical features, such
as n-grams, and then use a linear model or kernel
methods on this representation (Wang and Manning,
2012; Joachims, 1998). More recent approaches
used deep learning, such as convolutional neural net-
works (Blunsom et al., 2014) and recurrent neural
networks based on long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) to learn text
representations.

pork belly = delicious . || scallops? || I don’t even

like scallops, and these were a-m-a-z-i-n-g . || fun

and tasty cocktails. || next time I in Phoenix, I will
go back here. || Highly recommend.

Figure 1: A simple example review from Yelp 2013 that con-

sists of five sentences, delimited by period, question mark. The

first and third sentence delivers stronger meaning and inside,

the word delicious, a-m-a-z-i-n-g contributes the most in defin-

ing sentiment of the two sentences.

Although neural-network–based approaches to
text classification have been quite effective (Kim,
2014; Zhang et al., 2015; Johnson and Zhang, 2014;
Tang et al., 2015), in this paper we test the hypoth-
esis that better representations can be obtained by
incorporating knowledge of document structure in
the model architecture. The intuition underlying our
model is that not all parts of a document are equally
relevant for answering a query and that determining
the relevant sections involves modeling the interac-
tions of the words, not just their presence in isola-
tion.

Our primary contribution is a new neural archi-
tecture (§2), the Hierarchical Attention Network
(HAN) that is designed to capture two basic insights
about document structure. First, since documents
have a hierarchical structure (words form sentences,
sentences form a document), we likewise construct a
document representation by first building represen-
tations of sentences and then aggregating those into
a document representation. Second, it is observed
that different words and sentences in a documents
are differentially informative. Moreover, the impor-

1480

tance of words and sentences are highly context de-
pendent, i.e. the same word or sentence may be dif-
ferentially important in different context (§3.5). To
include sensitivity to this fact, our model includes
two levels of attention mechanisms (Bahdanau et al.,
2014; Xu et al., 2015) — one at the word level and
one at the sentence level — that let the model to
pay more or less attention to individual words and
sentences when constructing the representation of
the document. To illustrate, consider the example
in Fig. 1, which is a short Yelp review where the
task is to predict the rating on a scale from 1–5. In-
tuitively, the first and third sentence have stronger
information in assisting the prediction of the rat-
ing; within these sentences, the word delicious,
a-m-a-z-i-n-g contributes more in implying
the positive attitude contained in this review. At-
tention serves two benefits: not only does it often
result in better performance, but it also provides in-
sight into which words and sentences contribute to
the classification decision which can be of value in
applications and analysis (Shen et al., 2014; Gao et
al., 2014).

The key difference to previous work is that our
system uses context to discover when a sequence of
tokens is relevant rather than simply filtering for (se-
quences of) tokens, taken out of context. To evaluate
the performance of our model in comparison to other
common classification architectures, we look at six
data sets (§3). Our model outperforms previous ap-
proaches by a significant margin.

2 Hierarchical Attention Networks
The overall architecture of the Hierarchical Atten-
tion Network (HAN) is shown in Fig. 2. It con-
sists of several parts: a word sequence encoder, a
word-level attention layer, a sentence encoder and a
sentence-level attention layer. We describe the de-
tails of different components in the following sec-
tions.

2.1 GRU-based sequence encoder

The GRU (Bahdanau et al., 2014) uses a gating
mechanism to track the state of sequences without
using separate memory cells. There are two types of
gates: the reset gate rt and the update gate zt. They
together control how information is updated to the

 �
h 21
 �
h 21

 �
h 22
 �
h 22

�!
h 22
�!
h 22

 �
h 2T
 �
h 2T

�!
h 2T
�!
h 2T

uwuw

w21w21 w22w22 w2Tw2T

word
encoder

word
attention

 �
h 1
 �
h 1

�!
h 1
�!
h 1

 �
h 2
 �
h 2

�!
h 2
�!
h 2

 �
h L
 �
h L

�!
h L
�!
h L

usus

s1s1 s2s2 sLsL

↵L↵L

sentence
encoder

sentence
attention

vv

softmax

↵21↵21 ↵22↵22 ↵2T↵2T

�!
h 21
�!
h 21

↵1↵1 ↵2↵2

Figure 2: Hierarchical Attention Network.

state. At time t, the GRU computes the new state as

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t. (1)

This is a linear interpolation between the previous
state ht−1 and the current new state h̃t computed
with new sequence information. The gate zt decides
how much past information is kept and how much
new information is added. zt is updated as:

zt = σ(Wzxt + Uzht−1 + bz), (2)

where xt is the sequence vector at time t. The can-
didate state h̃t is computed in a way similar to a tra-
ditional recurrent neural network (RNN):

h̃t = tanh(Whxt + rt ⊙ (Uhht−1) + bh), (3)

Here rt is the reset gate which controls how much
the past state contributes to the candidate state. If rt

is zero, then it forgets the previous state. The reset
gate is updated as follows:

rt = σ(Wrxt + Urht−1 + br) (4)

2.2 Hierarchical Attention
We focus on document-level classification in this
work. Assume that a document has L sentences

1481

si and each sentence contains Ti words. wit with
t ∈ [1, T] represents the words in the ith sentence.
The proposed model projects the raw document into
a vector representation, on which we build a classi-
fier to perform document classification. In the fol-
lowing, we will present how we build the document
level vector progressively from word vectors by us-
ing the hierarchical structure.

Word Encoder Given a sentence with words
wit, t ∈ [0, T], we first embed the words to vectors
through an embedding matrix We, xij = Wewij .
We use a bidirectional GRU (Bahdanau et al., 2014)
to get annotations of words by summarizing infor-
mation from both directions for words, and therefore
incorporate the contextual information in the anno-
tation. The bidirectional GRU contains the forward
GRU

−→
f which reads the sentence si from wi1 to

wiT and a backward GRU
←−
f which reads from wiT

to wi1:

xit =Wewit, t ∈ [1, T],
−→
h it =

−−−→
GRU(xit), t ∈ [1, T],

←−
h it =

←−−−
GRU(xit), t ∈ [T, 1].

We obtain an annotation for a given word wit by
concatenating the forward hidden state

−→
h it and

backward hidden state
←−
h it, i.e., hit = [

−→
h it,
←−
h it],

which summarizes the information of the whole sen-
tence centered around wit.

Note that we directly use word embeddings. For
a more complete model we could use a GRU to get
word vectors directly from characters, similarly to
(Ling et al., 2015). We omitted this for simplicity.

Word Attention Not all words contribute equally
to the representation of the sentence meaning.
Hence, we introduce attention mechanism to extract
such words that are important to the meaning of the
sentence and aggregate the representation of those
informative words to form a sentence vector. Specif-
ically,

uit =tanh(Wwhit + bw) (5)

αit =
exp(u⊤ituw)∑
t exp(u⊤ituw)

(6)

si =
∑

t

αithit. (7)

That is, we first feed the word annotation hit through
a one-layer MLP to get uit as a hidden represen-
tation of hit, then we measure the importance of
the word as the similarity of uit with a word level
context vector uw and get a normalized importance
weight αit through a softmax function. After that,
we compute the sentence vector si (we abuse the no-
tation here) as a weighted sum of the word annota-
tions based on the weights. The context vector uw

can be seen as a high level representation of a fixed
query “what is the informative word” over the words
like that used in memory networks (Sukhbaatar et
al., 2015; Kumar et al., 2015). The word context
vector uw is randomly initialized and jointly learned
during the training process.

Sentence Encoder Given the sentence vectors si,
we can get a document vector in a similar way. We
use a bidirectional GRU to encode the sentences:

−→
h i =

−−−→
GRU(si), i ∈ [1, L],

←−
h i =

←−−−
GRU(si), t ∈ [L, 1].

We concatenate
−→
h i and

←−
h j to get an annotation of

sentence i, i.e., hi = [
−→
h i,
←−
h i]. hi summarizes the

neighbor sentences around sentence i but still focus
on sentence i.

Sentence Attention To reward sentences that are
clues to correctly classify a document, we again use
attention mechanism and introduce a sentence level
context vector us and use the vector to measure the
importance of the sentences. This yields

ui =tanh(Wshi + bs), (8)

αi =
exp(u⊤i us)∑
i exp(u⊤i us)

, (9)

v =
∑

i

αihi, (10)

where v is the document vector that summarizes
all the information of sentences in a document.
Similarly, the sentence level context vector can be
randomly initialized and jointly learned during the
training process.

2.3 Document Classification
The document vector v is a high level representation
of the document and can be used as features for doc-

1482

ument classification:

p = softmax(Wcv + bc). (11)

We use the negative log likelihood of the correct la-
bels as training loss:

L = −
∑

d

log pdj , (12)

where j is the label of document d.

3 Experiments

3.1 Data sets

We evaluate the effectiveness of our model on six
large scale document classification data sets. These
data sets can be categorized into two types of doc-
ument classification tasks: sentiment estimation and
topic classification. The statistics of the data sets are
summarized in Table 1. We use 80% of the data for
training, 10% for validation, and the remaining 10%
for test, unless stated otherwise.

Yelp reviews are obtained from the Yelp Dataset
Challenge in 2013, 2014 and 2015 (Tang et al.,
2015). There are five levels of ratings from 1 to
5 (higher is better).

IMDB reviews are obtained from (Diao et al.,
2014). The ratings range from 1 to 10.

Yahoo answers are obtained from (Zhang et al.,
2015). This is a topic classification task with 10
classes: Society & Culture, Science & Mathe-
matics, Health, Education & Reference, Com-
puters & Internet, Sports, Business & Finance,
Entertainment & Music, Family & Relation-
ships and Politics & Government. The docu-
ment we use includes question titles, question
contexts and best answers. There are 140,000
training samples and 5000 testing samples. The
original data set does not provide validation
samples. We randomly select 10% of the train-
ing samples as validation.

Amazon reviews are obtained from (Zhang et al.,
2015). The ratings are from 1 to 5. 3,000,000
reviews are used for training and 650,000 re-
views for testing. Similarly, we use 10% of the
training samples as validation.

3.2 Baselines
We compare HAN with several baseline meth-
ods, including traditional approaches such as lin-
ear methods, SVMs and paragraph embeddings us-
ing neural networks, LSTMs, word-based CNN,
character-based CNN, and Conv-GRNN, LSTM-
GRNN. These baseline methods and results are re-
ported in (Zhang et al., 2015; Tang et al., 2015).

3.2.1 Linear methods
Linear methods (Zhang et al., 2015) use the con-

structed statistics as features. A linear classifier
based on multinomial logistic regression is used to
classify the documents using the features.

BOW and BOW+TFIDF The 50,000 most fre-
quent words from the training set are selected
and the count of each word is used features.
Bow+TFIDF, as implied by the name, uses the
TFIDF of counts as features.

n-grams and n-grams+TFIDF used the most fre-
quent 500,000 n-grams (up to 5-grams).

Bag-of-means The average word2vec embedding
(Mikolov et al., 2013) is used as feature set.

3.2.2 SVMs
SVMs-based methods are reported in (Tang et

al., 2015), including SVM+Unigrams, Bigrams,
Text Features, AverageSG, SSWE. In detail, Uni-
grams and Bigrams uses bag-of-unigrams and bag-
of-bigrams as features respectively.

Text Features are constructed according to (Kir-
itchenko et al., 2014), including word and char-
acter n-grams, sentiment lexicon features etc.

AverageSG constructs 200-dimensional word vec-
tors using word2vec and the average word em-
beddings of each document are used.

SSWE uses sentiment specific word embeddings
according to (Tang et al., 2014).

3.2.3 Neural Network methods
The neural network based methods are reported

in (Tang et al., 2015) and (Zhang et al., 2015).

CNN-word Word based CNN models like that of
(Kim, 2014) are used.

CNN-char Character level CNN models are re-
ported in (Zhang et al., 2015).

1483

Data set classes documents average #s max #s average #w max #w vocabulary

Yelp 2013 5 335,018 8.9 151 151.6 1184 211,245
Yelp 2014 5 1,125,457 9.2 151 156.9 1199 476,191
Yelp 2015 5 1,569,264 9.0 151 151.9 1199 612,636
IMDB review 10 348,415 14.0 148 325.6 2802 115,831
Yahoo Answer 10 1,450,000 6.4 515 108.4 4002 1,554,607
Amazon review 5 3,650,000 4.9 99 91.9 596 1,919,336

Table 1: Data statistics: #s denotes the number of sentences (average and maximum per document), #w denotes the number of

words (average and maximum per document).

LSTM takes the whole document as a single se-
quence and the average of the hidden states of
all words is used as feature for classification.

Conv-GRNN and LSTM-GRNN were proposed
by (Tang et al., 2015). They also explore
the hierarchical structure: a CNN or LSTM
provides a sentence vector, and then a gated
recurrent neural network (GRNN) combines
the sentence vectors from a document level
vector representation for classification.

3.3 Model configuration and training

We split documents into sentences and tokenize each
sentence using Stanford’s CoreNLP (Manning et al.,
2014). We only retain words appearing more than
5 times in building the vocabulary and replace the
words that appear 5 times with a special UNK token.
We obtain the word embedding by training an un-
supervised word2vec (Mikolov et al., 2013) model
on the training and validation splits and then use the
word embedding to initialize We.

The hyper parameters of the models are tuned
on the validation set. In our experiments, we set
the word embedding dimension to be 200 and the
GRU dimension to be 50. In this case a com-
bination of forward and backward GRU gives us
100 dimensions for word/sentence annotation. The
word/sentence context vectors also have a dimension
of 100, initialized at random.

For training, we use a mini-batch size of 64 and
documents of similar length (in terms of the number
of sentences in the documents) are organized to be a
batch. We find that length-adjustment can accelerate
training by three times. We use stochastic gradient
descent to train all models with momentum of 0.9.
We pick the best learning rate using grid search on
the validation set.

3.4 Results and analysis

The experimental results on all data sets are shown
in Table 2. We refer to our models as HN-{AVE,
MAX, ATT}. Here HN stands for Hierarchical
Network, AVE indicates averaging, MAX indicates
max-pooling, and ATT indicates our proposed hi-
erarchical attention model. Results show that HN-
ATT gives the best performance across all data sets.

The improvement is regardless of data sizes. For
smaller data sets such as Yelp 2013 and IMDB, our
model outperforms the previous best baseline meth-
ods by 3.1% and 4.1% respectively. This finding is
consistent across other larger data sets. Our model
outperforms previous best models by 3.2%, 3.4%,
4.6% and 6.0% on Yelp 2014, Yelp 2015, Yahoo An-
swers and Amazon Reviews. The improvement also
occurs regardless of the type of task: sentiment clas-
sification, which includes Yelp 2013-2014, IMDB,
Amazon Reviews and topic classification for Yahoo
Answers.

From Table 2 we can see that neural network
based methods that do not explore hierarchical doc-
ument structure, such as LSTM, CNN-word, CNN-
char have little advantage over traditional methods
for large scale (in terms of document size) text clas-
sification. E.g. SVM+TextFeatures gives perfor-
mance 59.8, 61.8, 62.4, 40.5 for Yelp 2013, 2014,
2015 and IMDB respectively, while CNN-word has
accuracy 59.7, 61.0, 61.5, 37.6 respectively.

Exploring the hierarchical structure only, as in
HN-AVE, HN-MAX, can significantly improve over
LSTM, CNN-word and CNN-char. For exam-
ple, our HN-AVE outperforms CNN-word by 7.3%,
8.8%, 8.5%, 10.2% than CNN-word on Yelp 2013,
2014, 2015 and IMDB respectively. Our model
HN-ATT that further utilizes attention mechanism

1484

Methods Yelp’13 Yelp’14 Yelp’15 IMDB Yahoo Answer Amazon

Zhang et al., 2015 BoW - - 58.0 - 68.9 54.4
BoW TFIDF - - 59.9 - 71.0 55.3
ngrams - - 56.3 - 68.5 54.3
ngrams TFIDF - - 54.8 - 68.5 52.4
Bag-of-means - - 52.5 - 60.5 44.1

Tang et al., 2015 Majority 35.6 36.1 36.9 17.9 - -
SVM + Unigrams 58.9 60.0 61.1 39.9 - -
SVM + Bigrams 57.6 61.6 62.4 40.9 - -
SVM + TextFeatures 59.8 61.8 62.4 40.5 - -
SVM + AverageSG 54.3 55.7 56.8 31.9 - -
SVM + SSWE 53.5 54.3 55.4 26.2 - -

Zhang et al., 2015 LSTM - - 58.2 - 70.8 59.4
CNN-char - - 62.0 - 71.2 59.6
CNN-word - - 60.5 - 71.2 57.6

Tang et al., 2015 Paragraph Vector 57.7 59.2 60.5 34.1 - -
CNN-word 59.7 61.0 61.5 37.6 - -
Conv-GRNN 63.7 65.5 66.0 42.5 - -
LSTM-GRNN 65.1 67.1 67.6 45.3 - -

This paper HN-AVE 67.0 69.3 69.9 47.8 75.2 62.9
HN-MAX 66.9 69.3 70.1 48.2 75.2 62.9
HN-ATT 68.2 70.5 71.0 49.4 75.8 63.6

Table 2: Document Classification, in percentage

combined with hierarchical structure improves over
previous models (LSTM-GRNN) by 3.1%, 3.4%,
3.5% and 4.1% respectively. More interestingly,
in the experiments, HN-AVE is equivalent to us-
ing non-informative global word/sentence context
vectors (e.g., if they are all-zero vectors, then the
attention weights in Eq. 6 and 9 become uniform
weights). Compared to HN-AVE, the HN-ATT
model gives superior performance across the board.
This clearly demonstrates the effectiveness of the
proposed global word and sentence importance vec-
tors for the HAN.

3.5 Context dependent attention weights

If words were inherently important or not important,
models without attention mechanism might work
well since the model could automatically assign low
weights to irrelevant words and vice versa. How-
ever, the importance of words is highly context de-
pendent. For example, the word good may appear
in a review that has the lowest rating either because
users are only happy with part of the product/service
or because they use it in a negation, such as not

good. To verify that our model can capture context
dependent word importance, we plot the distribution
of the attention weights of the words good and bad
from the test split of Yelp 2013 data set as shown in
Figure 3(a) and Figure 4(a). We can see that the dis-
tribution has a attention weight assigned to a word
from 0 to 1. This indicates that our model captures
diverse context and assign context-dependent weight
to the words.

For further illustration, we plot the distribution
when conditioned on the ratings of the review. Sub-
figures 3(b)-(f) in Figure 3 and Figure 4 correspond
to the rating 1-5 respectively. In particular, Fig-
ure 3(b) shows that the weight of good concentrates
on the low end in the reviews with rating 1. As
the rating increases, so does the weight distribution.
This means that the word good plays a more im-
portant role for reviews with higher ratings. We can
observe the converse trend in Figure 4 for the word
bad. This confirms that our model can capture the
context-dependent word importance.

1485

0.0 0.3 0.6 0.9
0.0

0.3

0.6

0.9

1.2

(a)

0.0 0.3 0.6 0.9
0.0

0.5

1.0

1.5

2.0

(b)

0.0 0.3 0.6 0.9
0.0

0.5

1.0

1.5

2.0 (c)

0.0 0.3 0.6 0.9
0.0

0.4

0.8

1.2

1.6 (d)

0.0 0.3 0.6 0.9
0.0

0.4

0.8

1.2

1.6 (e)

0.0 0.3 0.6 0.9
0.0

0.3

0.6

0.9

1.2

(f)

Figure 3: Attention weight distribution of good. (a) — aggre-

gate distribution on the test split; (b)-(f) stratified for reviews

with ratings 1-5 respectively. We can see that the weight distri-

bution shifts to higher end as the rating goes higher.

0.0 0.3 0.6 0.9
0.0

0.6

1.2

1.8

2.4
(a)

0.0 0.3 0.6 0.9
0.0

0.4

0.8

1.2

1.6

(b)

0.0 0.3 0.6 0.9
0.0

0.3

0.6

0.9

1.2

(c)

0.0 0.3 0.6 0.9
0.0

0.8

1.6

2.4

3.2
(d)

0.0 0.3 0.6 0.9
0.0

0.7

1.4

2.1

2.8

(e)

0.0 0.3 0.6 0.9
0.0

0.7

1.4

2.1

2.8

(f)

Figure 4: Attention weight distribution of the word bad. The

setup is as above: (a) contains the aggregate distribution, while

(b)-(f) contain stratifications to reviews with ratings 1-5 respec-

tively. Contrary to before, the word bad is considered impor-

tant for poor ratings and less so for good ones.

3.6 Visualization of attention

In order to validate that our model is able to select in-
formative sentences and words in a document, we vi-
sualize the hierarchical attention layers in Figures 5
and 6 for several documents from the Yelp 2013 and
Yahoo Answers data sets.

Every line is a sentence (sometimes sentences
spill over several lines due to their length). Red de-
notes the sentence weight and blue denotes the word

weight. Due to the hierarchical structure, we nor-
malize the word weight by the sentence weight to
make sure that only important words in important
sentences are emphasized. For visualization pur-
poses we display

√
pspw. The

√
ps term displays the

important words in unimportant sentences to ensure
that they are not totally invisible.

Figure 5 shows that our model can select the
words carrying strong sentiment like delicious,
amazing, terrible and their corresponding
sentences. Sentences containing many words
like cocktails, pasta, entree are disre-
garded. Note that our model can not only select
words carrying strong sentiment, it can also deal
with complex across-sentence context. For example,
there are sentences like i don’t even like
scallops in the first document of Fig. 5, if look-
ing purely at the single sentence, we may think this
is negative comment. However, our model looks at
the context of this sentence and figures out this is a
positive review and chooses to ignore this sentence.

Our hierarchical attention mechanism also works
well for topic classification in the Yahoo Answer
data set. For example, for the left document
in Figure 6 with label 1, which denotes Science
and Mathematics, our model accurately localizes
the words zebra, strips, camouflage,
predator and their corresponding sentences. For
the right document with label 4, which denotes
Computers and Internet, our model focuses on web,
searches, browsers and their corresponding
sentences. Note that this happens in a multiclass set-
ting, that is, detection happens before the selection
of the topic!

4 Related Work

Kim (2014) use neural networks for text classifi-
cation. The architecture is a direct application of
CNNs, as used in computer vision (LeCun et al.,
1998), albeit with NLP interpretations. Johnson and
Zhang (2014) explores the case of directly using
a high-dimensional one hot vector as input. They
find that it performs well. Unlike word level mod-
elings, Zhang et al. (2015) apply a character-level
CNN for text classification and achieve competitive
results. Socher et al. (2013) use recursive neural
networks for text classification. Tai et al. (2015)

1486

GT: 4 Prediction: 4
pork belly = delicious .
scallops ?
i do n’t .
even .
like .
scallops , and these were a-m-a-z-i-n-g .
fun and tasty cocktails .
next time i ’m in phoenix , i will go

back here .
highly recommend .

GT: 0 Prediction: 0
terrible value .
ordered pasta entree .
.
$ 16.95 good taste but size was an

appetizer size .
.
no salad , no bread no vegetable .
this was .
our and tasty cocktails .
our second visit .
i will not go back .

Figure 5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.

GT: 1 Prediction: 1
why does zebras have stripes ?
what is the purpose or those stripes ?
who do they serve the zebras in the

wild life ?
this provides camouflage - predator

vision is such that it is usually difficult

for them to see complex patterns

GT: 4 Prediction: 4
how do i get rid of all the old web

searches i have on my web browser ?
i want to clean up my web browser

go to tools > options .
then click “ delete history ” and “

clean up temporary internet files . ”

Figure 6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet.

explore the structure of a sentence and use a tree-
structured LSTMs for classification. There are also
some works that combine LSTM and CNN struc-
ture to for sentence classification (Lai et al., 2015;
Zhou et al., 2015). Tang et al. (2015) use hierarchi-
cal structure in sentiment classification. They first
use a CNN or LSTM to get a sentence vector and
then a bi-directional gated recurrent neural network
to compose the sentence vectors to get a document
vectors. There are some other works that use hier-
archical structure in sequence generation (Li et al.,
2015) and language modeling (Lin et al., 2015).

The attention mechanism was proposed by (Bah-
danau et al., 2014) in machine translation. The en-
coder decoder framework is used and an attention
mechanism is used to select the reference words in
original language for words in foreign language be-
fore translation. Xu et al. (2015) uses the attention
mechanism in image caption generation to select the
relevant image regions when generating words in the
captions. Further uses of the attention mechanism
include parsing (Vinyals et al., 2014), natural lan-
guage question answering (Sukhbaatar et al., 2015;

Kumar et al., 2015; Hermann et al., 2015), and im-
age question answering (Yang et al., 2015). Un-
like these works, we explore a hierarchical attention
mechanism (to the best of our knowledge this is the
first such instance).

5 Conclusion
In this paper, we proposed hierarchical attention net-
works (HAN) for classifying documents. As a con-
venient side-effect we obtained better visualization
using the highly informative components of a doc-
ument. Our model progressively builds a document
vector by aggregating important words into sentence
vectors and then aggregating important sentences
vectors to document vectors. Experimental results
demonstrate that our model performs significantly
better than previous methods. Visualization of these
attention layers illustrates that our model is effective
in picking out important words and sentences.

Acknowledgments This work was supported by
Microsoft Research.

1487

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Phil Blunsom, Edward Grefenstette, Nal Kalchbrenner,
et al. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguis-
tics. Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexan-
der J Smola, Jing Jiang, and Chong Wang. 2014.
Jointly modeling aspects, ratings and sentiments for
movie recommendation (jmars). In Proceedings of
the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 193–
202. ACM.

Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong
He, Li Deng, and Yelong Shen. 2014. Modeling inter-
estingness with deep neural networks. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing.

Karl Moritz Hermann, Tomáš Kočiskỳ, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. arXiv preprint arXiv:1506.03340.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. Springer.

Rie Johnson and Tong Zhang. 2014. Effective use of
word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M Moham-
mad. 2014. Sentiment analysis of short informal texts.
Journal of Artificial Intelligence Research, pages 723–
762.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury,
Robert English, Brian Pierce, Peter Ondruska, Ishaan
Gulrajani, and Richard Socher. 2015. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. arXiv preprint arXiv:1506.07285.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to

document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou,
and Sheng Li. 2015. Hierarchical recurrent neural
network for document modeling. In Proceedings of
the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 899–907.

Wang Ling, Tiago Luı́s, Luı́s Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding func-
tion in form: Compositional character models for
open vocabulary word representation. arXiv preprint
arXiv:1508.02096.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language
Technologies-Volume 1, pages 142–150. Association
for Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The stanford corenlp natural language process-
ing toolkit. In Proceedings of 52nd Annual Meeting of
the Association for Computational Linguistics: System
Demonstrations, pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing systems,
pages 3111–3119.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval, 2(1-2):1–135.

Mehran Sahami, Susan Dumais, David Heckerman, and
Eric Horvitz. 1998. A bayesian approach to filter-
ing junk e-mail. In Learning for Text Categorization:
Papers from the 1998 workshop, volume 62, pages 98–
105.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and
Gregoire Mesnil. 2014. A latent semantic model
with convolutional-pooling structure for information
retrieval. In Proceedings of the 23rd ACM Interna-
tional Conference on Conference on Information and
Knowledge Management, pages 101–110. ACM.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proc. EMNLP.

1488

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks.
arXiv preprint arXiv:1503.08895.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proc. ACL.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, volume 1,
pages 1555–1565.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1422–1432.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2014.
Grammar as a foreign language. arXiv preprint
arXiv:1412.7449.

Sida Wang and Christopher D Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic classi-
fication. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Short
Papers-Volume 2, pages 90–94. Association for Com-
putational Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, and Yoshua
Bengio. 2015. Show, attend and tell: Neural im-
age caption generation with visual attention. arXiv
preprint arXiv:1502.03044.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2015. Stacked attention net-
works for image question answering. arXiv preprint
arXiv:1511.02274.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. arXiv preprint arXiv:1509.01626.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis
Lau. 2015. A c-lstm neural network for text classifi-
cation. arXiv preprint arXiv:1511.08630.

1489

Proceedings of NAACL-HLT 2016, pages 1490–1500,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Dependency Based Embeddings for Sentence Classification Tasks

Alexandros Komninos
Department of Computer Science

University of York
York, YO10 5GH
United Kingdom

ak1153@york.ac.uk

Suresh Manandhar
Department of Computer Science

University of York
York, YO10 5GH
United Kingdom

suresh@cs.york.ac.uk

Abstract

We compare different word embeddings
from a standard window based skipgram
model, a skipgram model trained using
dependency context features and a novel
skipgram variant that utilizes additional
information from dependency graphs. We
explore the effectiveness of the different types
of word embeddings for word similarity and
sentence classification tasks. We consider
three common sentence classification tasks:
question type classification on the TREC
dataset, binary sentiment classification on
Stanford’s Sentiment Treebank and semantic
relation classification on the SemEval 2010
dataset. For each task we use three different
classification methods: a Support Vector
Machine, a Convolutional Neural Network
and a Long Short Term Memory Network.
Our experiments show that dependency based
embeddings outperform standard window
based embeddings in most of the settings,
while using dependency context embeddings
as additional features improves performance
in all tasks regardless of the classification
method.
Our embeddings and code are available at
https://www.cs.york.ac.uk/nlp/
extvec

1 Introduction

Representing words as low dimensional vectors
(also known as word embeddings) has been a widely
adopted technique in NLP. Word representations can
be used as features for classification tasks such as
named entity recognition or chunking (Turian et al.,

2010), and as a pretraining method for initializing
deep neural network representations (Collobert et
al., 2011; Kim, 2014). Word embeddings provide
better generalization to unseen examples since they
can capture general semantic and syntactic proper-
ties of words. One of the most popular methods of
learning word embeddings is the skipgram model of
Mikolov et al. (2013a; 2013b) where embeddings
are trained by making predictions of context words
appearing in a window around a target word.

The standard skipgram model ignores syntax and
only partially takes into consideration the sequen-
tial structure of text, but still captures certain syn-
tactic properties of words. A significant amount
of previous research has explored methods for di-
rectly taking syntax into account for word embed-
ding learning (Pham et al., 2015; Cheng and Kart-
saklis, 2015; Hashimoto et al., 2014). One simple
method is based on traditional count-based distribu-
tional semantic spaces and utilizes words with syn-
tactic types from a dependency parse graph as con-
text features (Padó and Lapata, 2007; Baroni and
Lenci, 2010). This method has also been applied to
skipgram models, where word embeddings are op-
timized to predict dependency context features in-
stead of other words (Levy and Goldberg, 2014).

Syntax-based embeddings have been shown to
have different properties in word similarity evalua-
tions than their window based counterparts, better
capturing the functional properties of words. How-
ever, it is not clear if they provide any advantage for
NLP tasks. We show that using dependency context
features can be a general method of providing syn-
tactic information for several sentence classification

1490

tasks. Furthermore, the dependency context embed-
dings improve performance with all classifiers we
tested.

We consider the usage of word and dependency
context features for three common sentence classi-
fication tasks: TREC question type classification,
binary sentiment prediction on Stanford Sentiment
Treebank, and SemEval 2010 relation identification.
We evaluate different methods of using the depen-
dency context embeddings as extra features besides
word embeddings to inject information into sentence
classifiers about the syntactic structure of a sentence.
The advantage of such a method is that it can be
applied to any classifier that utilizes standard word
embeddings. We evaluate the usefulness of syntax-
based word embeddings and dependency context
embeddings with three different sentence classifica-
tion methods: a Support Vector Machine (SVM), a
Convolutional Neural Network (CNN) and a Long
Short Term Memory network (LSTM).

In order to better utilize the structure of depen-
dency graphs, we propose an extended version of
the simple dependency based skipgram of Levy et
al. (2014). This extended version considers co-
occurrences in a dependency graph between pairs
of words, words and dependency context features,
and between different dependency context features.
This scheme results in word embeddings that share
properties between window based models and de-
pendency graph based ones. More importantly, it
provides additional structural information for the de-
pendency context feature embeddings making them
more effective when used in sentence classification
tasks.

Our evaluation provides several insights on the
role of syntax for embeddings and how they can
be used for sentence classification. First, we con-
firm past claims about the different properties be-
tween dependency and window based skipgram em-
beddings in word similarity tasks. Second, we show
that dependency based embeddings perform better
in question classification and relation identification
than window based ones. These results are robust
across multiple classification methods. We show
that combining dependency context feature embed-
dings together with word embeddings provide a sim-
ple and effective way to improve sentence classifica-
tion performance. Finally, the performance gain is

higher for the extended dependency based skipgram
developed in this paper.

2 Related Work

Estimating word representations from text has been
the focus of a lot of research in NLP. Traditional
count-based models learn representations by apply-
ing SVD in a word-word co-occurrence matrix (Tur-
ney et al., 2010). More recently, neural models have
been used to learn word embeddings by optimizing
for a word prediction task (Collobert et al., 2011;
Mnih and Teh, 2012; Mikolov et al., 2013a). How-
ever, the most commonly used word representation
techniques like word2vec’s skipgram and CBoW
take little consideration of syntactic structure.

Several modifications have been proposed so that
word embedding learning algorithms can better uti-
lize syntax or the sequence structure of sentences.
One such model is the dependency based skipgram
of Levy and Goldberg (2014) which we further ex-
tend in this paper. Evaluation of this model is limited
to word similarity or lexical substitution in context
(Melamud et al., 2015), and little is known about
performance within other NLP tasks. Hashimoto et
al. (2014) proposed a log-bilinear language model
based on predicate-argument structures and report
improvements on phrase similarity tasks compared
to standard skipgram. In Ling et al. (2015), skip-
gram and CBoW models are adapted to include po-
sition specific weights for the words inside the co-
occurrence window and the resulting embeddings
provide slight improvements for parsing and POS
tagging tasks. The C-PHRASE model (Pham et al.,
2015) is another modification of the CBoW model
that uses an external parser to replace windows
with syntactic constituents. In Cheng and Kartsak-
lis (2015), a recursive neural network structured ac-
cording to a sentence’s parse learns word embed-
dings by composing into valid sentences rather than
distorted ones.

Structured skipgram models (Levy and Goldberg,
2014; Ling et al., 2015) have a notable difference
with other approaches of incorporating structural in-
formation into embeddings (e.g. C-PHRASE), since
they also produce embeddings of the structural con-
text features at the prediction layer. We show that
in the case of dependency contexts, these structural

1491

features can provide valuable information to sen-
tence classifiers. In our extended dependency based
skipgram, we do not make a distinction between
words and structural features in the training pro-
cess, which results into better performing depen-
dency context embeddings when used in sentence
classification. Another difference of our skipgram
model with other structured skipgram variants is that
we keep the long distance word contexts used in
standard window based skipgram training with the
purpose of capturing both functional and topic re-
lated semantic properties of words.

Our work is also related to methods of provid-
ing explicit syntactic information to sentence clas-
sifiers. Most of the previously proposed approaches
rely on tree-structured neural architectures to drive
composition of word embeddings to a sentence rep-
resentation (Socher et al., 2012; Tai et al., 2015; Li
et al., 2015). We use a different approach where
syntactic information is provided only through em-
beddings. Our approach is not orthogonal to using
tree-structured models and the two of them could be
applied together. An advantage of providing syn-
tactic information through embeddings is that large
amounts of automatically parsed textual data can be
utilized in order to learn representations of depen-
dency types.

3 Embedding Models

The skipgram model of Mikolov et al. (2013a;
2013b) optimizes vector representations of words
(word embeddings) such that they can predict other
context words occurring in a small window. The ar-
chitecture consists of a single hidden layer feedfor-
ward network without any non-linearity applied on
the hidden layer. The input to the network is the in-
dex of a target word (a one-hot vector) and the output
is a vector of probabilities of appearance for con-
text words. The network learns word embeddings
by maximizing the log probability of a context word
c given a target word t observed in a large corpus
of textual data D. To avoid the large computational
cost of applying a softmax for the whole vocabulary,
a commonly used strategy is to train with negative
sampling. For each target-context pair (t, c) com-
ing from the observed data D, a small number of
context words is sampled from unobserved data D

′

according to a simple distribution and then used as
the negative classes.

The probability of the target context pair (t, c) be-
ing observed in the data is given by:

P (D = 1 | t, c) = σ(vt · vc) (1)

where vt and vc are target and context word embed-
dings, and σ is the sigmoid function. For a negative
sampled pair (t, c), the probability of the pair not
being observed in the data is given by:

P (D = 0 | t, c) = 1− σ(vt · vc) (2)

The objective becomes:

arg max
vt,vc

∑
t,c∈D

log σ(vt · vc) +
∑
t,c∈D′

log σ(−vt · vc)

(3)
The network learns two sets of weights for each

word: one for embedding words to a low dimen-
sional representation in the hidden layer that we will
refer to as the embedding layer weights, and one for
assigning a probability to context words that we will
refer to as the prediction layer weights. Both sets
of weights assign representations to words such that
words that have similar co-occurrence patterns with
other words are closer in the embedding space. Typ-
ically, the embedding layer weights are used as fea-
ture representations of words for other other tasks.
Due to its scalability to large corpora and the good
performance of its derived word embeddings in sev-
eral NLP tasks the skipgram model has become a
standard solution for unsupervised learning of word
representations.

While typical training of skipgarm is performed
by optimizing for the prediction of other words in
a window around the target word, it is possible to
use other contextual features, such as contexts from
dependency graphs of sentences.

We consider three variations of skipgram based
on different target-context pairs:

3.1 Window-5 based skipgram (Win5)
This is a standard skipgram model that consid-
ers target-context word pairs inside a window of 5
words to the right and to the left of the target word.
The window size for every target instance in the cor-
pus is uniformly sampled from the [1,5] range, ef-
fectively providing a weighting scheme for context

1492

Win5 “cup” contexts: She, asked, for, a, of, coffee

LG “cup” contexts: case_for, det_a, of:nmod_coffee,

for:nmod-1_asked

EXT “cup” contexts: She, asked, for, a, of, coffee,

case_for, det_a, of:nmod_coffee, for:nmod-1_asked

EXT “of:nmod_coffee” contexts: cup, case_for, det_a,

for:nmod-1_asked

input sentence: She asked for a cup of coffee

asked

She cup

for a

of

coffee

nsubj for:nmod

case

det
of:nmod

case

Figure 1: A sentence and its dependency parse graph. The contexts of the word ”cup” are shown for each model. In addition, for

the EXT model the contexts of the ”of:nmod coffee” dependency context feature are shown.

words according to their distance from the target
word.

3.2 Skipgram with dependency contexts (LG)
Levy and Golberg’s (2014) modification to the skip-
gram model replaces context words in a window by
dependency contexts. A dependency context is a
discrete symbol denoting a word and its syntactic
role in a dependency parse graph (e.g. nsubj she,
of : nmod coffee, of : nmod−1 cup). The
directionality of dependency edges is encoded by
introducing features with inverse relations. Train-
ing of this skipgram variant is similar to window
based approaches, but each word is considered as
a node in a dependency graph obtained by a parser,
and embeddings are optimized to predict their corre-
sponding word’s immediate syntactic contexts (Fig-
ure 1). The network’s weight matrices have different
shapes, where representations coming from the em-
bedding layer weights correspond to word embed-
dings, while representations coming from the pre-
diction layer weights to dependency context embed-
dings.

3.3 Extended Dependency Skipgram (EXT)
We propose another variation of skipgram based
on dependency graphs that utilizes additional co-
occurrences compared to the LG variant. Each target
word is taken as a node in the dependency graph and
then optimize word embeddings such that they max-
imize the probability of other words within distance

one and two in the graph. As with the Win5 model,
we apply a weighting according to distance, with
words having distance one from the target counted
twice. This word-word prediction behaves similarly
to the Win5 model, but considers the dependency
parse to filter coincidental co-occurrences. The sec-
ond type of predictions that embeddings are opti-
mized for is similar to the LG model, where each
word predicts its dependency contexts. We also op-
timize for a third type of context prediction where
for each node, dependency contexts become the tar-
gets and predict the rest of dependency contexts of
the same node. An example of the different target-
context pairs that each skipgarm variant utilizes can
be seen in Figure 1. The three types of target-context
pairs for the extended dependency skipgram are in-
terleaved during training. The weight matrices of
this network are symmetric resulting in two embed-
dings per word and dependency context feature.

3.4 Implementation Details

We trained 300 dimensional versions of the above
skipgram variants on English Wikipedia August
2015 dump of 2 billion words. Vocabularies con-
sist of words and dependency contexts that appear
more than 100 times (approximately 220k words and
1.3m dependency contexts). Training was done by
applying negative sampling with 15 negative sam-
ples per target-context pair for 10 iterations over the
entire corpus using stochastic gradient descent. The

1493

following commonly used methods (Mikolov et al.,
2013b; Levy et al., 2015) were applied during train-
ing: drawing negative samples according to their un-
igram distribution raised to the power of 0.75, linear
decay of learning rate with initial α = 0.25, and
subsampling of target words with probability given

by p = f−10−5

f −
√

10−5

t where f is the word’s
frequency. Dependency parsing for LG and EXT
training was done with the Stanford Neural Network
dependency parser (Chen and Manning, 2014) us-
ing Universal Dependency tags (De Marneffe et al.,
2014).

4 Word Similarity Evaluation

We evaluate the effect of the different contextual fea-
tures for skipgram word embeddings in two word
similarity datasets: WordSim-353 (Finkelstein et
al., 2001) and SimLex-999 (Hill et al., 2015). For
both datasets, we compare the cosine similarity of
word embeddings for a pair of words to human
judgements and report Spearman’s correlation in Ta-
ble 1. The two datasets use a different notion of
word similarity for scoring. Wordsim-353 mostly
captures topical similarity (or relatedness), giving
high similarity to pair of words like clothes-closet.
SimLex-999 uses a more strict version of similar-
ity, often called substitutional similarity, where the
pair clothes-closet has a low similarity score and
pairs like shore-coast have high similarity. Win5
skipgram version achieves a higher correlation for
WordSim-353 compared to LG, but the results are
reversed for SimLex-999. This agrees with previ-
ous research that shows that syntactic contexts corre-
late better with substitutional similarity judgements
than using words in a window as contexts (Levy and
Goldberg, 2014). As expected, the extended model
represents a middle ground solution between the
two. While similarity based evaluation makes ob-
vious that different contextual features capture dif-
ferent properties of words, it is not clear which kind
similarity notion is more useful when word repre-
sentations are used as features for NLP tasks. We
answer this question for sentence level classification
tasks in the next section.

Embeddings WordSim-353 SimLex-999
Win5 0.714 0.389
LG 0.621 0.460
EXT 0.678 0.414

Table 1: Spearman correlation for the 3 skipgram variants

on WordSim-353 and SimLex-999 word similarity evaluation

tasks.

5 Sentence Classification

We consider three common sentence classification
tasks: TREC question type classification (QC), bi-
nary sentiment classification on Stanford’s Senti-
ment Treebank (SST), and relation identification be-
tween pairs of nominals (RI) using the SemEval
2010 dataset. The experiments aim to answer two
questions. First, to assess the effect of different
context features for word embeddings when used
in sentence classification tasks, given their differ-
ent behaviour on word similarity evaluation. Sec-
ond, to experiment with methods of using the de-
pendency context embeddings themselves as a way
to provide classifiers with dependency syntactic in-
formation. We carry out experiments with three dif-
ferent classification methods: SVMs with averaged
embeddings, the Convolutional Neural Network of
Kim (2014), and a Long Short Term Memory recur-
rent neural network (Hochreiter and Schmidhuber,
1997). These classifiers have some distinct charac-
teristics. The SVM does not take into account the
structure of the sentence, nor does it build any in-
ternal representations. On the other hand, both the
CNN and LSTM networks operate on sequences of
words and build internal representations before pre-
dicting the class label distribution. However, they do
not have access to explicit syntactic information.

We first give a description of the classification
methods and the way embeddings are used as fea-
tures, followed by the description of the tasks and
results.

5.1 Classification Methods

SVM with averaged embeddings We create a
sentence representation by averaging embeddings of
sentence features (words and dependency contexts).
This can be considered the equivalent of a Bag-
of-Words sentence representation in the embedding

1494

space, hence called Bag-of-Embeddings (BoE). We
then train a classifier by applying a Support Vector
Machine with a Gaussian kernel:

K(x,x
′
) = exp(−γ‖x− x

′‖2) (4)

For hyperparameter tuning, we set parameter γ of
the kernel to 1/k, where k is the number of features
(dimensionality of embeddings), and then perform
cross validation for the c parameter using the stan-
dard Win5 word embeddings in the question classi-
fication task.

Convolutional Neural Network (CNN) We use
the simple Convolutional Neural Network of Kim
(2014) that has been shown to perform well in mul-
tiple sentence classification tasks. The network’s in-
put is a sentence matrix X formed by concatenating
k-dimensional word embeddings. Then a convolu-
tional filter W ∈ Rh×k is applied to every possible
sequence of length h to get a feature map:

ci = tanh(W ·X + b) (5)

followed by a max-over-time pooling operation to
get the feature with the highest value:

ĉ = max c (6)

The pooled features of different filters are then con-
catenated and passed to a fully connected softmax
layer to perform the classification. The network
uses multiple filters with different sequence sizes
covering different size of windows in the sentence.
All hyperparameters of the network are the same as
used in the original paper (Kim, 2014): stochastic
dropout (Srivastava et al., 2014) with p = 0.5 on the
penultimate layer, 100 filters for each filter region
with filter regions of width 2,3 and 4. Optimization
is performed with Adadelta (Zeiler, 2012) on mini-
batches of size 50.

Long Short Term Memory (LSTM) LSTM net-
works (Hochreiter and Schmidhuber, 1997) are re-
current neural networks where recurrent units con-
sist of a memory cell c and three gates i, o and f .
Given a sequence of input embeddings x, LSTM
outputs a sequence of states h given by the following

equations:
it
ft
ot

c̃t

 =


σ
σ
σ

tanh

W ·
(
ht−1

xt

)
(7)

ct = ft � ct−1 + it � c̃t (8)

ht = ot � tanh(ct) (9)

where W ∈ R4k×2k, c̃t is a candidate state for the
memory cell and � is element-wise vector multi-
plication. The distribution of labels for the whole
sentence is computed by a fully connected softmax
layer on top of the final hidden state after applying
stochastic dropout with p = 0.25. We use 150 di-
mensions for the size of h, Adagrad (Duchi et al.,
2011) for optimization and mini-batch size of 100.

5.2 Sentence Feature Representations
We provide syntactic information to each classifier
in the following manner. First we parse each sen-
tence to get a dependency graph. Each node in the
graph is associated with a word w having an embed-
ding vw and a set of dependency context features
d1, d2, ..., dC with embeddings vd1 ,vd2 , ...,vdC

exactly like during the dependency based skipgram
training process. We then create a representation x
of that node using different combinations of its as-
sociated word and dependency context embeddings:

• Words: Using only word embeddings

x = vw (10)

• Dep: A node’s representation becomes the av-
erage of its associated dependency context em-
beddings:

x =
1
C

C∑
c=1

vdc (11)

• Wavg: Combination of the word and depen-
dency context embeddings by a weighted av-
erage scheme that assigns equal contribution to
the word and dependency context part:

x =
1
2
vw +

1
2C

C∑
c=1

vdc (12)

1495

• Conc: Similar to the Wavg, but dependency
context embeddings are first averaged and then
concatenated to the word embedding to form a
single vector:

x = vw ⊕ 1
C

C∑
c=1

vdc (13)

where ⊕ is the concatenation operator. This
method keeps the word and syntactic part sepa-
rate at the expense of doubling the dimension-
ality.

The above methods are used with the LG and EXT
variants to create context specific node representa-
tions. For the EXT model, both word and depen-
dency context embeddings used come from the em-
bedding layer weights. The Words method is the
only one that can be applied to the Win5 model. It is
the most commonly used method to utilize word rep-
resentations as features and our baseline. To make
the comparison more fair for the Win5 model we in-
clude two additional variations that utilize both the
embedding and prediction layer weights as an en-
semble method for creating a word’s representation:

• Win5 AvgE: Ensemble made by averaging word
embeddings from the embedding and predic-
tion layer weights of Win5 skipgram:

x =
1
2
(vw + vw′) (14)

• Win5 ConcE: Another ensemble made by con-
catenating word embeddings from the embed-
ding and prediction layer weights of Win5 skip-
gram:

x = vw ⊕ vw′ (15)

Ensemble techniques have been reported to out-
perform simple word representations in some word
similarity tasks (Levy et al., 2015). Since the EXT
skipgram version uses symmetric weight matrices
for the embedding and prediction layer, ensemble
methods like the above could also be applied, but
are not considered for these experiments. Note that
contrary to the dependency based models, these en-
semble methods do not create context specific repre-
sentations.

The dependency graph’s node representations are
used as a sequence of embeddings respecting the or-
der of the sentence to become the input for the CNN
and LSTM. For the SVM BoE, word and depen-
dency contexts of the whole sentence are averaged
separately for the Words and Dep method, and then
averaged again for the Wavg method or concatenated
for the Conc method. As we are evaluating perfor-
mance of embeddings, we do not perform updates
during training of CNNs and LSTMs.

5.3 Datasets and Results

TREC Question Classification The TREC Ques-
tion Classification dataset (Li and Roth, 2002) con-
sists of 5452 training questions and 500 test ques-
tions. The task is to classify each question with one
of six labels (e.g. location, definition, ...) depend-
ing on the answer they seek. For CNNs and LSTMs
10% of the training data were used as the dev set to
pick the best model among different iterations. Clas-
sification accuracy results for each input representa-
tions and classification method can be seen in Table
2. We also report the state of the art result by the
dependency convolutional neural network of Mu et
al. (2015). Their model consists of a convolutional
neural network that takes a dependency tree at the
input layer instead of a sequence, and uses heuris-
tics to choose the subset of nodes where pooling is
applied.

Embeddings SVM CNN LSTM
Win5 Words 81.4 92.8 88.4
Win5 AvgE 81.4 91.2 88.8
Win5 ConcE 82.4 92.6 90.4
LG Words 86.8 93.8 90.6
LG Dep 85.2 89.0 87.2
LG Wavg 87.2 93.4 91.2
LG Conc 84.0 94.6 92.0
EXT Words 88.4 94.2 91.8
EXT Dep 87.6 90.6 89.8
EXT Wavg 89.0 95.0 92.2
EXT Conc 91.6 93.2 94.4
tree CNN 96.0

Table 2: Accuracy on 6-way TREC question classification

task. Tree CNN is a CNN operating on dependency trees (Mou

et al., 2015).

1496

SST-2 The Stanford Sentiment Treebank dataset
(Socher et al., 2013) has fine grained sentiment
polarity scores for movie reviews on the phrasal
and sentence level. The binary version of the task
considers only positive and negative sentiment la-
bels, resulting in a 6920/872/1821 split for train-
ing/dev/testing sets. All the models were trained us-
ing only the sentence level annotations. Classifica-
tion accuracies for all models are reported in Table 3.
The state of the art for this dataset comes from Kim
(2014) using the same convolutional neural network
as we do, but also utilizing the phrasal level anno-
tations which provide about an order of magnitude
larger training set. In addition, this specific configu-
ration of the network (multichannel) uses two chan-
nels at the input layer, one updating the word embed-
dings during training and one that keeps them static
as we do in our experiments.

Embeddings SVM CNN LSTM
Win5 Words 80.1 83.5 76.1
Win5 AvgE 79.5 83.2 76.9
Win5 ConcE 80.3 82.9 77.6
LG Words 78.5 84.5 77.2
LG Dep 76.0 76.8 69.1
LG Wavg 78.9 82.0 78.6
LG Conc 79.8 82.7 79.7
EXT Words 80.5 84.1 77.6
EXT Dep 77.7 77.2 69.6
EXT Wavg 80.6 84.6 75.7
EXT Conc 80.6 83.5 79.8
CNN-multichannel 88.1

Table 3: Accuracy on Stanford Sentiment Treebank binary

classification task. CNN-multichannel is the best result reported

in Kim (2014).

SemEval 2010 Relation Identification The Se-
mEval 2010 Relation Identification task (Hendrickx
et al., 2009) considers the classification of semantic
relations between pairs of nominals into 19 classes.
The classes are formed by 9 types of relations (e.g.
cause-effect, component-whole, ...) with direction-
ality taken into account and an extra OTHER class.
We only used the shortest dependency path between
the two nominals as the input to classifiers. In table
4, we report results using the official SemEval metric
of macro-averaged F1-Score for (9+1)-way classifi-

cation, taking directionality into account. The best
reported result for this dataset is 85.6 F1-score by
Xu et al. (2015) also using a convolutional network
on a sequence of word embeddings from the short-
est dependency path between the pair of nominals.
They also introduce negative samples during train-
ing by reversing the subject and object of the rela-
tion and WordNet features. Without using WordNet
features their model achieves 84.0 F1-score.

Embeddings SVM CNN LSTM
Win5 Words 72.23 81.60 77.30
Win5 AvgE 71.09 79.46 76.67
Win5 ConcE 72.74 81.33 78.09
LG Words 75.29 84.18 79.94
LG Dep 75.19 79.13 74.77
LG Wavg 77.61 83.17 79.69
LG Conc 78.71 83.41 78.57
EXT Words 74.93 83.69 80.24
EXT Dep 75.64 79.30 75.64
EXT Wavg 77.42 84.31 79.59
EXT Conc 78.53 83.93 80.53
CNN-NS-WN 85.6

Table 4: F1 score for SemEval 2010 Relation Identification

task. CNN-NS-WN is CNN with negative sampling and Word-

Net features (Xu et al., 2015).

6 Discussion

Our evaluation shows that dependency context em-
beddings can provide valuable syntactic information
for sentence classification tasks using the three clas-
sification methods described. Out of the three tasks,
Question Classification and Relation Identification
showed great improvements when using dependency
context embeddings compared to the baseline, while
sentiment classification only showed moderate im-
provements. This is in agreement with previous re-
search (Li et al., 2015), where explicit syntactic in-
formation was provided to classifiers by using tree
structured networks and showed that syntax pro-
vides small improvements for binary sentiment clas-
sification in Stanford’s Sentiment Treebank.

It is notable that for QC and RI, using only word
embeddings that are trained with syntactic informa-
tion (LG and EXT Words models) still outperform
the baseline window based skipgram. Using the de-

1497

pendency context embeddings as a means to rep-
resent the dependency parse of sentences consis-
tently outperforms the baseline method across the
three tasks and for every classification method. This
indicates that this additional syntactic information
cannot be recovered by the CNN and LSTM even
though they have access to the sequential structure
of sentences, at least when trained on datasets of this
size. As expected, the SVM BoE benefits the most
by the addition of dependency context embeddings
since these are its only source of structural informa-
tion.

The dependency context embeddings from the
EXT model outperform the LG model, both when
used alone and when in combination with the word
embeddings. This can be attributed to the additional
information they are exposed to during training.

The effectiveness of the Wavg compared to the
Conc method for combining word and dependency
context embeddings seems to depend on the classi-
fication method. In genearal, we observe that the
CNN performs better with Wavg, while SVM and
LSTM with Conc. On the other hand, the ensemble
methods of the Win5 model (AvgE and ConcE) do
not provide any consistent advantage over the base-
line. In most cases, AvgE slightly hurts performance
while ConcE slighty improves it.

Our evaluation also suggests that best perform-
ing models in word similarity tasks do not neces-
sarily achieve the best performance in other NLP
tasks. When considering only word embeddings as
features for sentence classification (Words method),
we observe that the EXT model on average performs
better than the Win5 and LG models, while the op-
posite is true for word similarity evaluation. This
indicates that providing additional contextual infor-
mation for training embeddings results in less spe-
cialized embeddings for particular types of semantic
similarity evaluations, but can be useful for a wide
range of sentence level classification tasks.

While the purpose of our experiments is a com-
parison of embeddings and little hyperparameter
tuning was done for the classifiers, results of the
CNN using EXT Wavg representations for QC
(95.0) and RI (84.31) are close to the best re-
ported results with specifically engineered systems
for these tasks: 96.0 for QC (Mou et al., 2015) and
85.6 for RI (Xu et al., 2015). As our method does not

depend on a specific classification setting it would
be interesting to see if those approaches can further
improve using dependency based representations.

7 Conclusions

We compare a window based, a dependency based
and an extended dependency based skipgram model
in word similarity and sentence classification tasks
of question classification, binary sentiment pre-
diction and semantic relation identification. For
the sentence classification, we use three classifiers
(SVM, CNN, LSTM) and experiment with several
methods of utilizing dependency context feature
embeddings to create representations that capture
the syntactic role of words in dependency graphs.
We reaffirm that dependency based models pro-
duce word embeddings that better capture functional
properties of words and that window based models
better capture topical similarity. The dependency
based word embeddings largely improved the per-
formance of the three classifiers for question classi-
fication and semantic relation identification, but only
marginally for sentiment prediction. Finally, using
dependency context features along with the word
embeddings we observed better performance for the
three classifiers in each task.

Acknowledgments

Alexandros Komninos was supported by EP-
SRC via an Engineering Doctorate in LSCITS.
Suresh Manandhar was supported by EPSRC grant
EP/I037512/1, A Unified Model of Compositional
& Distributional Semantics: Theory and Applica-
tion.

References

[Baroni and Lenci2010] Marco Baroni and Alessandro
Lenci. 2010. Distributional memory: A general
framework for corpus-based semantics. Computa-
tional Linguistics, 36(4):673–721.

[Chen and Manning2014] Danqi Chen and Christopher D
Manning. 2014. A fast and accurate dependency
parser using neural networks. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), volume 1, pages
740–750.

1498

[Cheng and Kartsaklis2015] Jianpeng Cheng and Dimitri
Kartsaklis. 2015. Syntax-aware multi-sense word em-
beddings for deep compositional models of meaning.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1531–1542, Lisbon, Portugal, September. Association
for Computational Linguistics.

[Collobert et al.2011] Ronan Collobert, Jason Weston,
Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch. The Journal of Machine
Learning Research, 12:2493–2537.

[De Marneffe et al.2014] Marie-Catherine De Marneffe,
Timothy Dozat, Natalia Silveira, Katri Haverinen,
Filip Ginter, Joakim Nivre, and Christopher D Man-
ning. 2014. Universal stanford dependencies: A
cross-linguistic typology. In Proceedings of LREC,
pages 4585–4592.

[Duchi et al.2011] John Duchi, Elad Hazan, and Yoram
Singer. 2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. The Journal
of Machine Learning Research, 12:2121–2159.

[Finkelstein et al.2001] Lev Finkelstein, Evgeniy
Gabrilovich, Yossi Matias, Ehud Rivlin, Zach
Solan, Gadi Wolfman, and Eytan Ruppin. 2001.
Placing search in context: The concept revisited. In
Proceedings of the 10th international conference on
World Wide Web, pages 406–414. ACM.

[Hashimoto et al.2014] Kazuma Hashimoto, Pontus
Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka.
2014. Jointly learning word representations and
composition functions using predicate-argument
structures. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1544–1555.

[Hendrickx et al.2009] Iris Hendrickx, Su Nam Kim, Zor-
nitsa Kozareva, Preslav Nakov, Diarmuid Ó Séaghdha,
Sebastian Padó, Marco Pennacchiotti, Lorenza Ro-
mano, and Stan Szpakowicz. 2009. Semeval-2010
task 8: Multi-way classification of semantic relations
between pairs of nominals. In Proceedings of the
Workshop on Semantic Evaluations: Recent Achieve-
ments and Future Directions, pages 94–99. Associa-
tion for Computational Linguistics.

[Hill et al.2015] Felix Hill, Roi Reichart, and Anna Ko-
rhonen. 2015. Simlex-999: Evaluating semantic mod-
els with (genuine) similarity estimation. Computa-
tional Linguistics.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and
Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):1735–1780.

[Kim2014] Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1746–1751.
Association for Computational Linguistics.

[Levy and Goldberg2014] Omer Levy and Yoav Gold-
berg. 2014. Dependencybased word embeddings. In
Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics, volume 2, pages
302–308.

[Levy et al.2015] Omer Levy, Yoav Goldberg, and Ido
Dagan. 2015. Improving distributional similarity
with lessons learned from word embeddings. Transac-
tions of the Association for Computational Linguistics,
3:211–225.

[Li and Roth2002] Xin Li and Dan Roth. 2002. Learn-
ing question classifiers. In Proceedings of the 19th in-
ternational conference on Computational linguistics-
Volume 1, pages 1–7. Association for Computational
Linguistics.

[Li et al.2015] Jiwei Li, Thang Luong, Dan Jurafsky, and
Eduard Hovy. 2015. When are tree structures neces-
sary for deep learning of representations? In Proceed-
ings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 2304–2314, Lis-
bon, Portugal, September. Association for Computa-
tional Linguistics.

[Ling et al.2015] Wang Ling, Chris Dyer, Alan Black, and
Isabel Trancoso. 2015. Two/too simple adaptations
of word2vec for syntax problems. Proceedings of the
North American Chapter of the Association for Com-
putational Linguistics (NAACL), Denver, CO.

[Melamud et al.2015] Oren Melamud, Omer Levy, and
Ido Dagan, 2015. Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Pro-
cessing, chapter A Simple Word Embedding Model for
Lexical Substitution, pages 1–7. Association for Com-
putational Linguistics.

[Mikolov et al.2013a] Tomas Mikolov, Kai Chen, Gre-
gory S. Corrado, and Jeffrey Dean. 2013a. Efficient
estimation of word representations in vector space. In
Proceedings of ICLR Workshop.

[Mikolov et al.2013b] Tomas Mikolov, Ilya Sutskever,
Kai Chen, Greg S Corrado, and Jeff Dean. 2013b.
Distributed representations of words and phrases and
their compositionality. In Advances in neural infor-
mation processing systems, pages 3111–3119.

[Mnih and Teh2012] Andriy Mnih and Yee Whye Teh.
2012. A fast and simple algorithm for training neu-
ral probabilistic language models. In In Proceedings
of the International Conference on Machine Learning.

[Mou et al.2015] Lili Mou, Hao Peng, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2015. Discriminative neural
sentence modeling by tree-based convolution. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2315–

1499

2325, Lisbon, Portugal, September. Association for
Computational Linguistics.

[Padó and Lapata2007] Sebastian Padó and Mirella Lap-
ata. 2007. Dependency-based construction of se-
mantic space models. Computational Linguistics,
33(2):161–199.

[Pham et al.2015] The Nghia Pham, Germán Kruszewski,
Angeliki Lazaridou, and Marco Baroni. 2015. Jointly
optimizing word representations for lexical and sen-
tential tasks with the c-phrase model. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 971–981. Associ-
ation for Computational Linguistics.

[Socher et al.2012] Richard Socher, Brody Huval,
Christopher D Manning, and Andrew Y Ng. 2012.
Semantic compositionality through recursive matrix-
vector spaces. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1201–1211. Association
for Computational Linguistics.

[Socher et al.2013] Richard Socher, Alex Perelygin, Jean
Wu, Jason Chuang, D. Christopher Manning, Andrew
Ng, and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642. Association for Computational Lin-
guistics.

[Srivastava et al.2014] Nitish Srivastava, Geoffrey Hin-
ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958.

[Tai et al.2015] Sheng Kai Tai, Richard Socher, and
D. Christopher Manning. 2015. Improved semantic
representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 1556–1566. Association for Computational Lin-
guistics.

[Turian et al.2010] Joseph Turian, Lev Ratinov, and
Yoshua Bengio. 2010. Word representations: a simple
and general method for semi-supervised learning. In
Proceedings of the 48th annual meeting of the asso-
ciation for computational linguistics, pages 384–394.
Association for Computational Linguistics.

[Turney et al.2010] Peter D Turney, Patrick Pantel, et al.
2010. From frequency to meaning: Vector space mod-

els of semantics. Journal of artificial intelligence re-
search, 37(1):141–188.

[Xu et al.2015] Kun Xu, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2015. Semantic relation classifi-
cation via convolutional neural networks with simple
negative sampling. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 536–540, Lisbon, Portugal, September.
Association for Computational Linguistics.

[Zeiler2012] Matthew D Zeiler. 2012. Adadelta:
An adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

1500

Proceedings of NAACL-HLT 2016, pages 1501–1511,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Deep LSTM based Feature Mapping for Query Classification

Yangyang Shi and Kaisheng Yao and Le Tian and Daxin Jiang
Microsoft

{yangshi,kaisheng.yao,letian,djiang}@microsoft.com

Abstract

Traditional convolutional neural network
(CNN) based query classification uses linear
feature mapping in its convolution opera-
tion. The recurrent neural network (RNN),
differs from a CNN in representing word
sequence with their ordering information
kept explicitly. We propose using a deep
long-short-term-memory (DLSTM) based fea-
ture mapping to learn feature representation
for CNN. The DLSTM, which is a stack of
LSTM units, has different order of feature
representations at different depth of LSTM
unit. The bottom LSTM unit equipped with
input and output gates, extracts the first order
feature representation from current word.
To extract higher order nonlinear feature
representation, the LSTM unit at higher
position gets input from two parts. First part
is the lower LSTM unit’s memory cell from
previous word. Second part is the lower LSTM
unit’s hidden output from current word. In
this way, the DLSTM captures the nonlinear
nonconsecutive interaction within n-grams.
Using an architecture that combines a stack of
the DLSTM layers with a tradition CNN layer,
we have observed new state-of-the-art query
classification accuracy on benchmark data
sets for query classification.

1 Introduction

Convolutional neural networks (CNNs) have
achieved significant improvements for query classi-
fication. CNNs capture the correlations of spatial or
temporal structures with different resolutions using
their temporal convolution operators. A pooling

strategy on these local correlations extracts invariant
regularities.

However, CNNs use simple linear operations on n-
gram vectors that are formed by concatenating word
vectors. The linear operation together with the con-
catenation may not be sufficient to model the non-
consecutive dependency and interaction within the
n-grams. For example, in the query “not a total
loss”, nonconsecutive dependency “not loss” is the
key information that is not well addressed by the lin-
ear operation with simple concatenation.

In this paper, we propose to use deep long-short-
term-memory (DLSTM) based feature mapping to
capture high order nonlinear feature representations.
LSTM (Hochreiter and Schmidhuber, 1997) is one
type of recurrent neural networks (RNNs) that have
achieved remarkable performance in natural lan-
guage processing and speech recognition (Sutskever
et al., 2014; Graves et al., 2013).

The DLSTM is a stack of LSTM units where dif-
ferent order of nonlinear feature representation is
captured by LSTM units at different depth. The bot-
tom LSTM unit extracts the first order feature repre-
sentation from current word. The LSTM unit at the
higher position captures the higher order feature rep-
resentation relying on the outputs from LSTM units
at lower position, specifically, the memory cell from
lower LSTM unit at previous word position and the
hidden output from lower LSTM unit at current word
position. Using DLSTM, linear feature mapping in
traditional CNN can be obviously extended to non-
linear feature mapping. Moreover, the memory cell
together with different gates in LSTM unit are able
to model the nonconsecutive feature interaction and

1501

information decaying based on context. For exam-
ple, in the query “not so good”, the proposed DL-
STM is expected to keep the information of “not” and
“good” in the memory, and to decay the information
about “so” via the forget gates.

Similar to CNNs where multiple convolution oper-
ations are used, we propose to stack different DLSTM

feature mappings together to model multiple level
nonlinear feature representations. The bottom DL-
STM layer takes the original word sequence as input.
The DLSTM layer at lower position fed its output to
the adjacent higher DLSTM layer. In the proposed
models, the concatenation of the multiple level fea-
ture representations are further reduced by the pool-
ing operation. The prediction output is finally made
based on the reduced feature representations.

We evaluated the proposed method on three
benchmark data sets: Standford Sentiment Treebank
dataset (Socher et al., 2013), TREC (Text Retrieval
Conference) question type classification data set (Li
and Roth, 2002) and ATIS (Airline Travel Informa-
tion Systems) dataset (Hemphill et al., 1990). On
Standford Sentiment Treebank dataset, our model
obtains 51.9% accuracy on fine-grained classifica-
tion and 88.7% accuracy on binary classification.
The SVM based method uses a large amount of engi-
neered features, and it outperforms LSTM and RNN

based methods on TREC question type classification
dataset. The DLSTM outperforms other neural net-
work based methods without using engineered fea-
tures. On ATIS data, DLSTM achieves 97.9% F1
score, which is better than the previous best F1 score
of 95.6% using the same data settings.

2 Related Work

Deep neural networks (Bengio, 2009; Deng and Yu,
2014; Hinton et al., 2006) dominates natural lan-
guage processing (Socher, 2012; Collobert et al.,
2011; Gao et al., 2014). They have achieved cutting-
edge performance in various tasks such as language
modeling (Mikolov et al., 2010; Sundermeyer et
al., 2012), machine translation (Bahdanau et al.,
2014; Cho et al., 2014; Jean et al., 2015), slot fill-
ing (Yao et al., 2014a; Shi et al., 2015a) and syn-
tactic parsing (Wang et al., 2015; Collobert et al.,
2011). For query classifications, recurrent neural
networks (RNNs) and convolutional neural networks

(CNNs) have emerged as top performing architec-
tures (Zhang and Wallace, 2016; Kim, 2014; Kalch-
brenner et al., 2014; Ravuri and Stolcke, 2015a).

Due to its superior ability to memorize long dis-
tance dependencies, LSTMs have been applied to
extract the sentence-level continuous representation
(Ravuri and Stolcke, 2015a; Tang et al., 2015; Tai
et al., 2015). When the LSTM is applied to model a
sentence, memory cell from the ending word in the
sentence carries the information of the whole sen-
tence. The LSTM hidden vector from the ending
word is directly used as sentence feature represen-
tation in (Ravuri and Stolcke, 2015a). Alternatively,
a sentence is represented by the average of LSTM

hidden vectors from its words (Tang et al., 2015).
Inspired from recursive neural networks (Socher et
al., 2011a), LSTM is further combined with a tree
structure to model sentence representation (Tai et al.,
2015).

CNNs have been originally developed for image
processing (Lecun et al., 1998). They are firstly ap-
plied by Collobert et al. (2008; 2011) for natural lan-
guage processing tasks using max-over-time pool-
ing method to aggregate convolution layer vectors.
CNNs have also been applied to spoken language un-
derstanding (Shi et al., 2015b), information retrieval
(Shen et al., 2014) and semantic parsing (Yih et al.,
2015). Kalchbrenner et al. (2014) proposed to ex-
tend CNNs max-over-time pooling to k-max pooling
for sentence modeling. Remarkable query classifi-
cation performance on different benchmark datasets
have been achieved by integrating CNNs with differ-
ent feature mapping channels and pre-trained word
vectors (Zhang and Wallace, 2015; Kim, 2014). Re-
cently, Mou et al. (2015) proposed to model sen-
tences by tree structured CNNs.

CNNs and LSTMs are complementary in their
modeling capabilities; CNNs are good at capturing
local invariant regularities and LSTMs are good at
modeling temporal features. The combination of
CNNs and LSTMs achieves improved performances
in speech recognition (Sainath et al., 2015) and
query classification (Tang et al., 2015; Zhou et al.,
2015). In these models, the basic architecture is the
LSTM that models sequence representation from lo-
cal features captured by CNNs.

Different from the above methods, our method
use LSTM units to model the nonlinear and non-

1502

consecutive local features. CNNs are placed on top
of these local features for query classification. Our
motivation is to use LSTM replace the linear feature
mapping in convolution operation where the feature
mapping is a multiplication of the word vectors with
a filter matrix. So our proposed model is still CNN

based model but using DLSTM as feature mapping
for convolution operation.

Our work is closely related to tensor product
based CNNs (Lei et al., 2015) that expand CNN fea-
ture representation capacity with non-consecutive n-
grams. They improve the query modeling from two
aspects. Firstly, tensor products enable the non-
linear feature vector interactions between adjacent
words. Secondly, an exponentially decaying weight
is applied to represent non-consecutive n-gram fea-
tures. Instead of using tensor products as feature
mapping, we propose to apply DLSTM to address
these two aspects. Nonlinear feature mapping can be
achieved by the DLSTM that equipped with nonlin-
ear activation function. The nonconsecutive feature
interaction is well addressed by the memory cell and
different gates in LSTM unit. In particular, the for-
get gate is able to decay the information according
to the context rather than a fixed decaying weight in
tensor product based CNNs.

3 CNN Based Query Classification Using
DLSTM Feature Mapping

3.1 Linear Feature Mapping in CNN
Let k-dimensional vector xt ∈ Rk be the continu-
ous feature representation of the tth word in a sen-
tence. A sentence with l words is represented by
x0:l−1 = [x0;x2; ...;xl−1] that is a concatenation of all
word vectors. The traditional CNN (Collobert et al.,
2011; Kim, 2014) takes such sentence feature vector
as input.

Different filters M j ∈ Rnd∗h are applied in con-
volution operation to map each n-gram feature vec-
tor xt:t+n−1, t ∈ (0, l−n) to an h-dimensional feature
vector ct, j.

ct, j = MT
j · xt:t+n−1 +b j, (1)

where b j is the bias in filter j.
The resulting feature vector ct, j are often passed

through non-linear element-wise transformations
(e.g. the hyperbolic tangent and rectifier linear unit)

as well as pooling operations. After aggregation or
reduction by different pooling operations such as the
max-over-time pooling (Collobert et al., 2011; Kim,
2014) and the average pooling (Lei et al., 2015), a
constant dimensional feature vector is generated for
sentences with various lengths.

In traditional CNNs, the concatenated word vec-
tors are mapped linearly to feature coordinates as
shown in Equation (1). Such linear feature mapping
can be improved from the following two aspects, one
is to extend linear mapping to nonlinear mapping.
The other one is to improve the consecutive feature
mapping to nonconsecutive feature mapping. For
example, in the query “not a total loss”, “not loss”
is the key sentiment. By using nonconsecutive fea-
ture representation, the information about “not loss”
could be addressed. Lei et al. (2015) extends the
linear feature mapping to tensor based feature map-
ping. To model the nonconsecutive n-grams, a de-
caying weight is applied to control the information
carryover. In this paper, we propose to replace the
linear feature mapping using DLSTM that captures
the nonlinear and nonconsecutive feature interaction
within n-grams. Rather than setting a fixed decaying
weight, the proposed architecture is able to control
the information decaying according to the context
information.

3.2 Feature Mapping Based on Deep Long
Short Term Memory

Figure 1 gives the basic architecture of a three-order
nonlinear feature mapping in DLSTM. The bottom
LSTM0 extract the first order information from word
input vector xt . It is equipped with input gate and
output gate. The input gate automatically controls
the information saving in memory cell that will be
passed to higher order LSTM unit. The output gate
modifies the information from the memory cell to
represent current word.

i0,t = sigmoid(Wixt +bi) (2)

c̃0,t = tanh(Wcxt +bc) (3)

c0,t = i0,t ∗ c̃0,t (4)

o0,t = sigmoid(Woxt +Voc0,t +bo) (5)

h0,t = o0,t ∗ tanh(c0,t) (6)

On top of the bottom LSTM0 unit, we analogously

1503

𝑥𝑡−1

Tan
h

𝜎

𝑐2,𝑡−1

𝜎 Tanh

ℎ2,𝑡−1

𝜎

𝑜2,𝑡−1

Tan
h

𝜎

𝑐0,𝑡−1

𝜎 Tanh

ℎ0,𝑡−1

𝑖0,𝑡−1

𝑜0,𝑡−1

Tan
h

𝜎

𝑐1,𝑡−1

𝜎 Tanh

ℎ1,𝑡−1

𝜎

𝑜1,𝑡−1

𝑖1,𝑡−1 𝑓1,𝑡−1

𝑖2,𝑡−1
𝑓2,𝑡−1

𝑥𝑡

Tan
h

𝜎

𝑐2,𝑡

𝜎 Tanh

ℎ2,𝑡

𝜎

𝑜2,𝑡

Tan
h

𝜎

𝑐0,𝑡

𝜎 Tanh

ℎ0,𝑡

𝑖0,𝑡

𝑜0,𝑡

Tan
h

𝜎

𝑐1,𝑡

𝜎 Tanh

ℎ1,𝑡

𝜎

𝑜1,𝑡

𝑖1,𝑡 𝑓1,𝑡

𝑖2,𝑡 𝑓2,𝑡

𝐿𝑆𝑇𝑀0

𝐿𝑆𝑇𝑀1

𝐿𝑆𝑇𝑀2

Figure 1: DLSTM based nonlinear feature mapping for bigram

“xt−1xt”. Three LSTM units are used to extract features from

each word position. The bottom LSTM0 is used for first order

feature extraction from the current word. The output from the

lower LSTM unit at current word position and the memory cell

from lower LSTM at previous word position are fed to the higher

LSTM units. Such information propagation is highlighted in the

figure by bold orange lines.

stack two LSTM units LSTM1 and LSTM2 to extract
nonlinear feature representations from bigram and
trigram, respectively. The LSTM j is formulated as
follows:

i j,t = sigmoid(Wixt +Uih j−1,t +bi) (7)

c̃ j,t = tanh(Wcxt +Uch j−1,t +bc) (8)

f j,t = sigmoid(Wf xt +U f h j−1,t +b f) (9)

c j,t = i j,t ∗ c̃ j,t ∗ c j−1,t−1 + f j,t ∗ c j−1,t (10)

o j,t = sigmoid(Woxt +Uoh j−1,t +Voc j,t +bo) (11)

h j,t = o j,t ∗ tanh(c j,t) (12)

Due to the effect from different gates that con-
trols the information saving, expressing and decay-
ing, LSTM1 and LSTM2 are able to model the non-
consecutive interaction in n-grams. Take “not so
good” as a example. LSTM0 extract the nonlinear
feature mapping from word “good” as h0,2. The
LSTM1 takes c0,1 (carries the information from word
“so”) and h0,2 as input. Due to the effect of forget

gate, we expect the output h1,2 from LSTM1 to ad-
dress more on word “good” rather than “so”. By
further stacking LSTM2, information about the word
“not” and “good” should be emphasized by the pro-
posed DLSTM.

Note the sum of the resulting outputs from these
LSTM units is used as the high order feature rep-
resentation of a n-gram ending with word xt . So
the original sequence input x0:l−1 is mapped to a
sequence of feature vector z0:l−1 = [z0,z1, ...,zl−1],
where z j = h0, j +h1, j +h2, j.

The proposed DLSTM architecture is character-
ized by the following two features:

1. Weight Sharing: LSTM1 and LSTM2 are iden-
tical LSTM units that share the same weights.
The bottom LSTM unit LSTM0 also shares the
corresponding weights with other LSTM units
such as Wi, Wc and Wo. By sharing weights
among different LSTM units, we can effectively
reduce the risk of model over-fitting issue. At
the same time, LSTM is good at capturing tem-
poral regularities. By sharing weights, the
LSTM units can learn the temporal dependen-
cies from being exposed to different order of
n-grams during the training.

2. Memory Cell Interaction: To model the nonlin-
ear feature interaction in n-gram vectors, tradi-
tional LSTM unit is modified by Equation (10)
in which the memory cell stores the interaction
of different order memory cells. In this way,
the feature interaction in n-grams is character-
ized by the memory cell interactions.

To stack the LSTM unit deeper, the depth-gated
LSTM (Yao et al., 2015) and the highway network
(Srivastava et al., 2015; Zhang et al., 2015) also al-
low the memory cell flow across LSTM units at dif-
ferent depth. There are three basic differences be-
tween these architectures with the proposed DLSTM.
Firstly, in their architectures, LSTM units at different
depth are different LSTMs that have different weight
matrices. In our model, the LSTM units in DLSTM

share weight matrices with each other. Secondly, in
their proposed architecture, the memory cell is car-
ried over to higher LSTM unit for facilitating model
training. Because the networking training becomes
more difficult with increasing model depth. In our

1504

DLSTM, the LSTM unit at higher position takes the
memory cell from lower LSTM unit mainly for fea-
ture interaction in n-grams. Finally, an additional
“depth” gate is applied in their architecture to con-
trol the information flow across different layers. In
our model, the input gate in higher LSTM unit con-
trols the interaction between the memory cells ex-
tracted from previous word and current word.

3.3 The Architecture
Figure 3 gives the whole architecture of the pro-
posed query classification system. A DLSTM layer
first maps the input sequence to a sequence of high
order nonlinear feature representations z0. Instead of
being directly used for query classification, the fea-
ture representation z0 is further processed by a stack
of DLSTM layers illustrated in previous section. In
such stacked DLSTM layers, the output zi of the ith
DLSTM layer, is used as the input for the i+1th DL-
STM layer parameterized by a different set of weight
matrices. As shown in Figure 3, the resulting fea-
ture representations z0,z1, ...,zd of all these layers
are concatenated. Finally, an average pooling is ap-
plied to reduce the sentence feature representation
to a fixed dimensional vector that is further fed to a
softmax function to obtain the prediction output.

3.4 Learning and Regularization
In the classification layer, the prediction output is
obtained by the following softmax function.

so f tmax(y) j =
exp(y j)

∑i=m
i=1 exp(yi)

, (13)

where y is a m-dimensional vector. The model is
trained by minimizing cross-entropy on the given
training data set. To avoid overfitting during train-
ing, L2 regularization and dropout (Hinton et al.,
2012) are used. The L2 regularization is applied to
constrain all weight matrices using the same regu-
larization weight. The dropout is only applied to the
output of each DLSTM layer.

In the training, the model weights are updated
using mini-batch stochastic gradient descent (SGD).
We adapt a per-feature learning rate control method
(AdaGrad) (Duchi et al., 2011) to dynamically tune
the learning rate as follows:

αt,i =
α√

∑t
j=1 g2

j,i + ε
, (14)

Word vector

Low level
features z0

High level
features zd

...

DLSTM

DLSTM

DLSTM

x0 x1 x2

...

Concatenate
different level

features

... Classification

Average
pooling

k×l

h×l

h×l

dh×l dh

Figure 2: CNN based query classification using DLSTM feature

mapping. The input sequence is represented by a k× l matrix

where column t is the word vector for the tth word in the se-

quence. The word vectors are mapped by a stack of DLSTM

layers to multi-level feature representations z0, ...,zd . As illus-

trated in Figure 1, each level feature representation is the sum

of outputs from different LSTM units. The multi-level features

are concatenated and reduced to a dh-dimensional vector where

d is the number of DLSTM layers, h is the output size of each

LSTM unit. A classification layer gives the prediction output.

where αt,i is the learning rate for weight i at epoch t.
∑t

j=1 g j,i sums all the historical gradients of weight
i. A small positive ε is applied to make the AdaGrad
robust. ε is usually set to 1e−5.

4 Experiments

4.1 Datasets

We evaluate the proposed query classification mod-
els on sentence sentiment classification, question
type categorization and query intent detection tasks.

For sentence sentiment classification, the Stan-
ford Sentiment Treebank (Socher et al., 2013) is
used. In this dataset, 11855 English sentences are
annotated at both sentence level and phrases level
with fine-grained labels (very positive, positive, neu-
tral, negative and very negative). We use the pro-
vided data split, which has 8544 sentences for train-
ing, 1101 sentences for developing and 2210 sen-
tences for testing. This dataset also provides a bi-
nary classification variant that ignores the neutral

1505

sentences. The binary classification task in this
dataset has 6920 sentences for training, 872 sen-
tences for developing and 1821 sentences for test-
ing. There are in total 17835 unique running words
for fine-grained dataset and 16185 for binary version
dataset.

For query intent detection, ATIS (airline travel in-
formation system) dataset (Hemphill et al., 1990;
Yao et al., 2014b) is used. This dataset is mainly
about the air travel domain with 26 different intents
such as “flight”, “groundservice” and “city”. There
are 893 utterances for testing (ATIS-III, Nov93 and
Dec94), and 4978 utterances for training (rest of
ATIS-III and ATIS-II). There are 899 unique run-
ning words and 22 intents in the training data.

The question type classification task is to clas-
sify a question into a specific type, which is a
very important step in question answering system.
In TREC (Text Retrieval Conference) data (Li and
Roth, 2002), all the questions are divided into 6
categories, including “human”, “entity”, “location”,
“description”, “abbreviation” and “numeric”. The
dataset in total has 5952 questions, 5452 of them for
training, the rest for testing. The vocabulary size of
TREC dataset is 9592.

Following previous work (Iyyer et al., 2015; Tai
et al., 2015; Lei et al., 2015), we used word vectors
pre-trained on large unannotated corpora to achieve
better generalization capability. In this paper, we
used a publicly available 300 dimensional GloVe
word vectors that are trained using Common Crawl
with 840B tokens and 2.2M vocabulary size.

4.2 Settings
We implemented our model based on Theano library
(Bastien et al., 2012). All our models are trained on
Nvidia Tesla K40m.

We performed extensive hyperparameter selection
based on Stanford Sentiment Treebank Binary ver-
sion of validation data. The selected hyperparame-
ters were directly used for all datasets. To investi-
gate the robustness of the proposed method, we ran
each configuration 10 times using different random
initialization (random seed ranges from 1 to 10).

For final models, we set the initial learning rate to
0.1, L2 regularization weight to 1e− 5, the dropout
probability to 0.5 and mini-batch size to 64. We use
hidden layer size 256 for all the models described in

model Fine Binary
SVM (Lei et al., 2015) 38.3 81.3
Nbow(Lei et al., 2015) 44.5 82.0
Para-vec(Le and Mikolov, 2014) 48.7 87.8
DAN(Iyyer et al., 2015) 48.2 86.8
RAE(Socher et al., 2011b) 43.2 82.4
MVRNN(Socher et al., 2012) 44.4 82.9
RNTN(Socher et al., 2013) 45.7 85.4
DRNN(Irsoy and Cardie, 2014) 49.8 86.8
RLSTM(Tai et al., 2015) 51.0 88.0
CLSTM(Zhou et al., 2015) 49.2 87.8
DCNN(Kalchbrenner et al., 2014) 48.5 86.9
CNN-MC(Kim, 2014) 47.4 88.1
CNN-nostatic(Kim, 2014) 48.0 87.2
TCNN (Lei et al., 2015) 50.6 87.0
TCNN+phrases(Lei et al., 2015) 51.2 88.6
ours 49.2 87.2
ours+phrases 51.9 88.7

Table 1: Standford Sentiment Treebank Classification accuracy

results. “Fine” denotes the accuracy on the fine-grained dataset

with 5 labels. “Binary” denotes binary classification results.

the experiments. The number of the DLSTM layers
and the number of the LSTM units in each DLSTM

are both set to 3. So basically there are 9 LSTM units
are used for each word position.

For all models, we set maximum iteration num-
ber 100 to terminate the training process. For sen-
timent classification task, during the training, the
model with the best classification accuracy on val-
idation data was used as final model for testing. For
question type classification and query intent detec-
tion, there wasn’t validation data. So we simply use
the model trained at the 100th iteration as the final
model for testing.

4.3 Results on Stanford Sentiment Treebank

model Acc
discriminative(Tur et al., 2010) 95.5
SVM (Shi et al., 2015b) 95.6
joint-RNN(Shi et al., 2015b) 95.2
ours 97.9

Table 2: ATIS intent classification accuracy comparison of dif-

ferent models.

Table 1 lists results for sentiment classification.

1506

There are four blocks in the table. The bottom
block gives the results from our model. The third
blocks are methods related to CNNs. The second
block shows the results from recursive neural net-
work based approaches. The other baseline methods
are listed in the top block.

The top block shows that the traditional methods
such as SVM using ngram features and neural net-
work using bag-of-words features (Nbow) perform
much worse than Para-vec and DAN using word
vectors that are pre-trained on large amount of un-
labeled data. Para-vec builds a logistic regression
on top of paragraph vectors. DAN is a deep neural
network takes the average of word vectors as input.

In addition to pre-trained word vectors, syntac-
tic compositional information can be used to im-
prove the sentiment classification accuracy. RAE is
a tree structured Antoencoder model based on pre-
trained word vectors from Wikipedia. MVRNN fur-
ther improves the recursive neural network by as-
signing each node with a matrix to learn the meaning
change of neighboring words and phrases. To ad-
dress large amount of different vectors and matrices
involved in MVRNN, RNTN proposed to use one
single tensor based function to model all nodes. By
making the tree-structured recursive neural networks
deeper, significant improvement has been achieved
by DRNN. According to our knowledge, the best
compositional information based model is achieved
by RLSTM that combines LSTM unit with tree-
structure.

By comparing the classification accuracy between
second blocks and third blocks, we see that CNN

based models in general perform better than recur-
sive neural network based methods. Another advan-
tage of CNN based methods is that they can be gen-
eralized to any language without dependency over
compositional information. DCNN uses a dynamic
k-max pooling operator function in CNN. To explore
the task specific word vectors and the general word
vectors pre-trained on large News dataset, CNN-
MC equips CNN with two feature mapping channels.
CNN-nostatic gives the results by only making use
of general word vectors. The best published classi-
fication results are achieved by TCNN that is tensor
based CNN.

In this paper, the proposed method is closely re-
lated to TCNN. Instead of using tensor products to

replace linear convolution operation, our method ex-
ploits the nonlinear feature mapping through DL-
STM. Rather than setting specific decaying weight
to model non-consecutive n-gram features in tensor
based CNN, the different gates automatically adjust
the information storing, removing and outputting ac-
cording to context.

Following the work of TCNN, to leverage the
phrases level annotation in Standford Sentiment
Treebank, all phrases and their corresponding labels
are added to training data as additional sequences.
The bottom line of Table 1 shows that our models
achieved the state-of-the-art performance on senti-
ment classification task.

For the best settings described above, we ran each
model 10 times with different random initialization.
The average and standard deviation for fine-grained
classification are 50.7% and 1.04%, for binary clas-
sification 88% and 0.41%. Comparing with TCNN,
our model is more sensitive to the parameter random
initialization. In the future, some efforts should be
used to analyze and address this issue.

model Acc
SVM (Silva et al., 2010) 95.0
Para-vec(Le and Mikolov, 2014) 91.8
AdaSent(Zhao et al., 2015) 92.4
CNN-MC(Kim, 2014) 92.2
CNN-nostatic(Kim, 2014) 93.6
DCNN(Kalchbrenner et al., 2014) 93.0
LSTM(Zhou et al., 2015) 93.2
BiLSTM(Zhou et al., 2015) 93.0
CLSTM(Zhou et al., 2015) 94.6
ours 94.8

Table 3: TREC Question type Classification accuracy compar-

ison of different models.

4.4 Results on ATIS
ATIS dataset is widely used to test spoken language
understanding system. As shown in Table 2, SVM

using n-grams performs better than simple RNN and
CNN based approach. joint-RNN is a query classi-
fication and slot filling joint training model where
CNN is applied on top of slot tagging RNN for query
classification. In this way, joint-RNN actually im-
plicitly makes use of slot tag information for query
classification. However, joint-RNN doesn’t take ad-

1507

-2

-1

0

1

2

not so good

Negative Prediction

-2

-1

0

1

2

a successful failure

Negative Prediction

-2

-1

0

1

2

hardly to be bad

Postive Prediction

-2

-1

0

1

2

a waste of good performance

Negative Prediction (groundtruth:Negative)

-2
-1
0
1
2

Negative Prediction (groundtruth:Negative)

Figure 4: Example predictions given by our model trained on Stanford Sentiment Treebank fine-grained data. The expected

sentiment score of each word is plotted in the figure. The score range from −2 to 2, where a score −2 means very “negative”, 0

stands for “neutral” and 2 means “very positive”.

84.5

85

85.5

86

86.5

87

87.5

88

88.5

89

85 85.5 86 86.5 87 87.5 88 88.5 89 89.5

Te
st

 a
cc

u
ra

cy

Validation accuracy

depth 3 depth 2 depth 1

Figure 3: Stanford Sentiment Treebank Binary Classification

accuracy comparison among models using the same parameter

configuration except the number of DLSTM layers. For each

number of DLSTM layers, 10 models are run independently us-

ing different random initialization. Horizontal axis gives the

validation accuracy. Vertical axis shows the test accuracy.

vantage of word vectors trained on large amount of
unlabeled data. Based on pre-trained word vectors,
our models obtain more than 2% absolute classifica-
tion accuracy improvement over the published best
model.

In ATIS data, about 70% of queries is categorized
to “flight” intent. Recent work using RNN for ut-
terance classification (Ravuri and Stolcke, 2015b;

Ravuri and Stolcke, 2015a) simplifies it to a “flight”
VS “others” binary classification task. In their paper,
using word based LSTM, they achieve 97.55% clas-
sification accuracy. By using extra name entity fea-
tures, word based gated RNN obtains 98.42% classi-
fication accuracy.

4.5 Results on TREC Question Type
Classification

Table 3 gives the TREC question type classification
accuracy of our models with other baseline mod-
els. Different from the sentiment classification task,
the shallow models using diverse engineered feature
performs better than CNN and LSTM based models.
Previous best classification results on TREC data
is achieved by SVM using unigrams, bigrams, wh-
word, head word, POS tags, hypernyms, WordNet
synsets and a bunch of hand-coded rules.

AdaSent is a self adaptive hierarchical sentence
model based on gating networks with level pooling.
As shown in Table 3, CNN and LSTM achieve similar
performances on question type classification. Re-
cently CLSTM achieves substantial improvement
over previous neural network based methods. In
CLSTM, CNN is used to extract high level phrase
representation. Such local segment representation is

1508

fed into LSTM to model whole sequence representa-
tion. Different with CLSTM that is an LSTM based
sequence model with CNN for local feature extrac-
tion, our model is CNN based model using DLSTM

for non-linear feature mapping. Our model outper-
forms previous neural network based models with-
out relying on task specific feature engineering.

4.6 Deep Architecture

One critical hyperparameter in the proposed method
is the number of DLSTM layers. On sentiment bi-
nary classification task, we run our model 10 times
by keeping all the hyperparameters the same except
the number of DLSTM layers using different random
initialization. As observed from Figure 3, the bet-
ter performance is achieved by deeper architecture.
Our model achieves the best classification result by
stacking 3 DLSTM layers that actually leverages 9
different LSTM units to extract the nonlinear feature
from n-grams.

4.7 Examples

Figure 4 demonstrates some examples and their sen-
timents predicted by our model trained on fine-
grained classification data. In order to see how the
nonlinear feature mapping captures the sentiment
at each word position in the query, we follow the
strategy used in (Lei et al., 2015) where the soft-
max function is directly applied on the concatenated
feature mapping without passing through the aver-
age pooling layer. So the sentiment distribution pt

at tth word is computed as pt = W T [z0
t ,z

1
t , ...,z

d
t].

The expected value over the probability distribution
∑2

s=−2 s.pt is used as the sentiment score that is plot-
ted in Figure 4. In the figure, the sentiment score
ranges from −2 to 2, where −2 means very nega-
tive, 2 mean very positive and 0 means neutral.

Five examples are illustrated in the figure where
the first row gives the synthetic examples to show
that our model is able to model the nonconsecutive
interaction within n-grams. For example, in query
“hardly to be bad”, even though word “hardly” is
not directly modifying word “bad”, our model still
be able to capture such sentiment changes.

The second row of the figure shows the examples
from fine-grained classification testing data. Both
the example show that our model to some degree
can capture sentiment of the satire. Especially the

last example, our model actually gives negative pre-
diction, even no word in the query really means neg-
ative.

5 Conclusions

We have proposed a deep long-short-term-memory
(DLSTM) nonlinear nonconsecutive feature mapping
architecture to replace traditional linear mapping in
the convolutional neural network based query clas-
sification. Each LSTM unit in the DLSTM is respon-
sible for capturing different order feature represen-
tation from word segments. The bottom LSTM unit
equipped with input gate and output gate, extracts
the nonlinear feature from unigram. The higher
LSTM unit in the DLSTM takes the outputs from
lower LSTM units as input. In such way, the higher
LSTM unit is able to capture nonlinear feature rep-
resentation from higher order n-grams. The sum of
different LSTM units is used as the output of the DL-
STM layer. The DLSTM output rather than being di-
rectly used as input to convolutional neural network
for query classification, is passed through a stacked
DLSTM layers. The query is finally represented by
the concatenation of the outputs from the stacked
DLSTM layers.

We evaluated the proposed models on three
benchmark datasets–Stanford Sentiment Treebank
dataset, TREC dataset and ATIS dataset. On both
sentiment classification dataset and ATIS dataset,
our model achieved the state-of-the-art performance.
On TREC question type classification, SVM based
model using extra engineered features still per-
formed better than our model. But we noticed that
the proposed method outperformed all the other neu-
ral network based approaches.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements. In
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Yoshua Bengio. 2009. Learning deep architectures for
ai. Found. Trends Mach. Learn., 2:1–127.

1509

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. 2014. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. In
EMNLP.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In The Pro-
ceedings of the International Conference on Machine
Learning, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research, 12:2493–
2537.

Li Deng and Dong Yu. 2014. Deep learning: Meth-
ods and applications. Found. Trends Signal Process.,
7:197–387.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159.

Jianfeng Gao, Xiaodong He, Wen-tau Yih, and Li Deng.
2014. Learning continuous phrase representations for
translation modeling. In Proceedings of ACL, pages
699–709.

Alan Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recurrent
neural networks. In The proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 6645–6649.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The atis spoken language systems
pilot corpus. In The Proceedings of the Workshop on
Speech and Natural Language, pages 96–101.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A fast learning algorithm for deep belief nets.
Neural Comput., 18(7):1527–1554.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov.
2012. Improving neural networks by preventing
co-adaptation of feature detectors. CoRR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive neu-
ral networks for compositionality in language. In Pro-
ceedings of NIPS, pages 2096–2104.

Mohit Iyyer, Varun Manjunatha, Jordan L. Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered composi-
tion rivals syntactic methods for text classification. In
Proceedings of ACL, pages 1681–1691.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and
Yoshua Bengio. 2015. On using very large target vo-
cabulary for neural machine translation. In Proceed-
ings of ACL, pages 1–10.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of ACL, June.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751, October.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Proceed-
ings of ICML, pages 1188–1196.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324,
Nov.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1565–1575.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics, COLING ’02,
pages 1–7.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nocký, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In The Proceed-
ings of Interspeech, pages 1045–1048.

Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and Zhi
Jin. 2015. Tree-based convolution: A new neural ar-
chitecture for sentence modeling. CoRR.

Suman Ravuri and Andreas Stolcke. 2015a. A compar-
ative study of neural network models for lexical intent
classification. In The Proceedings of IEEE Automatic
Speech Recogntion and Understanding Workshop.

Suman Ravuri and Andreas Stolcke. 2015b. Recurrent
neural network and lstm models for lexical utterance
classification. In Proceedings of Interspeech.

Tara N. Sainath, Oriol Vinyals, Andrew W. Senior, and
Hasim Sak. 2015. Convolutional, long short-term
memory, fully connected deep neural networks. In
Proceedings of ICASSP, pages 4580–4584.

Yelong Shen, Xiaodong he, Jianfeng Gao, Li Deng, and
Gregoire Mesnil. 2014. Learning semantic represen-
tations using convolutional neural networks for web
search. In Proceedings of WWW. WWW 2014, April.

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
and Mei-Yuh Hwang. 2015a. Semi-supervised spo-
ken language understanding using recurrent transduc-
tive support vector machines. In Proceeding of ASRU.

1510

Yangyang Shi, Kaisheng Yao, Hu Chen, Yi-Cheng Pan,
Mei-Yuh Hwang, and Baolin Peng. 2015b. Contextual
spoken language understanding using recurrent neural
networks. In The Proceedings of International Con-
ference on Acoustics, Speech and Signal Processing.

J. Silva, L. Coheur, A. C. Mendes, and Andreas Wichert.
2010. From symbolic to sub-symbolic information in
question classification. Artificial Intelligence Review.

Richard Socher, Cliff C. Lin, Andrew Y. Ng, and Christo-
pher D. Manning. 2011a. Parsing Natural Scenes and
Natural Language with Recursive Neural Networks.
In Proceedings of ICML.

Richard Socher, Jeffrey Pennington, Eric H. Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011b.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Proceedings of EMNLP,
pages 151–161.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic Compositional-
ity Through Recursive Matrix-Vector Spaces. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1631–1642.

Richard Socher. 2012. New directions in deep learning:
Structured models, tasks, and datasets. Neural Infor-
mation Processing Systems (NIPS) Workshop on Deep
Learning and Unsupervised Feature Learning.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. CoRR,
abs/1505.00387.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language modeling.
In INTERSPEECH, pages 194–197.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D. Man-
ning. 2015. Improved semantic representations from
tree-structured long short-term memory networks. In
Proceedings of ACL, pages 1556–1566. Association
for Computational Linguistics, July.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for sen-
timent classification. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1422–1432.

G. Tur, D. Hakkani-Tur, and L. Heck. 2010. What is
left to be understood in atis? In Spoken Language
Technology Workshop (SLT), 2010 IEEE, pages 19–24.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2015. A unified tagging solution: Bidi-
rectional LSTM recurrent neural network with word
embedding. CoRR.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi. 2014a. Spoken lan-
guage understanding using long short-term memory
neural networks. In The Proceedings of IEEE work-
shop on Spoken Language Technology, pages 189–
194.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geof-
frey Zweig, and Yangyang Shi. 2014b. Spoken lan-
guage understanding using long short-term memory
neural networks. In The Proceedings of IEEE work-
shop on Spoken Language Technology, pages 189–
194.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova, Kevin
Duh, and Chris Dyer. 2015. Depth-gated LSTM.
CoRR.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of ACL, pages 1321–1331.

Ye Zhang and Byron Wallace. 2015. A sensitivity analy-
sis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. CoRR.

Ye Zhang and Byron Wallace. 2016. A sensitivity analy-
sis of (and practitioners’ guide to) convolutional neural
networks for sentence classification. In CoRR.

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yao, San-
jeev Khudanpur, and James Glass. 2015. Highway
long short-term memory rnns for distant speech recog-
nition. CoRR.

Han Zhao, Zhengdong Lu, and Pascal Poupart. 2015.
Self-adaptive hierarchical sentence model. CoRR.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and Francis
C. M. Lau. 2015. A C-LSTM neural network for text
classification. CoRR, abs/1511.08630.

1511

Proceedings of NAACL-HLT 2016, pages 1512–1521,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Dependency Sensitive Convolutional Neural Networks
for Modeling Sentences and Documents

Rui Zhang
Department of EECS

University of Michigan
Ann Arbor, MI, USA
ryanzh@umich.edu

Honglak Lee
Department of EECS

University of Michigan
Ann Arbor, MI, USA

honglak@eecs.umich.edu

Dragomir Radev
Department of EECS

and School of Information
University of Michigan
Ann Arbor, MI, USA
radev@umich.edu

Abstract

The goal of sentence and document model-
ing is to accurately represent the meaning of
sentences and documents for various Natural
Language Processing tasks. In this work, we
present Dependency Sensitive Convolutional
Neural Networks (DSCNN) as a general-
purpose classification system for both sen-
tences and documents. DSCNN hierarchically
builds textual representations by processing
pretrained word embeddings via Long Short-
Term Memory networks and subsequently ex-
tracting features with convolution operators.
Compared with existing recursive neural mod-
els with tree structures, DSCNN does not
rely on parsers and expensive phrase label-
ing, and thus is not restricted to sentence-
level tasks. Moreover, unlike other CNN-
based models that analyze sentences locally
by sliding windows, our system captures both
the dependency information within each sen-
tence and relationships across sentences in the
same document. Experiment results demon-
strate that our approach is achieving state-of-
the-art performance on several tasks, includ-
ing sentiment analysis, question type classifi-
cation, and subjectivity classification.

1 Introduction

Sentence and document modeling systems are im-
portant for many Natural Language Processing
(NLP) applications. The challenge for textual mod-
eling is to capture features for different text units
and to perform compositions over variable-length
sequences (e.g., phrases, sentences, documents). As
a traditional method, the bag-of-words model treats

sentences and documents as unordered collections
of words. In this way, however, the bag-of-words
model fails to encode word orders and syntactic
structures.

By contrast, order-sensitive models based on neu-
ral networks are becoming increasingly popular
thanks to their ability to capture word order infor-
mation. Many prevalent order-sensitive neural mod-
els can be categorized into two classes: Recursive
models and Convolutional Neural Networks (CNN)
models. Recursive models can be considered as gen-
eralizations of traditional sequence-modeling neural
networks to tree structures. For example, (Socher et
al., 2013) uses Recursive Neural Networks to build
representations of phrases and sentences by combin-
ing neighboring constituents based on the parse tree.
In their model, the composition is performed in a
bottom-up way from leaf nodes of tokens until the
root node of the parsing tree is reached. CNN based
models, as the second category, utilize convolutional
filters to extract local features (Kalchbrenner et al.,
2014; Kim, 2014) over embedding matrices consist-
ing of pretrained word vectors. Therefore, the model
actually splits the sentence locally into n-grams by
sliding windows.

However, despite their ability to account for
word orders, order-sensitive models based on neu-
ral networks still suffer from several disadvantages.
First, recursive models depend on well-performing
parsers, which can be difficult for many languages or
noisy domains (Iyyer et al., 2015; Ma et al., 2015).
Besides, since tree-structured neural networks are
vulnerable to the vanishing gradient problem (Iyyer
et al., 2015), recursive models require heavy label-

1512

ing on phrases to add supervisions on internal nodes.
Furthermore, parsing is restricted to sentences and
it is unclear how to model paragraphs and docu-
ments using recursive neural networks. In CNN
models, convolutional operators process word vec-
tors sequentially using small windows. Thus sen-
tences are essentially treated as a bag of n-grams,
and the long dependency information spanning slid-
ing windows is lost.

These observations motivate us to construct a tex-
tual modeling architecture that captures long-term
dependencies without relying on parsing for both
sentence and document inputs. Specifically, we
propose Dependency Sensitive Convolutional Neu-
ral Networks (DSCNN), an end-to-end classification
system that hierarchically builds textual representa-
tions with only root-level labels.

DSCNN consists of a convolutional layer built
on top of Long Short-Term Memory (LSTM) net-
works. DSCNN takes slightly different forms de-
pending on its input. For a single sentence (Fig-
ure 1), the LSTM network processes the sequence
of word embeddings to capture long-distance depen-
dencies within the sentence. The hidden states of the
LSTM are extracted to form the low-level represen-
tation, and a convolutional layer with variable-size
filters and max-pooling operators follows to extract
task-specific features for classification purposes. As
for document modeling (Figure 2), DSCNN first ap-
plies independent LSTM networks to each subsen-
tence. Then a second LSTM layer is added between
the first LSTM layer and the convolutional layer to
encode the dependency across different sentences.

We evaluate DSCNN on several sentence-level
and document-level tasks including sentiment anal-
ysis, question type classification, and subjectivity
classification. Experimental results demonstrate the
effectiveness of our approach comparable with the
state-of-the-art. In particular, our method achieves
highest accuracies on MR sentiment analysis (Pang
and Lee, 2005), TREC question classification (Li
and Roth, 2002), and subjectivity classification task
SUBJ (Pang and Lee, 2004) compared with several
competitive baselines.

The remaining part of this paper is the following.
Section 2 discusses related work. Section 3 presents
the background including LSTM networks and con-
volution operators. We then describe our architec-

tures for sentence modeling and document model-
ing in Section 4, and report experimental results in
Section 5.

2 Related Work

The success of deep learning architectures for NLP
is first based on the progress in learning distributed
word representations in semantic vector space (Ben-
gio et al., 2003; Mikolov et al., 2013; Pennington et
al., 2014), where each word is modeled with a real-
valued vector called a word embedding. In this for-
mulation, instead of using one-hot vectors by index-
ing words into a vocabulary, word embeddings are
learned by projecting words onto a low dimensional
and dense vector space that encodes both semantic
and syntactic features of words.

Given word embeddings, different models have
been proposed to learn the composition of words to
build up phrase and sentence representations. Most
methods fall into three types: unordered models, se-
quence models, and Convolutional Neural Networks
models.

In unordered models, textual representations are
independent of the word order. Specifically, ignor-
ing the token order in the phrase and sentence, the
bag-of-words model produces the representation by
averaging the constituting word embeddings (Lan-
dauer and Dumais, 1997). Besides, a neural-bag-
of-words model described in (Kalchbrenner et al.,
2014) adds an additional hidden layer on top of the
averaged word embeddings before the softmax layer
for classification purposes.

In contrast, sequence models, such as standard
Recurrent Neural Networks (RNN) and Long Short-
Term Memory networks, construct phrase and sen-
tence representations in an order-sensitive way. For
example, thanks to its ability to capture long-
distance dependencies, LSTM has re-emerged as a
popular choice for many sequence-modeling tasks,
including machine translation (Bahdanau et al.,
2014), image caption generation (Vinyals et al.,
2014), and natural language generation (Wen et al.,
2015). Besides, RNN and LSTM can be both con-
verted to tree-structured networks by using parsing
information. For example, (Socher et al., 2013) ap-
plied Recursive Neural Networks as a variant of the
standard RNN structured by syntactic trees to the

1513

sentiment analysis task. (Tai et al., 2015) also gener-
alizes LSTM to Tree-LSTM where each LSTM unit
combines information from its children units.

Recently, CNN-based models have demonstrated
remarkable performances on sentence modeling and
classification tasks. Leveraging convolution opera-
tors, these models can extract features from variable-
length phrases corresponding to different filters. For
example, DCNN in (Kalchbrenner et al., 2014) con-
structs hierarchical features of sentences by one-
dimensional convolution and dynamic k-max pool-
ing. (Yin and Schütze, 2015) further utilizes mul-
tichannel embeddings and unsupervised pretraining
to improve classification results.

3 Preliminaries

In this section, we describe two building blocks for
our system. We first discuss Long Short-Term Mem-
ory as a powerful network for modeling sequence
data, and then formulate convolution and max-over-
time pooling operators for the feature extraction over
sequence inputs.

3.1 Long Short-Term Memory
Recurrent Neural Network (RNN) is a class of mod-
els to process arbitrary-length input sequences by re-
cursively constructing hidden state vectors ht. At
each time step t, the hidden state ht is an affine func-
tion of the input vector xt at time t and its previous
hidden state ht−1, followed by a non-linearity such
as the hyperbolic tangent function:

ht = tanh(Wxt + Uht−1 + b) (1)

where W, U and b are parameters of the model.
However, traditional RNN suffers from the ex-

ploding or vanishing gradient problems, where the
gradient vectors can grow or decay exponentially
as they propagate to earlier time steps. This prob-
lem makes it difficult to train RNN to capture long-
distance dependencies in a sequence (Bengio et al.,
1994; Hochreiter, 1998).

To address this problem of capturing long-term
relations, Long Short-Term Memory (LSTM) net-
works, proposed by (Hochreiter and Schmidhuber,
1997) introduce a vector of memory cells and a set of
gates to control how the information flows through
the network. We thus have the input gate it, the for-
get gate ft, the output gate ot, the memory cell ct,

the input at the current step t as xt, and the hidden
state ht, which are all in Rd. Denote the sigmoid
function as σ, and the element-wise multiplication
as �. At each time step t, the LSTM unit manipu-
lates a collection of vectors described by the follow-
ing equations:

it = σ
(
W(i)xt + U(i)ht−1 + b(i)

)
ft = σ

(
W(f)xt + U(f)ht−1 + b(f)

)
ot = σ

(
W(o)xt + U(o)ht−1 + b(o)

)
ut = tanh

(
W(u)xt + U(u)ht−1 + b(u)

)
ct = it � ut + ft � ct−1

ht = ot � tanh(ct)

(2)

Note that the gates it, ft, ot ∈ [0, 1]d and they con-
trol at time step t how the input is updated, how
much the previous memory cell is forgotten, and the
exposure of the memory to form the hidden state
vector respectively.

3.2 Convolution and Max-over-time Pooling
Convolution operators have been extensively used in
object recognition (LeCun et al., 1998), phoneme
recognition (Waibel et al., 1989), sentence model-
ing and classification (Kalchbrenner et al., 2014;
Kim, 2014), and other traditional NLP tasks (Col-
lobert and Weston, 2008). Given an input sentence
of length s: [w1, w2, ..., ws], convolution operators
apply a number of filters to extract local features of
the sentence.

In this work, we employ one-dimensional wide
convolution described in (Kalchbrenner et al., 2014).
Let ht ∈ Rd denote the representation of wt, and
F ∈ Rd×l be a filter where l is the window size.
One-dimensional wide convolution computes the
feature map c of length (s+ l − 1)

c = [c1, c2, ..., cs+l−1] (3)

for the input sentence.
Specifically, in wide convolution, we stack ht col-

umn by column, and add (l−1) zero vectors to both
ends of the sentence respectively. This formulates
an input feature map X ∈ Rd×(s+2l−2). Thereafter,
one-dimensional convolution applies the filter F to
each set of consecutive l columns in X to produce

1514

(s − l − 1) activations. The k-th activation is pro-
duced by

ck = f

b+
∑
i,j

(F�Xk:k+l−1)i,j

 (4)

where Xk:k+l−1 ∈ Rd×l is the k-th sliding window
in X, and b is the bias term. � performs element-
wise multiplications and f is an nonlinear function
such as Rectified Linear Units (ReLU) or the hyper-
bolic tangent.

Then, the max-over-time pooling selects the max-
imum value in the feature map

cF = max(c) (5)

as the feature corresponding to the filter F.
In practice, we apply many filters with different

window sizes l to capture features encoded in l-
length windows of the input.

4 Model Architectures

Convolutional Neural Networks have demonstrated
state-of-the-art performances in sentence modeling
and classification. Despite the fact that CNN is an
order-sensitive model, traditional convolution oper-
ators extract local features from each possible win-
dow of words through filters with predefined sizes.
Therefore, sentences are effectively processed like a
bag of n-grams, and long-distance dependencies can
be only captured if we have long enough filters.

To capture long-distance dependencies, much re-
cent effort has been dedicated to building tree-
structured models from the syntactic parsing infor-
mation. However, we observe that these methods
suffer from three problems. First, they require an
external parser and are vulnerable to parsing errors
(Iyyer et al., 2015). Besides, tree-structured mod-
els need heavy supervisions to overcome vanish-
ing gradient problems. For example, in (Socher et
al., 2013), input sentences are labeled for each sub-
phrase, and softmax layers are applied at each in-
ternal node. Finally, tree-structured models are re-
stricted to sentence level, and cannot be generalized
to model documents.

In this work, we propose a novel architecture to
address these three problems. Our model hierarchi-
cally builds text representations from input words

without parsing information. Only labels at the root
level are required at the top softmax layer, so there is
no need for labeling subphrases in the text. The sys-
tem is not restricted to sentence-level inputs: the ar-
chitecture can be restructured based on the sentence
tokenization for modeling documents.

4.1 Sentence Modeling

Figure 1: An example for sentence modeling. The
bottom LSTM layer processes the input sentence
and feed-forwards hidden state vectors at each time
step. The one-dimensional wide convolution layer
and the max-over-time pooling operation extract
features from the LSTM output. For brevity, only
one version of word embedding is illustrated in this
figure.

Let the input of our model be a sentence of length
s: [w1, w2, ..., ws], and c be the total number of word
embedding versions. Different versions come from
pre-trained word vectors such as word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014).

The first layer of our model consists of LSTM
networks processing multiple versions of word em-
bedding. For each version of word embedding,
we construct an LSTM network where the input
xt ∈ Rd is the d-dimensional word embedding vec-
tor for wt. As described in the previous section, the
LSTM layer will produce a hidden state representa-
tion ht ∈ Rd at each time step. We collect hidden
state representations as the output of LSTM layers:

h(i) = [h(i)
1 ,h(i)

2 , ...,h(i)
t , ...,h

(i)
s] (6)

for i = 1, 2, ..., c.

1515

A convolution neural network follows as the sec-
ond layer. To deal with multiple word embeddings,
we use filter F ∈ Rc×d×l, where l is the win-
dow size. Each hidden state sequence h(i) pro-
duced by the i-th version of word embeddings forms
one channel of the feature map. These feature
maps are stacked as c-channel feature maps X ∈
Rc×d×(s+2(l−1)).

Similar to the single channel case, activations are
computed as a slight modification of equation 4:

ck = f

b+
∑
i,j,r

(F�Xk:k+l−1)i,j,r

 (7)

A max-over-time pooling layer is then added on
top of the convolution neural network. Finally, the
pooled features are used in a softmax layer for clas-
sification. A sentence modeling example is illus-
trated in Figure 1.

4.2 Document Modeling

Figure 2: A schematic for document modeling hi-
erarchy, which can be viewed as a variant of the
one for sentence modeling. Independent LSTM net-
works process subsentences separated by punctua-
tion. Hidden states of LSTM networks are aver-
aged as the sentence representations, from which the
high-level LSTM layer creates the joint meaning of
sentences.

Our model is not restricted to sentences; it can
be restructured to model documents. The intuition
comes from the fact that as the composition of words

builds up the semantic meaning for sentences, the
composition of sentences establishes the semantic
meaning for documents (Li et al., 2015).

Now suppose that the input of our model is a doc-
ument consisting of n subsentences: [s1, s2, ..., sn].
Subsentences can be obtained by splitting the doc-
ument using punctuation (comma, period, question
mark, and exclamation point) as delimiters.

We employ independent LSTM networks for each
subsentence in the same way as the first layer of the
sentence modeling architecture. For each subsen-
tence we feed-forward the hidden states of the cor-
responding LSTM network to the average pooling
layer. Take the first sentence of the document as an
example,

h(i)
s1 =

1
len(s1)

len(s1)∑
j=1

h(i)
s1,j (8)

where h(i)
s1,j is the hidden state of the first sentence

at time step j, and len(s1) denotes the length of the
first sentence. In this way, after the averaging pool-
ing layers, we have a representation sequence con-
sisting of averaged hidden states for subsentences,

h(i) = [h(i)
s1 ,h

(i)
s2 , ...,h

(i)
sn] (9)

for i = 1, 2, ..., c.
Thereafter, a high-level LSTM network comes

into play to capture the joint meaning created by the
sentences.

Similar as sentence modeling, a convolutional
layer is placed on top of the high-level LSTM for
feature extraction. Finally, a max-over-time pool-
ing layer and a softmax layer follow to pool features
and perform the classification task. Figure 2 gives
the schematic for the hierarchy.

5 Experiments

5.1 Datasets
Movie Review Data (MR) proposed by (Pang and
Lee, 2005) is a dataset for sentiment analysis of
movie reviews. The dataset consists of 5,331 pos-
itive and 5,331 negative reviews, mostly in one sen-
tence. We follow the practice of using 10-fold cross
validation to report results.

Stanford Sentiment Treebank (SST) is another
popular sentiment classification dataset introduced

1516

Method MR SST-2 SST-5 TREC SUBJ IMDB
SVM (Socher et al., 2013) — 79.4 40.7 — — —
NB (Socher et al., 2013) — 81.8 41.0 — — —
NBSVM-bi (Wang and Manning, 2012) 79.4 — — — 93.2 91.2
SVMS (Silva et al., 2011) — — — 95.0 — —
Standard-RNN (Socher et al., 2013) — 82.4 43.2 — — —
MV-RNN (Socher et al., 2012) 79.0 82.9 44.4 — — —
RNTN (Socher et al., 2013) — 85.4 45.7 — — —
DRNN (Irsoy and Cardie, 2014) — 86.6 49.8 — — —
Standard-LSTM (Tai et al., 2015) — 86.7 45.8 — — —
bi-LSTM (Tai et al., 2015) — 86.8 49.1 — — —
Tree-LSTM (Tai et al., 2015) — 88.0 51.0 — — —
SA-LSTM (Dai and Le, 2015) 80.7 — — — — 92.8
DCNN (Kalchbrenner et al., 2014) — 86.8 48.5 93.0 — —
CNN-MC (Kim, 2014) 81.1 88.1 47.4 92.2 93.2 —
MVCNN (Yin and Schütze, 2015) — 89.4 49.6 — 93.9 —
Dep-CNN (Ma et al., 2015) 81.9 — 49.5 95.4 — —
Neural-BoW (Kalchbrenner et al., 2014) — 80.5 42.4 88.2 — —
DAN (Iyyer et al., 2015) 80.3 86.3 47.7 — — 89.4
Paragraph-Vector (Le and Mikolov, 2014) — 87.8 48.7 — — 92.6
WRRBM+BoW(bnc) (Dahl et al., 2012) — — — — — 89.2
Full+Unlabeled+BoW(bnc) (Maas et al., 2011) — — — — 88.2 88.9
DSCNN 81.5 89.1 49.7 95.4 93.2 90.2
DSCNN-Pretrain 82.2 88.7 50.6 95.6 93.9 90.7

Table 1: Experiment results of DSCNN compared with other models. Performance is measured in accuracy
(%). Models are categorized into five classes. The first block is baseline methods including SVM and Naive
Bayes and their variations. The second is the class of Recursive Neural Networks models. Constituent
parsers and phrase-level supervision are needed. The third category is LSTMs. CNN models are fourth
block, and the last category is a collection of other models achieving state-of-the-art results. SVM: Support
Vector Machines with unigram features (Socher et al., 2013) NB: Naive Bayes with unigram features(Socher
et al., 2013) NBSVM-bi: Naive Bayes SVM and Multinomial Naive Bayes with bigrams (Wang and Man-
ning, 2012) SVMS : SVM with features including uni-bi-trigrams, POS, parser, and 60 hand-coded rules
(Silva et al., 2011) Standard-RNN: Standard Recursive Neural Network (Socher et al., 2013) MV-RNN:
Matrix-Vector Recursive Neural Network (Socher et al., 2012) RNTN:Recursive Neural Tensor Network
(Socher et al., 2013) DRNN: Deep Recursive Neural Network (Irsoy and Cardie, 2014) Standard-LSTM:
Standard Long Short-Term Memory Network (Tai et al., 2015) bi-LSTM: Bidirectional LSTM (Tai et al.,
2015) Tree-LSTM: Tree-Structured LSTM (Tai et al., 2015) SA-LSTM: Sequence Autoencoder LSTM
(Dai and Le, 2015). For fair comparison, we report the result on MR trained without unlabeled data
from IMDB or Amazon reviews. DCNN: Dynamic Convolutional Neural Network with k-max pooling
(Kalchbrenner et al., 2014) CNN-MC: Convolutional Neural Network with static pretrained and fine-tuned
pretrained word-embeddings (Kim, 2014) MVCNN: Multichannel Variable-Size Convolution Neural Net-
work (Yin and Schütze, 2015) Dep-CNN: Dependency-based Convolutional Neural Network (Ma et al.,
2015). Dependency parser is required. The result is for the combined model ancestor+sibling+sequential.
Neural-BoW : Neural Bag-of-Words Models (Kalchbrenner et al., 2014) DAN: Deep Averaging Network
(Iyyer et al., 2015) Paragraph-Vector: Logistic Regression on Paragraph-Vector (Le and Mikolov, 2014)
WRRBM+BoW(bnc): word representation Restricted Boltzmann Machine combined with bag-of-words
features (Dahl et al., 2012) Full+Unlabeled+BoW(bnc):word vector based model capturing both semantic
and sentiment, trained on unlabeled examples, and with bag-of-words features concatenated (Maas et al.,
2011)

1517

by (Socher et al., 2013). The sentences are labeled
in a fine-grained way (SST-5): {very negative, neg-
ative, neutral, positive, very positive}. The dataset
has been split into 8,544 training, 1,101 validation,
and 2,210 testing sentences. Without neutral sen-
tences, SST can also be used in binary mode (SST-
2), where the split is 6,920 training, 872 validation,
and 1,821 testing.

Furthermore, we apply DSCNN on question type
classification task on TREC dataset (Li and Roth,
2002), where sentences are questions in the follow-
ing 6 classes: {abbreviation, entity, description, lo-
cation, numeric}. The entire dataset consists of
5,452 training examples and 500 testing examples.

We also benchmark our system on the subjectivity
classification dataset (SUBJ) released by (Pang and
Lee, 2004). The dataset contains 5,000 subjective
sentences and 5,000 objective sentences. We report
10-fold cross validation results as the baseline does.

For document-level dataset, we use Large Movie
Review (IMDB) created by (Maas et al., 2011).
There are 25,000 training and 25,000 testing ex-
amples with binary sentiment polarity labels, and
50,000 unlabeled examples. Different from Stanford
Sentiment Treebank and Movie Review dataset, ev-
ery example in this dataset has several sentences.

5.2 Training Details and Implementation

We use two sets of 300-dimensional pre-trained
embeddings, word2vec1 and GloVe2, forming two
channels for our network. For all datasets, we use
100 convolution filters each for window sizes of 3,
4, 5. Rectified Linear Units (ReLU) is chosen as the
nonlinear function in the convolutional layer.

For regularization, before the softmax layers, we
employ Dropout operation (Hinton et al., 2012) with
dropout rate 0.5, and we do not perform any l2 con-
straints over the parameters. We use the gradient-
based optimizer Adadelta (Zeiler, 2012) to minimize
cross-entropy loss between the predicted and true
distributions, and the training is early stopped when
the accuracy on validation set starts to drop.

As for training cost, our system processes around
4000 tokens per second on a single GTX 670 GPU.
As an example, this amounts to 1 minute per epoch

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/

on the TREC dataset, converging within 50 epochs.

5.3 Pretraining of LSTM
We experiment with two variants of parameter ini-
tialization of sentence level LSTMs. The first vari-
ant (DSCNN in Table 1) initializes the weight ma-
trices in LSTMs as random orthogonal matrices. In
the second variant (DSCNN-Pretrain in Table 1), we
first train sequence autoencoders (Dai and Le, 2015)
which read input sentences at the encoder and re-
construct the input at the decoder. We pretrain sepa-
rately on each task based on the same train/valid/test
splits. The pretrained encoders are used to be the
start points of LSTM layers for later supervised clas-
sification tasks.

Figure 3: Number of sentences in TREC, and clas-
sification performances of DSCNN-Pretrain/Dep-
CNN/CNN-MC as functions of dependency lengths.
DSCNN and Dep-CNN clearly outperforms CNN-
MC when the dependency length in the sentence
grows.

5.4 Results and Discussions
Table 1 reports the results of DSCNN on different
datasets, demonstrating its effectiveness in compar-
ison with other state-of-the-art methods.

5.4.1 Sentence Modeling
For sentence modeling tasks, DSCNN beats all

baselines on MR and TREC, and achieves the
same best result on SUBJ as MVCNN. In SST-2,
DSCNN only reports a slightly lower accuracy than
MVCNN. In MVCNN, however, the author uses
more resources including five versions of word em-
beddings. For SST-5, DSCNN is second only to

1518

(a) description→ entity (b) numeric→ location

(c) entity→ location

(d) entity→ human

Figure 4: TREC examples that are misclassified by CNN-MC but correctly classified by DSCNN. For
example, CNN-MC labels (a) as entity while the ground truth is description. Dependency Parsing is done
by ClearNLP (Choi and Palmer, 2012).

(a) numeric→ description
(b) abbreviation→ description

(c) location→ entity

Figure 5: TREC examples that are misclassified by DSCNN. For example, DSCNN labels (a) as description
while the ground truth is numeric. Dependency Parsing is done by ClearNLP (Choi and Palmer, 2012).

Tree-LSTM, which nonetheless relies on parsers to
build tree-structured neural models.

The benefit of DSCNN is illustrated by its consis-
tently better results over the sequential CNN mod-
els including DCNN and CNN-MC. The superior-
ity of DSCNN is mainly attributed to its ability to
maintain long-term dependencies. Figure 3 depicts
the correlation between the dependency length and
the classification accuracy. While CNN-MC and
DSCNN are similar when the sum of dependency
arc lengths is below 15, DSCNN gains obvious ad-

vantages when dependency lengths grow for long
and complex sentences. Dep-CNN is also more ro-
bust than CNN-MC, but it relies on the dependency
parser and predefined patterns to model longer lin-
guistic structures.

Figure 4 gives some examples where DSCNN
makes correct predictions while CNN-MC fails. In
the first example, CNN-MC classifies the question
as entity due to its focus on the noun phrase “worn
or outdated flags”, while DSCNN captures the long
dependency between “done with” and “flags”, and

1519

assigns the correct label description. Similarly in
the second case, due to “Nile”, CNN-MC labels the
question as location, while the dependency between
“depth of” and “river” is ignored. As for the third ex-
ample, the question involves a complicated and long
attributive clause for the subject “artery”. CNN-MC
gets easily confused and predicts the type as loca-
tion due to words “from” and “to”, while DSCNN
keeps correct. Finally, “Lindbergh” in the last ex-
ample make CNN-MC bias to human.

We also sample some misclassified examples of
DSCNN in Figure 5. Example (a) fails because the
numeric meaning of “point” is not captured by the
word embedding. Similarly, in the second exam-
ple, the error is due to the out-of-vocabulary word
“TMJ” and it is thus apparently difficult for DSCNN
to figure out that it is an abbreviation. Example (c)
is likely to be an ambiguous or mistaken annotation.
The finding here agrees with the discussion in Dep-
CNN work (Ma et al., 2015).

5.4.2 Document Modeling
For document modeling, the result of DSCNN on

IMDB against other baselines is listed on the last
column of Table 1. Documents in IMDB consist
of several sentences and thus very long: the average
length is 241 tokens per document and the maximum
length is 2526 words (Dai and Le, 2015). As a result,
there is no result reported using CNN-based models
due to prohibited computation time, and most pre-
vious works are unordered models including varia-
tions of bag-of-words.

DSCNN outperforms bag-of-words model (Maas
et al., 2011), Deep Averaging Network (Iyyer et
al., 2015), and word representation Restricted Boltz-
mann Machine model combined with bag-of-words
features (Dahl et al., 2012). The key weakness of
bag-of-words prevents those models from capturing
long-term dependencies.

Besides, Paragraph Vector (Le and Mikolov,
2014) and SA-LSTM (Dai and Le, 2015) achieve
better results than DSCNN. It is worth mentioning
that both methods, as unsupervised learning algo-
rithms, can gain much positive effects from unla-
beled data (they are using 50,000 unlabeled exam-
ples in IMDB). For example in (Dai and Le, 2015),
with additional data from Amazon reviews, the error
rate of SA-LSTM on MR dataset drops by 3.6%.

6 Conclusion

In this work, we present DSCNN, Dependency Sen-
sitive Convolutional Neural Networks for purpose
of text modeling at both sentence and document
levels. DSCNN captures long-term inter-sentence
and intra-sentence dependencies by processing word
vectors through layers of LSTM networks, and ex-
tracts features by convolutional operators for clas-
sification. Experiments show that DSCNN consis-
tently outperforms traditional CNNs, and achieves
state-of-the-art results on several sentiment analysis,
question type classification and subjectivity classifi-
cation datasets.

Acknowledgments

We thank anonymous reviewers for their construc-
tive comments. This work was supported by a Uni-
versity of Michigan EECS department fellowship
and NSF CAREER grant IIS-1453651.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The Journal of Machine Learning Re-
search, 3:1137–1155.

Jinho D Choi and Martha Palmer. 2012. Guidelines for
the clear style constituent to dependency conversion.
Technical report, Technical Report 01-12, University
of Colorado at Boulder.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings
of ICML, pages 160–167. ACM.

George E Dahl, Ryan P Adams, and Hugo Larochelle.
2012. Training restricted boltzmann machines on
word observations. arXiv preprint arXiv:1202.5695.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. arXiv preprint arXiv:1511.01432.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.

1520

Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sepp Hochreiter. 1998. The vanishing gradient prob-
lem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 6(02):107–116.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive neu-
ral networks for compositionality in language. In Pro-
ceedings of NIPS, 2014, pages 2096–2104.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered composi-
tion rivals syntactic methods for text classification. In
Proceedings of ACL-IJCNLP, volume 1, pages 1681–
1691.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. In Proceedings of EMNLP, pages
1746–1751, Doha, Qatar, October.

Thomas K Landauer and Susan T Dumais. 1997. A so-
lution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological review, 104(2):211.

Quoc V Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. arXiv preprint
arXiv:1405.4053.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE,
86(11):2278–2324.

X. Li and D. Roth. 2002. Learning question classifiers.
In COLING, pages 556–562.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. arXiv preprint arXiv:1506.01057.

Mingbo Ma, Liang Huang, Bing Xiang, and Bowen
Zhou. 2015. Dependency-based convolutional neu-
ral networks for sentence embedding. In Proceedings
of ACL-IJCNLP, volume 2, page 174.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of ACL-HLT, pages 142–150, Portland, Ore-
gon, USA, June.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Proceedings of NIPS, pages 3111–3119.

Bo Pang and Lillian Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of ACL, page
271. Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL, pages
115–124. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of EMNLP, 12:1532–1543.

Joao Silva, Luı́sa Coheur, Ana Cristina Mendes, and An-
dreas Wichert. 2011. From symbolic to sub-symbolic
information in question classification. Artificial Intel-
ligence Review, 35(2):137–154.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of EMNLP-CoNLL, pages 1201–1211. Associa-
tion for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, volume 1631, page 1642.
Citeseer.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. arXiv preprint arXiv:1503.00075.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2014. Show and tell: A neural image
caption generator. arXiv preprint arXiv:1411.4555.

Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hin-
ton, Kiyohiro Shikano, and Kevin J Lang. 1989.
Phoneme recognition using time-delay neural net-
works. Acoustics, Speech and Signal Processing,
IEEE Transactions on, 37(3):328–339.

Sida Wang and Christopher D Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic classi-
fication. In Proceedings of ACL: Short Papers-Volume
2, pages 90–94. Association for Computational Lin-
guistics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao
Su, David Vandyke, and Steve Young. 2015. Seman-
tically conditioned lstm-based natural language gen-
eration for spoken dialogue systems. arXiv preprint
arXiv:1508.01745.

Wenpeng Yin and Hinrich Schütze. 2015. Multichan-
nel variable-size convolution for sentence classifica-
tion. In Proceedings of CoNLL, pages 204–214, Bei-
jing, China, July.

Matthew D Zeiler. 2012. Adadelta: An adaptive learning
rate method. arXiv preprint arXiv:1212.5701.

1521

Proceedings of NAACL-HLT 2016, pages 1522–1527,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

MGNC-CNN: A Simple Approach to Exploiting
Multiple Word Embeddings for Sentence Classification

Ye Zhang1 Stephen Roller1 Byron C. Wallace2

1Department of Computer Science 2iSchool
The University of Texas at Austin The University of Texas at Austin

{yezhang,roller}@cs.utexas.edu byron.wallace@utexas.edu

Abstract

We introduce a novel, simple convolution neu-
ral network (CNN) architecture – multi-group
norm constraint CNN (MGNC-CNN) – that
capitalizes on multiple sets of word embed-
dings for sentence classification. MGNC-
CNN extracts features from input embedding
sets independently and then joins these at the
penultimate layer in the network to form a fi-
nal feature vector. We then adopt a group
regularization strategy that differentially pe-
nalizes weights associated with the subcom-
ponents generated from the respective embed-
ding sets. This model is much simpler than
comparable alternative architectures and re-
quires substantially less training time. Fur-
thermore, it is flexible in that it does not re-
quire input word embeddings to be of the same
dimensionality. We show that MGNC-CNN
consistently outperforms baseline models.

1 Introduction

Neural models have recently gained popularity for
Natural Language Processing (NLP) tasks (Gold-
berg, 2015; Collobert and Weston, 2008; Cho,
2015). For sentence classification, in particular,
Convolution Neural Networks (CNN) have realized
impressive performance (Kim, 2014; Zhang and
Wallace, 2015). These models operate over word
embeddings, i.e., dense, low dimensional vector rep-
resentations of words that aim to capture salient se-
mantic and syntactic properties (Collobert and We-
ston, 2008).

An important consideration for such models is the

specification of the word embeddings. Several op-
tions exist. For example, Kalchbrenner et al. (2014)
initialize word vectors to random low-dimensional
vectors to be fit during training, while Johnson
and Zhang (2014) use fixed, one-hot encodings for
each word. By contrast, Kim (2014) initializes
word vectors to those estimated via the word2vec
model trained on 100 billion words of Google
News (Mikolov et al., 2013); these are then up-
dated during training. Initializing embeddings to
pre-trained word vectors is intuitively appealing be-
cause it allows transfer of learned distributional se-
mantics. This has allowed a relatively simple CNN
architecture to achieve remarkably strong results.

Many pre-trained word embeddings are now read-
ily available on the web, induced using different
models, corpora, and processing steps. Different
embeddings may encode different aspects of lan-
guage (Padó and Lapata, 2007; Erk and Padó, 2008;
Levy and Goldberg, 2014): those based on bag-of-
words (BoW) statistics tend to capture associations
(doctor and hospital), while embeddings based on
dependency-parses encode similarity in terms of use
(doctor and surgeon). It is natural to consider how
these embeddings might be combined to improve
NLP models in general and CNNs in particular.

Contributions. We propose MGNC-CNN, a novel,
simple, scalable CNN architecture that can accom-
modate multiple off-the-shelf embeddings of vari-
able sizes. Our model treats different word em-
beddings as distinct groups, and applies CNNs in-
dependently to each, thus generating corresponding
feature vectors (one per embedding) which are then

1522

concatenated at the classification layer. Inspired by
prior work exploiting regularization to encode struc-
ture for NLP tasks (Yogatama and Smith, 2014; Wal-
lace et al., 2015), we impose different regularization
penalties on weights for features generated from the
respective word embedding sets.

Our approach enjoys the following advantages com-
pared to the only existing comparable model (Yin
and Schütze, 2015): (i) It can leverage diverse, read-
ily available word embeddings with different dimen-
sions, thus providing flexibility. (ii) It is compar-
atively simple, and does not, for example, require
mutual learning or pre-training. (iii) It is an order of
magnitude more efficient in terms of training time.

2 Related Work

Prior work has considered combining latent repre-
sentations of words that capture syntactic and se-
mantic properties (Van de Cruys et al., 2011), and in-
ducing multi-modal embeddings (Bruni et al., 2012)
for general NLP tasks. And recently, Luo et al.
(2014) proposed a framework that combines mul-
tiple word embeddings to measure text similarity,
however their focus was not on classification.

More similar to our work, Yin and Schütze (2015)
proposed MVCNN for sentence classification. This
CNN-based architecture accepts multiple word em-
beddings as inputs. These are then treated as sepa-
rate ‘channels’, analogous to RGB channels in im-
ages. Filters consider all channels simultaneously.
MVCNN achieved state-of-the-art performance on
multiple sentence classification tasks. However, this
model has practical drawbacks. (i) MVCNN re-
quires that input word embeddings have the same
dimensionality. Thus to incorporate a second set of
word vectors trained on a corpus (or using a model)
of interest, one needs to either find embeddings that
happen to have a set number of dimensions or to es-
timate embeddings from scratch. (ii) The model is
complex, both in terms of implementation and run-
time. Indeed, this model requires pre-training and
mutual-learning and requires days of training time,
whereas the simple architecture we propose requires
on the order of an hour (and is easy to implement).

3 Model Description

We first review standard one-layer CNN (which ex-
ploits a single set of embeddings) for sentence clas-
sification (Kim, 2014), and then propose our aug-
mentations, which exploit multiple embedding sets.

Basic CNN. In this model we first replace each word
in a sentence with its vector representation, result-
ing in a sentence matrix A ∈ Rs×d, where s is the
(zero-padded) sentence length, and d is the dimen-
sionality of the embeddings. We apply a convolu-
tion operation between linear filters with parameters
w1,w2, ...,wk and the sentence matrix. For each
wi ∈ Rh×d, where h denotes ‘height’, we slide fil-
ter i across A, considering ‘local regions’ of h ad-
jacent rows at a time. At each local region, we per-
form element-wise multiplication and then take the
element-wise sum between the filter and the (flat-
tened) sub-matrix of A, producing a scalar. We do
this for each sub-region of A that the filter spans, re-
sulting in a feature map vector ci ∈ R(s−h+1)×1. We
can use multiple filter sizes with different heights,
and for each filter size we can have multiple fil-
ters. Thus the model comprises k weight vectors
w1,w2, ...wk, each of which is associated with an
instantiation of a specific filter size. These in turn
generate corresponding feature maps c1, c2, ...ck,
with dimensions varying with filter size. A 1-max
pooling operation is applied to each feature map,
extracting the largest number oi from each feature
map i. Finally, we combine all oi together to form a
feature vector o ∈ Rk to be fed through a softmax
function for classification. We regularize weights at
this level in two ways. (1) Dropout, in which we
randomly set elements in o to zero during the train-
ing phase with probability p, and multiply p with the
parameters trained in o at test time. (2) An l2 norm
penalty, for which we set a threshold λ for the l2
norm of o during training; if this is exceeded, we
rescale the vector accordingly. For more details, see
(Zhang and Wallace, 2015).

MG-CNN. Assuming we have m word embeddings
with corresponding dimensions d1, d2, ...dm, we can
simply treat each word embedding independently.
In this case, the input to the CNN comprises mul-
tiple sentence matrices A1,A2, ...Am, where each
Al ∈ Rs×dl may have its own width dl. We then ap-

1523

ply different groups of filters {w1}, {w2}, ...{wm}
independently to each Al, where {wl} denotes the
set of filters for Al. As in basic CNN, {wl} may
have multiple filter sizes, and multiple filters of each
size may be introduced. At the classification layer
we then obtain a feature vector ol for each embed-
ding set, and we can simply concatenate these to-
gether to form the final feature vector o to feed into
the softmax function, where o = o1 ⊕ o2... ⊕ om.
This representation contains feature vectors gener-
ated from all sets of embeddings under considera-
tion. We call this method multiple group CNN (MG-
CNN). Here groups refer to the features generated
from different embeddings. Note that this differs
from ‘multi-channel’ models because at the convo-
lution layer we use different filters on each word em-
bedding matrix independently, whereas in a standard
multi-channel approach each filter would consider
all channels simultaneously and generate a scalar
from all channels at each local region. As above, we
impose a max l2 norm constraint on the final feature
vector o for regularization. Figure 1 illustrates this
approach.

MGNC-CNN. We propose an augmentation of MG-
CNN, Multi-Group Norm Constraint CNN (MGNC-
CNN), which differs in its regularization strategy.
Specifically, in this variant we impose grouped reg-
ularization constraints, independently regularizing
subcomponents ol derived from the respective em-
beddings, i.e., we impose separate max norm con-
straints λl for each ol (where l again indexes em-
bedding sets); these λl hyper-parameters are to be
tuned on a validation set. Intuitively, this method
aims to better capitalize on features derived from
word embeddings that capture discriminative prop-
erties of text for the task at hand by penalizing larger
weight estimates for features derived from less dis-
criminative embeddings.

4 Experiments

4.1 Datasets

Stanford Sentiment Treebank Stanford Sentiment
Treebank (SST) (Socher et al., 2013). This concerns
predicting movie review sentiment. Two datasets
are derived from this corpus: (1) SST-1, containing

I
hate
this

movie

Convolution
Layer

1 max
pooling

softmax
function

embedding 1 embedding 2

o1 o2

o

 Two filters
height 2

Two filters
height 3

Two filters
height 2

Two filters
height 3

8 feature
maps

Figure 1: Illustration of MG-CNN and MGNC-CNN. The fil-

ters applied to the respective embeddings are completely inde-

pendent. MG-CNN applies a max norm constraint to o, while

MGNC-CNN applies max norm constraints on o1 and o2 in-

dependently (group regularization). Note that one may easily

extend the approach to handle more than two embeddings at

once.

five classes: very negative, negative, neutral, posi-
tive, and very positive. (2) SST-2, which has only
two classes: negative and positive. For both, we re-
move phrases of length less than 4 from the training
set.1 Subj (Pang and Lee, 2004). The aim here is to
classify sentences as either subjective or objective.
This comprises 5000 instances of each. TREC (Li
and Roth, 2002). A question classification dataset
containing six classes: abbreviation, entity, descrip-
tion, human, location and numeric. There are 5500
training and 500 test instances. Irony (Wallace et
al., 2014). This dataset contains 16,006 sentences
from reddit labeled as ironic (or not). The dataset
is imbalanced (relatively few sentences are ironic).
Thus before training, we under-sampled negative in-
stances to make classes sizes equal. Note that for
this dataset we report the Area Under Curve (AUC),
rather than accuracy, because it is imbalanced.

1As in (Kim, 2014).

1524

Model Subj SST-1 SST-2 TREC Irony
CNN(w2v) 93.14 (92.92,93.39) 46.99 (46.11,48.28) 87.03 (86.16,88.08) 93.32 (92.40,94.60) 67.15 (66.53,68.11)
CNN(Glv) 93.41(93.20,93.51) 46.58 (46.11,47.06) 87.36 (87.20,87.64) 93.36 (93.30,93.60) 67.84 (67.29,68.38)
CNN(Syn) 93.24(93.01,93.45) 45.48(44.67,46.24) 86.04 (85.28,86.77) 94.68 (94.00,95.00) 67.93 (67.30,68.38)

MVCNN (Yin and Schütze, 2015) 93.9 49.6 89.4 - -
C-CNN(w2v+Glv) 93.72 (93.68,93.76) 47.02(46.24,47.69) 87.42(86.88,87.81) 93.80 (93.40,94.20) 67.70 (66.97,68.35)
C-CNN(w2v+Syn) 93.48 (93.43,93.52) 46.91(45.97,47.81) 87.17 (86.55,87.42) 94.66 (94.00,95.20) 68.08 (67.33,68.57)

C-CNN(w2v+Syn+Glv) 93.61 (93.47,93.77) 46.52 (45.02,47.47) 87.55 (86.77,88.58) 95.20 (94.80,65.60) 68.38 (67.66,69.23)
MG-CNN(w2v+Glv) 93.84 (93.66,94.35) 48.24 (47.60,49.05) 87.90 (87.48,88.30) 94.09 (93.60,94.80) 69.40 (66.35,72.30)
MG-CNN(w2v+Syn) 93.78 (93.62,93.98) 48.48(47.78,49.19) 87.47(87.10,87.70) 94.87 (94.00,95.60) 68.28 (66.44,69.97)

MG-CNN(w2v+Syn+Glv) 94.11 (94.04,94.17) 48.01 (47.65,48.37) 87.63(87.04,88.36) 94.68 (93.80,95.40) 69.19(67.06,72.30)
MGNC-CNN(w2v+Glv) 93.93 (93.79,94.14) 48.53 (47.92,49.37) 88.35(87.86,88.74) 94.40 (94.00,94.80) 69.15 (67.25,71.70)
MGNC-CNN(w2v+Syn) 93.95 (93.75,94.21) 48.51 (47.60,49.41) 87.88(87.64,88.19) 95.12 (94.60,95.60) 69.35 (67.40,70.86)

MGNC-CNN(w2v+Syn+Glv) 94.09 (93.98,94.18) 48.65 (46.92,49.19) 88.30 (87.83,88.65) 95.52 (94.60,96.60) 71.53 (69.74,73.06)

Table 1: Results mean (min, max) achieved with each method. w2v:word2vec. Glv:GloVe. Syn: Syntactic embedding. Note that

we experiment with using two and three sets of embeddings jointly, e.g., w2v+Syn+Glv indicates that we use all three of these.

Model Subj SST-1 SST-2 TREC Irony
CNN(w2v) 9 81 81 9 243
CNN(Glv) 3 9 1 9 81
CNN(Syn) 3 81 9 81 1

C-CNN(w2v+Glv) 9 9 3 3 1
C-CNN(w2v+Syn) 3 81 9 9 1

C-CNN(w2v+Syn+Glv) 9 9 1 81 81
MG-CNN(w2v+Glv) 3 9 3 81 9
MG-CNN(w2v+Syn) 9 81 3 81 3

MG-CNN(w2v+Syn+Glv) 9 1 9 243 9
MGNC-CNN(w2v+Glv) (9,3) (81,9) (1,1) (9,81) (243,243)
MGNC-CNN(w2v+Syn) (3,3) (81,81) (81,9) (81,81) (81,3)

MGNC-CNN(w2v+Syn+Glv) (81,81,81) (81,81,1) (9,9,9) (1,81,81) (243,243,3)

Table 2: Best λ2 value on the validation set for each method w2v:word2vec. Glv:GloVe. Syn: Syntactic embedding.

4.2 Pre-trained Word Embeddings

We consider three sets of word embeddings for our
experiments: (i) word2vec2 is trained on 100 billion
tokens of Google News dataset; (ii) GloVe (Pen-
nington et al., 2014)3 is trained on aggregated global
word-word co-occurrence statistics from Common
Crawl (840B tokens); and (iii) syntactic word
embedding trained on dependency-parsed corpora.
These three embedding sets happen to all be 300-
dimensional, but our model could accommodate ar-
bitrary and variable sizes.

We pre-trained our own syntactic embeddings fol-
lowing (Levy and Goldberg, 2014). We parsed
the ukWaC corpus (Baroni et al., 2009) using the
Stanford Dependency Parser v3.5.2 with Stanford
Dependencies (Chen and Manning, 2014) and ex-
tracted (word, relation+context) pairs from parse
trees. We “collapsed” nodes with prepositions
and notated inverse relations separately, e.g., “dog

2https://code.google.com/p/word2vec/
3http://nlp.stanford.edu/projects/glove/

barks” emits two tuples: (barks, nsubj dog) and
(dog, nsubj−1 barks). We filter words and contexts
that appear fewer than 100 times, resulting in∼173k
words and 1M contexts. We trained 300d vectors us-
ing word2vecf4 with default parameters.

4.3 Setup

We compared our proposed approaches to a stan-
dard CNN that exploits a single set of word em-
beddings (Kim, 2014). We also compared to a
baseline of simply concatenating embeddings for
each word to form long vector inputs. We re-
fer to this as Concatenation-CNN C-CNN. For
all multiple embedding approaches (C-CNN, MG-
CNN and MGNC-CNN), we explored two com-
bined sets of embedding: word2vec+Glove, and
word2vec+syntactic, and one three sets of embed-
ding: word2vec+Glove+syntactic. For all models,
we tuned the l2 norm constraint λ over the range
{1

3 , 1, 3, 9, 81, 243} on a validation set. For instan-

4https://bitbucket.org/yoavgo/word2vecf/

1525

tiations of MGNC-CNN in which we exploited two
embeddings, we tuned both λ1, and λ2; where we
used three embedding sets, we tuned λ1, λ2 and λ3.

We used standard train/test splits for those datasets
that had them. Otherwise, we performed 10-fold
cross validation, creating nested development sets
with which to tune hyperparameters. For all exper-
iments we used filters sizes of 3, 4 and 5 and we
created 100 feature maps for each filter size. We
applied 1 max-pooling and dropout (rate: 0.5) at
the classification layer. For training we used back-
propagation in mini-batches and used AdaDelta as
the stochastic gradient descent (SGD) update rule,
and set mini-batch size as 50. In this work, we treat
word embeddings as part of the parameters of the
model, and update them as well during training. In
all our experiments, we only tuned the max norm
constraint(s), fixing all other hyperparameters.

4.4 Results and Discussion

We repeated each experiment 10 times and report
the mean and ranges across these. This replication
is important because training is stochastic and thus
introduces variance in performance (Zhang and Wal-
lace, 2015). Results are shown in Table 1, and the
corresponding best norm constraint value is shown
in Table 2. We also show results on Subj, SST-1 and
SST-2 achieved by the more complex model of (Yin
and Schütze, 2015) for comparison; this represents
the state-of-the-art on the three datasets other than
TREC.

We can see that MGNC-CNN and MG-CNN al-
ways outperform baseline methods (including C-
CNN), and MGNC-CNN is usually better than
MG-CNN. And on the Subj dataset, MG-CNN ac-
tually achieves slightly better results than (Yin and
Schütze, 2015), with far less complexity and re-
quired training time (MGNC-CNN performs com-
parably, although no better, here). On the TREC
dataset, the best-ever accuracy we are aware of is
96.0% (Mou et al., 2015), which falls within the
range of the result of our MGNC-CNN model with
three word embeddings. On the irony dataset, our
model with three embeddings achieves 4% improve-
ment (in terms of AUC) compared to the baseline
model.

On SST-1 and SST-2, our model performs slightly
worse than (Yin and Schütze, 2015). However, we
again note that their performance is achieved using
a much more complex model which involves pre-
training and mutual-learning steps. This model takes
days to train, whereas our model requires on the or-
der of an hour.

We note that the method proposed by Astudillo et
al. (2015) is able to accommodate multiple embed-
ding sets with different dimensions by projecting the
original word embeddings into a lower-dimensional
space. However, this work requires training the op-
timal projection matrix on laebled data first, which
again incurs large overhead.

Of course, our model also has its own limitations: in
MGNC-CNN, we need to tune the norm constraint
hyperparameter for all the word embeddings. As the
number of word embedding increases, this will in-
crease the running time. However, this tuning pro-
cedure is embarrassingly parallel.

5 Conclusions

We have proposed MGNC-CNN: a simple, flexible
CNN architecture for sentence classification that can
exploit multiple, variable sized word embeddings.
We demonstrated that this consistently achieves bet-
ter results than a baseline architecture that exploits
only a single set of word embeddings, and also
a naive concatenation approach to capitalizing on
multiple embeddings. Furthermore, our results are
comparable to those achieved with a recently pro-
posed model (Yin and Schütze, 2015) that is much
more complex. However, our simple model is easy
to implement and requires an order of magnitude
less training time. Furthermore, our model is much
more flexible than previous approaches, because it
can accommodate variable-size word embeddings.

Acknowledgments

This work was supported in part by the Army Re-
search Office (grant W911NF-14-1-0442) and by
The Foundation for Science and Technology, Portu-
gal (grant UTAP-EXPL/EEIESS/0031/2014). This
work was also made possible by the support of the
Texas Advanced Computer Center (TACC) at UT
Austin.

1526

References

Ramon F Astudillo, Silvio Amir, Wang Lin, Mário Silva,
and Isabel Trancoso. 2015. Learning word representa-
tions from scarce and noisy data with embedding sub-
spaces. In Proceedings of Association for Computational
Linguistics, pages 1074–1084.
Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and
Eros Zanchetta. 2009. The wacky wide web: a collection
of very large linguistically processed web-crawled cor-
pora. Language Resources and Evaluation, 43(3):209–
226.
Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in techni-
color. In Proceedings of Association for Computational
Linguistics, pages 136–145.
Danqi Chen and Christopher Manning. 2014. A fast and
accurate dependency parser using neural networks. In
Proceedings of Empirical Methods in Natural Language
Processing, pages 740–750.
Kyunghyun Cho. 2015. Natural language under-
standing with distributed representation. arXiv preprint
arXiv:1511.07916.
Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceedings of
the International Conference on Machine learning, pages
160–167.
Katrin Erk and Sebastian Padó. 2008. A structured vec-
tor space model for word meaning in context. In Pro-
ceedings of Empirical Methods in Natural Language Pro-
cessing, pages 897–906.
Yoav Goldberg. 2015. A primer on neural network
models for natural language processing. arXiv preprint
arXiv:1510.00726.
Rie Johnson and Tong Zhang. 2014. Effective use
of word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058.
Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.
Yoon Kim. 2014. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882.
Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of Association
for Computational Linguistics, pages 302–308.
Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In Proceedings of the International Conference on
Computational Linguistics, pages 1–7.
Yong Luo, Jian Tang, Jun Yan, Chao Xu, and Zheng
Chen. 2014. Pre-trained multi-view word embedding us-
ing two-side neural network. In Conference on Artificial
Intelligence.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representations
of words and phrases and their compositionality. In Ad-
vances in Neural Information Processing Systems, pages
3111–3119.
Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, and
Zhi Jin. 2015. Discriminative neural sentence modeling
by tree-based convolution. In Proceedings of Empirical
Methods in Natural Language Processing, pages 2315–
2325.
Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space models. Computa-
tional Linguistics, 33(2):161–199.
Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In Proceedings of Associa-
tion for Computational Linguistics, page 271.
Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word repre-
sentation. In Proceedings of the Empirical Methods in
Natural Language Processing, pages 1532–1543.
Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In
Proceedings of Empirical Methods in Natural Language
Processing, pages 1631–1642.
Tim Van de Cruys, Thierry Poibeau, and Anna Korho-
nen. 2011. Latent vector weighting for word meaning in
context. In Proceedings of Empirical Methods in Natural
Language Processing, pages 1012–1022.
Byron C. Wallace, Do Kook Choe, Laura Kertz, and Eu-
gene Charniak. 2014. Humans require context to infer
ironic intent (so computers probably do, too). In Pro-
ceedings of Association for Computational Linguistics,
pages 512–516.
Byron C. Wallace, Do Kook Choe, and Eugene Charniak.
2015. Sparse, contextually informed models for irony
detection: Exploiting user communities, entities and sen-
timent. In Proceedings of Association for Computational
Linguistics, pages 1035–1044.
Wenpeng Yin and Hinrich Schütze. 2015. Multichannel
variable-size convolution for sentence classification. In
Proceedings of the Conference on Computational Natural
Language Learning, pages 204–214.
Dani Yogatama and Noah Smith. 2014. Making the most
of bag of words: Sentence regularization with alternating
direction method of multipliers. In Proceedings of the
International Conference on Machine Learning, pages
656–664.
Ye Zhang and Byron C. Wallace. 2015. A sensi-
tivity analysis of (and practitioners’ guide to) convolu-
tional neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

1527

Proceedings of NAACL-HLT 2016, pages 1528–1533,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Improving sentence compression by learning to predict gaze

Sigrid Klerke
University of Copenhagen

skl@hum.ku.dk

Yoav Goldberg
Bar-Ilan University

yoav.goldberg@gmail.com

Anders Søgaard
University of Copenhagen

soegaard@hum.ku.dk

Abstract

We show how eye-tracking corpora can be
used to improve sentence compression mod-
els, presenting a novel multi-task learning al-
gorithm based on multi-layer LSTMs. We ob-
tain performance competitive with or better
than state-of-the-art approaches.

1 Introduction

Sentence compression is a basic operation in text
simplification which has the potential to improve
statistical machine translation and automatic sum-
marization (Berg-Kirkpatrick et al., 2011; Klerke et
al., 2015), as well as helping poor readers in need of
assistive technologies (Canning et al., 2000). This
work suggests using eye-tracking recordings for im-
proving sentence compression for text simplification
systems and is motivated by two observations: (i)
Sentence compression is the task of automatically
making sentences easier to process by shortening
them. (ii) Eye-tracking measures such as first-pass
reading time and time spent on regressions, i.e., dur-
ing second and later passes over the text, are known
to correlate with perceived text difficulty (Rayner et
al., 2012).

These two observations recently lead Klerke et
al. (2015) to suggest using eye-tracking measures as
metrics in text simplification. We go beyond this by
suggesting that eye-tracking recordings can be used
to induce better models for sentence compression
for text simplification. Specifically, we show how
to use existing eye-tracking recordings to improve
the induction of Long Short-Term Memory models
(LSTMs) for sentence compression.

Our proposed model does not require that the gaze
data and the compression data come from the same
source. Indeed, in this work we use gaze data from
readers of the Dundee Corpus to improve sentence
compression results on several datasets. While not
explored here, an intriguing potential of this work
is in deriving sentence simplification models that
are personalized for individual users, based on their
reading behavior.

Several approaches to sentence compression have
been proposed, from noisy channel models (Knight
and Marcu, 2002) over conditional random fields
(Elming et al., 2013) to tree-to-tree machine trans-
lation models (Woodsend and Lapata, 2011). More
recently, Filippova et al. (2015) successfully used
LSTMs for sentence compression on a large scale
parallel dataset. We do not review the literature here,
and only compare to Filippova et al. (2015).

Our contributions

• We present a novel multi-task learning ap-
proach to sentence compression using labelled
data for sentence compression and a disjoint
eye-tracking corpus.

• Our method is fully competitive with state-of-
the-art across three corpora.

• Our code is made publicly available at
https://bitbucket.org/soegaard/
gaze-mtl16.

2 Gaze during reading

Readers fixate longer at rare words, words that are
semantically ambiguous, and words that are mor-

1528

phologically complex (Rayner et al., 2012). These
are also words that are likely to be replaced with
simpler ones in sentence simplification, but it is not
clear that they are words that would necessarily be
removed in the context of sentence compression.

Demberg and Keller (2008) show that syntac-
tic complexity (measured as dependency locality) is
also an important predictor of reading time. Phrases
that are often removed in sentence compression—
like fronted phrases, parentheticals, floating quanti-
fiers, etc.—are often associated with non-local de-
pendencies. Also, there is evidence that people are
more likely to fixate on the first word in a con-
stituent than on its second word (Hyönä and Pol-
latsek, 2000). Being able to identify constituent
borders is important for sentence compression, and
reading fixation data may help our model learn a rep-
resentation of our data that makes it easy to identify
constituent boundaries.

In the experiments below, we learn models to pre-
dict the first pass duration of word fixations and the
total duration of regressions to a word. These two
measures constitute a perfect separation of the to-
tal reading time of each word split between the first
pass and subsequent passes. Both measures are de-
scribed below. They are both discretized into six
bins as follows with only non-zero values contribut-
ing to the calculation of the standard deviation (SD):

0: measure = 0 or
1: measure < 1 SD below reader’s average or
2: measure < .5 SD below reader’s average or
3: measure < .5 above reader’s average or
4: measure > .5 SD above reader’s average or
5: measure > 1 SD above reader’s average

First pass duration measures the total time spent
reading a word first time it is fixated, including
any immediately following re-fixations of the same
word. This measure correlates with word length, fre-
quency and ambiguity because long words are likely
to attract several fixations in a row unless they are
particularly easily predicted or recognized. This ef-
fect arises because long words are less likely to fit
inside the fovea of the eye. Note that for this mea-
sure the value 0 indicates that the word was not fix-
ated by this reader.

Words FIRST PASS REGRESSIONS

Are 4 4
tourists 2 0
enticed 3 0
by 4 0
these 2 0
attractions 3 0
threatening 3 3
their 5 0
very 3 3
existence 3 5
? 3 5

Figure 1: Example sentence from the Dundee Corpus

Regression duration measures the total time
spent fixating a word after the gaze has already left
it once. This measure belongs to the group of late
measures, i.e., measures that are sensitive to the later
cognitive processing stages including interpretation
and integration of already decoded words. Since
the reader by definition has already had a chance to
recognize the word, regressions are associated with
semantic confusion and contradiction, incongruence
and syntactic complexity, as famously experienced
in garden path sentences. For this measure the value
0 indicates that the word was read at most once by
this reader.

See Table 1 for an example of first pass duration
and regression duration annotations for one reader
and sentence.

Figure 2: Multitask and cascaded bi-LSTMs for sentence com-

pression. Layer L−1 contain pre-trained embeddings. Gaze

prediction and CCG-tag prediction are auxiliary training tasks,

and loss on all tasks are propagated back to layer L0.

1529

3 Sentence compression using multi-task
deep bi-LSTMs

Most recent approaches to sentence compression
make use of syntactic analysis, either by operating
directly on trees (Riezler et al., 2003; Nomoto, 2007;
Filippova and Strube, 2008; Cohn and Lapata, 2008;
Cohn and Lapata, 2009) or by incorporating syn-
tactic information in their model (McDonald, 2006;
Clarke and Lapata, 2008). Recently, however, Filip-
pova et al. (2015) presented an approach to sentence
compression using LSTMs with word embeddings,
but without syntactic features. We introduce a third
way of using syntactic annotation by jointly learning
a sequence model for predicting CCG supertags, in
addition to our gaze and compression models.

Bi-directional recurrent neural networks (bi-
RNNs) read in sequences in both regular and re-
versed order, enabling conditioning predictions on
both left and right context. In the forward pass, we
run the input data through an embedding layer and
compute the predictions of the forward and back-
ward states at layers 0, 1, . . ., until we compute the
softmax predictions for word i based on a linear
transformation of the concatenation of the of stan-
dard and reverse RNN outputs for location i. We
then calculate the objective function derivative for
the sequence using cross-entropy (logistic loss) and
use backpropagation to calculate gradients and up-
date the weights accordingly. A deep bi-RNN or k-
layered bi-RNN is composed of k bi-RNNs that feed
into each other such that the output of the ith RNN
is the input of the i+ 1th RNN. LSTMs (Hochreiter
and Schmidhuber, 1997) replace the cells of RNNs
with LSTM cells, in which multiplicative gate units
learn to open and close access to the error signal.

Bi-LSTMs have already been used for fine-
grained sentiment analysis (Liu et al., 2015), syntac-
tic chunking (Huang et al., 2015), and semantic role
labeling (Zhou and Xu, 2015). These and other re-
cent applications of bi-LSTMs were constructed for
solving a single task in isolation, however. We in-
stead train deep bi-LSTMs to solve additional tasks
to sentence compression, namely CCG-tagging and
gaze prediction, using the additional tasks to regu-
larize our sentence compression model.

Specifically, we use bi-LSTMs with three lay-
ers. Our baseline model is simply this three-layered

model trained to predict compressions (encoded as
label sequences), and we consider two extensions
thereof as illustrated in Figure 2. Our first exten-
sion, MULTI-TASK-LSTM, includes the gaze pre-
diction task during training, with a separate logistic
regression classifier for this purpose; and the other,
CASCADED-LSTM, predicts gaze measures from
the inner layer. Our second extension, which is su-
perior to our first, is basically a one-layer bi-LSTM
for predicting reading fixations with a two-layer bi-
LSTM on top for predicting sentence compressions.

At each step in the training process of MULTI-
TASK-LSTMand CASCADED-LSTM, we choose a
random task, followed by a random training instance
of this task. We use the deep LSTM to predict a label
sequence, suffer a loss with respect to the true labels,
and update the model parameters. In CASCADED-
LSTM, the update for an instance of CCG super tag-
ging or gaze prediction only affects the parameters
of the inner LSTM layer.

Both MULTI-TASK-LSTM and CASCADED-
LSTM do multi-task learning (Caruana, 1993). In
multi-task learning, the induction of a model for one
task is used as a regularizer on the induction of a
model for another task. Caruana (1993) did multi-
task learning by doing parameter sharing across sev-
eral deep networks, letting them share hidden layers;
a technique also used by Collobert et al. (2011) for
various NLP tasks. These models train task-specific
classifiers on the output of deep networks (informed
by the task-specific losses). We extend their models
by moving to sequence prediction and allowing the
task-specific sequence models to also be deep mod-
els.

4 Experiments

4.1 Gaze data

We use the Dundee Corpus (Kennedy et al., 2003) as
our eye-tracking corpus with tokenization and mea-
sures similar to the Dundee Treebank (Barrett et al.,
2015). The corpus contains eye-tracking recordings
of ten native English-speaking subjects reading 20
newspaper articles from The Independent. We use
data from nine subjects for training and one subject
for development. We do not evaluate the gaze pre-
diction because the task is only included as a way of
regularizing the compression model.

1530

S: Regulators Friday shut down a small Florida bank, bringing to 119 the number of US bank failures
this year amid mounting loan defaults.

T: Regulators shut down a small Florida bank

S: Intel would be building car batteries, expanding its business beyond its core strength, the company
said in a statement.

T: Intel would be building car batteries

Table 1: Example compressions from the GOOGLE dataset. S is the source sentence, and T is the target compression.

Sents Sent.len Type/token Del.rate

TRAINING

ZIFF-DAVIS 1000 20 0.22 0.59
BROADCAST 880 20 0.21 0.27
GOOGLE 8000 24 0.17 0.87

TEST

ZIFF-DAVIS 32 21 0.55 0.47
BROADCAST 412 19 0.27 0.29
GOOGLE 1000 25 0.42 0.87

Table 2: Dataset characteristics. Sentence length is for source sentences.

4.2 Compression data

We use three different sentence compression
datasets, ZIFF-DAVIS (Knight and Marcu, 2002),
BROADCAST (Clarke and Lapata, 2006), and the
publically available subset of GOOGLE (Filippova et
al., 2015). The first two consist of manually com-
pressed newswire text in English, while the third is
built heuristically from pairs of headlines and first
sentences from newswire, resulting in the most ag-
gressive compressions, as exemplified in Table 1.
We present the dataset characteristics in Table 2. We
use the datasets as released by the authors and do
not apply any additional pre-processing. The CCG
supertagging data comes from CCGbank,1 and we
use sections 0-18 for training and section 19 for de-
velopment.

4.3 Baselines and system

Both the baseline and our systems are three-layer
bi-LSTM models trained for 30 iterations with pre-
trained (SENNA) embeddings. The input and hid-
den layers are 50 dimensions, and at the output
layer we predict sequences of two labels, indicating
whether to delete the labeled word or not. Our base-
line (BASELINE-LSTM) is a multi-task learning

1http://groups.inf.ed.ac.uk/ccg/

bi-LSTM predicting both CCG supertags and sen-
tence compression (word deletion) at the outer layer.
Our first extension is MULTITASK-LSTM predict-
ing CCG supertags, sentence compression, and read-
ing measures from the outer layer. CASCADED-
LSTM, on the other hand, predicts CCG supertags
and reading measures from the initial layer, and sen-
tence compression at the outer layer.

4.4 Results and discussion

Our results are presented in Table 3. We observe
that across all three datasets, including all three
annotations of BROADCAST, gaze features lead to
improvements over our baseline 3-layer bi-LSTM.
Also, CASCADED-LSTM is consistently better than
MULTITASK-LSTM. Our models are fully compet-
itive with state-of-the-art models. For example, the
best model in Elming et al. (2013) achieves 0.7207
on ZIFF-DAVIS, Clarke and Lapata (2008) achieves
0.7509 on BROADCAST,2 and the LSTM model in
Filippova et al. (2015) achieves 0.80 on GOOGLE

with much more training data. The high numbers on
the small subset of GOOGLE reflects that newswire
headlines tend to have a fairly predictable relation to

2On a ”randomly selected” annotator; unfortunately, they do
not say which. James Clarke (p.c) does not remember which
annotator they used.

1531

LSTM Gaze ZIFF-DAVIS BROADCAST GOOGLE

Baseline 0.5668 0.7386 0.7980 0.6802 0.7980

Multitask FP 0.6416 0.7413 0.8050 0.6878 0.8028
REGR. 0.7025 0.7368 0.7979 0.6708 0.8016

Cascaded FP 0.6732 0.7519 0.8189 0.7012 0.8097
REGR. 0.7418 0.7477 0.8217 0.6944 0.8048

Table 3: Results (F1). For all three datasets, the inclusion of gaze measures (first pass duration (FP) and regression duration (Regr.))

leads to improvements over the baseline. All models include CCG-supertagging as an auxiliary task. Note that BROADCASTwas

annotated by three annotators. The three columns are, from left to right, results on annotators 1–3.

the first sentence. With the harder datasets, the im-
pact of the gaze information becomes stronger, con-
sistently favouring the cascaded architecture, and
with improvements using both first pass duration
and regression duration, the late measure associated
with interpretation of content. Our results indicate
that multi-task learning can help us take advantage
of inherently noisy human processing data across
tasks and thereby maybe reduce the need for task-
specific data collection.

Acknowledgments

Yoav Goldberg was supported by the Israeli Science
Foundation Grant No. 1555/15. Anders Søgaard
was supported by ERC Starting Grant No. 313695.
Thanks to Joachim Bingel and Maria Barrett for
preparing data and for helpful discussions, and to
the anonymous reviewers for their suggestions for
improving the paper.

References

Maria Barrett, Željko Agić, and Anders Søgaard. 2015.
The dundee treebank. In The 14th International Work-
shop on Treebanks and Linguistic Theories (TLT 14).

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of ACL.

Y. Canning, J. Tait, J. Archibald, and R. Crawley. 2000.
Cohesive generation of syntactically simplified news-
paper text. Springer.

Rich Caruana. 1993. Multitask learning: a knowledge-
based source of inductive bias. In ICML.

James Clarke and Mirella Lapata. 2006. Constraint-
based sentence compression an integer programming
approach. In COLING.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression: An integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research, pages 399–429.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In COLING.

Trevor Cohn and Mirella Lapata. 2009. Sentence com-
pression as tree transduction. Journal of Artificial In-
telligence Research, pages 637–674.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
The Journal of Machine Learning Research, 12:2493–
2537.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109:193–210.

Jakob Elming, Anders Johannsen, Sigrid Klerke,
Emanuele Lapponi, Héctor Martı́nez Alonso, and An-
ders Søgaard. 2013. Down-stream effects of tree-to-
dependency conversions. In NAACL.

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. In Proceedings of
the Fifth International Natural Language Generation
Conference.

Katja Filippova, Enrique Alfonseca, Carlos A Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Jukka Hyönä and Alexander Pollatsek. 2000. Processing
of finnish compound words in reading. Reading as a
perceptual process, pages 65–87.

Alan Kennedy, Robin Hill, and Joël Pynte. 2003. The
dundee corpus. In ECEM.

1532

Sigrid Klerke, Sheila Castilho, Maria Barrett, and Anders
Søgaard. 2015. Reading metrics for estimating task
efficiency with mt output. In EMNLP Workshop on
Cognitive Aspects of Computational Language Learn-
ing.

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: a probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence, 139:91–107.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015. Fine-
grained opinion mining with recurrent neural networks
and word embeddings. In EMNLP.

Ryan T McDonald. 2006. Discriminative sentence com-
pression with soft syntactic evidence. In EACL.

Tadashi Nomoto. 2007. Discriminative sentence com-
pression with conditional random fields. Information
Processing and Management: an International Jour-
nal, 43(6):1571–1587.

Keith Rayner, Alexander Pollatsek, Jane Ashby, and
Charles Clifton Jr. 2012. Psychology of reading. Psy-
chology Press.

Stefan Riezler, Tracy H King, Richard Crouch, and Annie
Zaenen. 2003. Statistical sentence condensation us-
ing ambiguity packing and stochastic disambiguation
methods for lexical-functional grammar. In NAACL.

Kristian Woodsend and Mirella Lapata. 2011. Learning
to simplify sentences with quasi-synchronous gram-
mar and integer programming. In EMNLP.

Jie Zhou and Wei Xu. 2015. End-to-end learning of se-
mantic role labeling using recurrent neural networks.
ACL.

1533

Proceedings of NAACL-HLT 2016, pages 1534–1544,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Feuding Families and Former Friends:
Unsupervised Learning for Dynamic Fictional Relationships

Mohit Iyyer,1 Anupam Guha,1 Snigdha Chaturvedi,1 Jordan Boyd-Graber,2 Hal Daumé III1

1University of Maryland, Department of Computer Science and UMIACS
2University of Colorado, Department of Computer Science
{miyyer,aguha,snigdac,hal}@umiacs.umd.edu,

Jordan.Boyd.Graber@colorado.edu

Abstract

Understanding how a fictional relationship be-
tween two characters changes over time (e.g.,
from best friends to sworn enemies) is a key
challenge in digital humanities scholarship. We
present a novel unsupervised neural network
for this task that incorporates dictionary learn-
ing to generate interpretable, accurate relation-
ship trajectories. While previous work on char-
acterizing literary relationships relies on plot
summaries annotated with predefined labels,
our model jointly learns a set of global re-
lationship descriptors as well as a trajectory
over these descriptors for each relationship in
a dataset of raw text from novels. We find that
our model learns descriptors of events (e.g.,
marriage or murder) as well as interpersonal
states (love, sadness). Our model outperforms
topic model baselines on two crowdsourced
tasks, and we also find interesting correlations
to annotations in an existing dataset.

1 Describing Character Relationships

When two characters in a book break bread, is their
meal just a result of biological needs or does it mean
more? Cognard-Black et al. (2014) argue that this
simple interaction reflects the diversity and back-
ground of the characters, while Foster (2009) sug-
gests that the tone of a meal can portend either good
or ill for the rest of the book. To support such theo-
ries, scholars use their literary expertise to draw con-
nections between disparate books: Gabriel Conroy’s
dissonance from his family at a sumptuous feast in
Joyce’s The Dead, the frustration of Tyler’s mother in
Dinner at the Homesick Restaurant, and the grudging

love love

sadness

joy

love

fantasy

love

fantasy

sickness

death

sadness

death

marriage

sickness

murder

passage of time

I love him more
than ever. We are
to be married on
28 September.

I feel so weak and worn
out … looked quite grieved
… I hadn't the spirit

poor girl, there is
peace for her at
last. It is the end!

Arthur placed the
stake over her
heart … he struck
with all his might.
The Thing in the
coffin writhed …

Figure 1: An example trajectory depicting the dynamic relation-

ship between Lucy and Arthur in Bram Stoker’s Dracula, which

starts with love and ends with Arthur killing the vampiric Lucy.

Each column describes the relationship state at a particular time

by weights over a set of descriptors (larger weights shown as

bigger boxes). Our goal is to learn—without supervision—both

the descriptors and the trajectories from raw fictional texts.

respect for a blind man eating meatloaf in Carver’s
Cathedral.

However, these insights do not come cheap. It
takes years of careful reading and internalization to
make connections across books, which means that
relationship symmetries and archetypes are likely to
remain hidden in the millions of books published
every year unless literary scholars are actively search-
ing for them.

Natural language processing techniques have been
increasingly used to assist in these literary investiga-
tions by discovering patterns in texts (Jockers, 2013).
In Section 6 we review existing techniques that clas-
sify or cluster relationships between characters in
books using a fixed set of labels (e.g., friend or en-

1534

emy). However, such approaches ignore interactions
between characters that lie outside of the established
lexicon and cannot account for the dynamic nature
of relationships that evolve through the course of a
book, such as the vampiric downfall of Lucy and
Arthur’s engagement in Dracula (Figure 1) or Win-
ston Smith’s rat-induced betrayal of Julia in 1984.

To address these issues, we propose the task of un-
supervised relationship modeling, in which a model
jointly learns a set of relationship descriptors as well
as relationship trajectories for pairs of literary char-
acters. Instead of assigning a single descriptor to a
particular relationship, the trajectories learned by the
model are sequences of descriptors as in Figure 1.

The Bayesian hidden topic Markov model (HTMM)
of Gruber et al. (2007) emerges as a natural choice
for our task because it is capable of computing rela-
tionship descriptors (in the form of topics) and has
an additional temporal component. However, our
experiments show that the descriptors learned by the
HTMM are not coherent and focus more on events or
environments (e.g., meals, outdoors) than interper-
sonal states like happiness and sadness.

Motivated by recent advances in deep learning, we
propose the relationship modeling network (RMN),
which is a novel variant of a deep recurrent autoen-
coder that incorporates dictionary learning to learn
relationship descriptors. We show that the RMN
achieves better descriptor coherence and trajectory
accuracy than the HTMM and other topic model base-
lines in two crowdsourced evaluations described in
Section 4. In Section 5 we show qualitative results
and make connections to existing literary scholarship.

2 A Dataset of Character Interactions

Our dataset consists of 1,383 fictional works pulled
from Project Gutenberg and other Internet sources.
Project Gutenberg has a limited selection (outside of
science fiction) of mostly classic literature, so we add
more contemporary novels from various genres such
as mystery, romance, and fantasy to our dataset.

To identify character mentions, we run the Book-
NLP pipeline of Bamman et al. (2014), which in-
cludes character name clustering, quoted speaker
identification, and coreference resolution.1 For ev-

1While this pipeline works reasonably well, it is unreliable
for first-person narratives; we leave the necessary improvements

ery detected character mention, we define a span as
beginning 100 tokens before the mention and end-
ing 100 tokens after the mention. We do not use
sentence or paragraph boundaries because they vary
considerably depending on the author (e.g., William
Faulkner routinely wrote single sentences longer than
many of Hemingway’s paragraphs). All spans in our
dataset contain mentions to exactly two characters.
This is a rather strict requirement that forces a reduc-
tion in data size, but spans in which more than two
characters are mentioned are generally noisier.

Once we have identified usable spans in the dataset,
we apply a second filtering step that removes rela-
tionships containing fewer than five spans. Without
this filter, our dataset is dominated by fleeting inter-
actions between minor characters; this is undesirable
since our focus is on longer, mutable relationships.
Finally, we filter our vocabulary by removing the
500 most frequently occurring words, as well as all
words that occur in fewer than 100 books. The latter
step helps correct for variation in time period and
genre (e.g., “thou” and “thy” found in older works
like the Canterbury Tales). Our final dataset contains
20,013 relationships and 380,408 spans, while our
vocabulary contains 16,223 words.2

3 Relationship Modeling Networks

This section mathematically describes how we apply
the RMN to relationship modeling on our dataset. Our
model is similar in spirit to topic models: for an input
dataset, the output of the RMN is a set of relationship
descriptors (topics) and—for each relationship in the
dataset—a trajectory, or a sequence of probability
distributions over these descriptors (document-topic
assignments). However, the RMN uses recent ad-
vances in deep learning to achieve better control over
descriptor coherence and trajectory smoothness (Sec-
tion 4).

3.1 Formalizing the Problem

Assume we have two characters c1 and c2 in book b.
We define Sc1,c2 as a sequence of token spans where
each span st ∈ Sc1,c2 is itself a set of tokens

to character name clustering, which are further expanded upon
in Vala et al. (2015), for future work.

2Code and span data available at http://github.com/
miyyer/rmn.

1535

rt = RTdt

Mrs. Reilly looked at her son slyly and asked,
"Ignatius, you sure you not a communiss?"
"Oh, my God!" Ignatius bellowed. "Every
day I am subjected to a McCarthyite
witchhunt in this crumbling building. No!"

Mrs. Reilly Ignatius “A Confederacy
 of Dunces”

ht = f(Wh · [vst
; vc1

; vc2
; vb])

vst vc1
vc2 vb

dt�1

R

dt = ↵ · softmax(Wd · [ht; dt�1])+
(1� ↵) · dt�1

: previous state

: descriptor
 matrix

: reconstruction
 of input span

: distribution over
 descriptors

Figure 2: An example of the RMN’s computations at a single

time step. The model approximates the vector average of an

input span (vst) as a linear combination of descriptors from R.

The descriptor weights dt define the relationship state at each

time step and—when viewed as a sequence—form a relationship

trajectory.

{w1, w2, . . . , wl} of fixed size l that contains men-
tions (either directly or by coreference) to both c1 and
c2. In other words, Sc1,c2 includes the text of every
scene, chronologically ordered, in which c1 and c2
are present together.

3.2 Model Description

As in other neural network models for natural lan-
guage processing, we begin by associating each word
type w in our vocabulary with a real-valued embed-
ding vw ∈ Rd. These embeddings are rows of a
V × d matrix L, where V is the vocabulary size.
Similarly, characters and books have their own em-
beddings in rows of matrices C and B. We want B
to capture global context information (e.g., “Moby
Dick” takes place at sea) and C to capture immutable
aspects of characters not related to their relationships
(e.g., Javert is a police officer). Finally, the RMN
learns embeddings for relationship descriptors, which
requires a second matrix R of size K × d where K is
the number of descriptors, analogous to the number
of topics in topic models.

Each input to the RMN is a tuple that contains
identifiers for a book and two characters, as well
as the spans corresponding to their relationship:
(b, c1, c2, Sc1,c2). Given one such input, our objective
is to reconstruct Sc1,c2 using a linear combination of
relationship descriptors from R as shown in Figure 2;
we now describe this process formally.

3.2.1 Modeling Spans with Vector Averages
We compute a vector representation for each span

st in Sc1,c2 by averaging the embeddings of the words
in that span,

vst =
1
l

∑
w∈st

vw. (1)

Then, we concatenate vst with the character embed-
dings vc1 and vc2 as well as the book embedding vb
and feed the resulting vector into a standard feed-
forward layer to obtain a hidden state ht,

ht = f(Wh · [vst ;vc1 ;vc2 ;vb]). (2)

In all experiments, the transformation matrix Wh

is d × 4d, and we set f to the ReLu function,
ReLu(x) = max(0, x).

3.2.2 Approximating Spans with Relationship
Descriptors

Now that we can obtain representations of spans,
we move on to learning descriptors using a variant
of dictionary learning (Olshausen and Field, 1997;
Elad and Aharon, 2006), where our descriptor matrix
R is the dictionary and we are trying to approximate
input spans as a linear combination of items from this
dictionary.

Suppose we compute a hidden state for every span
st in Sc1,c2 (Equation 2). Now, given an ht, we com-
pute a weight vector dt over K relationship descrip-
tors with some composition function g, which is fully
specified in the next section. Conceptually, each dt
is a relationship state, and a relationship trajectory
is a sequence of chronologically-ordered relationship
states as shown in Figure 1. After computing dt, we
use it to compute a reconstruction vector rt by taking
a weighted average over relationship descriptors,

rt = RTdt. (3)

Our goal is to make rt similar to vst . We use a
contrastive max-margin objective function similar to

1536

previous work (Weston et al., 2011; Socher et al.,
2014). We randomly sample spans from our dataset
and compute the vector average vsn for each sampled
span as in Equation 1. This subset of span vectors
is N . The unregularized objective J is a hinge loss
that minimizes the inner product between rt and the
negative samples while simultaneously maximizing
the inner product between rt and vst ,

J(θ) =
|Sc1,c2 |∑
t=0

∑
n∈N

max(0, 1−rtvst +rtvsn), (4)

where θ represents the model parameters.

3.2.3 Computing Weights over Descriptors
What function should we choose for our composi-

tion function g to represent a relationship state at a
given time step? On the face of it, this seems trivial;
we can project ht to K dimensions and then apply a
softmax or some other nonlinearity that yields non-
negative weights.3 However, this method ignores the
relationship states at previous time steps. To model
the temporal aspect of relationships, we can add a
recurrent connection,

dt = softmax(Wd · [ht;dt−1]) (5)

where Wd is of size K× (d+K) and softmax(q) =
exp q/

∑k
j=1 exp qj .

Our hope is that this recurrent connection will
carry some of the previous relationship state over to
the current time step. It should be unlikely for two
characters in love at time t to fall out of love at time
t+ 1 even if st+1 does not include any love-related
words. However, because the objective function in
Equation 4 maximizes similarity with the current
time step’s input, the model is not forced to learn
a smooth interpolation between the previous state
and the current one. A natural remedy is to have the
model predict the next time step’s input instead, but
this proves hard to optimize.

We instead force the model to use the previous
relationship state by modifying Equation 5 to include
a linear interpolation between dt and dt−1,

dt = α · softmax(Wd · [ht;dt−1])+
(1− α) · dt−1.

(6)

3We experiment with a variety of nonlinearities but find that
the softmax yields the most interpretable results due to its pre-
disposition to select a single descriptor.

Here, α is a scalar between 0 and 1. We experiment
with setting α to a fixed value of 0.5 as well as allow-
ing the model to learn α as in

α = σ(vT
α · [ht;dt−1;vst]), (7)

where σ is the sigmoid function and vα is a vector
of dimensionality 2d+K. Fixing α = 0.5 initially
and then tuning it after other parameters have con-
verged improves training stability; for the specific
hyperparameters we use see Section 4.4

3.2.4 Interpreting Descriptors and Enforcing
Uniqueness

Recall that each descriptor is a d-dimensional row
of R. Because our objective function J forces these
descriptors to be in the same vector space as that
of the word embeddings L, we can interpret them
by looking at nearest neighbors in L using cosine
distance as the similarity metric.

To discourage learning descriptors that are too sim-
ilar to each other, we add another penalty term X to
our objective function,

X(θ) =
∥∥∥RRT − I

∥∥∥ , (8)

where I is the identity matrix. This term comes from
the component orthogonality constraint in indepen-
dent component analysis (Hyvärinen and Oja, 2000).

We add J and X together to obtain our final train-
ing objective L,

L(θ) = J(θ) + λX(θ), (9)

where λ is a hyperparameter that controls the magni-
tude of the uniqueness penalty.

4 Evaluating Descriptors and Trajectories

Because no previous work explores the interpretabil-
ity of unsupervised relationship modeling over time,
evaluating the RMN is tricky. Further compounding
the problem is the subjective nature of the task; for
example, is a trajectory that ignores a key event bet-
ter than one that hallucinates episodes absent from
source text?

4This strategy is reminiscent of alternative minimization
strategies for dictionary learning (Agarwal et al., 2014), where
the dictionary and weights are learned separately by keeping the
other fixed.

1537

With these issues in mind, we conduct three eval-
uations to show that our output is reasonable. First,
we conduct a crowdsourced interpretability experi-
ment that shows RMNs produce significantly more
coherent descriptors than three topic model baselines.
A second crowdsourced task indicates that our model
produces trajectories that match plot summaries more
accurately than topic models. Finally, we qualita-
tively compare the RMN’s output to existing static
annotations of literary relationships and find both
expected and surprising results.

4.1 Topic Model Baselines
Before moving onto the evaluations, we briefly
describe three baseline models, all of which are
Bayesian generative models. Latent Dirichlet al-
location (Blei et al., 2003, LDA) learns a single
document-topic distribution per document; we can
apply LDA to our dataset by concatenating all spans
from a relationship into a single document. Similarly,
NUBBI (Chang et al., 2009a) learns separate sets of
topics for relationships and individual characters.5

LDA and NUBBI are incapable of taking into ac-
count the chronological ordering of the spans because
they view all relationships tokens as exchangeable.
While we can compare the descriptors learned by
these models to those of the RMN, we cannot evaluate
their trajectories. We turn instead to the hidden topic
Markov model (Gruber et al., 2007, HTMM), which
foregoes the bag-of-words assumption of LDA and
NUBBI in favor of modeling topic segments within a
document as a Markov chain. This model outputs a
smooth sequence of topic assignments over a docu-
ment, so we can compare the trajectories it learns on
our dataset to those of the RMN.

4.2 Experimental Settings
In our descriptor interpretability experiments, we
vary the number of descriptors (topics) for all models
(K = 10, 30, 50). We train LDA and NUBBI for 100
iterations with a collapsed Gibbs sampler, and the
HTMM uses the default setting of 100 EM iterations.

For the RMN, we initialize the word embedding
matrix L with 300-dimensional GloVe embeddings
trained on the Common Crawl (Pennington et al.,

5NUBBI requires additional spans that mention only a sin-
gle character to differentiate character topics from relationship
topics. None of the other models receives these extra data.

K=10 K=30 K=50

0.4

0.5

0.6

0.7

0.8

M
od

el
 P

re
ci

si
on

LDA Nubbi HTMM GRMN RMN

Figure 3: Model precision results from our word intrusion task.

The RMN learns more interpretable descriptors than three topic

model baselines.

2014). The character and book embeddings (C and
B) are initialized randomly. We fix α to 0.5 for the
first 15 epochs of training; after the descriptor ma-
trix R has converged, we fix R and tune α using
Equation 6 for 15 more epochs.6 Since the topic
model baselines do not have access to character and
book metadata, for fair comparison we also train
a “generic” version of the RMN (GRMN) where the
metadata embeddings are removed from Equation 2.
The uniqueness penalty λ is set to 10−4.

All of the RMN model parameters except L are
optimized using Adam (Kingma and Ba, 2014) with
a learning rate of 0.001 for 30 epochs; the word
embeddings are not fine-tuned during training.7 We
also apply word dropout (Iyyer et al., 2015) to the
input spans, removing words from the vector average
computation in Equation 1 with probability 0.5.

4.3 Do Descriptors Make Sense?

The goal of our first experiment is to compare the de-
scriptors R learned by the RMN to the topics learned
by the topic model baselines. We conduct a word
intrusion experiment (Chang et al., 2009b): workers
identify an “intruder” word from a set of words that—
other than the intruder—come from the same topic.
For the topic models, the five most probable words
are joined by a highly-probable word from a different
topic as the intruder. We use the same procedure for
the RMN and GRMN, except that cosine similarity to

6Preliminary experiments show that learning α and R simul-
taneously results in less interpretable descriptors.

7Tuning L ruins descriptor interpretability; pretrained em-
beddings are likely already a good solution for our problem.

1538

RMN HTMM

Label MP Nearest Neighbors Label MP Most Probable Words

sadness 1.0 regretful rueful pity pained despondent violence 1.0 sword shot blood shouted swung

love 1.0 love delightful happiness enjoyed boats 1.0 ship boat captain deck crew

murder 1.0 autopsy arrested homicide murdered food 1.0 kitchen mouth glass food bread

worship 0.1 toil pray devote yourselves gather sci-fi 0.0 suppose earth robots computer certain

moodiness 0.3 glumly snickered quizzically guiltily fantasy 0.0 agreed magician dragon castle talent

informal 0.4 kinda damn heck guess shitty military 0.1 ship captain lucky hour general

Table 1: Three high-precision (top) and three low-precision (bottom) descriptors for the RMN and HTMM, along with labels from

an external evaluator and model precision (MP) computed via word intrusion experiments. The RMN is able to learn a variety of

interpersonal states (e.g., love, sadness), while the HTMM’s most coherent topics are about concrete objects or events.

descriptor embeddings replaces topic-word probabil-
ity. To control for randomness in the training process,
we train three of each model, so the final experiment
consists of 1,350 tasks (K = 10, 30, 50 descriptors
per trial, three trials per model).

We collect judgments from ten different workers
for each task using the Crowdflower platform.8 Our
evaluation metric, model precision (MP), is the frac-
tion of workers that select the correct intruder word
for a descriptor k. Low model precision signals de-
scriptors that lack cohesive themes.

On average, the RMN’s descriptors are much more
interpretable than those of the baselines, as it achieves
a mean model precision of 0.73 (Figure 3) across all
values of K. There is little difference between the
model precision of the three topic model baselines,
which hover around 0.5. There is also little difference
between the GRMN and RMN; however, visualizing
the learned character and book embeddings as in
Figure 6 may be insightful for literary scholars. We
show example high and low precision descriptors for
the RMN and HTMM in Table 1; a full list is included
in the supplementary material.

4.4 Do Trajectories Make Sense?

While the previous evaluation focused only on de-
scriptor quality, our next experiment compares the
trajectories learned by the best RMN model from
the intrusion experiment (measured by highest mean
model precision) to those learned by the best HTMM
model, which is the only baseline capable of learning
relationship trajectories. Workers read a plot sum-

8http://www.crowdflower.com

mary and choose which model’s trajectory best repre-
sents the relationship in question. We use theK = 30
setting because it provides the best balance between
descriptor variety and trajectory interpretability.

For this evaluation, we crawl Wikipedia,
Goodreads, and SparkNotes for plot summaries
associated with our 1,383 books. We then remove all
relationships where each involved character is not
mentioned at least five times in the summary, which
results in a final evaluation set of 125 relationships.9

We present workers with two characters, a plot
summary, and a visualization of trajectories learned
by the RMN and the HTMM (Figure 4). The workers
then select the trajectory that best matches the
relationship described by the summary.

To generate the visualizations, we first have an
external annotator label each descriptor from both
models with a single word as in Table 1. For fairness,
the annotator is unaware of the underlying models.
For the RMN, we visualize trajectories by displaying
the label of the argmax over descriptor weights dt
at each time step t. Similarly, for the HTMM, we
display the most probable topic at each time step.10

The results of this task with seven workers per
comparison favor the RMN: for 87 out of the 125
evaluated relationships (69.6%), the workers choose
the RMN’s trajectory over the HTMM’s. We com-
pute the Fleiss κ value (Fleiss, 1971) to correct our
inter-annotator agreement for chance and find that

9Without this filtering step, workers do not have enough infor-
mation to compare the two models since most of the characters
in our dataset are not mentioned in summaries.

10To reduce visual clutter, we ignore descriptors that persist
for only a single time step.

1539

Summary: Govinda is Siddhartha’s best friend and sometimes his
follower. Like Siddhartha, Govinda devotes his life to the quest for
understanding and enlightenment. He leaves his village with
Siddhartha to join the Samanas, then leaves the Samanas to follow
Gotama. He searches for enlightenment independently of Siddhartha
but persists in looking for teachers who can show him the way. In the
end, he is able to achieve enlightenment only because of
Siddhartha’s love for him.

A B

TI
M

E

Siddhartha and Govinda

Figure 4: An example from the Crowdflower summary matching

task; workers are asked to choose the trajectory (here, “A” is

generated by the RMN and “B” by the HTMM) that best matches

a provided summary that describes the relationship between

Siddartha and Govinda (from Siddartha by Hesse).

κ = 0.32, indicating fair agreement among the work-
ers. Furthermore, thirty-four relationships had unani-
mous agreement among the seven workers; of these,
twenty-six were unanimous in favor of the RMN com-
pared to only eight for the HTMM.

4.5 What Makes a Relationship Positive?

While the previous two experiments show that the
RMN is more interpretable and accurate than baseline
models, we have not yet shown that its insights can
aid in drawing connections across various books and
genres. As a first step in this direction, we investi-
gate what makes a relationship positive or negative
by comparing trajectories from the RMN and HTMM
to static affinity annotations from a recently-released
dataset (Massey et al., 2015) of fictional relationships.
Expected correlations (e.g., murder and sadness are
strongly negative descriptors) emerge alongside sur-
prising ones (politics is negative, religion is positive).

The affinity labeling task of Massey et al. (2015)
requires workers to describe a given relationship as
positive, negative, or neutral. We consider only non-
neutral relationships for which two annotators agree

Model Positive Negative

RMN education, love, reli-
gion, sex

politics, murder, sad-
ness, royalty

HTMM love, parental, busi-
ness, outdoors

love, politics,
violence, crime

Table 2: Descriptors most characteristic of positive and negative

relationships, computed using existing annotations. Compared

to the RMN, the HTMM struggles to coherently characterize

negative relationships. Interestingly, both models show negative

predispositions for political relationships, perhaps due to genre

bias or class differences.

on the affinity label and remove all books not present
in our own dataset. This filtering step results in 120
relationships, 78% of which are positive and the re-
maining 22% negative.

Since the annotations are static, we first aggregate
our trajectories across all time steps. We compute
K-dimensional “average positive” and “average neg-
ative” weight vectors ap and an by averaging the
relationship states dt for the RMN and the document-
topic distributions for the HTMM across all time steps
for relationships labeled with a particular affinity.
Then, we compute the vector difference ap−an and
sort it to produce a ranked list of descriptors, where
descriptors with positive differences occur more fre-
quently in positive relationships. Table 2 shows the
most positive and most negative descriptors; of par-
ticular interest is the large negative weight associated
with political relationships from both models.

5 Qualitative Analysis

Our experiments show the superiority of the RMN
over various topic model baselines in both descrip-
tor interpretability and trajectory accuracy, but what
causes the improved performance? In this section,
we analyze similarities between the RMN and HTMM
and look at qualitative examples where the RMN suc-
ceeds and fails. We also connect the findings of our
affinity experiment to existing literary scholarship.

Both models are equally proficient at learning
and assigning event-based descriptors (e.g., crime,
violence, food). More specifically, the RMN and
HTMM agree on environmental descriptions (e.g.,
boats, outdoors) and graphic sexual scenes (Figure 5,
middle).

However, the RMN is more sophisticated with in-

1540

TI
M

E

HTMMRMN

Storm Island: David and Lucy

HTMMRMN

A Tale of Two Cities: Darnay and Lucie

HTMMRMN

Dracula: Arthur and Lucy

Figure 5: Left: the RMN is able to model Arthur and Lucy’s trajectory reasonably well compared to our manually-created version in

Figure 1. Middle: both models agree on event-based descriptors such as food and sex. Right: a failure case for the RMN in which it

is unable to learn that Lucie Manette and Charles Darnay are in love.

terpersonal relationships. None of the topic model
baselines learns negative emotional descriptors such
as sadness or suffering, which explains the inaccurate
HTMM trajectory of Arthur and Lucy in the left-most
panel of Figure 5. All of the topic model baselines
learn duplicate topics; in Table 2, one love descriptor
is highly positive while a duplicate is strongly nega-
tive.11 The RMN circumvents this problem with its
uniqueness penalty (Equation 8).

While the increased descriptor variety is a posi-
tive, sometimes it leads the RMN astray. The model
largely ignores the love between Charles Darnay and
Lucie Manette in Dickens’ A Tale of Two Cities due to
book’s sad tone; meanwhile, the HTMM’s trajectory,
while vastly simplified, does pick up on the romance
(Figure 5, right). While the RMN’s learnable book
and character embeddings should help, the signal in
a span cannot lead to the “proper” descriptor.

Both the RMN and HTMM learn that politics is
strongly negative (Table 2). Existing scholarship
supports this finding: Victorian-era authors, for ex-
ample, are “obsessed with otherness . . . of antiquated
social and legal institutions, and of autocratic and/or
dictatorial abusive government” (Zarifopol-Johnston,
1995), while in science fiction, “dystopia—–precisely
because it is so much more common (than utopia)—–
bears the aspect of lived experience” (Gordin et al.,
2010). Our affinity data comes primarily from Victo-
rian novels (e.g., by Dickens and George Eliot), lead-
ing us to believe that that the models are behaving

11This “duplicate love” phenomenon persists even when we
reduce the number of topics.

reasonably. Finally, returning to the “extra” meaning
of meals discussed in Section 1, food occurs slightly
more frequently in positive relationships.

6 Related Work

There are two major areas upon which our work
builds: computational literary analysis and deep neu-
ral networks for natural language processing.

Most previous work in computational literary anal-
ysis has focused either on characters or events. In
the former category, graphical models and classi-
fiers have been proposed for learning character per-
sonas from novels (Bamman et al., 2014; Flekova and
Gurevych, 2015) and film summaries (Bamman et
al., 2013). The NUBBI model of Chang et al. (2009a)
learns topics that statically describe characters and
their relationships. Because these models lack tempo-
ral components (the focus of our task), we compare
instead against the HTMM of Gruber et al. (2007).

Closest to our own work is the supervised struc-
tured prediction problem of Chaturvedi et al. (2016),
in which features are designed to predict dynamic se-
quences of positive and negative interactions between
two characters in plot summaries. Other research in
this area includes social network construction from
novels (Elson et al., 2010; Srivastava et al., 2016)
and film (Krishnan and Eisenstein, 2015), as well as
attempts to summarize and generate stories (Elsner,
2012).

While some of the relationship descriptors learned
by our model are character-centric, others are more
events-based, depicting actions rather than feelings;

1541

Figure 6: Clusters from PCA visualizations of the RMN’s learned book (left) and character (right) embeddings. We see a cluster

of books about war and violence (many of which are authored by Tom Clancy) as well as a cluster of lead female characters from

primarily romance novels. These visualizations show that the RMN can recover useful static representations of characters and books

in addition to the dynamic relationship trajectories.

such descriptors have been the focus of much previ-
ous work (Schank and Abelson, 1977; Chambers and
Jurafsky, 2008; Chambers and Jurafsky, 2009; Orr
et al., 2014). Our model is more closely related to
the plot units framework (Lehnert, 1981; Goyal et al.,
2013), which annotates events with emotional states.

The RMN builds on deep recurrent autoencoders
such as the hierarchical LSTM autoencoder of Li et
al. (2015); however, it is more efficient because of
the span-level vector averaging. It is also similar
to recent neural topic model architectures (Cao et
al., 2015; Das et al., 2015), although these models
are limited to static document representations. We
hope to apply the RMN to nonfictional datasets as
well; in this vein, Iyyer et al. (2014) apply a neural
network to sentences from nonfiction political books
for ideology prediction.

More generally, topic models and related genera-
tive models are a central tool for understanding large
corpora from science (Talley et al., 2011) to poli-
tics (Nguyen et al., 2014). We show representation
learning models like RMN can be just as interpretable
as LDA-based models. Other applications for which
researchers have prioritized interpretable vector rep-
resentations include text-to-vision mappings (Lazari-
dou et al., 2014) and word embeddings (Fyshe et al.,
2015; Faruqui et al., 2015).

7 Conclusion

We formalize the task of unsupervised relationship
modeling, which involves learning a set of relation-
ship descriptors as well as a trajectory over these
descriptors for each relationship in an input dataset.
We present the RMN, a novel neural network archi-
tecture for this task that generates more interpretable
descriptors and trajectories than topic model base-
lines. Finally, we show that the output of our model
can lead to interesting insights when combined with
annotations in an existing dataset.

Acknowledgments

We thank Jonathan Chang and Amit Gruber for pro-
viding baseline code, Thang Nguyen for helpful dis-
cussions about our model, and the anonymous re-
viewers for their insightful comments. This work was
supported by NSF grant IIS-1320538. Boyd-Graber is
also partially supported by NSF grants CCF-1409287
and NCSE-1422492. Any opinions, findings, conclu-
sions, or recommendations expressed here are those
of the authors and do not necessarily reflect the view
of the sponsor.

1542

References
Alekh Agarwal, Animashree Anandkumar, Prateek Jain,

Praneeth Netrapalli, and Rashish Tandon. 2014. Learn-
ing sparsely used overcomplete dictionaries. In Pro-
ceedings of Conference on Learning Theory.

David Bamman, Brendan O’Connor, and Noah A. Smith.
2013. Learning latent personas of film characters. In
Proceedings of the Association for Computational Lin-
guistics.

David Bamman, Ted Underwood, and Noah A. Smith.
2014. A bayesian mixed effects model of literary char-
acter. In Proceedings of the Association for Computa-
tional Linguistics.

David M Blei, Andrew Y Ng, and Michael I Jordan. 2003.
Latent dirichlet allocation. Journal of Machine Learn-
ing Research, 3.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng
Ji. 2015. A novel neural topic model and its super-
vised extension. In Association for the Advancement of
Artificial Intelligence.

Nathanael Chambers and Daniel Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceedings
of the Association for Computational Linguistics.

Nathanael Chambers and Dan Jurafsky. 2009. Unsuper-
vised learning of narrative schemas and their partici-
pants. In Proceedings of the Association for Computa-
tional Linguistics.

Jonathan Chang, Jordan Boyd-Graber, and David M Blei.
2009a. Connections between the lines: augmenting
social networks with text. In Knowledge Discovery and
Data Mining.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L
Boyd-Graber, and David M Blei. 2009b. Reading tea
leaves: How humans interpret topic models. In Pro-
ceedings of Advances in Neural Information Processing
Systems.

Snigdha Chaturvedi, Shashank Srivastava, Hal Daumé III,
and Chris Dyer. 2016. Modeling dynamic relationships
between characters in literary novels. In Association
for the Advancement of Artificial Intelligence.

J. Cognard-Black, M. Goldthwaite, and M. Nestle. 2014.
Books That Cook: The Making of a Literary Meal.
NYU Press.

Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaus-
sian lda for topic models with word embeddings. In
Proceedings of the Association for Computational Lin-
guistics.

Michael Elad and Michal Aharon. 2006. Image denoising
via sparse and redundant representations over learned
dictionaries. IEEE Transactions on Image Processing,
15(12).

Micha Elsner. 2012. Character-based kernels for novel-
istic plot structure. In Proceedings of the European

Chapter of the Association for Computational Linguis-
tics.

David K Elson, Nicholas Dames, and Kathleen R McK-
eown. 2010. Extracting social networks from literary
fiction. In Proceedings of the Association for Computa-
tional Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah Smith. 2015. Sparse overcomplete
word vector representations. In Proceedings of the
Association for Computational Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin, 76(5).

Lucie Flekova and Iryna Gurevych. 2015. Personality
profiling of fictional characters using sense-level links
between lexical resources. In Proceedings of Empirical
Methods in Natural Language Processing.

T.C. Foster. 2009. How to Read Literature Like a Profes-
sor. HarperCollins.

Alona Fyshe, Leila Wehbe, Partha P Talukdar, Brian Mur-
phy, and Tom M Mitchell. 2015. A compositional
and interpretable semantic space. In Conference of the
North American Chapter of the Association for Compu-
tational Linguistics.

Michael D Gordin, Helen Tilley, and Gyan Prakash. 2010.
Utopia/dystopia: conditions of historical possibility.
Princeton University Press.

Amit Goyal, Ellen Riloff, and Hal Daumé III. 2013. A
computational model for plot units. Computational
Intelligence Journal, 29(3).

Amit Gruber, Yair Weiss, and Michal Rosen-Zvi. 2007.
Hidden topic markov models. In Proceedings of Artifi-
cial Intelligence and Statistics.

Aapo Hyvärinen and Erkki Oja. 2000. Independent com-
ponent analysis: algorithms and applications. Neural
networks, 13(4).

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and Philip
Resnik. 2014. Political ideology detection using recur-
sive neural networks. In Proceedings of the Association
for Computational Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and
Hal Daumé III. 2015. Deep unordered composition
rivals syntactic methods for text classification. In Pro-
ceedings of the Association for Computational Linguis-
tics.

Matt L. Jockers. 2013. Macroanalysis: Digital Methods
and Literary History. Topics in the Digital Humanities.
University of Illinois Press.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method
for stochastic optimization. In Proceedings of the In-
ternational Conference on Learning Representations.

Vinodh Krishnan and Jacob Eisenstein. 2015. “You’re
Mr. Lebowski, I’m The Dude”: Inducing address term
formality in signed social networks. In Conference

1543

of the North American Chapter of the Association for
Computational Linguistics.

Angeliki Lazaridou, Elia Bruni, and Marco Baroni. 2014.
Is this a wampimuk? cross-modal mapping between
distributional semantics and the visual world. In Pro-
ceedings of the Association for Computational Linguis-
tics.

Wendy G Lehnert. 1981. Plot units and narrative summa-
rization. Cognitive Science, 5(4).

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of the Association for Com-
putational Linguistics.

Philip Massey, Patrick Xia, David Bamman, and Noah A
Smith. 2015. Annotating character relationships in
literary texts. arXiv:1512.00728.

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik, Deb-
orah Cai, Jennifer Midberry, and Yuanxin Wang. 2014.
Modeling topic control to detect influence in conver-
sations using nonparametric topic models. Machine
Learning, 95:381–421.

Bruno A Olshausen and David J Field. 1997. Sparse
coding with an overcomplete basis set: A strategy em-
ployed by v1? Vision research, 37(23).

J Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa,
Xiaoli Fern, and Thomas G Dietterich. 2014. Learning
scripts as hidden markov models. In Association for
the Advancement of Artificial Intelligence.

Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. 2014. Glove: Global vectors for word representa-
tion. In Proceedings of Empirical Methods in Natural
Language Processing.

Roger Schank and Robert Abelson. 1977. Scripts, Plans,
Goals and Understanding: an Inquiry into Human
Knowledge Structures. L. Erlbaum.

Richard Socher, Quoc V Le, Christopher D Manning, and
Andrew Y Ng. 2014. Grounded compositional seman-
tics for finding and describing images with sentences.
Transactions of the Association for Computational Lin-
guistics.

Shashank Srivastava, Snigdha Chaturvedi, and Tom
Mitchell. 2016. Inferring interpersonal relations in
narrative summaries. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’16.

Edmund M. Talley, David Newman, David Mimno,
Bruce W. Herr, Hanna M. Wallach, Gully A. P. C.
Burns, A. G. Miriam Leenders, and Andrew McCallum.
2011. Database of NIH grants using machine-learned
categories and graphical clustering. Nature Methods,
8(6):443–444, May.

Hardik Vala, David Jurgens, Andrew Piper, and Derek
Ruths. 2015. Mr. bennet, his coachman, and the arch-
bishop walk into a bar but only one of them gets rec-
ognized: On the difficulty of detecting characters in

literary texts. In Proceedings of Empirical Methods in
Natural Language Processing.

Jason Weston, Samy Bengio, and Nicolas Usunier. 2011.
Wsabie: Scaling up to large vocabulary image anno-
tation. In International Joint Conference on Artificial
Intelligence.

Ilinca Zarifopol-Johnston. 1995. To kill a text: the dia-
logic fiction of Hugo, Dickens, and Zola. University of
Delaware Press.

1544

Proceedings of NAACL-HLT 2016, pages 1545–1554,
San Diego, California, June 12-17, 2016. c©2016 Association for Computational Linguistics

Learning to Compose Neural Networks for Question Answering

Jacob Andreas and Marcus Rohrbach and Trevor Darrell and Dan Klein
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
{jda,rohrbach,trevor,klein}@eecs.berkeley.edu

Abstract

We describe a question answering model that
applies to both images and structured knowl-
edge bases. The model uses natural lan-
guage strings to automatically assemble neu-
ral networks from a collection of composable
modules. Parameters for these modules are
learned jointly with network-assembly param-
eters via reinforcement learning, with only
(world, question, answer) triples as supervi-
sion. Our approach, which we term a dynamic
neural module network, achieves state-of-the-
art results on benchmark datasets in both vi-
sual and structured domains.

1 Introduction

This paper presents a compositional, attentional
model for answering questions about a variety of
world representations, including images and struc-
tured knowledge bases. The model translates from
questions to dynamically assembled neural net-
works, then applies these networks to world rep-
resentations (images or knowledge bases) to pro-
duce answers. We take advantage of two largely
independent lines of work: on one hand, an exten-
sive literature on answering questions by mapping
from strings to logical representations of meaning;
on the other, a series of recent successes in deep
neural models for image recognition and captioning.
By constructing neural networks instead of logical
forms, our model leverages the best aspects of both
linguistic compositionality and continuous represen-
tations.

Our model has two components, trained jointly:
first, a collection of neural “modules” that can be
freely composed (Figure 1b); second, a network lay-
out predictor that assembles modules into complete
deep networks tailored to each question (Figure 1a).

Module inventory (Section 4.2)

find

lookup

and

What cities are in Georgia? Atlanta

Network layout (Section 4.1)
and

lookup Georgia

find city

Georgia

Atlanta

Montgomery

Knowledge source

relate

relate infind[city]

lookup[Georgia]

relate[in]

and

(a)

(b)

(c)

(d)

Figure 1: A learned syntactic analysis (a) is used to assemble a
collection of neural modules (b) into a deep neural network (c),
and applied to a world representation (d) to produce an answer.

Previous work has used manually-specified modular
structures for visual learning (Andreas et al., 2016).
Here we:

• learn a network structure predictor jointly with
module parameters themselves
• extend visual primitives from previous work to

reason over structured world representations

Training data consists of (world, question, answer)
triples: our approach requires no supervision of net-
work layouts. We achieve state-of-the-art perfor-
mance on two markedly different question answer-
ing tasks: one with questions about natural im-
ages, and another with more compositional ques-
tions about United States geography.1

2 Deep networks as functional programs

We begin with a high-level discussion of the kinds
of composed networks we would like to learn.

1We have released our code at http://github.com/

jacobandreas/nmn2

1545

Andreas et al. (2016) describe a heuristic ap-
proach for decomposing visual question answering
tasks into sequence of modular sub-problems. For
example, the question What color is the bird? might
be answered in two steps: first, “where is the bird?”
(Figure 2a), second, “what color is that part of the
image?” (Figure 2c). This first step, a generic mod-
ule called find, can be expressed as a fragment of
a neural network that maps from image features and
a lexical item (here bird) to a distribution over pix-
els. This operation is commonly referred to as the
attention mechanism, and is a standard tool for ma-
nipulating images (Xu et al., 2015) and text repre-
sentations (Hermann et al., 2015).

The first contribution of this paper is an exten-
sion and generalization of this mechanism to enable
fully-differentiable reasoning about more structured
semantic representations. Figure 2b shows how the
same module can be used to focus on the entity
Georgia in a non-visual grounding domain; more
generally, by representing every entity in the uni-
verse of discourse as a feature vector, we can obtain
a distribution over entities that corresponds roughly
to a logical set-valued denotation.

Having obtained such a distribution, existing neu-
ral approaches use it to immediately compute a
weighted average of image features and project back
into a labeling decision—a describe module (Fig-
ure 2c). But the logical perspective suggests a num-
ber of novel modules that might operate on atten-
tions: e.g. combining them (by analogy to conjunc-
tion or disjunction) or inspecting them directly with-
out a return to feature space (by analogy to quantifi-
cation, Figure 2d). These modules are discussed in
detail in Section 4. Unlike their formal counterparts,
they are differentiable end-to-end, facilitating their
integration into learned models. Building on previ-
ous work, we learn behavior for a collection of het-
erogeneous modules from (world, question, answer)
triples.

The second contribution of this paper is a model
for learning to assemble such modules composition-
ally. Isolated modules are of limited use—to ob-
tain expressive power comparable to either formal
approaches or monolithic deep networks, they must
be composed into larger structures. Figure 2 shows
simple examples of composed structures, but for
realistic question-answering tasks, even larger net-

black	and	white

Georgia

Atlanta

Montgomery

Georgia

Atlanta

Montgomery

exists

true

find bird

describe color

find state(a) (b)

(c) (d)

Figure 2: Simple neural module networks, corresponding to
the questions What color is the bird? and Are there any states?
(a) A neural find module for computing an attention over
pixels. (b) The same operation applied to a knowledge base.
(c) Using an attention produced by a lower module to identify
the color of the region of the image attended to. (d) Performing
quantification by evaluating an attention directly.

works are required. Thus our goal is to automati-
cally induce variable-free, tree-structured computa-
tion descriptors. We can use a familiar functional
notation from formal semantics (e.g. Liang et al.,
2011) to represent these computations.2 We write
the two examples in Figure 2 as

(describe[color] find[bird])

and
(exists find[state])

respectively. These are network layouts: they spec-
ify a structure for arranging modules (and their lex-
ical parameters) into a complete network. Andreas
et al. (2016) use hand-written rules to deterministi-
cally transform dependency trees into layouts, and
are restricted to producing simple structures like the
above for non-synthetic data. For full generality, we
will need to solve harder problems, like transform-
ing What cities are in Georgia? (Figure 1) into

(and
find[city]
(relate[in] lookup[Georgia]))

In this paper, we present a model for learning to se-
lect such structures from a set of automatically gen-
erated candidates. We call this model a dynamic
neural module network.

2But note that unlike formal semantics, the behavior of the
primitive functions here is itself unknown.

1546

3 Related work

There is an extensive literature on database ques-
tion answering, in which strings are mapped to log-
ical forms, then evaluated by a black-box execu-
tion model to produce answers. Supervision may be
provided either by annotated logical forms (Wong
and Mooney, 2007; Kwiatkowski et al., 2010; An-
dreas et al., 2013) or from (world, question, answer)
triples alone (Liang et al., 2011; Pasupat and Liang,
2015). In general the set of primitive functions
from which these logical forms can be assembled is
fixed, but one recent line of work focuses on induc-
ing new predicates functions automatically, either
from perceptual features (Krishnamurthy and Kol-
lar, 2013) or the underlying schema (Kwiatkowski
et al., 2013). The model we describe in this paper
has a unified framework for handling both the per-
ceptual and schema cases, and differs from existing
work primarily in learning a differentiable execution
model with continuous evaluation results.

Neural models for question answering are also
a subject of current interest. These include ap-
proaches that model the task directly as a multiclass
classification problem (Iyyer et al., 2014), models
that attempt to embed questions and answers in a
shared vector space (Bordes et al., 2014) and at-
tentional models that select words from documents
sources (Hermann et al., 2015). Such approaches
generally require that answers can be retrieved di-
rectly based on surface linguistic features, without
requiring intermediate computation. A more struc-
tured approach described by Yin et al. (2015) learns
a query execution model for database tables with-
out any natural language component. Previous ef-
forts toward unifying formal logic and representa-
tion learning include those of Grefenstette (2013)
and Krishnamurthy and Mitchell (2013).

The visually-grounded component of this work
relies on recent advances in convolutional net-
works for computer vision (Simonyan and Zisser-
man, 2014), and in particular the fact that late convo-
lutional layers in networks trained for image recog-
nition contain rich features useful for other down-
stream vision tasks, while preserving spatial infor-
mation. These features have been used for both im-
age captioning (Xu et al., 2015) and visual question
answering (Yang et al., 2015).

Most previous approaches to visual question an-
swering either apply a recurrent model to deep rep-
resentations of both the image and the question (Ren
et al., ; Malinowski et al., 2015), or use the question
to compute an attention over the input image, and
then answer based on both the question and the im-
age features attended to (Yang et al., 2015; Xu and
Saenko, 2015). Other approaches include the simple
classification model described by Zhou et al. (2015)
and the dynamic parameter prediction network de-
scribed by Noh et al. (2015). All of these models
assume that a fixed computation can be performed
on the image and question to compute the answer,
rather than adapting the structure of the computation
to the question.

As noted, Andreas et al. (2016) previously con-
sidered a simple generalization of these attentional
approaches in which small variations in the net-
work structure per-question were permitted, with
the structure chosen by (deterministic) syntactic pro-
cessing of questions. Other approaches in this gen-
eral family include the “universal parser” sketched
by Bottou (2014), and the recursive neural networks
of Socher et al. (2013), which use a fixed tree struc-
ture to perform further linguistic analysis without
any external world representation. We are unaware
of previous work that succeeds in simultaneously
learning both the parameters for and structures of
instance-specific neural networks.

4 Model

Recall that our goal is to map from questions and
world representations to answers. This process in-
volves the following variables:

1. w a world representation
2. x a question
3. y an answer
4. z a network layout
5. θ a collection of model parameters

Our model is built around two distributions: a lay-
out model p(z|x; θ`) which chooses a layout for a
sentence, and a execution model pz(y|w; θe) which
applies the network specified by z to w.

For ease of presentation, we introduce these mod-
els in reverse order. We first imagine that z is always
observed, and in Section 4.1 describe how to evalu-
ate and learn modules parameterized by θe within

1547

fixed structures. In Section 4.2, we move to the real
scenario, where z is unknown. We describe how to
predict layouts from questions and learn θe and θ`
jointly without layout supervision.

4.1 Evaluating modules

Given a layout z, we assemble the corresponding
modules into a full neural network (Figure 1c), and
apply it to the knowledge representation. Interme-
diate results flow between modules until an answer
is produced at the root. We denote the output of the
network with layout z on input world w as JzKw;
when explicitly referencing the substructure of z, we
can alternatively write Jm(h1, h2)K for a top-level
module m with submodule outputs h1 and h2. We
then define the execution model:

pz(y|w) = (JzKw)y (1)

(This assumes that the root module of z produces
a distribution over labels y.) The set of possible
layouts z is restricted by module type constraints:
some modules (like find above) operate directly on
the input representation, while others (like describe
above) also depend on input from specific earlier
modules. Two base types are considered in this pa-
per are Attention (a distribution over pixels or enti-
ties) and Labels (a distribution over answers).

Parameters are tied across multiple instances of
the same module, so different instantiated networks
may share some parameters but not others. Modules
have both parameter arguments (shown in square
brackets) and ordinary inputs (shown in parenthe-
ses). Parameter arguments, like the running bird

example in Section 2, are provided by the layout,
and are used to specialize module behavior for par-
ticular lexical items. Ordinary inputs are the re-
sult of computation lower in the network. In ad-
dition to parameter-specific weights, modules have
global weights shared across all instances of the
module (but not shared with other modules). We
writeA, a,B, b, . . . for global weights and ui, vi for
weights associated with the parameter argument i.
⊕ and� denote (possibly broadcasted) elementwise
addition and multiplication respectively. The com-
plete set of global weights and parameter-specific
weights constitutes θe. Every module has access to
the world representation, represented as a collection

of vectors w1, w2, . . . (or W expressed as a matrix).
The nonlinearity σ denotes a rectified linear unit.

The modules used in this paper are shown below,
with names and type constraints in the first row and a
description of the module’s computation following.

Lookup (→ Attention)
lookup[i] produces an attention focused entirely at the
index f(i), where the relationship f between words
and positions in the input map is known ahead of time
(e.g. string matches on database fields).Jlookup[i]K = ef(i) (2)

where ei is the basis vector that is 1 in the ith position
and 0 elsewhere.

Find (→ Attention)
find[i] computes a distribution over indices by con-
catenating the parameter argument with each position
of the input feature map, and passing the concatenated
vector through a MLP:Jfind[i]K = softmax(a� σ(Bvi ⊕ CW ⊕ d)) (3)

Relate (Attention→ Attention)
relate directs focus from one region of the input to
another. It behaves much like the find module, but
also conditions its behavior on the current region of
attention h. Let w̄(h) =

∑
k hkw

k, where hk is the
kth element of h. Then,Jrelate[i](h)K = softmax(a �

σ(Bvi ⊕ CW ⊕Dw̄(h)⊕ e)) (4)

And (Attention*→ Attention)
and performs an operation analogous to set intersec-
tion for attentions. The analogy to probabilistic logic
suggests multiplying probabilities:Jand(h1, h2, . . .)K = h1 � h2 � · · · (5)

Describe (Attention→ Labels)
describe[i] computes a weighted average of w under
the input attention. This average is then used to predict
an answer representation. With w̄ as above,Jdescribe[i](h)K = softmax(Aσ(Bw̄(h)+vi)) (6)

Exists (Attention→ Labels)
exists is the existential quantifier, and inspects the
incoming attention directly to produce a label, rather
than an intermediate feature vector like describe:Jexists](h)K = softmax

((
max

k
hk

)
a+ b

)
(7)

1548

What cities are in Georgia?

what

city

be

in

Georgia

find[city]

relate[in]

lookup[Georgia]

relate[in]

...

lookup[Georgia]find[city]

and

(a)

(b)

(c)

(d)

relate[in]

lookup[Georgia]

Figure 3: Generation of layout candidates. The input sentence
(a) is represented as a dependency parse (b). Fragments of this
dependency parse are then associated with appropriate modules
(c), and these fragments are assembled into full layouts (d).

With z observed, the model we have described
so far corresponds largely to that of Andreas et al.
(2016), though the module inventory is different—
in particular, our new exists and relate modules
do not depend on the two-dimensional spatial struc-
ture of the input. This enables generalization to non-
visual world representations.

Learning in this simplified setting is straightfor-
ward. Assuming the top-level module in each layout
is a describe or exists module, the fully- instan-
tiated network corresponds to a distribution over la-
bels conditioned on layouts. To train, we maximize∑

(w,y,z) log pz(y|w; θe) directly. This can be under-
stood as a parameter-tying scheme, where the deci-
sions about which parameters to tie are governed by
the observed layouts z.

4.2 Assembling networks

Next we describe the layout model p(z|x; θ`). We
first use a fixed syntactic parse to generate a small
set of candidate layouts, analogously to the way
a semantic grammar generates candidate semantic
parses in previous work (Berant and Liang, 2014).

A semantic parse differs from a syntactic parse
in two primary ways. First, lexical items must be

mapped onto a (possibly smaller) set of semantic
primitives. Second, these semantic primitives must
be combined into a structure that closely, but not ex-
actly, parallels the structure provided by syntax. For
example, state and province might need to be identi-
fied with the same field in a database schema, while
all states have a capital might need to be identified
with the correct (in situ) quantifier scope.

While we cannot avoid the structure selection
problem, continuous representations simplify the
lexical selection problem. For modules that accept
a vector parameter, we associate these parameters
with words rather than semantic tokens, and thus
turn the combinatorial optimization problem asso-
ciated with lexicon induction into a continuous one.
Now, in order to learn that province and state have
the same denotation, it is sufficient to learn that their
associated parameters are close in some embedding
space—a task amenable to gradient descent. (Note
that this is easy only in an optimizability sense,
and not an information-theoretic one—we must still
learn to associate each independent lexical item with
the correct vector.) The remaining combinatorial
problem is to arrange the provided lexical items into
the right computational structure. In this respect,
layout prediction is more like syntactic parsing than
ordinary semantic parsing, and we can rely on an
off-the-shelf syntactic parser to get most of the way
there. In this work, syntactic structure is provided by
the Stanford dependency parser (De Marneffe and
Manning, 2008).

The construction of layout candidates is depicted
in Figure 3, and proceeds as follows:

1. Represent the input sentence as a dependency
tree.

2. Collect all nouns, verbs, and prepositional
phrases that are attached directly to a wh-word
or copula.

3. Associate each of these with a layout frag-
ment: Ordinary nouns and verbs are mapped
to a single find module. Proper nouns to a sin-
gle lookup module. Prepositional phrases are
mapped to a depth-2 fragment, with a relate

module for the preposition above a find mod-
ule for the enclosed head noun.

4. Form subsets of this set of layout fragments.
For each subset, construct a layout candidate by

1549

joining all fragments with an and module, and
inserting either a measure or describe module
at the top (each subset thus results in two parse
candidates.)

All layouts resulting from this process feature a
relatively flat tree structure with at most one con-
junction and one quantifier. This is a strong sim-
plifying assumption, but appears sufficient to cover
most of the examples that appear in both of our
tasks. As our approach includes both categories, re-
lations and simple quantification, the range of phe-
nomena considered is generally broader than pre-
vious perceptually-grounded QA work (Krishna-
murthy and Kollar, 2013; Matuszek et al., 2012).

Having generated a set of candidate parses, we
need to score them. This is a ranking problem;
as in the rest of our approach, we solve it using
standard neural machinery. In particular, we pro-
duce an LSTM representation of the question, a
feature-based representation of the query, and pass
both representations through a multilayer perceptron
(MLP). The query feature vector includes indicators
on the number of modules of each type present, as
well as their associated parameter arguments. While
one can easily imagine a more sophisticated parse-
scoring model, this simple approach works well for
our tasks.

Formally, for a question x, let hq(x) be an LSTM
encoding of the question (i.e. the last hidden layer of
an LSTM applied word-by-word to the input ques-
tion). Let {z1, z2, . . .} be the proposed layouts for
x, and let f(zi) be a feature vector representing the
ith layout. Then the score s(zi|x) for the layout zi is

s(zi|x) = a>σ(Bhq(x) + Cf(zi) + d) (8)

i.e. the output of an MLP with inputs hq(x) and
f(zi), and parameters θ` = {a,B,C, d}. Finally,
we normalize these scores to obtain a distribution:

p(zi|x; θ`) = es(zi|x)
/ n∑

j=1

es(zj |x) (9)

Having defined a layout selection module
p(z|x; θ`) and a network execution model
pz(y|w; θe), we are ready to define a model
for predicting answers given only (world, question)
pairs. The key constraint is that we want to min-
imize evaluations of pz(y|w; θe) (which involves

expensive application of a deep network to a large
input representation), but can tractably evaluate
p(z|x; θ`) for all z (which involves application
of a shallow network to a relatively small set of
candidates). This is the opposite of the situation
usually encountered semantic parsing, where calls
to the query execution model are fast but the set of
candidate parses is too large to score exhaustively.

In fact, the problem more closely resembles the
scenario faced by agents in the reinforcement learn-
ing setting (where it is cheap to score actions, but
potentially expensive to execute them and obtain re-
wards). We adopt a common approach from that lit-
erature, and express our model as a stochastic pol-
icy. Under this policy, we first sample a layout z
from a distribution p(z|x; θ`), and then apply z to
the knowledge source and obtain a distribution over
answers p(y|z, w; θe).

After z is chosen, we can train the execution
model directly by maximizing log p(y|z, w; θe) with
respect to θe as before (this is ordinary backprop-
agation). Because the hard selection of z is non-
differentiable, we optimize p(z|x; θ`) using a policy
gradient method. The gradient of the reward surface
J with respect to the parameters of the policy is

∇J(θ`) = E[∇ log p(z|x; θ`) · r] (10)

(this is the REINFORCE rule (Williams, 1992)). Here
the expectation is taken with respect to rollouts of
the policy, and r is the reward. Because our goal is
to select the network that makes the most accurate
predictions, we take the reward to be identically the
negative log-probability from the execution phase,
i.e.

E[(∇ log p(z|x; θ`)) · log p(y|z, w; θe)] (11)

Thus the update to the layout-scoring model at each
timestep is simply the gradient of the log-probability
of the chosen layout, scaled by the accuracy of that
layout’s predictions. At training time, we approxi-
mate the expectation with a single rollout, so at each
step we update θ` in the direction (∇ log p(z|x; θ`))·
log p(y|z, w; θe) for a single z ∼ p(z|x; θ`). θe and
θ` are optimized using ADADELTA (Zeiler, 2012)
with ρ = 0.95, ε = 1e−6 and gradient clipping at a
norm of 10.

1550

What is in the sheep’s ear? What color is she
wearing?

What is the man
dragging?

(describe[what]

(and find[sheep]

find[ear]))

(describe[color]

find[wear])

(describe[what]

find[man])

tag white boat (board)

Figure 4: Sample outputs for the visual question answering
task. The second row shows the final attention provided as in-
put to the top-level describe module. For the first two exam-
ples, the model produces reasonable parses, attends to the cor-
rect region of the images (the ear and the woman’s clothing),
and generates the correct answer. In the third image, the verb is
discarded and a wrong answer is produced.

5 Experiments

The framework described in this paper is general,
and we are interested in how well it performs on
datasets of varying domain, size and linguistic com-
plexity. To that end, we evaluate our model on tasks
at opposite extremes of both these criteria: a large
visual question answering dataset, and a small col-
lection of more structured geography questions.

5.1 Questions about images

Our first task is the recently-introduced Visual Ques-
tion Answering challenge (VQA) (Antol et al.,
2015). The VQA dataset consists of more than
200,000 images paired with human-annotated ques-
tions and answers, as in Figure 4.

We use the VQA 1.0 release, employing the de-
velopment set for model selection and hyperparam-
eter tuning, and reporting final results from the eval-
uation server on the test-standard set. For the ex-
periments described in this section, the input feature
representationswi are computed by the the fifth con-
volutional layer of a 16-layer VGGNet after pooling
(Simonyan and Zisserman, 2014). Input images are
scaled to 448×448 before computing their represen-
tations. We found that performance on this task was

test-dev test-std

Yes/No Number Other All All

Zhou (2015) 76.6 35.0 42.6 55.7 55.9
Noh (2015) 80.7 37.2 41.7 57.2 57.4
NMN 77.7 37.2 39.3 54.8 55.1
NMN* 79.7 37.1 42.8 57.3 –
D-NMN 80.5 37.4 43.1 57.9 58.0

Table 1: Results on the VQA test server. NMN is the
parameter-tying model from Andreas et al. (2015), while
NMN* is a reimplementation using the same image processing
pipeline as D-NMN. The model with dynamic network structure
prediction achieves the best published results on this task.

best if the candidate layouts were relatively simple:
only describe, and and find modules are used, and
layouts contain at most two conjuncts.

One weakness of this basic framework is a diffi-
culty modeling prior knowledge about answers (of
the form bears are brown). This kinds of linguis-
tic “prior” is essential for the VQA task, and easily
incorporated. We simply introduce an extra hidden
layer for recombining the final module network out-
put with the input sentence representation hq(x) (see
Equation 8), replacing Equation 1 with:

log pz(y|w, x) = (Ahq(x) +BJzKw)y (12)

(Now modules with output type Labels should
be understood as producing an answer embedding
rather than a distribution over answers.) This allows
the question to influence the answer directly.

Results are shown in Table 1. The use of dy-
namic networks provides a small gain, most notice-
ably on yes/no questions. We achieve state-of-the-
art results on this task, outperforming a highly effec-
tive visual bag-of-words model (Zhou et al., 2015),
a model with dynamic network parameter prediction
(but fixed network structure) (Noh et al., 2015), and
a previous approach using neural module networks
with no structure prediction (Andreas et al., 2016).
For this last model, we report both the numbers from
the original paper, and a reimplementation of the
model that uses the same image preprocessing as the
dynamic module network experiments in this paper.
A more conventional attentional model has also been
applied to this task (Yang et al., 2015); while we also
outperform their reported performance, the evalua-
tion uses different train/test split, so results are not
directly comparable.

1551

Accuracy

Model GeoQA GeoQA+Q

LSP-F 48 –
LSP-W 51 –
NMN 51.7 35.7
D-NMN 54.3 42.9

Table 2: Results on the GeoQA dataset, and the GeoQA
dataset with quantification. Our approach outperforms both a
purely logical model (LSP-F) and a model with learned percep-
tual predicates (LSP-W) on the original dataset, and a fixed-
structure NMN under both evaluation conditions.

Some examples are shown in Figure 4. In general,
the model learns to focus on the correct region of the
image, and tends to consider a broad window around
the region. This facilitates answering questions like
Where is the cat?, which requires knowledge of the
surroundings as well as the object in question.

5.2 Questions about geography

The next set of experiments we consider focuses
on GeoQA, a geographical question-answering
task first introduced by Krishnamurthy and Kollar
(2013). This task was originally paired with a vi-
sual question answering task much simpler than the
one just discussed, and is appealing for a number
of reasons. In contrast to the VQA dataset, GeoQA
is quite small, containing only 263 examples. Two
baselines are available: one using a classical se-
mantic parser backed by a database, and another
which induces logical predicates using linear clas-
sifiers over both spatial and distributional features.
This allows us to evaluate the quality of our model
relative to other perceptually grounded logical se-
mantics, as well as strictly logical approaches.

The GeoQA domain consists of a set of entities
(e.g. states, cities, parks) which participate in vari-
ous relations (e.g. north-of, capital-of). Here we take
the world representation to consist of two pieces: a
set of category features (used by the find module)
and a different set of relational features (used by the
relate module). For our experiments, we use a sub-
set of the features originally used by Krishnamurthy
et al. The original dataset includes no quantifiers,
and treats the questions What cities are in Texas?
and Are there any cities in Texas? identically. Be-
cause we are interested in testing the parser’s ability
to predict a variety of different structures, we intro-

Is Key Largo an island?

(exists (and lookup[key-largo] find[island]))

yes: correct

What national parks are in Florida?

(and find[park] (relate[in] lookup[florida]))

everglades: correct

What are some beaches in Florida?

(exists (and lookup[beach]

(relate[in] lookup[florida])))

yes (daytona-beach): wrong parse

What beach city is there in Florida?

(and lookup[beach] lookup[city]

(relate[in] lookup[florida]))

[none] (daytona-beach): wrong module behavior

Figure 5: Example layouts and answers selected by the model
on the GeoQA dataset. For incorrect predictions, the correct
answer is shown in parentheses.

duce a new version of the dataset, GeoQA+Q, which
distinguishes these two cases, and expects a Boolean
answer to questions of the second kind.

Results are shown in Table 2. As in the orig-
inal work, we report the results of leave-one-
environment-out cross-validation on the set of 10 en-
vironments. Our dynamic model (D-NMN) outper-
forms both the logical (LSP-F) and perceptual mod-
els (LSP-W) described by (Krishnamurthy and Kol-
lar, 2013), as well as a fixed-structure neural mod-
ule net (NMN). This improvement is particularly
notable on the dataset with quantifiers, where dy-
namic structure prediction produces a 20% relative
improvement over the fixed baseline. A variety of
predicted layouts are shown in Figure 5.

6 Conclusion

We have introduced a new model, the dynamic neu-
ral module network, for answering queries about
both structured and unstructured sources of informa-
tion. Given only (question, world, answer) triples
as training data, the model learns to assemble neu-
ral networks on the fly from an inventory of neural
models, and simultaneously learns weights for these
modules so that they can be composed into novel
structures. Our approach achieves state-of-the-art
results on two tasks. We believe that the success of
this work derives from two factors:

1552

Continuous representations improve the expres-
siveness and learnability of semantic parsers: by re-
placing discrete predicates with differentiable neural
network fragments, we bypass the challenging com-
binatorial optimization problem associated with in-
duction of a semantic lexicon. In structured world
representations, neural predicate representations al-
low the model to invent reusable attributes and re-
lations not expressed in the schema. Perhaps more
importantly, we can extend compositional question-
answering machinery to complex, continuous world
representations like images.

Semantic structure prediction improves general-
ization in deep networks: by replacing a fixed net-
work topology with a dynamic one, we can tailor the
computation performed to each problem instance,
using deeper networks for more complex questions
and representing combinatorially many queries with
comparatively few parameters. In practice, this re-
sults in considerable gains in speed and sample effi-
ciency, even with very little training data.

These observations are not limited to the question
answering domain, and we expect that they can be
applied similarly to tasks like instruction following,
game playing, and language generation.

Acknowledgments

JA is supported by a National Science Foundation
Graduate Fellowship. MR is supported by a fellow-
ship within the FIT weltweit-Program of the German
Academic Exchange Service (DAAD). This work
was additionally supported by DARPA, AFRL, DoD
MURI award N000141110688, NSF awards IIS-
1427425 and IIS-1212798, and the Berkeley Vision
and Learning Center.

References

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic parsing as machine translation. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics, Sofia, Bulgaria.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the Conference on Computer Vision and
Pattern Recognition.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and

Devi Parikh. 2015. VQA: Visual question answer-
ing. In Proceedings of the International Conference
on Computer Vision.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics, volume 7, page 92.

Antoine Bordes, Sumit Chopra, and Jason Weston. 2014.
Question answering with subgraph embeddings. Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Léon Bottou. 2014. From machine learning to machine
reasoning. Machine learning, 94(2):133–149.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Proceedings of the International Confer-
ence on Computational Linguistics, pages 1–8.

Edward Grefenstette. 2013. Towards a formal distribu-
tional semantics: Simulating logical calculi with ten-
sors. Joint Conference on Lexical and Computational
Semantics.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems, pages 1684–1692.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A neu-
ral network for factoid question answering over para-
graphs. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing.

Jayant Krishnamurthy and Thomas Kollar. 2013. Jointly
learning to parse and perceive: connecting natural lan-
guage to the physical world. Transactions of the Asso-
ciation for Computational Linguistics.

Jayant Krishnamurthy and Tom Mitchell. 2013. Vec-
tor space semantic parsing: A framework for compo-
sitional vector space models. In Proceedings of the
ACL Workshop on Continuous Vector Space Models
and their Compositionality.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing, pages 1223–1233, Cambridge, Massachusetts.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with on-
the-fly ontology matching. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional semantics.

1553

In Proceedings of the Human Language Technology
Conference of the Association for Computational Lin-
guistics, pages 590–599, Portland, Oregon.

Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz.
2015. Ask your neurons: A neural-based approach to
answering questions about images. In Proceedings of
the International Conference on Computer Vision.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012. A joint
model of language and perception for grounded at-
tribute learning. In International Conference on Ma-
chine Learning.

Hyeonwoo Noh, Paul Hongsuck Seo, and Bohyung Han.
2015. Image question answering using convolutional
neural network with dynamic parameter prediction.
arXiv preprint arXiv:1511.05756.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics.

Mengye Ren, Ryan Kiros, and Richard Zemel. Explor-
ing models and data for image question answering. In
Advances in Neural Information Processing Systems.

K Simonyan and A Zisserman. 2014. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Richard Socher, John Bauer, Christopher D. Manning,
and Andrew Y. Ng. 2013. Parsing with compositional
vector grammars. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256.

Yuk Wah Wong and Raymond J. Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics,
volume 45, page 960.

Huijuan Xu and Kate Saenko. 2015. Ask, attend
and answer: Exploring question-guided spatial atten-
tion for visual question answering. arXiv preprint
arXiv:1511.05234.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend
and tell: Neural image caption generation with visual
attention. In International Conference on Machine
Learning.

Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng,
and Alex Smola. 2015. Stacked attention net-
works for image question answering. arXiv preprint
arXiv:1511.02274.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965.

Matthew D Zeiler. 2012. ADADELTA: An
adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar,
Arthur Szlam, and Rob Fergus. 2015. Simple base-
line for visual question answering. arXiv preprint
arXiv:1512.02167.

1554

Author Index

Abdelali, Ahmed, 1082
Abramova, Ekaterina, 343
Adel, Heike, 534, 828
Afantenos, Stergos, 99
Agrawal, Aishwarya, 1233
Ahrendt, Simon, 546
Al-Khatib, Khalid, 1395
Allen, James, 839
Alpert-Abrams, Hannah, 467
Ambati, Bharat Ram, 447, 1051
Amini, Aida, 1152
Amir, Eyal, 417
Anastasopoulos, Antonios, 949
Andreas, Jacob, 1545
Arora, Raman, 1019
Asher, Nicholas, 99
Aufrant, Lauriane, 1058
Auli, Michael, 93, 210
Awadallah, Ahmed Hassan, 1452

Baldwin, Timothy, 483
Ballesteros, Miguel, 199, 260
Bansal, Mohit, 720, 1030
Bansal, Piyush, 1340
Baroni, Marco, 387
Barzilay, Regina, 1089, 1279, 1307
Batra, Dhruv, 839, 1233
Beck, Daniel, 856
Belanger, David, 886
Bengio, Yoshua, 866
Bertero, Dario, 130
Bhattacharya, Prasanta, 599
Biemann, Chris, 617
Birch, Alexandra, 35
Bird, Steven, 949
Bisazza, Arianna, 321
Bisk, Yonatan, 232, 751
Black, Alan W, 1357

Blanco, Eduardo, 1431
Bocionek, Christine, 800
Bogdanova, Dasha, 1290
Bonadiman, Daniele, 1268
Booten, Kyle, 1139
Bouamor, Houda, 1082
Boyd-Graber, Jordan, 927, 971, 1534
Bragg, Jonathan, 897
Briscoe, Ted, 380
Brockett, Chris, 110
Brunk, Cliff, 1296
Bulat, Luana, 579
Byrne, Bill, 856

Callison-Burch, Chris, 1463
Cano-Basave, Amparo Elizabeth, 1405
Carbonell, Jaime, 731
Carpuat, Marine, 1187, 1378
Caselli, Richard, 1198
Castro Ferreira, Thiago, 423
Chai, Joyce Y., 149
Chambers, Nathanael, 839
Chandar, Sarath, 171
Chang, Baobao, 428
Chang, Ching-Yun, 400
Chaturvedi, Snigdha, 1534
Chen, Hu, 393
Chen, Huadong, 1240
Chen, Huanhuan, 1041
Chen, Jiajun, 1240
Chen, Lu, 789
Chen, Xinlei, 681
Cheng, Doreen, 789
Cheng, Shanbo, 1240
Cherry, Colin, 41, 1175
Chiang, David, 949
Chiarcos, Christian, 1473
Cho, Kyunghyun, 300, 866, 1367

1555

Choi, Jinho D., 271
Chopra, Sumit, 93
Chrupała, Grzegorz, 387
Clark, Stephen, 210, 579
Cocos, Anne, 1463
Cohn, Trevor, 876, 949, 1250
Constant, Matthieu, 1095
Contractor, Danish, 69
Cotterell, Ryan, 623, 664
Cromierès, Fabien, 11
Cui, Yiming, 977

Dai, Xin-Yu, 1240
Danescu-Niculescu-Mizil, Cristian, 136, 568
Darrell, Trevor, 1545
Daumé III, Hal, 971, 1534
de Gispert, Adrià, 856
Dehdari, Jon, 1169
Demberg, Vera, 546
Deoskar, Tejaswini, 447
Dernoncourt, Franck, 515
Devlin, Jacob, 1233
Dolan, Bill, 110
Dredze, Mark, 1019, 1064
Dueck, Amylou, 1198
Duong, Long, 949
Durrani, Nadir, 1082
Durrett, Greg, 1256
Dyer, Chris, 199, 260, 634, 731, 876, 1357, 1480

Ebert, Sebastian, 767
Eisenstein, Jacob, 332, 1318
Eisner, Jason, 623
Erk, Katrin, 1121
Ettinger, Allyson, 1378

Farhadi, Ali, 193
Faruqui, Manaal, 634, 1357
Fei, Geli, 506
Fernández, Raquel, 343, 387
Ferraro, Francis, 1233
Ferreira, William, 1163
Filice, Simone, 1109
Finch, Andrew, 411, 1076
Firat, Orhan, 866
Flanigan, Jeffrey, 731
Foster, Jennifer, 1290

Francis-Landau, Matthew, 1256
Fung, Pascale, 130

Gaddy, David, 1307
Galley, Michel, 110, 1233
Gamon, Michael, 1452
Gao, Jianfeng, 110
Gao, Qiaozi, 149
Garrette, Dan, 467
Gašić, Milica, 120, 142
Gella, Spandana, 182
Gillick, Dan, 1296
Girju, Roxana, 417
Girlea, Codruta, 417
Girshick, Ross, 1233
Goldberg, Sean, 1208
Goldberg, Yoav, 1528
Gonzalez, Graciela, 1198
Gormley, Matthew R., 1019
Graham, Yvette, 1
Grishman, Ralph, 300
Guha, Anupam, 1534
Guo, Hongyu, 917
Guo, Wu, 441
Gupta, Pankaj, 534
Gupta, Sakshi, 1340
Guzmán, Francisco, 1082

Haas, Carolin, 740
Haddow, Barry, 35
Haffari, Gholamreza, 332, 762, 876, 1250
Hagen, Matthias, 1395
Hajishirzi, Hannaneh, 1152
Hao, Shuai, 540
He, He, 971
He, Hua, 937
He, Lei, 527
He, Xiaodong, 839, 1233, 1480
He, Yulan, 1405
He, Yunchao, 540
Hearst, Marti A., 1139
Hill, Felix, 1367
Hoang, Cong Duy Vu, 876, 1250
Hovy, Dirk, 1115
Hovy, Eduard, 681, 1012, 1480
Hu, Jun, 540

Hu, Yu, 441
Huang, Shujian, 1240
Huang, Ting-Hao (Kenneth), 1233
Hwa, Rebecca, 363
Hwang, Mei-Yuh, 393

Iglesias, Gonzalo, 856
Inui, Kentaro, 850
Iyyer, Mohit, 1534

Jaakkola, Tommi, 1279, 1307
Jaech, Aaron, 654
Jagannatha, Abhyuday N, 473
Jain, Prachi, 86
Ji, Heng, 249, 1158
Ji, Yangfeng, 332
Jiang, Daxin, 1501
Jiang, Hui, 374, 441
Jiang, Jing, 1442
Johnson, Mark, 460
Johnson, Travis A., 1198
Joshi, Hrishikesh, 1279
Joty, Shafiq, 703
Jørgensen, Anna, 1115
Jurafsky, Dan, 681

Kambadur, Prabhanjan, 1064
Kawakami, Kazuya, 260
Keller, Frank, 182
Khapra, Mitesh M., 171
Kiela, Douwe, 160, 579
Kim, Hyun, 494
Kim, Young-Bum, 282
Kim, Yu-Seop, 282
Kiritchenko, Svetlana, 811, 1102
Klein, Dan, 1256, 1545
Klerke, Sigrid, 1528
Knight, Kevin, 30, 249, 1217
Kobayashi, Sosuke, 850
Köhler, Jonas, 1395
Kohli, Pushmeet, 839, 1233
Komninos, Alexandros, 1490
Koncel-Kedziorski, Rik, 654, 1152
Kondrak, Grzegorz, 1175
Köper, Maximilian, 353
Korhonen, Anna, 1367
Krahmer, Emiel, 423

Krishnamurthy, Jayant, 606
Krstovski, Kriste, 454, 1127
Kumar, Ravi, 136
Kuncoro, Adhiguna, 199
Kurata, Gakuto, 521
Kurohashi, Sadao, 11
Kurtz, Michael J., 454
Kushman, Nate, 1152
Kyaw Thu, Ye, 1076

Lacroix, Ophélie, 1058
Lai, K. Robert, 540
Lample, Guillaume, 260, 1357
Lapata, Mirella, 182, 310
Lapshinova-Koltunski, Ekaterina, 960
Lau, Jey Han, 483
Lazaridou, Angeliki, 387
Le Roux, Joseph, 1095
Lee, Honglak, 1512
Lee, Ji Young, 515
Lee, Jong-Hyeok, 494
Lee, Kenton, 221
Lee, Lung-Hao, 540
Lei, Tao, 1089, 1279
Levin, Lori, 1357
Lewis, Mike, 221
Li, Hang, 983
Li, Hao, 1158
Li, Jianfeng, 977
Li, Jiwei, 110, 681
Li, Junyi Jessy, 1181
Li, Sujian, 428
Li, Zhengyu, 1041
Lin, Christopher H., 897
Lin, Jimmy, 937
Ling, Wang, 47
Ling, Xiao, 897
Ling, Zhen-Hua, 441
Litman, Diane, 80, 1424
Littell, Patrick, 1357
Liu, Angli, 897
Liu, Bing, 506
Liu, Changsheng, 363
Liu, Changsong, 149
Liu, Fei, 80
Liu, Jiawei, 1041

Liu, Lemao, 411
Liu, Quan, 441
Liu, Qun, 1, 983
Liu, Zhengzhong, 1012
Liu, Zitao, 80
Locke, Dona, 1198
Lu, Liang, 310
Lu, Wei, 714
Luo, Wencan, 80, 238

Ma, Xuezhe, 1012
Madhyastha, Pranava Swaroop, 552
Maillard, Jean, 160
Mamidi, Radhika, 1340
Manandhar, Suresh, 1490
Marcu, Daniel, 249, 751
Màrquez, Lluís, 703, 1279
Martineau, Justin, 789
Matsumoto, Yuji, 1133
Mausam, 69, 86
May, Jonathan, 1217
McCallum, Andrew, 886
McClosky, David, 1030
Mehdad, Yashar, 58
Mehrotra, Rishabh, 599
Mei, Hongyuan, 720
Melamud, Oren, 1030
Mesgar, Mohsen, 1414
Misra, Ishan, 1233
Mitchell, Margaret, 1233
Mitchell, Tom M., 289, 818
Miura, Akiva, 20
Mizumoto, Tomoya, 1133
Mogadala, Aditya, 692
Mohammad, Saif M., 811, 1102
Monz, Christof, 321
Moosavi, Nafise Sadat, 1005
Moreno-Noguer, Francesc, 552
Morey, Mathieu, 99
Mortensen, David, 1357
Moschitti, Alessandro, 1109, 1268, 1279
Mostafazadeh, Nasrin, 839, 1233
Motlani, Raveesh, 1340
Mrkšić, Nikola, 120, 142
Muis, Aldrian Obaja, 714
Murawaki, Yugo, 1329

Musa, Ryan, 232

Nagata, Masaaki, 1145
Nakamura, Satoshi, 20
Nakazawa, Toshiaki, 11
Nakov, Preslav, 703
Nenkova, Ani, 1181
Neubig, Graham, 20, 634
Ng, Vincent, 1384
Nguyen, Dat Quoc, 460
Nguyen, Thien Huu, 300
Niculae, Vlad, 568

Ó Séaghdha, Diarmuid, 142
Okazaki, Naoaki, 850
Ordonez, Vicente, 193
Osborne, Miles, 1064
Ostendorf, Mari, 654

Paetzold, Gustavo, 435
Pan, Xiaoman, 249
Pan, Yi-Cheng, 393
Pantel, Patrick, 1452
Parikh, Devi, 839, 1233
Park, Se-Young, 907
Park, Seong-Bae, 907
Parker, D. Stott, 1262
Patwardhan, Siddharth, 1030
Paul, Michael, 20
Peng, Yangtuo, 374
Perret, Jérémy, 99
Persing, Isaac, 1384
Pinter, Yuval, 670
Puduppully, Ratish, 488

Qadir, Ashequl, 1223, 1452
Qian, Yao, 527
Qu, Lizhen, 460
Quattoni, Ariadna, 552

Radev, Dragomir R., 58, 1512
Rajendran, Janarthanan, 171
Ramisa, Arnau, 552
Rappoport, Ari, 499
Rastogi, Pushpendre, 623
Ravi, Sujith, 136
Ravindran, Balaraman, 171

Reddy, Siva, 1051
Reichart, Roi, 499, 670
Resnik, Philip, 1378
Rettinger, Achim, 692
Richardson, John, 11
Riedl, Martin, 617
Riezler, Stefan, 740
Riloff, Ellen, 1223
Rodríguez, Miguel, 1208
Rohrbach, Marcus, 1545
Rojas-Barahona, Lina M., 120, 142
Roller, Stephen, 1121, 1522
Roth, Benjamin, 828, 886
Roth, Dan, 589
Rothe, Sascha, 767
Roy, Subhro, 1152
Rubino, Raphael, 960
Ruppenhofer, Josef, 778, 800
Rush, Alexander M., 93, 994

Sagae, Kenji, 232
Sajjad, Hassan, 1082
Salameh, Mohammad, 1175
Salazar, Cristobal, 1070
Sarabi, Zahra, 1431
Sarikaya, Ruhi, 282
Schenk, Niko, 1473
Schulder, Marc, 778
Schulte im Walde, Sabine, 353
Schütze, Hinrich, 534, 664, 767, 828
Schwartz, Roy, 499
Sennrich, Rico, 35
Søgaard, Anders, 1115, 1528
Sha, Lei, 428
Shah, Kashif, 558
Sharma, Arnav, 1340
Sharma, Dipti M., 1340
Shen, Tianxiao, 1089
Sheth, Amit, 789
Shi, Yangyang, 393, 1501
Shieber, Stuart M., 994
Shrivastava, Manish, 488, 1340
Shutova, Ekaterina, 160
Simo-Serra, Edgar, 552
Singla, Parag, 69
Sirts, Kairit, 460

Sitaram, Sunayana, 1357
Smith, David, 454, 1127
Smith, Noah A., 199, 731
Smola, Alex, 1480
Sobhani, Parinaz, 917
Soderland, Stephen, 897
Song, Hyun-Je, 907
Soong, Frank K., 527
Specia, Lucia, 435, 558
Steedman, Mark, 447, 1051
Stein, Benno, 1395
Stent, Amanda, 58
Strube, Michael, 1005, 1414
Strubell, Emma, 886
Su, Pei-Hao, 120, 142
Subramanian, Sandeep, 260
Subramanya, Amarnag, 1296
Sui, Zhifang, 428
Sultan, Md Arafat, 927, 1070
Sumita, Eiichiro, 411, 1076
Sumner, Tamara, 927, 1070
Šuster, Simon, 1346
Suzuki, Jun, 1145
Szpektor, Idan, 670

Tan, Liling, 1169
Temnikova, Irina, 1082
Teng, Zhiyang, 400
Thomson, Blaise, 142
Tian, Le, 1501
Tian, Ran, 850
Titov, Ivan, 1346
Tomeh, Nadi, 1095
Tran, Ke, 321
Tran, Quan Hung, 762
Tsai, Chen-Tse, 589
Tsvetkov, Yulia, 634, 1357
Tu, Zhaopeng, 983
Tymoshenko, Kateryna, 1268, 1279

Utiyama, Masao, 411

van der Plas, Lonneke, 644
van Genabith, Josef, 960, 1169
van Noord, Gertjan, 1346
Vanderwende, Lucy, 839, 1233
Vandyke, David, 120, 142

Vaswani, Ashish, 232, 249, 1217
Verga, Patrick, 886
Vieira, Tim, 664
Vinyals, Oriol, 1296
Vlachos, Andreas, 1163
Vogel, Stephan, 1082
Vu, Ngoc Thang, 534
Vu, Thuy, 1262
Vyas, Yogarshi, 1187
Vymolova, Ekaterina, 876

Wachsmuth, Henning, 1395
Waite, Aurelien, 856
Walker, Marilyn A., 1223
Wallace, Byron C., 1522
Walter, Matthew R., 720
Wang, Daisy Zhe, 1208
Wang, Jin, 540
Wang, Longyue, 983
Wang, Lu, 47
Wang, Peilu, 527
Wang, Shijin, 977
Wang, Shuohang, 1442
Wang, Tianlu, 249
Wang, William Yang, 58
Way, Andy, 983
Weissenbacher, Davy, 1198
Weld, Daniel S., 897
Wen, Tsung-Hsien, 120, 142
Wiegand, Michael, 778, 800
Wijaya, Derry Tanti, 818
Wiseman, Sam, 994
Wisniewski, Guillaume, 1058
Wojtulewicz, Laura, 1198
Wubben, Sander, 423

Xiang, Bing, 521
Xiong, Caiming, 149
Xu, Jian, 1041
Xu, Wenduan, 210

Yang, Bishan, 289
Yang, Diyi, 1480
Yang, Eunsuk, 282
Yang, Fan, 238
Yang, Shaohua, 149
Yang, Yi, 1318

Yang, Zichao, 1480
Yao, Kaisheng, 393, 876, 1501
Yatskar, Mark, 193
Yilmaz, Emine, 599
Yoon, Hee-Geun, 907
Young, Steve, 120, 142
Yu, Dong, 393
Yu, Hong, 473
Yu, Liang-Chih, 540
Yu, Mo, 1019
Yuan, Zheng, 380
Yuret, Deniz, 751
Yvon, François, 1058

Zettlemoyer, Luke, 221
Zhang, Boliang, 249
Zhang, Fan, 1424
Zhang, Justine, 136
Zhang, Liangang, 1041
Zhang, Rui, 1512
Zhang, Xiaojun, 983
Zhang, Xingxing, 310
Zhang, Xuejie, 540
Zhang, Ye, 1522
Zhang, Yuan, 1307
Zhang, Yue, 400, 488
Zhao, Hai, 527
Zhou, Bowen, 521
Zhu, Song-Chun, 149
Zhu, Xiaodan, 917
Ziering, Patrick, 644
Zitnick, C. Lawrence, 1233
Zoph, Barret, 30, 1217
Zukerman, Ingrid, 762

	Program
	Achieving Accurate Conclusions in Evaluation of Automatic Machine Translation Metrics
	Flexible Non-Terminals for Dependency Tree-to-Tree Reordering
	Selecting Syntactic, Non-redundant Segments in Active Learning for Machine Translation
	Multi-Source Neural Translation
	Controlling Politeness in Neural Machine Translation via Side Constraints
	An Empirical Evaluation of Noise Contrastive Estimation for the Neural Network Joint Model of Translation
	Neural Network-Based Abstract Generation for Opinions and Arguments
	A Low-Rank Approximation Approach to Learning Joint Embeddings of News Stories and Images for Timeline Summarization
	Entity-balanced Gaussian pLSA for Automated Comparison
	Automatic Summarization of Student Course Feedback
	Knowledge-Guided Linguistic Rewrites for Inference Rule Verification
	Abstractive Sentence Summarization with Attentive Recurrent Neural Networks
	Integer Linear Programming for Discourse Parsing
	A Diversity-Promoting Objective Function for Neural Conversation Models
	Multi-domain Neural Network Language Generation for Spoken Dialogue Systems
	A Long Short-Term Memory Framework for Predicting Humor in Dialogues
	Conversational Flow in Oxford-style Debates
	Counter-fitting Word Vectors to Linguistic Constraints
	Grounded Semantic Role Labeling
	Black Holes and White Rabbits: Metaphor Identification with Visual Features
	Bridge Correlational Neural Networks for Multilingual Multimodal Representation Learning
	Unsupervised Visual Sense Disambiguation for Verbs using Multimodal Embeddings
	Stating the Obvious: Extracting Visual Common Sense Knowledge
	Recurrent Neural Network Grammars
	Expected F-Measure Training for Shift-Reduce Parsing with Recurrent Neural Networks
	LSTM CCG Parsing
	Supertagging With LSTMs
	An Empirical Study of Automatic Chinese Word Segmentation for Spoken Language Understanding and Named Entity Recognition
	Name Tagging for Low-resource Incident Languages based on Expectation-driven Learning
	Neural Architectures for Named Entity Recognition
	Dynamic Feature Induction: The Last Gist to the State-of-the-Art
	Drop-out Conditional Random Fields for Twitter with Huge Mined Gazetteer
	Joint Extraction of Events and Entities within a Document Context
	Joint Event Extraction via Recurrent Neural Networks
	Top-down Tree Long Short-Term Memory Networks
	Recurrent Memory Networks for Language Modeling
	A Latent Variable Recurrent Neural Network for Discourse-Driven Language Models
	Questioning Arbitrariness in Language: a Data-Driven Study of Conventional Iconicity
	Distinguishing Literal and Non-Literal Usage of German Particle Verbs
	Phrasal Substitution of Idiomatic Expressions
	Leverage Financial News to Predict Stock Price Movements Using Word Embeddings and Deep Neural Networks
	Grammatical error correction using neural machine translation
	Multimodal Semantic Learning from Child-Directed Input
	Recurrent Support Vector Machines For Slot Tagging In Spoken Language Understanding
	Expectation-Regulated Neural Model for Event Mention Extraction
	Agreement on Target-bidirectional Neural Machine Translation
	Psycholinguistic Features for Deceptive Role Detection in Werewolf
	Individual Variation in the Choice of Referential Form
	Joint Learning Templates and Slots for Event Schema Induction
	Inferring Psycholinguistic Properties of Words
	Intra-Topic Variability Normalization based on Linear Projection for Topic Classification
	Shift-Reduce CCG Parsing using Neural Network Models
	Online Multilingual Topic Models with Multi-Level Hyperpriors
	STransE: a novel embedding model of entities and relationships in knowledge bases
	An Unsupervised Model of Orthographic Variation for Historical Document Transcription
	Bidirectional RNN for Medical Event Detection in Electronic Health Records
	The Sensitivity of Topic Coherence Evaluation to Topic Cardinality
	Transition-Based Syntactic Linearization with Lookahead Features
	A Recurrent Neural Networks Approach for Estimating the Quality of Machine Translation Output
	Symmetric Patterns and Coordinations: Fast and Enhanced Representations of Verbs and Adjectives
	Breaking the Closed World Assumption in Text Classification
	Sequential Short-Text Classification with Recurrent and Convolutional Neural Networks
	Improved Neural Network-based Multi-label Classification with Better Initialization Leveraging Label Co-occurrence
	Learning Distributed Word Representations For Bidirectional LSTM Recurrent Neural Network
	Combining Recurrent and Convolutional Neural Networks for Relation Classification
	Building Chinese Affective Resources in Valence-Arousal Dimensions
	Improving event prediction by representing script participants
	Structured Prediction with Output Embeddings for Semantic Image Annotation
	Large-scale Multitask Learning for Machine Translation Quality Estimation
	Conversational Markers of Constructive Discussions
	Vision and Feature Norms: Improving automatic feature norm learning through cross-modal maps
	Cross-lingual Wikification Using Multilingual Embeddings
	Deconstructing Complex Search Tasks: a Bayesian Nonparametric Approach for Extracting Sub-tasks
	Probabilistic Models for Learning a Semantic Parser Lexicon
	Unsupervised Compound Splitting With Distributional Semantics Rivals Supervised Methods
	Weighting Finite-State Transductions With Neural Context
	Morphological Inflection Generation Using Character Sequence to Sequence Learning
	Towards Unsupervised and Language-independent Compound Splitting using Inflectional Morphological Transformations
	Phonological Pun-derstanding
	A Joint Model of Orthography and Morphological Segmentation
	Syntactic Parsing of Web Queries with Question Intent
	Visualizing and Understanding Neural Models in NLP
	Bilingual Word Embeddings from Parallel and Non-parallel Corpora for Cross-Language Text Classification
	Joint Learning with Global Inference for Comment Classification in Community Question Answering
	Weak Semi-Markov CRFs for Noun Phrase Chunking in Informal Text
	What to talk about and how? Selective Generation using LSTMs with Coarse-to-Fine Alignment
	Generation from Abstract Meaning Representation using Tree Transducers
	A Corpus and Semantic Parser for Multilingual Natural Language Querying of OpenStreetMap
	Natural Language Communication with Robots
	Inter-document Contextual Language model
	Ultradense Word Embeddings by Orthogonal Transformation
	Separating Actor-View from Speaker-View Opinion Expressions using Linguistic Features
	Clustering for Simultaneous Extraction of Aspects and Features from Reviews
	Opinion Holder and Target Extraction on Opinion Compounds -- A Linguistic Approach
	Capturing Reliable Fine-Grained Sentiment Associations by Crowdsourcing and Best--Worst Scaling
	Mapping Verbs in Different Languages to Knowledge Base Relations using Web Text as Interlingua
	Comparing Convolutional Neural Networks to Traditional Models for Slot Filling
	A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories
	Dynamic Entity Representation with Max-pooling Improves Machine Reading
	Speed-Constrained Tuning for Statistical Machine Translation Using Bayesian Optimization
	Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism
	Incorporating Structural Alignment Biases into an Attentional Neural Translation Model
	Multilingual Relation Extraction using Compositional Universal Schema
	Effective Crowd Annotation for Relation Extraction
	A Translation-Based Knowledge Graph Embedding Preserving Logical Property of Relations
	DAG-Structured Long Short-Term Memory for Semantic Compositionality
	Bayesian Supervised Domain Adaptation for Short Text Similarity
	Pairwise Word Interaction Modeling with Deep Neural Networks for Semantic Similarity Measurement
	An Attentional Model for Speech Translation Without Transcription
	Information Density and Quality Estimation Features as Translationese Indicators for Human Translation Classification
	Interpretese vs. Translationese: The Uniqueness of Human Strategies in Simultaneous Interpretation
	LSTM Neural Reordering Feature for Statistical Machine Translation
	A Novel Approach to Dropped Pronoun Translation
	Learning Global Features for Coreference Resolution
	Search Space Pruning: A Simple Solution for Better Coreference Resolvers
	Unsupervised Ranking Model for Entity Coreference Resolution
	Embedding Lexical Features via Low-Rank Tensors
	The Role of Context Types and Dimensionality in Learning Word Embeddings
	Improve Chinese Word Embeddings by Exploiting Internal Structure
	Assessing Relative Sentence Complexity using an Incremental CCG Parser
	Frustratingly Easy Cross-Lingual Transfer for Transition-Based Dependency Parsing
	Geolocation for Twitter: Timing Matters
	Fast and Easy Short Answer Grading with High Accuracy
	Interlocking Phrases in Phrase-based Statistical Machine Translation
	Eyes Don't Lie: Predicting Machine Translation Quality Using Eye Movement
	Making Dependency Labeling Simple, Fast and Accurate
	Deep Lexical Segmentation and Syntactic Parsing in the Easy-First Dependency Framework
	Sentiment Composition of Words with Opposing Polarities
	Learning to Recognize Ancillary Information for Automatic Paraphrase Identification
	Learning a POS tagger for AAVE-like language
	PIC a Different Word: A Simple Model for Lexical Substitution in Context
	Bootstrapping Translation Detection and Sentence Extraction from Comparable Corpora
	Discriminative Reranking for Grammatical Error Correction with Statistical Machine Translation
	Patterns of Wisdom: Discourse-Level Style in Multi-Sentence Quotations
	Right-truncatable Neural Word Embeddings
	MAWPS: A Math Word Problem Repository
	Cross-genre Event Extraction with Knowledge Enrichment
	Emergent: a novel data-set for stance classification
	BIRA: Improved Predictive Exchange Word Clustering
	Integrating Morphological Desegmentation into Phrase-based Decoding
	The Instantiation Discourse Relation: A Corpus Analysis of Its Properties and Improved Detection
	Sparse Bilingual Word Representations for Cross-lingual Lexical Entailment
	Automatic Prediction of Linguistic Decline in Writings of Subjects with Degenerative Dementia
	Consensus Maximization Fusion of Probabilistic Information Extractors
	Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies
	Automatically Inferring Implicit Properties in Similes
	Visual Storytelling
	PRIMT: A Pick-Revise Framework for Interactive Machine Translation
	Incorporating Side Information into Recurrent Neural Network Language Models
	Capturing Semantic Similarity for Entity Linking with Convolutional Neural Networks
	K-Embeddings: Learning Conceptual Embeddings for Words using Context
	Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for Answer Sentence Reranking
	Semi-supervised Question Retrieval with Gated Convolutions
	This is how we do it: Answer Reranking for Open-domain How Questions with Paragraph Vectors and Minimal Feature Engineering
	Multilingual Language Processing From Bytes
	Ten Pairs to Tag -- Multilingual POS Tagging via Coarse Mapping between Embeddings
	Part-of-Speech Tagging for Historical English
	Statistical Modeling of Creole Genesis
	Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text
	Bilingual Learning of Multi-sense Embeddings with Discrete Autoencoders
	Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Representation Learning
	Learning Distributed Representations of Sentences from Unlabelled Data
	Retrofitting Sense-Specific Word Vectors Using Parallel Text
	End-to-End Argumentation Mining in Student Essays
	Cross-Domain Mining of Argumentative Text through Distant Supervision
	A Study of the Impact of Persuasive Argumentation in Political Debates
	Lexical Coherence Graph Modeling Using Word Embeddings
	Using Context to Predict the Purpose of Argumentative Writing Revisions
	Automatic Generation and Scoring of Positive Interpretations from Negated Statements
	Learning Natural Language Inference with LSTM
	Activity Modeling in Email
	Clustering Paraphrases by Word Sense
	Unsupervised Learning of Prototypical Fillers for Implicit Semantic Role Labeling
	Hierarchical Attention Networks for Document Classification
	Dependency Based Embeddings for Sentence Classification Tasks
	Deep LSTM based Feature Mapping for Query Classification
	Dependency Sensitive Convolutional Neural Networks for Modeling Sentences and Documents
	MGNC-CNN: A Simple Approach to Exploiting Multiple Word Embeddings for Sentence Classification
	Improving sentence compression by learning to predict gaze
	Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships
	Learning to Compose Neural Networks for Question Answering

