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FOREWORD

IJCNLP2011, where Anna(s) meet the king(s) for sharing knowledge in natural language

IJCNLP2011 is held in Chiang Mai. It is a historic city situated in the northern part of Thailand.
Organizing the conference in this part of Asia made us think of the classic movie “The King and I”
(1956), where King Mongkut of Siam invited Anna Leonowens an Anglo-Indian school teacher to
Siam to teach his family English. Similar to the movie, IJCNLP2011 brings together scientists and
practitioners from the East and West in pursuit of the knowledge of natural language processing (NLP).

Virach, Hitoshi and I compiled this passage collaboratively online using our own iPads. Despite us
being physically apart, in Thailand, Japan and Hong Kong respectively, our collaborative editorial work
went smoothly with virtually no distance. The increasing popularity of smart handheld devices, such as
iPhones and iPads has practically made the world flat. The hurdles and boundaries between people have
effectively been lifted enabling friends and relatives over the globe to keep in close contact with each
other. We use email, blog, facebook and twitter regularly and ubiquitously for communications. Non-
traditional they may be, the languages for communication over these channels are natural as they are used
by the netizens (human) for information exchange. Processing of these natural languages is inevitably
unconventional and the task is challenging, which requires much innovation. For this reason, NLP is a
key research area both in the industry and in universities worldwide. Therefore, it is not surprising that
we have received over 500 submissions from different countries around the world in this year’s IJCNLP.
This number is in fact the largest in the history of the conference series.

Organizing a conference of the scale of IICNLP2011 (with over 300 participants) is never easy. We
worked closely as a team in the past ten months. It is really not easy for us to express our gratitude to
any one individual. The names of the hard working conference officers, the track chairs, the workshop
chairs, the tutors as well as the reviewers are enlisted in the proceedings. We owe everyone a billion.
Without their hard work IJCNLP2011 would never have reached this stage. So please help me praise and
thank them when you meet them in the conference.

Chiang Mai is a cultural city full of history and traditions, with many famous attractions such as its
melodious colloquial language, Lanna style of clothing, mellow taste of food, etc. During the conference
period, we will experience the “Loi Krathong Festival” where people float krathong (floating basket) on
a river to pay respect to the spirit of the waters. IJCNLP2011 in November Chiang Mai is unique. It
coincides with the unforgettable Lanna Festival. Locally known as “Yi Peng”, the festival will bring to
you a memorable cultural experience. You will witness a multitude of Lanna-style sky lanterns (khom
loi, literally “floating lanterns™) gently rising in the air. These lanterns resemble large flocks of giant
fluorescent jellyfish gracefully floating by through the sky. Honestly, these attractions are just too good
to be missed.

Dear friends and colleagues of the world NLP communities, honorable guests of Chiang Mai, we are
glad to see you in IICNLP2011. We hope you find the technical program useful to your research and can
discover something insightful at the end. And before closing, as one often said “seeing is believing”, we
urge you to spare some time after the conference to explore and to enjoy the city.

Ka Poon Kap (thank you)
Kam-Fai Wong, General Chair, The Chinese University of Hong Kong (CUHK), China

Virach Sornlertlamvanich, Organization Co-Chair, National Electronics and Computer Technology
Center (NECTEC), Thailand

Hitoshi Isahara, Organization Co-Chair, Toyohashi University of Technology, Japan
November 7, 2011
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PREFACE

As the flagship conference of the Asian Federation of Natural Language Processing (AFNLP), [ICNLP
has now rapidly grown into a renowned international event. IJCNLP 2011 covers a broad spectrum
of technical areas related to natural language processing. The conference includes full papers, short
papers, demonstrations, a student research workshop, as well as pre- and post-conference tutorials and
workshops.

This year, we received a record 478 valid paper submissions, which is well beyond our initial
expectations. This represents an increasing interest of research on NLP and the growing reputation
of IJCNLP as an international event. The 478 submissions include 385 full-paper submissions and 93
short-paper submissions from more than 40 countries. Specifically, approximately 61% of the papers
are from 16 countries and areas in Asia Pacific, 22% from 16 countries in Europe, 14% from the United
States and Canada; we also have 2% of the papers from the Middle East and Africa, and 1% from South
America.

We would like to thank all the authors for submitting papers to IJCNLP 2011. The significant increase
in the number of submissions and the wide range of demographic areas represent a rapid growth of our
field. We would also like to thank the 22 area chairs and 474 program committee members for writing
over 1400 reviews and meta-reviews and for paving the way for the final paper selection. Of all 478
submissions, a total of 176 papers were accepted, representing a healthy 36% acceptance rate. The
accepted papers are comprised of 149 full papers (8+ pages), of which 107 are presented orally and 42 as
posters, and 27 short papers (4+ pages) where 25 are presented orally and 2 as posters. We are extremely
grateful to the area chairs and program committee members for all their hard work, without which the
preparation of this program would not be possible.

We are delighted to have invited three strategic keynote speakers addressing different application aspects
of NLP for the Web in IJCNLP2011. Mathew Lease will talk about “crowdsourcing”, which is a trendy
and effective means to perform a task that requires hundreds/thousands of people, such as corpus tagging.
Wai Lam will present the latest techniques for information extraction, which is essential for today’s
Internet business. And last but not the least, Mengqiu Wang, Vice President of Baidu, the largest Internet
search company in China, will share with us the recent trends in search and social network technologies
and how NLP techniques can be applied to improve performance in the real world. These speeches will
surely be informative and enlightening to the audience leading to many innovative research ideas. We
are excited about it and are looking forward to them. Best paper awards will be announced in the last
session of the conference as well.

We thank General Chair Kam-Fai Wong, the Local Arrangements Committee headed by Virach
Sornlertlamvanich and Hitoshi Isahara, and the AFNLP Conference Coordination Committee chaired by
Yuji Matsumoto, for their help and advice. Thanks to Min Zhang and Sudeshria Sarkar, the Publication
Co-Chairs for putting the proceedings together, and all the other committee chairs for their work.

We hope that you enjoy the conference!
Haifeng Wang, Baidu

David Yarowsky, Johns Hopkins University
November 7, 2011



Honorary Conference Chair

Chaiyong Eurviriyanukul, Rajamangala University of Technology Lanna, Thailand
Chongrak Polprasert, Sirindhorn International Institute of Technology, Thailand
Thaweesak Koanantakool, NSTDA, Thailand

General Chair

Kam-Fai Wong, The Chinese University of Hong Kong, China

Program Co-Chairs:

Haifeng Wang, Baidu, China
David Yarowsky, John Hopkins University, USA

Organisation Co-Chairs:

Virach Sornlertlamvanich, NECTEC, Thailand
Hitoshi Isahara, Toyohashi University of Technology, Japan

Workshop Co-Chairs:

Sivaji Bandyopadhyay, Jadavpur University, India
Jong Park, KAIST, Korea
Noriko Kando, NII, Japan

Tutorial Co-Chairs:

Kentaro Inui, Tohoku University, Japan
Wei Gao, The Chinese University of Hong Kong, China
Dawei Song, Robert Gordon University, UK

Demonstration Co-Chairs:

Ken Church, Johns Hopkins University, USA
Yungqing Xia, Tsinghua University, China

Publication Co-Chairs:

Min Zhang, I2R, Singapore
Sudeshna Sarkar, IIT Kharagpur, India

Finance Co-Chairs:

Vilas Wuwongse, AIT, Thailand
Gary Lee, POSTECH, Korea

Sponsorship Co-Chairs:

Asanee Kawtrakul, Kasetsart University, Thailand
Methinee Sirikrai, NECTEC, Thailand
Hiromi Nakaiwa, NTT, Japan

X1



Publicity Committee:

Steven Bird, University of Melbourne, Australia

Le Sun, CIPS, China

Kevin Knight, USC, USA

Nicoletta Calzolari, Istituto di Linguistica Computazionale del CNR, Italy
Thanaruk Theeramunkong, SIIT, Thailand

Webmasters:

Swit Phuvipadawat, Tokyo Institute of Technology, Japan
Wirat Chinnan, SIIT, Thailand

Area Chairs:

Discourse, Dialogue and Pragmatics
David Schlangen, The University of Potsdam, Germany

Generation /Summarization
Xiaojun Wan, Peking University, China

Information Extraction
Wenjie Li, The Hong Kong Polytechnic University, Hong Kong

Information Retrieval
Gareth Jones, Dublin City University, Ireland

Language Resource
Eneko Agirre, University of the Basque Country, Spain

Machine Translation

David Chiang, USC-ISI, USA

Min Zhang, Institute for Infocomm Research, Singapore
Hua Wu, Baidu, China

Phonology/morphology, POS tagging and chunking, Word Segmentation
Richard Sproat, Oregon Health & Science University, USA
Gary Lee, Pohang University of Science and Technology, Korea

Question Answering
Jun Zhao, Institute of Automation, Chinese Academy of Sciences, China

Semantics
Pushpak Bhattacharyya, Indian Institute of Technology, India
Hinrich Schuetze, University of Stuttgart, Germany

Sentiment Analysis, Opinion Mining and Text Classification
Rafael Banchs, Institute for Infocomm Research, Singapore
Theresa Wilson, Johns Hopkins University, USA

Spoken Language Processing
Chung-Hsien Wu, National Cheng Kung University, Taiwan

Statistical and ML Methods
Miles Osborne, The University of Edinburgh, UK
David Smith, University of Massachusetts Amherst, USA

Xii



Syntax and Parsing
Stephen Clark, University of Cambridge, UK
Yusuke Miyao, National Institute of Informatics, Japan

Text Mining and NLP Applications
Juanzi Li, Tsinghua University, China
Patrick Pantel, Microsoft Research, USA

Reviewers

Ahmed Abbasi, Omri Abend, Akiko Aizawa, Ahmet Aker, Enrique Alfonseca, DAUD ALI, Ben
Allison, Robin Aly, Alina Andreevskaia, Masayuki Asahara, Ai Azuma

Jing Bai, Alexandra Balahur, Timothy Baldwin, Kalika Bali, Carmen Banea, Srinivas Bangalore,
Mohit Bansal, Marco Bbaroni, Roberto Basili, Timo Baumann, Emily Bender, Shane Bergsma,
Pushpak Bhattacharyya, Dan Bikel, Wang Bin, Lexi Birch, Michael Bloodgood, Phil Blunsom,
Nate Bodenstab, Ester Boldrini, Gemma Boleda, Danushka Bollegala, Luc Boruta, Stefan Bott,
Chris Brew, Sam Brody, Julian Brooke, Paul Buitelaar, Miriam Butt

Aoife Cahill, Li Cai, Yi Cai, Nicoletta Calzolari, Jaime Carbonell, Marine Carpuat, John Car-
roll, Paula Carvalho, Suleyman Cetintas, Debasri Chakrabarti, Nate Chambers, Niladri Chatterjee,
Wanxiang Che, Berlin Chen, Boxing Chen, Chia-Ping Chen, Hsin-Hsi Chen, Wenliang Chen, Ying
Chen, Yufeng Chen, Pu-Jen Cheng, Colin Cherry, Jackie Chi KiCheung, Key-Sun Choi, Mono-
jit Choudhury, Christos Christodoulopoulos, Kenneth Church, Alex Clark, Shay Cohen, Trevor
Cohn, Gao Cong, Marta R. Costa-jussa, Paul Crook, Montse Cuadros, Ronan Cummins

Robert Damper, Kareem Darwish, Dipanjan Das, Niladri Dash, Adria de Gispert, Daniel de Kok,
Eric De La Clergerie, Stijn De Saeger, Steve DeNeefe, Pascal Denis, Ann Devitt, Arantza Diaz
de Ilarraza, Anne Diekema, Markus Dreyer, Rebecca Dridan, Jinhua Du, Xiangyu Duan, Amit
Dubey, Kevin Duh, Chris Dyer, Michal Dziemianko

Jacob Eisenstein, Michael Elhadad, Micha Elsner, Martin Emms

Angela Fahrni, Hui Fang, Yi Fang, Li Fangtao, Christiane Fellbaum, Raquel Fernandez, Colum Fo-
ley, Jennifer Foster, Timothy Fowler, Stella Frank, Guohong Fu, Atsushi Fujii, Kotaro Funakoshi,
Hagen Fiirstenau

Matthias Galle, Michael Gamon, Michaela Geierhos, Eugenie Giesbrecht, Alastair Gill, Roxana
Girju, Bruno Golenia, Carlos Gomez-Rodriguez, Zhengxian Gong, Matt Gormley, Amit Goyal,
Jodo Graga, Jens Grivolla, Iryna Gurevych

Stephanie Haas, Barry Haddow, Eva Hajicova, David Hall, Keith Hall, Xianpei Han, Kazuo
Hara, Donna Harman, Kazi Hasan, Chikara Hashimoto, Koiti Hasida, Eva Hasler, Samer Has-
san, Claudia Hauff, Xiaodong He, Yulan He, Zhongjun He, Carlos Henriquez, Tsutomu Hirao,
Hieu Hoang, Tracy Holloway King, Matthew Honnibal, Mark Hopkins, Meishan Hu, Chien-Lin
Huang, Fei Huang, Minlie Huang, Ruizhang Huang, Xiaojiang Huang, Xuanjing Huang, Yun
Huang, Zhongqgiang Huang

Francisco lacobelli, Diana Inkpen, Aminul Islam, Ruben Izquierdo

Heng Ji, Sittichai Jiampojamarn, Hongfei Jiang, Wenbin Jiang, Xing Jiang, Cai Jie, Rong Jin,
Richard Johansson, Hanmin Jung

Sarvnaz Karimi, Daisuke Kawahara, Jun’ichi Kazama, Liadh Kelly, Maxim Khalilov, Mitesh
Khapra, Adam Kilgarriff, Byeongchang Kim, Irwin King, Alistair Knott, Philipp Koehn, Rob
Koeling, Oskar Kohonen, Mamoru Komachi, Grzegorz Kondrak, Fang Kong, Valia Kordoni, Lili
Kotlerman, Zornitsa Kozareva, Wessel Kraaij, Parton Kristen, Lun-Wei Ku, Sudip Kumar Naskar,
June-Jei Kuo, Kow Kuroda, Sadao KUROHASH, Kui-Lam Kwok, Han Kyoung-Soo

Xiii



Sobha Lalitha Devi, Wai Lam, Joel Lang, Jun Lang, Matt Lease, Cheongjae Lee, Jung-Tae Lee,
Sungjin Lee, Tan Lee, Russell Lee-goldman, Alessandro Lenci, Johannes Leveling, Abby Leven-
berg, Gina-Anne Levow, Baoli Li, Daifeng Li, Haizhou Li, linlin li, Mu Li, Qing Li, Shoushan Li,
Sujian Li, Yunyao Li, Shasha Liao, Yuan-Fu Liao, Chin-Yew Lin, Pierre Lison, Ken Litkowski,
Marina Litvak, Bing Liu, Fei Liu, Feifan Liu, Kang Liu, Pengyuan Liu, Qun Liu, Shui Liu, Xiao-
hua Liu, Yang Liu (UT Dallas), Yang Liu (ICT CAS), Yi Liu, Ying Liu, Yiqun Liu, Zhanyi Liu,
Hector Llorens, Elena Lloret, Wai-Kit Lo, QIU Long, Adam Lopez, Yajuan Lu

Bin Ma, Yanjun Ma, Walid Magdy, OKUMURA Manabu, Suresh Manandhar, Maria Antonia
Marti, David Martinez, Andre Martins, Yuji Matsumoto, Yutaka Matsuo, Takuya Matsuzaki, Mike
Maxwell, Jonathan May, Diana McCarthy, David McClosky, Ryan McDonald, Paul McNamee,
Beata Megyesi, Donald Metzler, Haitao Mi, Lukas Michelbacher, Dipti Mishra Sharma, Mandar
Mitra, Daichi Mochihashi, Saif Mohammed, Behrang Mohit, Karo Moilanen, Christian Monson,
Paul Morarescu, Jin’ichi Murakami, Sung Hyon Myaeng

Seung-Hoon Na, Masaaki Nagata, Mikio Nakano, Preslav Nakov, Jason Naradowsky, Vivi Nas-
tase, Roberto Navigli, Mark-Jan Nederhof, Ani Nenkova, Vincent Ng, Truc-Vien T. Nguyen, Eric
Nichols, Tadashi Nomoto, Scott Nowson, Andreas Nuernberger, Pierre Nugues

Diarmuid O Seaghdha, Brendan O’Connor, Neil O’Hare, Stephan Oepen, Kemal Oflazer, Kemal
Oflazer, Alice Oh, Naoaki Okazaki, Constantin Orasan, Arantxa Otegi, Myle Ott, Jahna Otter-
bacher, You Ouyang

Alexandre Patry, Soma Paul, Adam Pease, Ted Peders, Wei Peng, Gerald Penn, Sasa Petrovic,
Christian Pietsch, Juan Pino, Matt Post, John Prager, Daniel Preotiuc, Matthew Purver

Vahed Qazvinian, Guang Qiu, Chris Quirk

Altaf Rahman, Ganesh Ramakrishnan, Karthik Raman, AnanthakrishnRamanathan, Sujith Ravi,
Bunescu Razvan, Jonathon Read, Marta Recasens, Jeremy Reffin, Roi Reichart, Jason Riesa, Ver-
ena Rieser, Arndt Riester, Stefan Riezler, German Rigau, Laura Rimell, Carlos Rodriguez, Kepa
Rodriguez, Robert Ross, Michael Roth, Sasha Rush

Kenji Sagae, Benoit Sagot, Agnes Sandor, Anoop Sarkar, Sudeshna Sarkar, Ryohei Sasano, Roser
Sauri, Helmut Schmid, Satoshi Sekine, Arulmozi Selvaraj, Pavel Serdyukov, Gao Sheng, Masashi
Shimbo, Darla Shockley, Luo Si, Khalil Sima’an, Ben Snyder, Ruihua Song, Young-In Song, Se-
bastian Spiegler, Valentin Spitkovsky, Caroline Sporleder, Manfred Stede, Mark Steedman, Mark
Stevenson, Nicola Stokes, Veselin Stoyanov, Michael Strube, Jian Su, Keh-Yih Su, Zhifang Sui,
Aixin Sun, Jun Sun, Weiwei Sun, Mihai Surdeanu

Oscar Tackstrom, Hiroya Takamura, Jianhua Tao, Joel Tetreault, Stefan Thater, Jorg Tiedemann,
Ivan Titov, Takenobu Tokunaga, Kentaro Torisawa, Lamia Tounsi, Kristina Toutanova, Roy Tromble,
Reut Tsarfaty, Yuen-Hsien Tseng, Hajime Tsukada

Christina Unger, Takehito Utsuro

Antal van den Bosch, Gertjan van Noord, Vasudeva Varma, Silvia Vazquez, Tony Veale, Olga
Vechtomova, Sriram Venkatapathy, Yannick Versley, Jesus Vilares, Sami Virpioja, Andreas Vla-
chos, Piek Vossen

Stephen Wan, Bin Wang, Bo Wang, Dingding Wang, Hsin-Min Wang, Ting Wang, Wei Wang,
Zhichun Wang, Taro Watanabe, Yotaro Watanabe, Bonnie Webber, Furu Wei, Richard Wicen-
towski, Shuly Wintner, Kristian Woodsend, Gang Wu, Zhiyong Wu

Yunqging Xia, Tong Xiao, Xin Xin, Deyi Xiong, Qiu Xipeng, Jun Xu, Ruifeng Xu

Christopher Yang, Grace Yang, Muyun Yang, Yuhang Yang, Zi Yang, Benajiba Yassine, Mark
Yatskar, Patrick Ye, Jui-Feng Yeh, Ainur Yessenalina, Scott Wen-tauYih, Bei Yu, Hong Yu

Taras Zagibalov, Benat Zapirain, Alessandra Zarcone, Duo Zhang, Hao Zhang, Jiajun Zhang, Jing
Zhang, Lanbo Zhang, Lei Zhang, Min Zhang, Qi Zhang, Yi Zhang (UCSC), Yi Zhang (DFKI), Yue

X1V



Zhang, Shiqi Zhao, Tiejun Zhao, Haitao Zheng, Zhi Zhong, Bowen Zhou, Dong Zhou, GuoDong
Zhou, Qiang Zhou, Yu Zhou, Muhua Zhu, Xiaodan Zhu, Chengqing Zong

XV






Table of Contents

Part A: Full Papers

Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers
Sonal Gupta and Christopher Manning . .. ...ttt i 1

Dependency-directed Tree Kernel-based Protein-Protein Interaction Extraction from Biomedical Litera-
ture

Longhua Qian and Guodong Zhou. . . ... e e 10

Learning Logical Structures of Paragraphs in Legal Articles
Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh and Akira Shimazu....................... 20

Extracting Pre-ordering Rules from Predicate-Argument Structures
Xianchao Wu, Katsuhito Sudoh, Kevin Duh, Hajime Tsukada and Masaaki Nagata............ 29

Context-Sensitive Syntactic Source-Reordering by Statistical Transduction
Maxim Khalilov and Khalil Sima’an........... ... i 38

Discriminative Phrase-based Lexicalized Reordering Models using Weighted Reordering Graphs
Wang Ling, Jodo Graga, David Martins de Matos, Isabel Trancoso and Alan W Black ......... 47

Active Learning Strategies for Support Vector Machines, Application to Temporal Relation Classification
Seyed Abolghasem Mirroshandel, Gholamreza Ghassem-Sani and Alexis Nasr................ 56

A Fast Accurate Two-stage Training Algorithm for LI-regularized CRFs with Heuristic Line Search
Strategy
Jinlong Zhou, Xipeng Qiu and Xuanjing Huang................... i, 65

Automatic Topic Model Adaptation for Sentiment Analysis in Structured Domains
Geoffrey Levine and Gerald DeJong .. ... e 75

Multi-modal Reference Resolution in Situated Dialogue by Integrating Linguistic and Extra-Linguistic
Clues
Ryu lida, Masaaki Yasuhara and Takenobu Tokunaga.................ooiiiieniiiinnnnnnn. 84

Single and multi-objective optimization for feature selection in anaphora resolution
Sriparna Saha, Asif Ekbal, Olga Uryupina and Massimo Poesio ..................... ... .... 93

A Unified Event Coreference Resolution by Integrating Multiple Resolvers
Bin Chen, Jian Su, Sinno Jialin Pan and Chew Lim Tan............. ... ... ... o iot.. 102

Handling verb phrase morphology in highly inflected Indian languages for Machine Translation
Ankur Gandhe, Rashmi Gangadharaiah, Karthik Visweswariah and Ananthakrishnan Ramanathan
111

Japanese Pronunciation Prediction as Phrasal Statistical Machine Translation
Jun Hatori and Hisami Suzuki .. ... .. 120

Comparing Two Techniques for Learning Transliteration Models Using a Parallel Corpus
Hassan Sajjad, Nadir Durrani, Helmut Schmid and Alexander Fraser........................ 129

XVvil



A Semantic-Specific Model for Chinese Named Entity Translation
Yufeng Chen and Chengqing Zong . .. .....oourt ittt 138

Mining Revision Log of Language Learning SNS for Automated Japanese Error Correction of Second
Language Learners
Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata and Yuji Matsumoto................ 147

Modality Specific Meta Features for Authorship Attribution in Web Forum Posts
Thamar Solorio, Sangita Pillay, Sindhu Raghavan and Manuel Montes-Gomez............... 156

Keyphrase Extraction from Online News Using Binary Integer Programming
Zhuoye Ding, Qi Zhang and Xuanjing Huang. ........ ... ... .. . i 165

Improving Related Entity Finding via Incorporating Homepages and Recognizing Fine-grained Entities
Youzheng Wu, Chiori Hori, Hisashi Kawai and Hideki Kashioka ........................... 174

Enhancing Active Learning for Semantic Role Labeling via Compressed Dependency Trees
Chenhua Chen, Alexis Palmer and Caroline Sporleder................. ..., 183

Semantic Role Labeling Without Treebanks?
Stephen Boxwell, Chris Brew, Jason Baldridge, Dennis Mehay and Sujith Ravi.............. 192

Japanese Predicate Argument Structure Analysis Exploiting Argument Position and Type
Yuta Hayashibe, Mamoru Komachi and Yuji Matsumoto. ..., 201

An Empirical Study on Compositionality in Compound Nouns
Siva Reddy, Diana McCarthy and Suresh Manandhar................. ... .. ... ... ..., 210

Feature-Rich Log-Linear Lexical Model for Latent Variable PCFG Grammars
Zhongqgiang Huang and Mary Harper...... ... i i 219

Improving Dependency Parsing with Fined-Grained Features
Guangyou Zhou, Li Cai, Kang Liuand Jun Zhao. ............... ..o, 228

Natural Language Programming Using Class Sequential Rules
Cohan SUjay Carlos . . ... .vui e e e 237

Treeblazing: Using External Treebanks to Filter Parse Forests for Parse Selection and Treebanking
Andrew MacKinlay, Rebecca Dridan, Dan Flickinger, Stephan Oepen and Timothy Baldwin . . 246

Cross-Language Entity Linking
Paul McNamee, James Mayfield, Dawn Lawrie, Douglas Oard and David Doermann........... 255

Generating Chinese Named Entity Data from a Parallel Corpus
Ruiji Fu, Bing Qinand Ting Liu . . ... ..o e e 264

Learning the Latent Topics for Question Retrieval in Community QA
Li Cai, Guangyou Zhou, Kang Liuand JunZhao. ......... ... ..o, 273

Identifying Event Descriptions using Co-training with Online News Summaries
William Yang Wang, Kapil Thadani and Kathleen McKeown............................... 282

Automatic Labeling of Voiced Consonants for Morphological Analysis of Modern Japanese Literature
Teruaki Oka, Mamoru Komachi, Toshinobu Ogiso and Yuji Matsumoto ..................... 292

XViil



S3 - Statistical Sandhi Splitting
Abhiram Natarajan and Eugene Charniak ......... .. ... i i i 301

Improving Chinese Word Segmentation and POS Tagging with Semi-supervised Methods Using Large
Auto-Analyzed Data

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka, Wenliang Chen, Yujie Zhang and Kentaro
0] 4 TSN e 309

CODACT: Towards Identifying Orthographic Variants in Dialectal Arabic
Pradeep Dasigiand Mona Diab . ........... i e 318

Enhancing the HL-SOT Approach to Sentiment Analysis via a Localized Feature Selection Framework
Weiand Jon Atle Gulla. . ... e 327

Fine-Grained Sentiment Analysis with Structural Features
Cicilia Zirn, Mathias Niepert, Heiner Stuckenschmidt and Michael Strube .................. 336

Predicting Opinion Dependency Relations for Opinion Analysis
Lun-Wei Ku, Ting-Hao Huang and Hsin-Hsi Chen............ ... . ... ... o oo, 345

Detecting and Blocking False Sentiment Propagation
Hye-Jin Min and Jong C. Park . ... ... e 354

Efficient induction of probabilistic word classes with LDA
Grzegorz Chrupala. ... ... e 363

Quality-biased Ranking of Short Texts in Microblogging Services
Minlie Huang, Yi Yang and Xiaoyan Zhu ............o ittt 373

Labeling Unlabeled Data using Cross-Language Guided Clustering
Sachindra Joshi, Danish Contractor and Sumit Negi. ..., 383

Extracting Relation Descriptors with Conditional Random Fields
Yaliang Li, Jing Jiang, Hai Leong Chieu and Kian Ming A. Chai ........................... 392

Attribute Extraction from Synthetic Web Search Queries
Marius Pasca. ... ... e 401

Japanese Abbreviation Expansion with Query and Clickthrough Logs
Kei Uchiumi, Mamoru Komachi, Keigo Machinaga, Toshiyuki Maezawa, Toshinori Satou and
Yoshinori Kobayashi. ............ o 410

Mining Parallel Documents Using Low Bandwidth and High Precision CLIR from the Heterogeneous
Web
Simon Shi, Pascale Fung, Emmanuel Prochasson, Chi-kiu Lo and Dekai Wu................. 420

Crawling Back and Forth: Using Back and Out Links to Locate Bilingual Sites
Luciano Barbosa, Srinivas Bangalore and Vivek Kumar Rangarajan Sridhar ................. 429

Grammar Induction from Text Using Small Syntactic Prototypes
Prachya Boonkwan and Mark Steedman ........ ... . ..o i 438

Transferring Syntactic Relations from English to Hindi Using Alignments on Local Word Groups
Aswarth Dara, Prashanth Mannem, Hemanth Sagar Bayyarapu and Avinesh PVS ............ 447

X1X



Generative Modeling of Coordination by Factoring Parallelism and Selectional Preferences
Daisuke Kawahara and Sadao Kurohashi.......... .. . .. i 456

Syntactic Parsing for Ranking-Based Coreference Resolution
Altaf Rahman and Vincent Ng . . ... ... e 465

TriS: A Statistical Sentence Simplifier with Log-linear Models and Margin-based Discriminative Train-

ing
Nguyen Bach, Qin Gao, Stephan Vogel and Alex Waibel............. ... ... ... ... .. 474

Social Summarization via Automatically Discovered Social Context
Po Hu, Cheng Sun, Longfei Wu, Donghong Ji and Chong Teng............................. 483

Simultaneous Clustering and Noise Detection for Theme-based Summarization
Xiaoyan Cai, Renxian Zhang, Dehong Gao and Wenjie Li ............. ... ... .ot 491

Extractive Summarization Method for Contact Center Dialogues based on Call Logs
Akihiro Tamura, Kai Ishikawa, Masahiro Saikou and Masaaki Tsuchida..................... 500

Indexing Spoken Documents with Hierarchical Semantic Structures: Semantic Tree-to-string Alignment
Models
Xiaodan Zhu, Colin Cherry and Gerald Penn . ....... ... ... . o i 509

Structured and Extended Named Entity Evaluation in Automatic Speech Transcriptions
Olivier Galibert, Sophie Rosset, Cyril Grouin, Pierre Zweigenbaum and Ludovic Quintard....518

Normalising Audio Transcriptions for Unwritten Languages
Adel Foda and Steven Bird . ... ... i 527

Similarity Based Language Model Construction for Voice Activated Open-Domain Question Answering
Istvan Varga, Kiyonori Ohtake, Kentaro Torisawa, Stijn De Saeger, Teruhisa Misu, Shigeki Matsuda
and Jun’ichi Kazama . . ... ... 536

The application of chordal graphs to inferring phylogenetic trees of languages
Jessica Enright and Grzegorz KondraK........... ... i 545

Cross-domain Feature Selection for Language Identification
Marco Lui and Timothy Baldwin. ....... ... i e 553

A Wikipedia-LDA Model for Entity Linking with Batch Size Changing Instance Selection
Wei Zhang, Jian Suand Chew-Lim Tan........ ... i i 562

Discovering Latent Concepts and Exploiting Ontological Features for Semantic Text Search
Vuong M. Ngoand Tru H. Cao. . ... .o e 571

CLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Clustering
Guoyu Tang, Yunqing Xia, Min Zhang, Haizhou Li and Fang Zheng . ....................... 580

Thread Cleaning and Merging for Microblog Topic Detection
Jianfeng Zhang, Yunqing Xia, Bin Ma, Jianmin Yaoand YaHong .......................... 589

Training a BN-based user model for dialogue simulation with missing data
Stéphane Rossignol, Olivier Pietquin and Michel Ianotto .......................cooia... 598

Automatic identification of general and specific sentences by leveraging discourse annotations
Annie Louis and Ani Nenkova ... ... e 605

XX



A POS-based Ensemble Model for Cross-domain Sentiment Classification
Rui Xia and Chengqing Zong . . . . . ..ottt e e e e 614

Ensemble-style Self-training on Citation Classification
Cailing Dong and Ulrich Schéfer....... ... o i i e 623

Back to the Roots of Genres: Text Classification by Language Function
Henning Wachsmuth and Kathrin Bujna ................ .. i 632

Transductive Minimum Error Rate Training for Statistical Machine Translation
Yinggong Zhao, Shujie Liu, Yangsheng Ji, Jiajun Chen and Guodong Zhou.................. 641

Distributed Minimum Error Rate Training of SMT using Particle Swarm Optimization
Jun Suzuki, Kevin Duh and Masaaki Nagata........... ..., 649

Going Beyond Word Cooccurrences in Global Lexical Selection for Statistical Machine Translation using
a Multilayer Perceptron
Alexandre Patry and Philippe Langlais................ i 658

System Combination Using Discriminative Cross-Adaptation
Jacob Devlin, Antti-Veikko Rosti, Sankaranarayanan Ananthakrishnan and Spyros Matsoukas . 667

Word Sense Disambiguation by Combining Labeled Data Expansion and Semi-Supervised Learning
Method
Sanae Fujita and AKinori Fujino. ......... ... e 676

Combining ConceptNet and WordNet for Word Sense Disambiguation
Junpeng Chen and Juan Liu. .. ... ..o e 686

It Takes Two to Tango: A Bilingual Unsupervised Approach for Estimating Sense Distributions using
Expectation Maximization
Mitesh M Khapra, Salil Joshi and Pushpak Bhattacharyya ................ .. ... ... ... ... 695

Dynamic and Static Prototype Vectors for Semantic Composition
Siva Reddy, Ioannis Klapaftis, Diana McCarthy and Suresh Manandhar..................... 705

Using Prediction from Sentential Scope to Build a Pseudo Co-Testing Learner for Event Extraction
Shasha Liao and Ralph Grishman .......... ... ... i i 714

Text Segmentation and Graph-based Method for Template Filling in Information Extraction
Ludovic Jean-Louis, Romaric Besancon and Olivier Ferret................................. 723

Joint Distant and Direct Supervision for Relation Extraction
Truc-Vien T. Nguyen and Alessandro Moschitti........... ..., 732

A Cross-lingual Annotation Projection-based Self-supervision Approach for Open Information Extrac-
tion
Seokhwan Kim, Minwoo Jeong, Jonghoon Lee and Gary Geunbae Lee...................... 741

Exploring Difficulties in Parsing Imperatives and Questions
Tadayoshi Hara, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii...................... 749

A Discriminative Approach to Japanese Zero Anaphora Resolution with Large-scale Lexicalized Case
Frames
Ryohei Sasano and Sadao Kurohashi ........... .. .. i 758

XX1



An Empirical Comparison of Unknown Word Prediction Methods
Kostadin Cholakov, Gertjan van Noord, Valia Kordoni and Yi Zhang........................ 767

Training Dependency Parsers from Partially Annotated Corpora
Daniel Flannery, Yusuke Miayo, Graham Neubig and Shinsuke Mori ....................... 776

A Breadth-First Representation for Tree Matching in Large Scale Forest-Based Translation
Sumukh Ghodke, Steven Birdand Rui Zhang............... ... o i, 785

Bayesian Subtree Alignment Model based on Dependency Trees
Toshiaki Nakazawa and Sadao Kurohashi .......... ... ... i i i, 794

Enriching SMT Training Data via Paraphrasing
Wei He, Shiqi Zhao, Haifeng Wangand Ting Liu ........... ... o o i, 803

Translation Quality Indicators for Pivot-based Statistical MT
Michael Paul and Eiichiro Sumita . ....... ... e 811

Source Error-Projection for Sample Selection in Phrase-Based SMT for Resource-Poor Languages
Sankaranarayanan Ananthakrishnan, Shiv Vitaladevuni, Rohit Prasad and Prem Natarajan . ... 819

A Named Entity Recognition Method based on Decomposition and Concatenation of Word Chunks
Tomoya Iwakura, Hiroya Takamura and Manabu Okumura................. ... .. ... . ..., 828

Extract Chinese Unknown Words from a Large-scale Corpus Using Morphological and Distributional
Evidences
Kaixu Zhang, Ruining Wang, Ping Xue and Maosong Sun............... ... .. ... 837

Entity Disambiguation Using a Markov-Logic Network
Hong-Jie Dai, Richard Tzong-Han Tsai and Wen-Lian Hsu ............... ... ... ... ... 846

Named Entity Recognition in Chinese News Comments on the Web
Xiaojun Wan, Liang Zong, Xiaojiang Huang, Tengfei Ma, Houping Jia, Yugian Wu and Jianguo
G 1o TP 856

Clustering Semantically Equivalent Words into Cognate Sets in Multilingual Lists
Bradley Hauer and Grzegorz Kondrak ......... ... i i 865

Extending WordNet with Hypernyms and Siblings Acquired from Wikipedia
Ichiro Yamada, Jong-Hoon Oh, Chikara Hashimoto, Kentaro Torisawa, Jun’ichi Kazama, Stijn De
Saeger and Takuya Kawada . ... ... e 874

What Psycholinguists Know About Chemistry: Aligning Wiktionary and WordNet for Increased Domain
Coverage
Christian M. Meyer and Iryna Gurevych ......... ... i i 883

From News to Comment: Resources and Benchmarks for Parsing the Language of Web 2.0
Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux, Joakim Nivre, Deirdre Hogan
and Josef van Genabith .. ... 893

Toward Finding Semantic Relations not Written in a Single Sentence: An Inference Method using Auto-
Discovered Rules

Masaaki Tsuchida, Kentaro Torisawa, Stijn De Saeger, Jong Hoon Oh, Jun’ichi Kazama, Chikara
Hashimoto and Hayato Ohwada. .. ........ ..ot e 902

XXil



Fleshing it out: A Supervised Approach to MWE-token and MWE-type Classification
Richard Fothergill and Timothy Baldwin.......... ... .. i . 911

Identification of relations between answers with global constraints for Community-based Question An-
swering services
Hikaru Yokono, Takaaki Hasegawa, Genichiro Kikui and Manabu Okumura................. 920

Automatically Generating Questions from Queries for Community-based Question Answering
Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liuand YiGuan................................ 929

Question classification based on an extended class sequential rule model
Zijing Hui, Juan Liu and Lumei Ouyang . . ... i e 938

K2Q: Generating Natural Language Questions from Keywords with User Refinements
Zhicheng Zheng, Xiance Si, Edward Chang and XiaoyanZhu................ ... .. ... ..... 947

Answering Complex Questions via Exploiting Social Q&A Collection
Youzheng Wu, Chiori Hori, Hisashi Kawai and Hideki Kashioka ........................... 956

Safety Information Mining — What can NLP do in a disaster—
Graham Neubig, Yuichiroh Matsubayashi, Masato Hagiwara and Koji Murakami ............ 965

A Character-Level Machine Translation Approach for Normalization of SMS Abbreviations
Deana Pennell and Yang Liu. . ... ... e 974

Using Text Reviews for Product Entity Completion
Mrinmaya Sachan, Tanveer Faruquie, L. V. Subramaniam and Mukesh Mohania ............. 983

Mining bilingual topic hierarchies from unaligned text
SUMIt NE@l . ..o e 992

Efficient Near-Duplicate Detection for Q&A Forum
Yan Wu, Qi Zhang and Xuanjing Huang . ............... i i 1001

A Graph-based Method for Entity Linking
Yuhang Guo, Wanxiang Che, Ting Liuand Sheng Li........... ... oo oot 1010

Harvesting Related Entities with a Search Engine
Shugqi Sun, Shiqgi Zhao, Muyun Yang, Haifeng Wang and Sheng Li........................ 1019

Acquiring Strongly-related Events using Predicate-argument Co-occurring Statistics and Case Frames
Tomohide Shibata and Sadao Kurohashi ............. .. . . i i i 1028

Relevance Feedback using Latent Information
Jun Harashima and Sadao Kurohashi ................ ... ... ... ... ... ... ... ..., 1037

Passage Retrieval for Information Extraction using Distant Supervision
Wei Xu, Ralph Grishmanand Le Zhao. ......... ... 1046

Using Context Inference to Improve Sentence Ordering for Multi-document Summarization
Peifeng Li, Guangxi Deng and Qiaoming Zhu .......... .. .. i 1055

Enhancing extraction based summarization with outside word space
Christian Smith and Arne JONSSON. . ... ..ottt e e 1062

XX1iil



Shallow Discourse Parsing with Conditional Random Fields
Sucheta Ghosh, Richard Johansson, Giuseppe Riccardi and Sara Tonelli ................... 1071

Relational Lasso —An Improved Method Using the Relations Among Features—
Kotaro Kitagawa and Kumiko Tanaka-Ishii........... ... .o o i i 1080

Enhance Top-down method with Meta-Classification for Very Large-scale Hierarchical Classification
Xiao-lin Wang, Hai Zhao and Bao-Liang Lu .............. . i 1089

Using Syntactic and Shallow Semantic Kernels to Improve Multi-Modality Manifold-Ranking for Topic-
Focused Multi-Document Summarization
Yllias Chali, Sadid A. Hasan and KaisarImam . ............. . ... ... .. 1098

Automatic Determination of a Domain Adaptation Method for Word Sense Disambiguation Using Deci-
sion Tree Learning
Kanako Komiya and Manabu Okumura. ........ ... e 1107

Learning from Chinese-English Parallel Data for Chinese Tense Prediction
Feifan Liu, Fei Liu and Yang Liu. ... ... o e 1116

Jointly Extracting Japanese Predicate-Argument Relation with Markov Logic
Katsumasa Yoshikawa, Masayuki Asahara and Yuji Matsumoto........................... 1125

Word Meaning in Context: A Simple and Effective Vector Model
Stefan Thater, Hagen Fiirstenau and Manfred Pinkal ..................................... 1134

Automatic Analysis of Semantic Coherence in Academic Abstracts Written in Portuguese
Vinicius Mourdo Alves de Souza and Valéria Delisandra Feltrim .......................... 1144

Sentence Subjectivity Detection with Weakly-Supervised Learning
Chenghua Lin, Yulan He and Richard Everson.......... ... . ... o i i, 1153

Opinion Expression Mining by Exploiting Keyphrase Extraction
GAbOr Berend . ... ...t e e 1162

Extracting Resource Terms for Sentiment Analysis
Lei Zhang and Bing Liu. ... ... e 1171

Towards Context-Based Subjectivity Analysis
Farah Benamara, Baptiste Chardon, Yannick Mathieu and Vladimir Popescu ............... 1180

Compression Methods by Code Mapping and Code Dividing for Chinese Dictionary Stored in a Double-

Array Trie

Huidan Liu, Minghua Nuo, Longlong Ma, Jian Wuand YepingHe ........................ 1189
Functional Elements and POS Categories

Qiuye Zhao and Mitch Marcus. ... ... . . e 1198
Joint Alignment and Artificial Data Generation: An Empirical Study of Pivot-based Machine Transliter-
ation

Min Zhang, Xiangyu Duan, Ming Liu, Yunqing Xia and Haizhou Li....................... 1207

Incremental Joint POS Tagging and Dependency Parsing in Chinese
Jun Hatori, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii ......................... 1216

XX1V



Extending the adverbial coverage of a NLP oriented resource for French
Elsa Tolone and Stavroula VOyatzi .......... ..ot 1225

Linguistic Phenomena, Analyses, and Representations: Understanding Conversion between Treebanks
Rajesh Bhatt, Owen Rambow and Fei Xia........ ... i 1234

Automatic Transformation of the Thai Categorial Grammar Treebank to Dependency Trees
Christian Rishgj, Taneth Ruangrajitpakorn, Prachya Boonkwan and Thepchai Supnithi ... ... 1243

Parse Reranking Based on Higher-Order Lexical Dependencies
Zhiguo Wang and Chengqing Zong. . . . .. .vvvte et ettt e e eeeee s 1251

Improving Part-of-speech Tagging for Context-free Parsing
Xiao Chen and Chunyu Kit. . ... e 1260

Models Cascade for Tree-Structured Named Entity Detection
Marco Dinarelli and Sophie RoSSet. ...... ... 1269

Clausal parsing helps data-driven dependency parsing: Experiments with Hindi
Samar Husain, Phani Gadde, Joakim Nivre and Rajeev Sangal ............................ 1279

Word-reordering for Statistical Machine Translation Using Trigram Language Model
Jing He and Hongyu Liang . . ... ..o i e 1288

Extracting Hierarchical Rules from a Weighted Alignment Matrix
Zhaopeng Tu, Yang Liu, Qun Liu and Shouxun Lin ...................... ... ... co.... 1294

Integration of Reduplicated Multiword Expressions and Named Entities in a Phrase Based Statistical
Machine Translation System
Thoudam Doren Singh and Sivaji Bandyopadhyay .............. ... .o ... 1304

Regularizing Mono- and Bi-Word Models for Word Alignment
Thomas Schoenemann .. .......... . e 1313

Parametric Weighting of Parallel Data for Statistical Machine Translation
Kashif Shah, Loic Barrault and Holger Schwenk.................... ... ... ... 1323

An Effective and Robust Framework for Transliteration Exploration
EA-EE JAN, Niyu Ge, Shih-Hsiang Lin and Berlin Chen............. ... . ... . ... ..., 1332

XXV



Part B: Short Papers

An Evaluation of Alternative Strategies for Implementing Dialogue Policies Using Statistical Classifica-
tion and Hand-Authored Rules
David DeVault, Anton Leuski and Kenji Sagae .............. ..o .. 1341

Reducing Asymmetry between language-pairs to Improve Alignment and Translation Quality
Rashmi Gangadharaiah ......... ... . e 1346

Clause-Based Reordering Constraints to Improve Statistical Machine Translation
Ananthakrishnan Ramanathan, Pushpak Bhattacharyya, Karthik Visweswariah, Kushal Ladha and
ANKUr Gandhe . .. ... 1351

Generalized Minimum Bayes Risk System Combination
Kevin Duh, Katsuhito Sudoh, Xianchao Wu, Hajime Tsukada and Masaaki Nagata.......... 1356

Enhancing scarce-resource language translation through pivot combinations
Marta R. Costa-jussa, Carlos Henriquez and Rafael E. Banchs ............................ 1361

A Baseline System for Chinese Near-Synonym Choice
Liang-Chih Yu, Wei-Nan Chien and Shih-TingChen................ ... .. 1366

Cluster Labelling based on Concepts in a Machine-Readable Dictionary
Fumiyo Fukumoto and Yoshimi Suzuki................ i 1371

Text Patterns and Compression Models for Semantic Class Learning

Chung-Yao Chuang, Yi-Hsun Lee and Wen-Lian Hsu .......... ... ..ot 1376
Potts Model on the Case Fillers for Word Sense Disambiguation

Hiroya Takamura and Manabu Okumura........... ... ... i ... 1382
Improving Word Sense Induction by Exploiting Semantic Relevance

Zhenzhong Zhang and Le Sun . ... ... e 1387
Predicting Word Clipping with Latent Semantic Analysis

Julian Brooke, Tong Wang and Graeme Hirst........ .. ... ... . ... 1392
A Semantic Relatedness Measure Based on Combined Encyclopedic, Ontological and Collocational
Knowledge

Yannis Haralambous and Vitaly Klyuev......... ... ... i 1397

Going Beyond Text: A Hybrid Image-Text Approach for Measuring Word Relatedness
Chee Wee Leong and Rada Mihalcea . ........ ... 1403

Domain Independent Model for Product Attribute Extraction from User Reviews using Wikipedia
Sudheer Kovelamudi, Sethu Ramalingam, Arpit Sood and Vasudeva Varma ................ 1408

Finding Problem Solving Threads in Online Forum
Zhonghua Quand Yang Lit . .. ....ooi i e e 1413

XXVi



Compiling Learner Corpus Data of Linguistic Output and Language Processing in Speaking, Listening,
Writing, and Reading
Katsunori Kotani, Takehiko Yoshimi, Hiroaki Nanjo and Hitoshi Isahara................... 1418

Mining the Sentiment Expectation of Nouns Using Bootstrapping Method
Miaomiao Wen and Yunfang Wu . ... . 1423

An Analysis of Questions in a Q&A Site Resubmitted Based on Indications of Unclear Points of Original
Questions
Masahiro Kojima, Yasuhiko Watanabe and Yoshihiro Okada.............................. 1428

Diversifying Information Needs in Results of Question Retrieval
Yaoyun Zhang, Xiaolong Wang, Xuan Wang, Ruifeng Xu, Jun Xu and ShiXiFan........... 1432

Beyond Normalization: Pragmatics of Word Form in Text Messages
Tyler Baldwin and Joyce Chai ............. i i e 1437

Chinese Discourse Relation Recognition
Hen-Hsen Huang and Hsin-Hsi Chen........ ... . i 1442

Improving Chinese POS Tagging with Dependency Parsing
Zhenghua Li, Wanxiang Che and Ting Liu .. ... 1447

Exploring self training for Hindi dependency parsing
Rahul Goutam and Bharat Ram Ambati............ ... i i 1452

Reduction of Search Space to Annotate Monolingual Corpora
Prajol Shrestha, Christine Jacquin and Beatrice Daille............... ... .. ... ... ..., 1457

Toward a Parallel Corpus of Spoken Cantonese and Written Chinese
John Lee ... 1462

Query Expansion for IR using Knowledge-Based Relatedness
Arantxa Otegi, Xabier Arregi and Eneko Agirre ........... ... i i, 1467

Word Sense Disambiguation Corpora Acquisition via Confirmation Code
Wanxiang Che and Ting Liu. . ... i e 1472

XX Vil






November 9

Conference Program

(9:00-9:20) Welcome

(9:20-10:20) Keynote — Mengqiu Wang (Baidu)
(10:20 - 10:50) Coffee Break

(10:50-12:05) Text Mining I

Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers
Sonal Gupta and Christopher Manning

Dependency-directed Tree Kernel-based Protein-Protein Interaction Extraction
from Biomedical Literature
Longhua Qian and Guodong Zhou

Learning Logical Structures of Paragraphs in Legal Articles
Ngo Xuan Bach, Nguyen Le Minh, Tran Thi Oanh and Akira Shimazu

(10:50-12:05) Machine Translation I

Extracting Pre-ordering Rules from Predicate-Argument Structures
Xianchao Wu, Katsuhito Sudoh, Kevin Duh, Hajime Tsukada and Masaaki Nagata

Context-Sensitive Syntactic Source-Reordering by Statistical Transduction
Maxim Khalilov and Khalil Sima’an

Discriminative Phrase-based Lexicalized Reordering Models using Weighted Re-
ordering Graphs

Wang Ling, Jodo Graga, David Martins de Matos, Isabel Trancoso and Alan W
Black

XXiX



November 9 (continued)
(10:50-12:05) Machine Learning I

Active Learning Strategies for Support Vector Machines, Application to Temporal Relation
Classification
Seyed Abolghasem Mirroshandel, Gholamreza Ghassem-Sani and Alexis Nasr

A Fast Accurate Two-stage Training Algorithm for LI-regularized CRFs with Heuristic
Line Search Strategy
Jinlong Zhou, Xipeng Qiu and Xuanjing Huang

Automatic Topic Model Adaptation for Sentiment Analysis in Structured Domains
Geoffrey Levine and Gerald DeJong

(10:50-12:05) Discourse / Dialog 1

Multi-modal Reference Resolution in Situated Dialogue by Integrating Linguistic and
Extra-Linguistic Clues
Ryu lida, Masaaki Yasuhara and Takenobu Tokunaga

Single and multi-objective optimization for feature selection in anaphora resolution
Sriparna Saha, Asif Ekbal, Olga Uryupina and Massimo Poesio

A Unified Event Coreference Resolution by Integrating Multiple Resolvers
Bin Chen, Jian Su, Sinno Jialin Pan and Chew Lim Tan

(12:05-13:30) Lunch

(13:30-15:10) Machine Translation II

Handling verb phrase morphology in highly inflected Indian languages for Machine Trans-
lation

Ankur Gandhe, Rashmi Gangadharaiah, Karthik Visweswariah and Ananthakrishnan Ra-

manathan

Japanese Pronunciation Prediction as Phrasal Statistical Machine Translation
Jun Hatori and Hisami Suzuki

Comparing Two Techniques for Learning Transliteration Models Using a Parallel Corpus
Hassan Sajjad, Nadir Durrani, Helmut Schmid and Alexander Fraser

A Semantic-Specific Model for Chinese Named Entity Translation
Yufeng Chen and Chengqing Zong

XXX



November 9 (continued)
(13:30-15:10) Text Mining II
Mining Revision Log of Language Learning SNS for Automated Japanese Error Correction
of Second Language Learners

Tomoya Mizumoto, Mamoru Komachi, Masaaki Nagata and Yuji Matsumoto

Modality Specific Meta Features for Authorship Attribution in Web Forum Posts
Thamar Solorio, Sangita Pillay, Sindhu Raghavan and Manuel Montes-Gomez

Keyphrase Extraction from Online News Using Binary Integer Programming
Zhuoye Ding, Qi Zhang and Xuanjing Huang

Improving Related Entity Finding via Incorporating Homepages and Recognizing Fine-
grained Entities

Youzheng Wu, Chiori Hori, Hisashi Kawai and Hideki Kashioka

(13:30-15:10) Semantics I

Enhancing Active Learning for Semantic Role Labeling via Compressed Dependency Trees
Chenhua Chen, Alexis Palmer and Caroline Sporleder

Semantic Role Labeling Without Treebanks?
Stephen Boxwell, Chris Brew, Jason Baldridge, Dennis Mehay and Sujith Ravi

Japanese Predicate Argument Structure Analysis Exploiting Argument Position and Type
Yuta Hayashibe, Mamoru Komachi and Yuji Matsumoto

An Empirical Study on Compositionality in Compound Nouns
Siva Reddy, Diana McCarthy and Suresh Manandhar

XXX1



November 9 (continued)
(13:30-15:10) Syntax I

Feature-Rich Log-Linear Lexical Model for Latent Variable PCFG Grammars
Zhonggiang Huang and Mary Harper

Improving Dependency Parsing with Fined-Grained Features
Guangyou Zhou, Li Cai, Kang Liu and Jun Zhao

Natural Language Programming Using Class Sequential Rules
Cohan Sujay Carlos

Treeblazing: Using External Treebanks to Filter Parse Forests for Parse Selection and
Treebanking

Andrew MacKinlay, Rebecca Dridan, Dan Flickinger, Stephan Oepen and Timothy Bald-
win

(15:10-15:30) Coffee Break

(15:30-17:10) Text Mining / Information Extraction

Cross-Language Entity Linking
Paul McNamee, James Mayfield, Dawn Lawrie, Douglas Oard and David Doermann

Generating Chinese Named Entity Data from a Parallel Corpus
Ruiji Fu, Bing Qin and Ting Liu

Learning the Latent Topics for Question Retrieval in Community QA
Li Cai, Guangyou Zhou, Kang Liu and Jun Zhao

Identifying Event Descriptions using Co-training with Online News Summaries
William Yang Wang, Kapil Thadani and Kathleen McKeown

XXXii



November 9 (continued)
(15:30-17:10) Phonology / Morphology I

Automatic Labeling of Voiced Consonants for Morphological Analysis of Modern
Japanese Literature
Teruaki Oka, Mamoru Komachi, Toshinobu Ogiso and Yuji Matsumoto

S3 - Statistical Sandhi Splitting
Abhiram Natarajan and Eugene Charniak

Improving Chinese Word Segmentation and POS Tagging with Semi-supervised Methods
Using Large Auto-Analyzed Data

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka, Wenliang Chen, Yujie Zhang and
Kentaro Torisawa

CODACT: Towards Identifying Orthographic Variants in Dialectal Arabic
Pradeep Dasigi and Mona Diab

(15:30-17:10) Sentiment I
Enhancing the HL-SOT Approach to Sentiment Analysis via a Localized Feature Selection
Framework

Wei and Jon Atle Gulla

Fine-Grained Sentiment Analysis with Structural Features
Cicilia Zirn, Mathias Niepert, Heiner Stuckenschmidt and Michael Strube

Predicting Opinion Dependency Relations for Opinion Analysis
Lun-Wei Ku, Ting-Hao Huang and Hsin-Hsi Chen

Detecting and Blocking False Sentiment Propagation
Hye-Jin Min and Jong C. Park

XXX1i1



November 9 (continued)

November 10

(15:30-17:10) Machine Learning II

Efficient induction of probabilistic word classes with LDA
Grzegorz Chrupala

Quality-biased Ranking of Short Texts in Microblogging Services
Minlie Huang, Yi Yang and Xiaoyan Zhu

Labeling Unlabeled Data using Cross-Language Guided Clustering
Sachindra Joshi, Danish Contractor and Sumit Negi

Extracting Relation Descriptors with Conditional Random Fields
Yaliang Li, Jing Jiang, Hai Leong Chieu and Kian Ming A. Chai

(18:00-21:00) Poster/Demo (Pre Function Level 1) + Reception

(9:00-10:00) Keynote — Matt Lease (University of Texas)
(10:00 - 10:30) Coffee Break
(10:30 - 12:10) Information Retrieval I

Attribute Extraction from Synthetic Web Search Queries
Marius Pasca

Japanese Abbreviation Expansion with Query and Clickthrough Logs
Kei Uchiumi, Mamoru Komachi, Keigo Machinaga, Toshiyuki Maezawa, Toshinori Satou
and Yoshinori Kobayashi

Mining Parallel Documents Using Low Bandwidth and High Precision CLIR from the
Heterogeneous Web

Simon Shi, Pascale Fung, Emmanuel Prochasson, Chi-kiu Lo and Dekai Wu

Crawling Back and Forth: Using Back and Out Links to Locate Bilingual Sites
Luciano Barbosa, Srinivas Bangalore and Vivek Kumar Rangarajan Sridhar

XXX1V



November 10 (continued)
(10:30 - 12:10) Syntax II

Grammar Induction from Text Using Small Syntactic Prototypes
Prachya Boonkwan and Mark Steedman

Transferring Syntactic Relations from English to Hindi Using Alignments on Local Word
Groups
Aswarth Dara, Prashanth Mannem, Hemanth Sagar Bayyarapu and Avinesh PVS

Generative Modeling of Coordination by Factoring Parallelism and Selectional Prefer-
ences

Daisuke Kawahara and Sadao Kurohashi

Syntactic Parsing for Ranking-Based Coreference Resolution
Altaf Rahman and Vincent Ng

(10:30 - 12:10) Generation / Summarization
TriS: A Statistical Sentence Simplifier with Log-linear Models and Margin-based Discrim-
inative Training

Nguyen Bach, Qin Gao, Stephan Vogel and Alex Waibel

Social Summarization via Automatically Discovered Social Context
Po Hu, Cheng Sun, Longfei Wu, Donghong Ji and Chong Teng

Simultaneous Clustering and Noise Detection for Theme-based Summarization
Xiaoyan Cai, Renxian Zhang, Dehong Gao and Wenjie Li

Extractive Summarization Method for Contact Center Dialogues based on Call Logs
Akihiro Tamura, Kai Ishikawa, Masahiro Saikou and Masaaki Tsuchida

XXXV



November 10 (continued)
(10:30 - 12;10) Spoken Language Processing
Indexing Spoken Documents with Hierarchical Semantic Structures: Semantic Tree-to-
string Alignment Models

Xiaodan Zhu, Colin Cherry and Gerald Penn

Structured and Extended Named Entity Evaluation in Automatic Speech Transcriptions
Olivier Galibert, Sophie Rosset, Cyril Grouin, Pierre Zweigenbaum and Ludovic Quintard

Normalising Audio Transcriptions for Unwritten Languages
Adel Foda and Steven Bird

Similarity Based Language Model Construction for Voice Activated Open-Domain Ques-
tion Answering

Istvan Varga, Kiyonori Ohtake, Kentaro Torisawa, Stijn De Saeger, Teruhisa Misu, Shigeki
Matsuda and Jun’ichi Kazama

(12:10-13:55) Lunch

(13:55-15:10) Machine Learning III

The application of chordal graphs to inferring phylogenetic trees of languages
Jessica Enright and Grzegorz Kondrak

Cross-domain Feature Selection for Language Identification
Marco Lui and Timothy Baldwin

A Wikipedia-LDA Model for Entity Linking with Batch Size Changing Instance Selection
Wei Zhang, Jian Su and Chew-Lim Tan

XXXVi



November 10 (continued)
(13:55-15:10) Information Retrieval 11

Discovering Latent Concepts and Exploiting Ontological Features for Semantic Text
Search
Vuong M. Ngo and Tru H. Cao

CLGVSM: Adapting Generalized Vector Space Model to Cross-lingual Document Cluster-

ing
Guoyu Tang, Yunqging Xia, Min Zhang, Haizhou Li and Fang Zheng

Thread Cleaning and Merging for Microblog Topic Detection
Jianfeng Zhang, Yunqing Xia, Bin Ma, Jianmin Yao and Yu Hong

(13:55-15:10) Dialog/Discourse 11

Training a BN-based user model for dialogue simulation with missing data
Stéphane Rossignol, Olivier Pietquin and Michel Ianotto

Automatic identification of general and specific sentences by leveraging discourse anno-
tations

Annie Louis and Ani Nenkova

An Evaluation of Alternative Strategies for Implementing Dialogue Policies Using Statis-
tical Classification and Hand-Authored Rules

David DeVault, Anton Leuski and Kenji Sagae

(13:55-15:10) Sentiment I1

A POS-based Ensemble Model for Cross-domain Sentiment Classification
Rui Xia and Chengqing Zong

Ensemble-style Self-training on Citation Classification
Cailing Dong and Ulrich Schifer

Back to the Roots of Genres: Text Classification by Language Function
Henning Wachsmuth and Kathrin Bujna
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November 10 (continued)
(15:10-15:30) Coffee Break
(15:30-17:10) Machine Translation III

Transductive Minimum Error Rate Training for Statistical Machine Translation
Yinggong Zhao, Shujie Liu, Yangsheng Ji, Jiajun Chen and Guodong Zhou

Distributed Minimum Error Rate Training of SMT using Particle Swarm Optimization
Jun Suzuki, Kevin Duh and Masaaki Nagata

Going Beyond Word Cooccurrences in Global Lexical Selection for Statistical Machine
Translation using a Multilayer Perceptron
Alexandre Patry and Philippe Langlais

System Combination Using Discriminative Cross-Adaptation
Jacob Devlin, Antti-Veikko Rosti, Sankaranarayanan Ananthakrishnan and Spyros Mat-
soukas

(15:30-17:10) Semantics 11

Word Sense Disambiguation by Combining Labeled Data Expansion and Semi-Supervised
Learning Method
Sanae Fujita and Akinori Fujino

Combining ConceptNet and WordNet for Word Sense Disambiguation
Junpeng Chen and Juan Liu

It Takes Two to Tango: A Bilingual Unsupervised Approach for Estimating Sense Distri-
butions using Expectation Maximization

Mitesh M Khapra, Salil Joshi and Pushpak Bhattacharyya

Dynamic and Static Prototype Vectors for Semantic Composition
Siva Reddy, Ioannis Klapaftis, Diana McCarthy and Suresh Manandhar
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November 10 (continued)
(15:30-17:10) Information Extraction

Using Prediction from Sentential Scope to Build a Pseudo Co-Testing Learner for Event
Extraction
Shasha Liao and Ralph Grishman

Text Segmentation and Graph-based Method for Template Filling in Information Extrac-
tion

Ludovic Jean-Louis, Romaric Besancon and Olivier Ferret

Joint Distant and Direct Supervision for Relation Extraction
Truc-Vien T. Nguyen and Alessandro Moschitti

A Cross-lingual Annotation Projection-based Self-supervision Approach for Open Infor-
mation Extraction
Seokhwan Kim, Minwoo Jeong, Jonghoon Lee and Gary Geunbae Lee

(15:30-17:10) Syntax III

Exploring Difficulties in Parsing Imperatives and Questions
Tadayoshi Hara, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii

A Discriminative Approach to Japanese Zero Anaphora Resolution with Large-scale Lex-
icalized Case Frames

Ryohei Sasano and Sadao Kurohashi

An Empirical Comparison of Unknown Word Prediction Methods
Kostadin Cholakov, Gertjan van Noord, Valia Kordoni and Yi Zhang

Training Dependency Parsers from Partially Annotated Corpora

Daniel Flannery, Yusuke Miayo, Graham Neubig and Shinsuke Mori

(19:00-21:00) Banquet
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(9:00-10:00) Keynote — Wai Lam (Chinese University of Hong Kong)

(10:00-10:30) Coffee Break

(10:30-12:10) Machine Translation / Machine Learning (short papers)

Reducing Asymmetry between language-pairs to Improve Alignment and Translation
Quality

Rashmi Gangadharaiah

Clause-Based Reordering Constraints to Improve Statistical Machine Translation
Ananthakrishnan Ramanathan, Pushpak Bhattacharyya, Karthik Visweswariah, Kushal

Ladha and Ankur Gandhe

Generalized Minimum Bayes Risk System Combination
Kevin Duh, Katsuhito Sudoh, Xianchao Wu, Hajime Tsukada and Masaaki Nagata

Enhancing scarce-resource language translation through pivot combinations
Marta R. Costa-jussa, Carlos Henriquez and Rafael E. Banchs

A Baseline System for Chinese Near-Synonym Choice
Liang-Chih Yu, Wei-Nan Chien and Shih-Ting Chen

Cluster Labelling based on Concepts in a Machine-Readable Dictionary
Fumiyo Fukumoto and Yoshimi Suzuki
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November 11 (continued)
(10:30-12:10) Semantics (short papers)

Text Patterns and Compression Models for Semantic Class Learning
Chung-Yao Chuang, Yi-Hsun Lee and Wen-Lian Hsu

Potts Model on the Case Fillers for Word Sense Disambiguation
Hiroya Takamura and Manabu Okumura

Improving Word Sense Induction by Exploiting Semantic Relevance
Zhenzhong Zhang and Le Sun

Predicting Word Clipping with Latent Semantic Analysis
Julian Brooke, Tong Wang and Graeme Hirst

(10:30-12:10) Text Mining / Question Answering (short papers)

Domain Independent Model for Product Attribute Extraction from User Reviews using
Wikipedia

Sudheer Kovelamudi, Sethu Ramalingam, Arpit Sood and Vasudeva Varma

Finding Problem Solving Threads in Online Forum
Zhonghua Qu and Yang Liu

Compiling Learner Corpus Data of Linguistic Output and Language Processing in Speak-
ing, Listening, Writing, and Reading
Katsunori Kotani, Takehiko Yoshimi, Hiroaki Nanjo and Hitoshi Isahara

Mining the Sentiment Expectation of Nouns Using Bootstrapping Method
Miaomiao Wen and Yunfang Wu

An Analysis of Questions in a Q&A Site Resubmitted Based on Indications of Unclear
Points of Original Questions

Masahiro Kojima, Yasuhiko Watanabe and Yoshihiro Okada

Diversifying Information Needs in Results of Question Retrieval
Yaoyun Zhang, Xiaolong Wang, Xuan Wang, Ruifeng Xu, Jun Xu and ShiXi Fan
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November 11 (continued)

(10:30-12:10) Other NLP topics (short papers)

Beyond Normalization: Pragmatics of Word Form in Text Messages
Tyler Baldwin and Joyce Chai

Chinese Discourse Relation Recognition
Hen-Hsen Huang and Hsin-Hsi Chen

Improving Chinese POS Tagging with Dependency Parsing
Zhenghua Li, Wanxiang Che and Ting Liu

Exploring self training for Hindi dependency parsing
Rahul Goutam and Bharat Ram Ambati

Reduction of Search Space to Annotate Monolingual Corpora
Prajol Shrestha, Christine Jacquin and Beatrice Daille

Toward a Parallel Corpus of Spoken Cantonese and Written Chinese
John Lee

(12:00-13:30) Lunch

(13:30-15:35) Machine Translation IV

A Breadth-First Representation for Tree Matching in Large Scale Forest-Based Translation
Sumukh Ghodke, Steven Bird and Rui Zhang

Bayesian Subtree Alignment Model based on Dependency Trees
Toshiaki Nakazawa and Sadao Kurohashi

Enriching SMT Training Data via Paraphrasing
Wei He, Shiqi Zhao, Haifeng Wang and Ting Liu

Translation Quality Indicators for Pivot-based Statistical MT
Michael Paul and Eiichiro Sumita

Source Error-Projection for Sample Selection in Phrase-Based SMT for Resource-Poor

Languages
Sankaranarayanan Ananthakrishnan, Shiv Vitaladevuni, Rohit Prasad and Prem Natarajan
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November 11 (continued)
(13:30-15:35) Morphology / Named-Entity Recognition

A Named Entity Recognition Method based on Decomposition and Concatenation of Word
Chunks
Tomoya Iwakura, Hiroya Takamura and Manabu Okumura

Extract Chinese Unknown Words from a Large-scale Corpus Using Morphological and
Distributional Evidences
Kaixu Zhang, Ruining Wang, Ping Xue and Maosong Sun

Entity Disambiguation Using a Markov-Logic Network
Hong-Jie Dai, Richard Tzong-Han Tsai and Wen-Lian Hsu

Named Entity Recognition in Chinese News Comments on the Web
Xiaojun Wan, Liang Zong, Xiaojiang Huang, Tengfei Ma, Houping Jia, Yugian Wu and
Jianguo Xiao

Clustering Semantically Equivalent Words into Cognate Sets in Multilingual Lists
Bradley Hauer and Grzegorz Kondrak

(13:30-15:35) Resources

Extending WordNet with Hypernyms and Siblings Acquired from Wikipedia
Ichiro Yamada, Jong-Hoon Oh, Chikara Hashimoto, Kentaro Torisawa, Jun’ichi Kazama,
Stijn De Saeger and Takuya Kawada

What Psycholinguists Know About Chemistry: Aligning Wiktionary and WordNet for In-
creased Domain Coverage
Christian M. Meyer and Iryna Gurevych

From News to Comment: Resources and Benchmarks for Parsing the Language of Web 2.0
Jennifer Foster, Ozlem Cetinoglu, Joachim Wagner, Joseph Le Roux, Joakim Nivre,
Deirdre Hogan and Josef van Genabith

Toward Finding Semantic Relations not Written in a Single Sentence: An Inference Method
using Auto-Discovered Rules

Masaaki Tsuchida, Kentaro Torisawa, Stijn De Saeger, Jong Hoon Oh, Jun’ichi Kazama,
Chikara Hashimoto and Hayato Ohwada

Fleshing it out: A Supervised Approach to MWE-token and MWE-type Classification
Richard Fothergill and Timothy Baldwin
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November 11 (continued)
(13:30-15:35) Question Answering
Identification of relations between answers with global constraints for Community-based
Question Answering services
Hikaru Yokono, Takaaki Hasegawa, Genichiro Kikui and Manabu Okumura
Automatically Generating Questions from Queries for Community-based Question An-
swering

Shiqi Zhao, Haifeng Wang, Chao Li, Ting Liu and Yi Guan

Question classification based on an extended class sequential rule model
Zijing Hui, Juan Liu and Lumei Ouyang

K2Q: Generating Natural Language Questions from Keywords with User Refinements
Zhicheng Zheng, Xiance Si, Edward Chang and Xiaoyan Zhu

Answering Complex Questions via Exploiting Social Q&A Collection
Youzheng Wu, Chiori Hori, Hisashi Kawai and Hideki Kashioka

(15:35-16:05) Coffee Break
(16:05-17:15) Best paper session (2 plenary papers announced during this session)
(17:15-17:25) Presentation of Future Conferences (including ACL/IJCNLP 2012)

(17:25-17:35) Closing Ceremony

xliv
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(18:00-21:00) Poster Session
Text Mining

Safety Information Mining — What can NLP do in a disaster—
Graham Neubig, Yuichiroh Matsubayashi, Masato Hagiwara and Koji Murakami

A Character-Level Machine Translation Approach for Normalization of SMS Abbrevia-
tions
Deana Pennell and Yang Liu

Using Text Reviews for Product Entity Completion
Mrinmaya Sachan, Tanveer Faruquie, L. V. Subramaniam and Mukesh Mohania

Mining bilingual topic hierarchies from unaligned text
Sumit Negi

Efficient Near-Duplicate Detection for Q&A Forum
Yan Wu, Qi Zhang and Xuanjing Huang

Information Extraction

A Graph-based Method for Entity Linking
Yuhang Guo, Wanxiang Che, Ting Liu and Sheng Li

Harvesting Related Entities with a Search Engine
Shugi Sun, Shiqi Zhao, Muyun Yang, Haifeng Wang and Sheng Li

Acquiring Strongly-related Events using Predicate-argument Co-occurring Statistics and

Case Frames
Tomohide Shibata and Sadao Kurohashi

xlv



November 9 (continued)
Information Retrieval

Relevance Feedback using Latent Information
Jun Harashima and Sadao Kurohashi

Passage Retrieval for Information Extraction using Distant Supervision
Wei Xu, Ralph Grishman and Le Zhao

Query Expansion for IR using Knowledge-Based Relatedness
Arantxa Otegi, Xabier Arregi and Eneko Agirre

Summarization

Using Context Inference to Improve Sentence Ordering for Multi-document Summarization
Peifeng Li, Guangxi Deng and Qiaoming Zhu

Enhancing extraction based summarization with outside word space
Christian Smith and Arne Jonsson

Discourse

Shallow Discourse Parsing with Conditional Random Fields
Sucheta Ghosh, Richard Johansson, Giuseppe Riccardi and Sara Tonelli

Machine Learning

Relational Lasso —An Improved Method Using the Relations Among Features—
Kotaro Kitagawa and Kumiko Tanaka-Ishii

Enhance Top-down method with Meta-Classification for Very Large-scale Hierarchical
Classification
Xiao-lin Wang, Hai Zhao and Bao-Liang Lu

Using Syntactic and Shallow Semantic Kernels to Improve Multi-Modality Manifold-
Ranking for Topic-Focused Multi-Document Summarization
Yllias Chali, Sadid A. Hasan and Kaisar Imam

Automatic Determination of a Domain Adaptation Method for Word Sense Disambiguation
Using Decision Tree Learning

Kanako Komiya and Manabu Okumura

Learning from Chinese-English Parallel Data for Chinese Tense Prediction
Feifan Liu, Fei Liu and Yang Liu

xlvi
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Semantics

Jointly Extracting Japanese Predicate-Argument Relation with Markov Logic
Katsumasa Yoshikawa, Masayuki Asahara and Yuji Matsumoto

Word Meaning in Context: A Simple and Effective Vector Model
Stefan Thater, Hagen Fiirstenau and Manfred Pinkal

Automatic Analysis of Semantic Coherence in Academic Abstracts Written in Portuguese
Vinicius Mourdo Alves de Souza and Valéria Delisandra Feltrim

Word Sense Disambiguation Corpora Acquisition via Confirmation Code
Wanxiang Che and Ting Liu

Sentiment

Sentence Subjectivity Detection with Weakly-Supervised Learning
Chenghua Lin, Yulan He and Richard Everson

Opinion Expression Mining by Exploiting Keyphrase Extraction
Gébor Berend

Extracting Resource Terms for Sentiment Analysis
Lei Zhang and Bing Liu

Towards Context-Based Subjectivity Analysis
Farah Benamara, Baptiste Chardon, Yannick Mathieu and Vladimir Popescu

Phonology/Morphology

Compression Methods by Code Mapping and Code Dividing for Chinese Dictionary Stored
in a Double-Array Trie

Huidan Liu, Minghua Nuo, Longlong Ma, Jian Wu and Yeping He

Functional Elements and POS Categories
Qiuye Zhao and Mitch Marcus

Joint Alignment and Artificial Data Generation: An Empirical Study of Pivot-based Ma-

chine Transliteration
Min Zhang, Xiangyu Duan, Ming Liu, Yunqing Xia and Haizhou Li
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Incremental Joint POS Tagging and Dependency Parsing in Chinese
Jun Hatori, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii

Resources

Extending the adverbial coverage of a NLP oriented resource for French
Elsa Tolone and Stavroula Voyatzi

Linguistic Phenomena, Analyses, and Representations: Understanding Conversion be-
tween Treebanks

Rajesh Bhatt, Owen Rambow and Fei Xia

Syntax

Automatic Transformation of the Thai Categorial Grammar Treebank to Dependency Trees
Christian Rishgj, Taneth Ruangrajitpakorn, Prachya Boonkwan and Thepchai Supnithi

Parse Reranking Based on Higher-Order Lexical Dependencies
Zhiguo Wang and Chengqing Zong

Improving Part-of-speech Tagging for Context-free Parsing
Xiao Chen and Chunyu Kit

Models Cascade for Tree-Structured Named Entity Detection
Marco Dinarelli and Sophie Rosset

Clausal parsing helps data-driven dependency parsing: Experiments with Hindi
Samar Husain, Phani Gadde, Joakim Nivre and Rajeev Sangal
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Word-reordering for Statistical Machine Translation Using Trigram Language Model
Jing He and Hongyu Liang

Extracting Hierarchical Rules from a Weighted Alignment Matrix
Zhaopeng Tu, Yang Liu, Qun Liu and Shouxun Lin

Integration of Reduplicated Multiword Expressions and Named Entities in a Phrase Based
Statistical Machine Translation System

Thoudam Doren Singh and Sivaji Bandyopadhyay

Regularizing Mono- and Bi-Word Models for Word Alignment
Thomas Schoenemann

Parametric Weighting of Parallel Data for Statistical Machine Translation
Kashif Shah, Loic Barrault and Holger Schwenk

An Effective and Robust Framework for Transliteration Exploration
EA-EE JAN, Niyu Ge, Shih-Hsiang Lin and Berlin Chen
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Analyzing the Dynamics of Research by
Extracting Key Aspects of Scientific Papers

Sonal Gupta
Department of Computer Science
Stanford University
sonal@cs.stanford.edu

Abstract

We present a method for characterizing a
research work in terms of its focus, do-
main of application, and techniques used.
We show how tracing these aspects over
time provides a novel measure of the in-
fluence of research communities on each
other. We extract these characteristics
by matching semantic extraction patterns,
learned using bootstrapping, to the depen-
dency trees of sentences in an article’s
abstract. We combine this information
with pre-calculated article-to-community
assignments to study the influence of a
community on others in terms of tech-
niques borrowed and the ‘maturing’ of
some communities to solve other prob-
lems. As a case study, we show how
the computational linguistics community
and its sub-fields have changed over the
years with respect to their foci, methods
used, and domain problems. For instance,
we show that part-of-speech tagging and
parsing have increasingly been adopted as
tools for solving problems in other do-
mains. We also observe that speech recog-
nition and probability theory have had the
most seminal influence.

1 Introduction

The evolution of ideas and the dynamics of a re-
search community can be studied using the sci-
entific articles published by the community. For
instance, we may be interested in how methods
spread from one community to another, or the evo-
lution of a topic from a focus of research to a
problem-solving tool. We might want to find the
balance between technique-driven and domain-
driven research within a field. Establishing such
a rich insight of the development and progress

1

Christopher D. Manning
Department of Computer Science
Stanford University
manning@cs.stanford.edu

of scientific research requires an understanding of
more than just the “topics” of discussion or cita-
tion links between articles, which have been used
in the previous work to study trend and impact
of articles. As an example, to determine whether
technique-driven researchers have greater or lesser
impact, we need to be able to identify styles of
work. To achieve this level of detail and to be able
to connect together how methods and ideas are be-
ing pursued, it is essential to move beyond bag-
of-words topical models. This requires an under-
standing of sentence and argument structure, and
is therefore a form of information extraction.

To study the application domains, the tech-
niques used to approach the domain problems, and
the focus of scientific articles in a community, we
propose to extract the following concepts from the
articles

FOCUS: an article’s main contribution
TECHNIQUE: a method or a tool used in an
article, for example, expectation maximiza-
tion and conditional random fields

DOMAIN: an article’s application domain,
such as speech recognition and classification
of documents.

For example, if an article concentrates on reg-
ularization in support vector machines and shows
improvement in parsing accuracy, then its FOCUS
and TECHNIQUE are regularization and support
vector machines, and its DOMAIN is parsing. In
contrast, an article that focuses on lexical features
to improve parsing accuracy and uses support vec-
tor machines to train the model has FOCUS as lex-
ical features and parsing, the TECHNIQUE being
lexical features and support vector machines, and
its DOMAIN still is parsing.! In this case, even
though TECHNIQUESs and DOMAIN of both papers

'A community vs. a DOMAIN: a community can be as

broad as computer science or statistics, whereas a DOMAIN is
a specific application such as Chinese word segmentation.
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are very similar, the FOCUS phrases distinguish
them from each other. Note that a DOMAIN of one
article can be a TECHNIQUE of another, and vice-
versa. For example, an article that shows improve-
ments in named entity recognition (NER) has DO-
MAIN as NER, however, an article that uses named
entities as an intermediary tool to extract relations
has NER as one of its TECHNIQUES.

Our work uses information extraction patterns
to extract the above three category phrases from
articles. The phrases are extracted by matching se-
mantic patterns in dependency trees of sentences.
The input to the extraction system are some seed
patterns (see Table 1 for examples) and it learns
more patterns using a bootstrapping approach. Us-
ing a bag-of-words based approach, such as topic
models, for this problem is not straightforward;
true to their name, topic models generally only
identify the topic or area of a paper (such as ‘pars-
ing’ or ‘speech recognition’), and neither provide
nor label different cross-cutting aspects like tech-
niques used or the application domain of the paper.

As a case study, we examine the articles pub-
lished in the computational linguistics commu-
nity. We study the influence of the community’s
sub-fields, such as parsing and machine trans-
lation, using the FOCUS, TECHNIQUE, and DO-
MAIN phrases extracted from the articles. We use
the document collection from the ACL Anthology
dataset’ (Bird et al., 2008; Radev et al., 2009),
since it has full text of papers available. To get
the the sub-fields of the community, we use latent
Dirichlet allocation (Blei et al., 2003) to find top-
ics and label them by hand.? However, our general
approach can be used to study any case of the in-
fluence of academic communities, including look-
ing more broadly at the influence of statistics or
economics across the social sciences.

We study how communities influence each
other in terms of techniques that are reused, and
show how some communities ‘mature’ so that the
results they produce get adopted as tools for solv-
ing other problems. For example, the products of
the part-of-speech tagging (POS) community have
been adopted by many other communities that use
POS tagging as an intermediary step, which is also
confirmed in our results.

We also show the timeline of influence of com-
munities. For example, our results show that

http://www.aclweb.org/anthology

3In this paper, we use the terms communities, sub-
communities and sub-fields interchangeably.

formal computational semantics and unification-
based grammars had a lot of influence in the late
1980s. The speech recognition and probability
theory fields showed an upward trend of influence
in the mid-1990s, and even though it has decreased
in recent years, they still have a lot of influence
on recent papers mainly due to techniques like ex-
pectation maximization and hidden Markov mod-
els. Therefore, our results show that overall they
have been the most influential fields in the last two
decades. Probability theory, unlike speech recog-
nition, is traditionally not a separate sub-field of
computational linguistics, but it is an important
topic since many papers use and work on proba-
bilistic approaches. We also show that the study
of influence is different from studying popularity
or hotness of communities, such as in (Griffiths
and Steyvers, 2004; Hall et al., 2008), which is
based on the expected number of papers published
in the community in a given year.

Contributions We introduce a new categoriza-
tion of key aspects of scientific articles, which is
(1) FOCUs: main contribution, (2) TECHNIQUE:
method or tool used, and (3) DOMAIN: application
domain. We extract the aspects by matching se-
mantic patterns to dependency trees and learn the
patterns using bootstrapping. We propose a new
definition of influence of a research community in
terms of its key aspects adopted as techniques by
the other communities. We present a case study
on the computational linguistics community using
the the three aspects extracted from its articles,
both for verifying the results of our system, and
for showing novel results for the dynamics and the
overall influence of computational linguistics sub-
fields. We introduce a dataset of abstracts labeled
with the three categories.*

2 Related Work

While there is some connection to keyphrase
selection in text summarization (Radev et al.,
2002), extracting FOCUS, TECHNIQUE and DO-
MAIN phrases is fundamentally a form of informa-
tion extraction, and there has been a wide variety
of prior work in this area. Some work, including
the seminal (Hearst, 1992), identified patterns (IS-
A relations) using hand-written rules, while other
work has learned patterns over dependency graphs
(Bunescu and Mooney, 2005). This work builds

“The dataset is available at http://cs.stanford.
edu/people/sonal/fta for the research community.



on previous successful use of bootstrapping learn-
ing techniques in NLP (Yarowsky, 1995; Collins
and Singer, 1999; Riloff and Jones, 1999); in its
use of dependency patterns it is perhaps especially
close to (Yangarber et al., 2000).

Topic models have been used to study popular-
ity of communities (Griffiths and Steyvers, 2004),
the history of ideas (Hall et al., 2008), and schol-
arly impact of papers (Gerrish and Blei, 2010).
However, topic models do not extract detailed in-
formation from text as we do. Still, we use topic-
to-word distributions from topic models as a way
of describing sub-fields.

Demner-Fushman and Lin (2007) used hand
written knowledge extractors to extract informa-
tion, such as population and intervention, in their
clinical question-answering system to improve
ranking of relevant abstracts. Our categorization
of key aspects is applicable for broader range of
communities, and we learn the patterns by boot-
strapping. Li et al. (2010) used semantic meta-
data to create a semantic digital library for chem-
istry and identified experimental paragraphs using
keywords features. Xu et al. (2006) and Ruch
et al. (2007) proposed systems, in clinical-trials
and biomedical domain, respectively, to classify
sentences of abstracts corresponding to categories
such as introduction, purpose, method, results and
conclusion to improve article retrieval by using
either structured abstracts,” or hand-labeled sen-
tences. Some summarization systems also use ma-
chine learning approaches to find ‘key sentences’.
The systems built in these papers are complimen-
tary to ours since one can find relevant paragraphs
or sentences and then extract the key aspects from
them. Note that a sentence can have multiple
phrases corresponding to our three categories, and
thus classification of sentences will not be enough.

3 Approach

In this section, we explain how to extract phrases
for each of the three categories (FOCUS, TECH-
NIQUE and DOMAIN) and how to compute the in-
fluence of communities.

3.1 Pattern Matching and Learning

From an article’s abstract and title, we use the de-
pendency trees of sentences and a set of seman-
tic extraction patterns to extract phrases in each of

3Structure abstracts, which are used by some journals,
have multiple sections such as PURPOSE and METHOD.

present — (direct object)
work — (preposition_on)
propose — (direct object)
using — (direct object)
apply — (direct object)
extend — (direct object)
system — (preposition_for)
task — (preposition_of)
framework — (preposition_for)

FOCUS

TECHNIQUE

DOMAIN

Table 1: Some examples of semantic extraction patterns that
extract information from dependency trees of sentences. A
pattern is of the form 7" — (d), where T is the trigger word
and d is the dependency that the trigger word’s node has with
its successor.

work

i preposition-on
subject/\

We extracting

direct—obje%\xcomp

information using
l direct-object

graphs
nn
dependency

Figure 1: The dependency graph for ‘We work on extract-
ing information using dependency graphs’. Our semantic
patterns (shown in Table 1) will extract ‘extracting informa-
tion using dependency graphs’ as FOCUS, and ‘dependency
graphs’ as TECHNIQUE.

FOCUS, TECHNIQUE and DOMAIN categories. A
dependency tree of a sentence is a parse tree that
gives dependencies (such as direct-object, subject)
between words in the sentence. Figure 1 shows the
dependency graph for the sentence ‘We work on
extracting information using dependency graphs.’
Each semantic pattern is of the form 7' — d,
where T’ is a trigger word (such as ‘use’, ‘present’)
and d is a dependency (such as ‘direct-object’).
We start with a few handwritten patterns (some
shown in Table 1) and learn more patterns au-
tomatically using a bootstrapping approach. We
run an iterative algorithm that extracts phrases us-
ing semantic patterns and then learns new patterns
from the extracted phrases. The details of each
step are described below.

Extracting Phrases from Patterns A depen-
dency tree matches a pattern 7' — (d), if (1) it
contains 7', and (2) the trigger word’s node has
a successor (dependent or granddependent upto
4 levels) whose dependency with its parent is
d. In the rest of the paper, we call the subtree
headed by the successor as the matched phrase-
tree. We extract the phrase corresponding to the
matched phrase-tree and label it with the pattern’s
category. For example, the dependency tree in
Figure 1 matches the FOCUS pattern [work —
(preposition_on)] and the TECHNIQUE pattern [us-
ing — (direct-object)]. Thus, the system labels
the phrase corresponding to the phrase-tree headed



by ‘extracting’, which is ‘extracting information
using dependency graphs’, with the category FO-
CUS, and similarly labels the phrase ‘dependency
graphs’ as TECHNIQUE.

We have special rules for paper titles since au-
thors usually include the main contribution of the
paper in the title. We label the whole title as FO-
CUS if we are not able to extract a FOCUS phrase
using the patterns. For titles from which we can
extract a TECHNIQUE phrase, we label rest of the
words (except for the trigger words) with DO-
MAIN. For example, for title ‘Studying the history
of ideas using topic models’, our system extracts
‘topic models’ as TECHNIQUE using the pattern
[using — (direct-object)], and then labels ‘Study-
ing the history of ideas’ as DOMAIN.

Learning Patterns from Phrases After ex-
tracting phrases with patterns, we want to be able
to construct and learn new patterns. For each sen-
tence whose dependency tree has a subtree corre-
sponding to one of the extracted phrases, we con-
struct a pattern 7' — (d) by considering the an-
cestor (parent or grandparent) of the subtree as the
trigger word 7', and the dependency between the
head of the subtree and its parent as the depen-
dency d. The weighting of newly constructed pat-
terns is done as follows. For a set of phrases (P)
that extract a pattern (q), the weight of the pattern
q for the category FOCUS is > p icount(p €
FOCUS), where z, is the total frequency of the
phrase p. Similarly, we get weights of the pat-
tern for the other two categories. Note that we do
not need smoothing since the phrase-category ra-
tios are aggregated over all the phrases from which
the pattern is constructed. After weighting all the
patterns that have not been selected in the pre-
vious iterations, we select the top k£ patterns in
each category (k=2 in our experiments). Table 3
shows some patterns learned through the iterative
method.

3.2 Communities and their Influence

We define communities as fields or sub-fields that
one wishes to study. To study communities us-
ing the articles published, we need to know which
communities each article belongs to. The article-
to-community assignment can be computed in sev-
eral ways, such as by manual assignment, using
metadata, or by text categorization of papers. In
our case study, we use the topics formed by apply-
ing latent Dirichlet allocation (Blei et al., 2003) to

the text of the papers by considering each topic as
one community. In recent years, topic modeling
has been widely used to get ‘concepts’ from text;
it has the advantage of producing soft, probabilis-
tic article-to-community assignment scores in an
unsupervised manner. We combine these soft as-
signment scores with the phrases extracted in the
previous section to score a phrase for each com-
munity and each category as follows. The score
of a phrase p, which is extracted from an article a,
for a community ¢ and the category TECHNIQUE
is calculated as

tScore(c,p,a) = (D)

1
Zp

count(p € TECHNIQUE | a)P(c | a,0)

where the function P(c | a,6) gives the probabil-
ity of a community (i.e., a topic) for the article a
given the topic modeling parameters 6. The nor-
malization constant for the phrase, z,, is the fre-
quency of the phrase in all the abstracts.

We define influence such that communities re-
ceive higher scores if they use techniques ear-
lier than other communities do or produce tools
that are used to solve other problems. For exam-
ple, since hidden Markov model introduced by the
speech recognition community and part-of-speech
tagging tools built by the part-of-speech commu-
nity have been widely used as techniques in other
communities, these communities should receive
higher scores than the nascent or not-so-widely-
used ones. Thus, we define influence of a com-
munity based on the number of times its FOCUS,
TECHNIQUE or DOMAIN phrases have been used
as a TECHNIQUE in other communities. To calcu-
late the overall influence of one community on an-
other, we first need to calculate influence because
of individual articles in the community, which is
calculated as follows. The influence of community
c1 on another community co because of a phrase p
extracted from an article a; is

tinfl(ci,c2,p,a1) = (2)
allScore(c1,p,a1) Z tScore(cz, p,a2)C(az, a1)
ag €D
Yag >Yay

where the function allScore(c,p,a) is computed
the same way as in Eq. 1, but by using count(p €
ALL | a), where ALL means the union of phrases
extracted in all three categories. The variable D
is the set of all articles, and y,, means year of
publication of the article as. The summation term
computes the influence of the phrase p extracted



from the article aq on all the articles from the com-
munity cy published at a later date. The function
C(ag,a1) is a weighting function based on cita-
tions, whose value is 1 if a9 cites a1, and A oth-
erwise. If X is O, the system calculates influence
based on just citations, which can be noisy and in-
complete. In our experiments, we used A as 0.5
since we want to study the influence even when
an article does not explicitly cite another article.
The technique-influence score of community c¢; on
community cs in year y is computed by summing
up the previous equation for all phrases (P) and
for all articles in D. It is computed as

tInfl(cr,c2,y) = S ,cp », tInfl(cr,c2,p,a) (3)

a€D
Ya1 =Y

Straightforwardly, the overall influence of com-
munity c¢; on the community co and on all other
communities is calculated as

tInfl(ci,c2) = 32, tInfl(ci, ez, y) “4)

tInfl(c1) = 3., 4., tInfl(ci, c2) (&)

Next, we present a case study over the sub-fields
of computational linguistics using the influence
scores described above.

4 Experimental Setup

Dataset We studied the computational linguistics
community from 1965 to 2009 using titles and ab-
stracts of 15,016 articles from the ACL Anthology
Network and the ACL Anthology Reference cor-
pus (Bird et al., 2008; Radev et al., 2009). We
found 52 pairs of abstracts that had more than
80% of words in common with each other, and
thus while calculating the influence scores, we ig-
nored the influence of earlier-published paper on
the later-published paper in the pairs. We used
the Stanford Parser (Marneffe et al., 2006) to gen-
erate dependency trees of sentences. For testing,
we hand labeled 474 abstracts with the three cate-
gories to measure the precision and recall scores.
For each abstract and each category, we compared
the unique non-stop-words extracted from our al-
gorithm to the hand labeled dataset. We calculated
precision, recall measures for each abstract and
averaged them to get the results for the dataset.
When extracting phrases from the matched
phrase trees, we ignored tokens with part-of-
speech tags as pronoun, number, determiner, punc-
tuation or symbol, and removed all subtrees in

the matched phrase trees that had either relative-
clause-modifier or clausal-complement depen-
dency with their parents since, even though we
want full phrases, including these sub-trees intro-
duced extraneous phrases and clauses. We also
added phrases from the subtrees of the matched
phrase trees to the set of extracted phrases.

We used 13 seed patterns for FOCUsS, 7 for
TECHNIQUE and 15 for DOMAIN. When con-
structing a new pattern, we ignored the ancestors
that were not a noun or a verb since most trig-
ger words are a noun or a verb (such as use, con-
straints). We also ignored conjunction, relative-
clause-modifier, dependent (most generic depen-
dency), quantifier-modifier, and abbreviation de-
pendencies® since they either are too generic or
introduced extraneous phrases and clauses.

Learning new patterns did not help in improv-
ing the FOCUS category phrases when tested over
a hand labeled test set. It got relatively high scores
when using just the seed patterns and the titles,
and hence learning new patterns reduced the pre-
cision without any significant improvement in re-
call. Thus, we learned new patterns only for the
TECHNIQUE and DOMAIN categories. We ran 50
iterations for both categories, which was chosen
as a reasonable trade-off between pattern preci-
sion and recall based on some earlier pilot exper-
iments. After extracting all the phrases, we re-
moved common phrases that are frequently used
in scientific articles, such as ‘this technique’ and
‘the presence of’, using a stop words list of 3,000
phrases. The list was created by taking the top
most occurring 1 to 3 grams from 100,000 ran-
dom articles with an abstract in the ISI web of
knowledge database’. We ignored phrases that
were either one character or more than 15 words
long. In a step towards finding canonical names,
we automatically detected abbreviations and their
expanded forms from the full text of papers by
searching for text between two parentheses, and
considered the phrase before the parentheses as the
expanded form (similar to (Schwartz and Hearst,
2003)). We got a high precision list by picking the
top most occurring pairs of abbreviations and their
expanded forms and created groups of phrases by
merging all the phrases that use same abbrevia-
tion. We then changed all the phrases in the ex-
tracted phrases dataset to their canonical names.

bsee (Marneffe et al., 2006) for details of dependencies
Twww.is iknowledge.com



Paper Title

FOCUS

TECHNIQUE

DOMAIN

Studying the history
of ideas using topic
models

studying the history of ideas
using topic

latent dirichlet allocation; topic; topic;
unsupervised topic; historical trends;
that all three conferences are converg-

studying the history of ideas;
topic; model of the diver-
sity of ideas , topic entropy;

Sensitive
Correction.

Spelling | hybrid method for context-

sensitive spelling correction

methods using decision lists;
strongest piece of evidence; spelling

single

spelling

ing in the topics probabilistic
A Bayesian Hybrid | new hybrid method , based on | decision lists; bayesian; bayesian clas- | context-sensitive  spelling
Method For Context- | bayesian classifiers; bayesian | sifiers; ambiguous; part-of-speech tags; | correction; for context-

sensitive spelling correction;

Table 2: Extracted phrases for some papers. The word ‘model’ is missing from the end of some phrases as it was removed

during post-processing.

We also removed ‘model’, ‘approach’, ‘method’,
‘algorithm’, ‘based’, ‘style’ words and their vari-
ants when they occurred at the end of a phrase.

Baseline To compare against a non-
information-extraction based baseline, we
extracted all noun phrases, along with phrases
from the sub-trees of the noun phrase trees, from
the abstracts and labeled them with all the three
categories. In addition, we labeled the titles (and
their sub-trees) with the category FOCUS. We then
scored the phrases with a tf-idf inspired measure,
which was the ratio of the frequency of the phrase
in the abstract and the sum of the total frequency
of the individual words, and removed phrases that
had the tf-idf measure less than 0.001 (best out
of many experiments). We call this approach as
‘Baseline tf-idf NPs’.%

To get communities in the computational lin-
guistics literature, we considered the topics gen-
erated using the same ACL Anthology dataset
by Bethard and Jurafsky (2010) as communities.
They ran latent Dirichlet allocation on the full text
of the papers to get 100 topics. We hand labeled
the topics and used 72 of them in our study; the
rest of them were about common words. When
calculating the scores in Eq. 1, we considered the
value of P(c | a, ) to be 0 if it was less than 0.1.

5 Results and Discussion

Extraction

The total numbers of phrases extracted were
25,525 for FocuUs, 24,430 for TECHNIQUE, and
33,203 for DOMAIN. The total numbers of phrases
after including the phrases extracted from subtrees
of the matched phrase trees were 64,041, 38,220
and 46,771, respectively. Examples of phrases ex-
tracted from some papers are shown in Table 2.

8As discussed in Section 1, using an unsupervised
or weakly-supervised bag-of-words based approach is not
straightforward for identifying FOCUS, TECHNIQUE and DO-
MAIN of an article, and hence we do not compare against one.

TECHNIQUE DOMAIN

model — (nn)

rules — (nn)

extracting — (direct-object)
identify — (direct-object)
constraints — (amod)
based — (preposition_on)

improve — (direct-object)
used — (preposition_for)
evaluation — (nn)

parsing — (nn)

domain — (nn)

applied — (preposition_to)

Table 3: Examples of patterns learned using the iterative ex-
traction algorithm. The dependency ‘nn’ is the noun com-
pound modifier dependency.

[ Approach [ Fi [ Precision [ Recall |
FOCUS
Baseline tf-idf NPs 35.60 24.36 66.07
Seed Patterns 55.29 44.67 72.54
Inter-Annotator Agreement | 53.33 50.80 56.14
TECHNIQUE
Baseline tf-idf NPs 26.65 17.87 52.41
Seed Patterns 20.09 23.46 21.72
Iteration 50 36.86 30.46 46.68
Inter-Annotator Agreement | 72.02 66.81 78.11
DOMAIN
Baseline tf-idf NPs 30.13 19.90 62.03
Seed Patterns 25.27 30.55 26.29
Iteration 50 37.29 27.60 57.50
Inter-Annotator Agreement | 72.31 75.58 69.32

Table 4: The precision, recall, and F; scores of each category
for the different approaches. Note that the inter-annotator
agreement is calculated on a smaller set.

Figure 2: The F; 41
scores for TECHNIQUE 37 -
and DOMAIN cate- 33
gories after every five 829
iterations. For reasons
explained in the text, 2
we do not learn new 17
patterns for FOCUS.

=+-TECHNIQUE
—=—DOMAIN

0 10 20 30 40 50
Iteration

Table 4 compares precision, recall, and micro-
averaged F; scores for the three categories when
we use: (1) only the seed patterns, (2) the com-
bined set of learned and seed patterns, (3) the base-
line, and (4) the inter-annotator agreement. We
calculated inter-annotator agreement for 30 ab-
stracts, where each abstract was labeled by 2 an-
notators,” and the precision-recall scores were cal-
culated by randomly choosing one annotation as
gold and another as predicted for each article. We

9The first author annotated 30 abstracts and two doctoral
candidates in computational linguistics annotated 15 each.
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Figure 3: The first figure shows influence scores of commu-
nities in each year. The second figure shows the popularity of
each community in each year (see (Hall et al., 2008)), which
is measured by summing up the article-to-topic scores for
the articles published in that year. The scores are smoothed
with weighted scores of 2 previous and 2 next years, and
L1-normalized for each year. The scores are lower for all
communities in late 2000s since the probability mass is more
evenly distributed among many communities.

can see in the table that both precision and re-
call scores increase for TECHNIQUE because of the
learned patterns, though for DOMAIN, precision
decreases but recall increases. The recall scores
for the baseline are higher as expected but the pre-
cision is very low. Three possible reasons ex-
plain the mistakes made by our system: (1) au-
thors sometimes use generic phrases to describe
their system, which were not annotated with any
of the three categories in the test set but were ex-
tracted by the system (such as ‘simple method’,
‘faster model’, ‘new approach’); (2) the depen-
dency trees of some sentences were wrong; and
(3) some of the patterns learned for TECHNIQUE
and DOMAIN were low-precision but high-recall.
Figure 2 shows the F; scores for TECHNIQUE and
DOMAIN after every 5 iterations.

Influence

Table 5 shows the most influential communities
overall (computed using Eq. 5) and their respective
influential phrases that have been widely adopted
as techniques by other communities. We can
see that speech recognition is the most influen-
tial community because of the techniques like hid-
den Markov models and other stochastic methods
it introduced in the computational linguistics liter-
ature, which shows that its long-term seeding in-
fluence is still present despite the limited recent

-=- Bilingual Word Alignment

—e—Statistical Machine R
Translation e

——Non-Statistical+Bi-text p
Machine Translation o

(a) The influence of communities in each year.

-=- Bilingual Word Alignment

Poprty Scre
s o e

(b) Popularity of communities in a each year.

Figure 4: Comparing machine translation related communi-
ties in the same way as in Figure 3. The statistical machine
translation community, which is a topic from the topic model,
is more phrase-based.

popularity. Probability theory also gets a high
score since many papers in the last decade have
used stochastic methods. The communities part-
of-speech tagging and parsing get high scores be-
cause they adopted some techniques that are used
in other communities, and because other commu-
nities use part-of-speech tagging and parsing in the
intermediary steps for solving other problems.
Figure 3(a) shows the change in a community’s
influence over time, and Figure 3(b) shows the
change in its popularity. The popularity of a com-
munity is the sum of article-to-topic scores for the
community topic and for all articles published in
a given year.'® The scores in both figures are nor-
malized such that the total score for all commu-
nities in a year sum to one. Compare the relative
scores of communities in Figure 3(a) with the rel-
ative scores in Figure 3(b). We can see influence
of a community is different from the popularity of
a community in a given year. As mentioned be-
fore, we observe that although influence score for
speech recognition has declined in recent years,
it still has a lot of influence, though the popular-
ity of the community in recent years is very low.
Machine learning classification has been both pop-
ular and influential in recent years. Named en-
tity recognition’s popularity has decreased since
2003, though its influence has either increased
or remained same. Figure 4 compares the ma-
chine translation communities in the same way as
we compare other communities in Figure 3. We
can see that statistical machine translation (more
phrase-based) community’s popularity has steeply
increased in the last 5 years, however, its influ-

10See (Hall et al., 2008) for more analysis. Note that this
analysis uses just bag-of-words based topic models.



Community Most Influential Phrases Score

Speech Recognition expectation maximization; hidden markov; language; contextually; segment; context independent 1.35

(recognition, acoustic, error, speaker, rate, | phone; snn hidden markov; n gram back off language; multiple reference speakers; cepstral;

adaptation, recognizer, vocabulary, phone) phoneme; least squares; speech recognition; intra; hi gram; bu; word dependent; tree structured;
statistical decision trees

Probability Theory hidden markov; maximum entropy; language; expectation maximization; merging; expecta- 1.31

(probability, probabilities, distribution, proba- | tion maximization hidden markov; natural language; variable memory markov; standard hidden

bilistic, estimation, estimate, entropy, statisti- | markov; part of speech; inside outside; segmentation only; minimum description length principle;

cal, likelihood, parameters) continuous density hidden markov; part of speech information; forward backward

Bilingual Word Alignment hidden markov; expectation maximization; maximum entropy; spectral clustering; statistical 1.2

(alignment, alignments, aligned, pairs, align, alignment; conditional random fields , a discriminative; statistical word alignment; string to

pair, statistical, parallel, source, target, links, | tree; state of the art statistical machine translation system; single word; synchronous context

brown, ibm, null) free grammar; inversion transduction grammar; ensemble; novel reordering

POS Tagging maximum entropy; machine learning; expectation maximization hidden markov; part of speech 1.13

(tag, tagging, pos, tags, tagger, part-of- | information; decision tree; hidden markov; transformation based error driven learning; entropy;

speech, tagged, unknown, accuracy, part, tag- | part of speech tagging; part of speech; variable memory markov; viterbi; second stage classifiers;

gers, brill, corpora, tagset) document; wide coverage lexicon; using inductive logic programming

Machine Learning Classification support vector machines; ensemble; machine learning; gaussian mixture; expectation maximiza- 1.12

(classification, classifier, examples, classi- tion; flat; weak classifiers; statistical machine learning; lexicalized tree adjoining grammar based

fiers, kernel, class, svm, accuracy, decision, features; natural language processing; standard text categorization collection; pca; semisuper-

methods, labeled, vector, instances) vised learning; standard hidden markov; supervised learning

Statistical Parsing propbank; expectation maximization; supervised machine learning; maximumentropy classifier; | 0.92

(parse, treebank, trees, parses, penn, collins, | ensemble; lexicalized tree adjoining grammar based features; neural network; generative prob-

parsers, charniak, accuracy, wsj, head, statis- | ability; incomplete constituents; part of speech tagging; treebank; penn; 50 best parses; lexical

tical, constituent, constituents) functional grammar; maximum entropy; full comlex resource

Statistical Machine Translation maximum entropy; hidden markov; expectation maximization; language; linguistically struc- | 0.82

(More-Phrase-Based) tured; ihmm; cross language information retrieval; ter; factored language; billion word; hierar-

(bleu, statistical, source, target, phrases, smt, | chical phrases; string to tree; state of the art statistical machine translation system; statistical

reordering, translations, phrase-based) alignment; ist inversion transduction grammar; bleu as a metric; statistical machine translation

Table 5: The top most influential communities, along with the top most words that describe the communities obtained by the
topic model, and the corresponding most influential phrases that have been widely used as techniques. The third column is the

score of the community computed by Eq. 5.

Community

Communities that have influenced most (descending order)

Named Entity Recognition

Chunking/Memory Based Models; Discriminative Sequence Models; POS Tagging; Machine Learning Classification;
Coherence Relations; Biomedical NER; Bilingual Word Alignment

Statistical Parsing

Probability Theory; POS Tagging; Discriminative Sequence Models; Speech Recognition; Parsing; Syntactic Theory;
Clustering+DistributionalSimilarity; Chunking/Memory Based Models

Word Sense Disambiguation

Clustering + DistributionalSimilarity; Machine Learning Classification; Dictionary Lexicons; Collocations/Compounds;
Syntax; Speech Recognition; Probability Theory

Table 6: The community in the first column has been influenced the most by the communities in the second column. The scores

are calculated using Eq. 4

ence has increased at a slower rate. On the other
hand, the influence of bilingual word alignment
(the most influential community in 2009) has in-
creased during the same period, mainly because
of its influence on statistical machine translation.
The influence of non-statistical machine transla-
tion has been decreasing recently, though slower
than its popularity. Table 6 shows the communi-
ties that have the most influence on a given com-
munity (the list is in descending order of scores by
Eq. 4).

6 Future Directions

We are working towards incorporating the date of
publication of the articles to learn better patterns to
increase precision and recall of the system. We are
also exploring ways to use our system for study-
ing citation and co-authorship networks. We plan
to study the dynamics and impact of broader com-
munities like biology, statistics and the social sci-
ences. The approach can also be used to study
innovation in interdisciplinary research, since we

can track if interdisciplinary research results in
applying old techniques from one community to
solve problems in other community, or if it results
in the evolution of better suited techniques.

7 Conclusions

This paper presents a framework for extracting de-
tailed information from scientific articles, such as
main contributions, tools and techniques used, and
domain problems addressed, by matching seman-
tic extraction patterns in dependency trees. We
start with a few hand written seed patterns and
learn new patterns using a bootstrapping approach.
We use this rich information extracted from arti-
cles to study the dynamics of research communi-
ties and to define a new way of measuring influ-
ence of one research community on another. We
present a case study on the computational linguis-
tics community, where we find the influence of
its sub-fields and observed that speech recognition
and probability theory have had the most seminal
influence.
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Abstract

Structured information plays a critical role in
many NLP tasks, such as semantic relation ex-
traction between named entities and semantic
role labeling. This paper proposes a principled
way to automatically generate constituent
structure representation for tree kernel-based
protein-protein interaction (PPI) extraction.
The main idea behind our approach is that the
critical portion in a constituent parse tree for
PPI extraction can be automatically deter-
mined by the shortest dependency path be-
tween the two involved proteins, while other
portion can be regarded as noise and ignored
safely. Evaluation on multiple PPI corpora
shows that our dependency-directed tree ker-
nel-based method achieves promising results.
This justifies the effectiveness of tree kernel-
based methods for PPI extraction, in particular
the advantage of dependency-directed con-
stituent structure representation.

1 Introduction

Since determining protein interaction partners is
crucial to understand both the functional role of
individual proteins and the organization of the
entire biological process, there is a significant
interest in protein-protein interaction (PPI) ex-
traction. However, manual collection of relevant
PPI information from thousands of biomedical
research papers published every day (e.g. MED-
LINE) is so time-consuming and labor-
demanding that automatic extraction approaches
with the help of NLP techniques become neces-
sary.

In principle, PPI extraction is much like the
semantic relation extraction subtask (so called
Relation Detection and Classification, RDC)
defined by the ACE project (ACE, 2002-2007) in
the newswire domain. Therefore, various kinds
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of machine learning methods have been
borrowed from the newswire domain to the
biomedical domain: feature-based methods
(Mitsumori et al., 2006; Giuliano et al., 2006;
Setre et al., 2007; Liu et al., 2010) and kernel-
based methods (Bunescu et al., 2005a; Erkan et
al., 2007; Airola et al., 2008; Kim et al., 2010).

Early studies on PPI extraction employ
feature-based methods. However, the feature-
based methods often fail to effectively capture
the structured information, which is essential to
identify the relationship between two proteins in
a constituent or dependency-based syntactic
representation.

With the wide adoption of kernel-based
methods to many NLP tasks, particularly for
semantic relation extraction and semantic role
labeling, various kernels such as subsequence
kernels (Bunescu et al., 2005a) and tree kernels
(Li et al., 2008) have been applied to PPI
extraction. On one hand, dependency-based
kernels, such as edit distance kernels (Erkan et al.
2007), graph kernels (Airola et al., 2008) and
subsequence kernels (Kim et al., 2010), show
some promising results for PPI extraction. This
suggests that dependency information plays a
critical role in PPI extraction, much like semantic
relation extraction in the newswire narratives
(Culotta and Sorensen, 2004; Bunescu et al.,
2005b). On the other hand, while tree kernels
based on constituent parse trees achieve great
success in semantic relation extraction (Zhang et
al., 2006; Zhou et al., 2007a; Qian et al., 2008)
and semantic role labeling (Moschitti, 2004;
Zhang et al., 2008) from the newswire narratives,
they haven’t been fully explored for PPI
extraction in the biomedical domain. Considering
the similarity between the task of PPI extraction
from the biomedical domain and that of relation
extraction from the newswire domain, one
question naturally arises: “How can kernel-based
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PPI extraction benefit from the constituent parse
tree structure?”

To address this question, this paper presents a
principled way to automatically generate a pre-
cise and concise constituent parse tree represen-
tation for kernel-based methods, motivated by
the success of employing dependency informa-
tion in PPI extraction. This is done by taking ad-
vantage of the shortest dependency path between
two involved proteins in the dependency parse
tree structure of a sentence. Specifically, only the
words appearing on the shortest dependency path
and their associated constituents in the constitu-
ent parse tree are considered as necessary and
thus kept as the essential part of the constituent
parse tree. In this paper, we refer to it as SDP-
CPT (Shortest Dependency Path-directed Con-
stituent Parse Tree). Experimental results on sev-
eral major PPI corpora show the effectiveness of
dependency-directed constituent structure repre-
sentation and its preference over other state-of-
the-art structure representations.

The rest of this paper is organized as follows.
First, related work in PPI extraction is over-
viewed in Section 2. Then, Section 3 elaborates
our shortest dependency path-directed constitu-
ent parse tree structure. Section 4 reports the ex-
perimental results on major PPI corpora. Finally
we conclude our work in Section 5.

2 Related Work

Due to space limitation, this section only gives
an overview on kernel-based methods on PPI
extraction in the biomedical domain as well as
semantic relation extraction in the newswire do-
main. For details about feature-based methods,
please refer to related studies in the biomedical
domain (Mitsumori et al., 2006; Giuliano et al.,
2006; Liu et al., 2010) and those in the newswire
domain (Zhao et al., 2005; Zhou et al. 2005,
2007b), respectively.

PPI extraction in biomedical domain

Representative kernel-based methods on PPI ex-
traction take advantage of lexical or dependency
information.

Bunescu et al. (2005a) adopt a generalized
substring kernel over a mixture of words and
word classes to extract protein interactions from
biomedical corpora and semantic relations from
newswire corpora. Particularly, they achieve the
Fl-score of 54.2 in extracting protein interac-
tions from the AIMed corpus. Erkan et al. (2007)
first define two similarity functions based on co-
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sine similarity and edit distance among depend-
ency paths between two entities, and then incor-
porate them in semi-supervised learning for PPI
extraction using SVM and KNN classifiers.
Setre et al. (2007) use a tree kernel over depend-
ency structures from two parsers and achieve the
Fl-score of 52.0 for PPI extraction from the
AlMed corpus. Airola et al. (2008) introduce an
all-dependency-paths graph kernel to capture
complex dependency relationships between
words and attain a significant performance boost
at the expense of computational complexity.
They achieve the F1-score of 56.4 in PPI extrac-
tion from the AIMed corpus. Kim et al. (2010)
adopt a walk-weighted subsequence kernel based
on shortest dependency paths to explore various
substructures such as e-walks, partial match, and
non-contiguous paths. They achieve the F1-score
of 56.7 on the AIMed corpus.

Semantic relation extraction in newswire do-
main

In the literature, various kernels-based methods
(Zelenko et al., 2003; Culotta and Sorensen,
2004; Bunescu et al., 2005b; Zhang et al., 2006;
Zhou et al., 2007a; Qian et al., 2008) have been
widely used in semantic relation extraction in the
newswire domain. In particular, Zhang et al.
(2006), Zhou et al. (2007a) and Qian et al. (2008)
adopt convolution tree kernels (Collins and
Duffy, 2001) over constituent parse trees and
show great success with comparable or even bet-
ter performance than feature-based ones, moti-
vated by the pioneer work of Moschitti et al.
(2004; 2008) on semantic role labeling.

While convolution kernels (Haussler et al.,
1999) can effectively capture structured informa-
tion in discrete objects, the key problem for tree
kernel-based methods lies largely in how to ap-
propriately represent structured syntactic infor-
mation inherent in relation instances. Zhang et al.
(2006) discover that the Shortest Path-enclosed
Tree (SPT) achieves the best performance among
five tree setups. Zhou et al. (2007a) further ex-
tend it to Context-Sensitive Shortest Path-
enclosed Tree (CS-SPT), which includes neces-
sary predicate-linked path information. Qian et al.
(2008) propose to automatically determine the
appropriate part of a constituent parse tree by
considering constituent dependencies on each
node along the shortest path between two entity
mentions and discarding irrelevant nodes. How-
ever, their adopted constituent dependency rules
are manually constructed and thus difficult to
adapt to other domains and languages.



T1: FPT
77|
7]

‘Association‘ ‘between‘ ‘PROTI‘ ‘cyclin‘ ‘PROT2‘ ‘was‘ ‘detected‘

Figure 1. Different tree setups for a PPI instance between PROT1 and PROT2 from sentence “Association be-
tween PROT1 and cyclin B1 / PROT2 was detected in the HeLa cells.” in the AIMed corpus

In this paper, we make use of the shortest de-
pendency path in the dependency tree to refine
the constituent parse tree. Specifically, all the
words which appear on the shortest dependency
path, together with their associated constituents,
are kept in the constituent parse tree, while other
constituents are removed, forming a Shortest
Dependency Path-directed Constituent Parse
Tree (SDP-CPT).

3 Constituent Structure Representation

This section first illustrates the limitations of
commonly-used constituent parse tree setups,
then emphasizes the importance of shortest de-
pendency path in representing the constituent
parse tree, and finally presents the shortest de-
pendency path-directed constituent parse tree
(SDP-CPT).

3.1

It is widely acknowledged that the key problem
for the success of tree kernel-based semantic re-
lation extraction is how to represent the constitu-
ent parse tree in a precise and concise manner.
Zhang et al. (2006) explore five kinds of tree set-
ups and find that the Shortest Path-enclosed Tree
(SPT) achieves the best performance. However,
unlike the locality of semantic relations in the
newswire domain (Zhou et al., 2005), most of
PPI instances in the biomedical domain spans a
relatively long distance, leading to more com-
plexity and diversity (Bunescu et al., 2005¢; Ai-
rola et al., 2008). Therefore, it is not surprising

Limitations of Current Tree Setups
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that previous tree kernels over constituent parse
trees have not yet achieved promising results for
PPI extraction just as they do in the news domain.
Miyao et al. (2008) conduct a comprehensive
comparison of different syntactic representations
for PPI extraction and find that the phrase struc-
ture tree in the form of the constituent parse tree
(called PTB in their paper) performs significantly
worse than the other representations. Tikk et al.
(2010) extensively compares different kernel-
based methods on PPI extraction and show that
the tree kernel over the constituent parse tree
only achieves the F1-score of 34.6 on the AIMed
corpus. Actually, our preliminary experiment on
PPI extraction via the convolution tree kernel
over SPT only achieves the F1-score of about 47
on the AIMed corpus. Such poor performance
can be justified to a certain extent via a typical
instance as illustrated in Figure 1, where the in-
teraction between PROT1 and PROT?2 (their ac-
tual names have been replaced) can be only de-
termined by the overall constituent structure of
the sentence. Obviously, SPT will fail to identify
this interaction instance since SPT ignores the
constituents outside the shortest path (Figure 1:
T,: SPT).

For the Context-Sensitive SPT (CS-SPT), as
proposed in Zhou et al. (2007a), which extends
necessary predicate-linked path information out-
side SPT, some critical information is still miss-
ing while there exists some noisy information.
For the instance as shown in Figure 1 (Ts: CS-
SPT), although the word “detected” and its asso-



ciated constituents are added, the more important
portion of “association between” and their asso-
ciated constituents are still missing while the
noisy words “cyclin B1 /” still remaining.

In order to overcome the shortcomings in SPT
and CS-SPT, Qian et al. (2008) propose a dy-
namic syntactic parse tree (DSPT) by exploiting
constituent dependencies to refine the constituent
parse tree. Specifically, they manually devise
five categories of constituent dependencies, mo-
tivated by various kinds of lexical dependencies.
When refining each node along the shortest path
in the constituent parse tree, these constituent
dependencies are used to determine how to re-
move or reduce futile constituents, eventually
leading to a more precise and concise parse tree
structure. However, this tree structure still suffers
from the following three shortcomings:

1) It disregards the constituents beyond the low-
est common ancestor to the tree root, similar
to CS-SPT as proposed in Zhou et al. (2007a).
This may be largely due to the locality of se-
mantic relations as defined in the ACE RDC
corpus, which Zhou et al (2007a) and Qian et
al. (2008) tackle.

The rules adopted to tackle constituent de-
pendencies are manually constructed and thus
may not be easily adapted to other domains
and languages. For example, while the con-
stituent dependencies related to noun phrases
are effective in the newswire domain (e.g. the
ACE RDC corpus), this may not be true for
PPI extraction in the biomedical literature.
The constituent dependencies have been di-
vided into only five categories. Such division
may be too coarse to reflect the substantial
difference between various kinds of depend-
encies (considering there are 55 kinds of mi-
nor-typed dependencies for the Stanford De-
pendency representation).

In this paper, we attempt to address these
problems by considering the shortest dependency
path in the dependency parse tree for reshaping
the constituent parse tree in a principled way in
the context of PPI extraction from the biomedical
literature.

3.2

Lexical dependencies can indicate both local and
long-range relationships among words occurring
in the same sentence. Such dependency relation-
ships offer a condensed representation of the in-
formation necessary to assess the relationship
between two proteins or entities. In order to
capture the necessary information inherent in the

2)

3)

Shortest Dependency Path
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depedency parse tree for extracting PPI instances,
various kernels based on dependency paths, such
as edit distance kernel (Erkan et al., 2007), all-
dependency-path graph kernel (Airola et al.,
2008), and walk-weighted subsequence kernels
(Kim et al., 2010) have been proposed. Likewise
for semantic relation extraction in the newswire
domain, the kernels on dependency trees (Culotta
and Sorensen, 2004) and the shortest dependency
path (Bunescu et al., 2005b) have been proposed.
One common characteristic to these kernels is
that they all contain the shortest dependency path
and usually assign more weights to them than to
other ones, similar to the graph kernel proposed
by Airola et al. (2008). This indicates the impor-
tance of the shortest dependency path over other
paths in the dependency path tree or the depend-
ency graph.

Currently, there are two established depend-
ency representations available, viz. CoNLL
scheme (adopted by CoNLL’2007 and
CoNLL’2008 Shared tasks) (Nivre et al., 2007;
Surdeanu et al., 2008) and Standford scheme
(adopted by Stanford parser) (de Marneffe et al.,
2006). These two schemes differ significantly in
the representation of passive construction, posi-
tion of auxiliary and modal verb, or coordination.
It is generally acknowledged that the Stanford
scheme is closer to the targeted semantic repre-
sentation from the perspective of relation extrac-
tion (Buyko and Hahn, 2010). Particularly,
among the four styles of Stanford representations,
“collapsed dependency” can much simplify pat-
terns in relation extraction since dependencies
involving preposition, conjunct as well as refer-
ent of relative clause are effectively collapsed to
reflect direct dependencies between content
words. Therefore, the collapsed variant of Stan-
ford scheme is adopted in this paper to refine the
constituent parse tree as described in the next
subsection.

SDP-CPT: Shortest Dependency Path-
directed Constituent Parse Tree

3.3

Considering the importance of dependency path
in PPI extraction and the effectiveness of em-
ploying dependency information to refine the
constituent parse tree for tree kernel-based se-
mantic relation extraction in the newswire do-
main, it is a natural idea to automatically gener-
ate the proper constituent parse tree with the help
of the shortest dependency path. Specifically, we
can reshape the constituent parse tree by making
use of the shortest dependency path between two
proteins. Figure 2 describes the procedure to



generate the Shortest Dependency Path-directed
Constituent Parse Tree (SDP-CPT).

Note that Step 3(a) in Figure 2 is necessary
since a dependency tuple of the type
“prep_xx(governor, dependent)” implies a rela-
tionship between the preposition xx and the de-
pendent, which is important to PPI. For Step 3(b),
when a word on which the two proteins are di-
rectly or indirectly dependent is discovered, it is
natural to add this path for maintaining the inte-
grality of SDP-CPT.

Input: a sentence and two proteins in it

Output: an SDP-CPT

Steps:

1) Given the input sentence, generate the constituent
parse tree using a constituent parser, and various
dependency tuples using a dependency parser.
Given the two proteins, extract the shortest con-
stituent path (SCP, i.e. the shortest path-enclosed
tree) from the constituent parse tree and construct
the shortest dependency path (SDP) from the de-
pendency tuples.

For each word along the SDP, add the corre-
sponding leaf word node and its upper constitu-
ents to the SCP. Particularly,

a) when the dependency type is “prep XX,
such as “prep_of”, the preposition XX and its
associated constituent are also added;
when the word to be added is outside the
SCP, a new path from the current lowest
common ancestor to one of the added
words’ ancestors is also added.

Merge any two consecutive NP/VP nodes along
the paths into a single one.

2)

3)

b)

4)

Figure 2. Procedure for generating SDP-CPT

_— Association —
prep_between prep_between

PROTI PROT2

(a) the Shortest Dependency Path (SDP)

N

[Association] [between| [PROTI]

(c) An Example of SDP-CPT

(b) the Shortest Constituent Path (SCP)
Figure 3. Generation of an example of SDP-CPT

In order to demonstrate the process of generat-
ing a SDP-CPT, we take the sentence and the
two proteins shown in Figure 1 as an example.
Figure 3 illustrates the detailed generation proc-
ess. First, the shortest dependency path (SDP)
and the shortest constituent path (SCP) are gen-
erated as depicted in Figure 3(a) and 3(b) respec-
tively. Then, every word in the SDP is added into
the SCP together with its associated constituents.
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In this case, since the two protein names in the
SDP share a common ancestor “Association”, the
word “Association” together with its constituent
ancestors are added into the SCP and a new path
“NP->PP->NP” is created as rendered by the
dashed lines. Finally, since the dependency type
between “PROT1” and “Association” is
prep_between, the preposition word “between”
and its constituent ancestors are added into the
SCP as rendered by the dotted lines. Since no
further post-processing is necessary in this ex-
ample, SDP-CPT is eventually formed. Com-
pared to other tree setups in Figure 1, namely
SPT, CS-SPT and DSPT, obviously SDP-CPT is
much more concise and precise for this PPI in-
stance.

4  Experimentation

This section systematically evaluates the per-
formance of our shortest dependency path-
directed constituent parse tree (SDP-SPT) on PPI
extraction across several major PPI corpora.

4.1 Data Sets and Preprocessing

In order to fairly compare our work with other
PPI extraction systems, we use five PPI corpora,
i.e., AIMed (Bunescu et al.,, 2005a), Biolnfer
(Pyysalo et al., 2007), HPRD50 (Fundel et al.,
2007), IEPA (Ding et al., 2002) and LLL (Nédel-
lec, 2005). Particularly, most of the evaluation is
done on the widely-used AIMed corpus, which
contains 177 Medline abstracts with PPI in-
stances, and 48 abstracts without any PPI in-
stances. Totally, there are 4,084 protein refer-
ences and around 1,000 annotated protein-protein
interactions in this data set.

In this paper, a potential PPI instance is gener-
ated for any pair of two proteins in a sentence
That is, if a sentence contains N proteins, ()
protein pairs are generated. In particular, all the
self-interactions (59 instances) are removed and
all the PPI instances with nested protein names
are retained (154 instances), as adopted in most
literature. Eventually, 1000 positive instances
and 4834 negative instances are generated. Be-
sides, for a potential PPI instance, the two in-
volved proteins are replaced by PROTI1 and
PROT?2 respectively in order to blind the learner
for fair comparison with other work. Finally, all
the sentences in these corpora are parsed using
the Stanford Parser' to generate both the con-

! http://nlp.stanford.edu/software/lex-parser.shtm]



stituent parse trees and their corresponding de-
pendency tuples.

4.2 Classifier and Evaluation Metrics

In our experimentation, we select Support Vector
Machines (SVM) as the classifier since SVM
represents the state-of-the-art in the machine
learning research community. In particular, we
use the SVM"™™ (Joachims, 1998) with the con-
volution tree kernel function SVM""_TK (Mo-
schitti, 2004)* to compute the similarity between
two constituent parse trees.

Evaluation is done using 10-fold document-
level cross-validation, each of which contains
90% of documents as the training data and 10%
as the test data. Particularly, for the AIMed cor-
pus we apply the exactly same 10-fold split as
widely used in a series of relevant studies (e.g.,
Bunescu et al., 2005a; Giuliano et al., 2006). Fol-
lowing conventions, the parameters C for SVM is
set to the ratio of negative instances to positive
ones in respective corpora, and A for the convolu-
tion tree kernel is set to default 0.4. Furthermore,
the OAOD (One Answer per Occurrence in the
Document) strategy is adopted, which means that
the correct interaction must be extracted for each
occurrence. This guarantees the maximal use of
the available data, and more importantly, allows
fair comparison with relevant work. All the ex-
periments are evaluated using commonly-used
Precision (P), Recall (R) and harmonic F1-score
(F1). As an alternative to Fl-score, the AUC
(area under the receiver operating characteris-
tics curve) score is proved to be invariant to the
class distribution of the test dataset. Therefore,
we also provide the AUC score of our system for
referrence as by Airola et al. (2008).

4.3

Comparison of different lengths of depend-
ency paths on the AlMed corpus

Experimental Results

Table 1 reports the performance of PPI extrac-
tion on the AIMed corpus corresponding to dif-
ferent lengths of the dependency paths using all
kinds of dependency types. Here, two partial de-
pendency paths on SDP, starting from each of
the two proteins respectively, are utilized to gen-
erate the tree representation. The length of these
two paths is shown in the 1* column. The words
corresponding to the nodes on these two paths
together with these words’ associated constitu-
ents in the parse tree are added to SCP. For ex-

2 http://ai-nlp.info.uniroma2.it/moschitti/
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ample, the length of 0 (LO) means that not a sin-
gle word or constituent will be added to SCP,
while the length of 1 (L1) means that the words
corresponding to the parents of two proteins on
SDP and these words’ associated constituents in
the parse tree are added to SCP. Meanwhile, the
performance of the SPT setup is also listed as the
baseline for comparison.

Length P(%)| R(%)| Fl | AUC
SPT 570 | 407 | 47.1 | 799
SCP+LO (SCP) | 45.0 | 195 | 26,5 | 67.9
SCP+L1 597 | 458 | 514 | 802
SCP+L2 592 | 517 | 550 | 823
SCP+L3 580 | 519 | 546 | 822
SCP+L4 593 | 540 | 562 | 826
SDP-CPT 596 | 543 | 567 | 827

Table 1. Performance comparison of PPI extraction
on the AIMed corpus with different lengths of de-
pendency paths using all kinds of dependency types

This table shows that the constituent parse
tree directed by the shortest dependency path
(SDP-CPT) achieves the best performance of
59.6/54.3/56.7/82.7 in P/R/F1/AUC, significantly
outperforming SPT by 9.6 units in F1 and 2.8
units in AUC largely due to the substantial in-
crease in recall. This indicates that SDP-CPT can
remove much noise in SPT while adding some
useful information. It also shows
® The performance of the SCP corresponding to
the length of 0 is lowest, since they contain
no information derived from the shortest de-
pendency path.

With the increase of the length of dependency
paths, more and more useful information de-
rived from SDP is included in the constituent
parse tree and the performance reaches the
highest for SDP-CPT (all the words corre-
sponding to all the nodes on the SDP and
their associated constituents are added).

In summary, the above results suggest that
SDP-CPT can achieve the best performance.
Therefore, all the subsequent experiments adopt
the SDP-CPT setup unless specified.

Contribution of different kinds of dependen-
cies on the AlMed corpus

Table 2 compares the contribution of various
kinds of dependencies in SDP-CPT on the
AlMed corpus. All the typed dependency rela-
tions are grouped into 4 major classes, namely
Modifier, Argument, Conjunction and Others.
For every major type, minor dependency types, if



any exists, are further ordered by their potential
importance. The percentage of occurring fre-
quency with which each minor type is employed
when generating the SDP-CPT with respect to
the total number of dependency tuples is listed in
Column 2. Particularly, the tree setup without
using any dependency type, which corresponds
to that with the length of 0 (SCP) in Table 1, is
displayed at the top row. Furthermore, the de-
pendency types are added in two different ways:
® Individual: the dependency types are added
individually with their performance scores
shown inside the parentheses;

Accumulative: the dependency types are in-
crementally added one by one with their per-
formance scores shown outside the parenthe-
ses. The “+” sign before the type means that
its addition can boost the performance in F1-
score or AUC score and thus will be passed
down to the next iteration.

ment both in the accumulative mode and in
the individual mode;

The dependency types of Conjunction and
Others harm the performance in the accumu-
lative mode, though Conjunction improves
the performance in the individual mode;

It is interesting to note that while the depend-
ency types of arg-others and mod-others
harm the performance in the individual mode,
they slightly improve the performance in the
accumulative mode.

Since the governors of subj and obj types are
verbs, those of the prep type are nouns and
prepositions, and those of the nn type are nouns,
the above results are consistent with our observa-
tion that some verbs like “bind” or “interact”,
some prepositions like “with” or “of”, and some
nouns like “interaction” or “expression”, on
which two proteins are directly or indirectly de-
pendent, are particularly important for PPI ex-

Table 2. Contribution of different typed dependencies
on the AIMed corpus with the SDP-CPT setup in the
accumulative mode (outside parentheses) and in the
individual mode (inside parentheses)

Table 2 shows that with the addition of all Ar-
gument types and all Modifier types, the SDP-
CPT attains the best performance of
59.1/57.6/58.1/83.3 in P/R/F1/AUC as shown in
bold fonts, outperforming the SDP-CPT with all
dependency types added (59.6/54.3/56.7/82.7 in
P/R/F1/AUCQC). Particularly, it shows
® The dependency types of subj, obj, prep and

nn yield substantial performance improve-
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Typed % | Pew) | R%) F1 AUC traction. Henceforth, in the following experi-
Dependency ments all the Argument and Modifier types are
SCP+L0 - | 450 | 195 | 26.5 | 67.9 | included while the Conjunction and Others types
Argument are excluded.
. 52.5 332 40.4 72.7 T Bioln- | HPRD
+sub 10 ree ioln
) (52.6) | (332) | (404) | (27) | | setups |ATMEd| gr | 50 | TEPA | LLL
+obj 31| 362 | 462 | 504 1 76.6 | [Mpodoof | 1000/ | 2534/ | 163/ | 335/ | 164/
(22-?) (ﬁ-g) (‘5‘(7)-‘9)) (;2-2) POS/NEG | 4834 | 7119 | 270 | 482 | 166
+arg-others 2 ’ ’ ’ ’ 31.8 53.8 48.0 62.3 77.1
e (48.8) | (14.6) | 213) | (68.6) | |MCT (78.0) | (76.7) | (73.4) | (78.6) | (73.4)
551 T332 1551 T sia ] |SPT 47.1 | 542 | 613 | 66.6 | 79.4
+nn 10| 549 | 385) | (@as) | (775 | [(baseline) | (79:9) | (73.7) | (81.6) | (82.2) | (86.1)
582 | 552 | 566 | 8.0 | |cs.gpp | 465 | 345 | 636 [ 668 | 80.1
+prep 20 (53.4) | 392) | (44.8) | (76.2) (80.2) | (74.5) | (79.9) | (81.0) | (86.0)
59.1 57.6 58.1 83.3 50.0 | 583 | 66.0 | 68.6 | 77.3
] DSPT
mod-others | 5 1 4s8) | (15.7) | 223) | (67.3) (77.8) | (78.5) | (80.3) | (80.9) | (79.3)
. 589 | 550 | 56.7 | 828 58.1 | 62.4 | 68.8 | 69.8 | 84.6
Conjunction | 12} ooy | 23.5) | 30.5) | (69.8) | [PPP-CPT | (83.3) | (83.6) | (83.4) | (82.0) | (89.2)
584 | 538 | 55.8 | 83.0
Others 10 47.5) | (14.8) | (20.4) | (69.5) Table 3. Comparison of F1-score(outside parentheses)

and AUC(inside parentheses) between SDP-CPT and
different tree setups across major PPI corpora

Comparison of different constituent parse tree
structures across major PPI corpora

Table 3 compares the performance of F1-score
(outside parenthesis) and AUC (inside parenthe-
ses) between SDP-CPT and the previously-used
tree setups across major PPI corpora. Particularly,
SPT is used as a baseline and for comparison we
re-implement two other effective tree setups for
semantic relation extraction in the newswire do-
main, i.e. CS-SPT (Zhou et al., 2007a) and DSPT
(Qian et al., 2008). Significance tests are con-
ducted between each of them and the baseline.



Additionally, the numbers of positive and nega-

tive instances in each corpus are reported in the

Ist row and the performance scores of MCT

(Minimum Complete Tree, the complete sub-tree

rooted by the lowest common ancestor of the two

proteins under consideration) are also listed in

the 2™ row for reference. The table shows

® Among all tree setups SDP-CPT performs
best and significantly outperforms SPT con-
sistently on most PPI corpora.

® CS-SPT slightly outperforms SPT on most
corpora while DSPT performs divergently on
different corpora. The reason that DSPT per-
forms excellently in the newswire domain

(Qian et al., 2008) but not so much for PPI

extraction may be that the heuristic rules they

use to prune the constituent trees are more
suitable for the newswire domain, thus limit-
ing their capability of domain adaptation.

In summary, the above results suggest the su-
periority and generality of our SDP-CPT on
various kinds of PPI corpora from the biomedical
literature.

PPI extraction systems P(%) | R(%) | Fl
Our SDP-CPT kernel 59.1 | 57.6 | 58.1
Dependency path:

Kim et al. (2010) 614 | 533 | 56.7
Dependency graph:

Airola et al. (2008) 529 | 618 | 564
Word subsequence:

Bunescu et al. (2005a) 650 | 46.4 | 54.2
Constituent parse tree:

Tikk et al. (2010) 39.2 | 319 | 346
BOW-+Dependency path:

Setre et al. (2007) 643 | 44.1 | 520
BOW+Constituent parse tree:

Miyao ct al. (2008) 509 1 36.1 | 53.0
Global+Local context:

Giuliano et al. (2006) 609 | 57.2 1 59.0
Dependency+Predicate

Argument Structure: 549 | 655 | 595
Miyao et al. (2008)

BOW-+Shortest

Path+Depencency graph: - - 64.2
Miwa et al. (2009)

Table 4. Performance comparison of kernel-based PPI
extraction systems on the AIMed corpus
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Comparison of kernel-based PPI extraction
systems on the AlMed corpus

Table 4 compares our kernel-based system with
other state-of-the-art kernel-based ones on the
AlMed corpus using the exactly same 10-fold
data splitting. It shows that our individual kernel-
based system performs better than all the other
individual kernel-based systems on the AlMed
corpus. Particularly, our SDP-CPT kernel sig-
nificantly outperforms the Partial Tree kernel
over constituent parse trees (Tikk et al., 2010). It
even significantly outperforms the composite
kernel combining BOW and constituent parse
trees (Miyao et al., 2008). Although our individ-
ual kernel performs worse than the composite
kernels as adopted by Miyao et al. (2008) and
Miwa et al. (2009), the strength of our kernel-
based system lies in the simplicity of our shortest
dependency path-directed constituent parse tree.

5 Conclusion and Future Work

This paper presents a principled way to auto-
matically generate the constituent parse tree for
PPI extraction by making use of the shortest de-
pendency path between two proteins. Although
previous research indicates the difficulty of em-
ploying constituent parse tree information for
PPI extraction due to the relatively long distance
between two proteins, our detailed analysis and
evaluation indicate that the constituent parse tree
can achieve promising results for PPI extraction.
Moreover, our dependency-directed constituent
parse tree structure provides a general way to
automatically determine the constituent parse
tree for a wide class of related learning tasks,
such as semantic relation extraction, semantic
role labeling and even coreference resolution.

For future work, we would like to apply our
approach to other NLP tasks. Meanwhile, we
will investigate the effect of constituent parse
information on dependency-based relational
learning in better exploring the synergy between
dependency and constituent-based syntactic in-
formation.
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Abstract

This paper presents a new task, learning
logical structures of paragraphs in legal ar-
ticles, which is studied in research on Le-
gal Engineering (Katayama, 2007). The
goals of this task are recognizing logi-
cal parts of law sentences in a paragraph,
and then grouping related logical parts
into some logical structures of formulas,
which describe logical relations between
logical parts. We present a two-phase
framework to learn logical structures of
paragraphs in legal articles. In the first
phase, we model the problem of recog-
nizing logical parts in law sentences as
a multi-layer sequence learning problem,
and present a CRF-based model to recog-
nize them. In the second phase, we pro-
pose a graph-based method to group logi-
cal parts into logical structures. We con-
sider the problem of finding a subset of
complete sub-graphs in a weighted-edge
complete graph, where each node corre-
sponds to a logical part, and a complete
sub-graph corresponds to a logical struc-
ture. We also present an integer linear pro-
gramming formulation for this optimiza-
tion problem. Our models achieve 74.37%
in recognizing logical parts, 79.59% in
recognizing logical structures, and 55.73%
in the whole task on the Japanese National
Pension Law corpus.

1 Introduction

Legal Engineering (Katayama, 2007) is a new re-
search field which aims to achieve a trustworthy
electronic society. Legal Engineering regards that
laws are a kind of software for our society. Specif-
ically, laws such as pension law are specifications
for information systems such as pension systems.
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To achieve a trustworthy society, laws need to be
verified about their consistency and contradiction.

Legal texts have some specific characteristics
that make them different from other kinds of doc-
uments. One of the most important characteristics
is that legal texts usually have some specific struc-
tures at both sentence and paragraph levels. At the
sentence level, a law sentence can roughly be di-
vided into two logical parts: requisite part and ef-
fectuation part (Bach, 2011a; Bach et al., 2011b;
Tanaka eta al., 1993). At the paragraph level, a
paragraph usually contains a main sentence! and
one or more subordinate sentences (Takano et al.,
2010).

Analyzing logical structures of legal texts is an
important task in Legal Engineering. The outputs
of this task will be beneficial to people in under-
standing legal texts. They can easily understand
1) what does a law sentence say? 2) what cases
in which the law sentence can be applied? and
3) what subjects are related to the provision de-
scribed in the law sentence? This task is the pre-
liminary step, which supports other tasks in legal
text processing (translating legal articles into log-
ical and formal representations, legal text summa-
rization, legal text translation, question answering
in legal domains, etc) and serves legal text verifi-
cation, an important goal of Legal Engineering.

There have been some studies analyzing logi-
cal structures of legal texts. (Bach et al., 2011b)
presents the RRE task?, which recognizes the log-
ical structure of law sentences. (Bach et al.,
2010) describes an investigation on contributions
of words to the RRE task. (Kimura et al., 2009)
focuses on dealing with legal sentences includ-
ing itemized and referential expressions. These
works, however, only analyze logical structures of
legal texts at the sentence level. At the paragraph

'Usually, the first sentence is the main sentence.
The task of Recognition of Requisite part and Effectua-
tion part in law sentences.

Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 20-28,
Chiang Mai, Thailand, November 8 — 13, 2011. (©2011 AFNLP



level, (Takano et al., 2010) classifies a legal para-
graph into one of six predefined categories: A, B,
C, D, E,and F. Among six types, Type A, B, and
C correspond to cases in which the main sentence
is the first sentence, and subordinate sentences are
other sentences. In paragraphs of Type D, E, and
F, the main sentence is the first or the second sen-
tence, and a subordinate sentence is an embedded
sentence in parentheses within the main sentence.

In this paper, we present a task of learning log-
ical structures of legal articles at the paragraph
level. We propose a two-phase framework to com-
plete the task. We also describe experimental re-
sults on real legal data.

Our main contributions can be summarized in
the following points:

e Introducing a new task to legal text pro-
cessing, learning logical structures of para-
graphs in legal articles.

e Presenting an annotated corpus for the task,
the Japanese National Pension Law corpus.

e Proposing a two-phase framework and pro-
viding solutions to solve the task.

e Evaluating our framework on the real anno-
tated corpus.

The rest of this paper is organized as follows.
Section 2 describes our task and its two sub-tasks:
recognition of logical parts and recognition of log-
ical structures. In Section 3, we present our frame-
work and proposed solutions. Experimental re-
sults on real legal articles are described in Section
4. Finally, Section 5 gives some conclusions.

2 Formulation

Learning logical structures of paragraphs in legal
articles is the task of recognition of logical struc-
tures between logical parts in law sentences. A
logical structure is usually formed from a pair of
a requisite part and an effectuation part. These
two parts are built from other kinds of logical
parts such as topic parts, antecedent parts, con-
sequent parts, and so on (Bach, 2011a; Bach et
al., 2011b)3. Usually, consequent parts describes a
law provision, antecedent parts describes cases in
which the law provision can be applied, and topic

3We only recognize logical structures (a set of related log-
ical parts). The task of translating legal articles into logical
and formal representations is not covered in this paper.
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Figure 1: Two cases of inputs and outputs of the
task.

<E>A person in|my company will be sacked ‘

without warning</E> in the following cases: LSIIR1=E
LS2:R2 = E

1. <R1>Cannot complete his/her job</R1>,
2. <R2>Go to work late three times or more</R2>,
3. <R3>Use the Internet in working time</R3>—=| LS3:R3 = E

Figure 2: An example in natural language (E
means Effectuation part, R means Requisite part,
and LS means Logical Structure).

parts describe subjects which are related to the law
provision. In this paper, a logical structure can be
defined as a set of some related logical parts.

Figure 1 shows two cases of the inputs and out-
puts of the task. In the first case, the input is a
paragraph of two sentences, and the outputs are
four logical parts, which are grouped into two log-
ical structures. In the second case, the input is
a paragraph consisting of four sentences, and the
outputs are four logical parts, which are grouped
into three logical structures. An example in natu-
ral language* is presented in Figure 2.

2.1 Sub-Task 1: Recognition of Logical Parts

Let s be a law sentence in the law sentence space
S, then s can be represented by a sequence of
words s = [wiws ... wy,]|. A legal paragraph z in
the legal paragraph space X is a sequence of law
sentences © = [s182...5s;], where s; € S, Vi
1,2,...,1. For each paragraph x, we denote a log-

“Because law sentences are very long and complicated,
we use toy sentences to illustrate the task.



ical part p by a quad-tuple p = (b, e, k, ¢) where
b, e, and k are three integers which indicate po-
sition of the beginning word, position of the end
word, and sentence position of p, and c is a logical
part category in the set of predefined categories C'.
Formally, the set P of all possible logical parts de-
fined in a paragraph z can be described as follows:

P = {(bye,k,c))]1 <k <[,1 <b<e<
len(k),c € C}.

In the above definition, [ is the number of sen-
tences in the paragraph x, and len(k) is the length
of the k'" sentence.

In this sub-task, we want to recognize some
non-overlapping (but possibly embedded) logical
parts in an input paragraph. A solution for this
task is a subset y C P which does not violate the
overlapping relationship. We say that two logical
parts p; and ps are overlapping if and only if they
are in the same sentence (k1 = k2) and by < by <
e1 < egorby < by < ey < ey. We denote the
overlapping relationship by ~. We also say that
p1 is embedded in po if and only if they are in the
same sentence (k1 = ko) and by < b < e1 < ey,
and denote the embedded relationship by <. For-
mally, the solution space can be described as fol-
lows: Y = {y C P|Vu,v € y,u ¢ v}. The learn-
ing problem in this sub-task is to learn a function
R : X — Y from a set of m training samples
{(=%,y))z' € X,y € Y,Vi=1,2,...,m}.

In our task, we consider the following types of
logical parts:

1. An antecedent part is denoted by A

2. A consequent part is denoted by C'

3. A topic part which depends on the antecedent

part is denoted by T}

A topic part which depends on the conse-

quent part is denoted by 15

. A topic part which depends on both the an-

tecedent part and the consequent part is de-

noted by 75

The left part of an equivalent statement is de-

noted by E'L

. The right part of an equivalent statement is
denoted by F R

. An object part, whose meaning is defined dif-

ferently in different cases, is denoted by Ob

An original replacement part, which will be

replaced by other replacement parts (denoted

by RepR) in specific cases, is denoted by

RepO.

Compared with previous works (Bach et al,,
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2011b), we introduce three new kinds of logical
parts: Ob, RepO, and RepR.

2.2 Sub-Task 2: Recognition of Logical
Structures

In the second sub-task, the goal is to recognize a
set of logical structures given a set of logical parts.
Let G =< V,E > be a complete undirected
graph with the vertex set V' and the edge set E. A
real value function f is defined on E as follows:
f:E—RecEw f(e) €R.

In this sub-task, each vertex of the graph corre-
sponds to a logical part, and a complete sub-graph
corresponds to a logical structure. The value on an
edge connecting two vertices expresses the degree
that the two vertices belong to one logical struc-
ture. The positive (negative) value means that two
vertices are likely (not likely) to belong to one log-
ical structure.

Let G5 be a complete sub-graph of G, then
v(Gs) and e(Gy) are the set of vertices and the set
of edges of G, respectively. We define the total
value of a sub-graph as follows:

F(G) = F(e(Gs) = ocuin F(©):

Let €2 be the set of all complete sub-graphs of G.
The problem becomes determining a subset ¥ C
() that satisfies the following constraints:

—_

Vg eV, fu(g)| = 2,

2’ UQG\PU(Q) = Va

W

V91,92 € VYlv(g1) € v(g2) = v(g1)
v(g2),

4. Vg eV, Uhe\p?h#gv(h) # V,and

9

- 2_gew f(g) — maximize.

Constraint 1), minimal constraint, says that
each logical structure must contain at least two
logical parts. There is the case that a logical struc-
ture contains only a consequent part. Due to the
characteristics of Japanese law sentences, how-
ever, our corpus does not contain such cases. A
logical structure which contains a consequent part
will also contain a topic part or an antecedent part
or both of them. So a logical structure contains
at least two logical parts. Constraint 2), complete
constraint, says that each logical part must belong
to at least one logical structure. Constraint 3),
maximal constraint, says that we cannot have two
different logical structures such that the set of log-
ical parts in one logical structure contains the set



of logical parts in the other logical structure. Con-
straint 4), significant constraint, says that if we re-
move any logical structure from the solution, Con-
straint 2) will be violated. Although Constraint 3)
is guaranteed by Constraint 4), we introduce it be-
cause of its importance.

3 Proposed Solutions

3.1 Multi-layer Sequence Learning for
Logical Part Recognition

This sub-section presents our model for recogniz-
ing logical parts. We consider the recognition
problem as a multi-layer sequence learning prob-
lem. First, we give some related notions.

Let s be a law sentence, and P be the set of log-
ical parts of s, P = {p1,p2,...,pm}. Layer(s)
(outer most layer) is defined as a set of logical
parts in P, which are not embedded in any other
part. Layeri(s) is defined as a set of logical parts
in P\ U;_" Layer®(s), which are not embedded
in any other partin P\ U};ll Layer*(s). Formally,
we have:

Layer'(s) = {plp € P,p % ¢,Yq € P,q #
oo | |
Layer'(s) = {plp € Q",p 4 ¢,Yq € Q",q #
p}, where

Q' = P\ U} Layer*(s)

Figure 3 illustrates a law sentence with four log-
ical parts in three layers: Part 1 and Part 2 in
Layer!, Part 3 in Layer?, and Part 4 in Layer3.

Layer1

Logical Part MLogicaILPaITE

| ]
Law Sentence

—{

L ‘
Logical Part37 1)
/ | N_ogical Part4
Layer Layer3

Figure 3: A law sentence with logical parts in three
layers.

Wia ‘ th‘ ‘ Wn-1 IWn
Consequence Part (C)

Left Side Part (EL)

¢ . [ ¢

ayer? ) ;—z_[ . ‘ E-EL

Wy | Wy ‘ ‘Wk—l‘ Wi
Topic Part 2 (T)

Labels

Labels in

Figure 4: An example of labeling in the multi-
layer model.

Let K be the number of layers in a law sentence
s, our model will recognize logical parts in K
steps. In the k*" step we recognize logical parts in
Layer®. In each layer, we model the recognition
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problem as a sequence labeling task in which each
word is an element. Logical parts in Layer:~!
will be used as input sequence in the i** step (in
the first step, we use original sentence as input).

Figure 4 gives an example of labeling for an in-
put sentence. The sentence consists of three logi-
cal parts in two layers. In our model, we use IOE
tag setting: the last element of a part is tagged with
FE, the other elements of a part are tagged with I,
and an element not included in any part is tagged
with O.

Let K* be the maximum number of layers in
all law sentences in training data. We learn K*
models, in which the k" model is learned from
logical parts in the Layer® of training data, using
Conditional random fields (Lafferty et al., 2001;
Kudo, CRF toolkit). In the testing phase, we first
apply the first model to the input law sentence, and
then apply the i*" model to the predicted logical
parts in Layeri—!,

3.2 ILP for Recognizing Logical Structures

Suppose that G’ is a sub-graph of G such that G’
contains all the vertices of G and the degree of
each vertex in G’ is greater than zero, then the
set of all the maximal complete sub-graphs (or
cliques) of G’ will satisfy all the minimal, com-
plete, maximal, and significant constraints. We
also note that, a set of cliques that satisfies all these
four constraints will form a sub-graph that has two
properties like properties of G’.

Let A be the set of all such sub-graphs G’ of G,
the sub-task now consists of two steps:

1. Finding G’ = argmazgrep f(G'), and
2. Finding all cliques of G'.

Each clique found in the second step will corre-
spond to a logical structure.

Recently, some researches have shown that in-
teger linear programming (ILP) formulations is an
effective way to solve many NLP problems such as
semantic role labeling (Punyakanok, 2004), coref-
erence resolution (Denis and Baldridge, 2007),
summarization (Clarke and Lapata, 2008), de-
pendency parsing (Martins et al., 2009), and so
on. The advantage of ILP formulations is that we
can incorporate non-local features or global con-
straints easily, which are difficult in traditional al-
gorithms. Although solving an ILP is NP-hard in
general, some fast algorithms and available tools®

SWe used Ip-solve from http://lpsolve.sourceforge.net/



make it a practical solution for many NLP prob-
lems (Martins et al., 2009).

In this work, we exploit ILP to solve the first
step. Let IV be the number of vertices of G, we
introduce a set of integer variables {;; }1<i<j<n.
The values of {x;;} are set as follows. If (i, j) €
e(G’) then x;; = 1, otherwise x;; = 0. ILP for-
mulations for the first step can be described as fol-
lows:

f-------- Objective function - - - - - - - - /!
Maximize : Z f(i,7) * xij (1)
1<i<j<N
R Constraints - - - - - - - - - - 1/
Integer : {xij}1<icj<n- 2)
0<ay;<1,(1<i<j<N). 3)
j—1 N
Z%’ij Z zjp>1,(1<j<N). @
i=1 k=j+1

The last constraint guarantees that there is at
least one edge connecting to each vertex in G'.

The second step, finding all cliques of an undi-
rected graph, is a famous problem in graph the-
ory. Many algorithms have been proposed to solve
this problem efficiently. In this work, we exploit
the Bron-Kerbosch algorithm, a backtracking al-
gorithm. The main idea of the Bron-Kerbosch al-
gorithm is using a branch-and-bound technique to
stop searching on branches that cannot lead to a
clique (Bron and Kerbosch, 1973).

The remaining problem is how to define the
value function f. Our solution is that, first we
learn a binary classifier C' using maximum entropy
model. This classifier takes a pair of logical parts
as the input, and outputs +1 if two logical parts
belong to one logical structure, otherwise it will
output —1. Then, we define the value function f
for two logical parts as follows:

f(p1,p2) = Prob(C(p1,p2) = +1) — 0.5.

Function f will receive a value from —0.5 to
+0.5, and it equals to zero in the case that the clas-
sifier assigns the same probability to +1 and —1.

4 Experiments

4.1 Corpus

We have built a corpus, Japanese National Pension
Law (JNPL) corpus, which consists of 83 legal ar-
ticles® of Japanese national pension law. The ar-
chitecture of JNPL is shown in Figure 5. The law

Because building corpus is an expensive and time-
consuming task, we only annotate a part of JNPL.
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Figure 5: The architecture of JNPL.

consists of articles, articles consist of paragraphs,
and paragraphs contain sentences. A sentence may
belong to items, sub-items, or sub-sub-items of a
paragraph.

Figure 6 illustrates the relationship between a
law sentence and logical parts. A law sentence
may contain some logical parts, and a logical part
may be embedded in another one.

Sentence

SentID

Logical Part
type

1
0.*

formulaid

1

Figure 6: Relationship between a sentence and
logical parts.

In our corpus, a logical part is annotated with
information about its fype (kind of part) and
formula-id (logical parts with the same id will be-



<Sentence sent|D="1">
<Part type="T2" formula-id="1">
BUFIE,
</Part>
<Part type="C" formula-id="1">
HADEDD EZAIZEY,
<Part type="C” formula-id="2">
[EIES
</Part>
(<Part type="A" formula-id="2">
Fenll X
</Part>
ZEir, LAFRU, Nkt L. iilIARNS ZOERXT I 0%
BIIESSKHSOBREICL > TIT) FBEONFILERE A%
BT 5,
</Part>
</Sentence>
Figure 7: An annotated sentence in the JNPL cor-
pus. The sentence contains two logical structures

with four logical parts.

long to one logical structure). An example of an-
notated sentence in the JNPL corpus is shown in
Figure 7.

We employed two people in a data-making com-
pany, who analyzed and annotated our corpus. The
corpus consists of 83 legal articles, which contain
119 paragraphs with 426 sentences. On average,
each paragraph consists of 3.6 sentences. The to-
tal number of logical parts is 807, and the num-
ber of logical structures is 351. On average, each
paragraph consists of 6.8 logical parts and 3 logi-
cal structures.

Table 1 shows some statistics on the number of
logical parts of each type. Main types of parts are
A(35.4%), C(30.7%), T>(14.1%), ER(7.1%), and
EL(6.8%). Five main types of parts make up more
than 94% of all types.

4.2 Evaluation Methods

We divided the JNLP corpus into 10 sets, and con-
ducted 10-fold cross-validation tests. For the first
sub-task, we evaluated the performance of our sys-
tem by precision, recall, and F} scores as follows:
|correct parts|
[predicted parts|’

F = 2kprecisionkrecall
precision+recall *

correct parts
— P

recall |actual parts| *

preciston =

For the second sub-task, we used MUC preci-
sion, recall, and F} scores as described in (Vilain
et al., 1995). We summarize them here for clarity.

Let P, P, ..., P, be n predicted logical struc-
tures, and Gip,Go,...,G,, be the correct an-
swers or gold logical structures. To calculate
recall, for each gold logical structure G;(i =
1,2,...,m), let k(G;) be the smallest number
such that there exist k(G;) predicted structures

P}, Pi,..., P, which satisfy G; C UG P
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ey (1Gi]=k(Gy))
izt ([Gi[-1) .

To calculate precision, we switch the roles of
predicted structures and gold structures. Finally,
F1 score is computed in a similar manner as in the
first sub-task.

recall =

4.3 Experiments on Sub-Task 1

4.3.1 Baseline: Filter-Ranking Perceptron
Algorithm

We chose the Filter-Ranking (FR) Perceptron al-
gorithm proposed by (Carreras and Marquez,
2005; Carreras et al., 2002) as our baseline model
because of its effectiveness on phrase recognition
problems, especially on problems that accept the
embedded relationship’. We use FR-perceptron
algorithm to recognize logical parts in law sen-
tences one by one in an input paragraph.

For beginning/end predictors, we got features of
words, POS tags, and Bunsetsu® tags in a window
size 2. Moreover, with beginning predictor, we
used a feature for checking whether this position
is the beginning of the sentence or not. Similarly,
with end predictor, we use a feature for checking
whether this position is the end of the sentence or
not.

With each logical part candidate, we extract fol-
lowing kinds of features:

1. Length of the part

2. Internal structure: this feature is the concate-
nation of the top logical parts, punctuation
marks, parenthesis, and quotes inside the can-
didate. An example about internal structure
may be (A+,+C + .) (plus is used to con-
catenate items)

3. Word (POS) uni-gram, word (POS) bi-gram,
and word (POS) tri-gram.

4.3.2 Experimental Results

In our experiments, we focus on paragraphs in
Type A, B, and C defined in (Takano et al., 2010).
In these types, the first sentence is the main sen-
tence, which usually contains more logical parts
than other sentences. The other sentences often
have a few logical parts, and in most cases these
logical parts only appear in one layer. The first

"We re-implement the FR-perceptron algorithm by our-
self.

8In Japanese, a Bunsetsu is an unit of sentence which is
similar to a chunk in English.



Table 1: Statistics on logical parts of the JINPL corpus

Logical Part | C A |T | Ty

T5 |EL | ER | Ob | RepO | RepR

Number 248 | 286 | 0 | 114

12155 | 57 | 9 12 14

Table 2: Experimental results for Sub-task 1 on the
JNLP corpus(W:Word; P: POS tag; B: Bunsetsu

tag)

Model | Prec(%) | Recall(%) | F1(%)

Baseline | 79.70 52.54 63.33
W 79.18 69.27 73.89
W+P 77.62 68.77 72.93
W+B 79.63 69.76 74.37
W+P+B 77.89 69.39 73.39

sentences usually contain logical parts in two lay-
ers.

We divided sentences into two groups. The first
group consists of the first sentences in paragraphs,
and the second group consists of other sentences.
We set the number of layers k to 2 for sentences
in the first group, and to 1 for sentences in the
second group. To learn sequence labeling mod-
els, we used CRFs (Lafferty et al., 2001; Kudo,
CRF toolkit).

Experimental results on the JNPL corpus are
described in Table 2. We conducted experiments
with four feature sets: words; words and POS tags;
words and Bunsetsu tags; and words, POS tags,
and Bunsetsu tags. To extract features from source
sentences, we used the CaboCha tool (Kudo,
Cabocha), a Japanese morphological and syntac-
tic analyzer. The best model (word and Bunsetsu
tag features) achieved 74.37% in F} score. It im-
proves 11.04% in Fy score (30.11% in error rate)
compared with the baseline model.

Table 3 shows experimental results of our best
model in more detail. Our model got good results
on most main parts: C(78.98%), A(80.42%), and
T5(82.14%). The model got low results on the
other types of parts. It is understandable because
three types of logical parts C, A, and T5 make up
more than 80%, while six other types only make
up 20% of all types.

4.4 Experiments on Sub-Task 2
4.4.1 Baseline: a Heuristic Algorithm

Our baseline is a heuristic algorithm to solve this
sub-task on graphs. This is an approximate algo-
rithm which satisfies minimal, complete, maximal,
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Table 3: Experimental results in more details
Logical Part | Prec(%) | Recall(%) | F1(%)

C 83.41 75.00 78.98
EL 76.74 60.00 67.35
ER 41.94 22.81 29.55
Ob 0.00 0.00 0.00
A 80.42 80.42 80.42
RepO 100 16.67 28.57
RepR 100 28.57 44.44
Ty 83.64 80.70 82.14
T3 60.00 25.00 35.29
Overall 79.63 69.76 74.37

and significant constraints. The main idea of our
algorithm is picking up as many positive edges as
possible, and as few negative edges as possible.
We consider two cases: 1) There is no positive
value edge on the input graph; and 2) There are
some positive value edges on the input graph.

In the first case, because all the edges have neg-
ative values, we build logical structures with as
few logical parts as possible. In this case, each
logical structure contains exactly two logical parts.
So we gradually choose two nodes in the graph
with the maximum value on the edge connecting
them. An example of the first case is illustrated in
Figure 8. The maximum value on an edge is —0.1,
so the first logical structure will contain node 1
and node 3. The second logical structure contains
node 2 and node 4°.

®©

02

Figure 8: An example of the first case.

0.

Logical
0.1 Structure 1

03 02

In the second case, we first consider the sub-
graph which only contains non-negative value
edges. In this sub-graph, we repeatedly build log-
ical structures with as many logical parts as possi-

°If the number of nodes is odd, the final logical structure
will consist of the final node and another node, so that the
edge connecting them has the maximal value.



Logical
Structure 3

Figure 9: An example of the second case.

ble. After building successfully a logical structure,
we remove all the nodes and the edges according
to it on the graph. When have no positive edge,
we will build logical structures with exactly two
logical parts.

An example of the second case is illus-
trated in Figure 9. First, we consider the sub-
graph with positive edges. This sub-graph con-
sists of five nodes {1,2,3,4,5} and four edges
{(1,2),(1,3),(2,3),(2,4)}. First, we have a log-
ical structure with three nodes {1,2,3}. We re-
move these nodes and the positive edges connect-
ing to these nodes. We have two nodes {4, 5} with
no positive edges. Now we build logical struc-
tures with exactly two nodes. We consider node
4. Among edges connecting to node 4, the edge
(2,4) has maximal value. So we have the sec-
ond logical structure with two nodes {2, 4}. Next,
we consider node 5, and we have the third logical
structure with two nodes {1, 5}.

4.4.2 Experimental Results

In our experiments, to learn a maximum entropy
binary classification we used the implementation
of Tsuruoka (Tsuruoka, MEM). With a pair of
logical parts, we extracted the following features
(and combinations of them):

e Categories of two parts.
e Layers of two parts.

e The positions of the sentences that contain
two parts (the first sentence or not).

e Categories of other parts in the input para-
graph.

We conducted experiments on this sub-task in
two settings. In the first setting, we used annotated
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Table 4: Experiments on Sub-task 2

Gold Input Setting
Model Prec(%) | Recall(%) | F4(%)
Heuristic | 81.24 71.19 75.89
ILP 76.56 82.87 79.59
End-to-End Setting
Model | Prec(%) | Recall(%) | F1(%)
Heuristic | 54.88 47.84 51.12
ILP 57.51 54.06 55.73

logical parts (gold inputs) as the inputs to the sys-
tem. The purpose of this experiment is to evalu-
ate the performance of the graph-based method on
Sub-task 2. In the second setting, predicted logi-
cal parts (end-to-end) outputted by the Sub-task 1
were used as the inputs to the system. The purpose
of this experiment is to evaluate the performance
of our framework on the whole task.

In the second setting, end-to-end setting, be-
cause input logical parts may differ from the cor-
rect logical parts, we need to modify the MUC
scores. Let P, Ps,..., P, be n predicted log-
ical structures, and G1,Ga,...,Gy be the gold
logical structures. For each gold logical struc-
ture G;(1 = 1,2,...,m), let D; be the set of
logical parts in G; which are not included in
the set of input logical parts. D; = {p €
Gilp ¢ Uj_1P;}. Let k(G;) be the small-
est number such that there exist k(G;) predicted
structures Pli, PQi, el Pé(Gi) which satisfy G; C
(U5 PH U D,
iz (Gil—|Di| —k(Gi))

iy (IGil-1)

To calculate the precision, we switch the roles
of predicted structures and gold structures.

Table 4 shows experimental results on the sec-
ond sub-task. The ILP model outperformed the
baseline model in both settings. It improved
3.70% in the F; score (15.35% in error rate) in
the gold-input setting, and 4.61% in the F} score
(9.43% in error rate) in the end-to-end setting
compared with the baseline model (heuristic algo-
rithm).

recall =

5 Conclusion

We have introduced the task of learning logical
structures of paragraphs in legal articles, a new
task which has been studied in research on Le-
gal Engineering. We presented the Japanese Na-
tional Pension Law corpus, an annotated corpus of



real legal articles for the task. We also described
a two-phase framework with multi-layer sequence
learning model and ILP formulation to complete
the task. Our results provide a baseline for further
researches on this interesting task.

In the future, we will continue to improve this
task. On the other hand, we also investigate the
task of translating legal articles into logical and
formal representations.
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Abstract

Word ordering remains as an essen-
tial problem for translating between lan-
guages with substantial structural differ-
ences, such as SOV and SVO languages.
In this paper, we propose to automatically
extract pre-ordering rules from predicate-
argument structures. A pre-ordering rule
records the relative position mapping of a
predicate word and its argument phrases
from the source language side to the tar-
get language side. We propose 1) a linear-
time algorithm to extract the pre-ordering
rules from word-aligned HPSG-tree-to-
string pairs and 2) a bottom-up algorithm
to apply the extracted rules to HPSG trees
to yield target language style source sen-
tences. Experimental results are reported
for large-scale English-to-Japanese trans-
lation, showing significant improvements
of BLEU score compared with the base-
line SMT systems.

1 Introduction

Statistical machine translation (SMT) suffers from
an essential problem for translating between lan-
guages with substantial structural differences,
such as between English which is a subject-verb-
object (SVO) language and Japanese which is a
typical subject-object-verb (SOV) language.
Numerous approaches have been consequently
proposed to tackle this word-order problem, such
as lexicalized reordering methods, syntax-based
models, and pre-ordering ways. First, in or-
der to overcome the shortages of traditional dis-
tance based distortion models (Brown et al., 1993;
Koehn et al., 2007), phrase dependent lexical-
ized reordering models were proposed by several
researchers (Tillman, 2004; Kumar and Byrne,
2005). Lexicalized reordering models learn local
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orientations (monotone or reordering) with proba-
bilities for each bilingual phrase from the training
data. For example, by taking lexical information
as features, a maximum entropy phrase reordering
model was proposed by Xiong et al. (2006).

Second, syntax-based models attempt to solve
the word ordering problem by employing syntac-
tic structures. For example, linguistically syntax-
based approaches (Galley et al., 2004; Liu et al.,
2006) first parse source and/or target sentences
and then learn reordering templates from the sub-
tree fragments of the parse trees. In contrast, hier-
archical phrase based translation (Chiang, 2005) is
a formally syntax-based approach which can auto-
matically extract hierarchical ordering rules from
aligned string-string pairs without using additional
parsers. These approaches have been proved to
be both algorithmically appealing and empirically
successful.

However, most of current syntax-based SMT
systems use IBM models (Brown et al., 1993) and
hidden Markov model (HMM) (Vogel et al., 1996)
to generate word alignments. These models have
a penalty parameter associated with long distance
jumps, and tend to misalign words which move far
from the window sizes of their expected positions
(Xu et al., 2009; Genzel, 2010).

The third type tackles the word-order prob-
lem in pre-ordering ways. Through the usage of
a sequence of pre-ordering rules, the word or-
der of an original source sentence is (approxi-
mately) changed into the word order of the tar-
get sentence. Here, the pre-ordering rules can be
manually or automatically extracted. For man-
ual extraction of pre-ordering rules, linguistic
background and expertise are required for pre-
determined language pairs, such as for German-
English (Collins et al., 2005), Chinese-to-English
(Wang et al., 2007), Japanese-to-English (Katz-
Brown and Collins, 2007), and English-to-SOV
languages (Xu et al., 2009).

Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 29-37,
Chiang Mai, Thailand, November 8 — 13, 2011. (©2011 AFNLP



Specially, for English-to-Japanese translation,
Isozaki et al. (2010b) proposed to move syntac-
tic or semantic heads to the end of correspond-
ing phrases or clauses so that to yield head fi-
nalized English (HFE) sentences which follow the
word order of Japanese. The head information of
an English sentence is detected by a head-driven
phrase structure grammar (HPSG) parser, Enju!
(Miyao and Tsujii, 2008). In addition, transfor-
mation rules were manually written for appending
particle seed words, refining POS tags to be used
before parsing, and deleting English determiners.
Due to the usage of the same parser, we take this
HFE approach as one of our baseline systems.

The goal in this paper, however, is to learn pre-
ordering rules from parallel data in an automatic
way. Under this motivation, pre-ordering rules
can be extracted in a language-independent man-
ner. A number of researches follow this auto-
matic way. For example, in (Xia and McCord,
2004), a variety of heuristic rules were applied to
bilingual parse trees to extract pre-ordering rules
for French-English translation. Rottmann and Vo-
gen (2007) learned reordering rules based on se-
quences of part-of-speech (POS) tags, instead of
parse trees. Dependency trees were used by Gen-
zel (2010) to extract source-side reordering rules
for translating languages from SVO to SOV, etc..

The novel idea expressed in this paper is that,
predicate-argument structures (PASs) are intro-
duced to extract fine-grained pre-ordering rules.
PASs have the following merits for describing re-
ordering phenomena:

e predicate words and argument phrases re-
spectively record reordering phenomena in a
lexicalized level and an abstract level,

e PASs provide a fine-grained classification of
the reordering phenomena since they include
factored representations of syntactic features
of the predicate words and their argument
phrases.

The idea of using PASs for pre-ordering fol-
lows (Komachi et al., 2006). Several reordering
operations were manually designed by Komachi
et al. (2006) to pre-ordering Japanese sentences
into SVO-style English sentences. For compari-
son, our proposal 1) makes use of not only PASs
but also the source syntactic tree structures for pre-
ordering rule matching, 2) extracts pre-ordering

'http://www-tsujii.is.s.u-tokyo.ac jp/enju/index.html
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rules in an automatic way, and 3) use factored rep-
resentations of syntactic features to refine the pre-
ordering rules.

Following (Wu et al., 2010a; Isozaki et al.,
2010b), we use the HPSG parser Enju to gener-
ate the PASs of English sentences. HPSG (Pollard
and Sag, 1994) is a lexicalist grammar framework.
In HPSG, linguistic entities such as words and
phrases are represented by a data structure called
a sign. A sign gives a factored representation of
the syntactic features of a word/phrase, as well as
a representation of their semantic content which
corresponds to PASs.

In order to record the relative positions among
a predicate word and its argument phrases, we
propose a linear-time algorithm to extract pre-
ordering rules from word-aligned HPSG-tree-to-
string pairs?. The syntactic features included in
signs and the types of PASs enable us to extract
fine-grained pre-ordering rules and thus make it
easier to select appropriate rules for given source
HPSG trees. We further propose a bottom-up
algorithm to apply the extracted rules to HPSG
trees to pre-order source sentences. Using the pre-
ordered source sentences, we retrain word align-
ments again.

The remaining of this paper is organized as
follows. In the next section, we describe the
algorithms guided by using a real example for
extracting and applying PAS-based pre-ordering
rules. Then, we design experiments on large-scale
English-to-Japanese translation to testify our pro-
posal. Employing Moses (Koehn et al., 2007), we
show that our proposal can significantly improve
BLEU scores of 2.47~-3.15 points compared with
using the original English sentences. We finally
conclude this paper by summarizing our proposal
and the experiment results.

2 Pre-ordering Rule Extraction and
Application

2.1 An example

Figure 1 shows a word-aligned HPSG-tree-to-
string pair for English-to-Japanese translation.
PASs among lexical nodes and their argument
nodes in this HPSG tree are described by arrows
in thick-lines. For simplicity, we only draw the
identifiers for the signs of the nodes in the HPSG
tree. Note that the identifiers that start with ‘c’

>These word alignments are gained by running GIZA++
(Och and Ney, 2003) on the original parallel sentences.
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Figure 1: Illustration of a word-aligned HPSG-tree-to-string pair for English-to-Japanese translation.

denote non-terminal nodes (e.g., c0, c1), and the
identifiers that start with ‘t” denote terminal nodes
(e.g., 10, t2). In a complete HPSG tree (Wu et
al., 2010b), factored syntactic features listed in
Table 1 are included in the terminal and non-
terminal signs. These features are used by us to
sub-categorize pre-ordering rules. As an example
of the XML output of Enju, the signs of “when”
(t0) and its arguments c16, c3 are shown in the
top-left corner of Figure 1.

2.2 Data structures

We define the following data structures for both
extracting and applying pre-ordering rules. First,
a PAS-based pre-ordering rule is defined to be a
four-tuple <pw, args, srcOrder, trgOrder>. Here,
pw is the predicate word, args are the argument
nodes of pw, and srcOrder and trgOrder respec-
tively record the relative positions among pw and
args in the source and target language sides.

Then, we suppose an HPSG tree/subtree object
contains the following methods:

e localize(): localize syntactic/semantic heads;

e computeSrcSpans(): topologically compute

the source span of each node;

computeSpans(A): topologically compute
the source and target spans of each node (Gal-
ley et al., 2004). A is the word alignment;

getArgs(pw): return the argument nodes of
pws

31

[ Name | Description Examples ]
WORD surface word form “when”
BASE base word form “when”
POS part-of-speech WRB (“when”)
LE lexical entry [when] (“when”)
PRED type of predicate conj_argl2
argument structure (“when”)
CAT syntactic category SC (“when”)
TENSE tense of a verb (past, present (“used”)
present, untensed)
ASPECT aspect of a verb none (“used”)
(none, prefect,
progressive,
prefect-progressive)
VOICE voice of a verb passive (“used”)
(passive, active)
AUX auxiliary verb or not  minus (“used”)
(minus, modal, have,
be, do, to, copular)
CAT syntactic category S (c16), S (c3)
XCAT extended category
HEAD syntactic head R (c16), R(c3)
SEM_HEAD | semantic head R (c16), R (c3)
SCHEMA schema rule mod_head (c16)

Table 1: Templates of atomic features included
in the predicate node (top size) and its argument
nodes (bottom side).

e MCT(pw, args): return the minimum cover
tree (Wu et al., 2010a) of pw and args.

To implement the localize() method, we use the
approach described in (Wu et al., 2010a). That
is, we replace the pointer values of HEAD and
SEM_HEAD features in non-terminal nodes with
three labels: “S” for single daughter, “L” for the
left-hand-side daughter, and “R” for the right-



hand-side daughter. For example, for node c16 in
Figure 1, its HEAD and SEM_HEAD will change
from c18 to “R”.

We use the concept of minimum covering trees
(MCT) defined in (Wu et al., 2010b) to guide the
pre-ordering process. A MCT is a subtree of the
original HPSG tree that takes a predicate node and
its argument nodes as (new) leaf nodes. For exam-
ple, as shown in the top-right corner of Figure 1,
the MCT of “when” (t0) and its argument nodes
c3, cl161s ’cO(c1(c2(t0)c3)c16)”.

Finally, the attributes in the nodes of an HPSG
tree include: 1) pred: the PAS of a leaf node, 2)
srcSpan: the index set of the source words that
current node covers, 3) trgSpan: the index set of
the target words that srcSpan aligned to, and 4) sr-
cPhrase that stores the pre-ordered source phrase
covered by current node.

2.3 Rule extraction algorithm

We express the idea for extracting PAS-based pre-
ordering rules by using the first word “when” of
the English sentence in Figure 1. Given the PAS
information of “when” (t0) in the English side,
we need to determine the target-side-order among
t0 and its two arguments c16, c3. To achieve
this, we compute the target spans of these three
nodes by using current word alignment and then
sort their target spans. Through referring to the
word alignment shown in Figure 1, we can collect
the target spans which are {5}, {4,0,1,2,3,6,15},
and {7,8,9,10,11,12,13} respectively for t0, c3,
and cl16. However, we cannot sort these three
spans since there are overlapping between the first
two spans>. In order to solve this problem, we
sort the spans in a heuristic way. Note that in
c3’s target span, five indices are smaller than 5
yet only two indices are larger than 5. Thus,
we take {4,0,1,2,3,6,15} to be dominantly smaller
than {5}. Now, we can determine the pre-order
rule guided by the PAS of t0 to be “t0 c3 c16 —
¢3 10 c16” and formally to be “tOg c3; c165 — 10
2”. Generally, we use the following heuristic rules
to sort two spans, named span A and span B:

e if more than half of numbers in A is bigger
than the maximum number in B, or if more
than half of numbers in B is smaller than the
minimum number in A, then B < A;

3In this example, the overlapping is caused by the
wrong/ambiguous alignments between “used” and “naruis”,
and between “is” and “hag”.
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Algorithm 1 Pre-ordering Rule Extraction

Input: HPSG tree Tz of an English sentence F/, word align-
ment A

Output: a pre-ordering rule set R

1: T'r.localize()
2: Tr.computeSpans(A)
3: for each leaf node ¢t of Tr do

4.  if t.pred is opened and ¢.trgSpan != NULL then

5: Node[] args < Tr.getArgs(t)

6: if all nodes in args are aligned then

7. int[] srcOrder <— SORTSPANS(t.srcSpan, src-
Spans of args)

8: int[] trgOrder < SORTSPANS(¢.trgSpan,
trgSpans of args)

9: R.add(< t, args, srcOrder, trgOrder>)

10: end if

11: end if

12: end for

e if more than half of numbers in B is bigger
than the maximum number in A, or if more
than half of numbers in A is smaller than the
minimum number in B, then A < B.

In case of a tie (e.g., A={3,4,7,8}, B={5,6}), we
keep the original order of A and B in the source-
side sentence without any reordering.

Algorithm 1 sketches the pre-ordering rule ex-
traction algorithm guided by PASs. The algorithm
collect pre-ordering rules through a traversal of the
leaf nodes in an HPSG tree. A non-terminal node
will not be accessed unless it is an argument of
some predicate node(s). Thus, this algorithm runs
in a time that is approximately linear to the num-
ber of leaf nodes in the tree, i.e., the number of
words in the source sentence.

We define that a terminal node’s PAS is opened
if at least one of its arguments is neither empty nor
unknown. We will not extract a pre-ordering rule
if the terminal node is unaligned or any of its ar-
gument node is unaligned. These constraints are
reflected by Line 4 and 6 in Algorithm 1. After
heuristically sorting the source/target spans of a
predicate node and its argument nodes, we finally
extract a pre-ordering rule.

Table 2 summarizes the PAS-based pre-ordering
rules extracted from the example shown in Fig-
ure 1. Application of these pre-ordering rules to
the original English sentence yields the following
Japanese style sentence:

e the fluid pressure cylinder 31
is used when, fluid is gradually
applied.

2.4 Applying pre-ordering rules



[ Word PRED | Pre-ordering Rule
when conj_argl2 | when c3 cl16 — ¢3 when c16
the det_arg] the c6 — the c6
fluid adj_argl fluid ¢8 — fluid c8
pressure noun_argl | pressure c10 — pressure c10
cylinder noun_arg0 | -
31 adj_argl cl131 —cl131
is aux_argl2 | c4iscl5 —cdiscl5
used verb_argl2 | c4 used — c4 used
R punct_argl | ,cl8 —,cl8
fluid noun_arg0 | -
is aux_argl2 | c19isc23 —c19isc23
gradually  adj-argl gradually ¢25 — gradually c25
applied verb_argl2 | c19 applied — c19 applied

Table 2: PAS-based pre-ordering rules extracted
from the example shown in Figure 1. We use real
words instead of predicate nodes here for intuitive
understanding.

Algorithm 2 Pre-ordering Rule Application

Input: HPSG tree T of an English sentence E/], rule set R
Output: srcPhrase in the root node of Tg

1: Tg.localize()
2: T'g.computeSrcSpans()
3: met_rule <+ {}
4: for each leaf node ¢t of Tr do
5: Node[] args < Tr.getArgs(t)
6: int[] srcOrder <— SORTSPANS(t.srcSpan, srcSpans of
args)
7: Rule 7 <+~ RULEMATCH(R, < t, args, srcOrder>)
8: if 7 != NULL then
9: mct < Ty MCT(t, args)
10: mct_rule.add(<mct, r >)
11: end if
12: end for
13: for each mct in mct_rule in a bottom-up order do
14: Rule r < mct_rule.get(mct)
15: mct.root().srcPhrase < ** > root() returns root node
16:  for i from O to r.trgOrder.length-1 do
17: mct.root().srccPhrase += ° ° + mctleaves()
[r.trgOrder|[7]].srcPhrase
18: end for
19: end for
20: for each node n in Tz in a topological order do
21: if n is a terminal node then
22: n.srcPhrase <— E[n.srcSpan[0]]
23: else if n.srcPhrase = NULL then
24 n.srcPhrase <~ CONNECT(n.children().srcPhrase)
25: end if
26: end for

Algorithm 2 sketches the algorithm for apply-
ing pre-ordering rules to a given HPSG tree Tg.
The algorithm contains three parts: rule match-
ing (Lines 4-12), bottom-up rule applying (Lines
13-19), and sentence collecting (Lines 20-26). We
first retrieve available pre-ordering rules from rule
set R by a left-to-right traversal of the leaf nodes
of Tr. For each leaf node, we select one pre-
ordering rule with the highest frequency. Our ex-
periments testified that this greedy rule selection
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strategy worked quite well. We selected 93% of
the top frequent rule without facing a tie.

The terminal node ¢, the argument nodes of ¢,
and their source-side ordering are taken as the key
for rule matching. Available rules will be assigned
to the MCT of ¢. Then, we apply the available
rules to the root nodes of each MCT through a
bottom-up traversal of Tr. A competitive problem
is that, a non-terminal node can be shared by sev-
eral MCTs. For example, node c3 and c18 (gray
color) in Figure 1 are respectively shared by two
MCTs (t6 and t7, t10 and t12). In order to avoid
duplicated reordering of these nodes, we first pick
the pre-ordering rule in which there are no “gaps”
among the predicate words and argument phrases.
For example, there is a gap (t6) between t7 and
its argument node c4. We then pick a rule by fre-
quency if there are still more than one rule avail-
able. Finally, after applying all available rules, we
collect the pre-ordered source sentence from the
root node of the HPSG tree.

3 Experiments

3.1 Setup

We test our proposal by translating from English to
Japanese. We use the NTCIR-9 English-Japanese
patent corpus* as our experiment set. Since the
reference set of the official test set has not been
released yet, we instead split the original develop-
ment set averagely into two parts, named dev.a and
dev.b. In our experiments, we first take dev.a as
our development set for minimum-error rate tun-
ing (Och, 2003) and then report the final transla-
tion accuracies on dev.b. For direct comparison
with other systems in the future, we use the con-
figuration of the official baseline system’:

e Moses® (Koehn et al., 2007): revision
“3717” as the baseline decoder. Note that
we also train Moses using HFE sentences
(Isozaki et al., 2010b) and the English sen-
tences pre-ordered by PASs;

GIZA++: giza-pp-v1.0.37 (Och and Ney,
2003) for first training word alignment us-
ing the original English sentences for pre-
ordering rule extraction, and then for retrain-

*“http://ntcir.nii.ac.jp/PatentMT/

Shttp://ntcir.nii.ac.jp/PatentMT/baselineSystems

Shttp://www.statmt.org/moses/

"http://giza-pp.googlecode.com/files/giza-pp-
v1.0.3.tar.gz



[ Train  Dev.aa  Dev.b |
# of sent. 2,032,679 1,000 1,000
# of En words | 48,322,058 31,890 31,935
Enju suc. rate 99.3% 989%  98.7%
parse time (sec./sent.) 0.30 0.38 0.48
#of Jp words | 53,865,629 37,066 35,921

Table 3: Statistics of the experiment sets.

ing word alignments using the pre-ordered
English sentences;

SRILM? (Stolcke, 2002): version 1.5.12 for
training a 5-gram language model using the
target sentences in the total training set;

Additional scripts®: for preprocessing En-
glish sentences and cleaning up too long (#
of words > 40) parallel sentences;

Japanese word segmentation: Mecab v0.98'°
with the dictionary of mecab-ipadic-2.7.0-
20070801 tar.gz'!.

The statistics of the filtered training set, dev.a,
and dev.b are shown in Table 3. The success pars-
ing rate ranges from 98.7% to 99.3% by using
Enju2.3.1. The averaged parsing time for each En-
glish sentence ranges from 0.30 to 0.48 seconds.

3.2 Statistics of PASs and PAS-based
pre-ordering rules

Figure 2 shows the number (natural log) of the
40 types of the PASs that appeared in the HPSG
trees of the three experiment sets. Top five
types of opened PASs include adj_argl, det_argl,
prep-argl2, noun_argl, and verb_argl2. By com-
paring the distributions of the number of PASs in
the three sets, we can see that the distributions ap-
proximately share the same tendency. Thus, the
pre-ordering rules learned from the PASs in the
training set can be expected to be properly applied
in dev.a and dev.b.

Besides, the statistics of the number of argu-
ments for the predicate words is shown in Table
4. From this table, we find that the ratio of the
number of arguments in the three sets are approx-
imately similar. In particular, nearly half of the

8http://www.speech.sti.com/projects/srilm/

“http://homepages.inf.ed.ac.uk/jschroe1/how-
to/scripts.tgz

http://sourceforge.net/projects/mecabl/files/

http://sourceforge.net/projects/mecab/files/mecab-
ipadic/
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[ #ofargs [ Train  Dev.a Dev.b |
01| 229% 224% 22.3%
1| 47.0% 47.0% 47.5%
21 295% 298% 29.4%
3 0.6% 0.8% 0.8%
4 0.0% 0.0% 0.0%

Table 4: Statistics of the number of arguments of
the predicate words in the experiment sets.

[ [ Number Ratio |
Parse success | 45,617,387 94.4%
Opened 35,004,893  76.7%
Aligned 33,966,923  97.0%
Contiguous 30,256,858 89.1%

Table 5: Statistics of predicate words in the train-
ing set for rule extraction.

predicate words have one argument. The num-
ber of predicate words that contain two arguments
occurs around 30.0% of all the predicate words.
Also, we can not extract pre-ordering rules from
around 23.0% of the predicate words since they
do not contain any arguments. Finally, less than
1% of predicate words contain three arguments
and we only find one four-argument example of
verb_arg1234 in the training set.

Now, in Table 5, we show the statistics of predi-
cate words in the training set for pre-ordering rule
extraction. Of the 48.3 million English words
in the training set, there are 45.6 million words
(94.4%) that are included in the HPSG trees that
were successfully generated. Then, in the PASs
of these 45.6 million words, there are 35.0 mil-
lion words whose PASs are opened. We also list
the number (34.0 million) of aligned predicate
words, since we only extract pre-ordering rules
from predicate words that are aligned to some tar-
get word(s) in Algorithm 1. Finally, there are
89.1% of aligned predicate words that are aligned
to contiguous target words.

In order to investigate the sub-categorization ef-
fectiveness of the syntactic features included in the
pre-ordering rules, we pick four subsets of the to-
tal feature set (Table 1). These feature subsets,
named from PAS-a to PAS-d, are listed in Table
6. Through the comparison of these four feature
subsets, we also attempt to investigate the data-
sparseness problem of available pre-ordering rules
cased by the factored features.

PAS-a includes all the syntactic features listed
in Table 1. In PAS-b, we only keep three features
for the predicate word and one feature for the argu-
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Figure 2: Number (natural log) of the types of the PASs that appeared in the experiment sets.

Feature

| PAS-a

PAS-b

PAS-c

PAS-d |

WORD
BASE
POS
LE
PRED

v

Vv

v

[ Source sent. [ BLEU RIBES |
Original sentences | 0.2773  0.6619
PAS-a reordered 0.3088 0.7406
PAS-b reordered 0.3054 0.7334
PAS-c reordered 0.3063  0.7336
PAS-d reordered 0.3020 0.7265

<

CAT
TENSE
ASPECT
VOICE
AUX

CAT

XCAT
HEAD
SEM_HEAD
SCHEMA

LR R R

<<

# rules
# reorder
reorder ratio

469,014
179,062
38.2%

203,184
63,378
31.2%

200,968
62,694
31.2%

148,047
37,104
25.1%

12.0
16.2
16.2

avg. # train
avg. #dev.a
avg. #dev.b

12.1
16.4
16.4

12.1
16.4
16.4

12.1
16.5
16.5

Table 6: Feature subsets used in pre-ordering rules
and statistics of the extraction and application of
the pre-ordering rules under these feature subsets.

ment nodes. We further remove one feature (CAT)
of the predicate word in PAS-c. In the fourth sub-
set PAS-d, we only use two features WORD and
PRED in the predicate word for sub-categorizing
pre-ordering rules. Thus, PAS-d is only related
to PASs (which can be generated by any kinds of
parser) since it does not include additional features
generated by the typical HPSG parser.

As the number of syntactic features decreases,
more rules can be unified together. Thus, the num-
ber of pre-ordering rules and reordering rules, as
shown in Table 6, also decreases. The number
of reordering rules occurs from 25.1% (PAS-d) to
38.2% (PAS-a) in the pre-ordering rules. For each
English sentence in the training set, there are aver-
agely 12 reordering rules (instead of monotonic
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Table 7: Translation accuracies by using the orig-
inal English sentences or the pre-ordered English
sentences under four types of pre-ordering rules.

pre-ordering rules) available under either of the
four feature subsets. For each English sentence in
dev.a and dev.b, the number of available reorder-
ing rules is averagely 16. Around 99.1%, 99.0%,
and 98.6% English sentences were respectively re-
ordered in the training set, dev.a set, and dev.b set.

3.3 Results

Table 7 shows the final translation accuracies
under BLEU score (Papineni et al., 2002) and
RIBES!2, ie., the software implementation of
Normalized Kendall’s 7 as proposed by (Isozaki
et al., 2010a) to automatically evaluate the transla-
tion between distant language pairs based on rank
correlation coefficients and significantly penalizes
word order mistakes. Making use of our pre-
ordered English sentences significantly (p < 0.01)
improved BLEU scores from 2.47 (PAS-d) to 3.15
(PAS-a) points. The effectiveness of our proposal
for tackling word-ordering problem can also be
proved by comparing the scores of RIBES.

In addition, the accuracies change slightly
among using the four types of pre-ordering rules.
Among PAS-a, PAS-b, and PAS-c, we did signifi-
cant test and could not differ them under p < 0.01
or p < 0.05. The only significant difference

12Code available at http://www.kecl.ntt.co.jp/icl/lirg/ribes



[ Sourcesent. | BLEU RIBES [ Same PAS ]
HFE 0.3134 0.7370 - -
HFE+PAS-a | 0.3278  0.7379 11.0% 34.7%
HFE+PAS-b | 0.3302 0.7397 | 123% 32.8%
HFE+PAS-c | 0.3300 0.7380 | 10.8% 35.0%
HFE+PAS-d | 0.3256 0.7337 | 11.5% 32.8%

Table 8: Translation accuracies by combining
HFE and PAS based pre-ordering approach.

(p < 0.05) appeared between PAS-a and PAS-d.
Thus, we argue that the factored syntactic features
such as WORD, PRED, and CAT are more essen-
tial for sub-categorizing pre-ordering rules than
the remaining syntactic features.

As former mentioned, we also take the
language-dependent HFE approach (Isozaki et al.,
2010b) as another baseline. Note that word align-
ment was retrained using head-finalized English
sentences and Japanese sentences in this HFE ap-
proach. Through comparing the HFE results listed
in Table 8, we observe that the results are com-
parable between PAS-a and HFE: HFE is slightly
better under BLEU score and PAS-a is slightly bet-
ter under RIBES score.

Since similar HPSG parser (Enju) yet differ-
ent linguistic information (syntactic head informa-
tion vs. PASs) are used in HFE approach and our
proposal. A straightforward question is whether
we can combine these approaches together. Un-
der this motivation, we select a better pre-ordered
English sentence generated by the HFE method
and our PAS-based method. Following (Genzel,
2010), we use crossing score as the metric for sen-
tence selection. Crossing score is the number of
crossing alignment links for a given aligned sen-
tence pair. For monotonic alignments without re-
ordering, crossing score is zero. During selection,
we found that nearly 10% of the pre-ordered En-
glish sentences yielded by head-finalization and
PAS-based methods were similar. In addition,
among the different sentences, around 30% of
PAS-based pre-ordering sentences were selected.
Since we can not compute crossing score in the de-
velopment/test sets, we instead take both kinds of
pre-ordered English sentences as inputs and pick
one output with a higher translation score.

The translation result based on this reselection
approach is shown in Table 8. Compared with
HFE approach, the reselection approach signifi-
cantly (p < 0.01) improved BLEU scores of from
1.22 (PAS-d) to 1.68 (PAS-b) points. These in-
teresting results reflect that syntactic head infor-

36

[ Sourcesent. | Averaged7 7 > 0.8 |
English 0.407 0.106
HFE 0.708 0.487
PAS-a 0.571 0.291
HFE+PAS-a 0.809 0.643

Table 9: Comparison of Kendall’s 7.

mation and PASs describe the linguistic informa-
tion of an English sentence in different aspects.
Furthermore, compared with the single head-
finalization rule, the automatically extracted pre-
ordering rules kept the variety of word-ordering
by dynamically inferring the word order of target
sentences and thus enlarged the reordering space.

3.4 Alignment comparison

In order to investigate how closely the pre-ordered
English sentences follow target language word or-
der, we measured Kendall’s 7 (Kendall, 1948), a
rank correlation coefficient, as shown in Table 9.
We exactly follow Isozaki et al. (2010b) to com-
pute Kendall’s 7. From Table 9, we can see that
the quality of word alignments approximately re-
flects the final BLEU scores listed in Table 7 and
8.

4 Conclusion

We have proposed a pre-ordering approach by
making use of predicate argument structures. The
pre-ordering rules record the relative source-target
position mapping among predicate words and their
argument phrases. We first proposed an algo-
rithm for automatically extracting these lexical
pre-ordering rules from aligned HPSG-tree-to-
string pairs. Then, we apply these pre-ordering
rules to HPSG trees to yield pre-ordered source
sentences that follow the word order of target sen-
tences. Finally, we do word alignment again by us-
ing the pre-ordered source sentences together with
the original target sentences.

Employing Moses (Koehn et al., 2007), our
proposal significantly improved 2.47~3.15 BLEU
points compared with using the original English
sentences. Combining with the HFE approach
(Isozaki et al., 2010b), our approach significantly
and impressively improved 5.29 points of BLEU
score from 0.2773 to 0.3302. We finally argue that
our proposal is not difficult to be implemented and
can be easily applied to translate English into other
languages.
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Abstract

How well can a phrase translation model per-
form if we permute the source words to fit tar-
get word order as perfectly as word alignment
might allow? And how well would it perform

if we limit the allowed permutations to ITG-
like tree-transduction operations on the source
parse tree? First we contribute oracle results
showing great potential for performance im-
provementby source-reordering, ranging from
1.5 to 4 BLEU points depending on language
pair. Although less outspoken, the potential
of tree-based source-reordering is also signif-
icant. Our second contribution is a source re-
ordering model that works with two kinds of
tree transductions: the one permutes the order
of sibling subtrees under a node, and the other
first deletes layers in the parse tree in order
to exploit sibling permutation at the remaining
levels.The statistical parameters of the model
we introduce concern individual tree trans-
ductionsconditioned on contextual feature
the tree resulting from all preceding transduc-
tions. Experiments in translating from En-
glish to Spanish/Dutch/Chinese show signifi-
cant improvements of respectively 0.6/1.2/2.0
BLEU points.

et al., 2003) deals with word order differences in two
subcomponents of a translation model. Firstly, us-
ing the local word reordering implicitly encoded in
phrase pairs. Secondly, using an explicit reorder-
ing model which may reorder target phrases rela-
tive to their source sides, e.g., as a monotone phrase
sequence generation process with the possibility of
swapping neighboring phrases (Tillman, 2004).

Arguably, local phrase reordering models cannot
account for long-range reordering phenomena, e.g.,
(Chiang, 2005; Chiang, 2007). Hierarchical mod-
els of phrase reordering employ synchronous gram-
mars or tree transducers, e.g., (Wu and Wong, 1998;
Chiang, 2005). These models explore a more var-
ied range of reordering phenomena, e.g., defined by
at most inverting the order of sibling subtrees un-
der each node in binary source/target trees (akin to
ITG (Wu and Wong, 1998)).

Undoubtedly, the word order of source and tar-
get sentences is intertwined with the lexical choices
on both side. Statistically speaking, however, one
may first select a target word order given the source
only, and then choose target words given the selected
target word order and source words. One applica-
tion of this idea is known as source reordering (or
-permutation), e.g., (Collins et al., 2005; Xia and

McCord, 2004; Wang et al., 2007; Li et al., 2007;
, Khalilov and Sima’an, 2010). Briefly, the words of
Word order differences between languages arege source string are reordered to minimize word
major challenge in Machine Translation (MT).q der differences with the target stringleading to
Phrase-based Statistical Machine Translation (PBre source permuted string Presumably, a stan-
SMT) (Och and Ney, 2004; Zens et al., 2002; Koehgyarg pBSMT system trained to translate fréro ¢
fCurrently, the first author is employed by TAUS B.V., Am- Should have an easier task than translating directly
sterdam (The Netherlands). from s to t. The source reordering parg, to 3,

1 Motivation
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can be realized in various ways and may manipwword alignmentz. Source reordering assumes that
late morpho-syntactic parse treesspe.g., (Collins a permutation ok, called s, is first generated with
etal., 2005; Xia and McCord, 2004; Li et al., 2007).a modelP, (s | s) followed by a phrase translation
It may seem that source reordering should provideodel P,(¢ | 5). The desired permutatiohis one
only limited improvement over the standard PBthathas minimum word order divergence frome.,
SMT approach. The literature reports mixed perforwhen word-aligned again with would have least
mance improvements for different language pairgjumber of crossing alignments.
e.g., (Collins et al., 2005; Xia and McCord, 2004; Practically, the original parallel corpyss, a, t)}
Wang et al., 2007; Li et al., 2007; Khalilov andis split to two parallel corpora: (1) a source-to-
Sima’an, 2010). But what is theotential improve- permutation parallel corpus (consisting @f a, $))
mentof source reordering? We contribute experiand (2) a permutation-to-target parallel corpus (con-
ments measuring oracle performance improvemesisting of (¢s, a,t)), where gs is the output of a
for English to Dutch/Spanish/Chinese translationssource reordering model (guessingsatanda re-
Beside string-driven oracles, we report results usingults from automatically word aligningys, t). The
ITG-like transductions over a single syntactic parséatter parallel corpus is used for training a phrase-
tree ofs. Our results confirm that reordering a sin-based translation systef (¢ | gs), while the for-
gle syntactic tree could be insufficient (e.g., (Huangner corpus is used for training a source reordering
et al., 2009)), yet they show substantial potential. model P,(3 | s). The problem of permuting the
Our second contribution is a novel source reorder-
ing model that manipulates the source parse tree N e v
with two kinds of tree transduction operators: the thet PR VED  BP
one permutes the order of sibling subtrees under a e went 19 <
node, and the other first abolishes layers in the parse !
tree in order to exploit sibling permutation at the re-
maining levels. The latter is the opposite of parse bi-
narization using Expectation-Maximization (Huang
et al.,, 2009). We use Maximum-Entropy training
(Berger et al., 1996) to learn a sequence of tregigure 1: Example crossing alignments and long-distance
transductions, each conditioned on contextual feaeordering using a source parse tree.
turesin tree resulting from outcome of the preced-
ing transduction The conditioning on the outcome source string to unfold the crossing alignments is
of preceding transductions is a departure from eagomputationally intractable (see (Tromble and Eis-
lier approaches at learning independent source péter, 2009)). However, various constraints can be
mutation steps, e.g., (Tromble and Eisner, 2009nade on unfolding the crossing alignments:inA
Visweswariah et al., 2010). common approach is to assume a binary parse tree
The aim for the rest of this paper is firstly, tofor the source string, and define a set of eligible per-
quantify the potential performance improvement ofutations by binary ITG transductions. This defines
a standard PBSMT system if preceded by sourd@ermutations resulting from at most inverting pairs
reordering and secondly, to show that statistic&tf children under nodes of the source tree. Fig-
Markov approach to tree transduction, where thére 1 exhibits a long-range reordering of the verb
probability of each transduction step is conditionedn English-to-Dutch translation: inverting the order
on the outcome of preceding steps, can improve ti¥ the children of theVP node would unfold the

SBAR

dat hij ndar [..] huis ging

quality of PBSMT output significantly. crossing alignment. However, crossing alignments
represented as non-constituents cannot be resolved.
2 Source-Reordering: Framework This difficulty can be circumvented by employing

multiple alternative parse trees, by applying heuris-
We start out from a word-aligned parallel corpustic transforms (e.g., binarization) to the tree to fit the
consisting of triplegs, a, t), a sources, targett and alignments (Wang et al., June 2010), or by defin-
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ing new local transductions, on top child permutaf2) works with the unmodified alignment matrix but

tion (ITG) as we do next. learns reorderings only from those alignments that
are consistent with the tree, thereby avoiding the ef-
3 Existing work on source per mutation fects of heuristics for pruning alignments to fit the

tree-structure, e.g., (Li et al., 2007).

Source reordering has been shown useful for PB- | this paper we take the idea of learning source
SMT for a wide variety of language pairs with highpermutation one step further along a few dimen-
mutual word order disparity (Collins et al., 2005;sjons. We show the utility of other kinds of tree
Popovic’ and Ney, 2006; Zwarts and Dras, 2007§ransduction operations, besides those promoted by
Xia and McCord, 2004). In Costa-jussa and FOnolTg, stress the importance of using a wide range of
losa (2006) statistical word classes as well as PQ@nditioning context features during learning, and
tags are used as patterns for reordering the input s§@port oracle and test results thmeelanguage pairs.
tences and producing a new bilingual pair. The majority of existing work reports encourag-

A rather popular class of source reordering aling performance improvements by source reorder-
gorithms involves syntactic information and aimsing. Next we aim at quantifying the potential im-
at minimizing the need for reordering during transprovement by oracle source reordering at the string
lation by permuting the source sentence (Collingevel, if all permutations were to be allowed, and at
et al., 2005; Wang et al., 2007; Khalilov andthe source syntactic tree level, by limiting the per-

Sima’an, 2010; Li et al.,, 2007). Some systemsgnutations with two kinds of local transductions.
perform source permutation using a set of hand- _
crafted rules (Collins et al., 2005; Wang et al.4 Oraclesourcereordering results

2007; Rgmanathan etal, 200_8)’ others make use §Burce reordering for PBSMT assumes that permut-
automatlcally'learn('ad' reordering patterns extraf:telﬂg the source words to minimize the order differ-
from the plain training data, the correspondingy,ceg with the target sentence could improve trans-
pgrse-or dependﬁncyltrees and the alignment Mtion performance. However, the question “how
trix (Vlg\{veswa_lrla etal., 2010). ) much?" is rarely asked. Here, we attempt answering
Inspiring this work, source reordering as a preg;s question with a set of oracle systégis which
translation step is viewed as a word permutatiofye perform unfolding operations on the crossing
learning problem in Tromble and Eisner (2009) anglnks in alignmenta (estimated between corpoka
Li et al. (2007). The space of permutations is @panq¢) that leads to a more monotone alignmaént
proached efficiently using a binary ITG-like SYN-(betweens, which is a permutation of, andt). We
chronous context-free grammar put on the parallghiroguce a set of tree-based constraints that control
data. Similarly, a local ITG-based tree transducéffye ynfolding of alignment crossings. We measure
with contextual conditioning is used in Khalilov andpe impact of (un)folded alignment crossings on the

Sima'an (2010) and Li et al. (2007), and prelimi-performance of the PBSMT system (see Table 1).
nary experiments on a single language pair show im-
proved performance. Oracle String.  This method scans the alignment

Particularly, the model in (Li et al., 2007) is ex- from left-to-right and unfolds all the crossing links
plicitly aimed at long-distance reorderings (EnglishPetween bilingual phrase®(acle string. Figure 2

Chinese), prunes the alignment matrix graduallf"OWs an example of word reordering done on the
to fit the source syntactic parse and emp|0y§tr|ng level. NULL aligned words do not move from

Maximum-Entropy modeling to choose the optimafheir positions.

local ITG-like permutation step of sister subtrees bupy acle par setree with permutesiblings.  The or-

interleaves that step with a translation step. Thgcle system unfolds an alignment crossing if and
model which we present in Section 2 differs substan— _ o
All the source permutation methods presented in this Sec-

tially from (Li et al., 2007) and other earlier work _. o om e
. ; . tion are based on automatic alignments, which inevitably co
because it (1) incorporates other kinds of tree trangsin wrong links. In the future we plan to involve manual alig

duction operations than those promoted by ITG, andents to the computation of oracle permutation

40



only if the source side of the alignment crossing i9e moved to the beginning of the sentence in Fig-

covered by the same node in the syntactic sourage 3a byOracle tree Instead, this is done in two

tree, and the alignment pair subject to crossing casteps. Firstly, th&/P dominating the wordsrust”

be unfolded by permuting the order of the siblingand “apply” is deleted under the current no&

nodes. NULL aligned words do not prevent unfoldthe transformed tree is shown in Figure 3b. Sub-

ing crossings because we include them with the adequently, the siblings und& in the resulting tree

jacent words that are involved in the crossings. Ware permuted,rhust” is reordered across the whole

call this configuratiorOracle tree clause and placed to the first position (see Figure 3c).
Figure 1 shows an example. According to @e  We call this systen©racle mod

acle treeconstraint, the wordwent” can be placed Figure 4 shows an example in which crossing align-

in the end of the sentence since the replacement carent links cannot be unfolded without deleting 4 in-

be done as a swapping ofBP” and “PP” cate- tervening layers.

gories. The same happens for the wordflect”

swapping with ‘S” constituent in Figure 1, but not Oracleresults Table 1 contrasts the oracle results

with the performance shown by standard PBSMT

for the chunks the positions” and “not properly”: . . N
) . P properly systems. The experimental setup is detailed in Sec-
this crossing cannot be resolved under the tree cop- . . .
ion 6. We consider the following baseline con-

stra_lnt since t_hey are not dominated by sibling Synﬁgurations: PBSMT - Moses-based PBSMT with
tactic categories.

distance-based reordering mod&BSMT+MSD-
Oracletreewith delete descendants, permutesib- Moses-based PBSMT with distance-based reorder-
lings. This oracle implements an additional meching model and MSD an#loses-chart hierarchical
anism of tree modification to increase the numbe¥loses-chart-based PBSMT.

of reordering permutations in comparison wina- Depending on number of parse tree levels allowed
cle treealgorithm. Here we allow for an additional to be deleted, we consider thr&racle modsys-
tree transduction operation that deletes intervenintgms: with two RIt), three 8It) and five blt) levels
layers before applying sibling permutation. This iof descendants allowed to be deleted for a more flat
illustrated in Figure 3. The wordmiust” can not parse tree structure before sibling permutation.

to insist that the international community be able to follow the proceedings from start to finish

hlijéij onz&e @tionalegﬁnschap hét proces vdan hét bedqin tot hét einde moet kumnen volgen

(a) Original bilingual phrase.

to insist that the international community the proceedings from start to finish be able to follow

blijéij anz&e ;&tiona@bmokr&Mgen

(b) Reordered bilingual phrase.

Figure 2: Example oOracle stringunfolding.

S S S

NP VP NP MD VP MD NP VP
—_— —— —_— | | | —_— |
NP PP MD VP NP PP must VB must NP PP VB

| = 1 h

L I I L L I I
DT pil NN VBG NP must VB DT I NN VBG NE/// apply DT I NN VBG NP apply
I T I I e I I T I I — I T I I —L—
the same penalty regarding J]L//W apply the same penalty regardmg//j N‘N \ the same penalty regarding JH N‘N
\ /ﬁan fraud \ \ B\/)Wan fraud 5’ \ European fraud
\ \\ \— \\ \ f \ \ \ \
- — |
moeten dezelfde strafbepalingen inzake Europese fraude gelden mocten dezdlfde strafbepalingen inzake Europese fraude gelden moeten dezelfde strafbe\palmgen inzake Europese fraude gelden
(a) Original parse tree. (b) Parse tree with deleted VP category. (c) Reordered parse tree.

Figure 3: Example of text monotonization with tree transfation.
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The impact of corpus monotonization on transla
tion system performance is measured using the 1
nal point of weight optimization on the develop-
ment setDev BLEU), as well as on the test sdigst
BLEU/NIST).

The major conclusion that can be drawn fromr
the oracle results is that the source reordering di
fined in terms of parse tree transduction can potel
tially lead to increased translation quality (up to 1.z
BLEU points for English-Dutch, 0.5 for English-
Spanish and 1.7 for English-Chinese). At the sam
time, a huge gap between performance shown t
Oracle stringand tree oracle systems:2.2 BLEU
points for English-Dutchz1.3 for English-Spanish
and =~2.5 for English-Chinese) shows that there

are many crossing alignments which cannot be ur|
folded with simple, local transductions over a single
source-side syntactic tree.

5 Conditional Tree-Transductions

Our model aims at learning from the source
permuted parallel corpus (containing tu-
ples (s,a,8)) a probabilistic optimization
(arg maxy (s Pr(7(s) | s,75)), where 75 is the
source parse and(s) is some eligible permutation
of s. We view the permutations leading from
s to § as a sequence of local tree transductions
Tsy — ... — Ts,, Wheresy = s ands, = s,
and each transduction;, , — 73, is defined
using any of two kinds of local tree transduction
operations used in Section 4 or alternatively NOP
(No Operation).

The sequence;, — ... — 73, is obtained by
taking the next node in a top-down tree traversal,

SBAR

V—I—\
Il‘\l S
l—‘—l
if NP VP
|
f T 1
PRP VP ADVP VP
B O i
do  not properly reflect NP
!—‘—\
1
PP
l_‘_V
NP
Y—‘_\
in D‘T N'[‘*IS
/ the minutes
S 4@1& goed in notulen worden weergegeven

Figure 4: Example of unfoldable alignment crossings.

where(a,) is a permutation ofv, (the or-
dered sequence of node labels undeandC,,
is a local tree context of nodein treer s

i—1

e Select a child ofr to delete, pull its children

up directly underx, effectively changingy, to
somea?, and then permute the children of the
latter.

d

where (a; ~ af symbolizes the result of
deleting a subtree under a child :of This op-
eration applies also to subtrees of depthe
{1,2,3,5} underz, i.e., a child is depth 1, a
child with its children is deptt2 and so on.

then statistically selecting the most likely of threeobviously, the number of possible permutations of
transduction operations and applying the selected, is factorial in the length ofy,. Fortunately, the
operation to the current node. If the current tree isource permuted training data exhibits only a frac-

T3, ,, and the current node has addresis syntacti-
cally labeledN,, directly dominates,. (the ordered
sequence of node labels under, we approximate
the conditional probabilityP(r;, | 75, ,) with the

transduction operation it employs:

e Permute the children of in 7;, , with proba-
bility

~ P(m(ay) | Np — ag, Cy) 1)
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tion of possible permutations even for longer se-
guences. Furthermore, by conditioning the probabil-
ity on local contexiC., the number of permutations
is limited to a handful set.

Theoretically, we could define the probabil-
ity of the sequence of local tree transductions

Tsg —* --- —> T3, @S

P(Téo .7 Tén) = HP(Téi | Téi—l) 3)

=1



EnNI EnEs Enzh
System Dev Test Dev Test Dev Test
BLEU | BLEU | NIST || BLEU | BLEU | NIST || BLEU | BLEU | NIST

Baselines

PBSMT 2388 | 24.04 | 6.29 || 32.31 | 31.70 | 7.48 || 18.71 | 22.21 | 5.28
PBSMT+MSD || 24.07 | 24.04 | 6.28 || 32.45| 31.85| 7.47 | 18,99 | 21.18 | 5.30
Moses-chart 2394 | 2493 | 6.39 || 30.58 | 31.80 | 7.41 || 19.93 | 23.90 | 541

Oracle results

Oracle tree 2470 | 24.80 | 6.32 || 32.76 | 32.21 | 7.51 || 20.23 | 23.44 | 5.35
Oracle string 26.28 | 27.02 | 6.50 || 34.09 | 33.52 | 7.60 || 23.01 | 26.08 | 5.52
Oracle mod+2It|| 25.05 | 25.04 | 6.36 || 32.24 | 32.18 | 7.51 || 20.64 | 23.75| 5.37
Oracle mod+3lt|| 25.11 | 25.27 | 6.37 || 32.22 | 32.34 | 7.52 || 20.71 | 23.59 | 5.37
Oracle mod+5It|| 25.07 | 25.23 | 6.37 || 32.51 | 32.37 | 7.55 || 20.93 | 23.93 | 5.39

Table 1: Summary of oracle results.

However, unlike earlier work (e.g., (Tromble andtree transductions that are syntactically motivated
Eisner, 2009)), we cannot afford to do so becaughat also lead to improved string permutation. In this
every local transduction conditions on conté4tof  sense, the tree transduction definitions can be seen as
an intermediate tree, which quickly risks becomingn efficient and syntactically informed way to define
intractable (even when we use packed forests). Fuhe space of possible permutations.

thermore, the problem of calculating the most likely_ , ) o
permutation under such a model is made difficult byrStimates.  We estimate the string probabilities
the fact that different transduction sequences makyim () Using 3-gram language models trained on
lead to the same permutation, which demands surfile 3 side of the source permuted parallel corpus
ming over these sequences (another intractable sufts: @: )} We estimate the conditional probability

mation). Earlier work has avoided conditioning cond (T BANS | Ny — ag, ;) using a Maximum-

text, effectively assuming that the each intermediatetroPy framework, where feature functions are de-
ned to capture the permutation as a class, the node

permutation is independent from the preceding onellf

Instead, we take a pragmatic approach and greef@P€!V> and its head POS tag, the child sequemge

ily select at every intermediate point_, — 7, the together with the corresponding sequence of hegd
single most likely local transduction that can be apP ©S t@gs and other features corresponding to dif-

plied to a node in the current intermediate tree,  [€'€Nt contextual information.

using an interpolation of the terms in Equations kestresin use. We used a set of 15 features to
and 2 with probability ratios of the language modelanyre reordering permutations from the syntac-

5 as follows: tic and linguistic perspectives:ocal tree topology:
P (3i—1) sub-tree instances that include parent node and the
P(I'RANS;| Ny = ag, Cy) X (31 ordered sequence of child node labels @gpen-
m 1

dency featuresfeatures that determine the POS tag
whereT'RAN S; is any of the two transduction oper- of the head word of the current node (2), together
ations or NOP, and,,,, is a language model trained with the sequence of POS tags of the head words of
on the s side of the corpuq(s,a, $)}. The ratio- its child nodes (3) and the POS tag of the head word
nale behind this log-linear interpolation is that ouiof the parent (4) and grandparent nodes ntac-
source permutation approach aims at finding the opic features:apart from the whole path from the cur-
timal permutations of s that can serve as input for rent node to the tree root node (6), we used three
a subsequent translation model. Hence, we aim hinary features from this class describe: (7) whether
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the parent node is a child of the node annotated witlzed English §) is modeled using-grams.

the same syntactic category, (8) whether the parentWe useStanford parser® (Klein and Manning,
node is a descendant of the node annotated with tR603) as a source-side parsing engine. The parser
same syntactic category, and (9) if the current sulwas trained on the WSJ Penn treebank provided with
tree is embedded into &5*SBAR sub-tre€; POS 14 syntactic categories and 48 POS tags. The eval-
lexical features: bi- and tri-grams of POS tags of uation conditions were case-sensitive and included
the left- and right-hand side neighboring words (10punctuation marks. For Maximum Entropy model-
13); Counters: a number of words covered by aing we used thenaxent toolkit’.

iven constituent (14) and a number of children of )
'?he given node (15() ) Tranglation scores. Table 3 shows the results of

automatic evaluation using BLEU (Papineni et al.,
6 Trandation and reordering experiments 2002) and NIST (qudington, 2002) metrics.
MERrd configuration corresponds to the PBSMT
Data. In our experiments we used English-Dutchsystem with the source side of the parallel corpus re-
and English-Spanish European Parliament data anddered using our Maximum Entropy model, but the
an extraction from the English-Chinese Hong Kongransduction operations are limited to permutation of
Parallel Corpus. All the sets were provided withthe children only. MERrd+xIt configuration refers
one reference translation. Basic statistics of th# the set of systems which, beside child permuta-
training data can be found in Table 2, developmertton, includes a deletion operation with the maxi-
datasets contained 0.5K, 1.9K and 0.5K lines anchum number of tree layers that can be deleted set
test datasets contained 1K, 1.9K and 0.5K for Dutchp x. All reordered systems include a MSD model
Spanish and English, respectively. as a supporting reordering mechanism.
BLEU scores measured on the test data, which are
statistically significant from the best PBSMT results

4 are marked with bold. The statistical significance
cls™ (Och, 1999) tool. The PBSMT systems we Nt jations have been done for a 95% confidence

sider in this study is based dfoses toolkit (Koehn - jyieral and 1000 resamples, following the guide-
et al., 2007). We followed the guidelines providedinas in Koehn (2004).

on the Moses web page

Two phrase reordering methods are widely use@nalysis. Our results show that source-reordering
in phrase-based systems. A distance-based reordigrbeneficial for the language pairs with high mutual
ing model providing the decoder with a cost lineaivord order disparity. In contrast to English-Dutch
to the distance between words that are being r@nd English-Chinese translation tasks, the statistical
ordered. This model constitutes the default for th&ignificance test reveals that all but thEERrd+5It
Moses system. And, a lexicalized block-orientedEnglish-Spanish PBSMT systems with rearranged
data-driven reordering model (Tillman, 2004) coninput are not different from the translation qual-
siders three orientations: monotone (M), swap (Sity delivered by Moses. This disappointing result
and discontinuous (D), while the reordering probafor the English-to-Spanish translation task may be
bilities are conditioned on the lexical context of eacleXxplained by the fact that many reordering differ-
phrase pair. ences are resolved by standard reordering models

All language models were trained wiRI LM  (distance-based and MSD).
toolkit (Stolcke, 2002). Language models for Dutch, Table 3 shows the results of automatic transla-

Spanish and Chinese usegrams, while the ideal- tion quality evaluation. A gap between the max-
imum reachable performance shown by tree trans-

®The latter feature intends to model the divergence in worgjyction systems and the translation quality delivered
order in relative clauses between Dutch and English which is

Experimental setup. Word alignment was found
using GIZA++3 (Och, 2003), supported bynk-

illustrated in Figure 1. Shttp://nlp. stanford. edu/ sof t war e/
Scode. googl e. cont p/ gi za- pp/ | ex- parser. shtnl
“http://ww. fjoch. coml mkcl s. ht ’http:// honepages.inf. ed. ac. uk/ | zhang10/
Shttp://ww. statnt.org/ nobses/ maxent _tool kit. htm
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| Parameter | Dutch | English| Spanish| English || Chinese| English |
Training corpus

Sentences 1.2M 1.2M 14M 1.4 M 15M 15M
Words 329M| 33.0M 40.1M | 3854M| 3535M| 35.00M
Vocabulary 228 K 104 K 168 K 119K 136 K 245 K
Average sentence length 27.20 27.28 28.80 27.67 24.06 23.83

Table 2: Statistics of the training, development and tegi@@.

by our model is 0.05-0.29 BLEU points for English-operations over the source parse trees.

Dutch, 0.01-0.09 for English-Spanish and 0.27- The method was tested on three different trans-
0.76 for English-Chinese. These numbers demothation tasks. The results show that our approach is
strate that there are some potentially usable regmore effective for language pairs with significant

larities not captured by our current conditional treedifference in word order. Another important ob-

transduction model. servation is that our model demonstrate translation
_ quality comparable with the one delivered by SMT
7 Conclusionsand future work systems based on hierarchical phrases.

We present a source reordering system for PBSMT. The mtroduced reordering algorlthnj.and the re-
. . . - - ults obtained present many opportunities for future
in which the reordering decisions are condltlone&'

work. We plan to perform a detailed analysis of the

on features from the source parse tree. Our syster‘{\ .

; structure of the extracted phrases to find out the par-

allows for two operations over the parse tree: per: .

. - . . ticular cases where the improvement comes from.
muting the order of sibling nodes and deleting chil

. e also propose to discover other possible trans-
nodes in order to make the tree flatter and explog . Propo P .
- . - uction operations to better explore the reordering
sibling permutations at the remaining layers.

o ) space.
Our contribution can be summarized as follows: P

(1) we report detailed results of maximum poteng  Acknowledgements
tial performance that can be achieved with source

reordering under different constraints, (2) we defindis work is supported by The Netherlands Orga-
a source-reordering process through an efficient sization for Scientific Research (NWO) under VIDI

quence of greedy, context-conditioned transductiogrant (nr. 639.022.604).

EnNI EnEs Enzh
System Dev Test Dev Test Dev Test
BLEU | BLEU | NIST || BLEU | BLEU | NIST || BLEU | BLEU | NIST
Baselines
PBSMT 23.88 | 24.04 | 6.29 | 3231 | 31.70| 7.48 || 18.71| 22.21 | 5.28

PBSMT+MSD| 24.07 | 24.04 | 6.28 || 3245 | 31.85| 7.47 | 18.99 | 21.18 | 5.30
Moses-chart 2394 | 2493 | 6.39 || 30.58| 31.80| 7.41 || 19.93| 23.90| 541

Reordering systems

MERrd 2464 | 2472 | 6.33 | 31.97| 3219 | 7.52 | 19.82 | 2317 | 5.33
MERrd+2It 2461 | 2499 | 6.35 || 31.70 | 32.11| 7.50 || 20.02 | 23.01 | 5.33
MERrd+3lIt 2482 | 2498 | 6.34 | 31.65| 32.25| 752 | 20.21 | 2314 | 5.34
MERrd+5It 2478 | 2512 | 6.37 || 31.99| 3238 | 7.52 | 20.29 | 2317 | 5.35

Table 3: Experimental results.
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Abstract

Lexicalized reordering models play a cen-
tral role in phrase-based statistical ma-
chine translation systems. Starting from
the distance-based reordering model, im-
provements have been made by consider-
ing adjacent words in word-based mod-
els, adjacent phrases pairs in phrase-
based models, and finally, all phrases
pairs in a sentence pair in the reordering
graphs. However, reordering graphs treat
all phrase pairs equally and fail to weight
the relationships between phrase pairs. In
this work, we propose an extension to the
reordering models, named weighted re-
ordering models, that allows discrimina-
tive behavior to be defined in the estima-
tion of the reordering model orientations.
We apply our extension using the weighted
alignment matrices to weight phrase pairs,
based on the consistency of their align-
ments, and define a distance metric to
weight relationships between phrase pairs,
based on their distance in the sentence.
Experiments on the IWSLT 2010 evalu-
ation dataset for for the Chinese-English
language pair yields an improvement of
0.38 (2%) and 0.94 (3.7%) BLEU points
over the state-of-the-art work’s results us-
ing weighted alignment matrices.

1 Introduction

Reordering in Machine Translation (MT) is the
task of word-order redistribution of translated
words. An early reordering paradigm uses a sim-
ple distance based reordering model, which penal-
izes words that diverge from their original posi-
tion after being translated (Koehn et al., 2003).
This works moderately well for language pairs
where reordering distances are small, but per-
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forms poorly for language pairs such as Chinese-
English, where the opposite occurs. One of
many approaches to implement improved reorder-
ing models is to use the lexical information dur-
ing the phrase extraction algorithm to predict re-
ordering orientations, using word-aligned bilin-
gual sentences. However, the fact that spurious
word alignments might occur leads to the use
of alternative representations for word alignments
that allow multiple alignment hypotheses, rather
than the 1-best alignment (Venugopal et al., 2009;
Mi et al., 2008; Christopher Dyer et al., 2008).
More recently, a more efficient representation of
multiple alignments was proposed in (Liu et al.,
2009) named weighted alignment matrices, which
represents the alignment probability distribution
over the words of each parallel sentence. The
method for building a word-based lexicalized re-
ordering model using these matrices is proposed
in (Ling et al., 2011). However, phrase-based re-
ordering models have been shown to perform bet-
ter than word-based models for several language
pairs (Tillmann, 2004; Su et al., 2010; Galley
and Manning, 2008), such as Chinese-English and
Arabic-English.

In this work, we propose an extension to the
phrase-based lexicalized model approach using re-
ordering graphs presented in (Su et al., 2010),
which allows phrase pairs to be weighted differ-
ently, rather than uniformly as in the original pro-
posal. Then, we will present a phrase-based ap-
proach to estimate the orientations of the reorder-
ing model from the weighted alignment matrices
using this extension.

2 Lexicalized Reordering models

In this section we will present the lexicalized re-
ordering models approaches that are relevant for
this work.

Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 47-55,
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2.1 Word-based Reordering

The lexicalized reordering model is possibly the
most used lexicalized reordering model and it cal-
culates, as features, the reordering orientation for
the previous and the next word, for each phrase
pair. In the word-based reordering model (Axelrod
et al., 2005), during the phrase extraction, given
a source sentence S and a target sentence 7T’ the
alignment set A, where @] is an alignment from ¢
to j, the phrase pair with words in positions be-
tween i and j in S, S7, and n and m in T', T, can
be classified with one of three orientations with re-
spect to the previous word. The orientation is

e Monotonous - if only the previous word in
the source is aligned with the previous word
in the target, or, more formally, if a7~} €
n—1
ANajy ¢ A
Swap - if only the next word in the source is
aligned with the previous word in the target,
or more formally, if a?;ll € AN a?:ll ¢ A.
Discontinuous - if neither of the above are
. -1 -1
true, which means, (a;"; € A A a’;H €
AV (a ] ¢ Anal ] ¢ A).

j+1

The orientations with respect to the next word
are given analogously. The reordering model
is generated by grouping the phrase pairs that
are equal, and calculating the probabilities of the
grouped phrase pair being associated each orien-
tation type and direction, based on the orienta-
tions for each direction that are extracted. For-
mally, the probability of the phrase pair p having a
monotonous orientation is given by:

C(p,mono)
p,mono)+C(p,swap)+C(p,disc)

)

P(p,mono) = ol

Where C(p, 0) is the number of times a phrase is
extracted with the orientation o in that group of
phrase pairs.

2.2 Word-based Reordering using alignment
matrices

The work in (Ling et al., 2011) adapts the word-
based reordering model to extract the reordering
orientations from the weighted alignment matri-
ces. This is done by changing the C(p,0) from
a count function over a given set of phrase pairs P
to a weighted sum given by:

C(]), O) = ZpeP SC(p)PC(]L 0) (2)
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prev
word(s)

next
word(s)

source phrase

source phrase

a) b)
w?)rr?i\zt) target phrase w%r:j\Zt) target phrase
source phrase wg:s‘(/s) source phrase wgfc)i((ts)
) l d)
w?)rrz\zt) | target phrase wz:?j\zt) target phrase
Figure 1: Enumeration of possible reordering

cases with respect to the previous word. Case a)
is classified as monotonous, case b) is classified as
swap and cases c) and d) are classified as discon-
tinuous.

The score Sc(p) of a phrase pair p is given by
the algorithm described in (Liu et al., 2009), which
is based on its alignments. This score is higher if
the alignment points in the phrase pair have high
probabilities, and if the alignment is consistent.
Thus, if a phrase pair has better quality, its orien-
tation is given more weight than phrase pairs with
worse quality. Rather than classifying each phrase
pair with either monotonous (M), swap (.S) or dis-
continuous (D), a probability distribution for the
orientations is calculated. Thus, for the previous
word, given a weighted alignment matrix W, the
phrase pair between the indexes ¢ and j in S, 7,
and n and m in T, T"*, the probability values for
each orientation are given by:

s Pc(p7 M) = Wz’n—_ll(l - an—O—_ll)

o P(p,S) = W5 (1 -Wih)

L4 Pc(pv D) = Wiﬁ_llenﬁl
+(1-wihH - Wfﬁl)

2.3 Phrase-based Reordering

The problem with the word-based lexicalized re-
ordering model is that it is assumed that the adja-
cent words are translated by themselves, which is
not always true in phrase-based SMT. The reorder-
ing model presented in (Tillmann, 2004) uses ad-
jacent phrases to generate the phrase orientations.
In this model, the previous orientation of a phrase
pair p:

e Monotonous if there is a phrase pair with the
source S.~! that ends at i — 1 and starts at any
x, that is aligned to the target phrase T;_l,
that ends at n — 1 and starts at any g. In an-
other words, if there is an adjacent phrase pair



that occurs before p, both in the source and in
the target sentences.

Swap if there is a phrase pair with the source
Sf 1 that starts at j+1 and ends at any , that
is aligned to the target phrase T;_l, that ends
at n — 1 and starts at any y. In another words,
if there is an adjacent phrase pair that occurs
before p in the target sentence and after p in

the source sentence.

Discontinuous - if neither of the above are
true.

The work presented in (Tillmann, 2004) only
considers phrases that are smaller than a fixed
size, since the possible phrases for each bilin-
gual sentence are generated and kept in memory
making the time and memory needed to store and
lookup all possible phrases grows rapidly as the
size grows. The work in (Galley and Manning,
2008) implements a shift-reduce parsing algorithm
that updates the previously extracted phrase pair
orientations when a new phrase pair is extracted,
which allows arbitrary sized phrase pairs to be
considered.

2.4 Phrase Reordering using Reordering
Graphs

The phrase based model considers the existence of
a single adjacent phrase, which is not ideal, since
many possible adjacent phrases exist for each ex-
tracted phrase pair, which can generate different
orientations. In work done in (Su et al., 2010) the
orientation is computed by considering all possi-
ble reorderings of phrase pairs that are extracted
in the sentence pair. Once again C(p,0) is given
by the weighted count:

C(p7 0) ZpEPh P(J(pv 0) (3)

Where P.(p,0) is extracted by structuring the ex-
tracted phrase pairs into a reordering graph. This
graph is created for each sentence pair, using ex-
tractable phrase pairs as nodes and connecting ad-
jacent phrase pairs in the target side with an edge.
Each edge is associated with a reordering orienta-
tion, dependent on the source side of the connected
phrase pairs. If these are not adjacent in the source
side, the edge is given a discontinuous orientation,
otherwise, the edge is given a monotonous or swap
orientation depending on whether they are in the
same order or not in the source side, respectively.
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e [18]
[sore, s
[fR7E]
[sore pain]

@

D
[l have a]
M
O

[sore pain here]

X BARE]

Figure 2: Reordering Graph for the sentence pair
with source “FiX BRI (wo zhe li hen teng)”
and target ‘I have a sore pain here”. Each ex-
tracted phrase pair is denoted as a rectangle, with
the source and target phrases inside. Each phrase
pair is also labeled for reference. The edges are
labeled with its orientation (the colors are only for
easier visualization).

Furthermore, phrase pairs with no adjacent phrase
pairs are linked to the nearest phrase pair. These
arcs are also given a discontinuous orientation.

A start node bs is added and is linked to all
phrase pairs at the start of the target sentence , and
a end node be, which is linked by all phrase pairs
that end the target sentence.

For the previous orientation weight, the proba-
bility P.(p, o) of the phrase pair p having a given
orientation o, considering the set Prev(o), with all
phrase pairs that are linked to p that would lead to
a orientation o, is given by:

Pe(p,0) = “)

p’€Prev(o)

In this equation, «(p') is the number of paths to the
p’ node from the first phrase, 3(p) is the number
of paths from p to the last phrase and 3(bs) results
in the number of possible paths. We can see from
this equation that a(p’) x (p) results in the num-
ber of paths containing the arc from p’ to p, thus
not only multiple adjacent phrase pairs are consid-
ered, but these are also weighted by the number of
possible translation segmentations that would use
that phrase pair.

An example of a reordering graph is illustrated
in figure 2. We can see in that for the phrase
pair “5X B (zhe 1i)”—“here”, instead of simply
giving the swap orientation due to the adjacent
phrase pair “fRJ&Z (hen teng)”—“sore pain”, it also
considers the case where “J%& (teng)” is translated
by itself to “pain”, in which case the orientation



would be discontinuous. In this case, the weight is
evenly distributed between the 2 orientations since
there are 2 paths that contain an edge with each
orientation.

3 Phrase-based reordering using
Weighted Reordering Graphs

We see in the example given in section 2.4 that
the phrase pair “;X # (zhe li)"—“here” is given an
equal weight to the swap and discontinuous orien-
tations. However, if we translate “J% (teng)” by it-
self, we would have to translate “4R (hen)” without
“J% (teng)”. The translation for “4R (hen)” by it-
self to “sore” is not very probable, since “1R (hen)”
without context is generally translated to “very”,
“much” or “quite”. Thus, it is more probable dur-
ing decoding that the segmentation “/R & (hen
teng)” is used. Although the phrase-based reorder-
ing model presented in section 2.3 gives a better
reordering estimate in this case, in cases where
there is an equal probability of both segmentations
the graph-based approach would be better. Hence,
we argument that by treating phrase pairs discrim-
inatively, we can improve reordering orientations
estimate in both cases. In this work, we propose
an extension to the reordering graphs to allow the
definition of discriminative behavior during train-
ing. We will start by describing our model for the
Weighted Reordering Graph and then we proceed
into the definition of the algorithm to extract the
word orientations from the Weighted Reordering
Matrices.

3.1 Weighted Reordering Graph Model

We define a weighted reordering graph for a given
sentence pair S as Gg = (V, E,W,,, W,), where
V is the set of all vertices, which are phrase pairs
P1, P2, ---, Pn, and F is the set of all edges and we
denote a edge from p; to po as e(p1, p2). W, and
W, are functions that map each element in V' and
E to a weight.

We define a path PH (bs,p1,p2,be) as a path
starting in bs and through p, then po and ending in
be. The weight of a path PH (p1, p2, ..., Pk—1, Pk)
is given by the product of the weights of its phrase
pairs Wy, (p1) Wy (p2)... Wy (pr—1), Wy(pr) and the
weights of the edges connecting the phrases in the
path e(p1,p2)...e(pr—1, px). If both weight func-
tions W, and W, are set to return 1 we define the
same behavior as a reordering graph described in
section 2.4, since all paths will have the weight of
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1.

Following equation 4, we define the probabil-
ity of a given orientation, P.(p, o), for a weighted
reordering graph as:

aw (P )We(e(®',p))Buw(p)
Buw (bs)

Pc(p7 0) = Zp’epreu(o) (5)

Where «,, (p') is the sum of weights of paths from
bs to p’ and B, (p) is the sum of the weights of the
paths from p to be. It is also crucial to consider the
weight of the edge e(p/, p), since it is not weighted
in neither av, (p’) nor B, (p). This is not present in
equation 4 since all edges are weighted as 1.

The functions «,, and (3,, can be defined as:

(6)

Bu(p) = Wu(p) Zp’eNezt(p) Buw(@)Wele@,p))  (7)

Where Prev(p) and Next(p) are sets of all phrase
pairs that are linked to and linked from p, respec-
tively. We also initiate v, (bs) = 1 and (3,,(be) =
1. These two values can be initialized with any
value, as this will not affect the normalized result
from equation 5.

The pre-computation of «,, and 3,, can be per-
formed using an approach similar to the forward-
backward algorithm and calculating the forward
probabilities for a,, and backward probabili-
ties for 3,, with time complexity in the order
O(N?T), where N is the number of different
phrase pairs and T is the length of sequences. To
compute «,, we need to take into account that the
vertices/phrase pairs can be ordered topologically
in an array so that a vertice in the index 7 does
not have edges pointing to any vertice at any index
at or before 7 — 1. This can be done by ordering
the phrase pairs by the ending position of the tar-
get phrase n, starting with bs, since we know that
the phrase pairs ending at n can only have links to
phrase pairs ending at least at n + 1, according to
the definition of an edge in a reordering graph.

The algorithm for computing /3, can be done
analogously, by starting from be and sorting ac-
cording to the target phrase’s starting position.

aw(p)

Wa(p) Ep’eprev<p) o (p")Wele(p', p)

3.2 Choosing W, and W,

In this work, we use the information given by the
Weighted Alignment Matrices to define W, (p).
We set W, (p) using the phrase pair scoring algo-
rithm presented in (Liu et al., 2009), which cal-
culates the weight of a phrase pair based on its
alignment points. This weight can be seen as the



Algorithm 1 Compute «,

Require: sorted phrase pairs P
ay(P) ={0,...,0}

for pin P do
if p = bs then
ayy(bs) := Wy (bs)
end if

for p’ in followingNodes(p) do
w = We(e(p,p'))Wu(p)
aw(p) == aw(p) + wa(p)
end for
end for
return extractedPhrasePairs

probability of that phrase pair being extractable
according to the heuristic proposed in (Koehn et
al., 2003).

We also set W(e(p?, p®)) to a distance func-
tion between the phrases p® and p® in the target,
to better cope with the situation where there are
no adjacent phrase pairs to a phrase pair and an
edge is added to the closest adjacent phrase. An
example of such a case instance is displayed in
figure 3. In this case, the phrase ending with the
target word “‘wrap” can not be extracted, since it
is aligned with “Jf% (ba)” and “£J (bao)”. Thus,
consistent phrase pairs that can be extracted must
at least contain these 2 words to have “wrap” in
the target. Another situation where this might also
happen is the case where a phrase is not extracted
due to size constraints. In both cases the reorder-
ing orientation of the edge is always discontinu-
ous since the target phrases are not adjacent. We
find that the reordering orientations that originates
from these edges are not very precise. In the first
case, the next orientation for the phrase pair “f
T E (bu xu yao)”—*“need not” would be divided
between monotonous from the edge to the phrase
pair “4 & £ (ba ta bao)”—“wrap it” and dis-
continuous from the edge to the phrase pair from
“F (ta)” to “it”. However, in an actual translation
the only way to translate this sentence correctly
would be to treat “2 T £ (ba ta bao)” as a seg-
ment, which favors the monotonous orientation.
Furthermore, even if we could translate “1 (ba)”
and “t (bao)” to “wrap”, the orientation would
still be monotonous. In the second case, an edge
between phrase pairs p® and p® that is created be-
cause a phrase pair p¢ between p® and p® was not
extracted due to size constraints, would mean that
there is a missing edge from p® to p© and another
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bl
(ba)

Y Y, Y
| need not | | wrc%t |

Figure 3: Illustration of a case where no adjacent
phrase pairs exits for a phrase pair. In this case,
the phrase pair ““NF72¢ (bu xu yao)”—“need not”
and the phrase pair “'E (ta)”—“it” are linked by
an edge even though they are not adjacent.

HE
(bu xu yao)

a
(bao)

from p° to p°, and no edge from p® to p®. Thus,
the orientation of this edge is likely to be spurious,
and should be given a lower weight.

This cannot be done by setting this weight to
0 (removing the arc), since it will render all paths
that contain that edge to 0. For instance, if we set
the maximum phrase pair size to 7 and the first 8
words of the source and target are aligned in a way
that no smaller translation units can be extracted,
there would be an edge from bs to the 9th word.
Therefore, if we set the weight of the edge to 0,
any path we take would have 0 weight, rendering
the whole sentence pair useless. Hence, we define
the W, function as:

1

(14N
Where d is the distance between p and p’ defined
by the number of words in the target sentence be-
tween p and p’, and ) is a positive value defining
the penalty as d increases. In this work, we empir-
ically set A = 0.5, and leave the optimization of
this parameter as future work.

We(e(p,p')) = ®)

3.3 Reordering Model Comparison

In order to illustrate the performance of the differ-
ent reordering models, we consider two training
sentences taken from the IWSLT 2010 DIALOG
task. The weighted alignment matrices for these
sentences are illustrated in tables 1 and 2. For sim-
plicity in terms of illustration, we assume that al-
gorithms that do not use the alignment matrices,
consider all non-zero cells as alignment points.
The probability distribution for different previ-
ous orientations of each reordering model for the
phrase pair “iX & (zhe li)—here” from sentence 1
and the phrase pair “4>°K (jin tian)—today” from
sentence 2 are calculated in tables 3 and 4, respec-
tively.



o [3) =] [3)
Sentence 1 — _5:% « § §_ E
F (wo) | 0.90
X H (zhe 1i) 0.75
R (hen) 0.50
& (teng) 0.80

Table 1: Weighted alignment matrix for a training
sentence pair from DIALOG training corpus from
IWSLT 2010.

< )
2| 8|z |8 £ |8
Sentence 2 <| S § | 8| &% |2
24K (jin tian) 1
B (you) 0.60 | 0.90
FEEK (bang qiu) 1
HL#E (bi sai) 0.65
15 (ma)

Table 2: Weighted alignment matrix for a training
sentence pair from DIALOG training corpus from
IWSLT 2010.

We can see that the word-based reordering mod-
els classify the word orientation as discontinuous,
since the previous word in the target is not aligned
to adjacent words in the source. This leads to in-
accurate orientations for the first phrase pair, since
the words “4R (hen)” and “J% (teng)” have a high
probability of being translated together. In the sec-
ond phrase pair, it gives a good approximation of
the correct orientation, since “#%& ¥k (bang qiu)”
and “[t %% (bi sai)” are good translations even
when translated without “H (you)”.

The opposite occurs with the phrase-based re-
ordering model, since it considers the source
phrase segmentation “fR¥& (hen teng)” and “H 1%
BRIV #E (you bang giu bi sai)”, respectively. Thus,
the estimation of the orientation is better for the
former and worse for the latter phrase pair.

Using the reordering graph, orientations are es-

X H (zhe li)—here Mono | Swap | Disc
Word-based 0 0 1

Weighted-Word-based 0 0 1
Phrase-based 0 1 0
Graph-based 0 0.333 | 0.333

Weighted-graph-based 0 0.271 | 0.180

Table 3: Previous orientation probabilities for dif-
ferent lexicalized reordering models for the phrase
pair “5X B (zhe li)”—“here”, taken from sentence
1.

4K (jin tian)—today | Mono | Swap | Disc
Word-based 0 0 1

Weighted-Word-based 0 0 1
Phrase-based 0 1 0
Graph-based 0 0.166 | 0.500

Weighted-graph-based 0 0.187 | 0.416

Table 4: Previous orientation probabilities for dif-
ferent lexicalized reordering models for the phrase
pair “4 KX (jin tian)”’—“today”, taken from sen-
tence 2.

timated for different adjacent phrase pairs. In
the first phrase pair, both cases where the source
phrase “1R¥& (hen teng)” and “J% (teng)” are used
as translation units are taken into account, and the
same happens with the second phrase pair. As
it was already referred in section 3, the problem
with this estimation is that it fails to consider that
“J& (teng)” is more likely to be translated with
“4R (hen)”, otherwise the translation of “R (hen)”
is less likely to be accurate.

Finally, by using weighted-reordering-graph,
using phrase scores calculated from weighted
alignment matrices, paths in the graph that con-
tain phrase pairs that are better aligned are given
more weight.

4 Experiments

We implemented both word-based and phrase-
based lexicalized reordering models described
above, and compared the translation results with
our algorithm.

4.1 Corpus

Our experiments were performed over two
datasets, the BTEC and the DIALOG parallel
corpora from the latest IWSLT evaluation in
2010 (Paul et al., 2010). The experiments per-
formed with the BTEC corpus used the French-
English subset, while the ones perfomed with the
DIALOG corpus used the Chinese-English subset.
The training corpora contains about 19K and 30K
sentences, respectively.

The development corpus for the BTEC task was
the CSTARO3 test set composed by 506 sentences,
and the test set was the IWSLTO04 test set com-
posed by 500 sentences and 16 references. As for
the DIALOG task, we performed 2 tests, one using
the evaluation datasets from IWSLT evaluation in
2006 (IWSLT06) and in 2008 (IWSLT08). The de-
velopment from the IWSLTO06 evaluation is com-



posed by 489 sentences, and the test set was com-
posed by 500 sentences and 7 references. The de-
velopment from IWSLTO8 evaluation is composed
by 245 sentences, and the test set was composed
by 506 sentences and 7 references.

4.2 Setup

We use two setups for the different corpora that
are used. Word-based (word-based), phrase-
based (phrase-based), and phrase-based using re-
ordering graphs (graph-based) reordering models
are generally used with the regular phrase ex-
traction algorithm, with alignment constraints de-
fined in (Koehn et al., 2003). Thus, we compare
our method with the methods above in this en-
vironment. The weighted word-based reordering
model (weighted word-based) described in sec-
tion 2.2 was tested using the phrase extraction
algorithm described in (Liu et al., 2009), where
phrase pairs are filtered out based on their scores,
which are calculated from their alignment prob-
abilities. So, we also test our algorithm under
these conditions. In our work, we set the thresh-
old for filtering out phrase pairs to 0.1, which
was the threshold used in (Ling et al., 2011).
We also test separately our implementation of
W, (graph-based W,,), which weights phrase pairs
according to their scores, and W, (graph-based
We), a penalty based on the distance between
phrase pairs. Then, we test both approaches com-
bined (graph-based W, ;).

The word alignments and the weighted align-
ment matrices are generated using the Geppetto
toolkit!, using a regular HMM-based word align-
ment model (V. Graga et al., 2010), without re-
straints. The optimum alignment is found using
posterior decoding, and the weighted alignment
matrices are obtained from the same alignment
posteriors.

The optimization of the translation model
weights was done using MERT tuning. Each ex-
periment was run three times, and the final scores
are calculated as the average of the three runs in or-
der to stabilize the results. The results were evalu-
ated using BLEU-4 and METEOR, and computed
with 16 references.

4.3 Results

Tables 5, 6 and 7 show the scores using the differ-
ent reordering models. Consistent improvements

'http://code.google.com/p/geppetto/

BTEC BLEU | METEOR
regular phrase extraction
word-based 57.97 63.82
phrase-based 57.56 63.57
graph-based 57.53 63.63
graph-based W, 57.30 63.42
graph-based W, 57.47 63.49
graph-based W, W, 57.66 63.63
weighted phrase extraction
weighted word-based 62.01 66.31
graph-based W, 61.10 65.75
graph-based W, W, 61.75 66.19

Table 5: Results for the BTEC task.

IWSLT06 DIALOG BLEU | METEOR
regular phrase extraction
word-based 14.88 36.61
phrase-based 15.32 36.90
graph-based 15.28 37.14
graph-based W, 15.65 37.40
graph-based W, 15.39 37.09
graph-based W, W, 15.81 37.66
weighted phrase extraction

weighted word-based 17.58 40.33
graph-based W, 17.84 40.53
graph-based W, W, 17.96 40.90

Table 6: Results for the DIALOG task using the
test set from IWSLTO06.

IWSLT08 DIALOG BLEU | METEOR
regular phrase extraction
word-based 23.30 40.39
phrase-based 23.42 40.27
graph-based 23.52 40.37
graph-based W, 23.97 40.74
graph-based W, 23.67 40.70
graph-based W, W, 24.13 40.69
weighted phrase extraction

weighted word-based 24.53 44.59
graph-based W, 25.34 45.38
graph-based W, W, 25.47 44.62

Table 7: Results for the DIALOG task using the
test set from IWSLTOS.



in the DIALOG corpus scores over state-of-the-
art reordering models when using the weighted re-
ordering graphs. We can see that both W, and
W, generate improved results, and their combi-
nation generally performs better than both when
used individually. The METEOR score is not al-
ways higher using our algorithm, but we believe
this roots from the fact that the MERT tuning was
set to optimize the BLEU score.

For the BTEC corpus, we observe that phrase-
based models do not perform as well, although
the difference in BLEU is only 0.26 (0.4%) in
the weighted case with respect to the weighted
word-based model. We believe that this is be-
cause a large percentage of translation units that
are used during decoding is one-to-one, as it was
reported in (Ling et al., 2010). It is highly likely
that this roots from the fact that the training set
is small, so the probability of finding large se-
quences of strings in the training set that matches
the ones in the test set is rather low. In this case
the word-based reordering models yield better re-
ordering estimates, since considering longer train-
ing phrase-pairs that will not even be present in
the test set will only degenerate the orientation
probabilities. This suggests for future work that
adding prior knowledge about the probability of a
phrase-pair given its size could improve the trans-
lation quality. In the extreme case, we can give
more weight to phrase pairs with the source that
is present in the test set, for estimating the orien-
tations, generating a reordering model that is spe-
cific for each test set.

5 Conclusions

In this work, we presented the current state of
the art in improving the lexicalized model orien-
tation estimates. The basic word based lexicalized
reordering model uses neighboring words to per-
form the orientation estimates. However, since
words are not always translated by themselves,
these estimates can be improved by considering
neighboring phrases rather than words. Another
way to improve the phrase based reordering model
is to consider multiple adjacent phrases, which
can be done using a reordering graph. Finally,
another improvement can be made by addressing
the limitations of the lexicalized reordering mod-
els extracted from a single alignment, and gener-
ate the orientation estimates using weighted align-
ment matrices.
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We extend the reordering graph model to allow
the discriminative treatment of different paths. Us-
ing scores extracted from weighted alignment ma-
trices to weight phrase pairs and a distance penalty
function to penalize paths with phrase pairs that
are not adjacent, improvements of 0.38 (2%) and
0.94 (3.4%) in BLEU over the state of the art algo-
rithms using weighted alignment matrices for the
Chinese-English language pair can be achieved.

As future work, we will experiment with dif-
ferent types of phrase pair and edge scorers and
extending the weighted reordering graphs to al-
low multiple scorers to be combined and opti-
mized. Additionally, we will evaluate the impact
of our algorithm in larger corpora, since we be-
lieve that using a larger training corpora will result
in bigger improvements over the word-based ap-
proaches, since longer sequences of words in the
test set will be found in the training set, resulting
in longer translation units.

The code used in this work is currently inte-
grated with the Geppetto toolkit? , and it will be
made available in the next version for public use.
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Abstract

Temporal relations between events is a valu-
able source of information which can be used
in a large number of natural language pro-
cessing applications such as question answer-
ing, summarization, and information extrac-
tion. Supervised temporal relation classifica-
tion requires large corpora which are difficult,
time consuming, and expensive to produce.
Active learning strategies are well-suited to
reduce this effort by efficiently selecting the
most informative samples for labeling. This
paper presents novel active learning strategies
based on support vector machines (SVM) for
temporal relation classification. A large num-
ber of empirical comparisons of different ac-
tive learning algorithms and various kernel
functions in SVM shows that proposed active
learning strategies are effective for the given
task.

1 Introduction

The identification of temporal relations between
events, in texts, is a valuable information for many
natural language processing (NLP) tasks, such as
summarization, question answering, and informa-
tion extraction. In question answering, one expects
the system to answer questions such as “when an
event occurred”, or “what is the chronological or-
der of some desired events”. In text summarization,
especially in the multi-document type, knowing the
order of events is important for correctly merging
related information.

Most existing algorithms for temporal relation
learning are supervised, they rely on manual annota-

sani@sharif.edu,
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tions of corpora. Producing such annotated corpora
has shown to be a time consuming, hard, and expen-
sive task (Mani et al., 2006). In this paper we ex-
plore active learning techniques as a way to control
and speed up the annotation process.

In the active learning framework, the learner has
control over choosing the instances that will consti-
tute the training set. A typical active learning algo-
rithm begins with a small number of annotated data,
and selects one or more informative instances from
a large set of unlabeled instances, named the pool.
The chosen instance(s) are then labeled and added
to other annotated data, and the model is updated
with this new information. These steps are repeated
until at least one termination condition is satisfied.

While there have been numerous applications
of active learning to NLP researches (Settles and
Craven, 2008; Xu et al., 2007), it has not been ap-
plied, to our knowledge, to temporal relation classi-
fication.

This paper presents a novel active learning strat-
egy for SVM-based classification algorithm. The
proposed algorithm considers three measures: un-
certainty, representativeness, and diversity to select
the instances that will be annotated. The method
we propose is generic, it could be applied to any
SVM based classification problem. Temporal rela-
tion classification has been selected, in this paper,
for illustration purpose. Our experiments show that
state-of-the-art results can be reproduced with a sig-
nificantly smaller part of training data.

The remainder of this paper is organized as fol-
lows: Section 2 is about temporal relation classifica-
tion and its related work. Section 3 describes some

Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 56—64,
Chiang Mai, Thailand, November 8 — 13, 2011. (©2011 AFNLP
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of existing active learning methods. Our proposed
method will be presented in Section 4. Section 5
briefly presents the characteristics of the corpora that
we have used. Section 6 demonstrates the evaluation
of the proposed algorithm. Finally, Section 7 con-
cludes the paper and presents some possible future
work.

2 Temporal Relation Classification with
SVM

For a given ordered pair (z1,z2), where x; and
xo are time expressions or events, a temporal in-
formation processing system identifies the type of
relation that temporally links x; to z9. For ex-
ample in “If all the debt is converted (event;) to
common, Automatic Data will issue (eventy) about
3.6 million shares; last Monday (time; ), the com-
pany had (events) nearly 73 million shares out-
standing.”, taken from document wsj_0541 of Time-
Bank (Pustejovsky et al., 2003), there are two tem-
poral relations between pairs (event;, eventy) and
(timey, events). The task of a temporal relation ex-
traction system is to automatically tag these pairs
with relations BEFORE and INCLUDES, respec-
tively.

Several researchers have focused on temporal re-
lation learning (Chklovski and Pantel, 2005; Lapata
and Lascarides, 2006; Bethard et al., 2007; Cham-
bers et al., 2007; Bethard and Martin, 2008; Mir-
roshandel and Ghassem-Sani, 2010; Puscasu, 2007)
among which SVM has shown good performances.
In this section, we describe two of the most success-
ful SVM-based methods.

Inderjeet Mani was the first to propose an SVM-
based temporal relation classification model which
is based on a linear kernel (Mani et al., 2006). His
system (referred to as (kasani)) uses five temporal
attributes that have been tagged in the standard cor-
pora (Pustejovsky et al., 2003) plus the string of
words that constitute the events, as well as their part
of part of speech tags.

The other successful SVM-based temporal classi-
fication method uses a polynomial convolution tree
kernel, named argument ancestor path distance ker-
nel (AAPD), and outperforms Mani’s method (Mir-
roshandel et al., 2010). In this model, the algorithm
adds event-event syntactic properties to the simple
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event features described above. In order to use syn-
tactic properties, a convolution tree kernel is applied
to the parse trees of sentences containing event pairs.
Through this process, useful syntactic features can
be gathered for classification by SVM. The two ker-
nels are then polynomially combined.

3 Active Learning

Supervised methods usually need a large number of
annotated samples in the training phase. In most
applications including temporal relation classifica-
tion, the preparation of such samples is a hard, time
consuming, and expensive task (Mani et al., 2006).
On the other hand, all these annotated samples may
not be useful, because some samples contain lit-
tle (or even no) new information. Active learning
algorithms overcome this problem by adding only
the most informative instances labeled by an oracle
(e.g., a human expert) to the learning model. Three
scenarios have been proposed for the selection of in-
stances: 1) membership query synthesis, 2) stream-
based selective sampling, and 3) pool-based sam-
pling (Settles, 2010).

In membership query synthesis, the model it-
self generates some instances rather than using real-
world unlabeled instances (Angluin, 2004).

In stream-based selective sampling, instances are
presented in a stream and the learner decides, based
on its specific control measure, whether or not to
query its label (Atlas et al., 1990; Cohn et al., 1994).

In pool based sampling, which is the scenario that
we have chosen), a large number of unlabeled in-
stances are collected to form the pool U. The algo-
rithm begins with a small number of labeled data
L, and then chooses one or more informative in-
stances from /. The chosen instance(s) are labeled
and added to £. A new model is then learned and
the process iterated (Lewis and Gale, 1994).

3.1 Sample Selection Strategies

In all active learning strategies, the informative-
ness of each unlabeled instance is evaluated by the
learner, and the most informative instance(s) are
labeled. Different informativeness measures have
been proposed: 1) uncertainty sampling, 2) query by
committee, 3) expected model change, 4) expected
error reduction, 5) variance reduction, and 6) den-



sity weighted methods (Settles, 2010).

Uncertainty sampling is the simplest and the most
commonly used selection strategy. In this strategy,
instances for which the prediction of the label is the
most uncertain are selected by the learner (Lewis
and Gale, 1994).

In query by committee, there is a committee of
models trained on the current labeled data £ based
on different hypotheses. For each unlabeled in-
stance, committee models vote for their label. The
most informative instance is one with the largest dis-
agreement on the votes (Seung et al., 1992). In the
expected model change, the most informative in-
stance is the one which causes the most change to
the model (Settles et al., 2008). In expected error re-
duction, the learner selects instances which reduce
expected error of model as much as possible (Roy
and McCallum, 2001). In density weighted meth-
ods, selected instances must be both uncertain and
representative in order to decrease the effect of out-
liers which may cause some problems especially in
uncertainty sampling and query by committee strate-
gies (Settles and Craven, 2008).

4 Proposed Algorithm

In this section, we present an active learning method
based on SVM. There have been other efforts in
using active learning in combination with SVM
(Brinker, 2003; Xu et al., 2007), our contribution
is the design of new uncertainty measures used for
sample selection. In addition, the way representa-
tiveness and diversity measures are computed and
combined are novel.

The algorithm is pool-based. At each iteration, k
(k > 1) instances are selected from a pool /. To
select the more informative instance(s), three mea-
sures are used: uncertainty, representativeness and
diversity. In the next subsections, we begin with
an overview of multi-class classification with SVM,
then introduce our three measures and describe the
active learning algorithm.

4.1 Multi-class classification

In SVM binary classification, positive and negative
instances are linearly partitioned by a hyper-plane
(with maximum marginal distance to instances) in
the original or a higher dimensional feature space.
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In order to classify a new instance z, its distance
to the hyper-plane is computed and x is assigned to
the class that corresponds to the sign of the com-
puted distance. The distance between instance x
and hyper-plane H, supported by the support vectors
x1...xy, is computed as follows (Han and Kamber,
2006):

l

d(z,H) = Z Yo TET . 4 by
k=1

(D

where y;, is the class label of support vector xy;
ar and by are numeric parameters that are deter-
mined automatically.

For multi-class classification with m classes, in
one-versus-one case, a set H of w hyper-
planes, one for every class pair is defined. The
hyper-plane that separates class 7 and j will be noted
H; ;. We note H; C H the set of the m — 1 hyper-
planes that separate class ¢ from the others.

In order to classify a new instance =z, its distance
to each hyper-plane H; ; is computed and z is as-
signed to class 7 or j. At the end of this process,
for every instance x, every class ¢ has accumulated
a certain number of votes, noted V;(z) (number of
time a classifier has attributed the class ¢ to instance
x). The final class of x, noted C'(x) will be the one
that has accumulated the highest number of votes.

C(x) = arg max V;(x)

1<i<m

2)

4.2 Uncertainty

Uncertainty is one of the most important measures
of informativeness of an instance. If the learner
1S uncertain about an instance, that shows that the
learning model is not able to deal with the instance
properly. As a result, knowing the correct label of
this uncertain instance will improve the quality of
learning model.

In the process described in subsection 4.1, there
are two places where uncertainty can be measured.
In the first case, a decision is taken based on the dif-
ference of two distances. The smaller the difference,
the less reliable the decision is. In the second case, a
decision is taken based on the result of a vote. If the
outcome of the vote does not show a clear majority,
the decision will be less reliable.



Four measures of uncertainty are presented below,
the first and second are based on distances while the
third and fourth are based on the result of the vote
procedure.

4.2.1 Nearest to One Hyper-Plane (NOH)
Uncertainty of an instance x is defined here as the
distance to its closest class separating hyper-planes.
min
Ho(a)
4.2.2 Nearest to All Hyper-Planes (NAH)

NAH defines the uncertainty of instance x as the
sum of its distances to all its class separating hyper-
planes.

p(e) = min |d(z, H)| ()

Y ld(z, H)

HeHeo ()

o(z) S
4.2.3 Least Votes Margin (LVM)

LVM estimates the uncertainty of an instance by
the difference between the two highest votes for this
instance.

p(x) = Vi(z) — Vj(x) (5)

where 7 is the class that has collected the highest
number of votes and j the class that has collected the
second higher number of votes.

4.2.4 Votes Entropy (VE)

VE is based on the entropy of the distribution of
the vote outcome:

— Y P(Vi(x))log P(Vi(x))

1<i<m

p(x) (6)

where P(V;(x)) is simply estimated as its relative
frequency V;(z)/m.

4.3 Representativeness

Representativeness is another important measure for
choosing samples in active learning. In figure 1,
sample 1 is the nearest instance to decision bound-
ary, it is therefore the instance that will be selected
using uncertainty criterion. But it should be clear
that this sample is not appropriate for selection, an-
notation, and addition to the training data, because it
is in fact an outlier and non representative instance.
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Figure 1: The weakness of uncertainty measure for deal-
ing with outliers. Circles and triangles represent labeled
instances while squares represent unlabeled instances.

This simple example shows that uncertainty mea-
sure alone is not suited to fight against outliers and
noisy samples. In order to prevent the learner to se-
lect such instances, a representativeness measure )
is used. It simply computes the average distance be-
tween an instance and all other instances in the pool:

U(x) = % Z ‘dist(m,x/){

z’'eld

(7

where N is the number of instances in the pool,
and dist is the distance between two samples which
can be computed by simply applying a kernel func-
tion on them:

®)

As it is shown in equation 7, the samples which
are more similar to other samples of the pool will be
considered to be more representative.

In order to take into account representativeness
in the active learning algorithm, the distance be-
tween every sample pairs of the pool must be com-
puted. This computation is a costly process, but
these distances can be computed only once for the
whole active learning algorithm. Algorithm 1 de-
scribes how representativeness and uncertainty mea-
sures have been combined.

dist(x;, x;) = kernel(z;, z;)

4.4 Diversity

Diversity is the third measure that is used for in-
stance selection. Instances that are both unreliable
and representative may be very close to each other



Figure 2: The necessity of applying diversity measure to
select samples from the whole problem space.

and it might be interesting, in order to better cover
the problem space, to select instances that are differ-
ent from each other. This is done by taking diversity
into account.

Figure 2 illustrates the effect of considering the
diversity measure on a simple problem. In this prob-
lem, the learner chooses 4 instances for each iter-
ation. Based on uncertainty and representativeness
measures, samples 1, 2, 3, and 5 should be selected.
However, 1, 2 and 3 are very similar, and only one of
such samples may be enough for learning. Besides,
selecting 7 and 8 will lead to a better covering of the
problem space.

In our algorithm, diversity is taken into account
after uncertainty and representativeness were. First,
By instances are chosen, based on uncertainty and
representativeness. A distance matrix is then con-
structed, based on the distance measure of equa-
tion 8. The By instances are then grouped into Br
(Br < Bj) clusters, using hierarchical clustering
and the centroid of each cluster is selected for label-
ing. This process is explained in algorithm 1.

4.5 Proposed Algorithm

The pseudo-code of our active learning algorithm is
shown in Algorithm 1. This algorithm first trains
the model based on the initial labeled data, and ap-
plies a combination of uncertainty and representa-
tiveness measures to select By samples from the
pool. Then hierarchical clustering is applied to the
extracted samples to select Br most diverse sam-
ples. Chosen samples are then labeled and added to
the training labeled set. This process is iterated until

Algorithm 1 THE PROPOSED ACTIVE LEARNING
a: Uncertainty coefficient

L: Labeled set

U: Unlabeled pool

©(z): Uncertainty measure

¥ (x): Representativeness measure

By: Initial query batch size

Bp: Final query batch size

while termination condition is not satisfied do

0 = train(L); Tr = 0;

for i = 1to By do
// Find most uncertain and representative in-
stance
& = arg max, ey [ap(z) + (1 — a)y(z)];
Tr=Tru{z};

end for

Apply Hierarchical clustering on 7 to extract

set Tz of B diverse samples;

U=U—Tr;
L=LUTg;
end while

at least one termination condition is satisfied. In our
experiments, the algorithm stops when all instances
of the pool were selected and labeled.

Our algorithm may seem much more costly than
the original SVM algorithm. However, it is easy to
show, similar to (Brinker, 2003), that it only multi-
ply by a coefficient of N/Bp (N is the final number
of labeled instances) the total computational com-
plexity of original SVM.

S Corpus Description

Two standard corpora were used for our expri-
ments: TimeBank (v. 1.2)(Pustejovsky et al., 2003)
and Opinion (www.timeml.org). TimeBank
is composed of 183 newswire documents and
64 077 words, and Opinion comprises 73 docu-
ments with 38 709 words. These two datasets
have been annotated with TimeML (Pustejovsky et
al., 2004). There are 14 temporal relation types
(SIMULTANEOUS, IDENTITY, BEFORE, AFTER,
IBEFORE, IAFTER, INCLUDES, IS INCLUDED,
DURING, DURING_INV, BEGINS, BEGUN_BY,
ENDS, ENDED _BY) in the TLink class of TimeML.
Similar to (Mani et al., 2006; Chambers et al., 2007),
we used a normalized version of these 14 temporal
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relation types, which contains only the following six
temporal relations:

SIMULTANEOUS ENDS BEGINS
BEFORE IBEFORE INCLUDES

In order to convert 14 relations into 6, the inverse
relations were omitted (e.g., BEFORE and AFTER),
and IDENTITY and SIMULTAENOUS, as well as
IS_INCLUDED and DURING were collapsed, re-
spectively.

Relation Type oTC
IBEFORE 131
BEGINS 160
ENDS 208
SIMULTANEOUS | 1528
INCLUDES 950
BEFORE 3170
TOTAL 6147

Table 1: The normalized TLink class distribution in OTC.

In our experiments, as in several previous work,
we merged the two datasets to generate a single
corpus called OTC. Table 1 shows the normalized
TLink class distribution (only for Event-Event rela-
tions) for OTC corpora.

6 Experimental Results

The algorithm described above was evaluated on
OTC corpus with our four uncertainty measures with
and without representativeness and diversity. We
used random instance selection (i.e., passive learn-
ing) as the baseline strategy.

Several kernels can be used for such experiments.
As explained in section 2, we decided to use the ker-
nel proposed in (Mani et al., 2006), which we will
refer to as Mani’s kernel, and the Argument Ances-
tor Path Distance (AAPD) polynomial kernel pro-
posed in (Mirroshandel et al., 2010). AAPD polyno-
mial is the state of the art pattern-based algorithm,
which exclusively combines gold standard features
of events and grammatical structures of sentences.

All evaluations are based on a 5-fold cross valida-
tion. The original corpora was randomly partitioned
into 5 parts, out of which, a single part was retained
for testing the model, and the remaining 4 parts were
used for the training and applying our instance se-
lection strategies. This process was then repeated
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5 times (the folds), with each of the 5 parts being
used exactly once as the test data. To perform the
experiments, we started from initial labeled set with
100 randomly selected samples, and in each itera-
tion, 25 samples were selected, labeled, and added
to the previously labeled set.

6.1 Uncertainty Measure Alone

Figures 3 and 4 show the result of applying our
four uncertainty measures for “instance selection”
in OTC, using Mani’s (Figure 3) and AAPD kernels
(Figure 4).
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Figure 3: Learning curves for different uncertainty in-
stance selection strategies applied to OTC using Mani’s
kernel.
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Figure 4: Learning curves for different uncertainty in-
stance selection strategies applied to OTC using AAPD
kernel.

The figures show that all proposed uncertainty in-
stance selection strategies are effective and lead to
learning curves that are above the baseline. Vote



based measures have outperformed distance based
ones. Among the two distance based measures, NAH
led to better results than NOH, showing that averag-
ing (aggregation) over the distances to the different
separating hyperplanes is more robust than taking
into account only the distance to the closest one.

The two vote based methods led to very close re-
sults, which seems to indicate that the system usu-
ally hesistates between two classes (and not more)
when trying to classify an instance.

6.2 Combining Uncertainty and
Representativeness Measures

Representativeness has been introduced in order to
fight against outliers. Such outliers have two differ-
ent origins. The first one is data sparseness: some
temporal relation events are poorely represented in
the data. Eliminating such instances will degrade the
results on the corresponding class but will introduce
less noise in the data. The second origin of outliers
is the difficulty of problem, even for human anno-
tators (Pustejovsky et al., 2003). This causes some
mistakes in annotation and generates some outliers.
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Figure 5: Accuracy improvement when adding represen-
tativeness measure to the uncertainty instance selection
in Mani’s kernel.

In the second series of experiments, we combined
a representativeness measure with different uncer-
tainty instance selection strategies to tackle outliers’
side effects. In our different experiments, the best
value for uncertainty coefficient (o)) was 0.65. Fig-
ure 5 (resp. 6) shows the accuracy improvement
when adding representativeness to uncertainty with
Mani’s (resp. AAPD) kernel. We have chosen to
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Figure 6: Accuracy improvement when adding represen-
tativeness measure to the uncertainty instance selection
in AAPD kernel.

represent just the improvement rather than the learn-
ing accuracy, because the learning curves were not
easy to compare.

The results show that distance based measures are
more sensitive to outliers than vote based ones. Fig-
ures 5 and 6 also show that the representativeness
measure has less impact on AAPD kernel than it has
on Mani’s kernel. This is because AAPD kernel is
more resistant to outliers than Mani’s kernel.
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Figure 7: Accuracy improvement when adding diversity
in the instance selection with Mani’s kernel.

6.3 Combining Uncertainty,
Representativeness and Diversity

In the last series of experiments, diversity was added
to the instance selection procedure. In each iteration,
first 80 instances of the pool were selected by com-
bination of uncertainty and representativeness mea-



0.5
OTC, AAPD Kernel

——NOH
——NAH
--- LVM
——VE

0.4

o o
N w
L L

Accuracy Change

o
-
L

-~

-

4300

0 700 1300 1900 2500 3100 3700 4900

-0.1

Number of instances queried

Figure 8: Accuracy improvement when adding diversity
in the instance selection with AAPD kernel.

sures. Next, a hierarchical clustering method was
used to select the final 25 instances. The accuracy
improvement, as it is shown in Figures 7 and 8, is
moderate.

The reasons why introducing diversity did not
have a greater impact on the results is not clear. That
may be due to the way diversity was introduced in
our model. It could also come from the distribution
of the data: if instances that are both unreliable and
representative are not close to each other, selecting
instances that are different from each other for better
coverage of the problem space is not an issue. More
work has to be done to investigate that point.

The final learning curves, when uncertainty, rep-
resentativeness, and diversity were all considered,
are shown in figures 9 and 10. As shown, vote-based
uncertainty measures still obtain better results than
distance based measures.

7 Conclusion

In this paper, we have addressed the problem of ac-
tive learning based on support vector machines for
temporal relation classification. Three different kind
of measures have been used for selecting the most
informative instances: uncertainty, representative-
ness and diversity. The results showed that the three
measures improved the learning curve although di-
versity had a moderate effect.

Future work will focus on three points, the first
one is trying other sample selection strategies, as
query by committee, the second will focus on com-
bining the two families of uncertainty measures that
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we have proposed: distance based and vote based.
The third one is about diversity. As mentioned
above, we do not know if this phenomenon is not
well handeled by the model or if it is not an issue for
the problem at hand.
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Figure 9: Learning curves for combined uncertainty, rep-
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A Fast Accurate Two-stage Training Algorithm for
L1-regularized CRFs with Heuristic Line Search Strategy
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Abstract

Sparse learning framework, which is very
popular in the field of nature language
processing recently due to the advantages
of efficiency and generalizability, can be
applied to Conditional Random Fields
(CRFs) with L1 regularization method.
Stochastic gradient descent (SGD) method
has been used in training L1-regularized
CREFs, because it often requires much less
training time than the batch training algo-
rithm like quasi-Newton method in prac-
tice. Nevertheless, SGD method some-
times fails to converge to the optimum,
and it can be very sensitive to the learn-
ing rate parameter settings. We present a
two-stage training algorithm which guar-
antees the convergence, and use heuris-
tic line search strategy to make the first
stage of SGD training process more robust
and stable. Experimental evaluations on
Chinese word segmentation and name en-
tity recognition tasks demonstrate that our
method can produce more accurate and
compact model with less training time for
L1 regularization.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et
al., 2001; Sutton and McCallum, 2006) are one of
the most widely-used machine learning approach
in the field of nature language processing, for their
ability to handle large feature sets and structural
dependency between output labels. The applica-
tions of CRFs cover a wide range of tasks such
as part-of-speech (POS) tagging (Lafferty et al.,
2001), semantic role labeling (Toutannova et al.,
2005) and syntactic parsing (Finkel et al., 2008).
CRFs outperform other models like Maximum En-
tropy Markov models (McCallum et al., 2000), be-
cause they overcome the problem of “label bias”.
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Moreover, CRFs can output the probabilistic of la-
beling result for further use as pipeline or rerank-
ing.

For all types of CRFs, the maximum-likelihood
method can be applied for parameter estimation,
which means training the model is done by max-
imizing the log-likelihood on the training data.
To avoid overfitting the likelihood is often penal-
ized with the regularization term. There were two
common regularization methods named L1 and
L2 regularization. L1 regularization, also called
Laplace prior, penalizes the weight vector with its
L1-norm. L2 regularization, also called Gaussian
prior, uses L2-form. Based on the work of Gao
et al. (2007), there is no significant difference be-
tween these two regularization methods in terms
of accuracy. But L1 regularization has a major ad-
vantage that L1-regularized training can produce
models, of which the feature weights can be very
sparse, then the size of the model will be much
smaller than that produced by L2 regularization.
Compact models are more interpretable, general-
izable and manageable, require less resources like
memory and storage. It is very meaningful espe-
cially for the rapid development of mobile appli-
cation nowadays, which suffer the scarcity of re-
sources. In many NLP tasks, the feature sets can
reach the magnitude of several million.

Besides, L1 regularization method can implic-
itly perform the feature selection, and provide the
result for further process such as iterative approach
(Vail et al., 2007; Peng and McCallum, 2004).
This task requires that we need to train the model
as accurate as possible, as to converge to the op-
timum. The feature selection can be regarded as
reliable and unbiased after such a process.

Quasi-Newtion method was successfully and
efficiently used in L1-regularized model by An-
drew and Gao (2007). They presented an
algorithm called Orthant-Wise Limited-memory
Quasi-Newton (OWL-QN), which is based on L-

Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 65-74,
Chiang Mai, Thailand, November 8 — 13, 2011. (©2011 AFNLP



BFGS algorithm (Liu and Nocedal, 1989) and
achieve better convergence than the method intro-
duced by Kazama and Tsujii (2003).

Stochastic gradient descent (SGD) methods are
another kind of L1-regularized training methods.
It is a very attractive framework for it often re-
quires much less training time than the batch train-
ing algorithm in practice. Tsuruoka et al. (2009)
presented a variant of SGD that can efficiently pro-
duce compact models with L1 regularization. The
main idea is to keep track of the total penalty and
the penalty each weight has applied, so that the
penalization smooth away the noisy gradient.

Although SGD method with cumulative penalty
is very efficient, it sometimes fails to converge to
the optimum, because the training process is usu-
ally terminated at a certain number of iterations
without explicit stop criteria as in quasi-Newton
method. Another problem is that the training re-
sult of SGD method is very sensitive to the param-
eter settings of learning rate, therefore we have to
tune the values of parameters for different tasks,
which is not efficient in practice.

In this paper, we present a two-stage L1-
regularized training algorithm to solve these two
problems. In the first stage, we use the SGD
method to get a relative good solution quickly. In
the second stage, we use the OWL-QN method
to improve the model which has been dealt with
the SGD method. By this means we can fast get
the accurate model. The learning rate scheduling
in the first stage is done by heuristic line search,
which makes the process more robust and stable.

Our experiments are conducted on two tasks,
Chinese word segmentation and name entity
recognition. We show that our method can pro-
duce more accurate and compact model with less
training time for L1 regularization. We also ver-
ify that the result of SGD training method will be
more robust when using the heuristic line search
strategy.

The rest of the paper is organized as follows.
Section 2 introduces the basics of CRFs. Sec-
tion 3 describe the two-stage algorithm for L1-
regularized models. Experimental results are
shown in Section 4. We conclude the work in Sec-
tion 5.

2 Conditional Random Fields

In this section, we briefly describe the basics of
conditional random fields (CRFs) (Lafferty et al.,
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2001; Sutton and McCallum, 2006) and introduce
the definition of some concepts and parameters.

2.1 Linear-chain CRFs

CRFs defines the conditional probabilistic distri-
bution over possible output sequences y for obser-

vation x as following:
1
1
Z(x) } ;o (D

K
exp {Z )\ka(X) y)
k=1
where FJ,(x,y)is equal to 37 fu(X, yt—1,s,1).
{fx} is a set of feature function and )y is the
weight of the feature, and Z(x) is the normaliza-
tion factor defined by

K
= exp {Z Mo F (x, y)} .®
y k=1

The feature function can be divided into uni-
gram features and bigram features, here we simply

rewrite fk (Xa Y, t) as fk (X7 Yt—1, Yt, t) for conve-
nient.

p(y[x) =

2.2 Training

The maximum-likelihood method is a commonly
used way applied for parameter estimation, which
means we train the model by minimize the negated
conditional log-likelihood L(\) on the training
data:

L(A) = = logp(x,y) 3)
(X.Y)
= > {logZ Z)\ka X y)}
(X,y) k=1

To avoid overfitting, the likelihood is often penal-
ized with the regularization term, which we will
talk about in the later sections.

The partial derivative of L(\) by the feature
weights A\ are given by

8
W = ZZEy\ka:thlyta)
"“ xy) t=1
-y kaxyt Lyst) (4
(xy) t=1

where E),y|x) denotes the conditional expectation
under the model distribution:
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Computing the conditional expectation directly
is impractical for the large number of possible
tag sequences, which is exponential in the length
of the observation. Thus, a dynamic program-
ming approach known as the Forward-Backward
algorithm originally described for Hidden Markov
models (Rabiner, 1989), is applied in a slightly
modified form. For the forward recursions, we
have

Oéo(J_) =1

a1 (y) = Sy on(y') exp { I Mefu(x, ', 8) |

and for the backward recursion, we have

Br+1(T) =1

Buly) = 3, Bria (v) exp { IS Mefr(x, v, w.1) }

for0 <t <Tandy €Y, where | and T are de-
fined as special states for the begin and end of the
sequence. Then the normalization factor is com-
puted by

Z(x) = Bo(L),

and the conditional probabilities P(y;—1
v, y+ = y|x) are given by

(6)

K
Z )\kfk(xa Z//7 Y, t)

k=1

a¢(y') exp { } Br+1(y)/Z(x)

3 L1 Regularization in CRFs

3.1 Regularization

The logarithmic loss function L(\) defined by (3)
is usually penalized with an additional regulariza-
tion term, which prevents the model from overfit-
ting the training data. There are two common reg-
ularization methods named L1 and L2 regulariza-
tion, in the case of L1 regularization, the term is
defined as:

R(A) =C | Ml (7
k

where C' is the regularization parameter that con-
trols the trade-off between fitting exactly the ob-
servations and the L1-norm of the weight vector.
This value is usually tuned by cross-validation or
using the heldout data.

Now we can redefine the objective loss function
as

L(\) + R(N). (8)

67

3.2 Orthant-Wise Limited-memory
Quasi-Newton

It is not easy to use some common numerical opti-
mization strategies such as limited memory BFGS
(Liu and Nocedal, 1989) directly with L1 regular-
ization, because the regularization term is not dif-
ferentiable when the weight is zero.

A very efficient strategy called Orthant-
Wise Limited-memory Quasi-Newton (OWL-QN)
method is introduced in (Andrew and Gao, 2007).
This algorithm is motivated by the observation that
the L1 regularization term is differentiable when
restricted to a set of points in which each coor-
dinate never changes sign (called its “orthant”).
Furthermore it is a linear function of its argu-
ment, which means the second-order behavior of
the regularized objective function on a given or-
thant is determined by the log-likelihood compo-
nent alone. Only a few steps of the standard L-
BFGS algorithm have been changed in the OWL-
QN method, and these differences are listed be-
low:

1. The “pseudo-gradient” is used in place of the
gradient.

. The resulting search direction is constrained
to match the sign pattern of the negated
pseudo-gradient.

. Each parameter is projected back onto the ini-
tial orthant of the previous value during the
line search.

Andrew and Gao (2007) proved that OWL-QN
method is guaranteed to converge to a globally op-
timal result.

3.3 Stochastic Gradient Descent

Stochastic gradient approaches use a small batch
of the observations to get a crude approximation
of the gradient of the objective function given by
(3). The small batch size makes us possible to
update the parameters more frequently than the
origin gradient descent and speed up the conver-
gence. Only considering the log-likelihood term,
the updates have the following form

AL(\)

k Ty VNN

€)
where j is the iteration counter and 1), is the learn-
ing rate. It should be noted that the partial deriva-
tive we presented here is not the true gradient



but the crude approximation from small randomly-
selected subset of the training samples. In (Tsu-
ruoka et al., 2009), a variant of SGD that can effi-
ciently train L1-regularized CRFs was presented.
The main idea can be concluded as follows:

1. Only update the weights of the features that
are used in the current observation, called
“lazy update”.

2. “Clip” the parameter value when it crosses
Zero.
3. Keep track of the cumulated penalty that the

weights of features should been received if
the fluctuationless gradient were used, and
use this value to the update.

Let z; be the total L1-penalty that each weight
should been received, it is simply accumulated as:

cJ
=N Z M-
Ni=
Then the process of regularization can be formal-

ized as follows
AT — (2 + qk, ) )\i >0
k (zj —q. 1) AN, <0

where qi is the total L1-penalty that A; has actu-
ally received:

(10)

max(0, )\]

min(0, /\k

J
Z >\t+1 )\t (11)

Tsuruoka et al. (2009) demonstrated that this al-
gorithm can be much more quickly than the OWL-
QN method and yield a comparable performance,
while the value of objective function and the num-
ber of active features are not as good as OWL-QN.
The reason is that we usually terminated the train-
ing process at a certain number of iterations, be-
cause there are no explicit stop criteria for SGD.

Another issue is that the scheduling of learning
rates can be very tricky. Tsuruoka et al. (2009)
suggest that exponential decay is a good choice
in practice compared with the method used in
(Collins et al., 2008). This kind of scheduling of
learning rates have the following form:

nj = moad/N (12)

where 79 and « are both constant. We name 7
the initiation learning rate parameter and « the de-
scent learning rate parameter. These learning rate
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parameters have a great influence on the result of
SGD training, and they need to be tuned for differ-
ent tasks, which is not very efficient in practice.

3.4 Two-stage L1-regularized Training

Based on what we have mentioned above, we
know that the SGD method sometimes fails to
converge to the global optimal solution, for it
does not have the explicit stop criteria as in the
quasi-Newton method. Although the scheduling
of learning rate found in (Collins et al., 2008):

7o

+i/N -

nj =
guarantees ultimate convergence theoretically. Its
actual convergence speed is poor in practice
(Darken and Moody,1990). We have to take quite
a number of iterations if we need the result close
enough to the best solution. This contradicts to
the main motivation we use SGD method for pa-
rameter estimation that can speed up the training
process.

On the other hand, based on the work of Andrew
and Gao (2007), we know that OWL-QN method
guarantees the convergence. And we can test the
relative change in the objective function value av-
eraged over the several previous iterations for stop
criteria.

Tsuruoka et al. (2009) demonstrated that SGD
method converges much faster than OWL-QN
method especially in the first few iterations. This
fact motivates us to use a two-stage training strat-
egy. In the first stage, we use the SGD method to
quickly get a relative good solution. In the second
stage, we use the OWL-QN method to improve the
model which has been dealt with the SGD method.

This method can be also driven from an alter-
native view. In the theory of convex optimization
(Boyd and Vandenberghe, 2004), the asymptotic
convergence rate of Newton’s method is quadratic
if we start at a point close enough to the global op-
timum.! In fact, the iterations in Newton’s method
can fall into two stages. The second stage, which
occurs once the searching point is quite close to
the optimum solution, is called “quadratically con-
vergent stage”. The first stage is usually referred
as the “damped Newton phase”, because the algo-
rithm may choose a step size that is different from
the exact Newton step to satisfy the backtracking

lQuasi-Newton method shares many properties with

Newton’s method, though its convergence rate is generally
superlinear but not quadratic.



condition.> The quadratically convergent stage is
also called the “pure Newton phase” since the full
Newton step is always chosen in these iterations .
This fact demonstrates that if we can find a solu-
tion close to the global optimum, it will not only
increase the average convergence rates, but also
reduce the time consuming needed for backtrack-
ing line search. This is what we achieved by the
first stage of SGD training method.

3.5 Heuristic Line Search

Another problem of SGD method is the trouble-
some learning rate parameters tuning, and these
parameters have a significant influence on the re-
sult of SGD training. No matter which way to set
the learning rate, if it is fixed without taking the
actual effect of the current training sample update
into consideration, it may be too large or too small
for some situation. In order to get a more robust
and stable method for learning rate scheduling, we
present a heuristic line search strategy inspired by
the implementation of CRFsgd (Bottou, 2007) for
learning rate calibration.

For the purpose of convenience, we define the
objective function for a single sample as

C
— > Il

(14)
N AL€X

I\, x) = —logp(x,y) +
Notice here we only use these active features in
the current sample as the L1 regularization term,
for we only update these associate parameters in a
lazy fashion.

Now we try to find the learning rate that de-
crease the value of this objective function as much
as possible without consuming too much search
time. We simply use a heuristic line search strat-
egy as follows: (1) We use the learning rate cal-
culated by Eq.12 as initiation and get the initial
value of Eq.14. (2) Then we go on to increase
the learning rate until the maximum number of tri-
als for search is reached or the value of Eq.14 is
worse than the initial value, we just decrease the
learning rate from the initiation if the latter situ-
ation happens. (3) At last we just use the learn-
ing rate that yields the best result of Eq.14 dur-
ing the search. For the calculation of Eq.14 only
needs the weights of the features that are used in
the current sample, so it will still be very efficient.
The whole algorithm in pseudo-code was showed
in Algorithm 1.

2To ensure the objective function decrease a certain value
and guarantee the convergence.
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Algorithm 1 SGD heuristic line search

1. for k = 0 to MaxIterations

2. Select sample j

3. bestr < LearningRate(k)

4.  UpdateWeights (j,bestr)

5. procedure LearningRate(k)

6. r(0) < initialed by Eq.12

7. init_obj < initialed by Eq.14

8. for i = 0 to MaxTrialTime

0. UpdateWeights(j,r (7))
10. obj(i) < Eq.14
11. Recover weights before update
12. if obj(7) is worse than init_obj then
13. label flag
14. if flag status is changed then
15. r(i+ 1) < r(0) * decay
16. else
17. if flag is not set then
18. r(i + 1) < r(i)/decay
19. else
20. r(i+ 1) < r(i) *x decay
21, bestr = argmin,(;obj(i)
22.  return bestr.

It should be noted that we need not set a large
number for maximum trial time, because it will
generally take a lot of search time and may not
yield a good result but arrives at the local opti-
mum, for we only optimize the objective value of
a single training sample. Here we set the value to
3 empirically. The changing rate for line search
can be any positive number that smaller than 1, it
is set to 0.5 as mostly accepted.

4 Experiments

We evaluate the effectiveness and performance of
our training algorithm using two NLP tasks that
includes Chinese words segmentation and name
entity recognition, which are very typical prob-
lems in the field of NLP.

To show the improvement of our algorithm, we
compare it with the OWL-QN algorithm and SGD
algorithm on the same data sets. For the pur-
pose of run-times comparison, we implemented
all the algorithm in a quite similar way, especially
in feature extraction and gradient computation.
For example, we compute the forward/backward
scores in logarithm domain instead of scaling



Table 1: Feature templates for Chinese word seg-
mentation task.

(1) ¢i—1Yi, CiYis Ci+1Vi
(2) ci—1¢Yi» CiCit1Yi» Ci1Ci+1Yi
3) yi—1yi

method, though the latter method was claimed
faster (Lavergne et al., 2010). All experiments
were performed on a server with Xeon 2.66GHz.

4.1 Chinese Word Segmentation

The first set of experiments used the Chinese
word segmentation corpus from the Second In-
ternational SIGHAN Bakeoff data sets (Emerson,
2005), provided by Peking University. The train-
ing data consists of 19,054 sentences, 1,109,947
Chinese words, 1,826,448 Chinese characters
and the testing data consists of 1,944 sentences,
104,372 Chinese words, 172,733 Chinese charac-
ters. We separated 1,000 sentences from the train-
ing data and use them as the heldout data. The test
data was only used for the final accuracy report.

The feature templates we used in this experi-
ment were listed in Table 1, where c¢; denotes the
ith Chinese character in an instance, y; denotes
the i'" label in the instance. Based on the work
of Huang and Zhao (2007), it was shown that 6
label representation is a better choice in practice.
Compare with the origin 2 label representation or
4 label representation, it can represent richer label
information. We did not use any extra knowledge
such as Chinese and Arabic numbers.

For OWL-QN method and SGD method, we
followed the experiment settings in (Tsuruoka et
al., 2009). The meta-parameters for OWL-QN
method were the same with the default settings
of the optimizer developed by Andrew and Gao
(2007), the convergence tolerance was le-4; the
L-BFGS memory parameter was 10. The regular-
ization parameter C' was tuned in the way that it
maximized the log-likelihood of the heldout data
when using the OWL-QN algorithm. We also used
this value as the regularization parameter in the
SGD method. The learning rate parameters for
SGD were tuned in the way that they maximized
the value of the objective function in 30 passes.
We first set the initiation learning rate parameter
(no) by testing 1.0, 0.5, 0.2, and 0.1, then we set
the descent learning rate parameter («) by testing
0.9, 0.85, and 0.8 with the fixed initiation learning
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Figure 2: Bakeoff 2005 Chinese word segmenta-
tion task: Objective function with fixed 7.

rate parameter.

For our method, we first measured the progress
of the SGD algorithm with heuristic line search
we presented against the origin SGD method. We
use the same parameters settings with the for-
mer method including both regularization param-
eter and learning rate parameters. The number of
passes performed over the training data was also
set to 30. Then we compare the results of both
methods during the training process of the model
with the same parameters, and they were shown in
Figure 1 and Figure 2.

Figure 1 shows how the value of the objective
function changed as the training proceeded with
the same descent learning rate parameter («
0.85), the figure contains six curves represent-
ing the results of SGD method with heuristic line
search and the origin SGD method with differ-
ent initiation learning rate parameter settings (1g).
“HLS” stands for the heuristic line search strategy.
The results shows SGD method with heuristic line
search shows better convergence and more robust



Table 2: Bakeoff 2005 Chinese word segmentation

task. Accuracy of the model on the testdata.

L+ R | #Features | F score
OWL-QN | 56451.8 114,942 | 94.81
SGD 61398.6 232,585 94.92
Ours 56481.9 117,374 | 94.78

Table 3: Bakeoff 2005 Chinese word segmentation
task. Training time of the model on the testdata.

Passes Time
OWL-QN 141 2h59min
SGD 30 58min
Ours 5+ 88 | 2h06min

result than the origin SGD method when using the
same learning rate parameter settings. Figure 2
shows the results with different settings of learn-
ing rate parameters (fixed g = 1), and it demon-
strates the same trend as Figure 1.

Then we trained the models with the training
data and evaluated the accuracy of the Chinese
word segmenter on the test data. The number of
passes performed over the training data in SGD
was also set to 30. In our method, we set the SGD
iteration times to 5. It is worth noting that we
didn’t spend much time in tuning the value of this
parameter. Based on a cursory view of the train-
ing process, we found that it converge to a relative
“good” result after the first 5 iteration. We used
this value throughout all the experiments. Because
we would take the OWL-QN method to guarantee
the final convergence, and the SGD method with
heuristic line search strategy is insensitive to the
learning rate parameters, this value would not have
a significant influence on the performance.

The results are shown in Table 2 and Table 3. In
Table 2, the second column shows the final value
of the objective function. The third column shows
the number of active features in the final result-
ing model. The fourth column shows the F score
of the Chinese word segment results, which is the
harmonic mean of precision P (percentage of out-
put Chinese words that exactly match the golden
standard Chinese words) and recall R (percentage
of golden standard Chinese words that returned by
our system). In Table 3, the second column shows
the number of passes performed in the training, in
our method, this value includes the the number of
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Table 4: Feature templates for name entity recog-
nition task.

(1) ci—2Yi, Ci—1Yi, CiVis Cit1Yis> Cit2Yi
(2) ci—1¢yi, Cicit1Yi
3) yi—1yi

passes both in the first stage of SGD and the sec-
ond stage of OWL-QN process. The third column
shows the training time.

In the terms of accuracy, there was no signif-
icant difference between all the models, the ori-
gin SGD method yield the slightly better result,
probably due to the model has larger features sets.
This doesn’t contradict to our original purpose, for
we have got a substantial improved result in both
the final value of the objective function and the
number of active features compared with the ori-
gin SGD method, and to the same level as OWL-
QN method. Notice the origin feature sets are over
6 millon, L1 regularization methods produced the
models which are compact indeed. The official
best result in the closed test achieved an F score of
95.00, and our result is quite close to that, ranked
4th of 23 official runs.

On the other hand, our method took about 30%
less than the OWL-QN method in the training
time. Our method only needs 88 passes over
the whole training data in the second stage for
convergence compared with 141 in the OWL-QN
method, which shows a significant improvement
in training time consuming, for we have used the
first stage of SGD method to get a nearly optimal
and stable result beforehand.

4.2 Name Entity Recognition

The second set of experiments used the name en-
tity recognition corpus from the Fourth Interna-
tional SIGHAN Bakeoff data sets (Jin and Chen,
2008), provided by Microsoft Research Asia.
The training data consists of 23,182 sentences,
1,089,050 Chinese characters and the testing data
consists of 4,636 sentences, 219,197 Chinese char-
acters. We separated 1,000 sentences from the
training data and use them as the heldout data. The
training data is annotated with the “IOB” tags rep-
resenting name entities including person, location
and organization.

The feature templates we used in this experi-
ment were listed in Table 4. Notice we did not
change the label representation made by the origin



Table 5: Fourth SIGHAN Bakeoff name entity
recognition task. Training time of the model on
the testdata.

L+ R | Passes Time
OWL-QN | 11247.1 219 | 5h26min
SGD 13993.3 30 | 1hO8min
Ours 112455 | 5+ 122 | 3h10min

Table 6: Fourth SIGHAN Bakeoff name entity
recognition task. Accuracy of the model on the
testdata.

#Feat. | LOC | ORG | PER
OWL-QN | 34,579 | 89.94 | 82.61 | 90.65
SGD 113,005 | 89.39 | 82.75 | 90.78
Ours 36,709 | 90.05 | 82.25 | 90.49

training data for convenient. Again a richer label
representation may yield a better performance.

The other experiment settings are the same with
the experiment on Chinese word segmentation.
The comparison results are shown in Table 5, Fig-
ure 3 and Figure 4. The trend in the results is
the same as that of the Chinese word segmenta-
tion task. SGD method with heuristic line search
strategy produced more stable and robust result
than the origin SGD method. Although there will
have fluctuations sometimes (in Figure 4), the line
search strategy shows the ability to find an appre-
ciate step size in that case. Again our method con-
verged to a much better solution against SGD in
both the final value of the objective function and
number of active features, and took about 40% less
training time than OWL-QN.

The accuracy of the results is shown in Table
6, there was no significant difference between all
the models as well. The F score of organization
name entity recognition was worse than the results
in person and location name entity, for organiza-
tion name entities in Chinese often have a relative
long distance dependency, which is not easy to be
captured by our local feature templates in the Chi-
nese character level.

5 Conclusion

We have presented a two-stage algorithm that can
efficiently train L1-regularized CRFs. Experi-
ments on two NLP tasks demonstrated that our
method is effective and efficient by utilizing both
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the advantages of SGD and OWL-QN.

In the future, we intend to study how to use
the results of the first stage of SGD learning to
estimate the Hessian information, which can be
provided for the second stage of quasi-Newton
method to enhance the effectiveness of training.
Borders et al. (2009) looked into this problem
in a similar way. It is also worthwhile to investi-
gate whether other adaptive learning rate schedul-
ing algorithms can result in fast training with our
method, as in (Vishwanathan et al., 2006; Huang
et al., 2007).
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Abstract

We present a novel topic modeling ap-
proach to sentiment analysis for docu-
ments organized into hierarchical cate-
gories. In our approach, positive, nega-
tive, and subject matter topics are learned
and used to infer document labels. A
Markov chain Monte Carlo model pro-
cedure adapts the number and structure
of topics based on a minimum descrip-
tion length objective function. We ap-
ply our approach to Yelp.com business re-
views and Amazon.com book reviews and
demonstrate that 1) the model adaptation
procedure selects a high quality model
from the space of alternatives, and 2) the
resulting model performs well relative to
state of the art regression and topic model-
ing approaches.

1 Introduction

Selecting an appropriate model is an important
part of any machine learning endeavor. The model
must be chosen in a manner so as to balance two
objectives: 1) Be sufficiently rich to capture the
relevant patterns in the data, and 2) Be simple
enough to avoid spurious patterns in the training
data (overfitting). In natural language processing
tasks, there are often many modeling choices to
be made regarding what feature granularities and
interactions to consider. It is important to make
these decisions in a manner such that the resulting
model strikes a balance between these two some-
what contradictory objectives.

In order to appropriately make these choices,
we must consider not only the task involved but
also the training data available. With copious
data we can reliably calibrate complex models, but
with limited data complex models risk overfitting.
Many general model selection techniques exist in
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which each candidate model is fit to the training
data and scored with respect to a particular cri-
terion. While these approaches allow us to com-
pare a small number of models in order to select
the most appropriate, they require calibrating each
model’s parameters to the training data. However,
when there are many modeling choices to be made
and thus a large space of alternative models, fitting
all of them to the training data is computationally
prohibitive.

In this paper, we present a novel topic mod-
eling approach for structured sentiment analysis
domains and an automatic model adaptation ap-
proach that takes advantage of categorical meta-
data. This model adaptation approach resolves the
structure of the metadata with the significant pat-
terns in the training data to determine the number
and range of latent topics.

We demonstrate our approach on Yelp.com
business reviews as well as Amazon.com book re-
views. We show that our model adaptation ap-
proach selects an appropriate model given a par-
ticular amount of training data, and the resulting
model is high quality relative to alternative regres-
sion and topic modeling approaches.

2 Background

Sentiment analysis, in which the opinion of the au-
thor is estimated from a document, has recently
grown in popularity. Many works have explored
unigram models (Pang and Lee, 2005; Snyder and
Barzilay, 2007). Higher-order n-gram models are
explored in (Pang and Lee, 2008; Baccianella et
al., 2009). In order to combat the high dimensional
feature space that accompanies such models, mod-
els restricting features based on part of speech pat-
terns (Baccianella et al., 2009) or opinion tem-
plates (root, modifiers, negation words) (Qu et al.,
2010) have been introduced.

Topic models are generative models in which
the words in a document are assumed to be asso-
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ciated with one of a number of abstract “topics.”
Latent Dirichlet allocation (Blei et al., 2003) is a
popular topic model in which the topic distribu-
tion per document is assumed to have a Dirich-
let prior. In supervised LDA (Blei and McAuliffe,
2007), the distribution of document topics is used
to produce a document label. (Zhao et al., 2010;
Titov and McDonald, 2008b; Titov and McDon-
ald, 2008a) focus on topic modeling based ap-
proaches to aspect-based sentiment summariza-
tion, identifying product features and the opinion
associated with each.

Model selection is the act of using data to
choose a statistical model from a set of candidates.
Often, this task is performed by fitting each can-
didate model to the training data and using a cri-
terion to score the models and select one. Popu-
lar criteria include the Akaike information crite-
rion (AIC) (Akaike, 1974), the Bayesian informa-
tion criterion (BIC) (Schwarz, 1978), and the min-
imum description length principle (MDL) (Rissa-
nen, 1978; Grunwald, 2007). Structural Risk Min-
imization (Vapnik, 1995) defines a general frame-
work in which a nested hierarchy of hypotheses
can be defined based on prior knowledge of the do-
main, such that a hypothesis balancing goodness
of fit with simplicity can be identified. The work
presented in this paper is closely related to the
model adaptation procedure presented in (Levine
et al., 2010), in which a hill-climbing approach is
used to explore a large space of generative models.

3 Topic Modeling for Sentiment Analysis
in Structured Domains

Our approach takes advantage of hierarchical cat-
egorical metadata. Formally, this hierarchy forms
a tree structure, which we refer to as C (See Figure
1). Individual nodes in the tree are called cate-
gories, for which we use notation c. A categoriza-
tion, c, is a set of categories, ¢ = {cq,1,¢42,-.-}-
c can be thought of as metadata about a prod-
uct/service being reviewed. For example, with re-
gard to a book review, ¢ could equal {“Fiction”,
“Fiction\Drama”, “Fiction\ Drama\Romance”, ...
}. ¢ must be well formed. That is, if a node ¢ € C
appears in categorization c, all ancestors of ¢ (in
the tree C) must also appear in c. ¢ can contain
multiple distantly related categories. For exam-
ple, a particular book could belong to both “Fic-
tion\\ Poetry” and “Children\ Humor.”
Documents, or examples, are denoted d
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Fiction [Nonfiction] [Computers ] Children

[ Drama ] [Crime] [ Soﬂm [Hurér]\
/I\ [ Poetry ] /I\[ Economics] A[ Programming]A\[ Art and Music ]
N N N N

Figure 1: A subtree of the category tree, C, corre-
sponding to the Amazon Books domain.

(Xd, Cd,Ya) Xd = [Wa,1,Wd,2; -+, Wq,[x,|] 1S @ Vec-
tor of words. Each word is an element from the
vocabulary, V' = {w1,wa,...,wy|}. cq is the
document’s categorization. Yy, is a numeric rat-
ing from a discrete space ({1,2,3,4,5} for our do-
mains). The rating is an overall score given by the
document’s author to the product or service being
reviewed.

We are given a collection of documents, D, and
our goal is to learn a function f((x,c)) to predict
rating ¢ from an unlabeled document so as to min-
imize the expected loss over the unknown distri-
bution of documents:

E (loss(y, f((x,¢))))

We use the squared error loss function.

)

3.1 Model Structure

We will start by presenting our generative docu-
ment topic model. In this model, each review is
composed of a mixture of topics, and each topic is
associated with a distribution over words. We use
t € T to denote a topic, and P; to denote ¢’s word
distribution. Within a document, each word is as-
sumed to be generated from a particular topic, al-
though which topic is unobservable. In many topic
model approaches, such as latent Dirichlet alloca-
tion (Blei et al., 2003), topics are learned in an
unsupervised or weekly supervised fashion (as is
the case with supervised LDA).

In our model, we assume each document is gen-
erated according to a rigid topic distribution (more
similar to labeled LDA (Ramage et al., 2011)).
Each document is a mixture of three topics: 1) a
positive topic (+), in which the reviewer is speak-
ing favorably about the product/service, 2) a nega-
tive topic (-), in which the reviewer is speaking un-
favorably, and 3) a subject topic (s;) correspond-
ing to general text about the content/features of the
product.



The proportion of positive words to negative
words is a function of the rating score. Subject
topics reflect the language used when discussing
a particular product or group of products, and do
not directly influence a document’s rating. Still,
learning these topics appropriately is crucial to the
performance of the model. When a word is indica-
tive of either the positive or negative topic, it is im-
portant to account for its probability in the subject
topic. For example, the word “good” may be less
indicative of a book review’s rating if the review
discusses a book about ethics. Furthermore, if
subject topics are not learned appropriately, words
related to the subject matter of products/services
with a disproportionate number of positive train-
ing reviews would be attributed to the positive
word topic. This will lead to poor performance
on unseen data. On the other hand, if these words
are correctly attributed to the subject topic, then
the high ratings will appropriately be attributed to
the unconditional positive words appearing in the
reviews.

What constitutes a subject worthy of having its
own topic? For books, should we only make broad
distinctions such as fiction vs. non-fiction? Should
we learn a unique subject topic for each book?
Should we use something in between these two ex-
tremes? In answering these questions, we need to
balance goodness of fit to the training data with
model simplicity. There is no optimal answer, it
is a function both of the domain (in that we need
to make the most “significant” distinctions), and
the amount of training data available to calibrate
our model (more training data allows us to reli-
ably learn the additional parameters introduced by
making additional distinctions).

There exists a many-to-one relationship be-
tween documents and subject topics. The mapping
from document to subject topic is a function of the
document’s categorization, s; = g(cq), s; € T.
We call the function g the topic mapping func-
tion. The range of g is the set of subject topics,
{s1,82,...,sy} C T. In Sections 3.1.1 and 3.1.2
we assume that g is fixed. In Section 3.2, we con-
sider exploring the space of alternative topic map-
ping functions.

We assume that in expectation, a fixed but un-
known fraction, « of each document is composed
of the subject topic. The remainder of the review is
composed of the positive and negative topics, and
the positive/negative ratio is related to the docu-
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ment’s rating. Let 9, and Ypq, represent the
minimum and maximum scores in the rating scale.
For document d with score ¥y, the expected frac-
tional breakdown into topics is as follows:

Positive: fi(ya) =(1—a) 2t Ymin_
Ymaz — Ymin

i Ymaz — Yd
Negative: ff(?/d) :(1 _ a)i
Ymaz — Ymin
Subject:  fs(ya) = )

In total, a model M is composed of the topic
mapping function, the value «, and the word
distributions associated with each topic. M =
(9,0, Py, P_, Py, Ps,, ..., Ps ).

sy sy

3.1.1 Training

Expectation maximization (Hastie et al., 2001) can
be used to train our topic model. The procedure
works by iteratively updating 1) the assignment of
words in each document to latent topics (Expec-
tation Step), and 2) the word distributions asso-
ciated with each topic (Maximization Step). EM
proceeds as follows:

Expectation Step

Each word is assigned an expected topic distri-
bution. For word ¢ in document d:

qai(+) = f+(yd)le(wd,i)
qai(—) = f(yd)ziﬂ. (wa.;)
qa,i(9(ca)) = fs(yd)Pg((icj)(wd,i)
Zas = ) ft(yd)’Pt(wd,i) 3)

te{+7_7g(cd)}

Maximization Step

Topic word distributions are updated so as to
maximize the likelihood of the training data. For
each topic ¢:

> deD Zlidll Ly (wq,i)qq,i(t)

Pi(w) = @
S en S0l qai(t)
where
1 if wg; =w
Ly(wa;) = { 0 other’\lzvise ©)



3.1.2 Inference

Given the trained topic models we use Bayes’ the-
orem to compute the probability that an unlabeled
document (xq,cq) is associated with a particular
rating. Let Ty = {+, —, g(ca) }:

P(y)P(xa,cdly)
P(Xd,Cd)

PO (Sier, AW Pway)
>y PO L (Sier, fi) Plway)
(6)

For evaluation purposes, we output the expected
value of y and compute the squared error to the
true value.

P(y|xq,cq) =

3.2 Model Adaptation

In this section we introduce a Markov chain Monte
Carlo approach to selecting a topic mapping func-
tion g. Here, we stochastically explore the space
of topic mapping functions, driven by the mini-
mum description length principle and estimates of
the effect of modifications to g. This approach re-
sists local minima and efficiently finds a high qual-
ity topic mapping function.

3.2.1 Minimum Description Length
Objective

Our goal is to find a model that balances fit to the
training data with simplicity, and concentrates its
flexibility where most useful to capture relevant
patterns in the domain. We accomplish this by
utilizing a two part minimum description length
objective function. The objective is the sum of 1)
the description length (in bits) required to encode
the model and 2) the description length of the data
given the model.

(7)

where L(M) is a function of the number of
model parameters (= the product of the number
of topics and the vocabulary size) and L(D|M) is
the negative log likelihood of the data given the
model. Thus the goal is to jointly minimize the
complexity of the model and maximize the likeli-
hood of the data given the model, and the objective
can be rewritten as:

L(M,D) = B(N + 2)|V| + —log (I(D|M))
(®)

L(M,D) = L(M) + L(D|M)
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Figure 2: Two possible partitioning trees for the
Amazon.com Books category tree (Figure 1). Tree
b) is formed by splitting s2 in a) based on member-
ship in the “Computer\ Software” category.

where [ is a complexity penalty constant, which
is selected via cross-validation.

3.2.2 Topic Mapping Functions

The topic mapping function g maps from catego-
rization c to a subject topic s; € T. We select a
particular g from the space of binary partitioning
trees, G. In a binary partitioning tree, each in-
ternal node references a category c, and each leaf
node references a subject topic s;. See Figure 2.
Starting at the root, a categorization, c is recur-
sively assigned by each internal node to 1) the left
subtree if the referenced category c is in ¢, and
2) the right subtree otherwise, until a leaf (with
associated subject topic) is reached. For exam-
ple, within the book review domain, a node may
reference the category “Computers.” In this case,
computer books are recursively assigned a subject
topic by the left subtree, and all others by the right
subtree. We allow only well formed partitioning
trees: Any node in g that references a category c
with parent category parent(c) € C must have an
ancestor that references parent(c). For example,
we do not allow a node in g to reference “Com-
puters\Software”, unless we have already condi-
tioned on the “Computers” category. This con-
straint guarantees that we partition the space of
categorizations into coherent regions (we would
never assign “Computer\ Hardware” and “Fiction”
books to the same subject topic while assigning
“Computer\Software” to a different topic).

3.2.3 Adjacent Model Estimation

In order to guide the search through G, we con-
sider 2 types of modification operations: We can
1) Split a leaf based on category ¢ € C, splitting
one partition into two, adding an additional subject
topic to the model, or 2) Merge two leaves with the
same parent, combining two partitions into one,
removing a subject topic from the model.



Given a particular g, there are a finite number of
possible merge and split operations to the leaves.
Key to our search is the fact that we can estimate
the change to the description length objective that
each possible modification will cause, using the la-
tent topic distributions assigned to each topic dur-
ing expectation maximization. Consider merging
two subject topics s; and s;:

~7 sz (w)
AL=—plVI= > D #w)log—p o=
te{s;,s;} wev
)
where
[xal
=3 > Ty(wai)qai(t)
deD i=1
S;,S #
Pmm-(w) Zte{ i1Sj} t( )

Zte{sl,sj} ZdE(D Zz 1‘ 4d l(t)
(10)

Now consider splitting subject topic s; based on
category c:

RL=gvl- X X #lwlos s

te{s;,c,5i,1c1 WEV
(11)

where
x4l
#oow) = D> Tu(wai)gailsi)
d=(x,c.4)€D i=1

s.t.cec
Hsio (W)
Zd (x,c,y)€D Zz 1 de(sz)

s.t.cec
Fsie (w) = Z

[xal
d=(x,c,y)eD i=1

Psi,c (’LU)

Z Ly (wa,i)qa,: (i)

s.t.céc
Py () - #si . (W)
Zd (x,c,y)€D 27, 1 4d, 1(32)
s.t.céc

(12)

These estimates are upper bounds on the change
to the description length objective function. Incor-
porating these changes (and the associated word
distributions) and then retraining the model with
expectation maximization may further reduce the
objective. These bounds serve as a guide to esti-
mate the objective for models that have not been
fit to the training data, which will drive our search
through G for the optimal topic mapping function.

3.2.4 MCMC exploration

Markov chain Monte Carlo (Gilks et al., 1996)
stochastically steps through the space of alterna-
tive topic mapping functions. At each iteration
of MCMC, the topic model with the current topic
mapping function is fit to the training data and
the objective change associated with all possible
merges and splits is estimated. We then construct
a proposal distribution for alternative models that
can be reached with these operations. Limiting the
proposal distribution to these candidate models, as
in (Titov and Klementiev, 2011) and (Singh et al.,
2011) induces a decomposable, feasible computa-
tion. A model is sampled from this distribution
and adopted if certain criteria on its fitness are met.

MCMC will converge to a probability distribu-
tion over models. By making better models (those
with a lower objective) more probable, the MCMC
chain will be driven towards higher quality mod-
els. We use an exponential distribution over mod-
els:

o—L(M,D)

P(M) = —

(13)
with normalization factor Zp.

The proposal distribution, () assigns some prob-
ability to all candidate models that can be reached
by a single merge or split to each of the leaves
in the current partitioning tree. In @, splits and
merges to leaves without a common parent are in-
dependent by construction. Now, consider a par-
ticular leaf, [, that has the following possible splits,
S = {ci1,c9,...,¢}, and cannot be merged with
another leaf. For example, in Figure 2a, the leaf
corresponding to s; meets this condition as it can-
not be merged to another leaf and has possible
splits {“Fiction\ Drama”, “Fiction\Poetry”, “Non-
fiction”, “Computers”, “Children”, ... }. Let M
represent the subset of models where [ is not split,
and M, ., represent the subset of candidate models
where [ has been split with respect to category c;.

o—TL(M,D)
QM) = ——
o~ TL(Mi,c;.D)
Q(Ml,ci) = W
Zl — ( 7TL(MD) + Z |S| MZC,D)> (14)
ces

0 < 7 < 1 controls a balance between having
the proposal distribution completely influenced by



the estimated objectives vs. a uniform proposal
distribution.

For all pairs of leaves that share a common par-
ent, we entertain a merge operation. In Figure 2a
the leaves corresponding to so and s3 meet this
criteria. Suppose two leaves, [ and I’ have possible
splits S = {c¢1, ¢, ..., and S = {c}, 5, ..., )}
respectively. In addition to the one merged alterna-
tive, there are w = (|S| 4 1)(|S’| + 1) alternatives
that involve only splits to the two leaves. Let M ;s
represent the subset of candidate models where [
and [’ are merged

w—%efTL(MH/,D)

e_TE(Ml,l”D) + (Zl)(Zl’)

QM) = —

w 2

(15)

The factor of w2 accounts for the difference be-
tween the number of neighbors that the models
with [ and !’ merged vs. split have. If the two
leaves are not merged, then the conditional proba-
bility for each of the (|.S| +1)(|S’| + 1) remaining
structural alternatives is computed in Equation 14.

A new topic mapping function ¢’ is sampled
from @ and fit to the training data via the expec-
tation maximization presented in Section 3.1.1. If
a random value sampled uniformly from /[0, 1) is
less than

P(My)Q(glg")
P(Mg)Q(d'g)

then ¢’ is accepted as the new topic mapping func-
tion g'*1. This guarantees that the Markov chain
will converge to the distribution P as ¢ — oo. Be-
cause the ratio P(My)/P(M,) appears in Equa-
tion 16, the normalization factor Zp in Equation
13 cancels out and does not need to be computed.

(16)

4 Empirical Evaluation

We perform a set of experiments to demonstrate
the following:

1) Given the topic model structure outlined in
Section 3.1, the model adaptation procedure in
section 3.2 selects a high performing topic map-
ping function while only evaluating a small frac-
tion of the total number of funtions.

2) The topic model resulting from model adap-
tation is high quality relative to alternative state-
of-the-art approaches.

4.1 Data

We demonstrate our approach to two structured
sentiment analysis datasets. First, we gathered a
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collection of approximately 8,000 Yelp.com busi-
ness reviews from the greater New York area.
For this data, businesses are assigned into cate-
gories and subcategories based on the Yelp.com
business hierarchy. There are 22 primary cate-
gories { Arts and Entertainment, Education, Finan-
cial Services, Restaurants,...}, each with 6 to 100
subcategories (restaurants have the most subcat-
egories, {Japanese, Barbeque, Cafe, Fast Food,
Burgers, Ultra High Enc, Formal, Full Bar,...}).
Businesses can be assigned to multiple categories
and subcategories within the hierarchy.

Second, we utilize 20,000 Amazon.com book
reviews, extracted from the data set first pre-
sented in (Qu et al., 2010). Categorical distinc-
tions in these domains are related to the Ama-
zon.com product hierarchy. A small portion of
the product hierarchy appears in Figure 1. Books
can be assigned to multiple distantly related cate-
gories. For example, the book Six Wives of Henry
VIII belongs to “History\ Europe\ England\ Tudor
and Stuart,” “Biographies and Memoirs\Specific
Groups\Women” and three other categories

For each domain, we have at most one review
corresponding to any particular business/book.
This allows for a broad coverage of the space of
categorizations.

4.2 Results and Discussion

To compensate for extreme variations in the train-
ing data we apply two smoothing steps. First, we
found that for longer reviews, the assumption that
each word is drawn independently from the docu-
ment’s topics is too strong, and so for reviews with
more than 35 words, we scale the term counts such
that the total is 35. Second, because of the large
size of the vocabulary, after training, some rare
words have zero or near zero probability in some
of the topics. When these words are observed dur-
ing inference, they have a very strong effect on
the document’s expected rating. We found that
smoothing the subject topics with the overall word
distribution across topics stabilizes the predicted
ratings and improves performance. The amount
of smoothing could be optimized to maximize the
likelihood of the test data, but we found that per-
formance varied little for a wide range of values
and so we choose a 1 to 1 smoothing.

From each dataset, we sample a subset of size
1000 for cross validation parameter tuning and
use the remaining examples for experimentation.
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Figure 3: Learning curves for three model sam-
pling approaches on Yelp.com test data with 500
training examples (averaged over 20 trials).

The validation data is used to learn the values of
«, the subject topic fraction, and 3, the complex-
ity penalty. We found that setting 7, the MCMC
smoothing factor, equal to .1 worked well across
our datasets. For each trial, then, disjoint training
and test sets are sampled from the remaining data.

First, we apply our Markov chain Monte Carlo
model adaptation procedure along with greedy and
random alternatives to demonstrate the necessity
of a directed and stochastic approach. In the
greedy approach, at each iteration we estimate
the objective for all candidate models that can be
reached with a single split/merge to each subject
topic and adopt the model with the minimum es-
timate. For the random approach, at each itera-
tion we start with the simplest topic mapping func-
tion (mapping all categorizations to one subject
topic), and uniformly at random add distinctions
until the model has the same number of subject
topics as the optimal model found by the MCMC
approach. We choose this instead of sampling at
random from all possible topic mapping functions
as the vast majority of such functions have nearly
as many subject topics as training examples. For
each approach, at iteration i, we chart the test
mean squared error for the best (lowest objective)
model observed during training in iterations 1 to :.

Figure 3 charts the per iteration mean squared
error on the Yelp test data for the three model
adaptation approaches. The greedy approach ini-
tially makes the fastest progress, but it is suscepti-
ble to local minima, and it levels off before being
overtaken by the MCMC approach. As the random
approach does not leverage the data in determining
what distinctions to make, it fails to make progress
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Figure 4: A representative partitioning tree
learned from 500 training examples on the
Yelp.com data.

at the rate of the other approaches. Its poor per-
formance is indicative of the importance of having
an efficient directed model adaptation approach, as
high performing models are few and far between,
even if we limit our search to models of the appro-
priate complexity level (number of subject topics).
Figure 4 shows a representative partitioning tree
learned from the Yelp.com dataset.

Next we compare our approach to alternative re-
gression and topic modeling approaches. In or-
der to implement regression, we 1) Form a vector
of unigram (and optionally bigram) occurrences
normalized to length 1 (which we found to work
better than unnormalized or frequency vectors),
and 2) Form a vector corresponding to categori-
cal membership with one element for each node
in category tree C. For each example, we set each
element in the vector to value -y if the example be-
longs to the corresponding category, and O other-
wise. The feature vector is the concatenation of
these two vectors. We tested three regression ap-
proaches: ridge regression, lasso, and e-support
vector regression with a quadratic kernel (Chang
and Lin, 2001). In each case, the cross valida-
tion dataset is used to tune the value of ~ and
the regularization parameter (for ridge regression
and lasso) or € and the cost parameter (for eSVR).
We found that in all cases, lasso and eSVR were
ouperformed by ridge regression, and so omit their
results.

For the supervised latent Dirichlet allocation
approach, as the space of labels is numeric and
discrete, we can treat the task either as a regression
problem (Blei and McAuliffe, 2007), or as a mul-
ticlass classification problem (Wang et al., 2009).



Yelp.com Data Amazon.com Data

Training Examples Training Examples
500 | 1000 | 2000 | 4000 | 6000 | 500 | 1000 | 2000 [ 4000 | 6000
TMSD, MCMC | 1.207 | 1.062 | 983 | .915 | .870 | 1.243 | 1.161 | 1.090 | 1.019 | .981
TMSD, Simple | 1.252 | 1.108 | 1.017 | .951 | .893 | 1.300 | 1.256 | 1.158 | 1.075 | 1.027
TMSD, Complex| 1.284 | 1.123 | —- — — | 1.281 | 1.198 | —- — —
RR, Uni 1.319 | 1.182 | 1.103 | 1.020 | .949 | 1.337 | 1.265 | 1.145 | 1.081 | 1.033
RR, Uni/Bi 1.285 | 1.164 | 1.059 | 971 | 903 | 1.310 | 1.237 | 1.119 | 1.041 | 1.001
SLDA 1.664 | 1.649 | 1.606 | 1.556 | 1.479 | 1.621 | 1.632 | 1.607 | 1.581 | 1.555

Figure 5: Mean Squared Error for 1) the presented topic model for structured domains (TMSD) using
MCMC Model Adaptation (MCMC), the simplest topic mapping function (Simple), or the most com-
plex topic mapping function (Complex), 2) ridge regression (RR) with unigrams (Uni) or unigrams and
bigrams (Uni/Bi), and 3) multiclass supervised latent Dirichlet allocation (SLDA). Results are averaged
over 10 trials, each with 1000 test examples. The MCMC approach significantly outperforms all other
approaches for each training set size (Yelp.com: p < .01, Amazon.com: p < .05).

We used an open source implementation of each
approach, (Chang, 2010) and (Wang, 2009), and
found that utilizing the multiclass approach and
predicting the expected rating based on the pos-
terior likelihood of each class outperformed the
regression approach, so we present these results.
The cross validation data is used to learn the num-
ber of latent topics and Dirichlet distribution pa-
rameter.

For the Markov chain Monte Carlo approach, in
order to hasten learning for this comparison, start-
ing from the simplest topic mapping function, we
perform a greedy model adaptation until reaching
an estimated local minimum, and then apply 50
additional iterations of MCMC model adaptation.

Figure 5 shows the average mean squared error
for each approach for various amounts of training
data. Our topic model with model adaptation has
lower error than each of the alternatives. Paired t-
tests reveal that the differences are statistically sig-
nificant in all cases (p < .01 for all Yelp.com and
p < .05 for all Amazon.com tests). Using MCMC
model adaptation also outperforms using either the
simplest topic mapping function or the most com-
plex mapping function (which maps each distinct
training categorization to a different subject topic).

Ridge regression with unigrams uses the same
word and categorical representations as our ap-
proach. However, it is unable to entertain the non-
linear relationships between document categoriza-
tions and words and is outperformed in all cases.
Bigrams improve the performance of ridge regres-
sion, especially for larger amounts of training data.
This suggests that accounting for word ordering
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could potentially improve the performance of our
topic model as well. sLDA is unable to take
advantage of the categorical information during
topic construction, and with the limited training
data available, its performance is marginally bet-
ter than guessing the mean label (MSE: 1.675 for
Yelp.com data and 1.660 for Amazon.com data).

5 Conclusion

We present an approach to sentiment analysis for
structured domains. In our approach, positive,
negative, and subject topics are learned and used
to infer document labels. Partitioning tree based
topic mapping functions define the number and
structure of subject topics. A Markov chain Monte
Carlo model adaptation procedure explores the
space of topic mapping functions based on a min-
imum description length objective. We demon-
strate the approach on two sentiment analysis do-
mains and show that the model adaptation proce-
dure efficiently finds a high performance model
that leverages the categorical structure of the doc-
uments to outperform other regression and topic
modeling approaches.
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Abstract

This paper focuses on examining the effect
of extra-linguistic information, such as eye
gaze, integrated with linguistic informa-
tion on multi-modal reference resolution.
In our evaluation, we employ eye gaze
information together with other linguistic
factors in machine learning, while in prior
work such as Kelleher (2006) and Prasov
and Chai (2008) the incorporation of eye
gaze and linguistic clues was heuristically
realised. Conducting our empirical evalu-
ation using a data set extended the REX-J
corpus (Spanger et al., 2010) including eye
gaze information, we examine which types
of clues are useful on these three data sets,
which consist largely of pronouns, non-
pronouns and both respectively. Our re-
sults demonstrate that a dynamically mov-
ing visible indicator within the computer
display (e.g. a mouse cursor) contributes
to reference resolution for pronouns, while
eye gaze information is more useful for the
resolution of non-pronouns.

1 Introduction

The task of reference resolution has received much
attention because it is important for applications
that require interpreting text. In recent work on
reference resolution within a text, several ma-
chine learning-based approaches have been pro-
posed (McCarthy and Lehnert, 1995; Ge et al.,
1998; Soon et al., 2001; Ng and Cardie, 2002;
lida et al., 2003; Yang et al., 2003; Denis and
Baldridge, 2008), each of which mainly exploits
linguistic clues motivated by the Centering The-
ory (Grosz et al., 1995) to model the discourse
salience of all candidate antecedents. For instance,
Yang et al. (2003) and Iida et al. (2003) presented
machine learning-based reference resolution mod-
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els where a pairwise comparison of candidate an-
tecedents, in line with the basic idea of the Cen-
tering Theory, leads to the selection of the candi-
date with the highest salience for a given context.
Denis and Baldridge (2008) extended the model
by integrating the set of pairwise comparisons into
ranking candidates to directly learn which clues of
antecedents are useful.

Through the empirical evaluations using the
data sets provided by the Message Understand-
ing Conference (MUC)! and the Automatic Con-
tent Extraction (ACE)?, which consist of newspa-
per articles and transcripts of broadcasts, linguis-
tically motivated approaches have achieved better
performance than state-of-the-art rule-based refer-
ence resolution systems (e.g. Soon et al. (2001)
and Ng and Cardie (2002)).

In contrast to this research paradigm (i.e. re-
search focusing on only the linguistic aspect of
reference), research in the area of multi-modal
interfaces has focused on referring expressions
used in multi-modal conversations, in other words,
identifying referents of referring expressions in
a static scene or a situated world (e.g. objects
depicted in a computer display), taking extra-
linguistic clues into account (Byron, 2005; Prasov
and Chai, 2008; Prasov and Chai, 2010; Schiitte
et al., 2010, etc.). For instance, Kelleher and
van Genabith (2004) used the centrality and size
of a object in the display to determine its visual
salience. Prasov and Chai (2008) and Prasov and
Chai (2010) exploited eye fixations to detect users’
focus of attention in terms of visual prominence;
their research has been motivated by work in the
cognitive sciences (Tanenhaus et al., 1995; Tanen-
haus et al., 2000; Hanna et al., 2003; Hanna and
Tanenhaus, 2004; Hanna and Brennan, 2007; Met-
zing and Brennan, 2003; Ferreira and Tanenhaus,
2007; Brown-Schmidt et al., 2002).

'www-nlpir.nist.gov/related projects/muc/
>www.itl.nist.gov/iad/mig/tests/ace/
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These previous studies have shown how promis-
ing using eye gaze information for multi-modal
reference resolution can be. However, they rely
on heuristic techniques for determining visual
salience. Hence, there is still room for improve-
ment by introducing eye gaze information in a
more systematic and principled manner®. This
paper, therefore, focuses on a multi-modal refer-
ence resolution model that integrates eye gaze and
linguistic information by using a machine learn-
ing technique. Adapting a ranking-based anaphora
resolution model, such as was proposed by Denis
and Baldridge (2008), we integrate extra-linguistic
information with other linguistic factors for more
accurate reference resolution. With the above as
a suitable background, this paper focuses on the
issue of how to effectively combine linguistic and
extra-linguistic factors for multi-modal reference
resolution, taking collaborative task dialogues in
Japanese as our target data set.

This paper is organised as follows. We first ex-
plain related work and our stance on multi-modal
reference resolution in Section 2; we then present
which multi-modal task we chose and how we
merge eye gaze information into the predefined
multi-modal task in Section 3. Section 4 intro-
duces what types of information are used in the
experiments shown in Section 5. We finally con-
clude this paper and discuss future directions in
Section 6.

2 Related work

Within the field of computational linguistics, re-
searchers have focused on developing computa-
tional models of reference resolution, taking into
account various linguistic factors, such as gram-
matical, semantic and discourse clues mainly ac-
quired from the relationship between an anaphor
and any candidate antecedents (Mitkov, 2002;
Lappin and Leass, 1994; Brennan et al., 1987;
Strube and Hahn, 1996, etc.). Research trends
for reference resolution have shifted from hand-
crafted rule-based approaches to corpus-based ap-
proaches due to the growing success of machine
learning algorithms (e.g. Support Vector Ma-

3Frampton et al. (2009) employed the incorporation of lin-
guistic and visual features on reference resolution of multi-
party dialogues. However, their target was limited to only the
expression you in dialogues, while our focus is to investigate
the use of the expressions bridging between a dialogue and
the real world (e.g. expressions referring to puzzle pieces on
a computer display).
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chines (Vapnik, 1998)). For instance, an approach
to coreference resolution proposed by Soon et al.
(2001), in which the problem of reference resolu-
tion is decomposed into a set of binary classifica-
tion problems of whether a pair of markables (e.g.
NP) are anaphoric or not, achieved performance
comparable to the state-of-the-art rule-based sys-
tem, even though they used only a limited num-
ber of simple features. Researchers’ concerns in
this area cover a broad range of research topics
from modeling the coreferential transitivity of a
set of markables, to integrating discourse salience
motivated by the Centering Theory (Grosz et al.,
1995). This research area has continued to pro-
duce novel reference resolution models over the
years, but the target of reference resolution is lim-
ited to only written texts or transcripts of speech.

In contrast to the above research area, re-
searchers in the multi-modal community also have
paid attention to reference resolution because it is
also a crucial task for realising interaction between
humans and computers. In this area, the evaluation
is typically conducted in the situation where a set
of objects (i.e. candidate referents) are depicted
within a computer display. For instance, Stoia et
al. (2008) designed an experiment where two par-
ticipants controlled an avatar in a virtual world for
exploring hidden treasures. In this case, the task of
reference resolution is to identify an object shown
on the computer display as referred to by a refer-
ring expression used by the participants during di-
alogue. The task becomes more complicated than
typical coreference resolution for written texts be-
cause a referent is considered as either anaphoric
(i.e. it has already appeared in the previous dis-
course history) or exophoric, (i.e. the reference
resolution system needs to search for the referent
from the set of objects shown in a computer dis-

play).

In order to capture the characteristics of ex-
ophoric cases, extra-linguistic information ac-
quired from participants’ eye gaze data and the vi-
sual prominence of each object are also exploited
together with linguistic information. A series of
research by Kelleher and his colleagues (Kelle-
her and van Genabith, 2004; Kelleher et al., 2005;
Kelleher, 2006; Schiitte et al., 2010) tackled the
problem of modeling visual salience of objects in
situated dialogue. In their algorithm, the visual
salience of each object is estimated based on its
centrality within the scene and its size; their hy-



pothesis was that the salience is higher if a object
is larger and is placed nearer the centre of the com-
puter display. In Kelleher (2006)’s approach to
reference resolution, linguistic clues such as rank-
ing rules of candidate referents based on the Cen-
tering Theory (Grosz et al., 1995) were introduced
in addition to using visual salience, but the inte-
gration of both clues was done in a heuristic way.

In addition to the visual salience assessed from
the characteristics of objects in the world, eye gaze
has received much attention as a clue for reference
resolution. Prasov and Chai (2008), for example,
employed eye gaze on the task of identifying a
referent in the situation where objects are placed
in a static scene. The time span after a speaker
most recently fixates on an object is incorporated
into their reference resolution model as well as
the information of how recently the object was re-
ferred to by a referring expression. Although the
results of their evaluation demonstrated that eye
gaze significantly contributes to increasing per-
formance, there is still room for improvement by
adapting machine learning techniques, because in
their work the linguistic and visual attention infor-
mation was heuristically integrated.

In contrast, our previous work (lida et al., 2010)
employed a machine learning technique to iden-
tify the most likely candidate referent, taking into
account linguistic features together with cues cap-
turing visual salience found within the situated di-
alogues contained in the REX-J corpus (Spanger
et al., 2010). We reported that extra-linguistic in-
formation contributes to improving performance
(especially, in pronominal reference). However,
in Iida et al. (2010) eye gaze information was
not considered, even though in the area of cogni-
tive science researchers have demonstrated that a
speaker’s eye fixations are strong clues for identi-
fying a referent of a referring expression (Tanen-
haus et al., 1995; Tanenhaus et al., 2000; Hanna et
al., 2003; Hanna and Tanenhaus, 2004; Hanna and
Brennan, 2007; Metzing and Brennan, 2003; Fer-
reira and Tanenhaus, 2007; Brown-Schmidt et al.,
2002). Against this background, we investigate
the effect of linguistic and extra-linguistic infor-
mation including eye gaze on multi-modal refer-
ence resolution, extending lida et al. (2010)’s ref-
erence resolution model.
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3 Collecting eye gaze data in situated
dialogues

In our evaluation of automatic reference resolu-
tion, we focus on investigating the interaction be-
tween linguistic and extra-linguistic clues includ-
ing eye fixations on multi-modal reference reso-
lution. Therefore, corpora where participants fre-
quently utter both anaphoric and exophoric refer-
ring expressions are preferable for our evaluation.

In recent multi-modal problem settings for data
collection, researchers have been concerned with
more realistic situations, such as dynamically
changing scenes rendered in a 3D virtual world
(e.g. (Byron, 2005)). However, if we use data
collected from such a scenario, referring expres-
sions will be relatively skewed to exophoric cases
because of frequently occurring scene updates. On
the other hand, if we adopt the data collected us-
ing a static scene, we will have a disadvantage in
that the change of visual salience of objects is not
observed because the centrality and size of each
object is fixed through dialogues.

For these reasons, we adopt the same task set-
ting as introduced in the REX-J corpus (Spanger
et al., 2010), which consists of collaborative work
(solving Tangram puzzles) by two participants; the
setting of this corpus is more suitable for our pur-
poses because of the frequent occurrence of both
anaphoric and exophoric referring expressions.

For collecting data, we recruited 18 Japanese
graduate students, and split them into 9 pairs*.
All pairs knew each other previously and were of
the same gender and approximately the same age.
Each pair was instructed to solve four different
Tangram puzzles. The goal of the puzzle is to con-
struct a given shape by arranging seven pieces (of
different simple shapes) as shown in Figure 1. The
precise positions of every piece and every action
that the participants make are recorded by the Tan-
gram simulator in which the pieces on the com-
puter display can be moved, rotated and flipped
with simple mouse operations. The piece position
and the mouse actions were recorded at intervals
of 1/65 msec. The simulator displays two areas:
a goal shape area (the left side of Figure 1) and
a working area (the right side of Figure 1) where
pieces are shown and can be manipulated.

A different role was assigned to each participant

*Note that the first pair was used to adjust the settings

of our data collection, so 4 dialogues collected from that pair
were not included in the evaluation data set used in Section 5.



time | OP-UT | SV-UT OP-REX SV-REX | ERR-OP | ERR-SV
total 4:22:20 2,382 4,613 239/270 | 434/1,192 - -
average 9:43 88.2 170.9 | 8.85/10.0 | 16.1/44.1 14.0% 13.9%
SD 3:32 69.8 86.8 | 10.2/11.3 | 159/24.4 9.9 10.4

OP-UT (SV-UT) stands for the number of utterances of operators (solvers). The right side of OP-REX (SV-REX) is the fre-
quency of referring expressions uttered by the operators (solvers), whereas the left side stands for the frequency of pronominal
expressions uttered by the operators (solvers). ERR-OP (ERR-SV) is the error rate of measuring the operators’ (solvers’) eye

gaze. SD means the standard derivation.

Table 1: Referring expressions in the extended REX-J corpus

( <

// i
= %
x\g

O

goal shape area
v -

4 /~
| vorkngoreo gl
working area

Figure 1: Screenshot of the Tangram simulator

of a pair: a solver and an operator. Given a cer-
tain goal shape, the solver thinks of the necessary
arrangement of the pieces and gives instructions to
the operator for how to move them. The operator
manipulates the pieces with the mouse according
to the solver’s instructions. During this interac-
tion, frequent uttering of referring expressions is
needed to distinguish between the different puzzle
pieces. This collaboration is achieved by placing a
set of participants side by side, each with their own
display showing the work area and the mouse cur-
sor begin manipulated by the operator in real time,
and a shield screen set between them to prevent
the operator from seeing the goal shape, which is
visible only on the solver’s screen, and to further
restrict their interaction to only speech. We put no
constraint on the contents of their dialogues.

In addition to the attributes considered in the
original REX-J corpus, we also collected eye gaze
data synchronized with speech by using the Tobii
T60 Eye Tracker, sampling at 60 Hz for recording
users’ eye gaze with 0.5 degrees in accuracy. Be-
cause the tracking results acquired from Tobii con-
tain tracking errors, 5 dialogues in which the track-
ing results contain more than 40% errors were re-
moved from the data set used in our evaluation.

Annotating referring expressions and their ref-
erents were conducted in the same manner as
Spanger et al. (2010), i.e. annotation was

87

conducted using a multimedia annotation tool,
ELAN?; an annotator manually detects a referring
expression and then selects its referent out of the
possible puzzle pieces shown on the computer dis-
play. Note that only Tangram pieces were tagged
as referents of referring expressions, therefore the
expressions referring to abstract entities such as
an action and event were not annotated. In the
corpus multiple pieces were annotated as a single
referent, but such referents were excluded in our
evaluation because of their infrequent occurrence.
Table 1 summarises the statistics of our new ver-
sion of the REX-J corpus, consisting of 27 dia-
logues.

4 Multi-modal reference resolution

4.1 Base models

To investigate the impact of extra-linguistic infor-
mation on reference resolution, we conducted an
empirical evaluation in which a reference resolu-
tion model chooses a referent (i.e. a piece) for a
given referring expression from the set of pieces
on the computer display.

As a basis of our reference resolution model, we
adopt an existing model for reference resolution.
Recently, machine learning-based approaches to
reference resolution (Soon et al., 2001; Ng and
Cardie, 2002, etc.) focus on identifying anaphoric
relations in texts, and have achieved better perfor-
mance than hand-crafted rule-based approaches.
These models for reference resolution take into ac-
count linguistic factors, such as relative salience of
candidate antecedents, which have been discussed
mainly in Centering Theory (Grosz et al., 1995)
by ranking candidate antecedents appearing in the
preceding discourse (lida et al., 2003; Yang et al.,
2003; Denis and Baldridge, 2008). In order to
take advantage of existing models, we adopt the
ranking-based approach as a basis for our refer-
ence resolution model. More precisely, we em-

3 www.lat-mpi.eu/tools/elan/



eye gaze features

the frequency of fixating P in the time period [t — T, ], normalised by the frequency of the total

the length of a fixation on P in the time period [¢ — T, t], nomalised by the total length of fixation.
the frequency of fixating P in the time period uttering a referring expression, normalised by the fre-

the length of a fixation on P in the time period uttering a referring expression, nominalised by 7.
the length of a fixation on P in the time period uttering a referring expression, nominalised by the total

whether the frequency of fixating P in the time period uttering a referring expression is most frequent.
whether the frequency of fixating P in the time period uttering a referring expression is more than 1.
whether the fixation time of P in the time period uttering a referring expression is longest out of all

GZ1: [0,1]
fixations during the period.
GZ2: [0,1] the length of a fixation on P in the time period [t — T', ], nomalised by 7T".
GZ3: [0,1]
GZz4: [0,1]
quency of the total fixations during the period.
GZ5: [0,1]
GZ6: [0,1]
length of fixation.
GZ7: yes,no whether the frequency of fixating P in the time period [t — T, ¢] is most frequent.
GZ8: yes,no whether the frequency of fixating P in the time period [t — T, ¢] is more than 1.
GZ9: yes,no whether the fixation time of P in the time period [t — T, t] is longest out of all pieces.
GZ10: yes,no whether there exists the fixation time of P in the time period [t — T, ¢].
GZ11: yes,no
GZ12: yes,no
GZ13: yes,no
pieces.
GZ14: yes,no whether there exists the fixation time of P in the time period uttering a referring expression.

t is the onset time of a referring expression. P denotes a piece, 7' is a fixed time window (1500ms).

Table 2: Eye gaze features

ploy Denis and Baldridge (2008)’s ranking-based
model because they demonstrated their model out-
performed the model based on simple pairwise
ranking (e.g. Yang et al. (2003)).

In Denis and Baldridge (2008)’s ranking-based
model, the most likely candidate antecedent is de-
cided by simultaneously ranking all candidate an-
tecedents. To induce a ranker used in the rank-
ing process, we adopt the Ranking SVM algo-
rithm (Joachims, 2002)%, which learns a weight
vector to rank candidates for a given partial rank-
ing of each referent, while the original work by
Denis and Baldridge (2008) uses Maximum En-
tropy to create their ranking-based model. Each
training instance is created from the set of all ref-
erents for each referring expression. To define the
partial ranking of referents, we simply rank refer-
ents of a given referring expression as first place
and any other referents as second place.

4.2 Eye gaze features

As we mentioned in Section 2, a speaker’s eye
gaze contributes to disambiguating referents ap-
pearing in the speaker’s utterances because the
speaker tends to see the target object before it is
referred to by a referring expression (Spivey et al.,
2002). Several aspects must be considered in or-
der to integrate a speaker’s eye gaze data. First,
because the eye gaze data includes saccades, the
inhibition factor of perceptual sensitivity, we ex-
tract only eye fixations as discussed in Richard-
son et al. (2007). For separating saccades and eye

Swww.cs.cornell.edu/People/tj/svm_light/svm_rank.html
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fixations, we employ Dispersion-threshold identi-
fication (Salvucci and Anderson, 2001), detecting
fixations by using the concentration of eye gaze
based on the fact the fixations are relatively slower
than saccades. Second, because of the errors in
measuring eye gaze by the eye tracker, the fixation
data needs to be interpolated by the surrounding
data. More specifically, if the error interval is less
than 100 msec and the difference of the centers of
two fixations is smaller then 16 pixels, these fix-
ations are concatenated according to the work by
Richardson et al. (2007).

The clues exploited in this paper are based on
the fact that the direction of eye gaze directly re-
flects the focus of attention (Richardson et al.,
2007; Just and Carpenter, 1976) , i.e. when one ut-
ters a referring expression, he potentially focuses
on the object involved by fixating his eyes on it.
Therefore, we use the eye fixations as clues for
identifying the pieces focused on using the follow-
ing criteria: the nearest piece to the eye fixation
point is more likely a target of focus over all other
pieces. To reflect this, we introduce the feature set
shown in Table 2. We henceforth call these fea-
tures the eye gaze features. Note that the parame-
ter 1" is set to 1,500 ms based on the previous work
done by Prasov and Chai (2010).

5 Empirical Evaluation

In order to investigate the effect of extra-linguistic
information with or without linguistic factors, we
conducted empirical evaluations using the up-
dated version of the REX-J corpus explained in



(a) Linguistic features

L1: yes,no whether P is referred to by the most recent referring expression.

L2: yes, no whether the time distance to the last mention of P is less than or equal to 10 sec.

L3: yes,no whether the time distance to the last mention of P is more than 10 sec and less than or equal to 20 sec.

L4: yes, no whether the time distance to the last mention of P is more than 20 sec.

L5: yes,no whether P has never been referred to by any mentions in the preceding utterances.

L6: yes, no, N/A whether the attributes of P are compatible with the attributes of R.

L7: yes,no whether R is followed by the case marker ‘o (accusative)’.

L8: yes, no whether R is followed by the case marker ‘ni (dative)’.

L9: yes,no whether R is a pronoun and the most recent reference to P is not a pronoun.

L10: yes, no whether R is not a pronoun and was most recently referred to by a pronoun.

(b) Task specific features

T1: yes, no whether the mouse cursor was over P at the beginning of uttering R.

T2: yes,no whether P is the last piece that the mouse cursor was over when feature T1 is ‘no’.

T3: yes, no whether the time distance is less than or equal to 10 sec after the mouse cursor was over P.

T4: yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after the mouse cursor
was over P.

T5: yes, no whether the time distance is more than 20 sec after the mouse cursor was over P.

T6: yes, no whether the mouse cursor was never over P in the preceding utterances.

T7: yes, no whether P is being manipulated at the beginning of uttering R.

T8: yes, no whether P is the most recently manipulated piece when feature T7 is ‘no’.

T9: yes, no whether the time distance is less than or equal to 10 sec after P was most recently manipulated.

T10: yes, no whether the time distance is more than 10 sec and less than or equal to 20 sec after P was most recently
manipulated.

T11: yes, no whether the time distance is more than 20 sec after P was most recently manipulated.

T12: yes, no whether P has never been manipulated.

P stands for a piece of the Tangram puzzle (i.e. a candidate referent of a referring expression) and R stands for the target

referring expression.

Table 3: Feature set

Section 3.

5.1 Experimental settings

We employed two models as baselines: a model
using only discourse history features, and one us-
ing only eye gaze features.

Because the task setting is the same as the eval-
uation conducted in lida et al. (2010), we employ
the same feature set, consisting of linguistically
motivated features, and also features which cap-
ture the task specific extra-linguistic information
of each object. We call these two kinds of fea-
tures the linguistic features and task specific fea-
tures, respectively. The details of these features
are summarised in Table 3.

As reported in lida et al. (2010), the referen-
tial behaviour of pronouns is completely differ-
ent from non-pronouns. For this reason, we sepa-
rately create two reference resolution models; one
called the pronoun model, which identifies a refer-
ent of a given pronoun, and another called the non-
pronoun model, which is for all other expressions.
During the training phase, we use only training in-
stances whose referring expressions are pronouns
for creating the pronoun model, and all other train-
ing instances for the non-pronoun model. We
group these two models together, selecting which

&9

model pronoun | non-pronoun
Ling 56.0 65.4
Gaze 56.7 48.0
TaskSp 79.2 21.1
Ling+Gaze 66.5 75.7
Ling+TaskSp 79.0 67.1
TaskSp+Gaze 78.0 48.4
Ling+TaskSp+Gaze 78.7 76.0

Ling, TaskSp and Gaze stand for the models using the lin-
guistic, task specific and eye gaze features respectively.

Table 4: results in the separated model (accuracy)

one to use based on the referring expression. In
other words, the pronoun model is selected if a
referring expression is a pronoun, and the non-
pronoun model otherwise. We will hereafter refer
to the selectional model which alternatively picks
between the pronoun and non-pronoun models as
the separated model.

We also train a third model using all training in-
stances without distinguishing between pronouns
and non-pronouns. This model we will refer to as
the combined model.

5.2 Results

Table 4 shows the accuracy results of our empiri-
cal evaluation separately evaluating pronouns and
non-pronouns. In reference resolution of pronouns



model combined | separated
Ling 62.7 61.8
Gaze 51.1 51.2
TaskSp 43.7 42.8
Ling+Gaze 69.9 72.3
Ling+TaskSp 69.9 71.5
TaskSp+Gaze 55.2 59.5
Ling+TaskSp+Gaze 72.5 77.0

Table 5: Overall results (accuracy)

the results show that the model using only the lin-
guistic features (Ling) achieved performance com-
parable to the one using only the eye gaze features
(Gaze). Moreover, the model using only the task
specific features (TaskSp) obtained performance
significantly better than the others. This is because
a mouse cursor is the only shared visual stimulus
between the operator and solver. Therefore, it be-
comes the most important clue for pronouns, while
the eye fixations of a speaker are not necessarily
shared between them.

In contrast to pronouns, the non-pronoun model
using only the linguistic features (Ling) outper-
forms the one using either eye gaze features or the
task specific features (Gaze and TaskSp). This
may be because one linguistic feature (L6) works
more effectively than the other features. As shown
later (see Table 6), in non-pronoun cases, the fea-
ture L6, which is the binary value indicating the
compatibility of the attributes between two refer-
ring expressions, has the highest feature weight,
leading to the best performance out of all three
models (Ling, Gaze and TaskSp).

In addition, combining the linguistic and eye
gaze features (Ling+Gaze) on non-pronoun ref-
erence resolution contributes to increasing perfor-
mance. This means that these two features work
in a complementary manner when a referring ex-
pression cannot be judged on a superficial level
whether it refers to a discourse referent or a visu-
ally focused referent. From these results, we can
see that the clues from utterances of participants
are also essential for precise reference resolution,
while the previous work focusing on eye fixations
tends to concentrate on modeling only eye gaze
information.

The accuracy results in Table 5 show the per-
formance of the combined and separated models
for different settings of feature selection. Table 5
shows that the two models achieved almost the
same performance when the linguistic, eye gaze
and task specific features are individually used.
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pronoun model | non-pronoun model

rank | feature weight | feature weight
1 T1 0.4744 L6 0.6149
2 T3 0.2684 | GZ10 0.1566
3 L1 0.2298 | GZ9 0.1566
4 T7 0.1929 | GZ7 0.1255
5 T9 0.1605 | GZ11 0.1225
6 GZ10 0.1547 | GZ14 0.1134
7 GZ9  0.1547 | GZ13 0.1134
8 L6 0.1442 | GZ12 0.1026
9 Gz7  0.1267 L2 0.1014
10 L2 0.1164 | GZI 0.0750

Table 6: 10 highest weights of the features in each
model

However, it also shows that the separated model
outperforms the combined model when more than
two feature types are utilised. This indicates that
separating the models with regard to the type of
referring expression does make sense even when
we employ eye fixations as a clue for recognising
referent objects. It also shows that both the com-
bined and separated models obtained the best per-
formance for each model using all the features. In
other words, the three types of features work in a
complementary manner on multi-modal reference
resolution.

We next investigated the significance of each
feature for the pronoun and non-pronoun models.
We calculate the weight of a feature f shown in
Table 6 according to the following formula.

weight(f) = Z Wy 2z (f)

x€SVs

ey

where SV is a set of the support vectors in a ranker
induced by the Ranking SVM algorithm, w,; is the
weight of the support vector z, z,(f) is the func-
tion that returns 1 if f occurs in z, respectively.

Table 6 shows the top 10 features with the high-
est weights of each model. It demonstrates that
in the pronoun model the task specific features
have the highest weight, while in the non-pronoun
model these features are less significant. As shown
in Table 4, pronouns are strongly related to the
situation where the mouse cursor is over a piece,
which is consistent with the results reported in lida
et al. (2010).

In contrast, the highest features in the non-
pronoun model are occupied by the eye gaze fea-
tures, except for L6. This indicates that in the
situation where a speaker mentions pieces re-
alised as non-pronouns, the eye fixations become
a good clue for identifying the current focus of the



speaker, while the task specific features such as
the location of the mouse cursor are less signifi-
cant. In addition, Table 6 also shows that the dis-
course feature L6 obtains the highest significance.
This means that exploiting the linguistic factors to-
gether with eye fixations is essential for more ac-
curate reference resolution.

6 Conclusion

In this paper we focused on investigating the im-
pact of eye fixations on reference resolution com-
pared to using other extra-linguistic information.
We conducted an empirical evaluation using refer-
ring expressions appearing in collaborative work
dialogues from the extended REX-J corpus, syn-
chronised with eye gaze information. We demon-
strated that the referents of pronouns are relatively
easily identified, as they rely on the visual salience
such as is indicated by moving the mouse cursor,
and that non-pronouns are strongly related to eye
fixations on its referent. In addition, our results
also show that combining linguistic, eye gaze and
other extra-linguistic factors contribute to increas-
ing the overall performance of identifying all re-
ferring expressions.

There are several future directions for making
the multi-modal reference resolution more accu-
rate and robust. First, we need to introduce more
task dependent information reflecting the charac-
teristics of each multi-modal task. In the Tan-
gram puzzle task, for example, once a piece be-
comes part of a partially constructed shape, the
piece tends to be less salient because a solver typi-
cally gives an instruction to move a scattered piece
to a partially constructed shape. We expect that
introducing such task specific clues into the refer-
ence resolution model as features will contribute
to improving performance.

Second, in our evaluation we adopted collabora-
tive work dialogues where two participants solve
Tangram puzzles. Since all objects (i.e. puz-
zle pieces) have nearly the same size, this results
in explicitly rejecting the factor that a relatively
larger object occupying the computer display has
higher prominence over smaller objects, which has
been considered by Byron (2005). In order to take
such a factor into account, we need further data
collection and then to incorporate additional fac-
tors into the current reference resolution model.

A third possible direction for future work is to
examine the relation between linguistic and inten-
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tional structures, which are discussed in Grosz and
Sidner (1986). In our problem setting, when a
solver instructs an operator how to construct a goal
shape, a series of utterances by the solver reflects
the solver’s intentions. As we already mentioned
above, objects which a solver wants an operator
to manipulate tend to draw a solver’s attention,
while the other objects (especially, the objects rep-
resenting the partially constructed shape) are con-
sidered less salient. Exploiting the importance of
the speaker’s intentions also needs to be consid-
ered in future work.

References

S. E. Brennan, M. W. Friedman, and C. Pollard. 1987.
A centering approach to pronouns. In Proceedings
of the 25th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 155-162.

. Brown-Schmidt, E. Campana, and M. K. Tanenhaus.

2002. Reference resolution in the wild: On-line cir-
cumscription of referential domains in a natural, in-

teractive, problem-solving task. In Proceedings of
the 24th annual meeting of the Cognitive Science So-
ciety, pages 148-153.

. K. Byron. 2005. Utilizing visual attention for cross-
modal coreference interpretation. In In Proceedings
of Fifth International and Interdisciplinary Confer-
ence on Modeling and Using Context, pages 83—-96.

P. Denis and J. Baldridge. 2008. Specialized models
and ranking for coreference resolution. In Proceed-
ings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 660—-669.

. Ferreira and M. K. Tanenhaus. 2007. Introduction
to the special issue on language—vision interactions.

Journal of Memory and Language, 57:455-459.

M. Frampton, R. Fernandez, P. Ehlen, M. Christoudias,
T. Darrell, and S. Peters. 2009. Who is “you”? com-
bining linguistic and gaze features to resolve second-
person references in dialogue. In Proceedings of
the 12th Conference of the European Chapter of the
ACL (EACL 2009), pages 273-281.

N. Ge, J. Hale, and E. Charniak. 1998. A statistical ap-
proach to anaphora resolution. In Proceedings of the
6th Workshop on Very Large Corpora, pages 161—
170.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-

putational Linguistics, 12(3):175-204.

B. J. Grosz, A. K. Joshi, and S. Weinstein. 1995.
Centering: A framework for modeling the local co-

herence of discourse. Computational Linguistics,
21(2):203-226.

J. E. Hanna and S. E. Brennan. 2007. Speakers’ eye
gaze disambiguates referring expressions early dur-
ing face-to-face conversation. Journal of Memory
and Language, 57.



J. E. Hanna and M. K. Tanenhaus. 2004. Pragmatic ef-

fects on reference resolution in a collaborative task:
evidence from eye movements. Cognitive Science,

28:105-115.

J. E. Hanna, M. K. Tanenhaus, and J. C. Trueswell.
2003. The effects of common ground and perspec-
tive on domains of referential interpretation. Jour-
nal of Memory and Language, 49(1):43-61.

R. Iida, K. Inui, H. Takamura, and Y. Matsumoto.
2003. Incorporating contextual cues in trainable
models for coreference resolution. In Proceedings
of the 10th EACL Workshop on The Computational
Treatment of Anaphora, pages 23-30.

. lida, S. Kobayashi, and T. Tokunaga. 2010. In-
corporating extra-linguistic information into refer-
ence resolution in collaborative task dialogue. In
Proceeding of the 48st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
1259-1267.

Joachims. 2002. Optimizing search engines using
clickthrough data. In Proceedings of the ACM Con-
ference on Knowledge Discovery and Data Mining
(KDD), pages 133-142.

T.

M. Just and P. A. Carpenter. 1976. Eye fixations and
cognitive processes. Cognitive Psychology, 8:441—
480.

J. Kelleher and J. van Genabith. 2004. Visual salience
and reference resolution in simulated 3-d environ-
ments. Artificial Intelligence Review, 21(3):253—

267.

J. Kelleher, F. Costello, and J. van Genabith. 2005. Dy-
namically structuring updating and interrelating rep-

resentations of visual and linguistic discourse. Arti-
ficial Intelligence, 167:62—-102.

J. D. Kelleher. 2006. Attention driven reference reso-
lution in multimodal contexts. Artificial Intelligence

Review, 25:21-35.

S. Lappin and H. J. Leass. 1994. An algorithm
for pronominal anaphora resolution. Computational
Linguistics, 20(4):535-561.

J. F. McCarthy and W. G. Lehnert. 1995. Using deci-
sion trees for coreference resolution. In Proceedings
of the 14th International Joint Conference on Artifi-
cial Intelligence, pages 1050-1055.

C. Metzing and S. E. Brennan. 2003. When concep-
tual pacts are broken: Partner-specific effects on the
comprehension of referring expressions. Journal of
Memory and Language, 49:201-213.

R. Mitkov. 2002. Anaphora Resolution. Studies in
Language and Linguistics. Pearson Education.

V. Ng and C. Cardie. 2002. Improving machine learn-
ing approaches to coreference resolution. In Pro-
ceedings of the 40th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
104-111.

Z. Prasov and J. Y. Chai. 2008. What’s in a gaze?
the role off eye-gaze in reference resolution in mul-
timodal conversational interface. In In Proceedings
of the 13th international conference on Intelligent
user interfaces, pages 20-29.

92

Z. Prasov and J. Y. Chai. 2010. Fusing eye gaze with
speech recognition hypotheses to resolve exophoric
references in situated dialogue. In Proceedings of
the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 471-481.

D. C. Richardson, R. Dale, and M. J. Spivey. 2007.
Eye movements in language and cognition: A brief
introduction, methods in cognitive linguistics. In
M. Gonzalez-Marquez, 1. Mittelberg, S. Coulson,
and M. J. Spivey, editors, Methods in Cognitive Lin-
guistics, pages 323-344. John Benjamins.

D. D. Salvucci and J. R. Anderson. 2001. Automated
eye-movement protocol analysis. Human-Computer

Interaction, 16:39-86.

N. Schiitte, J. D. Kelleher, and B. Mac Namee. 2010.
Visual salience and reference resolution in situated
dialogues: A corpus-based evaluation. In In Pro-

ceedings of the AAAI Symposium on Dialog with
Robots, Arlington, Virginia, USA. 11th - 13th Nov
2010.

W. M. Soon, H. T. Ng, and D. C. Y. Lim. 2001. A
machine learning approach to coreference resolu-
tion of noun phrases. Computational Linguistics,
27(4):521-544.

P. Spanger, M. Yasuhara, R. Iida, T. Tokunaga,
A. Terai, and N. Kuriyama. 2010. REX-J: Japanese
referring expression corpus of situated dialogs. Lan-
guage Resources & Evaluation.

M. J. Spivey, M. K. Tanenhaus, K. M. Eberhard, and
J. C. Sedivy. 2002. Eye movements and spoken lan-
guage comprehension: Effects of visual context on

syntactic ambiguity resolution. Cognitive Psychol-
0gy, 45(4):447-481.

. Stoia, D. M. Shockley, D. K. Byron, and E. Fosler-
Lussier. 2008. Scare: A situated corpus with an-
notated referring expressions. In Proceedings of

the Sixth International Conference on Language Re-
sources and Evaluation (LREC 2008).

M. Strube and U. Hahn. 1996. Functional centering.
In Proceeding of the 34st Annual Meeting of the
Association for Computational Linguistics (ACL),
pages 270-277.

M. K. Tanenhaus, M. J. Spivey-Knowlton, K. M. Eber-
hard, and J. C. Sedivy. 1995. Integration of visual
and linguistic information in spoken language com-
prehension. Science, 268(5217):1632-1634.

M. K. Tanenhaus, J. S. Magnuson, D. Dahan, and
C. Chambers. 2000. Eye movements and lexical ac-
cess in spoken-language comprehension: Evaluating
a linking hypothesis between fixations and linguistic

processing. Journal of Psycholinguistic Research,
29(6):557-580.

V. N. Vapnik. 1998. Statistical Learning Theory.
Adaptive and Learning Systems for Signal Process-
ing Communications, and control. John Wiley &
Sons.

X. Yang, G. Zhou, J. Su, and C. L. Tan. 2003.
Coreference resolution using competition learning
approach. In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguistics

(ACL), pages 176-183.



1

Single and M ulti-objective Optimization for Feature Selection in
Anaphora Resolution

Sriparna Saha ! Asif Ekbal ! Olga Uryupina 2 Massimo Poesio 32
! Department of Computer Science and Engineering, IIT P,
{sriparna,asif}@itp.ac.in
2 University of Trento, Center for Mind/Brain Sciences,yupi na@ini tn. it
3 University of Essex, Language and Computation Gr@gesi o@ssex. ac. uk

Abstract

There is no generally accepted met-
ric for measuring the performance of
anaphora resolution systems, and the ex-
isting metrics—muc, B3, CEAF, Blanc,
among others—tend to reward signifi-
cantly different behaviors. Systems op-
timized according to one metric tend
to perform poorly with respect to other
ones, making it very difficult to compare
anaphora resolution systems, as clearly
shown by the results of treEMEVAL 2010
Multilingual Coreference task. One so-
lution would be to find a single com-
pletely satisfactory metric, but it's not
clear whether this is possible and at any
rate it is not going to happen any time
soon. An alternative is to optimize mod-
els according to multiple metrics simulta-
neously. In this paper, we show, first of
all, that this is possible to develop such
models using Multi-objective Optimiza-
tion (MoO) techniques based on Genetic
Algorithms. Secondly, we show that op-
timizing according to multiple metrics si-
multaneously may result in better results
with respect to each individual metric than
optimizing according to that metric only.

I ntroduction

In anaphora resolutioh,as in otherHLT tasks,

Baldwin, 1998), from the.cE metric (Doddington

et al., 2004) taceAF (Luo, 2005) toBLANC (Re-
casens and Hovy, 2011). And unlike in other areas
of HLT, none has really taken over. This would not
matter so much if those metrics were to reward the
same systems; but in fact, as dramatically demon-
strated by the results of the Coreference Task at
SEMEVAL 2010 (Recasens et al., 2010), the oppo-
site is true—almost every system could come on
top depending on which metric was chosen.

It seems unlikely that the field will converge on
a single metric any time soon. Given that many of
the proposed metrics do capture what would seem
to be plausible intuitions, it would seem desirable
to develop methods to optimize systems according
to more than one metric at once—in particular, ac-
cording to at least one metric of what we might call
the ’link-based’ cluster of metrics (e.gauc) and
at least one of what we will call the 'entity-based’
cluster (e.g.CEAF).

As it happens, techniques for doing just that
have been developed in the area of Genetic Al-
gorithms: so-callednulti-objective optimization
(Mo0) (Deb, 2001) techniques. In this paper, we
will show how these techniques can be used to op-
timize anaphora resolution models (we focused for
the time being on feature selection) by looking for
a solution in the space defined by a multiplicity of
metrics (we useduc andCEAF (in two variants)
as the optimization functions). Perhaps the most
interesting result of this work is the finding that by

optimization to a metric is essential to achieveworking in such a multi-metric space it is possible
good performance (Hoste, 2005; Uryupina, 2010)to find solutions that are better with respect to an
However, many evaluation metrics have been proindividual metric than when trying to optimize for

posed for anaphora resolution, each capturinghat metric alone—which arguably suggests that
what seems to be a key intuition about the taskindeed both families of metrics capture some fun-

from muc (Vilain et al., 1995) to B (Bagga and damental intuition about anaphora, and taking into
"We use the term "anaphora resolution’ to refer to the taskaccount both intuitions we avoid local optima.
perhaps most commonly referred to as "coreference resolu- The structure of the paper is as follows. We first
tion,” which many including us find a misnomer. For the pur- . . . . .
view the literature on using genetic algorithms

poses of the present paper the two terms could be seen &§ i ) ) . )
interchangeable. for both single function and multi function opti-
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mization. Next, we discuss the particular methodCoreference Task (Uryupina, 2010). Uryupina di-
of multi-objective optimization we used in this pa- rectly optimizes two parameters of her system:
per, Non-Dominated Sorting Genetic Algorithm Il the choice of a model (mention-pair usP with

(Deb et al., 2002). After that we discuss how thevarious constraints) and the definition of mention
method was used, and present our results. We thdaypes for training separate classifiers. The opti-
compare our work with other approaches to opti-mization is done on the development data in a

mization for anaphora found in the literature. brute-force fashion, in order to maximize the per-
L formance according to a pre-defined metsug,
2 Background: Optimizing for CEAFOr BLANC). The results on theEMEVAL-10
Anaphora Resolution dataset clearly show that existing metrics of coref-

A great number of statistical approaches toerence rely on different intuitions and therefore a
anaphora resolution have been proposed in theystem, optimized for a particular metric, might
past ten years. These approaches differ with reshow inferior results for the other ones. For ex-
spect to their underlying models (e.g., mentionample, the reportedLANC difference between the
pair model (Soon et al., 2001) vs. tournamentuns optimized foBLANC andCEAF is around 10
model (lida et al., 2003; Yang et al., 2005),percentage points.

vs. entity-model (Luo et al., 2004)), machine Thjs highlights the importance of the muilti-
learners (e.g., decision trees vs. maximum entropghbjective optimizationioo) for coreference, that
vs. svmMs vs. TIMBL) and their parameters, and syggests a family of systems, showing reliable per-
with respect to feature sets used. There have beefsrmance according to all the desired metrics. A
however, only few attempts at explicit optimiza- form of MOO was applied to coreference by Mun-
tion of these aspects, and in those few cases, optépn et al. (2005). Their general conclusion was
mization tends to be done by hand. negative, stating that “ensemble selection seems

An early step in this direction was the work by too unreliable for use in NLP”, but they did see
Ng and Cardie (2002), who developed a rich feasome improvements for coreference.

ture set including 53 features, but reported no sig-

nificant improvement over their baseline when all3  Optimization with Genetic Algorithms
these features were used with thec6 andMUC7 | this section, we review optimization techniques
corpora. They then proce_ede_d to manually selegising genetic algorithmss@s) (Goldberg, 1989).
a subset of features that did yield better results fo{ye first discuss single objective optimization,
the muc-6/7 d.atasets. A much larger scale afndthat can optimize according to a single objec-
very systematic effort of manual feature selectionyjye function, and then multi-objective optimiza-
over the same dataset was carried out by Uryupinggp, (MoO), that can optimize more than one ob-
(2007), who evaluated over 600 features. jective function, in particular, a popularoo tech-

mization of anaphora resolution we are aware Oc}lorithm (NSGA)-Il (Deb et al., 2002).

was carried out by Hoste (2005), who investigate
the possibility of using genetic algorithms for au-3.1 Genetic Algorithms
tomatic optimization of both feature selection andGenetic algorithms gas) (Goldberg, 1989) are
of learning parameters, also considering two difrandomized search and optimization techniques
ferent machine learners, TiMBL and Ripper. Herguided by the principles of evolution and natu-
results suggest that such techniques yield improveral genetics. InGAs the parameters of the search
ments on themuc-6/7 datasets. Recasens andspace are encoded in the form of strings (called
Hovy (2009) carried out an investigation of featurechromosomégs A collection of such strings is
selection for Spanish using th@iCORA corpus. called apopulation Initially, a random population
These approaches focused on a single metris created, which represents different points in the
only; the one proposal simultaneously to considesearch space. Awmbjectiveor fithesdunction is as-
multiple metrics, Zhao and Ng (2010) still opti- sociated with each string that represents the degree
mized for each metric individually. of goodnesof the string. Based on the principle
The effect of optimization on anaphora resolu-of survival of the fittest, a few of the strings are se-
tion was dramatically demonstrated by Uryupina’slected and each is assigned a number of copies that
contribution to SeMEvVAL 2010 Multilingual go into the mating pool. Biologically inspired op-
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erators likecrossoverandmutationare applied on

these strings to yield a new generation of strings. tlol1 1t olo ! 1 ol ol 1l 11
The processes of selection, crossover and mutation

continues for a fixed number of generations or till ﬁ ﬁ
a termination condition is satisfied. 1 Feature 12" Feature

3.2 Multi-objective Optimization

Multi-objective optimization 00) can be for-
mally stated as follows (Deb, 2001). Find the vec-

Figure 1. Chromosome representation fen
based feature selection

torsT* = [x},23,...,2%]" of decision variables _ _ o
that simultaneously optimize thd objective val-  t@lly included inP, ). The remaining members
ues of the population”;, ;) are chosen from the sub-
sequent nondominated fronts in the order of their
{11(@), f2(Z), .., fu(T)} ranking. To choose exactlyy solutions, the solu-
while satisfying the constraints, if any. tions of the last included front are sorted using the

An important concept iMoo is that ofdom-  crowded comparison operator (Deb et al., 2002)
ination. In the context of a maximization prob- and the best among them (i.e., those with lower
lem, a solutionz; is said to dominatez; if  crowding distance) are selected to fill in the avail-
Vk € 1,2,...,M, fi.(zi) > fe(z;) andIk €  able slots in;, ). The new populatior;, ) is
1,2,..., M, such thatfy(z;) > fi(Z5). then used for selection, crossover and mutation to

Among a set of solution®, the nondominated create a populatio® ;) of size N.
set of solutions”’ are those that are not dominated . .
by any member of the s@¢. The nondominated 4 WO Algorithmsfor Feature Sefection
set of the entire search spaBés called theglob- in Anaphora Resolution

ally Pareto-optimal set. In general, 100 algo-  Below we discuss how single and multi-objective
rithm usually admits a set of solutions not domi- gptimization techniques can be used feature selec-

nated by any solution encountered by it. tion in the anaphora resolution task.
3.3 Nondominated Sorting Genetic 4.1 Chromosome Representation and
Algorithm-I1 (NSGA-I1) Population Initialization

Genetic algorithmsdAs) are known to be more |f the total number of features i, then the length
effective than classical methods such as weightedf the chromosome i§'. As an example, the en-
metrics, goal programming (Deb, 2001), for solv-coding of a particular chromosome is represented
ing Moo primarily because of their population- in Figure 1. Herel’ = 12 (i.e., total 12 different
based nature. A particularly populan of this  features are available). The chromosome repre-
type isSNSGA-Il (Deb et al., 2002). sents the use of 7 features for constructing a clas-
In NSGA-II, initially a random parent population  sifier (first, third, fourth, seventh, tenth, eleventh
Py is created and the population is sorted based oand twelfth features). The entries of each chro-
the partial order defined by the non-domination mosome are randomly initialized to either O or 1.
relation. This results in a sequence of nondomiHere, if thei’* position of a chromosome is 0 then
natedfronts. Each solution is assigned a fitnessit represents that” feature does not participate in
value which is equal to its non-domination level constructing the classifier. Else if it is 1 then the
in the partial order. A child populatio@, of size " feature participates in constructing the classi-
N is then created from the parent populatiByn fier.
by using binary tournament selection, recombina- _ _
tion, and mutation operators. In general, in the*-2 FitnessComputation
t'" iteration, a combined populatioR; = P, + @Q;  For fitness computation, the following procedure
is formed. The size ofz; is 2N, as the size of is executed:

both P, and @, is N. All the solutions ofR; are 1. Suppose there ar& number of features

number of solutions belonging to the best non-  there are totalV number of 1's in that chro-
dominated sef is smaller thanV, thenF is to- mosome).
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2. Construct the coreference resolution systentution that supports state-of-the-art statistical ap-
(i.e., BART) with only theseN features. proaches to the task and enables efficient feature

3. This coreference system is evaluated on th§N9IN€ering. BART implements different models

development data. The recall, precision anoof anaphora resolution (mention-pair and entity-
E-measure values of three metrics are Calcumention; best-first vs. ranking), has interfaces to
lated different machine learners (MaxEnt, SVM, deci-

sion trees) and provides a large set of linguistically

In case of single objective optimizatios@o), motivated features, along with the possibility to
the objective function corresponding to a particu-design new ones. Itis thus ideally suited for exper-
lar chromosome is the F-measure value of a sinimenting with optimization and feature selection.
gle metric. This objective function is optimized In this study, we specifically focus on feature
using the search capability afa. For Moo, the selectior? The complete list of features currently
objective functions corresponding to a particularimplemented irBART is listed in Table 1; all were
chromosome aré&);¢ (for themuc metric), Fy,  considered in the present experiments. We used
(for CEAF using thegs entity alignment function a simple mention-pair model without ranking as
(Luo, 2005)) andFy, (for CEAF using theg, en-  in (Soon et al., 2001). In the mention-pair model,
tity alignment function). These three objective anaphora resolution is recast as a binary classifica-
functions are simultaneously optimized using thetion problem. Each classification instance consists

search capability oRSGA-II. of two mentions, i.e. an anaphdt; and its po-
_ tential antecedent/; (i < j). Instances are mod-
4.3 Genetic Operators eled as feature vectors (cf. Table 1) and are handed

In case ofsoq, a single point crossover operation over to a binary classifier that decides, whether the
is used with a user defined crossover probabilityanaphor and its candidate antecedent are mentions
te. A mutation operator is applied to each entryof the same entity or not. All the feature values are
of the chromosome with a mutation probability, computed automatically.
im, Where the entry is randomly replaced by ei- We train a maximum entropy classifier and fol-
ther 0 or 1. In this approach, the processes of fitlow the approach of (Soon et al., 2001) to parti-
ness computation, selection, crossover, and mutdion mentions into coreference sets given the clas-
tion are executed for a maximum number of gen-sifier's decisions.
erations. The best string seen up to the last gener-
ation provides the solution to the above feature se-2 TheData Sets
lection problem. Elitism has been implemented aiVe evaluated our approach on the ACE-02 dataset,
each generation by preserving the best string seamhich is divided in three subsets: bnews, npaper,
upto that generation in a location outside the popuand nwire. We provide results for both gold (hand-
lation. Thus on termination, this location containsannotated) versions of the datasets (gbnews, gnpa-
the best feature combination. per, gnwire) and system mentions extracted with
We use crowded binary tournament selection ag ARAFE® (cbnews, cnpaper, cnwire).
in NSGA-ll, followed by conventional crossover — Table 2 compares the performance level ob-
and mutation for thevoo based feature selec- tained using all the features in Table 1 with that of
tion. The most characteristic part 85GA-ll is  aloose re-implementation of the system proposed
its elitism operation, where the non-dominated sohy Soon et al. (2001), commonly used as baseline
lutions (Deb, 2001) among the parent and childand relying only on very shallow information. Our
populations are propagated to the next generatioeimplementation of the Soon et al. model uses
The near-Pareto-optimal strings of the last generonly a subset of features: those marked with an
ation provide the different solutions to the featureasterisk in Table 1. We also provide in Table 2 typ-
selection problem. ical state-of-the-art figures on the ACE-02 dataset,

as presented in an overview by Poon and Domin-
5 Methods

2The choice of the best model and the best machine
5.1 TheBART System learner, along with its parameters, is the main direction of

. | our future work.
For our experiments, we useART (Versley et Shtt p: // sour cef or ge. net / pr oj ect s/

al., 2008), a modular toolkit for anaphora reso-car af e
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Table 1: Features used BART: each feature describes a pair of menti¢ng;, M;}, i < j, whereM;
is a candidate antecedent ahf is a candidate anaphor

Mention types and subtypes
MentionType* relevant types of\/; and M}, as identified in Soon et al.
MentionTypeAnte_Salient M; is demonstrative); is an NE
MentionTypeAnte_Extra M; is a pronoun
MentionTypeAna M; is a definite, demonstrative or indefinite NP, or pronoun giecsic type
MentionType2 relevant types of\/; and M}, as identified in Soon et al.
MentionTypeSalience combination ofM entionType and M entionType_Ana
FirstSecondPerson M; is a pronoun of the 1st/second person, saméfor
PronounLeftRight 4 possible values fox. M; is a pronoun- * < M; is a pronourt>
PronounWordForm lemma forM; if it's a pronoun; same foh/;
SemClassValue semantic class a#/;, andM; and the pair
BothLocation both M; and M are locations or geo-political
Agreement
GenderAgree* M; and M; agree in gendet
NumberAgree* M; and M; agree in number
AnimacyAgree* M; and M; agree in animacy
Aliasing
Alias* heuristical NE-matching
BetterNames heuristical matching for personal names
Syntax
Appositive* M; and M; are in an appositior
Appositive2 M; andM; are adjacent
Coordination M; is a coordination; same fav/;
HeadPartOfSpeech POS ofM;'s head; same fol; and the pair
SynPos depth ofM;’s node in the parse treg
Attributes M; andM; have incompatible premodifiers
Relations M; and M; have incompatible postmodifiers
Matching
StringMatch* M; and M; have the same surface form after stripping off the detemrsine
NonPraStringMatch both M, and M; are non-pronominal anfitringmatch(M;, M;) ==
Pra_StringMatch both M; and M; are pronominal and¢ringmatch(M;, M;) == 1
NE_StringMatch both M; and M; are NE andStringmatch(M;, M;) == 1
HeadMatch M; and M; have the same heaf
MinSame M; andM; have the same minimal span
LeftRightMatch M; is a prefix or suffix substring a¥/; or vice versa
StringMatchExtra extra string-macthing for bare plurals
StringKernel approximate matching
Salience
First Mention M; is the first mention in its sentence
CorefChain Size of the coreference chain suggestediffrso far (with a threshold
NonProSalience for non-pronominalM;, number of preceding mentions with the same head lemmma
Web
Wiki M; and M; have the same wikipedia entry
Yago M; and M; are linked in Yago viareans ort ypeof relation
WebPatterns specific contexts for co-reference extracted from the web
Proximity
DistanceMarkable distance in mentions betweéd; and M
DistanceSentencelnt* distance in sentences betwekf and M
DistanceSentence log-distance in sentences betweefy and M
DistanceSentence2 log-distance in sentences betweefy and M, different formula
DistDiscrete distance in sentences betweef and M discretized into{0,1,>=2}
Miscellaneous
Speech | M; is in quoted speech; same fdf; and the pair
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Table 2: Baseline performance on the ACE-02 dataset

gold mentions
gbnews gnpaper gnwire
Fuve | Fes | Fou | Fuve | Fe | Foy | Fuve | Fe | Fo,
following Soon et al. (2001) 71.6| 67.2| 69.6| 67.8|62.6|67.5| 66.7|67.9| 69.7

All features (Table 1) 75.8| 70.6| 74.4 725|64.7| 67.0 71.2| 70.3| 72.2
state-of-the-art 65-69 - -| 70-72 - - | 54-67 - -
system mentions
cbnews chpaper chwire

Fuve | Fes | Fou | Fmuc | Fes | Fou | Fmuc | Fes | Fou
following Soon et al. (2001) 61.3]56.7| 55.9| 63.3| 57.6| 54.0| 60.8| 58.2| 57.0
All features (Table 1) 62.3|57.9|57.5| 655|559|527| 60.6|56.8|55.6

Table 3: Feature vectors identified via single-objectivaérojzation.

DataSet| Metric | Features Selected Fyuve | Foy | Fo,
opt.
gbnews | MUC 0010011011011110011111100011100100111111102628 715 | 745
$3,04 1001100011101011000010110101001101101100Q008.7 | 71.8 | 74.9
gnpaper| MUC 10000001001111110101011101110000101010100124.6 | 67.1 | 70.10

b3 101010011001001101001000000101000100011010M2 | 67.6 | 69.1
b4 111010011001001101001110001001011100100011004 | 65.2 | 70.3
gnwire | MUC | 10111011011111110010101010011010011011001024G | 70.3 | 73.7
b3 1101101110000100001111011010111101111000110ML4 | 72.3 | 73.6
b4 111010011001001101001110001001011100100011007 | 72.1 | 74.4
cbnews | MUC,é; | 111110011001010000110111001011011011110011006 | 59.7 | 58.4
b1 111110011000010000111101001011111011100011686 | 59.6 | 58.8
cnpaper | MUC,¢3 | 0100010010010101100100001011110010110000108R5 | 59.7 | 54.7
b1 101001011010111000111111100101001000100100882 | 59.1 | 55.6

cnwire | MUC 00101111101110101001100000010101001011001083.8 60.0 | 58.1
3,04 0001100010111010001000001001100010011000016®4 61.2 | 58.4

gos (2008). The results clearly show that althougHarger datasets and larger sets of features learning
even larger sets of features have been proposedimodel becomes slower and requires much more
(Uryupina, 2007; Bengtson and Roth, 2008), thememory.

set of features already included BaRT is suffi- This suggests that automatic feature selection
cient to achieve results well above the state of thenay be essential not just to improve performance
art on the dataset we used. but also to be able to train a model—i.e., that an ef-

The results in Table 2 also confirm the intu- ficient coreference resolution system should com-

ition that, contrary to what is suggested by some?ine rich linguistic feature sets with automatic fea-
of the early papers (Soon et al., 2001; Ng andure selection mechanisms.

Cardie, 2002) working on smaller datasets, lin- . . .

guistic factors do play a crucial role in anaphora5'3 Genetic Algorithm Parameter Setting
resolution and therefore rich feature sets may leatlVe set the following parameter values for both sin-
to performance improvements once larger datasete (i.e.,GA) andmMooO (i.e.,NSGA-II): population

are considered (a similar result was also obtainedize=20, number of generations=30, probability of
by Bengtson and Roth (2008)). Such improve-mutationu,, = 0.2 and probability of crossover
ments, however, come at high costs, as both using. = 0.9. Both approaches are executed on devel-
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opment data to determine the optimal feature vecMO0O approach provides a set of non-dominated
tor(s). Final results are reported on the test datasolutions on the final Pareto optimal front. All the
It is to be noted that GA is a stochastic approactsolutions are equally important from the algorith-
and outputs different results for trials with differ- mic point of view. In Table 4, we show the final
ent seeds and initial populations. Initial seeds angolutions obtained by theoo based approach for
population are chosen randomly. Thus for eaclall the data sets. Significant improvements over
data set we executed the proposed single and multie classifier based on all the features are indicated
objective based approaches 3 times. Finally, wavith T (sign testp < 0.05).

report the maximum values of these 3 runs. The results in Table 4 indicate that theoo
based technique achieves higher performance than
6 Results the single objectivesa based approach. For the

gbnewgdata setM00 achieves 0.6, 0.3 and 0.8 F-

_ o _ measure points increments for three metrics over
Single objectiveGA based feature selection wasthe single objectiveca based technique. For

executed on the six data sets to determine the agne gnpaperdata set, there are increments of 2.5
propriate set of features. For each data set three_measure points on second metric and 1.0 F-
sets of experiments were carried out by optimizingmeasure point on third metric over the correspond-
the F-measure values of the three different evalu-mg single objectivecA based technique. Sim-
ation metrics. The binary-valued feature vectorsiayly, for all other datasets theloo based ap-

selection technique for the six data sets and thgased approach.
corresponding F-measure values are shown in Ta-
ble 3. The order of the features in the vector cor-/ Comparison with Related Work
responds to their order in Table 1; the values of O's, . . . i

, ﬁ\s discussed in Section 2 most work on optimiza-
and 1's represent the absence and presence of the . . : .
. o ; tion in anaphora resolution relies on manual opti-
corresponding features. Significant improvements .~ . - o

- . mization; the one significant exception is the work

over the classifier based on all the features are in-

dicated with’ (sign testp < 0.05). o ;'r?es:s gg E[)v?/()) major differences between the ap-
These results show that for all the datasets, the J b

proposed single objectivea-based feature selec- proach of Hoste (2005) and that followed in our

tion technique performs better than the baselineStu.dy' Flrs_t, the scope of (_H(_)ste_, 2005) is re-
: stricted tosingle-objectiveoptimization. As we
approach of using all features. Moreover, the re-

) . saw above, this might provide unstable solutions,
sults show that the technique basedswo (i.e., . . .
. o that are too tailored to a particular scoring met-
conventionalcA-based method) with different ob- . :
o ) : . . . ric. Second, the feature set of Hoste (2005) is rela-
jective functions provides different evaluation fig- .. . .
o . g, tively small and therefore does not provide an effi-
ures. Thus, it is meaningful to optimize each ob- . .
o . cient test-bed for a feature selection approach. Not
jective function separately.

. . . surprisin arameter optimization shows a more
It is also evident from Table 3 that the optimal prising, p P

. , . nsistent eff n the overall performance than
feature set obtained by optimizing a single objec—CO sistent effect on the overall performance tha

tive function may not be optimal with respect to feature selection in (Hoste, 2005)’s experiments.
another objective function. Thus, it is not possibleg  pjscussion and Conclusions

to come up with common patterns in the setof op- '

timal features. For example, in casegihewsthe N this paper we showed that it may not be neces-
F-measure value of the first metric, i.e. fUC ~ Sary to choose one among the existing metrics for
corresponding to the optimal feature vector opti-anaphora resolution—in fact, that developing sys-
mizing second metric, i.ep; is 76.7. This is ob- te€ms attempting to optimize according to a combi-
viously less than the evaluation figure obtained byhation of them may lead to better results.

6.1 Single Objective Optimization

optimizing the first metric. In subsequent work, we plan to expand the
optimization technique to consider also learning
6.2 Multi-objective Optimization parameters optimization, classifier selection, and

Thereafter we apply our proposembo based fea- €arning model selection.
ture selection technique on the six data sets. The

99



Table 4: Feature vectors identified by the MOO based approach

DataSet

Features

Fyvue

F¢3

gbnews

0001111011011111001110110101111110111001(

102.20

71.50

75.70

0011010011011111001010110101111110011001¢

10120

72.00

75.50

0011111011111111001110110101111110011001(

102.00

72.10

75.10

0011101011011111001110110101111110011000d

10030

71.50

74.40

0011110010011111001010110101111110110001(

102.40

71.30

74.70

gnpaper

0100101110101011011111100001001010101100(

01390

70.10

71.10

1000000100111111010101110111000010101010(

124.60

67.10

70.10

0100101010101011011111100011011010101100(

01380

70.10

71.30

1101111110001111001111001111011010011100¢

02430

67.90

70.00

1100101010101110011111100011001010101100¢

014010

69.30

70.70

1001111010101111001111000011011110101100¢

01040

67.20

69.60

1100111010101110011111101011111010001100(

02040

67.50

69.10

1000111010101110011111100011011110101110¢

024050

66.90

69.40

0100111010101011011111101001110010001100(¢

024020

68.80

70.90

gnwire

1010110011101110011010100101101110011000¢

10090

72.30

73.80

1010110010101110011010101110101010011000(

10880

73.10

74.70

1010110010101110010010100101101110001000¢

10080

73.40

74.00

1000110011101110011010101110101010011000(

10030

72.80

74.60

1000110010101110011010100101101110001000¢

10080

73.30

74.10

cbnews

01011010011111001111100110011110001110001

034.80

60.30

59.10

00111010111111001111100100011010000110011

(@310

60.60

58.90

cnpaper

10011010110111110001111000110110001111001

040

60.00

55.00

11011000110011110000110000111110001011111

e 40

58.20

56.10

00011111110010010001011110110111000011001

84a.20

59.60

55.20

10011011010011110001110010110110000011011

&R .60

58.30

55.90

11011000110011110010110000111110101011111

a3k 70

59.40

55.70

cnwire

1111000011101101011110110001111110011000(

168 90

60.90

58.50

1101110011101101011110110001011110111000¢

1®030

61.40

58.10

0101110010101111000010100010011000111110(¢

@R 70

60.70

59.20

0101111010101011000110100010011100111110(

05K310]0)

61.00

58.70

0101111110101111000110111110011000011110(¢

@450

60.20

58.40

1101110010101111000010000010011000111110¢

a®80

60.30

58.90

0100110110101111000010100010011000111110(¢

@90

60.60

58.80
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Abstract

Event coreference is an important and compli-
cated task in cascaded event template extraction
and other natural language processing tasks. De-
spite its importance, it was merely discussed in
previous studies. In this paper, we present a glo-
bally optimized coreference resolution system
dedicated to various sophisticated event corefe-
rence phenomena. Seven resolvers for both event
and object coreference cases are utilized, which
include three new resolvers for event coreference
resolution. Three enhancements are further pro-
posed at both mention pair detection and chain
formation levels. First, the object coreference re-
solvers are used to effectively reduce the false
positive cases for event coreference. Second, A
revised instance selection scheme is proposed to
improve link level mention-pair model perfor-
mances. Last but not least, an efficient and glo-
bally optimized graph partitioning model is em-
ployed for coreference chain formation using
spectral partitioning which allows the incorpora-
tion of pronoun coreference information. The
three techniques contribute to a significant im-
provement of 8.54% in B® F-score for event co-
reference resolution on OntoNotes 2.0 corpus.

1 Introduction

Coreference resolution, the task of resolving and
linking different mentions of the same ob-
ject/event in a text, is important for an intelligent
text processing system. The resolved coreferent
mentions form a coreference chain representing a
particular object/event. Following the natural
order in the texts, any two consecutive mentions
in a coreference chain form an anaphoric pair
with the latter mention referring back to the prior
one. The latter mention is called the anaphor
while the prior one is named as the antecedent.
Most of previous works on coreference resolu-
tion such as (Soon et al, 2001; Yang et al, 2006),
aimed at object coreference which both the ana-
phor and its antecedent are mentions of the same

*National University of Singapore
‘tancl@comp.nus.edu.sg

real world object such as person, location and
organization. In contrast, an event coreference as
defined in (Asher, 1993) is an anaphoric refer-
ence to an event, fact, and proposition which is
representative of eventuality and abstract entities.
In the following example:

“Israel has [fired] missiles on the offices of
the Palestinian Authority.

[It] has caused 7 deaths with many injuries...
Israel helicopter gunships [fired] across the
Gaza Strip for more than two hours.

[The attack] in Gaza has been said to cause
more violence in Gaza and West Bank and
terminate the current round of mid-East peace
talk in an unexpected way. ”

The four mentions here, [fired], [it], [fired] and
[the attack] are referring to the same event (an
Israel attack in Gaza Strip on Palestinian Author-
ity). The pronouns noun phrases and action verbs
are taken as the representation of events which is
also in line with OntoNotes 2.0 practices.

Event coreference resolution is an important
task in natural language processing (NLP) re-
search. According to our corpus study, 68.05%
of articles in OntoNotes 2.0 corpus contain at
least one event chain while 15.52% of all corefe-
rence chains are event chains. In addition to the
significant proportion, event coreference resolu-
tion allows event extraction system to acquire
necessary details. Considering the previous ex-
ample, resolving the event chain [fired]-[it]-
[fired]-[the attack] will provide us all necessary
details about the “air strike” event mentioned in
different sentences. Such details includes
“Israel/Israel helicopter gunships™ as the actuator,
“offices of Palestinian Authority” as the target,
“7 deaths and many injuries” as the consequence,
“Gaza Strip” as the location and “more than two
hours” as the duration. Without a successful
event coreference resolution such separated piec-
es of information cannot be assembled properly.
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On the other hand, event coreference resolution
incurs more difficulties comparing to the tradi-
tional object coreference from two aspects. In a
semantic view, an object (such as a person, loca-
tion and etc.) is uniquely defined by its name (e.g.
Barrack Obama) while an event requires its role*
information to distinguish it from other events.
For example, “the crash yesterday” — “crash in
1968” shares the same event head phrase “crash”,
but they are distinguished by the time arguments.
In a syntactic view, object coreferences only in-
volve mentions from noun category while event
coreference involves mentions from different
categories. The syntactic differences will cause
the tradition coreference features crippled or
malfunctioned as reported by (Chen et al,
2010a;b) for Verb-Pronoun/Verb-NP resolution.
In addition to their findings, we further find that
even the event NP-Pronoun/NP-NP resolution
requires more sophisticated feature engineering
than the traditional ones. For example, previous
semantic compatibility features only focus on
measuring the compatibility between object such
as “person”, “location” and etc. Event cases are
generally falls in the “other” category which
provides us no useful information in distinguish-
ing different events. These extra syntactic and
semantic difficulties make event coreference res-
olution a more complicated task comparing to
object coreferences.

In this paper, we address the various different
event coreference phenomena with seven distinct
mention-pair resolvers designed with sophisti-
cated features. We then propose three enhance-
ments to boost up performance at both mention
pair detection and chain formation level. First,
for the mention-pair resolvers, we have proposed
the technique to utilize competitive classifiers’
results to further boost mention-pair resolvers’
performances. Second, a revised instance selec-
tion strategy is proposed to avoid mention-pair
resolvers from being misguided by locally pre-
ferred instances used previously. Last, on top of
coreferent pairs identified by the mention-pair
resolvers, we have incorporated the spectral par-
titioning approach to form the coreference chains
in a globally optimized way. Especially, we pro-
posed a technique to enhance the chain level per-
formance by incorporating the pronoun informa-
tion which the previous attempts did not utilized.

The rest of this paper will be organized in the
following way. The next section (section 2) will

! Event roles refer to the arguments of the event such as
actuator, patient, time, location and etc.

introduce related works. A review on coreference
resolution framework and its weaknesses is pre-
sented in section 3. After that we will move on to
our proposed model to overcome the weaknesses
in section 4. Section 5 will present the experi-
ment results with discussions. Last section will
wrap up with a conclusion and future research
directions.

2 Previous Work

Although event coreference resolution is an im-
portant task, it has not attracted much attention.
There is only a limited number of previous works
related to this task.

In (Asher, 1993) chapter 6, a method to resolve
references to abstract entities using discourse
representation theory is discussed. However, no
computational system was proposed.

Besides linguistic studies, there are only a few
previous works attempting to tackle sub-
problems of the event coreference resolution.
(Byron, 2002; Mdler, 2007; Chen et al, 2010a)
attempted event pronoun resolution. (Chen et al,
2010b) attempted resolving noun phrases to verb
mentions. All these works only focused on iden-
tifying pairs of coreferent event mentions in their
targeted phenomena. The ultimate goal, which is
extracting event chain, is lack of attention.

(Pradhan, et al, 2007) applied a conventional
co-reference resolution system to OntoNotes1.0
corpus using the same set of features for object
coreference resolution. However, there is no spe-
cific performance reported on event coreference.
As (Chen et al, 2010b) pointed out, the conven-
tional features do not function properly on event
coreference problem. Thus, a thorough investiga-
tion on event coreference phenomena is required
for a better understanding of the problem.

3  Resolution Framework

Before we introduce our proposed system to
event coreference, we would like to revisit the
two-step resolution framework to understand
some of its weaknesses. Most of previous corefe-
rence resolution system employs a two-steps ap-
proach as in (Soon et al, 2001; Nicolae & Nico-
lae, 2006) and many others. The first step identi-
fies all the pairs of coreferent mentions. The
second step forms coreference chains using the
coreferent pairs identified from the first step.
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Although a handful of single-step frameworks
were proposed recently such as (Cai & Strube,
2010), two-step framework is still widely in use
because it has been well-studied. Conceptually,
the two-step framework adopts a divide-and-
conquer strategy which in turn, allows us to fo-
cus on different sub-problems at different stages.
The mention-pair detection step allows us to em-
ploy many features associated with strong lin-
guistic intuitions which have been proven useful
in the previous linguistic study. The chain forma-
tion step allows us to leverage on efficient and
robust graph partitioning algorithms such spec-
tral partitioning used in this paper. Practically,
the two-step framework is also more mature for
practical uses and has been implemented as a
number of standard coreference resolution tool-
kits widely available such as RECONCILE in
(Stoyanov et al, 2010) and BART in (Versley et
al, 2008). Performance-wise, two-step approach-
es also show comparable performance to single
step approaches on some benchmark datasets®.

In this paper, we are exploiting a brand new
type of coreference phenomenon with merely
previous attempts. Therefore, we employed the
much matured two-step framework with innova-
tive extensions to accommodate complicated
event coreference phenomena. Such a divide-
and-conquer strategy will provide us more in-
sight for further advancements as well.

3.1 Mention-Pair Resolution Models

Most of mention-pair models adopt the well-
known machine learning framework for object
coreference as proposed in (Soon et al, 2001).

Instances Generation

In this learning framework, a training/testing in-
stance has the form of fv(cand;, ana), where ana
is the anaphor and cand; is the i" candidate of the
given anaphor. During training, we employed the
widely used instance selection strategy described
in (Ng & Cardie, 2002). In brief, only the closest
antecedent of a given anaphor is used as positive
instance while only candidates in between the
anaphor and its closest antecedent are used as

2 (Stoyanov et al, 2010) reported RECONCILE(two-steps)
achieving 74.25% B? f-score on ACE 2005. (Haghighi &
Klein, 2010) using single-step approach reported 75.10% B*
f-score on the same dataset with same train/test-splitting.
According to our experiences, such a 0.95% difference is
not statistically significant. Other single-step works as
(Rahman & Ng, 2009) and (Poon & Domingo, 2008) re-
ported clearly lower B® f-score than RECONCILE using
same datasets but different train/test-splitting.

negative instances. During testing, an instance is
generated in a similar manner with an additional
constraint that the candidate must be within n
sentences from the anaphor.

An obvious weakness of such an instance selec-
tion strategy is the representation power of the
selected instances. Ideally, the selected instances
should represent the coreferent status between
any two mentions. However this strategy turns
the selected set into a local preference represen-
tation. The positive instance is the closest pre-
ferred mention while the negatives are local non-
preferable ones. Such an instance set may help in
locally choosing a preferable candidate. But it
may be harmful if we want to use the classifier’s
results in a global approach such as graph parti-
tioning. In the section 4, we will propose a re-
vised instance selection strategy to overcome
such a weakness.

SVM with Tree-Kernel

In such a learning framework, many well-known
learning models can be applied to the corefe-
rence resolution task. In this paper, support vec-
tor machine (SVM) is employed for its robust
performance in high dimensional space.

In addition to the traditional SVM, we incorpo-
rate the syntactic structures through a convolu-
tion tree kernel. Tree kernel is used to capture the
implicitly structural knowledge embedded in the
syntax tree. Effectiveness of various structures
was investigated in (Yang et al, 2006; Chen et al,
2010a;b). Based on their findings, we choose
minimum-expansion for this paper. In brief, it
contains only the path in the parse tree connect-
ing an anaphor and its antecedent. The convolu-
tion tree kernel and traditional flat kernel are
combined to form a composite kernel.

3.2 Coreference Chain Formation

After the coreferent mention pairs are identified,
coreference chains are formed based on those
coreferent pairs. There are two major ways to
form coreference chains in the literature, best-
link heuristic and graph partitioning.

Best-Link Heuristics Approach

The best-link heuristic selects the candidate with
highest confidence for each anaphor and forms a
“best-link” between them. After that, it simply
joins all the mentions connected by “best-links”
into the same coreference chain. The best-link
heuristic approach is widely used as in (Soon et
al, 2001; Yang et al, 2006) because of its sim-
plicity and reasonably good performance.
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The major critics of best-link heuristic fall on
its lack of global consideration when forming the
coreference chains. The mentions are only joined
through locally selected “best-links”. Thus the
chain consistency is not enforced. Remedies to
such a critic are proposed such as best-cut in the
next subsection and our proposed method.

Graph Partitioning Approach
Graph partitioning approaches are proposed by
various researchers to form coreference chains
with global consideration. Here we take Best-Cut
proposed in (Nicolae & Nicolae, 2006) as a rep-
resentative of graph partitioning approaches.
Best-Cut is a variant from the well-known mini-
mume-cut algorithm. A graph is formed using all
the mentions as vertices. An edge is added be-
tween two mentions if a positive output from the
mention-pair model. Then the set of edges are
iteratively cut to form the coreference chains.
According to (Nicolae & Nicolae, 2006), best-
cut does not utilize coreferent pairs involving
pronouns. However, event coreference chains
contain a significant proportion of pronouns
(18.8% of event coreference mentions in the On-
toNotes2.0 corpus). Leaving them untouched is
obviously not a preferable choice. In the next
section, we will propose an alternative chain
formation method to incorporate coreferent pro-
nouns into the graph partitioning to accommo-
date its intensive occurrences in event chains.

4 Our Proposed Model

Our proposed resolution framework follows a
similar system flow as the two-step framework
which is illustrated in figure 1 for an overview of
our resolution system. A brief discussion on var-
ious types of event coreference is given in the
first subsection 4.1. Each type corresponds to a
distinct mention-pair resolver. New features are
proposed to capture 3 newly encountered phe-
nomena. After that, we proposed two techniques
to improve the mention-pair performance, name-
ly a revised instance selection strategy and utiliz-
ing competing classifiers’ results. At chain for-
mation step, we also proposed the alternative
method, spectral graph partitioning to utilizing
pronoun coreferent information.

4.1 Seven Distinct Mention-Pair Models

As we mentioned, one major difficulty of event
coreference lies in the gap between different syn-
tactic types of mentions (e.g. nouns, verbs and
pronouns). As discussed in (Chen et al, 201